Vepco

SURRY UNIT 2, CYCLE 6 STARTUP PHYSICS TEST REPORT

FUEL RESOURCES DEPARTMENT

Virginia Flantnic and Power Company

SURRY UNIT 2, CYCLE 6 STARTUP PHYSICS TEST REPORT

BY

ERIC S. HENDRIXSON

Reviewed By

C. J. Snow

C. T. Snow, Nuclear Fuel Engineer Nuclear Fuel Operation Subsection Approved:

J Lozito Director

Nuclear Fuel Operation Subsection

Nuclear Fuel Operation Subsection Fuel Resources Department Virginia Electric and Power Co. Richmond, Va. February, 1982

CLASSIFICATION/DISCLAIMER

The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

ACKNOWLEDGEMENTS

The author would like to acknowledge the cooperation of the Surry Power Station personnel in performing the tests documented in this report. Also, the author would like to express his gratitude to Mr. C. T. Snow, and Dr. E. J. Lozito for their aid and guidance in preparing this report.

TABLE OF CONTENTS

SECTION	TITLE	PAGE NO.
	Classification/Disclaimer	i
	Acknowledgements	ii
	List of Tables	iv
	List of Figures	v
	Preface	vi
1	Introduction and Summary	1
2	Control Rod Drop Time Measurements	10
3	Reactor Coolant System Flow Measurement	15
4	Control Rod Bank Worth Measurements	17
5	Boron Endpoint and Worth Measurements	22
6	Temperature Coefficient Measurements	26
7	Power Distribution Measurements	3 1
8	References	41
APPENDIX	Startup Physics Test Results and	
	Funluation Shorts	

LIST OF TABLES

TABLE	TITLE	P.	E NO	
1.1	Chronology of Tests		4	
2.1	Hot Rod Drcp Time Summary		12	
3.1	Reactor Coolant System Flow Measurement Summary		16	
4.1	Control Red Bank Worth Summary		19	
5.1	Boron Endpoints Summary		24	
6.1	Isothermal Temperature Coefficient Summary		23	
7.1	Incore Flux Map Summary		33	
7.2	Comparison of Measured Power Distribution Param-			
	eters With Their Technical Specifications Limits		34	

LIST OF FIGURES

FIGURE	TITLE	PAGE NO
1.1	Core Loading Map	. 5
1.2	Beginning of Cycle Fuel Assembly Burnups	. 6
1.3	Incore Instrumentation Locations	. 7
1.4	Burnable Poison and Source Assembly Locations	. 8
1.5	Control Rod Locations	. 9
2.1	Typical Rod Drop Trace	. 13
2.2	Rod Drop Time - Hot Full Flow Conditions	. 14
4.1	Bank B Integral Rod Worth - HZP	. 20
4.2	Bank B Differential Rod Worth - HZP	. 21
5.1	Boron Worth Coefficient	. 25
6.1	Isothermal Temperature Coefficient - HZP, ARO	. 29
6.2	Isothermal Temperature Coefficient - HZP, B-Bank In	. 30
7.1	Assembly Power Distribution - HZP, ARO	. 35
7.2	Assembly Power Distribution - HZP, B-Bank In	. 36
7.3	Assembly Power Distribution - I/E Cal Flux Map	. 37
7.4	Assembly Power Distribution - I/E Cal Flux Map	. 38
7.5	Assembly Power Distribution - I/E Cal Flux Map	. 39
7.6	Assembly Power Distribution - HFP, Eq. Xenon	. 40

PREFACE

The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the Surry 2. Cycle 6 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard test techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, are on file at the Surry Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented includes a brief summary of each test, a comparision of the test results with design predictions, and an evaluation of the results.

The Surry 2, Cycle 6 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values of the measured parameters were completed prior to startup physics testing. The entries for the design values were based on the calculations performed by Vepco's Nuclear Fuel Engineering Group. During 'ne tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and

to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests. The Appendix to this report contains the final completed and approved ersion of the Startup Physics Tests Results and Evaluation Sheets.

INTRODUCTION AND SUMMARY

On November 7, 1981 Unit No. 2 of the Surry Power Station was shutdown for its fifth refueling. During this shutdown, 68 of the 157 fuel assemblies in the core were replaced with fresh fuel assemblies. The sixth cycle core consists of 6 batches of fuel: a once-burned batch from Cycle 2 (Batch 4A5), a once-burned batch from Cycle 4 (Batch 6A2), two once-burned batches from Cycle 5 (Batches 7A and 7B), one twice-burned batch from Cycles 4 and 5 (Batch 6B2), and one fresh batch (Batch 3). The core loading pattern and the design parameters for each batch are shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. The incore instrumentation locations are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and source assemblies for Cycle 6, and Figure 1.5 identifies the location and number of control rods in the Cycle 6 core.

On December 28, 1981 at 1745, the sixth cycle core achieved initial criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1. A summary of the results of these tests follows:

- The drop time of each control rod was confirmed to be within the 1.8 second limit of the Surry Technical Specifications².
- The reactor coolant system flow rate was confirmed to be greater than the minimum limit specified in the Final Safety Analysis Report³.

- 3. Individual control rod bank worths for all control rod banks were measured using the rod swap technique* and were found to be within 7.3% of the design predictions. The sum of the individual control rod bank worths was measured to be within 0.3% of the design prediction. These results are within the design tolerance of ±15% for individual bank worths (±10% for the rod swap reference bank worth) and the design tolerance of ±10% for the sum of the individual control rod bank worths.
- 4. Critical boron concentrations for two control bank configurations were measured to be within 16 ppm of the design predictions. These results were within the design tolerances and also meet the accident analysis acceptance criterion.
- 5. The boron worth coefficient was measured to be within 7.2% of the design prediction, which is within the design tolerance of ±10% and meets the accident analysis criterion.
- 6. Isothermal temperature coefficients for two control bank configurations were measured to be within 1.0 pcm/°F of design predictions. These results are within the design tolerance of ±3 pcm/°F and also meet the accident analysis acceptance criterion.
- 7. Core power distributions at HZP indicated that with the exception of several core locations in the flux map taken with Control Bank B nearly fully inserted (S2-06-02), the measured assemblywise power values were within the established design

tolerance. Masured assemblywise power distributions for zeropower flux maps were generally within 10% of predicted power
distributions, while the difference for at-power maps was
generally less than 5%. The deviations of power distribution
at HZP had no adverse consequences since, for all maps, the
hot channel factors were measured to be within the limits of
the Technical Specifications.

In summary, all startup physics test results were acceptable.

Detailed results, together with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.

Table 1.1

SURRY 2 - BOL CYCLE 6 PHYSICS TESTS

CHRONOLOGY OF TESTS

	1 . 1		1	Reference
Test	Date	Time	Power	Procedure
Hot Rod Drop-Hot Full Flow	1 12/27/811	2200	l HSD	 PT-7
Reactivity Computer Checkout	112/29/811	0600	HZP	IPT28.11(B)
Boron Endpoint-ARO	112/29/811	1030	HZP	IPT28.11(C)
Temperature Coefficient-ARC	112/29/811	1354	I HZP	IPT28.11(D)
Flux Map-ARO	112/30/811	0202	HZP	1 OP-57,
	1		1	I PT28.2
Bank B Worth	112/30/811	0530	I HZP	IPT28.11(E)
Boron Endpoint-B In	112/30/811	1139	HZP	IPT28.11(C)
Temperature Coefficient-B In	112/30/811	1205	I HZP	IPT28.11(D
Flux Map-B In	112/30/811	1424	I HZP	1 OP-57,
	1 1		1	I PT28.2
Bank D Worth - Rod Swap	112/30/811	2200	HZP	IPT28.11(F
Bank C Worth - Rod Swap	112/30/811	2243	I HZP	IPT28.11(F
Bank A Worth - Rod Swap	112/30/811	2343	HZP	IPT28.11(F
Bank SB Worth - Rod Swap	112/31/811	0015	I LZP	1PT28.11(F
Bank SA Worth - Rod Swap	112/31/811	0048	HZP	IPT28.11(F
x Map - NI Calibration	1 1/1/82 1	0448	1 47%	1 OP-57,
	1 1		1	I PT28.2
Flux Map - NI Calibration	1 1/1/82 1	1108	1 59%	I OP-57,
	1 1		1	1 PT28.2
Flux Map - NI Calibration	1 1/1/82 1	1809	68%	1 OP-57,
	1 1		1	1 PT28.2
RCS Flow Measurement	1 1/27/821	1301	100%	ST-52
Flux Map - HFP, Eq. Xenon	1 2/10/821	1340	1 100%	OP-57,
	1		1	PT28.2

FIGURE 1.1
SURRY UNIT 2 - CYCLE 6
CCRE LOADING MAP

R	р	N	н	L	K		Н	G	F	E	D	С	В	A
						68 W+1	2P8	68 W11						
				1 7A 1 1L2	8 5P7	8 6P1	78 4N1	8 5P2	8 6P3	7A 0L6	1			
			78 2N3	8 0P8	8 3P1	7B	1 78 1 3N5	78 0N3	8 2P1	8 4P3	7B 0N4	1		
		78 1 1N7	7B 1 1N2	1 8 1 3P9	1.7B 1 1N3	8 5P9	7A 0L9	1 8 1 1P5	7B	8 1P3	1 7B 1 2N8	78 0N1	1	
	1 7A 1 0L5	8 1 3F4	295	6B 1 422	B CP6	7B UN2	8 1P6	78 1 1NO	8 3P7	6B H24	1 8 1 0P3	1 8 1 4P6	7A 1L0	1
	1 8 1 5P0	1 8 1 5P8	78 3N4	8 5P1	6A V27	1 78 1 4N8	68 W40	7B 4N6	6A V01	8 1P0	78 4N2	8 0P5	8 1P1	!
129	1 8 1 5P5	78 3N5	8 3P6	78 3N1	78 1 1N6	6A V13	8 494	6A V14	78 2N5	7B 4N7	8 4P9	1 7B 1 3N6	8 3P3	1 6B 1
3 5P6	78 4N9	7B 3N8	7A 1 QL3	1 8 1 3P5	6B 1 H50	8 5P4	4A 519	8 6P5	68 W07	8 4P8	7A 0L1	1 7B 1 2N6	1 7B 1 2N7	18 1
B 132	1 8 1 5P6	7B 2N1	8 0F7	7B 2N9	7B 51!2	6A V15	8 CP1	6A V11	7B 2N2	7B	1 8 1 3P8	78 1 4N4	8 3P0	6B
	1 8 1 4P5	8 2P4	78 0N9	1 8 1 6P8	6A 1 V25	1 7B 1 3N9	68 1 W26	78 5N1	6A 1 V09	1 8 1 6P2	7B	8 4P2	8 1P7	
	7A 1111	128	1 8 1 0P4	6B 1 H42	8 4P1	7B 3N7	8 0P2	7B 1 1N4	1 8 1 6P4	6B W36	3 6P0	8 2P2	7A 0L7	
		78 0N6	78 4N0	8 299	7B 1 1N8	1 8 1 2P3	7A 0L8	8	7B 3N3	1 8 1 6P7	7B 5N0	i 7B i 3N2	-	1
			7B 0N8	1 8 1 2P6	1 8 1 2P0	7B 2N4	78 4N5	7B 4N3	8 5P3	8 1 1P2	7B 3NO	-		
				7A 0L4	8 4P0	8 3P2	7B 2N0	8 4P7	8 2P7	7A 0L2		1		
-!	> BATO	Э				68 1 W05	8 1 1P9	6B W48	-	'	1			

FUEL ASSEMBLY DESIGN PARAMETERS

			BAT	СН		
	4A5	6A2	6B2	7A	7B	8
Initial Enrichment (w/o U235)	2.606	2.906	3.203	3.126	3.406	3.607
Burnup at BOC-6 (MWD/MTU)	11,129	12,651	20,856	16,851	15,252	0
Assembly Type	15X15	15×15	15X15	15X15	15X15	15X15
Number Or Assemblies	1	8	16	12	52	68
Fuel Rods Per Assembly	204	204	204	204	204	204

FIGURE 1.2

SURRY UNIT 2 - CYCLE 6

BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS

R	р	н	н	L	K	J	н	6	F	E	D	С	В	A
						141	2P8 0	W11 17592						
				1L2 16571	5P7 0	6P1 0	4N1 14820	5P2	6P3 0	16175				
			2N3 16730	OP8	3P1 0	0N7 16869		0N3 16720	2P1 0	4P3	0N4 16679			
		1N7 16691	1N2 10089	3P9 0	1N3 14505	5P9 0	0L9 17649	1P5 0	1N9 14482	1P3 0	2N8 10435	0N1 16973		
-	0L5 16608	3P4 0	2P5 0	W22 24991	0P6 0	0N2 17695	1P6 0	1N0 17614	3P7 0	W24 24697	0P3 0	4P6 0	1L0 16448	
į	5PU 0	5P8 0	3N4 14580		V27 12773	24.206	W40 23227	4N6 13633	V01 12571	1P0 0	4N2 14752	0P5 0	1P1 0	
W29 17914	5P5 0	3NS 1	3P6 0	3N1 17594	1N6 12986	V13 12482	4P4 0	V14 12623	2N5 12995	4N7 17617	4P9 0	3N6 17032	3P3 0	W20 17709
6P6 0	4H9 14750	3N8 14962	0L3 17755	3PS 0	W50 23304	5P4 0	519 11129	6P5 0	W07 23386	4P8 0	0L1 17650	2N6 14966	2N7 15190	1P4 0
W32 17483	5P6 0	2N1 17003	0P7 0	2N9 17443	5N2 13347		0P1 0	V11 12871	2N2 12909	0N5 17435	3P8 0	4N4 16967	3P0 0	W04 17697
	4P5 0	2P4 0	0N9 14609	628	V25 12457			5N1 12964	V09 12852	6P2 0	IN1 14864	4P2 0	1P7 0	
Ì	1L1 16499	1P8 0	0P4 0	W42 24715		3N7 17269	0P2 0	1N4 17614	6P4 0	W36 24579	6P0 0	2P2 0	0L7 16355	
		0N6 16802	4N0 10124	299	1N8 14703	2P3 0	0L8 17635	089	3N3 14606	6P7 0	5N0 10406	3N2 16657		
	'		0N8 17003	2P6 0	2P0 0	2N4 16920	4N5 14954	4N3 16995	5P3 0	1P2 0	3N0 16836			
				0L4 16475	4P0 0	3P2 0	2N0 15584	4P7 0	2P7 0	0L2 16377	'			
	-> ASSE	MBLY ID		'		W05 17635		W48 17753		'				

