TECHNICAL DATA REPORT			283	REVISION NO2	
			ET NO.412074	PAGE 1	_OF 16
PROJECT: DEPARTMENT/SECTION Er				Engineering (& Design
Three Mile Island On	IC I	RELEA	SE DATE 9/30/81	REVISION DATE	3/8/82
OCUMENT TITLE: Stress	Analycie	for D	emonstration of	Operability	
Purge	and Vent V	alves	During Design H	Basis Accider	or
RIGINATOR SIGNATURE	Ð	ATE	APPROVAL(S) SIGNAT	URE	DATE
A. C. Shrace	9/1	6181	K. M. Jasani	ANNA A	aw 911618
. C. Shiau			A. P. Rochino	April	- 9/16/81
			APPROVAL FOR EXTE	PNAL DISTRIPUTI	2m 9/29/81
			NO GIL	NAL DISTRIBUTI	ION DATE
DISTRIBUTION	BSTRACT		In the the		13/2018)
R. C. Arnold	. Brief S	tatem	ent of Problem		
B. D. Elam R. F. Evers K. M. Jasanı R. W. Keaten G. P. Miller J. P. Moore, Jr. A. P. Rocnino A. C. Shiau D. G. Slear E. G. Wallace F. Weinzimmer R. F. Wilson J. J. Colitt L.W. Handing	that con capable without during f Coolant valves v are intr Accordin analyzed 1. Spri (Ref 2. Moto (Ref The stre of opera NRC guid are docu	ntain of pe damag the De Accid will of coduce ng to i ares ing Clo ference ference ess ar abilit deline imente	ment purge and v erforming their ge to critical v esign Basis Acci dent (DBA-LOCA) close when fluid ed. Reference 6.6, sed valves AH-V ce 6.7). erated valves AH-V ce 6.7). halysis results ty of purge and es dated 9/27/79 ed in Section 3.	ent valves a intended fur alve compone dent - Loss loads and th dynamic tor the valves t -lA and AH-V -V-1B and AH for demonstr vent valves (Reference 0 of this TD	<pre>incline incline incline incline inat the iques to be 7-1D i-V-1C ation per 6.8) 0R.</pre>
	 The read quest close The comp condition 	valve tion for sed po calcu ponent ition	e operators are of LOCA induced valve opening a osition (see Tab lated stress le s under combine s meet the code	able to resi fluid dynam ngle up to 3 le 3 in Appe vels of the d seismic an allowable s	st the nic tor- 0° from ndix). valve d LOCA tress
8203260220 820322 PDR ADDCK 05000289	limi 90%	of tr	or the LOCA allo ne yield strengt	wable limits n except the	of stress

ATTACHMENT 2

in the shaft. The calculated shaft stress is 2% over the code allowable stress limit (See Table 5 in Appendix).

Our engineering judgement is that this slight overstress i. the shaft would not create a failure situation.

c. Conclusion

. . .

- The actuator works in cooperation with the fluid dynamic torque to close the valve. Bearing friction and seat/disc friction are the only significant effects which restrain valve closure except that, for AH- V1B/1C, the motor operator speed limits the closure rate.
- The closing ability of the spring closed values is assured if the value opening is limited to 30° plus 1.75° tolerance or less, (AH-V-1A and AH-V-1D).

The closing ability of the motor operated valves is assured if the valve opening is limited to 30° plus 3.29° tolerance or less (AH-V-1B and AH-V-1C).

d. Recommendations

Pending any further analysis and NRC acceptance the valves should be limited as follows:

- 1. 30° plus 1.75° tolerance open or less from the closed position for AH-V-1A and AH-V-1D.
- 30° plus 3.29° tolerance open or less from closed position for AH-V-1B and AH-V-1C.

