

# MISSISSIPPI POWER & LIGHT COMPANY

Helping Build Mississippi

P. O. BOX 1640, JACKSON, MISSISSIPPI 39205

April 8, 1982

NUCLEAR PRODUCTION DEPARTMENT

U.S. Nuclear Regulatory Commission Division of Licensing Washington, D.C. 20555

Attention: Mr. Robert L. Tedesco, Assistant Director

Dear Mr. Tedesco:

SUBJECT: Grand Gulf Nuclear Station Units 1 and 2 Docket Nos. 50-416 and 50-417 File 0260/0277/L-860.0/L-814.1 NUREG-0588 Evaluation - Response to NRC Trip Report of January 18, 1982 AECM-82/141

8001

References:

1) AECM-81/231, dated July 1, 1981 2) AECM-81/335, dated September 1, 1981 3) AECM-81/502, dated December 21, 1981

Mississippi Power & Light Company's (MP&L) letter of July 1, 1981 (AECM-81/231) provided MP&L's evaluations of Class IE electrical equipment qualifications to the requirements of NUREG-0588.

Since MP&L's July 1, 1981 submittal, two (2) supplements have been submitted (AECM-81/335 and AECM-81/502) that have provided additional information on the interim operation justification for equipment identified by MP&L requiring interim operation justification.

The purpose of this letter is to provide MP&L's response to the NRC Equipment Qualification Branch Trip Report - Audit of Documentation Concerning Environmental Qualification of Electrical Equipment for Grand Gulf Unit 1.

With the attached information, qualification or interim operation justification will have been established on all equipment at Grand Gulf Unit 1, subject to the NUREG-0588 harsh environment review.

The following information is provided:

1. Attachment No. 1

> Provides interim operation justification for equipment previously identified by MP&L as requiring interim operation justification.

8204120157 820408 05000416 PDR ADOCK PDR A

Member Middle South Utilities System

2. Attachment No. 2

Provides an update to Attachment No. 2 of the NRC EQB Trip Report of January 12, 1982.

3. Attachment No. 3

Provides additional information on qualification of drywell purge compressor motors.

4. Attachment No. 4

Provides additional information on qualification status of limitorque MOV's in regard to loss of lubricant.

If you have any questions or require further information, please contact this office.

Yours truly,

balanda. L. F. Dale

Manager of Nuclear Services

RAB/SHH/JDR:1m Attachments

cc: Mr. N. L. Stampley (w/o) Mr. G. B. Taylor (w/o) Mr. R. B. McGehee (w/o) Mr. T. B. Conner (w/o)

> Mr. Richard C. DeYoung, Director (w/o) Office of Inspection & Enforcement U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Mr. J. P. O'Reilly, Regional Administrator (w/a)
Office of Inspection & Enforcement
U.S. Nuclear Regulatory Commission
Region II
101 Marietta St., N.W., Suite 3100
Atlanta, Georgia 30303

# ATTACHMENT NO. 1

# JUSTIFICATION FOR INTERIM OPERATION

Equipment reviewed and justification for interim operation is attached.

| 1. | J-561.0       | Temperature Elements (Thermoelectric)                                     |
|----|---------------|---------------------------------------------------------------------------|
| 2. | M-242.0       | AC Actuator (Motor Operated Valves - Limitorque)<br>- Outside Containment |
| 3. | M-251.0       | AC Actuator (Motor Operated Valves - Limitorque)<br>- Outside Containment |
| 4. | M-257.0/258.0 | AC Actuator (Motor Operated Valves - Limitorque)<br>- Outside Containment |
| 5. | M-242.0       | AC Actuator (Motor Operated Valves - Limitorque)<br>- Inside Containment  |
| 6. | M-251.0       | AC Actuator (Motor Operated Valves - Limitorque)<br>- Inside Containment  |
| 7. | M-257.0/258.0 | AC Actuator (Motor Operated Valves - Limitorque)<br>- Inside Containment  |
| 8. | NSSS          | S&K Flow Meter (20-9651-8550)                                             |
| 9, | NSSS          | S&K Flow Transmitter (91X-16)                                             |

# I. EQUIPMENT DESCRIPTION

Specification No.: Component:

Plant ID No.: Manufacturer: Model No.: 9645-J-561.0 Temperature Element Assemblies (Inside and Outside Containment) See Attachment 1 Thermoelectric, Inc. 27620

# II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Thermoelectric temperature elements for inside and outside of containment use did not meet Category I requirements of NUREG-0588 because no qualification test data was available.

Interim Operation Justification provided.

# III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)

No change. Temperature element to be qualified by testing.

# IV. QUALIFICATION STATUS UPDATE

In MP&L's initial NUREG-0588 submittal (AECM-81/231, July 1, 1981), MP&L provided interim operation justification for radiation as the only harsh environment the Thermoelectric temperature element was required to operate in. In regard to the operability of the Thermoelectric temperature elements in the temperature, pressure, and humidity harsh environment, MP&L inadvertently failed to discuss this in the initial NUREG-0588 submittal.

The following information is provided to demonstrate the operability of the Thermoelectric temperature element when the temperature elements are exposed to the DBA temperature, pressure, and humidity:

 The Thermoelectric temperature element is not a complex electronic device, but rather a simple assembly of several components made of known materials.

2. Temperature Element Components

# Metalic Parts

Part

# Material

Ceramo Assy Thermocouple Shroud Head Cover Nipple Fittings Screws Junction Filler

Copper/Constantan ASTM A269 GR 316 Aluminum Aluminum ASTM A-312 GR 304 ASTM A276 GR 304 Steel, Cadmium Plated Brass 31655

# Inorganic Parts

#### Part

# Material

| Ceramo  | As | sy     |
|---------|----|--------|
| Insul   | at | ion    |
| Termina | 1  | Blocks |

Magnesium Oxide Hemit Mixture of Asbestos, Cement (Portland), Clay, Water

# Organic Parts

| -   |        |   | - |  |
|-----|--------|---|---|--|
| 1.2 | 100    | - |   |  |
|     | - 4    | * |   |  |
|     | C.R. 1 |   | - |  |
| -   |        | - | - |  |
|     |        |   |   |  |

# Material

Viton V747-75

Body Gasket ("O" Ring) End Seal\*

End Seal\*

Uniset A 312 (epoxy/aromatic curing agent) Epoxylite 6203

Insulating Tubing Extruded Silicone Rubber

\*Both end seal materials are being analyzed to facilitate the retagging of these temperature elements for use either inside or outside the containment.

- 3. The temperature elements are installed with a special connector for sealing the connection between the head assembly and the conduit. This connector and the viton "0" ring will be the primary sealing boundaries of the temperature element head. This allows consideration of the viton "0" ring as the only limiting material.
- 4. The purpose of the potting end seal material will be to provide a secondary sealing boundary. The uniset A-312 will perform in temperatures ranging to 400°F and the epoxylite 6203 at even higher temperatures.
- The insulated silicone rubber tubing is rated for continuous operation at 400°F and its sole purpose is to keep the thermocouple leads from touching.
- 6. The "Hemit" terminal blocks are formulated from inorganic material and therefore not subject to aging, much the same as a metal. The qualified life period of the viton "O" ring has been determined by Arrhenius calculation performed by Bechtel to be 91.8 years at a normal operating temperature environment of 145°F, which includes a +15°F margin, using a very conservative activation energy of 0.5 eV.
- The viton "O" ring was exposed to the following steam tests with minor to moderate effects:

| Steam    | Temperature | Days |
|----------|-------------|------|
| 20 Psig  | 260°F       | 50   |
| 50 Psig  | 300°F       | 21   |
| 80 Psig  | 325°F       | 9    |
| 120 Psig | 350°F       | 6    |

 The remaining materials, again, are not limiting for humidity effects because they are located within the primary sealing boundary of the temperature element.

Based on the above discussion and engineering judgement, the Thermoelectric temperature elements will function during and after being exposed to the DBA temperature, pressure, and humidity. Therefore, operability is assured until the Thermoelectric temperature elements are qualified by test to Category I of NUREG-0588.

# V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for Thermoelectric temperature element identified in Attachment 1.

# VI. FOLLOW-UP PROGRAM

The Thermoelectric temperature elements are being qualified by test at Acton test lab to Category I of NUREG-0588 with the qualification testing to be completed by June 1982 or soon thereafter as possible.

# ATTACHMENT 1

Plant ID Numbers for Thermoelectric Temperature Elements

| Inside Containment:  | 1M71-TE-N005 | Α, | Β, | С. | D |  |
|----------------------|--------------|----|----|----|---|--|
|                      | 1M71-TE-N006 | Α, | В, | С, | D |  |
|                      | 1M71-TE-N007 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N008 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N009 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N010 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N011 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N012 | Α, | В, | С, | D |  |
|                      | 1M71-TE-N013 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N022 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N023 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N024 | Α, | Β, | С, | D |  |
|                      | 1M71-TE-N025 | Α, | В, | С, | D |  |
|                      | 1M71-TE-N026 | Α, | В, | С, | D |  |
| Outside Containment: | 1T46-TE-N002 | Α, | В  |    |   |  |
|                      | 1T46-TE-N003 | Α, | В, | С. | D |  |
|                      | 1T46-TE-N004 | Α, | Β, | С, | D |  |
|                      |              |    |    |    |   |  |

# 1. EQUIPMENT DESCRIPTION

| Specification No: | 9645-M-242.0                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component:        | AC Actuator (Motor Operated Valve)/(Outside Containment)                                                                                                                                           |
| Plant ID No:      | See Attachment 1 (Quantity 77)                                                                                                                                                                     |
| Manufacturer:     | Limitorque                                                                                                                                                                                         |
| Model No:         | See Attachment 1                                                                                                                                                                                   |
| Sub-Components:   | Class B Insulation AC Motor-Reliance, Model #447014-JZ<br>4 Train Limit and Torque Switch - Limitorque<br>Hook-up Wiring - Flamtrol (Raychem)<br>Terminal Blocks - Marathon 300, GE EB-5, Buchanon |
|                   | 0222/0524                                                                                                                                                                                          |

# 11. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Limitorque Motor Operated Valves (MOV) for outside of containment use did not meet Category II requirements of NUREG-0588 for the following reasons:

- The qualified life of the subcomponents had not been adequately determined.
- 2. Hook-up wiring in the actuator did not meet the total expected dose.
- 3. Temperature test profile did not envelop the plant specific profile during the first 4.2 minutes of DBA.
- III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)
  - A. <u>Class B Insulation</u> <u>AC Motor Reliance, Model #447014-JZ</u> Interim Operation Justification provided.
  - B. <u>4 Train Limit and Torque Switch Limitorque</u> Interim Operation Justification to be provided prior to fuel load.
  - C. <u>Hook-up Wiring Flamtrol (Raychem)</u> Interim Operation Justification to be provided prior to fuel load.
  - D. Terminal Blocks Marathon 300, GE EB-5, Buchanon 0222/0524 Interim Operation Justification to be provided prior to fuel load.

# IV. QUALIFICATION STATUS UPDATE

A. General

Further review of the 77 actuators has revealed that actuator B21-F020 does not perform a safety-related function. It has a non-Class IE power supply. It was initially included in the review because the valve had been purchased to the same specification as the other safety-related valves.

In the initial NUREG-0588 evaluation, an attempt was made to qualify all the Limitorque operators in the auxiliary building to a bounding radiation value of 57.9 x  $10^{\circ}$  RADS of gamma. This resulted in certain components (which were only qualified to 20 x  $10^{\circ}$  RADS) being declared unqualified for radiation.

Subsequently, a unique dose was calculated for each operator using the dose rate-versus-distance curves described in Section 6.3.1 of "Response to NUREG-0588." As described therein, the methodology utilized straight piping runs of infinite length and took minimal credit for shielding from other equipment. The results of this approach are provided in Table B-8 for each valve associated with this specification. However, using this methodology, the 27 valves shown on Attachment 2 still exceeded the 20 x 10<sup>6</sup> RAD limit. A detailed calculation was then performed for each valve taking credit for finite pipe lengths, actual pipe run configuration, and shielding due to all intervening equipment. The results of these final calculations are shown on Attachment 2; total integrated dose to each valve associated with this specification is now less than 20 x 10<sup>6</sup> RADS.

Some of the actuators are exposed to an accident temperature of 310°F versus a test temperature of 250°F max. However, the rise of temperature from a normal value of between 80°F and 125°F to 310°F and the fall to 212°F takes place in a time duration of less than 5 minutes. Since the actuators are completely enclosed in metallic enclosures, the actual temperature to which the internal parts will be exposed will be much lower, as the enclosures will provide a buffer for temperature extremes.

DBA operability was demonstrated during testing for 16 days. The test temperature profile did not completely envelope the plant accident profile for a duration of 4.17 minutes. However, for the balance of the test the actuator is subjected to a much harsher environment than required. Based on this, a calculation was performed to show that the qualified life of the actuator during LOCA exceeds 100 days.