FIGURE 1.3

SURRY UNIT 2 - CYCLE 6

INCORE INSTRUMENTATION LOCATIONS

R	P	N	н	L	К	J	н	G	F	E	0	С	В	A	
							MD	TC							
						тс		тс	I MD	1					
			MD TC		TC	МО	MD TC		TC		MO TC				
		тс		но			МО		I MD	I TC	1				
		МО		MD	тс	l MD	тс		l TC	MD	I MD		TC	i i	
		тс		MD TC			МО	тс	I MD						
TC	TC	МО				MD		MD		I TC	I MD		I ND		
МО	тс	MD TC		MD TC	тс		TC	тс	MD	TC		I MD I TC	I MD	TC	1
			тс	ОМ			тс	dh I	I MD I TC					MD	1
		MD				MD TC				TC	מאו		I TC		
			TC	MD	тс		MD TC		I MD	MD					
		MD	-	тс		MD TC				тс	MD	I MD I TC			
		-					MD TC		MD TC						*
				MD TC				МО		тс		L			
- MOV	ABLE DE	TECTOR		'		1 100	TC	TC		'					

FIGURE 1.4

SURRY UNIT 2 - CYCLE 6

BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS

	Р	N	н	L	К	,	н	G	F	E	D	С	8	A .
							i							
						16		16						
				1 12	20	1	1 55		20	1 12				
				16		20		1 20		16				
- 1		12	16		20		20		20		1 16	12		
		1 20		20		4		4		20		20		
	16		1 20		4		1 20		4		20		1 16	
ss I		1		20		1 20		1 20		20				
	16		1 20		4		1 20		4		20		1 16	
-		20		1 20		4		4		20		20		
		1 12	1 16		20		1 20		20		16	1 12		
*				1 16		20	-	20		16			1	
				1 12	20		1 55		20	12				
				1		1 16	-	1 16						

FIGURE 1.5 SURRY UNIT 2 - CYCLE 6 CONTROL ROD LOCATIONS

H 0 180 LOOP C LOOP B 1 OUTLET INLET 1 SA N-41 SA N-43 C 8 В C 58 I SP SP I SB A C В LOOP C LOOP B INLET SA SP SB SB SP SA # OUTLET 7 90° -- 270° C C 0 D 8 SP SP SA SB SB 9 SA A В 0 1 1 C 10 B A 10 SP SB SP SB 11 C В C 12 SA I SA 13 N-44 N-42 0 14 15 LOOP A LOOP A SORBER MATERIAL OUTLET INLET 0.

NUMBER OF CLUSTERS FUNCTION ************* ONTROL BANK D 8 8 8 INTROL BANK B ONTROL BANK A
HUTDOHN BANK SB
HUTDOHN BANK SA
P (SPARE RCO LOCATIONS) 8 8

G-IN-CD

CONTROL ROD DROP TIME MEASUREMENTS

The drop time of each control rod was measured at cold and at hot RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by the Technical Specifications. The hot control rod drop time measurements were run with the RCS at hot, full flow conditions (547 °F, 2235 psig) and are described below.

The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripper coil fuse and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as it would in a normal plant trip. The data recorded during this test are the stationary gripper coil voltage, the LVDT (Linear Variable Differential Transformer) primary coil voltage and a 60Hz timing trace which are recorded via a visicorder. The rod drop time to the dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement.

As shown in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed. A voltage is then induced in the LVDT primary coil as the rod drops. The magnitude of this voltage is a function of the rod velocity. When the rod enters the dashpot section of its guide

tube, the velocity slows causing a voltage decrease in the LVDT coil. The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by the rod bouncing. This procedure was repeated for each control rod.

The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.12.C.1 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 1.8 seconds with the RCS at hot, full flow conditions. All test results met this limit.

Table 2.1

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST HOT ROD DROP TIME SUMMARY

ROD DROP TIME TO DASHPOT ENTRY

FASTEST ROD	AVERAGE TIME
C-9, 1.18 sec.	1.22 sec.
	C-9, 1.18 sec.

ROD DROP TIME TO BOTTOM OF DASHPOT

SLOWEST ROD	FASTEST ROD	AVERAGE TIME
G-7, 1.93 sec.	J-9, 1.76 sec.	1 1.86 sec.
i	i	

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST
TYPICAL ROD DROP TRACE

中46年日CT E OTTO Drivin Port To Repulson from Three THE WILLIAM . GNT YNTO DASH POT DROP TIME TO Drisk Por DROP. COIL STATIONARY GRIPPER COIL OF HOD PRIMIRY SIGNA JIT ATION UTPU 135 1 1011 1 13 (1. *

-THING TRACE - STATION IBUS FREQUENCY

FIGURE 2.2

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST

ROD DROP TIME - HOT FULL FLOW CONDITIONS

				1.22		1.22		1.21	1	1			
				1.82	1	1.89		1.82		1			
					1.20		1.20						
		1.20		1.23				1.23		1.21		!	
			1.21						1.21				
1.22		1.19		1.24		1.23		1.21		1.22		1.24	
	1.24				1.24		1.26				1.20		
1.22				1.19				1.24				1.25	
	1.20				1.21		1.21				1.18		
1.19		1.23		1.23		1.22		1.24		1.21		1.23	
			1.22						1.23				
		1.20		1.20				1.24		1.20			
					1.21		1.20						
		-		1.27		1.19		1.21					

REACTOR COOLANT SYSTEM FLOW MEASUREMENT

The reactor coolant flow rate is measured in order to verify that the minimum flow rate requirement is satisfied. The RCS flow rate is determined using the calcrimetric measurement technique. Precision calcrimetric data (i.e., feedwater temperature, feedwater flow, and steam pressure) are obtained in order to accurately determine the secondary-side heat rate. The primary-side anthalpy rise is determined from the RCS pressure and the temperature increase associated with each RCS loop. The flow for each RCS loop is determined by establishing a primary-side to secondary-side heat balance. Steam generator blowdown heat loss, system heat losses, and the power produced by the reactor coolant pumps are taken into account in the heat balance. A reactor coolant flow measurement was performed at 100% power. This data was analyzed using the RXFLOW⁵ computer code. A summary of the results for this test is given in Table 3.1. As shown by this table, the results demonstrated that the RCS flow limit was met.

Table 3.1

SURRY 2 - CYCLE 6 BOL PHYSICS TEST REACTOR COOLANT SYSTEM FLOW MEASUREMENT SUMMARY

1	Percent	Loop A				Minimum Flow Limit* (gpm)
	100 %	102,341	99,599	103,628	305,568	265,500

^{*} FSAR Section 4.1.3; Letter from J. H. Ferguson (Vepco) to H. R. Denton (NRC) dated April 28, 1981 (Serial No. 232); Letter from C. M. Stallings (Vepco) to E. G. Case (NRC) dated November 16, 1977 (Serial No. 516).

CONTROL ROD BANK WORTH MEASUREMENTS

Control rod bank worth measurements were obtained for all control and shutdown banks using the rod swap technique. The first step in the rod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank (Control Bank B). At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized such that the reactor was critical with the reference bank near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature. At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test bank) was inserted. The core was kept nominally critical throughout this rod swap and the maneuver was continued until the test bank was fully inserted and the reference bank was at the position at which the core was just cratical. This reasured critical position (MCP) of the reference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of the test bank. Statepoint data (core reactivity, moderator temperature,

and the differential worth of the reference bank) were recorded with the reference bank at the MCP. The rod swap maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was once again fully withdrawn from the core. The rod swap process was then repeated for all of the other control rod banks (control and shutdown).

A summary of the results for these tests is given in Table 4.1. As shown by this table and the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for all of the control and shutdown banks were within the design tolerance (±10% for the reference bank and ±15% for the test banks). The sum of the individual rod bank worths was measured to be within 0.3% of the design prediction. This is well within the design tolerance of ±10% for the sum of the individual control rod bank worths.

The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 4.1 and 4.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, all measured rod worth values were satisfactory.

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST
CONTROL ROD BANK WORTH SUMMARY

Table 4.1

BANK	MEASURED WORTH (PCM)	1	PREDICTED WORTH (PCM)	D PERCENT DIFFERENCE (M-P)/P X 100	
B-Reference Bank	1 1371		1355	+ 1.2	
D	1 1115	1	1156	- 3.5	
C	793	1	836	- 5.1	
A	1 595	1	562	+ 5.9	
SB	848	1	906	- 6.4	
SA	1 1134	1	1057	+ 7.3	
Total Worth	1 5856	1	5872	1 - 0.3	

FIGURE 4.1 SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST BANK B INTEGRAL ROD WORTH - HZP

B BANK WITH ALL OTHER ROOS OUT

-- PREDICTED

M MEASURED

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST BANK B DIFFERENTIAL ROD WORTH - HZP

B BANK HITH ALL OTHER RODS OUT

-- PREDICTED

MEASURED

BORON ENDPOINT AND WORTH MEASUREMENTS

Boron Endpoint

With the reactor critical at hot zero power, reactor coolant system boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. The critical boron concentration was then measured. If necessary, an adjustment to the measured critical boron concentration was made to account for off-nominal core conditions, i.e., for rod position and moderator temperature.

The results of these measurements are given in Table 5.1. As shown in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, all measured critical boron endpoint values were within their respective design tolerances. All measured values met the accident analysis acceptance criterion. In summary, all results were satisfactory.

Boron Worth Coefficient

The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient was determined. A plot of the boron concentration as a function of integrated reactivity can be constructed by relaining each endpoint concentration to the integrated

rod worth present in the core at the time of the endpoint measurement.

The value of the boron coefficient, over the range of boron endpoint concentrations, is obtained directly from this plot.

The boron worth plot is shown in Figure 5.1. As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity was measured to be -7.83 pcm/ppm. The measured boron worth coefficient is within 7.2% of the predicted value of -8.44 pcm/ppm and is well within the design tolerance of ±10%. The measurement result also met the accident analysis acceptance criterion. In summary, this result was satisfactory.

Table 5.1

SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

BORON ENDPOINTS SUMMARY

Control Rod Configuration	Measured Endpoint (ppm)		Predicted Endpoint (ppm)	Difference M-P (ppm)
ARO	1 1452		1445	7
B Bank In	1 1277	1	1293 *	-16

*The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST BORON WORTH COEFFICIENT

ENDPOINT MEASUREMENTS

TEMPERATURE COEFFICIENT MEASUREMENTS

The isothermal temperature coefficient measurements were accomplished by controlling the RCS heat gains/losses with the steam dump valves to the condenser, and/or steam generator blowdown, establishing a constant and uniform heatup/cooldown rate, and then monitoring the resulting reactivity changes on the reactivity computer. These measurements were performed at very low power levels in order to minimize the effects of non-uniform nuclear heating, thus, the moderator and fuel were approximately at the same temperature (between 542-547 °F) during these measurements. To eliminate the boron reactivity effect of outflow from the pressurizer, the pressurizer level was maintained constant or slightly increasing during these measurements.

Isothermal temperature coefficient measurements were performed at various control rod configurations. For each rod configuration, reactivity measurements were taken during both RCS heatup and cooldown ramps during which the RCS temperature varied approximately 3°F. Reactivity was determined using the reactivity computer and was plotted against the RCS temperature on an x-y recorder. The temperature coefficient was then determined from the slope of the plotted lines. The x-y recorder plots of reactivity changes versus RCS temperature for each measurement are shown in Figures 6.1 and 6.2.

The predicted and measured isothermal temperature coefficient values are compared in Table 6.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheets given in the

Appendix, all measured isothermal temperature coefficient values were within the design tolerance of ±3 pcm/°F and met the accident analysis acceptance criterion. In summary, all measured results were satisfactory.

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TESTS
ISOTHERMAL TEMPERATURE COEFFICIENT SUMMARY

Table 6.1

POSI	NK TION eps)	 TEMPERATURE	I BORON	ISOTHE!		MPERATI (PCM/°)		EFFICIENT
В	D	RANGE (°F) 	CONCENTRATION	 HEATUP	COOL	IAVER.	PRED.	DIFFER.
228	1228	1 542 - 546	1 1445	1-3.77	1-3.03	1-3.40	1-4.42	1 +1.02
21	1228	1 542 - 547	1 1286	1-6.24	-6.36	1-6.30	1-6.78	+0.48

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TESTS

ISOTHERMAL TEMPERATURE COEFFICIENT

HZP, ARO

REACTIVITY (PCM)

Figure 6.2

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT HZP, B-BANK IN

REACTIVITY (PCM)

Section 7

POWER DISTRIBUTION MEASUREMENTS

The core power distributions were measured using the incore movable detector flux mapping system. This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3). For each traverse, the detector output is continuously monitored on a strip chart recorder. The output is also scanned for 61 discrete axial points by the PRODAC P-250 process computer. Full core, three-dimensional power distributions are then determined by analyzing this data using the Westinghouse computer program, INCORE?. INCORE couples the measured flux map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of all the flux maps taken during the test program together with a list of the measured values of the important power distribution parameters is given in Table 7.1. The measured power distribution parameter values are compared with their Technical Specifications limits in Table 7.2. Flux Maps 1 and 2 were taken at zero power. These flux maps serve as the base case design checks. Figures 7.1 and 7.2 show the resulting radial power distributions associated with these flux maps. These maps indicated the presence of some assemblywise relative power values in excess of the design tolerance, but all measured hot channel factor values were within the Technical Specifications limits. Flux Maps 3 through 5 and Map 7 were taken over a wide range of power levels and control rod configurations. These flux maps were taken to check the

at-power design predictions and to measure core power distributions at various operating conditions. Maps 3 through 5 also provide incore/excore calibration data for the nuclear instrumentation system. The radial power distributions for these maps are given in Figures 7.3 through 7.6. These figures show that the measured relative assembly power values are generally within 5% of the predicted values.

In conclusion, all power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the Technical Specification limits. It is therefore anticipated that the core will continue to operate safely throughout Cycle 6.