95	🖸 Nuclear		TDR NO. 283	
of Pur	TMI-1 - Stress Analysis for Demonstration of Operabi rge and Vent Valves During Design Basis Accidents	ility	PAGE i	OF
REV	SUMMARY OF CHANGE	A	PPROVAL	DATE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Page 1a - Valve angle opening tolerances added. With Page 3 - Wording changes in Paragraph D. Here Page 6 - Conservative assumptions added. With Page 7 - Valve angle opening tolerances added (M) Page 8 - Valve angle opening tolerances added (M)	KAN For A WI WI WI WI WI WI WI WI WI WI WI WI WI	WADANI PRECINITE PRECINITE PRECINITE MARANA TEN APR MYADANI TEN APR MYADANI TEN APR MYADANI TEN APR	11 11 81 //* 11 11 81 11 11 81 11 11 81 11 11 81 11 11 81

GP	1 Nuclear	TDR NO.	3	
TITLE of	TMI-1 Stress Analysis for Demonstration of Operability Purge and Vent Valves during Design Basis Accidents	ty PAGE ii OF		
REV	SUMMARY OF CHANGE	APPROVAL	DATE	
2	Page la - Wording changes in paragraphs "c" and "d" per plant engineering request. WW.	phil:	3/4/82	

s fari

Three Mile Island Unit 1 Stress Analysis for Demonstration of Operability of Purge and Vent Valves During Design Basis Accidents

Table of Contents

Title

Abstract

an diana

a.	Brief Statement of Problem	1
b.	Summary of Key Results	1
с.	Conclusion	1a
d.	Recommendations	la

Page

Section

1.0	Purpose and Summary	2
2.0	Methods	4
3.0	Results	6
4.0	Conclusion	7
5.0	Recommendations	8
6.0	References	9
7.0	Appendix	10

1.0 PURPOSE AND SUMMARY

17 . The second

The purpose of this TDR is to document the results of the analysis for the containment purge and vent valves regarding structural adequacy to withstand the fluid dynamic torques which would occur during the faulted condition of a loss of coolant accident (LOCA) within the containment vessel and the design basis seismic loads.

According to Reference 6.6, the valves to be analyzed are the air operated valves AH-V-1A and AH-V-1D (Reference 6.7), and the motor operated valves AH-V-1B and AH-V-1C (Reference 6.7). These valves are Pratt 48 inch butterfly valves, model RIA. Stress analysis is performed to show the structural adequacy for a valve opening of 30° or less from the closed position.

In summary, the NRC guidelines for demonstration of operability of purge and vent valves dated 9/27/79 (Reference 6.8) has been incorporated in this evaluation.

A. Considerations

Per NRC guidelines (Reference 6.8) the following considerations have been addressed.

- Valve closure time during a LOCA will be less than or equal to the no flow time demonstrated during shop tests, since the fluid dynamic effects tend to close the valve.
- To qualify values for an opening of 30° or less from the closed position, the maximum differential pressure across the value per Reference 6.6 are used in the analysis.
- Worst case is determined as a single valve closure with containment pressure on one side of the valve and atmospheric pressure further downstream.
- Containment back pressure will have no effect on closing the valve.
- 5. The subject valves do not use accumulators.
- €. There are no torque limiting devices for the air operated valves AH-V-1A and AH-V-1D. The settings of the torque limiting devices for the electric motor operated valves AH-V-1B and AH-V-1C are compatible with the torques required to operate the valve during the design basis conditions.

- The effect of upstream piping is ignored as a conservative approach.
- 8. The valve disc and shaft orientation does not affect torque calculations.
- B. Stress Analysis

A.

Stress analysis of the valve components under combined seismic and LOCA conditions is performed using the design rules for Class 1 valves as detailed in Paragraph NB-3540 of Section III of the ASME Boiler and Pressure Vessel Code (Reference 6.1, hereafter referred to as the Code). The calculated stress levels are compared to code allowables, if possible, or the LOCA allowables of 90% of the yield strength of the material used.

C. Operator Evaluation

In evaluating the structural integrity of the valve operators, the calculated torque during LOCA is compared with the maximum torque rating of the operator per manufacturer's data.

D. Sealing Integrity

Decontamination chemicals have very little effect on EPT and stainless steel seats. Molded EPT seats are generically known to have a maximum cummulative radiation resistance of $1 \times 10^{\circ}$ rads at a maximum incidence temperature of 350° F.

Valves at outside ambient temperature below 60°F, if not properly adjusted, may have leakage due to thermal contraction of the elastomer, however, during LOCA conditions, the valve internal temperature would be expected to be higher than ambient which tends to increase sealing capability after valve closure. The presence of debris or damage to the seats would obviously impair sealing. To ensure sealing integrity, the TMI-1 preventive maintenance program requires that the valve seats be cleaned and inspected periodically for damage and deterioration and replace if required. The valves being containment isolation valves are also required to pass the Local and Integrated Leak Rate Tests.