# B. Class B Insulation, AC Motor - Reliance, Model #447014-JZ

Based on Limitorque Report B0058, the average expected life of a Class B motor at 125°F is approximately 2589 years. This is based on an equation for the Arrhenius Curve. A qualified life of 40 years at 125°F is equal to 1.5% of its failure life at this temperature. Degradation to the insulation system would be proportional to the percent of failure life, as it is a function of temperature and age. This implies that had the motor under test been thermally aged prior to subjecting it to the LOCA conditions, the degradation to its insulation system would have been negligible (1.5%). This would not have changed the results of this test in any significant way. Hence, one can safely conclude that the Class B, AC motor is qualified for 40 years at a normal ambient temperature of 125°F.

In addition, it is to be noted that the above life is derived on the basis of continuous running operation. The motors in the actuator operate for short durations only. Hence, enough conservatism is present in the above conclusion.

# C. 4 Train Limit and Torque Switch - Limitorque

A review of the Limitorque Report B0085 indicates molded phenolic material has been used for these switches. This material has a temperature index of  $150^{\circ}$ C per Underwriters Laboratories. When this phenolic material was heated at that temperature for 6 x  $10^{\circ}$ 

hours, its physical properties were reduced to one half of their original value. A conservative value for its activation energy, per EPRI Research Project 980-1, is 0.96 eV. Assuming its degradation due to thermal aging at a normal temperature of 125°F follows the Arrhenius Curve, it would take 17.47 x  $10^7$  hours to reach the same level of degradation. A qualified life of 40 years is only 0.20% of this period.

# D. Hook-up Wiring - Flamtrol (Raychem)

The hook-up wiring has been identified by Limitorque as Raychem Flamtrol. The Raychem Flamtrol Insulation System has been extensively tested and is qualified to 1EEE 383-1974 per FIRL Report F-C4033-1 dated January 1975.

# E. Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524

This subcomponent is being evaluated under the Electrical Interface package which was provided to the NRC in MP&L letter to the NRC (AECM-81/502, 12/21/81). The terminal blocks are justified for interim operation and will be qualified by June 1982 or as soon thereafter as possible.

# V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for the Limitorque Motor Operated Valves (MOV) identified in Attachment 1.

## VI. FOLLOW-UP PROGRAM

The Limitorque Motor Operated Valves (MOV) identified in Attachment 1 will be qualified by June 1982 or as soon thereafter as possible.

ATTACHMENT 1 Page 1 of 2

Exhibit "F" Attachment 1

William Powell

Valves 21 & Larger with Limitorque Motor Actuator

17 VALVO Lim itanque 0415, de containe

9645-M-242.0

| System Name             | Plant     | Room  | Room Actuator |      |                                   |  |
|-------------------------|-----------|-------|---------------|------|-----------------------------------|--|
|                         | ID No.    | No.   | Model No.     | gory | Service                           |  |
| Nuclear Boiler          | B21 F020  | 1A305 | SMB-00-7.5    | b    | System Isolation<br>Remain Closed |  |
|                         | B21 F019  | 1A305 | SMB-000-5     | а    | Containment Isolation             |  |
|                         | B21 F065A | 1A305 | SMB-4-150     | а    |                                   |  |
|                         | B21 F065B | 1A305 | SMB-4-150     | а    |                                   |  |
|                         | B21 F098A | 1A305 | SMB-3-100     | а    |                                   |  |
|                         | B21 F098B | 1A305 | SMB-3-100     | а    |                                   |  |
|                         | B21 F098C | 1A305 | SMB-3-100     | а    |                                   |  |
|                         | B21 F096D | 1A305 | SMB-3-100     | а    |                                   |  |
| CRD Hydraulic<br>System | C11 F322  | 1A201 | SMB-000-5     | а    | Aux. Bldg. Isolation              |  |
| RHR System              | E12 F004A | 1A103 | SMB-2-40      | а    | Containment Isolation             |  |
| and of occas            | E12 F004B | 1A105 |               | а    |                                   |  |
|                         | E12 F004C | 1A116 |               | а    |                                   |  |
|                         | E12 F026A | 1A103 | SMB-000-5     | а    | System Control                    |  |
|                         | E12 F026B | 1A105 |               | а    |                                   |  |
|                         | E12 F049  | 1A102 |               | а    |                                   |  |
|                         | E12 F064A | 1A103 | SMB-00-10     | а    | Containment Isolation             |  |
|                         | E12 F064B | 1A105 |               | a    |                                   |  |
|                         | E12 F064C | 1A118 |               | a    |                                   |  |
|                         | E12 F053A | 1A203 | SB-3-100      | а    | System Control                    |  |
|                         | E12 F053B | 1A205 | SB-3-100      | а    |                                   |  |
|                         | E12 F023  | 1A204 | SMB-1-25      | а    | to RCIC System                    |  |
|                         | E12 F087A | 1A304 | SMB-2-40      | а    | System Control                    |  |
|                         | E12 F087B | 1A306 |               | а    |                                   |  |
|                         | E12 F052A | 1A304 |               | а    |                                   |  |
|                         | E12 F052B | 1A306 |               | a    |                                   |  |
|                         | E12 F003A | 1A102 | SMB-4-300     | а    |                                   |  |
|                         | E12 F003B | 1A106 | SMB-4-300     | а    |                                   |  |
|                         | E12 F048A | 1A128 |               | а    |                                   |  |
|                         | E12 F048B | 1A129 |               | а    |                                   |  |
| RHR System              | E12 F024A | 1A103 | SMB-2-80      | а    | Containment Isolation             |  |
|                         | E12 F024B | 1A105 | SMB-2-80      | а    |                                   |  |
|                         | E12 F006A | 1A203 | SMB-2-80      | а    | Pump Suction from Reacto          |  |
|                         | E12 F006B | 1A205 | SMB-2-60      | а    | Recirc.                           |  |
|                         | E12 F042C | 1A320 | ¥ SB-2-80     | а    | Containment Isolation             |  |
|                         | E12 F008  | 1A204 | SMB-3-100     | a    |                                   |  |
|                         | E12 F027A | 1A203 | SMB-1-60      | а    |                                   |  |
|                         | E12 F027B | 1A205 | SMB-1-60      | а    |                                   |  |
|                         | E12 F011A | 1A103 | SMB-00-7 1/2  | а    |                                   |  |
|                         | E12 F011B | 1A105 | SMB-00-7 1/2  | а    | Sucham Contral                    |  |
|                         | E12 F040  | 1A128 | SMB-000-5     | a    | System Control                    |  |
|                         | E12 F021  | 1A116 | SMB-3-150     | a    | Containment Isolation             |  |
|                         | E12 F047A | 1A303 | SMB-2-80      | a    | System Control                    |  |
| 4                       | E12 F047B | 1A307 | SMB-2-80      | a    | Pamain Closed                     |  |
|                         | E12 F094  | 1A123 | SMB-2-60      | D    | Kemain Glosed                     |  |
|                         | E12 F096  | 1A123 | SMB-2-60      | D    |                                   |  |

ATTACHMENT 1 PAge 20F2

# Exhibit "F" Attachment 1

| Valves With 25"   | & Lai | rger      | Wil         | liam Powell           | 9             | 645-M-242.0                             |
|-------------------|-------|-----------|-------------|-----------------------|---------------|-----------------------------------------|
| System            | Plan  | nt<br>No. | Room<br>No. | Actuator<br>Model No. | Cate-<br>gory | Service                                 |
| LPCS System       | E21   | F001      | 1A115       | SMB-1-40              | а             | Suppression Pool Iso-<br>lation         |
|                   | F21   | F005      | 1A220       | SB-3-150              | а             | Containment Isolation                   |
|                   | F21   | F011      | 14115       | SMB-000-5             | а             | System Testing                          |
|                   | F21   | F012      | 1A115       | SMB-3-150             | а             |                                         |
| PCTC              | E51   | F064      | 1A305       | SB-1-40               | а             | Containment Isolation                   |
| Refe              | E51   | F077      | 1A209       | SMB-000-2             | а             | Suppression Pool Iso-<br>lation         |
| RWCII System      | G33   | F004      | 1A305       | SMB-0-25              | а             | Containment Isolation                   |
| KHOU DJUCCH       | G33   | F034      | 1A305       | SMB-00-10             | а             |                                         |
|                   | G33   | F039      | 1A305       | SMB-0-25              | а             |                                         |
|                   | G33   | F054      | 1A305       | SMB-00-10             | а             |                                         |
| Fuel Pool Cooling | G41   | F028      | 1A527       | SMB-00-10             | а             | Containment Isolation                   |
| & Cleanup         | G41   | F021      | 1A527       | Later                 | а             | System Control                          |
| a oreanap         | G41   | F029      | 1A527       | SMB-000-5             | а             | Containment Isolation                   |
| Standby Service   | P41   | F237      | 1A215       | SMB-000-5             | b             | System Isolation                        |
| Water             | P41   | F238      | 1A215       |                       | b             |                                         |
| nu c c s          | P41   | F241      | 1A123       |                       | b             |                                         |
|                   | P41   | F081A     | 1A123       |                       | b             |                                         |
|                   | P41   | F081B     | 1A123       |                       | b             |                                         |
|                   | P41   | F064A     | 1A123       |                       | b             |                                         |
|                   | P41   | F064B     | 1A123       |                       | b             |                                         |
|                   | P41   | F155A     | 1A201       |                       | b             | Aux. Bldg. Isolation                    |
|                   | P41   | F155B     | 1A201       |                       | b             |                                         |
|                   | P41   | F154      | 1A201       |                       | b             |                                         |
|                   | P41   | F125      | 1A201       |                       | Ь             | System Isolation                        |
| Component Cooling | P42   | F066      | 1A319       | SMB-00-10             | а             | Containment Isolation                   |
| Water             | P42   | F067      | 1A319       |                       | a             |                                         |
| Plant Service     | P44   | F053      | 1A319       | SMB-000-5             | а             | Containment Isolation                   |
| Water             | P44   | F069      | 1A319       | SMB-000-5             | а             |                                         |
| Floor & Equip.    | P45   | F273      | 1A203       | SMB-000-5             | а             | Containment Isolation                   |
| Drain             | P45   | F274      | 1A203       | SMB-000-5             | а             |                                         |
| Fire Protection   | P64   | FA10A     | 1A215       | SMB-000-5             | b             | Isolation Valve Bypass<br>Remain Closed |
|                   | P64   | FA10B     | 1A211       | SMB-000-5             | b             |                                         |

 $\mathbf{n}^{\dagger}$ 

ATTACHMENT 2

• 7

TABLE I Dose to Limitorque Actuators

| Room -  | Plant ID<br>No. | Actuator<br>Model No. | Accident Dose<br>(Megarad) | Normal Dose<br>(Megarad) |
|---------|-----------------|-----------------------|----------------------------|--------------------------|
|         |                 | CHT. 000 E            |                            | 1.0                      |
| · 1A305 | B21-F019        | SMB-000-5             | 0.5                        | 1.0                      |
| 1A305   | B21-F098A       | SMB-3-100             | 3.5                        | 1.0                      |
| 1A305   | B21-F098B       | SMB-3-100             | 3.5                        | 1.8                      |
| 1A305   | B21-F098C       | SMB-3-100             | 3.5                        | 1.8                      |
| 1A305   | B21-F098D       | SMB-3-100             | 3.5                        | 1.8                      |
| 1A103   | E12-F004A       | SMB-2-40              | 17                         | .005                     |
| 1A105   | E12-F004B       | SMB-2-40              | 17                         | .005                     |
| 1A103   | E12-F026A       | SMB-000-5             | 10.5                       | .005                     |
| 1A105   | E12-F026B       | SMB-000-5             | 10.5                       | .005                     |
| 1A102   | E12-F049        | SMB-000-5             | 17.5                       | .005                     |
| 1A105   | E12-F064B       | SMB-00-10             | 10.5                       | .005                     |
| 1A203   | E12-F053A       | SB-3-100              | 11                         | .005                     |
| 1A205   | E12-F053B       | SB-3-100              | 13                         | .005                     |
| 1A202   | E12-F003A       | SMB-4-300             | 16                         | .005                     |
| 1A106   | E12-F003B       | SMB-4-300             | 15.5                       | .005                     |
| 1A103   | E12-F024A       | SMB-2-80              | 19                         | .005                     |
| 1A105   | E12-F024B       | SMB-2-80              | 19                         | .005                     |
| 1A203   | E12-F027A       | SMB-1-60              | 9.5                        | .005                     |
| 1A103   | E12-F011A       | SMB-00-7.5            | 10.5                       | .005                     |
| 1A105   | E12-F011B       | SMB-00-7.5            | 10.5                       | .005                     |
| 18305   | E51-F064        | SB-1-40               | 6.5                        | 1.8                      |
| 18305   | G33-F004        | SMB-0-25              | 6.5                        | 1.8                      |
| 18305   | G33-F034        | SMB-00-10             | 6.5                        | 1.8                      |
| 18305   | G3-F039         | SMB-0-25              | 6.5                        | 1.8                      |
| 18305   | G13-F054        | 5MB-0-10              | 6.5                        | 1.8                      |
| 18303   | D45-F273        | SMB-000-5             | 10                         | .005                     |
| 14203   | P45-F275        | SHB-000-5             | 10                         | .005                     |
| 14203   | Re2-1714        | Brid-000-3            |                            |                          |

PAge 1 of 1

#### I. EQUIPMENT DESCRIPTION

| Specification No: | 9645-M-251.0                                                                                                                                  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Component:        | AC Actuator (Motor Operated Valve)/(Outside Containment)                                                                                      |
| Plant ID No:      | See Attachment 1 (Quantity 67)                                                                                                                |
| Manufacturer:     | Limitorque                                                                                                                                    |
| Model No:         | See Attachment 1                                                                                                                              |
| Sub-Components:   | Class B Insulation AC Motor-Reliance, Model #447014-JZ<br>4 Train Limit and Torque Switch - Limitorque<br>Hook-up Wiring - Flamtrol (Raychem) |
|                   | Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524                                                                                   |

#### II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Limitorque Motor Operated Valves (MOV) for outside of containment use did not meet Category II requirements of NUREG-0588 for the following reasons:

- The qualified life of the subcomponents had not been adequately determined.
- 2. Hook-up wiring in the actuator did not meet the total expected dose.
- 3. Temperature test profile did not envelop the plant specific profile during the first 4.2 minutes of DBA.
- III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)
  - A. <u>Class B Insulation AC Motor Reliance</u>, <u>Model #447014-JZ</u> Interim Operation Justification provided.
  - B. <u>4 Train Limit and Torque Switch Limitorque</u> Interim Operation Justification to be provided prior to fuel load.
  - C. <u>Hook-up Wiring Flamtrol (Raychem)</u> Interim Operation Justification to be provided prior to fuel load.
  - D. Terminal Blocks Marathon 300, GE EB-5, Buchanon 0222/0524 Interim Operation Justification to be provided prior to fuel load.