TABLE 7.1

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TESTS

INCORE FLUX MAP SUMMARY

МАР	I I IMAP	I I I DATE	I BURN I UP I MUD/	1	BANK			EL FAC				HOT CTOR	l CORE l H	F(Z)	 3 F(XY)		4 TR	AXIAL OFF	 NO. OF
DESCRIPTION	1110		The state of the s		STEPS			THIO	F-Q(T)	ASSY	PIN	F-DH N)	POINT		MAX	MAX	LOC	100000	ITHIM BLES
ARO	1 1	12-30-81	0	0	223	D07	GH	20	2.260	D07	GH	1.488	21	1.476	1.425	1.6.7	NE	24.83	47
B AT 23	2	12-30-81	0	1	228	KOO	OM	14	2.641	K09	OH	1.799	20	1.392	1.710	1.0.5	NE	19.21	44
I/E CAL.	3	1- 1-82	10	47	184	B06	DE	32	1.982	K14	KL	1.446	32	1.305	1.404	1.005	NE	-0.54	48
I/E CAL.	4	1- 1-82	17	59	180	B10	DK	33	1.962	B06	DE	1.426	33	1.308	1.383	1.004	SWI	-6.00	48
I/E CAL.	5	1- 1-82	22	68	204	K14	KL	22	1.853	D07	GH	1.422	23	1.255	1.373	1.005	SWI	5.94	48
HFP, EQ. XENON	1 7	2-10-82	11116	100	228	1 F04	FL	33	1.749	D07	GH	1.387	34	1.214	11.338	1.004	SHI	-2.19	47

NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),
FOLLOWED BY THE PIN LOCATION (DENOTED BY THE "Y" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS
LETTERED A THROUGH R AND THE "X" COORDINATE DESIGNATED IN A SIMILAR MANNER).

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.

- 1. F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.08
- 2. F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04
- 3. F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE
- 4. QPTR QUADRANT POWER TILT RATIO.
- 5. FLUX MAP S2-6-6 WAS TAKEN ON JANUARY 24, 1982 AT 99% POWER. THIS FLUX MAP WAS NOT TAKEN AT EQUILIBRIUM CONDITIONS BUT WAS NEEDED FOR POWER SHAPE VERIFICATION. ALTHOUGH THIS MAP WAS NOT PART OF THE FORMAL PHYSICS TESTING PROGRAM, IT PROVIDED VERIFICATION OF ACCEPTABLE POWER SHAPE AND PEAKING FACTORS.

Table 7.2

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TESTS

COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS

WITH THEIR TECHNICAL SPECIFICATION LIMITS

MAP	CHAN	Q(T) HO			DH(N) H	
NO.		LIMIT	MARGINI	MEASI	LIMIT	MARGIN
3	1.981	4.36	54.6	1.451	1.71	15.2
4	1.961	3.70	1 47.0 1	1.431	1.68	1 14.9
5	1.851	3.13	1 40.9 1	1.421	1.65	13.9
7	1.751	2.18	1 19.7 1	1.391	1.55	10.3

- 1 The technical specification limit for the heat flux hot channel factor, F-Q(T) is a function of core height. The value for F-Q(T) listed above is the maximum value of F-Q(T) in the core. The technical specification limit listed above is evaluated at the plane of maximum F-Q(T). The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(T) and the technical specifications limit for each map. All measured F-Q(T) hot channel factors include 8% total uncertainty.
- 2 The measured values for the enthalpy rise hot channel factor, F-dH(N) include 4% measurement uncertainty.

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST

ASSEBLYWISE POWER DISTRIBUTION

HZP, ARO

2	P H	н	L.	K	7	н	6	F	3	0	c	8	^	
				and the	******					***				
	. PREDICTED	***			. 0.39	. 0.70 .	0.39				FREDI			
	. MEASURED				. 0.39	. 0.70 .	0.39 .				MEASU			. 1
	PCT DIFFEREN	CE.			. 0.9	. 0.9 .	1.4			. PC	T DIFF	ERENCE.		
	**********			*****		*******	******	****		***	******			
			. 0.42 .	0.95	. 0.97	. 1.01 .	0.97	0.95	. 0.42 .					
			. 0.43 .	0.97	. 0.99	. 1.03 .	0.99	0.97	. 0.45 .					
			. 1.7 .	2.6	. 1.6	. 1.2 .	1.4	2.3	. 3.0					
30.0		******	******	*****	******			1 12	0 04	0 66				
		. 0.46	. 0.96 .	1.12	2 23		1 21	1 15	3 00	0.49				
		. 0.47	. 0.9	1.14	2 4	1 6	2.A	3.2	6.2	5.6				
		. 1.3	. 0.4	1.0		. 1.3 .	6.0	3.4	* ***					
	2 44	0 91	. 1.14 .	1 24	1 26	1.16	1.24	1.24	1.14	0.91	0.46			
	0.46	0.71	. 1.14 .	1.25	1 26	1.20	1.28	1.29	1.18	0.94	0.49			
	. 0.47	0.71	. 0.3 .	0.4	1.8	1.9	3.7	4.0	3.7	3.6	5.5			

	. 0.42 . 0.96	. 1.14	. 0.97	1.20	. 1.22	. 1.21 .	1.22	1.20	0.97	1.14	0.96	. 0.42 .		
	0 62 0 94	1.14	6.28	1.19	1.20	1.21 .	1.23	1.22	. 1.00	1.16	1.01	. 0.40 .		- 1
	0.10.1	0.0	. 0.5 .	-0.5	1.3	0.0 .	0.8	1.7	. 2.8	2.1	. 5.4	. 9.0 .		
								construction of						
	. 0.95 . 1.12	. 1.24	. 1.20 .	1.16	. 1.20	. 1.02 .	1.20	1.16	. 1.20	1.24	1.12	. 0.95 .		
	0 05 1 13	1 24	1.1A	1.13	. 1.14	0.98	1.14	1.13	. 1.21	1.28	. 1.18	. 1.02 .		
	. 0.9 . 0.9	. 0.2	0.9 .	-2.2	4.2	4.1 .	-4.5	4.5-	. 1.5	3.2	. 5.5	. 7.8 .		
							A CARLON			construction of		*******		
1.39	. 0.97 . 1.18	. 1.24	. 1.22 .	1.20	. 1.15	. 1.17 .	1.15	1.20	. 1.22	1.24	. 1.18	. 0.97	0.39 .	
	0 08 1 00	1 24	1 20	1 15	1.07	1.10	1.07	1.14	. 1.24	1.29	1.29	. 1.04	0.41	
2.2	. 0.3 . 1.9	. 0.1	1.3 .	-3.9	6.8	6.1 .	-6.7	-5.0	. 1.7	4.5	. 5.7	. 6.6	0.6 .	
						and the same of the same of								
1.70	. 1.01 . 1.21	. 1.16	. 1.21 .	1.02	. 1.17	. 1.07 .	1.17	1.02	. 1.21	1.10	1.21	1.01	0.70 .	
86.6	1.01 . 1.23	. 1.15	. 1.19 .	0.99	. 1.08	. 0.49	1.09	0.95	. 1.21	1.22	1.28	4.7	2.1	1
2.2	0.6 . 1.9	0.3	1.4 .	-2.9	7.2	7.4 .	-6.8	0.3	0.2	. 5.6	. 6.0			
		*****	*******	******			3 35	7 00	3 50	1 26	1 10	0.97	0.39	
2.39	0.97 . 1.18	. 1.24	. 1.22 .	1.20	1.15	1 00	1 07	1 17	1 10	1 27	1.23	1.03	0.42	
2.28	. 0.98 . 1.21	. 1.24	. 1.21 .	-2 1	- 1.07	- L. UT .	-7.1	-5.3	-2.6	3.0	. 4.1	6.1	7.5	
2.2	. 0.3 . 2.8	. 0.1	4.8	-6.1	-4.9	0.5	-7.4	3.3						
	. 0.95 . 1.12	3 25	1 20	1 14	1 20	1.02	1 20	1.16	1.20	1.24	. 1.12	. 0.95		
	. 0.97 . 1.15	1 25	1.10	1.13	1 10	0.96	1.14	1.11	. 1.18	1.25	. 1.15	. 0.99		1
	. 2.7 . 2.7	0.0	-0.7	-7.6	4.0	-5.2	-5.0	-4.1	1.7	. 0.6	. 2.6	. 4.7		
					202241							******		
	. 0.42 . 2.96	1.19	. 0.97	1.20	. 1.22	. 1.21	1.22	1.20	. 0.97	. 1.14	. 0.56	. 0.42	6.	
	0 63 0 98	1.15	0.97	1.18	1.19	. 1.17	1.18	. 1.17	. 0.96	. 1.15	. 0.99	. 0.44		1
	. 2.5 . 2.5	. 1.1	0.6	-1.4	2.5	3.5	-3.1	2.2	1.4	. 1.0	. 3.0	. 4.3		
							******		*****					
	. 0.46	. 0.91	. 1.14	1.24	. 1.24	. 1.16	1.24	1.24	. 1.14	. 0.91	. 0.46			
	. 0.48	. 0.92	. 1.13	1.25	. 1.24	. 1.14	1.22	. 1.23	. 1.13	. 0.92	. 0.48			1
	. 2.4	. 1.1	0.8	0.4	. 0.5	1.2	1.4	0.8	3.0-	. 1.7	. 3.9	* *		
	*****				*****			******	******	******	*****			
		. 0.46	. 0.96	. 1.12	. 1.18	. 1.21	1.18	1.12	. 0.96	. 0.46	*			1
		. 0.48	. 0.99	1.14	. 1.18	. 1.21	1.19	1.13	. 0.47	0.46				1
11.00	AND NOTE OF STREET	. 2.9	. 3.5	. 2.4	. 0.1	0.4	. 1.1	. 1.4		. 2./				
		*** (*)	0.42	0.95	0.97	. 1.01	0.97	0.95	0.42					
			0.42	0.75	1.00	. 1.04	1.00	0.97	. 0.43					1
			3.6	4.5	3.1	. 2.2	2.5	2.1	. 1.3					
			. 3.5 .	4.3					******					
	. STANDARD		******		. 0 19	. 0.70	0.39		- I The second		AVER			
	. STANDARD					2.73				, p	CT DIFF	ERENCE.		1
	. DEVIATION					. 4.6					= :	. 8.		
					*****					**		******		
					The second second second									

MAP NO: \$2-6- 1	DATE: 1	2/3	0/81		PCWE	R: ()X	
CONTROL ROD POSITIONS:	F-Q(T)	=	2.260		QPTR	:		
D BANK AT 223 STEPS	F-DH(N)	=	1.488		MA	0.992	I NE	1.017
	F(Z)	=	1.476		SH	0.992	I SE	0.999
	F(XY)	=	1.425					
	RIPMIP	=	0	M.m./MTU	A.0 =	24.8	3(%)	

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST

ASSEMBLYWISE POWER DISTRIBUTION

HZP, B-BANK IN

R	p	N	н	L	ĸ	J	н	G	F	ε	0	c	8		
						1			plan and						
	POF	DICTED				. 0.45	. 0.82	. 0.45				PREDIC	TED .		
		SURED						. 0.47				MEASUR			1
		FPERENCE			A. V	. 4.3	2.4	. 4.5			. P(T DIFF	RENCE.		
						*****	*****	******				*****			
				0.39	. 0.94	. 1.05	. 1.15	. 1.05	0.94	. 0.39	*				,
				0.41	. 0.98	. 1.07	. 1.15	1.07	. 0.70	. 0.41	*				
		142		5.0				. 1.0		. 2.0		966.1	-	proposer for	- 6
		**	0 40	0.80	0.95	1.17	. 1.30	. 1.17	. 0.95	. 0.80	. 0.40				
			0.42	0.82	0.97	. 1.21	. 1.29	. 1.20	. 0.99	. 0.85	. 0.43				2
			4.4	2.4	. 2.6	. 3.3	0.9	. 2.1	. 5.1	. 6.3	. 8.0		10.00	#13-10 (F-19-1	
	1900										******				
		0.40 .	0.76 .	0.67	. 0.65	. 1.16	. 1.23	. 1.16	. 0.65	. 0.87	. 0.76	0.40	*		
		0.41 .	0.77 .	0.87	. 0.65	. 1.17	. 1.25	. 1.19	. 0.68	. 0.91	. 0.80	0.43			
		2.9 .	2.2 .	0.1	. 0.3	. 1.0	. 1.7	. 2.8	. 4.3	. 4.6	. 5.3	7.1			
	. 0.39 .		*****	*****			1 40	1 79	1 10	0.81	0.87	0.80	0.39		
	. 0.39 .	0.80 .	0.87	0.81	1.10	1 10	1.40	1 36	1.11	0.83	0.90	85.0	0.45		5
	. 1.7 .	0.01 .	0.07	-0.61	-1.1	-1.5	0.3	1.9	1.7	. 2.3	. 4.2	9.6	. 14.7	-	

	. 0.94 .	0.95	0.65	1.10	. 1.32	. 1.51	. 1.33	. 1.51	. 1.32	. 1.10	. 0.65	0.95	. 0.94		
	8 65	0 04	2 44	1 09	1.78	1.43	. 1.24	. 1.41	. 1.28	. 1.11	. 0.67	1.03	. 1.00		6
40.0	0.7	-0.8 .	-1.3	-0.9	3.4	5.5	7.0	6.8	3.5	. 1.6	. 3.5	8.7	. 12.7	*	
								لدرج والأكوال	area area a		******				
. 0.45	. 1.05 .	1.17 .	1.16	1 35	. 1.51	. 1.59	1 . 1.65	. 1.59	. 1.51	. 1.32	. 1.16	1.17	. 1.05	0.45 .	7
. 0.45	. 1.03 .	1.13 .	1.13	1.30	. 1.44	. 1.44	. 1.49	. 1.44	. 1.41	. 1.34	. 1.21	1.63	0.0	10.4	
. 0.2	1.9 .	-3.3 .	-1.9	-0.9	4.4	9.1	9.6	4.4	6.8	. 1./	. 4.1	. 0.7	. 7.7		
******	. 1.15	******					1 61	1 45	1 33	1.40	1.23	1.30	1.15	. 0.82 .	
and the same		2 24	2 2	1 79	1 28	1 5 5	7 63	1 52	1.23	1.40	. 10	. 1.30		. 9.76 .	8
. 0.82	1.1	1.60 .	-2 1	-1.2	-1.9	-9.2	9.1	8.0	7.1	. 0.2	. 3.9	. 4.5	. 9.6	. 11.8 .	
										and the second second					
0.45	. 1.05	1.17	1.16	1.32	. 1.51	. 1.59	1.65	. 1.59	. 1.51	. 1.32	. 1.16	. 1.17	. 1.05	. 0.45 .	
	2 22	* **	2 24	1 78	1 64	7 647	7 . 1 5 7	1 - 1 - 47	2 4 3			. 4.63	- 4-42		9
. 0.2	. 2.9	5.5 .	0.1	2.6	3.6	7.0	7.5	7.4	5.2	0.5	. 4.5	. 6.3	. 9.5	. 13.4 .	