The seats on three of the four valves were replaced prior to performing and passing the Integrated Leak Rate Test on July 5, 1981.

2.0 METHODS

1. S. 1. S. 1.

This investigation consists of fluid dynamic torque calculations, valve stress analysis, and operator evaluation.

2.1 Torque Calculations

The torque of butterfly valve at any opening position is the summation of fluid dynamic torque and bearing friction torque at any given disc opening angle.

Bearing friction torque is calculated from the following equation:

 $T_{\rm P} = \Delta P(A) \quad (U) \quad (.5d)$

Where,

 Δp = Pressure differential, psi.

A = Projected disc area normal to flow, in^2 .

U = Bearing coefficient of friction.

d = Shaft diameter, in.

Fluid dynamic torque is calculated from the following equation:

$$T_D = C_t D^3 \Delta P$$

Where,

D = Valve diameter, inches.

 ΔP = Pressure differential, psi.

Ct = Torque coefficient.

The detailed torque calculations are documented in Reference 6.9.

2.2 Valve Stress Analysis

This analysis used the design rules for class 1 valves described in paragraph NB-3540 of Section III of the ASME Boiler and Pressure Vessel Code (Reference 6.1). The requirements for class 1 valves are much more explicit

- 4 -

than for either class 2 or 3 design rules. The analysis is conservative since the design rules for class 2 and 3 valves are exceeded by the rules for class 1 valves.

Valve components are analyzed by hand caculations under the assumption that the valve is either at maximum fluid dynamic torque or seating torque during the LOCA conditions against the maximum design pressure or the maximum differential pressure across the valve per Reference 6.6. The SSE seismic accelerations are simultaneously applied in each of three mutually perpendicular directions.

A natural frequency analysis is performed for value components in Reference 6.9. Based on the frequency results, the seismic loads are conservatively taken as 1.5 times of the acceleration levels given in Reference 6.4. The acceleration constants g_x , g_y and g_z represent accelerations in the x,y and z directions respectively. The coordinate system is defined as the x axis along the pipe axis, the z axis along the shaft axis, and the y axis mutually perpendicular to the x and z axes. Value orientation with respect to gravity is taken into account by adding an equivalent 1g load to the seismic load in the proper direction. The acceleration constants used are summarized in Table 1 in Appendix.

The detailed stress analysis is given in Reference 6.9. The calculated stress values are compared to code allowables, if possible, or LOCA allowables of 90% of the yield strength of the materials used. Code allowable stress levels are Sm for tensile stresses and 0.6 Sm for shear stresses. Sm is the design stress intensity value as defined in Appendix I, Table I-1.1 of Section III of the Code. The valve component materials are listed in Table 2 in Appendix.

2.3 Operator Evaluation

The maximum operating torque for valve due to flow under specified LOCA conditions as calculated in Section 2.1 is used to verify the structural adequacy of the operator. The valve operator structural evaluation is based on a comparison of the calculated torque against the operator ability to resist the reaction of LOCA induced fluid dynamic torques per manufacturer's data (Reference 6.5).

- 5 -

3.0 RESULTS

The results for torque calculations are summarized in Table 3 in Appendix. The maximum torque absorption capability based on manufacturer's advice is also presented in the Table. The evaluation shows that the operators are structurally adequate for valve opening angle up to 30° from closed position. Table 4 in Appendix shows the minimum valve body wall thicknesses versus code required minimum thicknesses. All the valves satisfy the minimum wall thickness requirement of the Code.

The calculated stress levels of the main elements of the valves are listed in Table 5 in Appendix. The results indicate that the valve components stresses meet the code allowable stress limits, or the LOCA allowable limits of 90% of the yield strength except the shaft stress. The shaft stress is 2% over the code allowable stress limit (see Table 5 in Appendix). However, based on our engineering judgment, the 2% overstress in the shaft will not create failure situation.