#### IV. QUALIFICATION STATUS UPDATE

A. General

In the initial NUREG-0588 evaluation, an attempt was made to qualify all the Limitorque operators in the auxiliary building to a bounding radiation value of 57.9 x  $10^6$  RADS of gamma. This resulted in certain components (which were only qualified to 20 x  $10^6$  RADS) being declared unqualified for radiation. Subsequently, a unique dose was calculated for each operator using the dose rate-versus-distance curves described in Section 6.3.1 of "Response to NUREG-0588." As described therein, the methodology utilized straight piping runs of infinite length and took minimal credit for shielding from other equipment. The results of this approach are provided in Table B-8 for each valve associated with this specification. However, using this methodology, the 23 valves shown on Attachment 2 still exceeded the  $20 \times 10^6$  RAD limit. A detailed calculation was then performed for each valve taking credit for finite pipe lengths, actual pipe run configuration, and shielding due to all intervening equipment. The results of these final calculations are shown on Attachment 2; total integrated dose to each valve associated with this specification is now less than  $20 \times 10^6$  RADS.

Some of the actuators are exposed to an accident temperature of 310°F versus a test temperature of 250°F max. However, the rise of temperature from a normal value of between 80°F and 125°F to 310°F and the fall to 212°F takes place in a time duration of less than 5 minutes. Since the actuators are completely enclosed in metallic enclosures, the actual temperature to which the internal parts will be exposed will be much lower, as the enclosures will provide a buffer for temperature extremes.

DBA operability was demonstrated during testing for 16 days. The test temperature profile did not completely envelope the plant accident profile for a duration of 4.17 minutes. However, for the balance of the test the actuator is subjected to a much harsher environment than required. Based on this, a calculation was performed to show that the qualified life of the actuator during LOCA exceeds 100 days.

# B. Class B Insulation, AC Motor - Reliance, Model #447014-JZ

Based on Limitorque Report BC058, the average expected life of a Class B motor at 125°F is approximately 2589 years. This is based on an equation for the Arrhenius Curve. A qualified life of 40 years at 125°F is equal to 1.5% of its failure life at this temperature. Degradation to the insulation system would be proportional to the percent of failure life, as it is a function of temperature and age. This implies that had the motor under test been thermally aged prior to subjecting it to the LOCA conditions, the degradation to its insulation system would have been negligible (1.5%). This would not have changed the results of this test in any significant way. Hence, one can safely conclude that the Class B, AC motor is qualified for 40 years at a normal ambient temperature of 125°F.

In addition, it is to be noted that the above life is derived on the basis of continuous running operation. The motors in the actuator operate for short durations only. Hence, enough conservatism is present in the above conclusion.

#### C. 4 Train Limit and Torque Switch - Limitorque

A review of the Limitorque Report B0085 indicates molded phenolic material has been used for these switches. This material has a temperature index of  $150^{\circ}$ C per Underwriters Laboratories. When this phenolic material was heated at that temperature for 6 x 10<sup>4</sup> hours, its physical properties were reduced to one half of their original value. A conservative value for its activation energy, per EPRI Research Project 980-1, is 0.96 eV. Assuming its degradation due to thermal aging at a normal temperature of 125°F follows the Arrhenius Curve, it would take 17.47 x 10<sup>4</sup> hours to reach the same level of degradation. A qualified life of 40 years is only 0.20% of this period.

# D. Hook-up Wiring - Flamtrol (Raychem)

The hook-up wiring has been identified by Limitorque as Raychem Flamtrol. The Raychem Flamtrol Insulation System has been extensively tested and is qualified to IEEE 383-1974 per FIRL Report F-C4033-1 dated January 1975.

# E. Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524

This subcomponent is being evaluated under the Electrical Interface package which was provided to the NRC in MP&L letter to the NRC (AECM-81/502, 12/21/81). The terminal blocks are justified for interim operation and will be qualified by June 1982 or as soon thereafter as possible.

## V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for the Limitorque Motor Operated Valves (MOV) identified in Attachment 1.

# VI. FOLLOW-UP PROGRAM

The Limitorque Motor Operated Valves (MOV) identified in Attachment 1 will be qualified by June 1982 or as soon thereafter as possible.

# ATTACHMENT 1 PAge 1 of 2

# QUANTITY 67

# ATTACHMENT 1

| AC Notor A                       | ctuato |                                                                                                 |                                                                                                                   |                       |          |                                            |
|----------------------------------|--------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------------------------------------|
| System Name                      | Plant  | ID No.                                                                                          | Room No.                                                                                                          | Actuator<br>Model No. | Category | Service                                    |
| Inst. and Control System         | M71    | F595                                                                                            | 1A417                                                                                                             | SMB-000-5             | a        | Containment Isolation                      |
| RHR System                       | E12    | F346                                                                                            | 1A116                                                                                                             | SMB-000-5             | а        | Containment Isolation                      |
| MSIV - Leakage Control<br>System | E32    | F006<br>F008<br>F009<br>F007                                                                    | 1A305<br>1A305<br>1A305<br>1A305                                                                                  | SMB-00-15             | 8        | Control Long Term<br>Leakage through MSIVs |
| RHR System                       | E12    | F074A<br>F074B<br>F073A<br>F073B                                                                | 1A304<br>1A306<br>1A304<br>1A306                                                                                  | SMB-00-15             | в        | Containment Isolation                      |
| Standby Service Water<br>System  | P41    | F159A<br>F159B<br>F160A<br>F160B                                                                | 1A319<br>1A319<br>1A319<br>1A319                                                                                  | SMB-00-10             | 8        | Containment Isolation                      |
| Nuclear Boiler System            | B71    | F067A<br>F067B<br>F067C<br>F067D                                                                | 1A305<br>1A305<br>1A305<br>1A305                                                                                  | SMB-00-10             | a        | Containment Isolation                      |
| RHR System                       | E12    | F087A<br>F087B                                                                                  | 1A103<br>1A105                                                                                                    | SMB-00-10             | 8<br>8   | RHR Jockey Pump Operation                  |
| RCIC System                      | E51    | F078                                                                                            | 1A103                                                                                                             | SMB-00-10             | 8        | Vacuum Breaker Isolation<br>Valve          |
| MSIV - Leakage Control<br>System | E 32   | F001A<br>F001E<br>F001J<br>F002A<br>F002E<br>F002J<br>F002N<br>F003A<br>F003E<br>F003J<br>F003N | 1A305<br>1A305<br>1A305<br>1A305<br>1A305<br>1A305<br>1A305<br>1A305<br>1A305<br>1A201<br>1A201<br>1A201<br>1A201 | SMB-00-10             | 8        | Control Long Term<br>Leakage through MSIVs |
| Make-up Water Treatment          | P21    | F017                                                                                            | 1A428                                                                                                             | SMB-00-10             | а        | Containment Isolation                      |

# Arttchnewt 1 Page 2052

Sheet 2 of 2

# ATTACHMENT 1

| Component: | Manufacturer: Tarvav    | Specification: | 9645-M251.0 |
|------------|-------------------------|----------------|-------------|
|            | Smaller With Linitorque |                |             |
|            | AC Notor Actuator       |                |             |

2

| System Name           | Plant   | ID No. | Room No. | Actuator<br>Model No.                 | Categoi | Servic <b>e</b>                                                  |
|-----------------------|---------|--------|----------|---------------------------------------|---------|------------------------------------------------------------------|
| Standby Service Water | P41     | F113   | 1A117    | SMB-00-15                             | 8       | SSW Line Isolation                                               |
|                       |         | F127A  | 14302    | 5MB-000-2                             |         |                                                                  |
|                       | 1.1     | F119A  | 14121    |                                       |         |                                                                  |
|                       | 1       | F1198  | 1A101    |                                       |         |                                                                  |
|                       | 1.1.1.2 | F121A  | 1A302    |                                       |         |                                                                  |
|                       |         | F121B  | 1A301    |                                       |         |                                                                  |
| RHR System            | E12     | F290A  | 1A103    | SMB-00-10                             | а       | Minimum Flow Bypass for                                          |
|                       |         | F290B  | 1A105    |                                       | а       | Jockey Pump                                                      |
| Feedwater Leakage     | E38     | F001A  | 1A305    | SMB-00-10                             | 8       | Control Long Term Leakage                                        |
| Control System        | No.     | FOOIB  | 1A305    |                                       | 8       | through Isolation Valve                                          |
| Instrument Air System | P53     | F003   | 1A428    | SMB-000-5                             | а       | Containment Isolation                                            |
| CRD Hyraulic System   | C11     | F083   | 1A319    | SMB-00-15                             | a       | Containment Isolation                                            |
| Reactor Recir         | B33     | F127   | 1A428    | SMB-000-2                             | 8       | Containment Isolation                                            |
|                       | B33     | F125   | 1A319    | SMB-000-2                             | в       |                                                                  |
| Lesk Detection System | E31     | F100A  | 1A322    | SMB-000-2                             | 8       | Control Tank Level                                               |
|                       |         | F100B  | 1A322    | SMB -000-2                            | а       |                                                                  |
| Combustible Gas       | E61     | F595A  | 1A420    | SMB - 000 - 2                         | 8       | Sample Return from Hydrogen                                      |
| Control               | E61     | F595C  | 1A417    |                                       |         | Analyzer                                                         |
|                       | E61     | F596A  | 1A420    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         | 이 집안 이 가지 않는 것 같아요. 우리                                           |
|                       | E61     | F596C  | 1A417    |                                       |         | 승규는 것이 가지 않을 수 없다. 그 것 같이 많이 |
|                       | E61     | F597A  | 1A420    |                                       |         | · · · · · · · · · · · · · · · · · · ·                            |
|                       | E61     | F597C  | 1A417    |                                       |         |                                                                  |
|                       | E61     | F598A  | 1A420    |                                       |         |                                                                  |
|                       | E61     | F598C  | 1A417    |                                       |         |                                                                  |
| Suppression Pool      | E30     | F592A  | 1A215    | SMB-000-2                             | а       | Sensing Line for Drywell                                         |
| Make-up               | E30     | F592B  | 1A220    |                                       |         | Pressure                                                         |
|                       | E30     | F591A  | 1A220    |                                       |         |                                                                  |
|                       | E30     | F591B  | 1A211    |                                       |         | and an all a firms                                               |
|                       | E30     | F594A  | 1A115    | SMB-000-2                             | 8       | Sensing Line for Suppressio                                      |
|                       | E30     | F593A  | 1A122    | 1                                     |         | Pool Pressure and Level                                          |
|                       | E30     | F593B  | 1A116    |                                       | 1       |                                                                  |
|                       | E30     | F594B  | 1A123    |                                       | 1       |                                                                  |

ATTACHMENT 2 TABLE I Dose to Limitorque Actuators

Page 1 of 1

. .