	. 0.94	0.95 .	0.65	. 1.10	. 1.32	. 1.51	. 1.3	1.51	1.32	1.10	0.65	1 01	1 03		10
	. 0.99	1.00 .	0.66	. 1.08	. 1.27	1.91	. 1.2	. 1.44	. 1.20	. 1.08	3.1	6.8	9.1	1	
														200	
	. 0.39	0.00	0.67	0.81	1 10	1 3	2 . 1 . 91	1 . 1 . 32	. 1.10	. 0.81	. 0.87	. 0.80	. 0.39		
															11
	6.1	6.0	3.5	. 0.3	2.4	4.1	83.	22.7	3.0	2.9	. 3.3	. 7.4	. 8.8		

		0.40 .	0.76	. 0.87	. 0.65	. 1.10	6 . 1.2	3 . 1.16	. 0.65	. 0.87	. 0.76	. 0.40			10
		8 67	0 70	0 87	0 45	1 14	4 1 2	2 - 1-15	. 0.64	. 0.87	. 0.80	. 0.43	*		12
		6.7 .	4.2	. 0.3	0.1	1.	21.	30.4	-1	. 0.4	. 5.4	. 0.0	*		
14 100 1	1983	******	*****		2 05		7 1 7	0 1 12	0 00	0.80	. 0.90		-		
				0.50	1 01	1.1	. 1.3	1 1 21	. 0.91	. 0.84	. 0.43				13
			0.43	7.1	7.1	. 0	2 . 0	7 . 3.0	3.6	4.5	. 7.2		-	A.M. 1880 1 .	
	-					*****			******					C	W. T. T.
				. 0.39	. 0.94	. 1.0	5 . 1.15	5 . 1.05	. 0.94	. 0.39					
				. 0.42	. 1.62	. 1.1	1 . 1.20	1.10	. 0.95	. 0.41	*				14
74.00		4.44		. 7.1	. 7.8	. 5.	5 . 4.	2 . 4.5	. 4.4	. 3.7	*				
- 1	*****			*****	*****	******			******	******		AVER	AGE		
		ORAUM	*					8 . 0.45					FPENCE.		15
		VIATION	*					4 . 5.0			.,,	= 4			
		3.144	*												

MAP NO: 52-6- 2	DATE: 12/30/81	POWER: 1%
CONTROL ROD POSITIONS:	F-Q(T) = 2.641	QPTR:
D BANK AT 228 STEPS	F-OH(N) = 1.799	NA 0.982 NE 1.015
B BANK AT 23 STEPS	F(Z) = 1.392	SW 0.994 SE 1.009
	F(XY) = 1.710	
	BURNUP = 0 MID/HT	U A.O = 19.21(%)

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST

ASSEMBLYWISE POWER DISTRIBUTION

I/E CALIBRATION - FLUX MAP

8	P	N	H	L	K	J	н.	6 .		. E	. 0	С	В		
				14-1											
		SURED	*				0.69						ICTED .		S 4
		FFERENCE	Ċ				. 0.6					MEAS!	FERENCE.		
							. 0.97								
							. 0.97								5
-				. 3.9	. 1	2 . 0.4	0.1	. 0.9	. 2.1	. 1.9	*				
			0.49	. 0.98	. 1.1	217	1.20	. 1.17	. 1.12	. 0.98	. 0.49				
							. 1.19								*
W. S. W. V.			3.4	. 1.8	. 0.6	. 0.8	0.7	. 0.5	. 1.8	. 1.8	. 1.7	*			
		0 49	4 93	1.15	1 24		. 1.16	1 23	1 26	1 15	0 93	0.49	*		
							. 1.16								
100							. 0.1								
					******					******		******			
	. 0.44 .														5
	0.2 .														,
					*****			*****							
	. 0.96 .														
	. 0.96 .														6
	. 0.6 .	0.6	0.1	0.1			4./	4.4	3.5	. 0.2	. 1.7	. 4.4	. 0.0		
. 0.40	0.97 .	1.17 .	1.23	. 1.21	. 1.18	8 . 1.15	. 1.17	. 1.15	. 1.18	. 1.21	. 1.23	. 1.17	. 0.97	0.40	
	0.97 .														7
2.4	0.1 .	1.3 .	0.2	0.6	3.5	7.0	5.8	5.3	4.2	. 0.5	. 2.3	. 3.0	. 4.6	. 4.4 .	
0.40	0.97	1 20	1 14	1 20	1 01	1 1 17	1 00	1 17	1 07	1 20	1 14	1 20	A 97		
	0.96 .														
	-1.2 .														
					*****		******					******	******		-
	0.97 .														
	1.2 .														
					******	*****						******	******		
	0.96 .														
	1.00 .														10
	4.5 .	4.5 .	1.0	0.4	3.1	5.6	4.7	/	3.4	0.9	. 0.5	. 2.0	. 5.0		
	0.44 .	0.98 .	1.15	. 0.98	. 1.18	. 1.21	. 1.20	. 1.21	. 1.18	. 0.98	. 1.15	. 0.98	. 0.44		
	0.46 .														11
	. 4.2 .	4.2 .	2.6	. 0.6	1.4	2.2	2.2	2.1	1.5	. 0.8	. 1.4	. 2.4	. 3.9		
		0.49 .	0.93	. 1.15	1.24	. 1.23	. 1.16	. 1.23	. 1.24	. 1.15	. 0.93	. 0.49			
							. 1.15								12
		3.9 .	2.6	. 0.6	. 1.0	. 0.7	1.0	0.6	. 1.0	. 1.2	. 1.7	. 2.5			
100	* **						. 1.20					*******			
							. 1.18								13
							1.4								
		- The win											***		
							. 0.97								
							. 0.98								19
	******								. 6.0	. 3.6					
		DARD					. 0.69					AVER	AGE .		
		MOITAL					. 0.72					PCT DIFF			15
	. 12	.018	*	-		. 5.7	. 4.1	. 1.9	*			* 5	.5 .		
	******			-		*****	******		**				******		

114P NO: 52-6- 3	DATE: 1	1	1/82		POWE	R: 47%		
CONTROL ROD POSITIONS:	F-Q(T)	=	1.982		GPTR			
D BANK AT 184 STEPS	F-OH(N)	=	1.446		104	0.992	NE	1.005
	F(Z)	=	1.305		SH	1.004	SE	0.999
	F(XY)	=	1.404					
	BURNUP	=	10	שדא באח	A.0 =	-0.540	23	

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST

ASSEMBLYWISE POWER DISTRIBUTION

I/E CALIBRATION - FLUX MAP

2	р	н	н	L	K	J	н .	6	1	E	D	С	В	*	

	. PS	PEDICTED			. *		. 0.71					PREDI			
		ASURED					. 0.71					MEASU			. 1
	.PCT I	IFFERENC	Ε.			0.0	0.2	. 0.6				CT DIFF	EHEMEE.		
de visa-	*****	*******	**	0.45	0.94	0.97	. 0.98	0.97	0.96	0.45					
				0.45	. 0.97	. 0.97	. 0.97	0.97	0.97 .	0.45					2
							0.6								

			0.50	. 0.97	. 1.11	. 1.17	. 1.20	. 1.17 .	1.11 .	0.97	. 0.50				
			0.51	. 0.98	. 1.12	. 1.18	. 1.19	. 1.18	1.13 .	0.99	. 0.51	*			3
			1.2	. 1.1	. 0.9	. 0.5	0.9	. 0.6	2.3 .	1.9	. 1.5				
*		. 0.50 .	6 94	1 14	1 23	1 21	1 15	1 21	1 23	1.14	0.94	0.50			
		. 0.50 .	0.95	1.15	1.23	1.21	. 1.15	1.22	1.26 .	1.16	. 0.96	. 0.52			4
		. 0.4 .	0.8	. 0.9	. 0.4	0.3	0.1	. 0.8	2.8 .	1.9	. 1.6	. 3.5			
											******	******			
	. 0.45	. 0.97 .	1.14	. 0.98	. 1.16	. 1.20	. 1.20	. 1.20	1.16 .	0.98	. 1.14	. 0.97	. 0.45 .		_
	. 0.45	. 0.97 .	1.14	. 0.93	. 1.17	. 1.19	. 1.17	. 1.19	1.17 .	0.99	. 1.16	. 1.02	. 0.48 .		5
	0.2	0.2 .	0.5	. 0.8	. 0.2	1.4	1.8	1.2	0.2 .	1.0	. 1.9	. 4.6	. 1.2 .		
	0.04	. 1.11 .	1 23	1.14	1 10	1.10	1.06	. 1.19	1.10	1.16	. 1 23	. 1.11	. 0.96	100	
	0.97	. 1.12 .	1.24	1.17	. 1.08	. 1.14	. 0.99	. 1.13	1.05 .	1.17	. 1.25	. 1.16	. 1.02 .		6
		. 1.3 .													
		******			*****					*****	*****	******			
. 0.41	. 0.97	. 1.17 .	1.21	. 1.20	. 1.19	. 1.17	. 1.18	. 1.17	1.19	1.20	. 1.21	. 1.17	. 0.97 .	0.41 .	
. 0.39	. 0.97	. 1.20 .	1.23	. 1.20	. 1.15	. 1.08	. 1.11	. 1.09	1.13 .	1.21	. 1.25	. 1.20	. 1.01 .	0.43 .	7
4.7	0.1	. 2.7 .	1.1	0.1	3.3	7.0	6.2	0.4	-5.4	0.5	. 3.0	. 3.0	. 4.2 .	3.7 .	
0.77	0.08	. 1.20 .	1 15	1 20	1 04	1.18	1.10	1.18	1.04	1.20	1.15	1.20	. 0.98	0.71 .	
0.71	0.96	. 1.23 .	1.16	. 1.19	. 1.01	. 1.10	. 1.03	. 1.11	0.98	1.19	. 1.18	. 1.22	. 1.00 .	0.74 .	8
4.9	2.0	. 2.7 .	0.4	0.7	2.4	7.2	6.9	6.3	-6.0 .	-0.8	. 2.2	. 1.8	. 2.4 .	3.0 .	
								******			******	******	******	******	
. 0.41	. 0.97	. 1.17 .	1.21	. 1.20	. 1.19	. 1.17	. 1.18	. 1.17	1.19	1.20	. 1.21	. 1.17	. 0.97 .	0.41 .	9
. 0.39	. 0.97	. 1.22 .	1.22	. 1.20	. 1.17	. 1.10	- 1.11	. 1.09	1.13 .	1.17	. 1.23	. 1.20	. 1.00 .	0.43 .	,
4.7	. 0.1	. 4.6 .	1.0	0.2	1.4	5.8	0.3	0.3	-5.4	-2.5	. 1.4	. 6.4	. 3.0	4.4	4.64
	n 94	. 1.11 .	1 23	1.16	1.10	1.19	1.04	1.19	1.10	1.16	. 1.23	. 1.11	. 0.96		-
	1.00	. 1.16 .	1.25	. 1.17	. 1.07	. 1.13	. 0.99	. 1.15	1.07	1.16	. 1.24	. 1.14	. 1.01 .		10
	. 4.5	. 4.5 .	2.0	. 0.1	2.6	5.4	4.2	3.7	-2.9	-0.3	: 1.1	. 3.0	. 5.0 .		

	. 0.45	. 0.97 .	1.14	. 0.98	- 1.16	. 1.20	. 1.20	. 1.20	1.16	0.98	. 1.14	. 0.97	. 0.45	-	
	. 0.47	. 1.01 .	1.16	. 0.98	. 1.16	. 1.19	. 1.18	. 1.20	1.17	0.99	. 1.15	. 0.99	. 0.46		11
	. 4.2	. 4.2 .	2.5	. 0.3	0.6	1.2	1.1	0.5	. 0.2	0.9		. 4.3		35 CF -L-	
	******	. 0.50 .	0.94	1.14	1.23	. 1.21	. 1.15	. 1.21	1.23	1.14	. 0.94	. 0.50			
		. 0.52 .	0.96	. 1.14	. 1.25	. 1.24	. 1.16	. 1.22	1.25	1.15	. 0.95	. 0.51			12
		. 3.8 .	2.4	. 0.3	. 2.1	. 2.4	. 0.2	. 0.3	1.7	1.3	. 1.2	. 1.9	*		
		******			*****	******		******							
							. 1.20								13
							. 1.19								13
							******				******				
		1. 144 4		. 0.45	. 0.96	. 0.97	. 0.98	. 0.97	. 0.96	0.45		-			
				. 0.47	. 1.00	. 0.98	. 0.99	. 1.00	. 1.00	. 0.46					14
				. 4.4	. 4.1	. 1.4	. 1.3	. 3.4	. 3.8	. 3.6	*				
	****		**				. 0.71	0.41				AVE	RAGE .		
		DRAGMAT					. 0.74						FERENCE.		15
		EVIATION					. 3.4					=			

HAP NO: S2-6- 4	DATE: 1/ 1/82	POWER: 59%
CONTROL ROD POSITIONS:	F-Q(T) = 1.962	QPTR:
D BANK AT 180 STEPS	F-DH(N) = 1.426	NW 0.993 NE 1.003
	F(Z) = 1.308	SW 1.004 SE 300
	F(XY) = 1.383	
	BURNUP = 17 MWD/MT	TU A.O = -6.00(%)

SURRY UNIT 2 - CYCLE 6 BOL PHYSICS TEST

ASSEMBLYWISE POWER DISTRIBUTION

I/E CALIBRATION - FLUX MAP

	8	p	н	H	r	×	3	н	6		3	0	c	8	•	
	j. 1, 11		ICTED	**				. 0.74	0.42	, -			PREDIC	TED .		
			SURED					. 0.72					MEASUS			. 1
	, p		FFEREN	ε.				1.8				_ p	CT DIFF	REINCE.		
	4.0	****			******					0.05			******	*****		
								. 1.03								2
								1.4								
					*****			******	******	******		0.40				
				0.49	0.96	1.10	1.17	. 1.21	1.17	1.10	0.98	0.50				3
								1.3								
								******			*******					
		- *	0.49	0.92	. 1.12	1.21	1.21	. 1.15	1.21	1.21	1.12	0.92	0.51			4
			0.49	0.5	. 0.6	-0.1	0.4	. 0.2	. 0.7	2.2	. 2.0	. 2.0	. 3.3			
	***							*******				******				F-10-10-1
	. 0	.44 .	0.95	1.12	. 0.97	. 1.17	. 1.20	. 1.19	1.20	1.17	0.97	1.12	0.96	0.44		5
	. 0	n 9	0.96	0.3	0.4	0.4	-1.4	1.7	-1.2	0.0	0.9	2.0	. 3.7	5.2		