The following conservative assumptions were made in the analysis:

- 1. It was assumed to have an instantaneous reactor building pressure of 50.5 psig maximum. However, the magnitude of the actual dynamic torque will be substantially less than was used in the analysis because the air-operated valves AH-VIA and AH-VID will close in less than 2 seconds and the motor-operated valves AH-VIB and AH-VIC will close in less than 5 seconds long before the reactor building pressure of 50.5 psig is attained in approximately 10 seconds after a LOCA event. The pressure buildup in containment after 2 seconds is approximately 16 psig and after 5 seconds is approximately 35 psig.
- 2. Even though it is highly unlikely that both the seismic and LOCA conditions happen simultaneously, the analysis was based on the worst case of having two abnormal conditions occurred together.
- 3. Throttling effects from the inside containment valves AH-VIB and AH-VIC were not used. The analysis assumes that the inner valves fail wide open and that the outer valves AH-VIA and AH-VID will have to close against the fluid dynamic forces.

4.0 CONCLUSION

All the values are structually adequate if the value opening angle is limited to 30° plus 1.75° tolerance or less for AH-V-1A and AH-V-1D values and 30° plus 3.29° tolerance or less for AH-V-1B and AH-V-1C values from closed postion. This is based on consideration of combined effects of LOCA, pressure load, and DBA seismic loads. Structural adequacy is assured for the operators and the value components.

5.0 RECOMMENDATIONS

- 1. To ensure structural integrity, the valve opening must be limited to 30° plus 1.75° tolerance open or less from the closed position for AH-V-1A and AH-V-1D valves.
- 2. To ensure structural integrity, the valve opening must be limited to 30° plus 3.29° tolerance open or less from closed position for AH-V-1B and AH-V-1C valves.

6.0 REFERENCES

-5 A A

- 6.1 ASME Boiler and Pressure Vessel Code, Section III, 1980 Edition.
- 6.2 Steel Valves, ANSI B16. 34-1977.
- 6.3 R. F. Evers' letter to D. K. Croneberger dated October 21, 1980.
- 6.4 Letter from R. M. Rogers of Gilbert Associates, Inc. to D. G. Slear dated July 16, 1980. "Seismic Response Curves for the Reactor Building Shell for TMI Unit 1."
- 6.5 Valve Applicable Data from Manufcturers, A. C. Shiau letter to A. P. Rochino dated 9/16/81.
- 6.6 J. F. Fritzen's letter to J. R. Holstrom of Henry Pratt Company, dated May 4, 1979.
- 6.7 Gilbert Associates, Inc. drawing #4192, E-311-861 Rev. 10, and drawing #4192, E-311-833, Rev. 19.
- 6.8 The NRC Guidelines for Demonstration of Operability of Purge and Vent Valves, dated 9/27/79.
- 6.9 TMI-1 Purge and Vent Valve Analysis Calculation Book, Calculation No. 1302X-322C-A44.

7.0 APPENDIX

1. M. ..

Tables 1 through 5 are presented in this Appendix.

TABLE 1 SEISMIC LOADS

	DIRECTION	All Charles	ACCELERATION LEVELS						
	ACCELERATION	Shaft Axis (AH-V-1B a	s is Vertical and AH-V-1C)	Shaft Axis is Horizontal (AH-V-1A and AH-V-1D)					
		Values Given in Ref. 6.4	Values Used in the Analysis	Values Given in Ref. 6.4	Values Used in the Analysis				
	g _x (pipe axis)	0.5g	0.75g	0.5g	0.75g				
	д ^λ	0.5g	🖙 0.75g	(0.25+1)g	(0.375+1)g				
	g _z (shaft axis)	(0.25+1)g	(0.375+1)g	0.5g	0.75g				

VALVE COMPONENTS	MATERIALS FOR ALL VALVES
Body	ASTM A-36
Disc	ASIM A-36
Shaft	ASTM A-276, Type 316, Condition A
Shaft Key	AISI C1045, C.D. stl.
Disc Pins	ASTM A-276, Type 316
Bottom Cover Plate	ASTM A-36
Thrust Bearing	ASTM B-164, Condition A
Operator Bolts	SAE Gr. 2
Trunnion Body	ASTM A-36
Trunnion Bolts	SAE Gr. 2