.

| Room<br>No. | Plant ID<br>No. | Actuator<br>Model No. | Accident Dose<br>(Megarad) | Normal Dose<br>(Megarad) |
|-------------|-----------------|-----------------------|----------------------------|--------------------------|
| 1A305       | - E32-F006      | SMB-00-15             | 6.5                        | 1.0                      |
| 1A305       | E32-F008        | SMB-00-15             | 6.5                        | 1.0                      |
| 1A305       | E32-F009        | SMB-00-15             | 6.5                        | 1.8                      |
| 1A305       | E32-F007        | SMB-00-15             | 6.5                        | 1.8                      |
| 1A305       | B21-F067A       | SMB-00-10             | 4.0                        | 1.8                      |
| 1A305       | B21-F067B       | SMB-00-10             | 4.0                        | 1.8                      |
| 1A305       | B21-F067C       | SMB-00-10             | 4.0                        | 1.8                      |
| 1A305       | B21-F067D       | SMB-00-10             | 4.0                        | 1.8                      |
| 1A103       | E12-F082A       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A105       | E12-F082B       | SMB-00-10             | 6.5                        | .005                     |
| 1A103       | E51-F078        | SMB-00-10             | 7.5                        | .005                     |
| 1A305       | E32-F001A       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A305       | E32-F001E       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A305       | E32-F001J       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A305       | E32-F001N       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A305       | E32-F002A       | SMB-00-10             | 0.5                        | 1.8                      |
| 18305       | E32-F002F       | SMB-00-10             | 6.5                        | 1.8                      |
| 12305       | E32-F002E       | SMB-00-10             | 6.5                        | 1.8                      |
| 18205       | E32-F0025       | SMB-00-10             | 6.5                        | 1.8                      |
| TAJUS       | E32-F002N       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A103       | E12-F290A       | SMB-00-10             | 6.5                        | .005                     |
| 1A105       | E12-F290B       | SMB-00-10             | 6.5                        | .005                     |
| 1A305       | E38-F001A       | SMB-00-10             | 6.5                        | 1.8                      |
| 1A305       | F38-F001B       | SMB-00-10             | 6.5                        | 1.8                      |

## I. EQUIPMENT DESCRIPTION

| Specification No: | 9645-M-257.0/M-258.0                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Component:        | AC Actuator (Motor Operated Valve)/(Outside Containment)                                                                                      |
| Plant ID No:      | See Attachment 1 (Quantity 25)                                                                                                                |
| Manufacturer:     | Limitorque                                                                                                                                    |
| Model No:         | See Attachment 1                                                                                                                              |
| Sub-Components:   | Class B Insulation AC Motor-Reliance, Model #447014-JZ<br>4 Train Limit and Torque Switch - Limitorque<br>Hook-up Wiring - Flamtrol (Raychem) |
|                   | Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524                                                                                   |

# II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Limitorque Motor Operated Valves (MOV) for outside of containment use did not meet Category II requirements of NUREG-0588 for the following reasons:

- The qualified life of the subcomponents had not been adequately determined.
- 2. Hook-up wiring in the actuator did not meet the total expected dose.
- 3. Temperature test profile did not envelop the plant specific profile during the first 4.2 minutes of DBA.
- III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)
  - A. Class B Insulation AC Motor Reliance, Model #447014-JZ Interim Operation Justification provided.
  - B. <u>4 Train Limit and Torque Switch Limitorque</u> Interim Operation Justification to be provided prior to fuel load.
  - C. <u>Hook-up Wiring Flamtrol (Raychem)</u> Interim Operation Justification to be provided prior to fuel load.
  - D. Terminal Blocks Marathon 300, GE EB-5, Buchanon 0222/0524 Interim Operation Justification to be provided prior to fuel load.

#### IV. QUALIFICATION STATUS UPDATE

A. General

In the initial NUREG-0588 evaluation, an attempt was made to qualify all the Limitorque operators in the auxiliary building to a bounding radiation value of 57.9 x  $10^6$  RADS of gamma. This resulted in certain components (which were only qualified to  $20 \times 10^6$  RADS) being declared unqualified for radiation. Subsequently, a unique dose was calculated for each operator using the dose rate-versus-distance curves described in Section 6.3.1 of "Response to NUREG-0588." As described therein, the methodology utilized straight piping runs of infinite length and took minimal credit for shielding from other equipment. The results of this approach are provided in Table B-8 for each valve associated with this specification. Total integrated dose to each valve associated with this specification is less than  $20 \times 10^6$  RADS. The maximum service temperature for these actuators is 80°F.

Out of the 25 actuators, only three of the actuators are exposed to high temperature during a DBA event and this temperature is, at the most,  $140^{\circ}$ F.

DBA operability was demonstrated during testing for 16 days. However, the environment to which the test was conducted was much more severe than actually occurs in the event of a LOCA/HELB. Based on the difference in the test temperature and the actual temperature, using the Arrhenius Equation it was determined that the qualified life of these actuators under LOCA/HELB conditions exceeds 100 days.

## B. Class B Insulation, AC Motor - Reliance, Model #447014-JZ

Based on Limitorque Report B0058, an equation for the Arrhenius Curve for the thermal life of a Class B motor. The average expected life of a Class B motor at 80°F is approximately 41,162 years. A qualified life of 40 years at 80°F is equal to 0.097% of its failure life at this temperature. Degradation to the insulation system would be proportional to the percent of failure life, as it is a function of temperature and age. This implies that had the motor under test been thermally aged prior to subjecting it to the LOCA conditions, the degradation to its insulation system would have been negligible (0.097%). This would not have changed the results of this test in any significant way. Hence, one can safely conclude that the Class B, AC motor is qualified for 40 years at a normal service temperature of 80°F.

In addition, it is to be noted that the above life is derived on the basis of continuous running operation. The motors in the actuator operate for short durations only. Hence, enough conservatism is present in the above conclusion.

# C. 4 Train Limit and Torque Switch - Limitorque

A review of the Limitorque Report B0058 indicates that molded phenolic material has been used for these switches. This material has a temperature index of 150°C per Underwriters Laboratories. When this phenolic material was heated at that temperature for 6 x 10<sup>4</sup> hours, its physical properties were reduced to one half of their original value. A conservative value for its activation energy, per EPRI Research Project 980-1, is 0.96 eV. Assuming that its degradation due to thermal aging at a normal tempgrature of 80°F follows the Arrhenius Curve, it would take 3.05 x 10<sup>4</sup> hours to reach the same level of degradation. A qualified life of 40 years is only 0.01% of this period.

# D. Hook-Up Wiring - Flamtrol (Raychem)

The hook-up wiring has been identified by Limitorque as Raychem Flamtrol. The Raychem Flamtrol Insulation System has been extensively tested and is qualified to IEEE 383-1974 for FIRL Report F-C4033-1 dated January 1975.

# E. Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524

This sub-component is being evaluated under the Electrical Interface Package which was provided to the NRC in MP&L letter to the NRC (AECM-81/502, 12/21/81). The terminal blocks are justified for interim operation and will be qualified by June 1982 or as soon thereafter as possible.

# V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for the Limitorque Motor Operated Valves (MOV) identified in Attachment 1.

#### VI. FOLLOW-UP PROGRAM

The Limitorque Motor Operated Valves (MOV) identified in Attachment 1 will be qualified by June 1982 or as soon thereafter as possible.

# ATTACHMENT 1 Page 1 of 1

Limitorque AC Motor Actuator Exhibit "F" Attachment 1

Quantity 25

4 Train Limit Switch and Torque Switch outside Henry Pratt

<sup>9645-</sup>M-257.0/M-258.0

| System            | Pla   | nt    |          | Actuator       | Cate- |                    |  |  |
|-------------------|-------|-------|----------|----------------|-------|--------------------|--|--|
| Name              | ID    | No.   | Room No. | Model No.      | gory  | Service            |  |  |
| Standby Service   | P41   | F014A | 1A122    | SMB-000-5/H2BC | а     | Open for Operation |  |  |
| Water             | P41   | F014B | 1A121    |                | а     |                    |  |  |
|                   | P41   | F068A | 1A122    |                | а     |                    |  |  |
|                   | P41   | F068B | 1A121    |                | а     |                    |  |  |
| Component Cooling | P42   | F028A | 1A527    | SMB-000-2/H1BC | а     | System Isolation   |  |  |
| Water             | P42   | F028B | 1A527    |                | а     |                    |  |  |
|                   | P42   | F032A | 1A527    |                | а     |                    |  |  |
|                   | P42   | F032B | 1A527    |                | а     |                    |  |  |
|                   | P42   | F105  | 1A322    |                | а     |                    |  |  |
|                   | P42   | F200A | 1A322    |                | а     |                    |  |  |
|                   | P42   | F200B | 1A527    |                | а     |                    |  |  |
|                   | P42   | F201A | 1A322    |                | а     |                    |  |  |
|                   | P42   | F201B | 1A527    |                | а     |                    |  |  |
|                   | P42   | F203  | 1A527    |                | а     | Train Isolation    |  |  |
|                   | · P42 | F204  | 1A527    |                | а     | System Isolation   |  |  |
|                   | P42   | F205  | 1A322    |                | а     |                    |  |  |
| lant Service      | P44   | F042  | 1A117    | SMB-000-2/H1BC | а     | System Isolation   |  |  |
|                   | P44   | F054  | 1A117    |                | а     |                    |  |  |
|                   | P44   | F067  | 1A117    |                | а     |                    |  |  |
| Standby Gas       | T48   | F005  | 1A301    | SMB-000-2/H1BC | а     | System Isolation   |  |  |
| freatment         | T48   | F006  | 1A302    |                | а     |                    |  |  |
|                   | T48   | F023  | 1A322    | SMB-000-2/H2BC | а     |                    |  |  |
|                   | T48   | F024  | 1A322    |                | а     |                    |  |  |
|                   | T48   | F025  | 1A322    |                | а     |                    |  |  |
|                   | T48   | F026  | 1A322    |                | a     |                    |  |  |

## I. EQUIPMENT DESCRIPTION

| Specification No: | 9645-M-242.0                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component:        | AC Actuator (Motor Operated Valve)/(Inside Containment)                                                                                                                                            |
| Plant ID No:      | See Attachment 1 (Quantity 31)                                                                                                                                                                     |
| Manufacturer:     | Limitorque                                                                                                                                                                                         |
| Model No:         | See Attachment 1                                                                                                                                                                                   |
| Sub-Components:   | Class RH Insulation AC Motor-Reliance, Model #601962-P<br>4 Train Limit and Torque Switch - Limitorque<br>Hook-up Wiring - Flamtrol (Raychem)<br>Terminal Blocks - Marathon 300, GE EB-5, Buchanon |
|                   | 0222/0524                                                                                                                                                                                          |

#### II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Limitorque Motor Operated Valves (MOV) for inside of containment use did not meet Category II requirements of NUREG-0588 for the following reasons:

- 1. Lack of aging information.
- 2. Operability under flooding conditions was not addressed.
- 3. Operability under spray conditions was not addressed.
- 4. No variations in frequency or voltage were addressed.

#### III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)

- A. Class RH Insulation AC Motor Reliance, Model #601962-P Interim Operation Justification provided.
- B. <u>4 Train Limit and Torque Switch Limitorque</u> Interim Operation Justification to be provided prior to fuel load.
- C. <u>Hook-up Wiring Flamtrol (Raychem)</u> Interim Operation Justification to be provided prior to fuel load.
- D. Terminal Blocks Marathon 300, GE EB-5, Buchanon 0222/0524 Interim Operation Justification to be provided prior to fuel load.

#### IV. QUALIFICATION STATUS UPDATE

# A. General

Additional review of the four actuators with elevation level below flood level has revealed that valves 1G33-F100, 1G33-F102 and 1G33-F106 are not required to perform a safety related function. Valve 1E12-F009 is only required to function post DBA. This valve is located in the drywell at an elevation of 124'8" and its radial distance from the center of the drywell is about 25'. The flooding in the drywell, above the level of 117'4" occurs in the form of an annular ring contained by the drywell wall, which is about 36'6" away from the center. Since the water ring is expected to extend from the drywell wall to a width of 5' only, the valve is not affected by flooding. The maximum radiation dose to which the actuator internals will be exposed has been determined by Bechtel. The total radiation dose (beta and gamma) to the actuator internals (based on enclosure size and location) will not exceed 200 Megarads.

Though the operability of the actuator was not demonstrated under spray during the test this is not considered a problem, as the actuators are enclosed in NEMA 4 water tight enclosures. Additionally, the spray is not caustic in nature.

The operability of the actuator was demonstrated during the test for 30 days. However, the test environment was more severe than the environment the actuators will be exposed to in the event of a LOCA. Using the Arrhenius method, it can be shown that the qualified life of the actuator during a DBA exceeds 100 days.

#### B. Class RH Insulation AC Motor - Reliance, Model #601962-P

Limitorque Report B0058 indicates that the activation energy for the insulating materials used in the motor is about 1.00 eV. Based on this, the motor insulating materials are qualified for more than 40 years.

## C. 4 Train Limit and Torque Switch - Limitorque

Limitorque Report B0058 indicates that molded phenolic material has been used for these switches. This material has a temperature index of 150°C per Underwriters Laboratory. When this phenolic material was heated at that temperature for 6 x 10<sup>4</sup> hours, its physical properties were reduced to one half of their original value. A conservative value for its activation energy, per EPRI Research Project 890-1, is 0.96 eV. Assuming that its degradation due to thermal aging at a normal\_temperature of 135°F follows the Arrhenius curve, it would take 9.8 x 10<sup>7</sup> hours to reach the same level of degradation. A qualified life of 40 years is only 0.36% of this period.

# D. Hook-Up Wiring - Flamtrol (Raychem)

The hook-up wiring has been identified by Limitorque as Raychem Flamtrol. The Raychem Flamtrol Insulation system has been extensively tested and is qualified to IEEE 383-1974 per FIRL Report F-C4033-1 dated January 1975.