	0	. 95 .	1.10	1.21	. 1.17	. 1.15	. 1.20	. 1.04	. 1.20	. 1.15	. 1.17	. 1.21	. 1.10	. 0.95		6
	. 0	. 96 .	1.11	1.22	- 1.17	-1.13	. 1.15	. 0.99	-4.9	-3.6	0.5	2.5	3.9	4.9		

	. 0.42 . 0	. 78 .	1.17	1.21	. 1.20	. 1.20	. 1.17	. 1.18	. 1.17	. 1.20	. 1.20	. 1.21	. 1.17	. 0.98	. 0.42 .	7
	. 0.40 . 0	.97 .	1.18	. 1.21	. 1.21	. 1.17	. 1.10	. 1.11	. 1.10	. 1.14	1.22	. 1.25	. 1.20	1.01	3.0	,
													******	******		
	A 74 1	68	1.21	1.15	. 1.19	. 1.04	. 1.18	. 1.10	. 1.18	1.04	. 1.19	. 1.15	. 1.21	. 1.03	0.74 .	
	0 73 3	nn	1.22	1.15	1.19	1.02	1.11	1.03	. 1.11	0.95	. 1.19	. 1.17	. 1.22	. 1.04	. 0.76 .	
	4.1 .	2.3 .	0.7	0.1	0.3	2.2	6.5	6.6	6.0	5.5	0.1	. 2.1	. 1.0			
	. 0.42 . 0	98	1.17	1.21	. 1.20	1.20	. 1.17	. 1.18	. 1.17	. 1.20	. 1.20	. 1.21	. 1.17	. 0.95	. 0.42 .	
			1 55	1. 55	1.20	1 TA	1 12	1.11	1.09	. 1.15	. 1.18	. 1.21	. 1.18	. 1.00	. 0.43 .	9
	4.0 .	0.4 .	4.7	. 0.9	0.7	-1.7	4.6	6.0	6.5	4.5	2.1	. 0.6	. 1.2	. 2.5	4.0 .	
		95	1.10	1.21	. 1.17	. 1.15	. 1.20	. 1.04	. 1.20	. 1.15	. 1.17	. 1.21	. 1.10	. 0.95		
		0.0	1 15	3 24	3 16	1.12	1.15	1.00	. 1.16	1.12	2.17	. 1.22	. 1.12	. 0.99		10
		4.7 .	4.7	. 1.6	0.5	2.4	4.5	3.6	3.3	2.3	u.2	. 0.8	. 2.1	. 3.6		
í.			0 94	1 12	0.97	1.17	1.20	. 1.19	. 1.20	. 1.17	. 0.97	1.12	. 0.96	. 0.44		
		1.66	0.09	1.14	0.97	. 1.16	. 1.15	. 1.18	. 1.20	. 1.18	. 0.78	. 1.13	. 0.98	. 0.45		11
		3.5 .	3.5	. 1.9	0.1	0.7	1.1	1.0	0.0	. 0.9	. 0.7	. 1.2	. 2.1	. 3.2		
				A 02	1 19	1 21	1 21	. 1.15	1 21	1.21	1.12	0.92	. 0.49			
			0.50	. 0.94	. 1.12	. 1.23	. 1.22	. 1.15	. 1.21	. 1.24	. 1.14	. 0.94	. 0.50			12
			2.3	. 1.3	0.1	. 1.3	. 1.6	0.3	. 0.6	. 2.2	. 1.5	. 1.2	. 2.6	*		
			****			*****		. 1.21	1 17	1.10	0.96	0.49	******	*		
				0.51	. 1.02	1.14	. 1.17	1.19	1.19	. 1.14	. 0.99	. 0.50				13
				. 4.2	. 6.1	. 4.2	. 0.1	1.3	. 1.8	. 4.4	. 3.1	. 1.7				
		-			*******			******				*****	*			
		1000-0-0	* 1		0.44	. 0.95	0.9	9 . 1.03	1.00	0.99	. 0.46					14
					. 6.1	. 4.5	. 1.	1.0	. 2.6	. 3.7	. 4.5					
					*****	*****					******		AVER	ACE		
			DRAGHL				. 0.4	3 . 0.74	0.42			*	PCT DIFF			15
			/IATION					0 . 3.0					= 2			
							****							******		

MAP NO: 52-6- 5	DATE: 1/ 1/82	POWER: 68%
CONTROL ROD POSITIONS:	F-Q(T) = 1.853	QPTR:
D BANK AT 204 STEPS	F-DH(N) = 1.422	NW 0.991 NE 1.003
	F(Z) = 1.255	SW 1.005 SE 1.001
	F(XY) = 1.373	
	BURNUP = 22 MAD/M	TU A.O = 5.94(%)

SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

ASSEMBLYWISE POWER DISTRIBUTION

HFP, EQ. XENON

-6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.63 0.96 1.18 1.21 1.19 1.19 1.19 1.17 1.20 1.20 1.20 1.43 0.43	
PREDICTED PCT DIFFERENCE. -2.4 -2.4 -1.8 -0.45 0.94 0.98 1.03 0.98 0.94 0.45 -0.40 0.96 1.01 0.96 0.93 0.95 -1.4 0.3 -1.3 -1.8 -1.8 -0.9 0.4 -0.50 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 -1.2 2.5 0.0 -0.1 1.15 1.17 1.14 1.10 0.97 0.52 -1.2 2.5 0.0 -0.1 -1.8 -0.4 0.9 1.5 1.7 1.14 1.10 0.97 0.52 -0.50 0.98 1.13 1.20 1.20 1.14 1.20 1.20 1.13 0.93 0.50 -0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.52 -0.1 0.3 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.8 -0.45 0.95 1.12 0.99 1.16 1.18 1.18 1.19 1.20 1.20 1.10 1.10 0.97 0.47 -0.6 -0.8 -0.2 0.4 -0.2 -1.5 -1.6 -0.2 1.2 1.9 0.9 3.1 5.5 -0.94 1.09 1.20 1.18 1.15 1.17 1.12 1.17 1.15 1.19 1.20 0.90 9.47 -0.6 -0.8 -0.2 0.4 -0.2 -1.5 -1.6 -0.2 1.2 1.9 0.9 3.1 5.5 -0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.20 0.99 -0.3 -0.3 -0.1 -0.1 -0.6 -2 2.2 1.2 1.9 0.9 3.1 5.5 -0.41 0.9 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.20 0.99 -0.3 -0.3 -0.1 -0.1 -0.1 -0.6 -0.2 0.5 1.2 1.9 1.9 0.94 -0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.20 0.99 -0.3 -0.3 -0.1 -0.1 -1.6 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 -0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 -0.74 1.03 1.19 1.14 1.20 1.20 1.20 1.17 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 -0.74 1.03 1.19 1.14 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 -0.74 1.03 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.3 -3.2 -0.1 1.20 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -0.40 0.99 1.19 1.14 1.19 1.09 1.14 1.16 1.14 1.17 1.20 1.20 1.20 1.50 0.99 -0.79 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	
PCT DIFFERENCE. -2.4 -2.4 -1.8 PCT DIFFERENCE. -0.45 0.94 0.98 1.03 0.96 0.94 0.45 -0.46 0.94 0.96 1.01 0.96 0.93 0.45 -1.4 0.3 -1.3 -1.8 -1.8 -0.9 0.4 -0.50 0.96 1.09 1.15 1.19 1.15 1.09 0.96 0.50 -0.51 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 -1.2	
0.45 0.94 0.98 1.03 0.98 0.94 0.45 0.45 0.46 0.45 0.46 0.94 0.96 1.01 0.96 0.93 0.45 0.51 0.96 0.94 0.96 1.01 0.96 0.93 0.45 0.51 0.96 0.93 1.13 1.13 1.19 1.15 1.09 0.96 0.50 0.51 0.96 1.09 1.15 1.19 1.15 1.09 0.96 0.50 0.52 0.51 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 0.52 0.53 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.55 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.55 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.55 0.10 0.34 0.1 0.1 0.0 0.1 0.0 0.0 0.5 0.7 2.1 1.7 2.8 0.0 0.50 0.94 1.12 0.1 0.0 1.13 1.21 1.23 1.15 0.95 0.55 0.1 0.3 0.1 0.1 0.0 0.1 0.0 0.5 0.7 2.1 1.7 2.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.1 0.1 0.0 0.5 0.20 1.13 1.21 1.23 1.15 0.95 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	
0.46 0.94 0.94 0.96 1.01 0.96 0.93 0.45 1.4 0.3 1.4 0.3 1.3 1.8 0.9 0.4 0.50 0.96 1.09 1.15 1.19 1.15 1.09 0.96 0.50 0.51 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 1.2 0.51 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 0.52 1.2 0.5 0.0 -0.1 1.8 -0.4 0.9 1.5 0.97 0.52 0.5 0.93 1.13 1.20 1.20 1.14 1.20 1.20 1.13 0.93 0.50 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.52 0.1 0.3 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.8 0.1 0.3 -0.1 0.3 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.8 0.4 0.9 0.45 0.45 0.95 1.12 0.99 1.18 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 0.6 0.6 0.6 0.5 0.95 1.12 0.99 1.18 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 0.6 0.6 0.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.46 0.94 0.96 1.01 0.96 0.93 0.45 1.4 0.3 -1.8 -0.9 0.4	
1.4 0.3 -1.3 -1.8 -0.9 0.4 0.50 0.96 1.09 1.15 1.19 1.15 1.09 0.96 0.56 0.51 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 1.2 0.5 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 1.2 0.5 0.9 0.9 1.15 1.2 0.1 1.10 1.20 1.20 1.13 0.97 0.52 0.50 0.93 1.13 1.20 1.20 1.14 1.20 1.20 1.13 0.93 0.50 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.52 0.1 0.3 -0.1 -0.1 -0.6 0.2 0.5 2.7 2.1 1.7 2.8 0.45 0.95 0.95 1.12 0.99 1.18 1.18 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 0.45 0.95 0.75 1.12 0.99 1.18 1.18 1.10 1.20 1.20 1.18 0.98 1.13 0.99 0.47 0.65 0.65 0.6 0.6 0.2 0.4 -0.2 -1.0 -1.0 0.2 1.2 1.9 0.9 3.1 5.5 0.94 1.09 1.20 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 0.6 0.6 0.6 0.2 0.4 -0.2 -1.0 -1.0 0.2 1.2 1.9 0.9 3.1 5.5 0.94 1.09 1.20 1.18 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.3 0.40 0.95 1.13 0.9 0.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.3 0.40 0.95 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.95 1.15 1.20 1.20 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 0.0 1.15 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
0.50 0.96 1.09 1.15 1.19 1.15 1.09 0.96 0.50 . 0.51 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 . 1.2 0.5 0.96 1.09 1.15 1.17 1.14 1.10 0.97 0.52 . 1.2 0.5 0.9 1.13 1.20 1.20 1.14 1.20 1.20 1.13 0.93 0.50 . 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.52 . 0.1 0.3 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.8 . 0.45 0.96 1.13 0.95 1.18 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 . 0.45 0.96 1.13 0.99 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 . -0.6 -0.8 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 3.1 5.5 . 0.94 1.09 1.20 1.18 1.18 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 . 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.20 0.90 0.49 . -0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 . 0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 . 0.40 0.95 1.15 1.20 1.20 1.20 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 . -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 . 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.16 1.16 1.19 1.03 0.74 . 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.98 0.43 . 0.40 0.95 1.15 1.20 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.16 1.16 1.19 1.05 0.98 0.43 . 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.16 1.16 1.10 1.00 0.44 . -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 . 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.16 1.16 1.10 1.09 0.94 . 0.40 0.96 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.16 1.16 1.00 0.44 . -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 . 0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.11 1.19 1.04 1.20 1.16 1.16 1.10 1.09 0.94 . 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.15 1.18 1.21 1.10 0.96 0.97 0.97 1.12 1.20 1.18 0.96 0.99 1.15 0.99 1.15 0.99 1.15 1.07 1.10 1.10 1.10 1.10 1.10 0.96 0.99 0.99 0.99 1.15 0.99 1.15 0.99 1.15 1.00 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
1.2 4.5 0.0 -0.1 -1.8 -0.4 0.9 1.5 2.4	
1.2 4.5 0.0 -0.1 -1.8 -0.4 0.9 1.5 2.4	
0.50 0.93 1.13 1.20 1.20 1.14 1.20 1.20 1.13 0.93 0.50 0.50 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.52 0.1 0.3 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.8 0.45 0.45 0.95 1.12 0.99 1.18 1.20 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 0.45 0.95 1.12 0.99 1.18 1.18 1.19 1.20 1.20 1.20 1.10 1.14 0.99 0.47 0.6 -0.6 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 3.1 5.5 0.95 0.95 1.12 0.99 1.18 1.18 1.19 1.20 1.10 1.14 0.99 0.47 0.6 -0.8 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 3.1 5.5 0.94 1.09 1.20 1.18 1.18 1.15 1.17 1.02 1.16 1.18 1.20 1.09 0.94 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.93 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.93 0.93 0.93 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.20 1.20 0.94 0.94 0.94 1.09 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.20 1.20 0.94 0.94 0.94 1.09 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
0.50 0.93 1.13 1.20 1.20 1.14 1.20 1.20 1.13 0.93 0.50 0.50 0.50 0.94 1.12 1.20 1.20 1.13 1.21 1.23 1.15 0.95 0.52 0.1 0.3 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.8 0.45 0.95 0.95 1.12 0.99 1.18 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 0.45 0.95 1.12 0.99 1.16 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 -0.6 -0.8 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 3.1 5.5 0.95 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.94 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.43 0.40 0.95 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.95 1.15 1.20 1.20 1.20 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.8 -3.3 -3.2 -0.1 1.20 1.20 1.25 0.95 0.43 0.40 0.95 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.96 1.18 1.21 1.19 1.19 1.14 1.15 1.14 1.15 1.15 1.15 1.10 1.15 1.10 0.96 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.99 1.15 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
0.1 0.3 -0.1 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.6 0.45 0.96 1.13 0.95 1.18 1.20 1.20 1.20 1.18 0.96 1.13 0.96 0.45 0.45 0.95 1.12 0.99 1.18 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 -0.8 -0.8 -0.8 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 3.1 5.5 0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 -0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.95 1.15 1.20 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.17 1.20 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.95 1.15 1.20 1.20 1.20 1.20 1.15 1.00 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.99 1.19 1.14 1.19 1.09 1.14 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.90 1.19 1.14 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.44 0.90 0.99 1.19 1.14 1.19 1.19 1.14 1.19 1.17 1.20 1.20 1.15 0.98 0.43 0.43 0.90 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.90 1.15 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
0.1 0.3 -0.1 -0.1 -0.1 -0.6 -0.2 0.5 2.7 2.1 1.7 2.6 0.45 0.96 1.13 0.95 1.18 1.20 1.20 1.20 1.18 0.96 1.13 0.96 0.45 0.45 0.95 1.12 0.99 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 -0.8 -0.8 -0.8 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 3.1 5.5 0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 -0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.95 1.15 1.20 1.20 1.19 1.18 1.13 1.15 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.17 1.20 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 1.2 0.5 2.3 4.3 0.43 0.96 1.18 1.21 1.19 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.20 1.15 0.98 0.43 0.99 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.93 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.16 1.10 0.96 0.45 -6.1 -3.5 0.96 1.13 0.96 1.15 1.19 1.14 1.15 1.19 1.14 1.15 1.19 1.14 1.15 1.19 1.10 0.96 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.07 1.15 0.99 1.18 1.18 1.20 1.09 1.18 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.18 1.20 1.00 1.20 1.28 0.45 0.45 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
0.45 0.56 1.13 0.95 1.18 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 0.45 0.45 0.95 1.12 0.99 1.18 1.18 1.19 1.20 1.00 1.14 0.99 0.47 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	
-0.6 -0.6 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 0.47 -0.74 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 -0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.6 1.7 2.8 4.0 -0.43 0.98 1.15 1.20 1.20 1.18 1.15 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -0.40 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 -0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.74 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.6 -2.5 -2.7 -1.2 0.6 0.7 2.6 5.0 -0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 -0.97 1.12 1.22 1.16 1.15 1.17 1.02 1.16 1.15 1.15 1.10 0.96 -0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 -0.45 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.96 -0.45 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.96 -0.46 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.96	
-0.6 -0.6 -0.2 0.4 -0.2 -1.0 -1.0 -0.2 1.2 1.9 0.9 0.47 -0.74 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 -0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.6 1.7 2.8 4.0 -0.43 0.98 1.15 1.20 1.20 1.18 1.15 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -0.40 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 -0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.74 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.6 -2.5 -2.7 -1.2 0.6 0.7 2.6 5.0 -0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 -0.97 1.12 1.22 1.16 1.15 1.17 1.02 1.16 1.15 1.15 1.10 0.96 -0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.18 0.98 1.13 0.96 0.45 -0.45 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.96 -0.45 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.96 -0.46 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.96	-
0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.43 0.94 1.09 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 0.95 1.15 1.20 1.19 1.18 1.33 1.15 1.33 1.17 1.21 1.23 1.17 1.00 0.44 0.95 1.20 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 0.1 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 0.1 0.00 0.2 0.01 0.04 0.2 0.00 1.18 1.21 1.19 1.05 0.77 0.1 0.00 0.90 1.18 1.21 1.19 1.19 1.14 1.19 1.10 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.18 0.98 1.13 0.96 0.45 0.45 0.45 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.28 0.45 0.45 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 0.45 0.46 0.99 1.15 0.99 1.15 1.18 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.18 1.18 1.20 1.20 0.98 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.99 1.20 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.99 1.20 0.45 0.45 0.45 0.99 1.20 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0	
0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.94 1.09 1.20 1.18 1.15 1.17 1.02 1.17 1.15 1.19 1.22 1.12 0.98 0.03 -0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 0.043 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 0.095 1.15 1.20 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	
-0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.25 0.98 0.43 0.40 0.95 1.15 1.20 1.21 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.43 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.43 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.07 1.22 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.10 0.96 3.0 3.0 1.5 0.98 1.13 0.98 1.15 1.20 1.20 1.15 0.98 0.45 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.15 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 1.2 1.2 1.2 1.8 -0.45 0.99 1.15 0.99 1.18 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
-0.3 -0.3 -0.1 -0.1 -1.0 -2.3 -2.4 -2.7 -1.5 0.8 1.7 2.8 4.0 -0.43 0.98 1.15 1.20 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.95 1.15 1.20 1.10 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -6.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.00 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.15 1.15 1.10 0.96 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 0.98 1.13 0.96 0.45 0.45 0.99 1.15 0.99 1.15 1.18 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.99 1.15 0.99 1.15 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.45 0.99 1.15 0.99 1.15 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.45 0.99 1.15 0.99 1.15 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.45 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 0.90 0.45 0.46 0.99 1.15 0.99 1.15 1.18 1.18 1.20 1.18 1.18 1.20 1.00 0.99 0.45 0.46 0.99 1.15 0.99 1.15 1.18 1.18 1.18 1.18 1.18 1.18 1.18	
0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.00 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.16 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 1.2 1.8 1.2 1.8 -0.45 0.99 1.15 0.99 1.18 1.20 1.20 1.20 1.28 0.98 1.13 0.96 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.28 1.18 1.20 1.09 0.94 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.18 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.	
0.43 0.98 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.95 1.15 1.20 1.19 1.18 1.13 1.15 1.13 1.17 1.21 1.23 1.17 1.00 0.44 -6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.96 1.15 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 1.97 1.12 1.22 1.18 1.15 1.15 1.17 1.02 1.18 1.21 1.10 0.96 3.0 1.5 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.15 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.96 1.13 0.98 1.18 1.20	
-6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.15 1.17 1.02 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 0.96 0.45 0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.20 1.20 1.38 0.98 1.13 0.96 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.99 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 0.90 0.95	
-6.1 -2.3 0.2 -0.1 -0.3 -1.8 -3.5 -3.4 -3.8 -2.9 0.8 2.2 1.7 2.3 2.5 0.74 1.03 1.19 1.14 1.20 1.04 1.19 1.11 1.19 1.04 1.20 1.14 1.19 1.03 0.74 0.69 0.99 1.19 1.14 1.19 1.03 1.15 1.07 1.15 1.01 1.19 1.15 1.19 1.05 0.77 -6.1 -3.6 0.2 -0.1 -0.4 -1.2 -3.7 -3.6 -3.3 -3.2 -0.1 1.2 0.5 2.3 4.3 0.43 0.93 1.15 1.20 1.20 1.20 1.17 1.19 1.17 1.20 1.20 1.20 1.15 0.98 0.43 0.40 0.96 1.18 1.21 1.19 1.19 1.14 1.16 1.14 1.17 1.18 1.21 1.16 1.00 0.45 -6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.09 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.15 1.17 1.02 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 0.96 0.45 0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.20 1.20 1.38 0.98 1.13 0.96 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 1.20 0.99 0.45 0.46 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 0.90 0.95	49.000
0.74	
0.74	
-6.1 -3.6	
-6.1 -3.6	
0.43	
0.43	
-6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.07 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.15 1.18 1.21 1.10 0.96 3.0 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 0.94 1.2 1.8 1.2 1.8 0.96 0.95 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.20 0.98 1.13 0.96 0.45 0.96 0.99 1.15 0.99 1.18 1.20 1.20 1.20 1.20 1.20 0.98 1.13 0.96 0.45 0.96 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 0.98 1.20 0.96 0.45 0.96 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 0.98 1.20 0.96 0.45 0.96 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28	
6.1 -1.5 3.0 0.7 -0.2 -0.9 -2.8 -2.8 -2.8 -2.7 -1.2 0.6 0.7 2.6 5.0 0.94 1.06 1.20 1.18 1.16 1.20 1.04 1.20 1.16 1.18 1.20 1.09 0.94 0.97 1.12 1.22 1.18 1.15 1.17 1.02 1.18 1.15 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.0 1.2 1.0 1.2 1.8 0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.20 0.95 1.13 0.96 0.45 0.96 0.99 1.15 0.99 1.18 1.20 1.20 1.20 1.20 1.20 0.96 0.45 0.96 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 0.96 0.95 0.96 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 1.20 0.96 0.95 0.96 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.99 1.25 0.96 0.95 0.96 0.99 1.25 0.9	
0.94	
3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.20 1.30 0.98 1.13 0.96 0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.30 0.98 1.13 0.96 0.45 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 0.99 1.20 0.45 0.99 1.15 0.99 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	
3.0 3.0 1.5 0.3 -1.1 -2.6 -2.3 -1.9 -1.1 0.2 1.18 1.21 1.10 0.96 3.0 3.0 1.5 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.20 1.30 0.98 1.13 0.96 0.45 0.96 1.13 0.98 1.18 1.20 1.20 1.20 1.20 1.30 0.98 1.13 0.96 0.45 0.99 1.15 0.99 1.18 1.18 1.20 1.20 1.20 1.20 0.99 1.20 0.45 0.99 1.15 0.99 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	
0.45 · 0.96 · 1.13 · 0.98 · 1.18 · 1.20 · 1.20 · 1.20 · 1.18 · 0.98 · 1.13 · 0.96 · 0.45 · 0.46 · 0.99 · 1.15 · 0.99 · 1.18 · 1.18 · 1.18 · 1.18 · 1.18 · 1.18 · 0.98 · 1.13 · 0.96 · 0.45 · 0.46 · 0.99 · 1.15 · 0.99 · 1.16 · 1.18 · 1.	
. 0.45 . 0.96 . 1.13 . 0.98 . 1.18 . 1.20 . 1.20 . 1.20 . 1.18 . 0.98 . 1.13 . 0.96 . 0.45 .	1
. 0.96 . 0.97 . 1.15 . 0.77 . 1.16 . 1.18 . 1.18 . 1.19 . 18 . 0.00 . 12 . 0.07	-
. 0.96 . 0.97 . 1.15 . 0.77 . 1.16 . 1.18 . 1.18 . 1.19 . 18 . 0.00 . 12 . 0.07	
. 3.1 . 3.1 . 2.0 . 0.60.31.11.30.7 . 0.2 . 1.2 . 1.3 . 1.6 . 1.8	
	1
0.50 . 0.93 . 1.13 . 1.20 . 1.20 . 1.14 . 1.20 . 1.20 . 1.13 . 0.93 . 0.50 .	
. 0.52 . 0.95 . 1.13 . 1.21 . 1.21 . 1.12 . 1.20 . 1.22 . 1.14 . 04 . a.c.	11
. 3.1 . 2.1 . 0.6 . 0.7 . 0.31.10.4 . 1.3 . 1.2 . 1.1 . 2.3	19000
***************************************	-
0.50 . 0.96 . 1.09 . 1.15 . 1.19 . 1.15 . 1.09 . 0.96 . 0.50 .	
. 0.53 . 1.02 . 1.13 . 1.14 . 1.17 . 1.15 . 1.12 . 0.98 . 0.51	13
. 0.45 . 0.94 . 0.98 . 1.03 . 0.95 . 0.94 . 0.45	A.
. 0.46 . 0.99 . 0.96 . 1.03 . 0.99 . 0.96 . 0.46	
6.7 . 5.1 . 0.6 . 0.1 . 1.0 . 1.6 . 2.4	
	14
. STANDARD . 0.43 . 0.74 . 0.43 . AVERAGE	
. DEVIATION 0.44 . 0.75 . 0.45 . PCT DISSESSES	
. =1.463	14
	14

MAP NO: 52-6- 7	DATE: 2/10/82	POWER: 100%
CONTROL ROD POSITIONS:	F-G(T) = 1.749	QPTR:
D BANK AT 228 STEPS	F-DH(N) = 1.387	NM 0.992 NE 1.002
	F(Z) = 1.214	SW 1.004 SE 1.002
	F .Y) = 1.338	
	BURNUP = 1116 MUD/MTH	4.0 = -2.10(%)

Section 8

REFERENCES

- M. E. Paul, S. A. Ahmed, "Surry Unit 2, Cycle 6, Design Report," NFE Technical Report No. 209, Vepco, November, 1981
- 2. Surry Power Station Technical Specifications.
- 3. Surry Power Station Final Safety Analysis Report.
- 4. T. K. Ross, W. C. Beck, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980.
- 5. T. J. Kunsitis, "RXFLOW, A Computer Program to Calculate Reactor Flow and Thermal Output," NFO-CCR-8, Vepco, December, 1979.
- 6. "Technical Manual for Westinghouse Solid State Reactivity Computer," Westinghouse Electric Corporation.
- 7. W. Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967.