TABLE 2 MATERIALS FOR VALVE COMPONENTS

VALVE OPENING	TOTAL OPERATING	Max. Allowable Torque for Operator (in-lb.)		
ANGLE (^O)	TORQUE (in-lb.)	Air Operator (AH-V-1A & AH-V-1D)	Motor Operator (AH-V-1B & AH-V-1C)	
0 (Fully Closed)	64111	70000	153600	
5	2667			
10	5901			
15	9335			
20	15033			
25	23570			
30	35069	42500	49000	
35	56212			
40	79816			
45	102067			
50	117064			
55	138457	faile at		
60	174535			
65	209803			
70	257926			
75	307347			
80	248970			
85	155583	•	,	
90 (Fully Open)	104	70000	153600	

TABLE 3 SUMMARY OF TORQUE ANALYSIS FOR ALL VALVES

VALVE DESIGNATION	VALVE SIZE (in.)	ACTUAL MINIMUM BODY WALL THICKNESS (in.)	CODE REQUIRED MIN. THICKNESS PER ANSI 16.34 (in.)
AH-V-1A, AH-V-1B AH-V-1C, AH-V-1D	48	2.125	0.49

TABLE 4 MINIMUM BODY WALL THICKNESS

TABLE 5 SUMMARY OF STRESS ANALYSIS

VALVE	STRESS		STRESS LE	VEL (psi)	ALLOWABLE STRESS		
COMPONENT	NAME AND S	NAME AND SYMBOL			AH-V-1B&AH-V-1C	()	psi)
	Primary Me	mbrane	Pm	990	990	Sm 12600 ,	0.9 % 27000
	Primary plu stress due pressure	us secondary to internal	Qp	2970	2970	Sm 12600 ,	0.9 5 27000
Body	Pipe reaction	Axial	Ped	2542	2542	1.5 Sm 18900	0.95
	stress	Bending	Peb	9164	9164	1.5 Sm 18900 ,	0.9 54
		Torsion	Pet	4773	4773	1.5 Sm 18900 ,	0.9 Jy 27000
	Thermal see Stress	condary	Qt	1197	1197	Sm 12600 ,	0.9 y 27000
	Primary plu secondary	us stress	Sn	13428	13428	3 Sm 37800 ,	0.9 5 27000
Disc	Combined B Stress on o	ending disc centerline	S(1)	4643	4643	Sm 12600	
	Torsional :	Sheer Stress	S(9)	5102	5102	0.6 Sm 12000	
	Combined Sl	near Stress	S(6)	6983	6960	0.6 Sm 12000	
Shaft	Combined st (shear and	tress bending)	S(4)	30748	30734	1.5Sm 30000	
Shaft Key	Shear stre	ss on key	S(16)	10467	10467	0.9 81000	
Disc Pins	Shear stre	ss in	S(17)	13890	13890	0.9 27000	

-15-

TABLE 5 (CONT'D)

VALVE COMPONENT	STRESS NAME AND SYMBOL		STRESS LE AH-V-1A&AH-V-1D	VEL (psi) AH-V-1B&AH-V-1C	ALLOWABLE STRESS (psi)
	Bearing stress on thrust collar	S(22)	92	169	Sm 13600
Thrust Bearing	Shear stress in adjusting screw	S(27)	460	843	0.6 Sm 8160
	Combined stress in retainer bolts	S(28)	3325	6096	Sm 13600
	Shear tear-out of thrust retainer bolts	S(31)	472	866	0.6 Sm 8160
Bottom Cover Plate	Shear tear-out of cover bolts thru tapped holes	S(33)	1097	1237	0.6 Sm 7560
	Shear tear-out of cover bolt head thru cover	S(34)	818	922	0.6 Sm 7560
	Combined stress in cover	S(38)	673	942	Sm 12600
	Shear tear-out of trunnion bolts in top trunnion tapped holes	S(42)	962	751	0.6 Sm 7560
Operator Mounting	Bearing stress of trunnion bolt on tapped hole in trunnion	S(43)	3069	2213	Sm 12600
	Tension in bolt on top trunnion	S(47) + S(48)	5452	4259	Sm 12600
	Shear due to torque on trunnion bolts	S(50)	5364	4252	0.6 Sm 7560
	Combined stress in trunnion bolts	S(46)	10021	7454	Sm 12600
	Combined stress in operator bolts	S(53)	10198	8037	Sm 12600

16.