## E. Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524

This sub-component is being evaluated under the Electrical Interface package which was provided to the NRC in MP&L letter to the NRC (AECM-81/502, 12/21/81). The terminal blocks are justified for interim operation and will be qualified by June 1982 or as soon thereafter as possible.

# V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for the Limitorque Motor Operated Valves (MOV) identified in Attachment 1.

# VI. FOLLOW-UP PROGRAM

The Limitorque Motor Operated Valves (MOV) identified in Attachment 1 will be qualified by June 1982 or as soon thereafter as possible.

ATTACHMENT 1

Page 1 of 1

Exhibit "F Attachment 1

Valves with Limitorque Valve: William Powell Component Motor Actuators Manufacturer Actuator: Limitorque Specification 9645-M-242.0

Quantity 31

|                                | S             |          |          |                       | She      | et 1 of 1               |
|--------------------------------|---------------|----------|----------|-----------------------|----------|-------------------------|
| System Name P                  | Plant I.D NO. | Wetting* | Room No. | Actuator<br>Model No. | category | Service                 |
| Nuclear Boiler                 | B21 F016      | N/A      | 1A112    | SMB-000-5             | a        | Containment Isolation   |
| Standby Liquid<br>Control      | C41 F001A     | N/A      | 1A512    | Later                 | а        | SLC Injection           |
| Standby Liquid<br>Control      | C41 F001B     | N/A      | 1A512    | Later                 | а        | SLC Injection           |
| RHR                            | E12 F009      | 1        | 1A112    | SB-3-100              | a        | Containment Isolation   |
| RHR                            | E12 F028A     | 3        | 1A110    | SMB-1-60              | а        | Containment Spray       |
| RHR                            | E12 F028B     | 3        | 1A110    | SMB-1-60              | а        | Containment Spray       |
| RHR                            | E12 F037A     | 3        | 1A110    | SMB-2-80              | а        | RHR "A" Control System  |
| RHR                            | E12 F037B     | 3        | 1A110    | SMB-2-80              | а        | RHR "A" Control System  |
| RHR                            | E12 F042A     | 3        | 1A313    | SB-2-150              | а        | Containment Isolation   |
| RHR                            | E12 F042B     | 2 & 3    | 1A311    | SB-3-150              | а        | Containment Isolation   |
| RCIC                           | E51 F063      | N/A      | 1A112    | SB-1-40               | а        | Containment Isolation   |
| RWCU                           | G33 F001      | N/A      | 1A112    | SMB-0-25              | а        | Containment Isolation   |
| RWCU                           | G33 F028      | N/A      | 1A310    | SMB-00-10             | a        | Containment Isolation   |
| RWCU                           | G33 F040      | N/A      | 1A310    | SMB-00-10             | a        | containment Isolation   |
| RWCU                           | G33 F053      | N/A      | 1A310    | SMB-00-10             | a        | Containment Isolation   |
| RWCU                           | G33 F100      | 1        | 1A112    | SMB-00-10             | а        | Reactor Recirc. Suctio  |
| RWCU                           | G35 F102      | 1        | 1A112    | SMB-1-40              | а        | Reactor Recirc. Suction |
| RWCU                           | G33 F106      | 1        | 1A112    | SMB-00-10             | а        | Reactor Recirc. Suctio  |
| RWCU                           | G33 F250      | N/A      | 1A112    | SMB-0-25              | a        | Drywell Isolation       |
| RWCU                           | G33 F251      | N/A      | 1A414    | SMB-0-25              | а        | Drywell Isolation       |
| RWCU                           | G33 F252      | N/A      | 1A112    | SMB-0-25              | а        | Containment Isolation   |
| RWCU                           | G33 F253      | N/A      | 1A414    | SMB-0-25              | а        | Drywell Isolation       |
| Fuel Pool Cool<br>& Clean Up   | G41 F044      | 3        | 1A509    | SMB-000-5             | a        | Containment Isolation   |
| Component                      | P42 F068      | 3        | 1A313    | SMB-00-10             | a        | Containment Isolation   |
| Cooling Water<br>Cooling Water | P42 F114      | 3        | 1A313    | SMB-00-10             | а        | Drywell Isolation       |
| Component<br>Cooling Water     | P42 F116      | 2 6 3    | 1A313    | SMB-000-5             | a        | Drywell Isolation       |
| Component<br>Cooling Water     | P42 F117      | 3        | 1A313    | SMB-000-5             | а        | Drywell Isolation       |
| Plant Service<br>Water         | P44 F070      | 3        | 1A313    | SMB-000-5             | а        | Containment Isolation   |
| Plant Service<br>Water         | P44 F074      | 3        | 1A313    | SMB-000-5             | а        | Drywell Isolation       |
| Plant Service<br>Water         | P44 F076      | N/A      | 1A112    | SMB-000-5             | а        | Drywell Isolation       |
| Plant Service<br>Water         | P44 F077      | 3        | 1A313    | SMB-000-5             | а        | Drywell Isolation       |
|                                |               |          |          |                       |          |                         |

Wetting= 1-Flood 2-Froth 3-Spray

# I. EQUIPMENT DESCRIPTION

| Specification No: | 9645-M-251.0                                                                                                                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component:        | AC Actuator (Motor Operated Valve)/(Inside Containment)                                                                                                                                            |
| Plant ID No:      | See Attachment 1 (Quantity 24)                                                                                                                                                                     |
| Manufacturer:     | Limitorque                                                                                                                                                                                         |
| Model No:         | See Attachment 1                                                                                                                                                                                   |
| Sub-Components:   | Class RH Insulation AC Motor-Reliance, Model #601962-P<br>4 Train Limit and Torque Switch - Limitorque<br>Hook-up Wiring - Flamtrol (Raychem)<br>Terminal Blocks - Marathon 300, GE EB-5, Buchanon |
|                   | 0222/0524                                                                                                                                                                                          |

#### II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Limitorque Motor Operated Valves (MOV) for inside of containment use did not meet Category II requirements of NUREG-0588 for the following reasons:

- 1. Lack of aging information.
- 2. Operability under flooding conditions was not addressed.
- 3. Operability under spray conditions was not addressed.
- 4. No variations in frequency or voltage were not addressed.

# III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)

- A. Class RH Insulation AC Motor Reliance, Model #601962-P Interim Operation Justification provided.
- B. <u>4 Train Limit and Torque Switch Limitorque</u> Interim Operation Justification provided except for radiation.
- C. <u>Hook-up Wiring Flamtrol (Raychem)</u> Interim Operation Justification to be provided prior to fuel load.
- D. Terminal Blocks Marathon 300, GE EB-5, Buchanon 0222/0524 Interim Operation Justification to be provided prior to fuel load.

#### IV. QUALIFICATION STATUS UPDATE

## A. General

Additional review of actuators 1P45-F096 and 1P45-F097 affected by flood reveals that these two valves are normally closed and they do not receive any auto signal during LOCA. Hence, their operability is not required. (See Attachment 2 - FMEA)

The maximum radiation dose to which the actuator internals will be exposed has been determined by Bechtel. The total radiation dose (beta and gamma) to the actuator internals (based on enclosure size and location) will not exceed 200 Megarads. Though the operability of the actuators was not demonstrated under spray during the test this is not considered a problem, as the actuators are enclosed in NEMA 4 water tight enclosures. Additionally, the spray is not caustic in nature.

The operability of the actuator was demonstrated during the test for 30 days. However, the test environment was more severe than the environment the actuators will be exposed to in the event of a LOCA. Using the Arrhenius method, it can be shown that the qualified life of the actuator during a DBA exceeds 100 days.

# B. Class RH Insulation, AC Motor - Reliance, Model #601962-P

Limitorque Report B0058 indicates that the activation energy for the insulating materials used in the motor is about 1.00 eV. Based on this the motor insulating materials are qualified for more than 40 years.

# C. 4 Train Limit and Torque Switch - Limitorque

Limitorque Report B0058 indicates that molded phenolic material has been used for these switches. This material has a temperature index of 150°C per Underwriters Laboratory. When this phenolic material was heated at that temperature for 6 x 10<sup>4</sup> hours, its physical properties were reduced to one half of their original value. A conservative value for its activation energy, per EPRI Research Project 890-1, is 0.96 eV. Assuming that its degradation due to thermal aging at a normal temperature of 135°F follows the Arrhenius curve, it would take 9.8 x 10<sup>7</sup> hours to reach the same level of degradation. A qualified life of 40 years is only 0.36% of this period.

# D. Hook-Up Wiring - Flamtrol (Raychem)

The hook-up wiring has been identified by Limitorque as Raychem Flamtrol. The Raychem Flamtrol Insulation system has been extensively tested and is qualified to IEEE 383-1974 per FIRL Report F-C4033-1 dated January 1975.

# E. Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524

This sub-component is being evaluated under the Electrical Interface package which was provided to the NRC in MP&L letter to the NRC (AECM-81/502, 12/21/8i). The terminal blocks are justified for interim operation and will be qualified by June 1982 or as soon thereafter as possible.

#### V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for the Limitorque Motor Operated Valves (MOV) identified in Attachment 1.

#### VI. FOLLOW-UP PROGRAM

The Limitorque Motor Operated Valves (MOV) identified in Attachment 1 will be qualified by June 1982 or as soon thereafter as possible.

B82ph2

Yarway

# PAGE 1 of 1

# EXHIBIT "F" ATTACHMENT 1

Valves With Limitorque Motor Actuators INSide

9645-M-251.0

QUANTity 24

| Gueren Vano            | Plant T.D. NO. | Wetting | * No. | Actuator<br>Model No. | Categ | ory Service                                          |
|------------------------|----------------|---------|-------|-----------------------|-------|------------------------------------------------------|
| System Name            | P53 F007       | 3       | 1A311 | SMB-00-25             | a     | Drywell Isolation                                    |
| Instrument Air Sys.    | P52 F195       | 263     | 1A110 | SMB-00-15             | a     | Drywell Isolation                                    |
| Service Air bys.       | F51 F076       | N/A     | 1A112 | SMB-000-2             | a     | Steam Warmup Line Iso.                               |
| Kult System            | P41 F168A      | 3       | 1A313 | SMB-00-10             | а     | Containment Isolation                                |
| Standby Service Water  | P41 F1688      | 3       | 1A311 | SMB-00-10             | а     | Containment Isolation                                |
| Standby Service Water  | P45 F096       | 1       | 1A112 | SMB-00-10             | а     | Drywell Isolation                                    |
| Floor & Equip. Drain   | P45 F097       | 163     | 1A110 | SMB-00-10             | a     | Drywell Isolation                                    |
| Ploor a Lquip. Diain   | 833 F019       | N/A     | 1A112 | SMB-000-2             | a     | Drywell Isolation                                    |
| Recirc. System         | B33 F020       | N/A     | 1A112 | SMB-000-2             | а     | Drywell Isolation                                    |
| Recirc. System         | R33 F129       | N/A     | 1A514 | SMB-000-2             | a     | Drywell Isolation                                    |
| Recirc. System         | B33 F128       | N/A     | 1A411 | SMB-000-2             | a     | Containment Isolation                                |
| Desire System          | B33 F126       | 263     | 1A313 | SMB-000-2             | а     | Containment Isolation                                |
| Makaun Water Treatment | P21 F018       | 3       | 1A110 | SMB-00-10             | a     | Containment Isolation                                |
| Nuclear Boiler         | B21 F001       | N/A     | 1A112 | SMB-00-15             | ŀ     | Reactor Head Vent to<br>Suppression Pocl-<br>Closed. |
| Nuclear Boiler         | B21 F002       | N/A     | 1A112 | SMB-00-15             | Ъ     | Reactor Head Vent to<br>Suppression Pool-<br>Closed. |
| Nuclear Boiler         | B21 F005       | N/A     | 1A112 | SMB-00-15             | b     | Reactor Head Vent to<br>Suppression Pool-<br>Closed. |
| Combustible Gas Contro | E61 F595B      | 3       | 1A313 | SMB-000-2             | а     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | 51 E61 F595D   | 3       | 1A311 | SMB-000-2             | a     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | 51 E61 F596B   | 3       | 1A313 | SMB-000-2             | а     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | 51 E61 F596D   | 3       | 1A311 | SMB-000-2             | а     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | E61 F597B      | 3       | 1A313 | SMB-000-2             | а     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | 51 E61 F597D   | 3       | 1A311 | SMB-000-2             | а     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | 01 E61 F598B   | 3       | 1A313 | SMB-000-2             | а     | Sample Return From<br>Hydrogen Analyzer.             |
| Combustible Gas Contro | ol E61 F598D   | 3       | 1A311 | SMB-000-2             | а     | Sample Return From                                   |

- \* Wetting: 1 Flood 2 Froth

3 - Spray

ATTACHMENT 2

PAGe 1 of 1

i

# FAILURE MODE AND EFFECTS ANALYSIS FOR EXEMPTION DRYWELL ISOLATION VALVES

# FUNCTION:

The following motor actuated values are used for drywell isolation and are closed during normal plant operation.