APPENDIX

STARTUP PHYSICS TEST RESULTS
AND EVALUATION SHEETS

6

II Test Conditions	Bank Positions (S	All and the	RCS Temperature (°F): 547 Power Level (% F.P.): 0 Other (specify):
(Design)	CB: 228 CC: 228	CD: *	Below Nuclear Heating *At the just crit. position
III i	Bank Positions (S	Steps)	RCS Temperature (°F): 540.5 Power Level (% F.P.): 0
(Actual)	SDA: 223 SDB: 228 CB: 228 CC: 228	CA: 228 CD: /65	BRIW WULLEAR ACAT
	Date/Time Test Perfe	ormed:	
IV	Measured Parameter (Description)	pc = Me	sured Reactivty using a -comp ferred React from react period
Test !	Measured Value	0° = 24.	7 -21.0 45.0 -37.5 52.0 -45.5 8 -21.2 13.3 -37.6 51.0 -50.0 0 -0.94 3.9 -0.27 2.0 -3.0
1	Design Value (Actual Conditions)		
	Design Value (Design Conditions)	1 %D = 1(P	c - P _t) /P _t x 100% ≤ 4.0%
	Reference	WCAP 790	5, Rev. 1, Table 3.6
v I Acceptance	FSAR/Tech Spec	I Not Appl	icable
Criteria	Reference	 Not Appl	icable
VI Comments	Design Tolerance is Acceptance Criteria	met : is met :	YES NO
	Allowable Range = ±	48.5 pcm	
Completed	By J. Surman	<u> </u>	valuated By: Della Rei
	Test Engineer	Reco	mmended for C. J. Sie

I ! Reference	Test Description Proc No /Section	n: Critical Bo n: PT28.11/APP	
II I	Bank Positio	ns (Steps)	RCS Temperature (°F): 547 Power Level (% F.P.): 0
Test !.		228 CA: 228	Other (specify):
conditions	SDA: 228 SDB: C3: 228 CC:	228 CD: 228	Below Nuclear Heating
(Design)	C3: 220 CC.	220 CD. 220	
III	Bank Positio	ns (Steps)	RCS Temperature (°F): 5+3.2
Test I		28 CA: 228	Power Level (% F.P.): 0%
conditions	SDA: 228 SDB:	228 CD: 228	
(Actual)	CB: 228 CC:	CD. 220	Below Nuclear Heating
	Date/Time Test	Performed:	
	12/29/81 10	30-1100	
	Meas Parameter	Part Description	
IV i	(Description)	(Cg) crit	Boron Conc - ARO
i	Measured Value	(CB) ANO = 145	52 ppm
Test			
Results !			
	Design Value	1445	FA
	(Actual Cond)	ce = 1445 ±	JO ppm
	Design Value		
	(Design Cond)	1 C6 = 1445 ±	50 ppm .
		1	
	Reference	VEP-FRD-NFE-	209
v	FSAR/Tech Spec	∝c8 × c8 ≥	15,115 pcr.
Acceptance Criteria	Reference	FSAR Section	14.2.5
0111111	1	1	
	Design Toleranc	e is met	YESNO
	Acceptance Crit	eria is met :	YESNO
Comments	1 oc. = -8 44 pcm	/ppm for preli	minary an lysis
Comments			
	10c = - 7.83 pcm	1/ppm for final	analysis
	1 "		
-	P10		2094
Completed	By: X. J. UM	man	Evaluated By: 130 Man
	Test Engi	ker	and the same of th
		Red	commended for
			Approval By : Chow NFO Engineer
		A. 2	Aro Engineer

I ! Reference !	Test Description Proc No /Section	n: Isothermal Temperature Coefficient-ARO n: PT28.11/APP. D Sequence Step No: 8
II Test Conditions	Bank Position	Power Level (% F.P.): 0
(Design)		228 CA: 228 Other (specify): 228 CD: 228 Below Muclear Heating
III Test	Bank Position	Power Lavel (% 7 P.): 0%
(Actual)	SDA: 228 SDB: 2 CB: 228 CC: 2	228 CA: 228 Other (Specify): 228 CD: 228 Below Muclear Heating
	Date/Time Test /	Performed: 1354-1447
IV	Meas Parameter (Description)	(≪T [™])ACO Iso Temp Coeff - ARO
		I ASS ISO TEMP COULT AND
Test ! Results !	Measured Value	(= =) ARD = -3.40 pcm/F(CG = 1475)
	Design Value	1
	(Actual Cond)	1 (====================================
	Design Value (Design Cond)	(< =) ARO = - 4.42 ± 3.0 pcm/°F
	Reference	(Cg = 1445 ppm) VEP-FRD-NFE 209
V Acceptance Criteria	FSAR/Tech Spec	
Criteria I	Reference	TS 3'.1, VEP-FRD-NFE 209
vI !	Design Tolerance Acceptance Crite:	is met : YESNO ria is met : YESNO
Comments	*Uncertainty on from C. T. Snow	to E. J. Logito dated June 27, 1987).
Completed	By: Test Engine	mad Evaluated Sy: B.O. Mann
	l	Approval by :

II Test Conditions	SDA: 228 SDB:		Power Power	emperature (Level (% F. (specify)	P.):-0
(Design)	CB : 228 CC : 228 CD: 228 Must have ≥ 40 thimbles				
III Test Conditions		ons (Steps)	! Power	emperature(° Level (% F. (Specify):	P.): 547
(Actual)	c3 :228 cc :	228 CD: 2	23 !	47 th.n	
	Date/Time Test: Performed: /2/	Carlot Service	202	7, 54.2	9169
IV	Meas Parameter (Description)	MAX. REL ASSY PWR % DIFF (M-P)/P	NUC ENTHAL RISE HOT CHAN FACT F-dH(N)	TOTAL HEAT FLUX HOT CHAN FACT F-2(T)	QUADRANT POWER TILT RATIO 2PTR
Test Results	Measured Value	7.81 E. Par = 1.02	1.488	2.260	1.0168
	Design Value (Design Conds)	1102 for P 2 .9 1152 for P 2 .9 (P 4 - Assy: Pvr.)	FAH < 1.55(1+.2(1-P)	1) r (z) = 4,36 x x(z)	! ! ≤ 1.02
	Reference	WCAP-7905 REV. 1	NONE	I NONE	WCAP-7905 REV. 1
V Acceptance	FSAR/Tech Spec	NONE	I KA	I NA	I XA .
Criteria	Reference	I NONE	T.S. 3.12	T.S. 3.12	T.S. 3.12
vī	Design Tolerand		t : VES		
Comments					151
Completed	By: L. J. Cu	Umas	Evaluate	d By: € J.	04.6-

II I	Bank Positions (Steps)	RCS Temperature (°F): 547
Test	555. 333 555. 333	43	Power Level (% F.P.): 0
Conditions! (Design) i	SDA: 228 SDB: 228 CB:Moving CC: 228		Other (specify): Below Nuclear Heating
(Design)	CB. HOVING CC. 228	CD. 220	Selow Ruclear Reading
III Test	Bank Positions (Steps)	RCS Temperature (°F): 576.0 Power Level (% F.P.): 0%
Conditions	SDA: 228 SDB: 228	CA: 228	Other (Specify):
(Actual) !	CB: Moving CC: 228	CD:228	Below Nuclear Heating
' '	Date/Time Test Performed:	1	
	12/30/81 05	30	
IV I	Measured Parameter (Description)		tegral Worth of Cntl Bank B, 1 Other Rods Out
Test ! Results !	Measured Value	I I REF =	1371 pcm
	Design Value (Actual Conditions)	I I BEF = /	355 = 136 pcm
	Design Value (Design Conditions)	I IREF = 1	355 ± 136 pcm
i	Reference	VEP-FRD-	NFE-209
V Acceptance	FSAR/Tech Spec	shall ev on safet	n Tolerance is exceeded, SNSCO aluate impact of test result y analysis. SNSOC may specify itional testing be performed.
Criteria	Reference	VEP-FRD-	36A
VI Comments	Design Tolerance is Acceptance Criteria		YESNO
Completed	By: IS. Chulma	<u> </u>	valuated By: B. D. Gramm
	Test Engineer		
	\mathcal{D}	Reco	emmended for pproval By: C J. Siaco
		A	pproval By

0

I 1 Reference	Test Description Proc No /Section	n: Critical Bon n: PT20.11/APP	
II I	Bank Positio	ns (Steps)	RCS Temperature (°F). 547
Test 1			Power Level (% F.P.): 0
Conditions	SDA: 228 SDB:		Other (specify): Below Nuclear Heating
(Design)	CB: 0 CC:	228 CD: 223	
III	Bank Positio	ns (Steps)	RCS Temperature (°F): 545.8
Test 1.	000	222 21.228	Power Level (% F.P.): 0%
Conditions		228 CA: 228 228 CD: 228	
(Actual)	CB: O CC:	aro co. ano	Below Muclear Heating
	Date/Time Test		1
lika j	12/30/81	1139-1148	
i	Meas Parameter	W - I	
IV !	(Description)	(C ₀) ₀ ; Crit	Boron Conc - B Bank In
Test	Measured Value	(cg) = /2	77 ppm
Results !	Design Value		
İ	(Actual Cond)	c = 1293	= 27 ppm
i	Design Value	1	0054
	(Design Cond)	1 C6 = 1236 + 4	4 C 6 ± (10 + 135.5/ 1€ 6 1) pp
	Reference	VEP-FRD-NFE-	209
V Asceptance	FSAR/Tech Spec	< c ₆ × c ₈ ≤	
Criteria	Reference	FSAR Section	14.2.5
	Design Tolerand	e is met : eria is met :	YESNO
VI Comments	 ≪Cg = -8.44 ycm		minary analysis
	ACBEY = (CB)ARO	- 1445	
	acB = -7.83 pc	m/ppm for final	l analysis
Completed	410.	1man	Evaluated by: 180 Mam
	and the state of t	V	Approval By : C. J Anow
			NFO Engineer

I Reference	I Test Descriptio I Proc No /Sectio	n: Isothermal Temperature Coefficient-B In n: PT28.11/APP. D Sequence Step No: 12
II Test Conditions (Design)	Bank Positio	Power Level (% F.P.): 0
Test Conditions (Actual)	Bank Position SDA: 228 SDB: 2 CB: 21 CC: 2	
	Date/Time Test 1/2/30/8/ 1 Meas Parameter	Performed:
IV	(Description)	(<==)B Iso Temp Coeff - B Bank In
Test Results	Measured Value	(4=50)B = -6.30 pm/of (CB = 1286)
	Design Value (Actual Cond)	(== 300) = -6.78+3.0 pca/px(Ci =1286)
	Design Value (Design Cond)	$(\alpha_{\tau}^{250})_{B} = -6.78 \pm 3.0 \text{ pcm/°F}$ $(C_{B} = 1286 \text{ ppm})$
	Reference	VEP-FRD-NFE 209
V Acceptance Criteria	FSAR/Tech Spec	∠ ISO ≤ 0.44 pcm/°F
01110111	Reference	TS 3.1, VEP-FRD-NFE 209
VI	Design Tolerance Acceptance Criter	is met : VYESNO tia is met : VYESNO
Comments	∜Uncertainty on ~ from C. T. Snow	TMOD = 0.5 pcm/°F (Reference: memorandum to E. J. Lozito dated June 27, 1980).
Completed	By: And Curlo	BIT WAS CITED IN THE STATE OF T
	U	Approval By: Snow NFO Engineer

Test onditions (Design)	Bank Positions (S SDA: 223 SDB: 223	teps)	RCS Temperature (°F): 547
onditions			Power Level (% F.P.): 0
	5DA: 223 5DB: 223	CA: 228	Other (specify):
	CB: Moving CC: 228	CD: 228	Below Nuclear Heating
III Test _	Bank Positions (S		RCS Temperature (°F): 543 Power Level (% F.P.): 0%
(Actual)	SDA: 228 SDB: 228 CB: Moving CC: 228	CA: 228 CD: 228	1 Other (Specify): 1 Below Nuclear Heating
	Date/Time Test Perfo 12/29/8/ 1030		
IV I	Measured Parameter (Description)	∝cg, Bo	ron Worth Coefficient
Test Results	Measured Value	≪cg = -	7.83 pcm/ppm
Results	Design Value (Actual Conditions)	wc = - 8	3.44 ± 0.84 pcm/ppm
i	Design Value (Design Conditions)	 dcg = -1	8.44 ± 0.84 pcm / ppm
į.	Reference	VEP-FRD	-NFE 209
	FSAR/Tech Spec	I ≃ C B × C	8 ≤ 15,115 pcm
Acceptance Criteria	Reference	 FSAR Se	etion 14.2.5
VI Comments	Design Tolerance is Acceptance Criteria	met : is met :	YES _NO
Completed	By Test Engineer		Evaluated By: 130 Than
	()	Red	Approval By: C.J. Snow

Test Conditions (Design)	SDA: 228 SDB	ions (Steps) : 228 CA: 2 : 228 CD: 2	Power Power	emperature Level (% F (specify) have ≥ 40 t)	.P.):~0
Test Conditions (Actual)	SDA: 228 SDB	ions (Steps) : 228 CA: 2 : 228 CD: 2	Power other	emperature() Level (% F. (Specify):	.P.): ~17.
	Date/Time Test Performed:		124		
IV	Meas Parameter (Description)	MAX. REL ASSY PWR % DIFF (M-P)/P	NUC ENTHAL RISE HOT CHAN FACT F-dH(N)	TOTAL HEAT FLUX HOT CHAN FACT F-2(T)	QUADRANT POWER TILT RATIO QPTR
Test !	Measured Value	12.7% for Po = 0.14	1 -1 -1 -1	2.641	1.0149
	Design Value (Design Conds)	10x for P. 3 .9 1215x for Pi = .9 (Pi = Assy! Pur.)	на	NA NA	≤ 1.02
ļ	Reference	WCAP-7905 REV. 1	ноне	NONE	WCAP-7905 REV. 1
v !	FSAR/Tech Spec	NONE I	на	NA .	NA
Criteria 	Reference	NONE I	T.S. 3.12	T.S. 3.12	T.S. 3.12
VI I	Design Tolerand Acceptance Cri		YES YES		
Comments	* Design tolorance. 1. Surry Po.	s not mot, but wer Station D	test results	are acceptuble No: 52-82	e per Exteren
Completed	010	lmad		d By: 70	
	. /)	Recommended Approval	By :	I Snow

I Reference	I Test Descripti Proc No /Secti	on: Cntl Bank D on: PT28.11/APP.	Worth Measurement-Rod Swap F Sequence Step No: 14
II Test Conditions (Design)	SDA: 228 SDB:	ons (Steps) 	RCS Temperature (°F): 547 Power Level (% F.P.): 0 Other (specify): Below Nuclear Heating
III Test Conditions (Actual)	Bank Positi SDA: 228 SDB: CB:Moving CC:	238 CA: 238	RCS Temperature (°F): 576./ Power Level (% F.P.): O Other (Specify): Below Kuclear Heating
	Date/Time Test 1 12/30/8; 1 Meas Parameter	Performed: 2200	
	(Description)	1	of Cntl Bank D-Rod Swap (Adj. Meas. Crit. Ref Bank Position = 159 steps)
	Design Value (Actual Cond)		(Adj. Meas. Crit. Ref Bank pcmPosition = 159 steps)
	Design Value (Design Cond) 	I RS = 1155 ±	173 pcm (Critical Ref Bank Position = 132 steps)
	Reference	VEP-FRD-NFE-20	9, VEP-FRD-36A, NFO-TI-2.2A
V Acceptance		shall evaluate safety analysis	rance is exceeded, SMSOC impact of test result on s. SMSOC may specify that ting be performed.
Criteria	Reference	VEP-FRD-36A	
VI Comments	Design Tolerance Acceptance Crite		YESNO
Completed	By Test Engine	eer	nended for
	V	App	proval By : C. J. Snow NFO Engineer