## Valve

# System

| 1P45-F096 | Floor | and | Equipment | Drains | System |
|-----------|-------|-----|-----------|--------|--------|
| 1P45-F097 | Floor | and | Equipment | Drains | System |

#### FAILURE MODES:

The following electrical failure modes could occur due to the harsh environment:

- 1. Short the device output
- 2. Open the device output
- 3. Short the device output to ground

# FAILURE EFFECTS:

These valves, which are closed during normal operation, do not receive any type of "Auto" close signal and remain closed in the event of an accident. The effects of the above failure modes would not cause actuation of these valves to the open position. Furthermore, these valves are installed in series, downstream of a closed manual valve.

#### CONCLUSION:

Based on the above discussion, it can be concluded that the failure of these valves in any mode described above would not adversely affect plant safety.

# I. EQUIPMENT DESCRIPTION

| Specification No: | 9645-M-257.0/M-258.0                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Component:        | AC Actuator (Motor Operated Valve)/(Inside Containment)                                                                                       |
| Plant ID No:      | See Attachment 1 (Quantity 8)                                                                                                                 |
| Manufacturer:     | Limitorque                                                                                                                                    |
| Model No:         | See Attachment 1                                                                                                                              |
| Sub-Components:   | Class RH Insulation AC Motor-Reliance, Model #601962-P<br>4 Train Limit and Torque Switch - Limitorque<br>Hook-up Wiring - Flamtrol (Raychem) |
|                   | Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524                                                                                   |

# 11. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The Limitorque Motor Operated Valves (MOV) for inside of containment use did not meet Category II requirements of NUREG-0588 for the following reasons:

- 1. Lack of aging information.
- 2. Operability under flooding conditions was not addressed.
- 3. Operability under spray conditions was not addressed.
- 4. No variations in frequency or voltage were addressed.

111. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)

- A. <u>Class RH Insulation AC Motor Reliance</u>, Model #601962-P Interim Operation Justification provided.
- B. <u>4 Train Limit and Torque Switch Limitorque</u> Interim Operation Justification to be provided prior to fuel load.
- C. <u>Hook-up Wiring Flamtrol (Raychem)</u> Interim Operation Justification to be provided prior to fuel load.
- D. Terminal Blocks Marathon 300, GE EB-5, Buchanon 0222/0524 Interim Operation Justification to be provided prior to fuel load.

#### IV. QUALIFICATION STATUS UPDATE

# A. General

The maximum radiation dose to which the actuator internals will be exposed has been determined by Bechtel. The total radiation dose (beta and gamma) to the actuator internals (based on enclosure size and location) will not exceed 200 Megarads.

Though the operability of the actuator was not demonstrated under spray during the test this is not considered a problem, as the actuators are enclosed in NEMA 4 water tight enclosures. Additionally, the spray is not caustic in nature. The operability of the actuator was demonstrated during the test for 30 days. However, the test environment was more severe than the environment the actuators will be exposed to in the event of a LOCA. Using the Arrhenius method, it can be shown that the qualified life of the actuator during a DBA exceeds 100 days.

# B. Class RH Insulation, AC Motor - Reliance, Model #601962-P

Limitorque Report B0058 indicates that the activation energy for the insulating materials used in the motor is about 1.00 eV. Based on this, the motor insulating materials are qualified for more than 40 years.

# C. 4 Train Limit and Torque Switch - Limitorque

Limitorque Report B0058 indicates that molded phenolic material has been used for these switches. This material has a temperature index of 150°C per Underwriters Laboratory. When this phenolic material was heated at that temperature for 6 x 10° hours, its physical properties were reduced to one half of their original value. A conservative value for its activation energy, per EPRI Research Project 890-1, is 0.96 eV. Assuming that its degradation due to thermal aging at a normal temperature of 135°F follows the Arrhenius curve, it would take 9.8 x 10° hours to reach the same level of degradation. A qualified life of 40 years is only 0.36% of this period.

# D. Hook-Up Wiring - Flamtrol (Raychem)

The hook-up wiring has been identified by Limitorque as Raychem Flamtrol. The Raychem Flamtrol Insulation system has been extensively tested and is qualified to IEEE 383-1974 for FIRL Report F-C4033-1 dated January 1975.

# E. Terminal Blocks - Marathon 300, GE EB-5, Buchanon 0222/0524

This sub-component is being evaluated under the Electrical Interface package which was provided to the NRC in MP&L letter to the NRC (AECM-81/502, 12/21/81). The terminal blocks are justified for interim operation and will be qualified by June 1982 or as soon thereafter as possible.

# V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The discussion presented in the qualification status update section above (Section IV) establishes the interim operation justification for the Limitorque Motor Operated Valves (MOV) identified in Attachment 1.

#### VI. FOLLOW-UP PROGRAM

The Limitorque Motor Operated Valves (MOV) identified in Attachment 1 will be qualified by June 1982 or as soon thereafter as possible.

# ATTACHMENt 1 Page 2051

EXHIBIT "F" ATTACHMENT 1 Sheet 1 of 1

Quantity 8

| Valves with<br>Motor Actua | tors H                                       | enry Pratt             | 9645-M-257.0/M-258.0                      |                       |             |                       |
|----------------------------|----------------------------------------------|------------------------|-------------------------------------------|-----------------------|-------------|-----------------------|
| SUSTEM NAME                | PLANT<br>ID NO.                              | VETTING*               | ROOM NO.                                  | ACTUATOR<br>MODEL NO. | Cat.        | SZEVICE               |
| Suppression Pool<br>Makeup | E30F001A<br>E30F001B<br>E30F002A<br>E30F002B | 3<br>3<br>3            | 1A110<br>1A110<br>1A110<br>1A110<br>1A110 | SMB 000 5/H3BC        | 8           | Suppression Isolation |
| Combustible Ges<br>Control | E61F003A<br>E61F003B<br>E61F005A<br>E61F005B | 3<br>N/A<br>N/A<br>N/A | 1A 509<br>1A 512<br>1A 512<br>1A 512      | SMB-000-2/H1BC        | a<br>a<br>a | Drywell Isolation     |

WFFTTing = 1-Flood 2-Froth 3-Sprøy

# I. EQUIPMENT DESCRIPTION

Purchase Part Drawing No.: Component: MPL No.: Manufacturer: Model No.:

169C8338 Flow Meter E32-N006 Schutte & Koerting (S&K) 20-9651-8550

# II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The S&K flow meter did not meet Category II requirements of NUREG-0588 due to insufficient radiation testing.

# III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITTAL (September 1981)

Justification for interim operation provided. Full qualification will be established when Teflon washer is replaced with a brass washer.

# IV. QUALIFICATION STATUS UPDATE

GE issued FDI (Field Disposition Instruction), JB1-WAUJ, Rev. O on November 1, 1981 to replace the Teflon washer with a brass washer. FDI JB1-WAUJ is to be completed prior to the beginning of Phase II operation. Once the Teflon washer is replaced, the S&K flow meter will be qualified to Category II of NUREG-0588.

# V. QUALFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The S&K flow meter will be qualified to Category II of NUREG-0588 prior to the beginning of Phase II operation.

# VI. FOLLOW-UP PROGRAM

None

# I. EQUIPMENT DESCRIPTION

Purchase Part Drawing No.: Component: MPL No.: Manufacturer: Model No.: 169C8339 Flow Transmitter E32-N053 Schutre & Koerting (S&K) 91X-16

# II. QUALIFICATION STATUS AT TIME OF ORIGINAL SUBMITTAL (July 1981)

The S&K flow transmitter did not meet Category II requirements of NUREG-0588 due to the lack of qualification testing.

# III. QUALIFICATION STATUS AT SUPPLEMENT 1 SUBMITIAL (September 1981)

No change reported.

# IV. QUALIFICATION STATUS UPDATE

The only harsh environment experienced by the S&K flow transmitter is radiation. The required Total Integrated Dose (TID) for the S&K flow transmitter is 2.18 X 10° Rads.

Since the July 1, 1981 initial NUREG-0588 submittal by MP&L, a test report has been obtained from S&K for radiation testing performed by Wyle Laboratories at S&K's direction. The Wyle Laboratories radiation testing was conducted for a TID of 1.0 X 10° Rads. This TID is a factor of 4.5 greater than the required TID of 2.18 X 10° Rads.

As a result of the radiation testing performed by Wyle Laboratories, the S&K flow transmitter experience a 6.0% shift in accuracy. The specified accuracy was 2% full scale. This shift in accuracy poses no problem since this device is required to operate at a rising flow rate. To compensate for the accuracy shifting in the S&K flow transmitter, the setpoint for the trip device will be adjusted downward to accommodate the larger error and to keep the accuracy at 2% full scale.

# V. QUALIFICATION STATUS WITH REGARD TO INTERIM OPERATION JUSTIFICATION

The S&K flow transmitter will be qualified to Category II of NUREG-0588 on completion of setpoint change prior to the beginning of Phase II operation.

#### VI. FOLLOW-UP PROGRAM

None

| Equipment Description |                                         | Manufacturer Model No.                                             |                                                     | No. of<br>Items | Equipment Qualification<br>Status Information                                                                                   |
|-----------------------|-----------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 4.                    | Transmitter                             | Rosemount                                                          | 1153 GB9                                            | 1               | Qualified. 1153 HB7 has<br>successfully passed additional<br>testing and results reviewed.                                      |
| 7.                    | CGC Heat Tracing                        | Thermon Mfg. Co.                                                   | EQ-2399-80                                          | 24              | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/335, dated<br>September 1, 1981; Supplement<br>No. 1  |
| 8.                    | Area Radiation<br>Detectors             | Cable: Boston<br>Insulated Wire &<br>Cable; Detector:<br>Victoreen | RG-59B/U Coaxial<br>(878-1 Ass'y)<br>877-1 Detector | 4               | Qualified. Test report<br>received and reviewed.                                                                                |
| 9.                    | Temp. Element                           | Thermoelectric                                                     | 27620                                               | 56              | Justification for interim<br>operation provided in<br>Attachment No. 1 of this<br>letter, AECM-82/141.                          |
| 11.                   | Solenoid Valves                         | ASCO                                                               | HTX8320A108V                                        | 5               | Qualified. Test report received and reviewed.                                                                                   |
| 21.                   | 600 Volt Cable and<br>1.0KV Power Cable | Okonite                                                            | Various                                             | Various         | Qualified. Additional test data obtained and reviewed.                                                                          |
| 24.                   | Coaxial and Triaxial<br>Cable           | Raychem                                                            | STILAN                                              | Various         | Qualified. Additional test data obtained and reviewed.                                                                          |
| 32.                   | Terminal Block                          | GE                                                                 | E8-25, CR151B<br>CR-2960SY139<br>3B thru 3D         |                 | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No. 2. |

Attachment No. 2: Qualification Status of Individual Equipment Items (Non-NSSS)

| Equipment Description |                                    | Manufacturer                 | Model No.      | No. of<br>Items | Equipment Qualification<br>Status Information                                                                                                                                                                                   |  |  |
|-----------------------|------------------------------------|------------------------------|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 33.                   | Terminal Block                     | Conax                        | None           |                 | No longer being used. Bechtel/<br>MP&L/Raychem have developed and<br>tested an environmental<br>interface sealing kit for use<br>at Grand Gulf.                                                                                 |  |  |
| 34.                   | Drywell Purge<br>Compressor Motors | Turbonetic<br>Reliance Motor | 445 TS TEFC-XT | 2               | Qualified. Additional<br>information provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No 1. Also, additional<br>information is provided as<br>Attachment No. 3 of this<br>letter, AECM-82/141. |  |  |
| 38.                   | Limitorque Valve<br>Actuator       | Reliance                     | 447014-JZ      | 169             | Additional justification for<br>interim operation provided in<br>Attachment No. 1 of this<br>letter, AECM-82/141.                                                                                                               |  |  |
| 39.                   | Limitorque Valve<br>Actuator       | Reliance                     | 601962-P       | 39              | Additional justification for<br>interim operation provided in<br>Attachment No. 1 of this<br>letter, AECM-82/141.                                                                                                               |  |  |
| 41.                   | Solenoid                           | ASCO                         | HTX 8320A20V   | 61              | Qualified. Test report received and reviewed.                                                                                                                                                                                   |  |  |
| 42.                   | Limit Switch                       | MICRO                        | LSQ-101        | 61              | Being replaced with a qualified NAMCO EA-740 limit switch.                                                                                                                                                                      |  |  |
| 43.                   | Terminal Block                     | Hiller                       | Unknown        | 61              | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No. 2; Terminal block<br>identified as a GE EB-25.                                                     |  |  |

# Attachment No. 2: (Non-NSSS) (Continued)

| Equipment Description |                              | Manufacturer          | Model No.                 | No. of<br>Items | Equipment Qualification<br>Status Information                                                                                   |
|-----------------------|------------------------------|-----------------------|---------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 44.                   | 4 Train Switch               | Limitorque            |                           | 6               | Justification for interim<br>operation provided in<br>Attachment No. 1 of this<br>letter, AECM-82/141.                          |
| 45.                   | Limitorque Valve<br>Actuator | Reliance HK<br>Porter | Model DC Motor<br>Unknown | 9               | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No. 2. |
| 46.                   | Limitorque Valve<br>Actuator | Reliance              | 601962<br>447014JZ        | 24              | Additional justification for<br>interim operation provided in<br>Attachment No. 1 of this<br>letter, AECM-82/141.               |
| 47.                   | Valve Position<br>Switch     | NAMCO                 | EA170                     | 2               | Being replaced with a qualified NAMCO EA-740 limit switch.                                                                      |
| 48.                   | Bettis Air<br>Actuator       | ASCO                  | NP Series                 | 37              | Qualified. Test report received and reviewed.                                                                                   |
| 49.                   | Fan Motor                    | Reliance              | Various                   | 18              | Qualified. Test report received and reviewed.                                                                                   |
| 51.                   | Fan Motor                    | Reliance              | 34-26.5-1770              | 2               | Qualified. Test report received and reviewed.                                                                                   |
| 52.                   | SGTS Heater &<br>Control     | CVI                   | Unknown                   | 2               | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No. 2. |

# Attachment No. 2: (Non-NSSS) (Continued)

| Equipment | Description    |    | Manufacturer | Model No.    | No. of<br>Items | Equipment Qualification<br>Status Information                                                                                                                     |
|-----------|----------------|----|--------------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11. Flow  | Meter          |    | S&K          | 20-9651-8550 | 1               | Justification for interim<br>operation provided in<br>Attachment No. 1 to this<br>letter, AECM-82/141.                                                            |
| 12. Flow  | Transmitter    |    | S&K          | 91X-16       | 1               | Justification for interim<br>operation provided in<br>Attachment No. 1 to this<br>letter, AECM-82/141.                                                            |
| 13. Press | sure Transmitt | er | Rosemount    | 1152         |                 | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No. 2.                                   |
| 14. Press | sure Transmitt | er | Rosemount    | 1151         |                 | Justification for interim<br>operation provided in MP&L<br>letter AECM-81/502, dated<br>December 21, 1981; Supplement<br>No. 2.                                   |
| 15. Senso | or & Converter |    | GE           | None         | 1               | This device was exempted from<br>the NUREG-0588 review.<br>Justification provided in MP&I<br>letter AECM-81/335, dated<br>September 1, 1981; Supplement<br>No. 1. |

Attachment No. 2: Qualification Status of Individual Equipment Items (NSSS)

# ATTACHMENT NO. 3

# EQUIPMENT DESCRIPTION

| Specification No.: | 9645-M-050.1                                  |
|--------------------|-----------------------------------------------|
| Component:         | Drywell Purge Compressor Motors               |
| Plant ID No.:      | Q1E61-C001A & B                               |
| Manufacturer:      | Turbonetics; Motor: Reliance Electric Company |
| Model No.:         | Frame: 445 TS; Enclosure: TEFC-XT             |
|                    |                                               |

#### GENERAL

During the NRC NUREG-0588 audit, the Equipment Qualification Branch (QEB) audit team raised certain questions concerning the validity of the qualification of the drywell purge compressor motors. Also, EQB audit team trip report discussed these same questions concerning the validity of the qualification of the drywell purge compressor motors.

MP&L addressed all of these concerns in Supplement No. 2 to MP&L's NUREG-0588 submittal in MP&L's letter (AECM-81/502) to the NRC dated December 21, 1981. However, one area of concern still exists in the qualification status of the drywell purge compressor motors. This concern is in regard to the effects of minimum voltage (90%) on the motor windings. The question posed by the NRC EQB audit team trip report is as follows:

#### Question

Determine the effects of minimum diesel output voltage (90% - per Reg. Guide 1.9) on maximum motor winding temperature and startup capability?

#### Response

The attached analysis demonstrates that the Grand Gulf Unit 1 drywell purge compressor motor windings will be capable of withstanding a 112% load at 90% rated voltage.

# DRYWELL PURGE COMPRESSOR MOTOR EVALUATION REPORT

MPL No. Q1E61C001 A & B

# INTRODUCTION

This evaluation was in response to a request by Mississippi Power and Light Company in March 1982 to NUTECH Engineers, Inc. to perform an analytical evaluation based on test data to resolve concerns over the subject motor.

## BACKGROUND

As a result of a site audit conducted in October 1982, it was determined that the test conditions of the purge compressor motor with 143% of the rated load during a DBA, at an ambient temperature of 192°F was erroneously used as a margin in the environmental qualification for the motor.

Also, it was not established that the motor could operate utilizing the stand-by diesel generator power. This requires the motor to operate at 90% of the rated voltage.

Consequently, it is necessary to re-examine the net margin for motor service under accident and post accident conditions, specifically:

- a) to determine the effect of temperature and pressure accident conditions on the required motor duty, and
- b) to determine the effect of a minimum diesel output voltage (Reg. Guide 1.9) on the maximum motor winding temperature.

#### PROCEDURE

To satisfy these concerns, an analysis was performed to determine the steady state temperature of the winding at 112% of the rated load and 90% of the rated voltage with an ambient of 200°F. This is the true load based upon the compressor's peak operating conditions of 6.5 psig for 5.6 hours. The detailed approach and calculations are presented in the attached calculation sheets. DRYWELL PURGE COMPRESSOR MOTOR EVALUATION REPORT (CONT.) Page 2

# RESULTS AND CONCLUSIONS

Analysis shows that the steady-state winding temperature of the motor at 112% rated load and 90% rated voltage during the required design basis accident plus margin would be 325.4°F. This is well below the maximum allowable temperature for the motor winding of 356°F. In conclusion, the motor is acceptable for use under the conditions stated.

## REFERENCES

- Electric Motor Data Sheet, 9645-M-050.1 Appendix T, Rev. 4 for the Drywell Purge Compressor Motor dated 4/24/79
- Turbonetics Final Report, "Design Basis Event and Post Event Qualification for Drywell Purge Compressor (SC-6) Prototype" TBI-77TR-5, Rev. B, dated 8/2/79
- Turbonetics Final Report, "Design Basis Event Qualification for Drywell Purge Compressor (SC-6) Prototype", TBI-79TR-1, Rev. 0, dated 5/21/79
- Turbonetics Final Qualification Report, "Drywell Purge Compressor, "TBI-81TR-2, Rev. A dated 12/29/81
- Reliance Instruction Manual B-3620-7, "Installation, Operation and Care of Reliance Standard Integral Horsepower Induction Motors (180-449 Frames) dated September, 1974.
- Bechtel Enclosure 4 to MPB-81/0581 "Drywell Purge Compressors, Specification 9645-M-050.1 Engineering Evaluation"
- 7. Memorandum for Zoltan R. Rosztoczy, Chief of Equipment Qualification Branch, NRC from J.E. Kennedy Subject: Trip Report - Audit of Mississippi Power and Light Company's Documentation Concerning Environmental Qualification of Electrical Equipment for Grand Gulf Nuclear Station Unit 1, dated Jan. 18, 1982

# ANALYSIS nutech

San Jose, California

| Project              | Grand Gu            | lf - 1                       |                                                                      |                                                             |                                                     | File No.                                    |                |
|----------------------|---------------------|------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|----------------|
| Owner.               | MP&L                |                              |                                                                      |                                                             |                                                     |                                             |                |
| Client _             | MP&L                |                              |                                                                      |                                                             |                                                     |                                             |                |
|                      |                     |                              |                                                                      |                                                             |                                                     |                                             |                |
| 1.                   | ANALYSIS (          | OBJECTIVE:                   | To dete<br>purge c<br>and 90%<br>during                              | rmine the wi<br>ompressor mo<br>rated volta<br>the DBA test | nding temp<br>tor at 112<br>ge based c              | perature of<br>2% rated loa<br>on test data | the<br>ad<br>a |
| 2.                   | DESCRIPTI           | ON OF ITEM:                  | Drywell                                                              | Purge Compr                                                 | essor Moto                                          | or,                                         |                |
| з.                   | MANUFACTU           | RER:                         | MPL No.<br>Relianc                                                   | Q1E61-C001<br>e Electric                                    | А & В.                                              |                                             |                |
| 4.                   | TYPE:               |                              | T.E.F.C                                                              | . Induction                                                 | Motor                                               |                                             |                |
| 5.                   | FRAME DES           | IGNATION:                    | 445TS                                                                |                                                             |                                                     |                                             |                |
| 6. INSULATION CLASS: |                     |                              | Н-Туре                                                               | RN                                                          |                                                     |                                             |                |
| 7.                   | SPECIMEN '          | TESTED:                      | As identified in Section 2.0 of Turbon<br>Test Report No. TBI-77TR-5 |                                                             |                                                     | of Turbonet                                 | tics           |
| 8.                   | ANALYSIS I          | BASIS:                       | a) Com<br>the<br>'Dr<br>Fol                                          | pressor moto<br>rated load<br>ywell - Wetw<br>lowing Grand  | r peak loa<br>based on G<br>all Pressu<br>Gulf DBA' | d of 112% o<br>General Elec<br>are Envelope | of<br>stric's  |
|                      |                     |                              | b) Ele<br>DBA<br>16                                                  | ctrical perf<br>test as ide<br>of the Repor                 | ormance te<br>ntified in<br>t No. TNI-              | st data dur<br>Figures 19<br>77TR-5         | ing<br>5 and   |
| 9.                   | ANALYSIS:           |                              |                                                                      |                                                             |                                                     |                                             |                |
|                      | A) Determ<br>by int | nination of terpolating      | the mot<br>test da                                                   | or current a the during the                                 | t 112% of<br>e DBA test                             | the rated 1                                 | load           |
|                      | The cutable,        | urrent vs.<br>, are taken    | rated<br>under fo                                                    | load data, a<br>ollowing tes                                | s shown in<br>t conditio                            | the follow                                  | ving           |
|                      | 1                   | The rated vo<br>Ambient aver | ltage -<br>age tem                                                   | 100% <sup>V</sup> rated<br>perature = 1                     | 34 <sup>0</sup> F                                   |                                             |                |
|                      |                     |                              |                                                                      |                                                             |                                                     |                                             |                |
|                      |                     |                              |                                                                      |                                                             |                                                     |                                             |                |
|                      |                     |                              |                                                                      |                                                             |                                                     |                                             |                |
|                      |                     |                              |                                                                      |                                                             |                                                     |                                             |                |
|                      |                     |                              |                                                                      |                                                             |                                                     |                                             |                |
| Revisi               | on                  | 0                            |                                                                      |                                                             |                                                     | Page                                        | 1              |
| Prepar               | red By/Date         | BMAK/4-2-82                  |                                                                      |                                                             |                                                     | of                                          | 7              |

388/4282

Checked By/Date

# nutech

n losa Calif e ...