I Reference			th Measur ment-Rod Swap Sequence Step No: 15
II Test Conditions (Design)	Bank Position SDA: 228 SDB: CB:Moving CC:Mo	228 CA: 228 Ot	S Temperature (°F): 547 wer Level (% F.P.): 0 ther (specify): low Nuclear Heating
Test Conditions (Actual)	CB:Moving CC:/	1028 CA: 228 Ot 1020) CD: 228 Be	S Temperature (°F): 545.8 Wer Level (% F.P.): O ther (Specify): low Nuclear Heating
	Date/Time Test 12/30/81 Meas Parameter	Performed:	
	(Description)	Ic ;Int Worth of	Cntl Bank C-Rod Swap
IV Test Results	 Measured Value	IRS = 793 pcm	(Adj. Meas. Crit. Ref Bank Position = (IC steps)
	Design Value (Actual Cond)	IRS = 836 = 125 pca	(Adj. Meas. Crit. Ref Bank "Position = 110 steps)
	Design Value (Design Cond)	IRS = 829 ± 124	pcm (Critical Ref Bank Position = 134 steps)
	Reference	VEP-FRD-NFE-209,	VEP-FRD-361, NFO-TI-2.2A
V Acceptance		shall evaluate in	nce is exce ded, SNSOC npact of test result on SNSOC may specify that ng be performed
Criteria	Reference	VEP-FRD-36A	
VI Comments	Design Tolerance Acceptance Crit		YESNO
	i !		
Completed	By Test Engin	eer ·	uated By: E. D. Of ada
	0		oval By: C. J. Special NFO Engineer

I Reference	Test Description Proc No /Section	on: Cntl. Bank A on: PT28.11/APP.	Worth Measurement-Rod Swap F Sequence Step No: 16			
II Test Conditions (Design)	Bank Position SDA: 228 SDB: 2 CB:Moving CC: 2	128 CA:Moving	RCS Temperature (°F): 547 Power Level (% F.P.): 0 Other (specify): Below Nuclear Heating			
Test Conditions (Actual)	SDA: 228 SDB: CB: Moving CC:	228 CA: Moving	RCS Temperature (°F): 545.7 Power Level (% F.P.): C Other (Specify): Below Muclear Heating			
	Date/Time Test 12/30/81 Meas Parameter (Description)	2343	of Cntl Bank A-Rod Swap			
IV Test Results	Measured Value					
	Design Value (Actual Cond) 		(Adj. Meas. Crit. Ref Bank pcmPosition = 88 steps) 00 pcm (Critical Ref Bank			
	(Design Cond)	VEP-FRD-NFE-20	Position = 104 steps) 9, VEP-FRD-36A, NFO-TI-2.2A			
V Acceptance Criteria		shall evaluate safety analysi	rance is exceeded, SNSOC impact of test result on s. SNSOC may specify that ting be performed.			
01110114	Reference	VEP-FRD-36A				
VI Comments	Design Tolerance Acceptance Crit		× YESNO			
Completed	By: Test Engin	Recom	mended for Snow NFO Engineer			

Reference	Proc No /Sectio	n: PT28.11/APP.			
II I	Bank Positions (Steps)		Power Level (% F.P.): 547		
Test Conditions	SDA: 228 SDB:Mo	wing CA: 228	Other (specify):		
(Design)	CB: Moving CC: 2		Below Muclear Heating		
III Test	Bank Positio		RCS Temperature (°F): 545.8 Power Level (% F.P.): 0		
(Actual)	CB: Moving CC:	10%ng CA: 228 228 CD: 228	Other (Specify): Below Nuclear Heating		
	Date/Time Test	Performed:			
	12/31/81	0015			
	Meas Parameter				
	(Description)	I ISS ; Int Worth	n of Shutdown Bank B-Rod Swap		
	Measured Value	(Adj. Meas. Crit. Ref Bank IRS = 848 pcm Position = 116 steps)			
	Design Value	I ISB = 906 ± 13	(Adj. Neas. Crit. Ref Bank Position = 116 steps)		
	Design Value	I IRS = 915 ±	137 pcm (Critical Ref Bank Position = 146 steps)		
	Reference	VEP-FRD-NFE-2	09, VEP-FRD-36A, NFO-TI-2.2A		
v	 FSAR/Tech Spec	I shall evaluat I safety analys	erance is exceeded, SMSOC e impact of test result on is. SMSOC may specify that		
Acceptance		l additional te	sting be performed.		
Criteria	Reference	VEP-FRD-36A			
	Design Toleranc	e is met :	× YESNO		
VI	Acceptance Crit		YYESNO		
Completed	By: Test Engin	Ima2 E	valuated By: 8. J. Alb		
	- lest Engin		ommended for - 1 1		
	L	,	Approval By : NFO Engineer		

T Reference	Test Descripti	on: Shutdown Bank & Worth Measurement-Rod Swap on: PT28.11/APP. F Sequence Step No: 18			
II Test Conditions (Design)	Bank Positi	ons (Steps) RCS Temperature (°F): 547 Power Level (% F.P.): 0			
Test Conditions (Actual)	SDA: Meving SDB:	228 CD: 228 Below Nuclear Heating			
	Date/Time Test 12/31/81 Meas Parameter (Description)	Performed: 0048 IRS :Int Worth of Shutdown Bank A-Rod Swap			
	Measured Value	I ISA = 1134 pcm (Adj. Meas. Crit. Ref Ban Position = 163 steps)			
	Design Value (Actual Cond) Design Value (Design Cond)	(Adj. Meas. Crit. Ref Bank I SA = 1057 ± 159 pcmPosition = 163 steps) I RS = 1057 ± 159 pcm (Critical Ref Bank Position = 167 steps)			
	Reference	VEP-FRD-NFE-209, VEP-FRD-36A, NFO-TI-2.2A			
V Acceptance	FSAR/Tech Spec	If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed.			
!	Reference	VEP-FRD-36A			
VI Comments	Design Tolerance Acceptance Crita	ria is met : X YESNO			
Completed	By: Test Engine	Recommended for Approval By: C. J. S. ow NFO Engineer			

Reference	Test Description: .To Proc No /Section: PT	28.11/APP.	F Sequence Step No: N/A			
II Test	Bank Positions (Steps)		RCS Temperature (°F): 547 Power Level (% F.P.): 0			
conditione	SDA:Moving SDB:Moving CB:Moving CC:Moving	g CA:Moving Other (specify): CD:Moving Below Nuclear Heating				
III Test Conditions (Actual)	Bank Positions (S		Power Level (% F.P.): 0			
	CB: Moving CC: Moving	CD: Moving	Other (Specify): Below Nuclear Heating			
	Date/Time Test Perfo 12/30/91-0530 - 12/					
IV		I I Teral; Inte	egral Worth of All Rod Banks- Swap			
Test ! Results !	Measured Value	ITETAL = 5856 pcm				
	Design Value (Actual Conditions)	I I TOTAL = 5872 ± 587 pcm				
	Design Value (Design Conditions)	:) I _{ToTAL} = 5893 ± 589 pcm				
	Reference	VEP-FRD-NFE-209, VEP-FRD-36A, NFO-TI-2.2				
V		shall ev on safet	n Tolerance is exceeded, SMSOC aluate impact of test result y analysis. SMSOC may specify itional testing be performed.			
Criteria		VEP-FRD-	36A			
VI Comments	Design Tolerance is Acceptance Criteria		XYESNO			
	1		- 2/			
Complete	d By Test Engineer	<u>~</u>	evaluated By: E. D. Add			
			Approval By: C. J. Snow NFO Engineer			

77 1	Bank Positi	ons (Stens)	I RCS Te	nperature (°F):To== ±1	
II Test	Bank Poszcions (Sceps)		Power	RCS Temperature (°F):T _{REF} ±) Power Level (% F.P.):~50 Other (specify) Must have ≥ 40 thimbles		
(Design)	SDA: 220 SDB: CB: 228 CC:					
III Test	Bank Positi	ons (Staps)	Power	Level (% F.	F): TREP =	
(Actual)	SDA: 228 SDB: CB: 228 CC:	26 Other 84	(Specify):			
	Date/Time Test: Performed: ///			70 011.7		
IV	Meas Parameter (Description)	MAX. REL ASSY PWR % DIFF (M-P)/P	RISE HOT CHAN FACT F-dH(N)	TOTAL HEAT! FLUX HOT CHAN FACT F-Q(T)	QUADRANT POWER TILT RATIO QPTR	
Test Results I	Maney od Value	18.07 C. Pas = 0.41		1.982	1.0057	
	Design Value (Design Conds)	210% (or P ₁ 2 .9 215% for P ₁ 2 .9 (P ₁ = Assy: Pur.)	NA	i i na	I ≤ 1.02	
	Reference	WCAP-7905 REV.1	NONE	I NONE	REV. 1	
V I	FSAR/Tech Spec	NONE	 FN ± 1.55(1+.2(1-P)	$ r_Q^T(z) \leq \frac{2.18}{P} \times \kappa(z)$	I I на I	
Criteria	Reference	I NONE	 T.S. 3.12 	I T.S. 3.12	I T.S. 3.12	
VI	Design Tolerand Acceptance Cri		t : YES			
Comments	* Above Insert	ion Limits				
Completed	DY many	man	Evaluate	d By: C.J.	24.4	
	Test Engi	neer	Recommended	20.00	1 Snow	

II Test Conditions (Design)	SDA: 223 SDB:	cons (Steps) 228 CA: 2 228 CD:		Power other	emperature (Level (% F. (specify) have ≥ 40 th	9.):-60
III Test Conditions (Actual)	SDA: 228 SDB: CB: 228 CC	ions (Steps)	28	RCS Temperature(°F): TREF = Power Level (% F.P.): 59.0% other (Specify):		
IV I	Date/Time Test: Performed: // Meas Parameter (Description)	MAX. REL I ASSY PUR I 2 DIFF	HUC RIS	SE HOT	CHAN FACT	QUADRANT POWER TILT RATIO
Test Results		1-1.21 For Po 520.78 1.4		26 1,962	QPTR 1 1,0039	
	Design Value (Design Conds)	#102 for P 2 .9 #152 for P 7 .9 (Pi - Assy: Pvr.)	1	NA	I NA	≤ 1.02
	Reference	WCAP-7905 REV.1 N		ONE	NONE	WCAP-7905 REV.1
v I	FSAR/Tech Spec			55(1+.2(1-P)		NA
Criteria	Reference	NONE -	T.S	. 3.12	I T.S. 3.12	T.S. 3.12
VI	Design Tolerand Acceptance Cri		: ::	X YES	NO	
Comments	* Above Insert:	ion Limits				
Completed	By: Test Engi	Anav ger			d By: E. J.	

I keference	Test Descripti Proc No / Sect				tep No: 46
II Test Conditions (Design)	SDA: 228 SDB:	228 CA: : 228 CD:	Power 1 Other	emperature (Level (% F. (specify) have ≥ 40 th	
III Test Conditions (Actual)	SDA: 228 SDB:		28 Other	emperature() Level (% F. (Specify): Thimbles	
IV I	Meas Parameter (Description)	MAX. REL	NUC ENTHAL RISE HOT CHAN FACT F-dH(N)	TOTAL HEAT FLUX HOT CHAN FACT F-C(T)	QUADRANT POWER TILT RATIO QPTR
Test Results	Measured Value	6.1% & P. N - 0.47	1.422	1.853	1.0045
	Design Value (Design Conds)	:101 for P : 2 .9 :151 for P = 7 .9 (P = Assy: Pvr.)	NA .	I NA	1 ≤ 1.02
	Reference	WCAP-7905 REV. 1	I NONE	I NONE	WCAP-7905 REV. 1
V I	FSAR/Tech Spec	NONE		$\frac{1}{p_{Q}^{T}(z)} \leq \frac{2.18}{p} \times \kappa(z)$	I KA
Criteria	Reference	NONE	T.S. 3.12	IT.S. 3.12	T.S. 3.12
VI Comments	Design Tolerand Acceptance Cri	teria is me	t : YES	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	
Comments	A VC	1			0.67
Completed	Test Engi	lman geer	Evaluate Recommended Approval	By :	Snow O Engineer

II Test Conditions	4	ons (Steps)	28 1	Power	emperature (Level (% F. (specify):	P.): 100
(Design)	CB : 228 CC :		x		have ≥ 40 th	
III Test			Level (% F.			
Conditions (Actual)			28 CD: 228 I			
	Date/Time Test: Performed: 2/		4		47	Thimbles
IV	Meas Parameter (Description)	MAX. REL ASSY PWR % DIFF (M-P)/P	CHAN	ENTHAL E HOT FACT H(N)	TOTAL HEAT I FLUX HOT ICHAN FACT I F-Q(T)	QUADRANT POWER TILT RATIO QPTR
Test Results	Measured Value	16.77 for 1-14 CAS		87 1.740	1.740	1.0053
	Design Value (Design Conds)			A	I NA	l ≤ 1.02
	Reference	WCAP-7905 REV. 1	NO	NE	NONE	WCAP-7905
v	FSAR/Tech Spec	NONE			$\int_{Q}^{T} (z) \leq \frac{2.18}{P} \times K(z)$	I NA
Criteria	Reference	NONE .	T.S.	3.12	T.S. 3.12	T.S. 3.12
VI	Design Tolerance is met : YESNO Acceptance Criteria is met : VYESNO					
Comments	* Above Insert	ion Limits				
Completed		Mman	E	valuate	d'By: [. 1	1 21/
	fest Engi	neev.		nmended	for By:	18

II i	Bank Position	s (Steps)	RCS Temperature (°F):TREF ±1	
Test I	CD1. 222 CD2. 1	228 CA: 228	Power Level(% F.P.):95 +5/-0	
Conditions (Design)	SDA: 223 SDB: 2 CB: 228 CC: 2		Other (specify):	
III Test	Bank Position		RCS Temperature (°F): 574'F Power Level (% F.P.): 100%	
Conditions (Actual)	SDA: 228 SDB: 2 CB: 228 CC: 2	228 CD: AR	Power = 24326 mult)	
	Date/Time Test 1	Performed:	(cale.)	
I"	Meas Parameter (Description)	 F _{TOTAL} , Tot	al RCS Flow Rate	
Test Results	Measured Value	FTOTAL = 305,568 gpm		
	Design Value (Actual Cond)	Not Applicab	le	
	Design Value (Design Cond)	Not Applicab	le	
	Reference	Not Applicab	le	
v !	FSAR/Tech Spec	F_TOTAL / 1.0	2(meas uncerty) 2 255,500 gpm	
Acceptance Criteria	Reference	H.R. Denton (MRC)	3; Letter from J.H. Ferguson (Vepco) to dated April 2S, 1981 (Serial No. 232); Stallings (Vepco) to E.G. Case (NRC) , 1977 (Serial No. 516).	
VI	Design Tolerance Acceptance Crite		X YESNO	
Comments				
Completed	By: Dall . Test Engine	er	valuated By L. S. Gurfm	