| Gr                   | and Gul                                                                                                                                                                | lf - 1                                                                                                                                                                             | our sose, canorna                                                      |                     |                    | File No                      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|--------------------|------------------------------|
| wher MP              | δL                                                                                                                                                                     |                                                                                                                                                                                    |                                                                        |                     |                    |                              |
| lientMP              | δĹ                                                                                                                                                                     |                                                                                                                                                                                    |                                                                        |                     |                    |                              |
|                      |                                                                                                                                                                        |                                                                                                                                                                                    |                                                                        |                     |                    |                              |
|                      |                                                                                                                                                                        |                                                                                                                                                                                    | Table 1                                                                |                     |                    |                              |
| Amj                  | ps                                                                                                                                                                     | KW                                                                                                                                                                                 | % rated Load                                                           | Ref                 |                    | Remarks                      |
| 3.0                  | 041                                                                                                                                                                    | 82                                                                                                                                                                                 | 109.9                                                                  | Fig.                | 15                 |                              |
| 3.                   | 141                                                                                                                                                                    | 85                                                                                                                                                                                 | 113.9                                                                  | n                   |                    | See Note 1                   |
| 3                    | 2 I                                                                                                                                                                    | 87                                                                                                                                                                                 | 116.6                                                                  | "                   | "                  |                              |
| 3                    | 3 I                                                                                                                                                                    | 89                                                                                                                                                                                 | 119.3                                                                  | n                   | "                  |                              |
| 3.0                  | 4 1<br>C T                                                                                                                                                             | 92.5                                                                                                                                                                               | 123.9                                                                  |                     |                    |                              |
| 2.5                  | ст.                                                                                                                                                                    | 96                                                                                                                                                                                 | 128.7                                                                  |                     |                    |                              |
| 3.0                  | 0 I<br>74 T                                                                                                                                                            | 100                                                                                                                                                                                | 132.7                                                                  |                     |                    |                              |
| 2.                   | 741<br>76T                                                                                                                                                             | 102                                                                                                                                                                                | 134.0                                                                  |                     |                    |                              |
| 3.                   | 8 T                                                                                                                                                                    | 106 7                                                                                                                                                                              | 138.1                                                                  |                     |                    | Correction of                |
| 5.0                  | о <u>т</u>                                                                                                                                                             | 100.7                                                                                                                                                                              | 143.0                                                                  |                     |                    | See Note 2                   |
| Note 2:<br>The       | At 14<br>305 <sup>°</sup> F<br>e above                                                                                                                                 | 3.0% of the<br>with an am<br>data is pl                                                                                                                                            | rated load the av<br>bient of 192 <sup>0</sup> F.<br>otted as Amps vs. | verage w<br>% rated | indin<br>load      | g temperature<br>in Figure 1 |
| Frc<br>112           | om Figu<br>2% rate                                                                                                                                                     | re l, by in<br>d load is c                                                                                                                                                         | terpolating test d<br>btained as 3.11                                  | lata the<br>(1)     | moto               | r current at                 |
| B) Det<br>and<br>red | Determination of the motor current at 112% of the rated load and 90% of the rated voltage during the DBA test (90% $\rm V_L$ is required by DG Set, the power source): |                                                                                                                                                                                    |                                                                        |                     |                    |                              |
| At<br>I <sub>L</sub> | 100% r<br>is giv                                                                                                                                                       | ated load (<br>en by,<br><sup>P</sup> L                                                                                                                                            | $P_{\rm L}$ ) & 100% rated v                                           | oltage              | V <sub>L</sub> , t | he rated curre               |
|                      | L =                                                                                                                                                                    | Γ3 V <sub>L</sub> cos¢                                                                                                                                                             | -, where $\cos \varphi = po$<br>7                                      | wer fac             | tor,ŋ              | -effici <b>e</b> ncy         |
| The                  | l <sub>L</sub> =                                                                                                                                                       | $\Gamma_3 v_L \cos q$<br>128 $P_L$ ,                                                                                                                                               | -, where cosy = po<br>ኪ                                                | wer fac             | tor,ŋ              | -efficiency                  |
| The                  | I <sub>L</sub> =<br>en at l<br>I <sub>L</sub> =                                                                                                                        | $   \begin{array}{c}                                     $                                                                                                                         | -, where cosy = po<br>η<br>- = 3.11 from (Λ)<br>η                      | wer fac<br>above.   | tor,η<br>(2        | )                            |
| The                  | I <sub>L</sub> =                                                                                                                                                       | $   \begin{array}{c}             I_3  v_L  \cos p \\             128  P_L, \\             \underline{1.12}  P_L \\             \overline{I3}  v_L  \cos p \\         \end{array} $ | -, where cosy = po<br>η<br>- = 3.11 from (Λ)<br>η                      | wer fac<br>above.   | tor,η              | -efficiency                  |
| The                  | I <sub>L</sub> =                                                                                                                                                       | $   \begin{array}{c}                                     $                                                                                                                         | -, where cosy = po<br>η<br>- = 3.11 from (Α)<br>η                      | above.              | tor,η              | -efficiency                  |
| The                  | IL =                                                                                                                                                                   | $   \begin{array}{c}                                     $                                                                                                                         | -, where cosy = po<br>η<br>- = 3.11 from (Α)<br>η                      | above.              | tor,η              | Page 2                       |
| The<br>levision      | L =                                                                                                                                                                    | $   \begin{array}{c}                                     $                                                                                                                         | η = 3.11 from (Λ)                                                      | above.              | tor,η              | Page 2                       |

|            |                                                             | nutech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decision 6 | G                                                           | rand Gulf - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Owner      | M                                                           | P&L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Client .   | М                                                           | P&L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| с)         | At 1<br>This<br>for<br>equi<br>126%<br>Dete<br>112%<br>Assu | 128 ${}^{P}_{L}$ & 90% ${}^{V}_{L}$ ,<br>$I_{L} = \frac{1.12}{\sqrt{3}} {}^{P}_{L} \cos \phi \gamma x \frac{1}{0.9} = \frac{1.24}{\sqrt{3}} {}^{P}_{L} \cos \phi \gamma = \frac{3.1}{0.9} I$<br>$= 3.44I \dots (3)$<br>shows, the motor current will increase by 24% of the rating<br>112% rated load and 90% rated voltage. This current is<br>valent to 3.44I of the plot in Figure 1 (3.44I corresponds to<br>of the rated load).<br>rmination of the motor winding temperature (steady-state) at<br>rated load and 90% rated voltage during DBA test:<br>mptions: |
|            | nəəu                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | i)                                                          | Winding temperature rise is proportional to Ohmic heating $(I^2R)$ , the source of motor winding heating.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | ii)                                                         | Motor current will increase almost with the same propor-<br>tionality till the load of 132% since it can be seen from<br>Figure 1 that up to 132% of the rated load, the curve is                                                                                                                                                                                                                                                                                                                                                                                     |

iii) The fan cooling rate at a given ambient will almost be the same since the speed of the induction motor does not change significantly with overload.

# Calculation:

almost a straight line.

Let the steady-state winding temperature at 112% rated and 90% rated voltage be T. The motor current is 3.44I from (3) above. We know from test data (See Table 1),

At 113.9% the rated load, motor current = 3.14I, winding temperature rise = 226-134 = 92°F, where 134°F was the ambient and 226°F was the highest (See Table 1)

| Revision          | 0           |                 |   | Page | 3 |
|-------------------|-------------|-----------------|---|------|---|
| Prepared By/Date  | BMK /4-2-82 | 1.1.1.1.1.1.1.1 |   | of   | 7 |
| Charlend Du (Data | KERT        | 1               | 1 | 01   |   |

# nutech

San Jose, California

| Project | Grand Gulf - 1 | File No. |
|---------|----------------|----------|
| Owner   | MP&L           |          |
| Client  | MP&L           |          |
|         |                |          |

Then 
$$\frac{T-134}{92} = \frac{(3.441)^2}{(3.141)^2}$$
  
or T-134 =  $\frac{(3.44)^2 \times 92}{(3.14)^2} = \frac{11.83 \times 92}{9.86} = 110.4$ 

or T = 110.4 + 134 = 244.4°F

Since the motor has to work after and during DBA at an ambient temperature of  $200^{\circ}$ F, difference from the test ambient and margin of 15°F are to be added to T to arrive at the projected winding temperature (T<sub>P</sub>).

Hence the steady-state winding temperature at 112% rated load and 90% rated voltage during the requried DBA condition shall be as follows:

 $T_p = 244.4 + (200-134) + 15$ = 325.4°F

D) An Alternate Approach - Estimate of the winding temperature at the equivalent 126% of the rated load based on test data during the DBA test:

From Table 1,

At 113.9% of the rated load the winding temperature rise by test is 92°F at an ambient of 134°F and at 143% of the rated load the winding temperature rise by test is 113°F at an ambient of 192°F.

For this estimate, it will be conservative to use the temperature rise of the winding at 143% of the rated load when the required load is 126% of the rated load, which is equivalent to 112% of the rated load and 90% of the rated voltage.

Since the temperature rise of the winding is higher at higher load it can be concluded that the temperature rise of the winding will be higher at 143% of the rated load than at 126% of the rated load.

Hence the estimated temperature rise of the winding at 112% of the rated load and 90% of the rated voltage will not exceed

| Revision            | 0          |  | Page | 4 |
|---------------------|------------|--|------|---|
| Prepared By/Date    | BMK/4-2-82 |  | of   | 7 |
| Charlest Du / Date. | 1601       |  |      |   |

# nutech

| Grand Gul                   | f = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner MP&L                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Client MP&L                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 113°F + 200°                | F (the required ambient) + $15^{\circ}$ F (margin) or $328^{\circ}$ F.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| It can be no<br>only slight | ted that this steady-state winding temperature is<br>y higher than the calculated one in Section 9C above.                                                                                                                                                                                                                                                                                                                                                                                       |
| 10. CONCLUSION:             | The motor winding temperature rise during and after<br>DBA at 112% rated load and 90% rated voltage is<br>within the limit. The above conclusion is con-<br>sidered conservative because of the following<br>reasons:                                                                                                                                                                                                                                                                            |
|                             | a) The motor winding being a Class H type insulation<br>has a continuous rating of 356°F (180°c). Then<br>the extra margin = 356-325.4 = 31.6°F, which is<br>more than adequate for a conservative approach.                                                                                                                                                                                                                                                                                     |
|                             | b) The measured winding temperature 224-4°F (See<br>Table 1) demonstrates the effect of hot spots<br>for the winding under test at 113.9% of the rated<br>load. The hot spot temperature rise was taken<br>in consideration in the above calculation because<br>the temperature used (226°F) to calculate the<br>temperature rise was the highest.                                                                                                                                               |
|                             | c) The motor will start working at 112% of the rated<br>load 100 sec after the onset of DBA in accordance<br>with Section 8a above. The motor will work at<br>this load only for 5.6 hours. According to the<br>test report identified in Section 7, motor tested<br>at 143% of the rated load for 22 hours during<br>and after DBA.                                                                                                                                                             |
|                             | d) The motor winding may not see or may see for a short time the calculated 325.4°F steady-state winding temperature, because the winding may take a couple of hours to reach the steady-state temperature from the start up time. As per Figure 10 of Turbonetics test report No. TBI-79TR-1, the time required to reach a steady state temperature by a similar motor (only difference is that the tested motor has 60 HP capacity where the Grand Gulf motor is rated as 100 HP) is 10 hours. |
| Revision                    | 0 Page 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Prepared By/Date            | 574K/4-2-82 of 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Charlent Bullate 1          | Q / h.o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|          |          |        | nutech                                                                                                                                                                                                                                            |                                                                                                                                              |
|----------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|          | Grand    | Gulf - | San Jose, California                                                                                                                                                                                                                              |                                                                                                                                              |
| oject    | MDCT     |        |                                                                                                                                                                                                                                                   | File No                                                                                                                                      |
| wner     | MDST.    |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
| ient     | 111 0 15 |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          | e)     | As per Section 3.4 of Turbonetic<br>No. TB1-81TR-2, a continuous operature of 370°F for insulate<br>the motor is acceptable. This w<br>14°F (370-356) extra margin. He<br>extra margin for the steady-state<br>temperature = 31.6 [from (a) about | cs test report<br>erating<br>tion system of<br>will give another<br>ence the total<br>te winding<br>ove $\mathbf{J}$ + 14 = $45.6^{\circ}$ F |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
|          |          |        |                                                                                                                                                                                                                                                   |                                                                                                                                              |
| Revision | 1        |        |                                                                                                                                                                                                                                                   | Page 6                                                                                                                                       |

.



.

×.

San Jose, California



# ATTACHMENT NO. 4

# LOSS OF LUBRICANT IN MOTOR OPERATED VALVE

SUBJECT: Motor Operated Valve, Limitorque, 9645-M-242.0, Outside Containment, Model SMB-1-40 (E21-F001)

CONCERN: Item 15, Attachment 3 of the NRC Trip Report (Audit of MP&L's Documentation Concerning Environmental Qualification of Electrical Equipment for Grand Gulf Unit 1) requested MP&L to provide the following information:

- Provide information concerning alternate systems and components to perform the same function as the E21-F001 valve.
- Provide the failure position for the E21-F001 valve and discuss its impact.
- Address the question involving the possibility of loss of lubricant for the E21-F001 MOV when it is exposed to the harsh environment temperature of 310°F.

#### RESPONSE :

In regard to Items 1 and 2 above, MP&L has received from Bechtel (March 26, 1982) revised evaluations for the Limitorque MOV's in Specification M-242.0/251.0/257.0/258.0. Bechtel's revised evaluations now establishes full qualification for the Limitorque MOV's in Specification M-242.0/251.0/257.0/258.0. Bechtel has based qualification on extensive material evaluations, additional Limitorque test data, and Limitorque analysis.

In regard to the question of loss of lubricant for Limitorque MOV's, the following is provided:

## A. Inside Containment Service

Limitorque actuators require lubrication at three places:

1) Motor Bearings

The motors furnished with Limitorque actuators are lubricated for life.

2) Geared Limit Switch

The geared limit switches are lubricated with Mobil Grease 28 and periodically inspected for lubrication. This grease has been extensively tested by Limitorque for use in the LOCA environment and is also recommended in NRC IE Information Notice 79-03, dated February 9, 1979. 3) Main Gearbox

The main gearbox is lubricated with Mobilux EP1, and periodically inspected for lubrication.

During the LOCA test for containment service, the actuator was flooded inadvertently with water on the 5th day. The water was drained out by flushing air and nitrogen through the limit switch compartment. The actuator was further tested and operated in the harsh environment for the remaining 25 days of the test. The test results show that the actuator performed satisfactorily throughout the test. This is confirmed by the values of peak current for the closing stroke, and the stroke time. These values did not show any significant change.

In addition, a physical inspection of the disassembled unit after the test, showed that:

The gasket between the motor casing and the gearbox was in good condition.

The main drive gear was still covered with grease.

The bearing and the shaft moved freely, thereby confirming that the lubrication was not impaired.

As can be seen on Figure B-10, after 30 days the post-LOCA temperature is approximately 150°F and ramps to 100°F by 100 days. These temperatures would not be severe enough to cause degradation of the grease.

From the above discussion, it can be concluded that the greases being used in the Limitorque actuators do maintain lubrication during harsh environment. Periodic maintenance procedures ensure that the right amount and type of grease is present in the actuators at all times.

## B. Outside Containment Service

The greases used in the actuators for outside containment service are the same as those used in the actuators suitable for containment service. These greases have been found to be suitable for a more severe environment than which is expected in the auxiliary building. Therefore, the greases are also suitable for use in these actuators.