SAND75-8276 NUREG 0210 Unlimited Release

1000 8265 F. J. Cupps For: TIC (27)

**NRC 13** 



SF 2900 Q(7.73)

DISTRIBUTION OF THIS OCCURRENT IS ONCIMITED

8203110133 770430 PDR NUREG 0210 R PDI PDR

# BLANK PAGE

Issued by Sandia Laboratories, operated for the United States Energy Research and Development Administration by Sandia Corporation. •

٠

•

.

#### NOTICE

-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

> Printed in the United States of America Available from National Technical Information Service U. S. Department of Commerce 5285 Port Roys' road Springfield, VA. 22161 Price: Printrd Copy \$4.50; Microfiche \$3.00

SAND75-8276 NUREG 0210 Unlimited Release Printed March 1977

### SPECIAL NUCLEAR MATERIAL FLOW PROJECTIONS FOR THE COMMERCIAL NUCLEAR INDUSTRY

E. H. Hasseltine Systems Studies Division 1, 832.

P. De Laquil, III Systems Studies Division I, 8321

P. L. Leary Numerical Applications Division 8322 Sandia Laboratories Livermore, California 94550

### ABSTRACT

Projections of the flows of special nuclear material within the commercial nuclear power industry are presented. Based on power levels and types of reactors, subject to assumptions regarding plant load factors and recycle of reactor products, total monthly material flows between operating fuel cycle facilities from 1976 to 2000 are examined. Nuclear power plant commitments as of July 1, 1976, are used to project industry growth through the early 1980s, and recent nuclear growth projections are assumed beyond 1985. The projected yearly flows of special nuclear material are presented, and for example purposes, the yearly numbers of single shipmants are calculated assuming conventional truck carriers.

> Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Jer ERDA Contract No. AT(29-1)-789

C.C. ....

NRC-13

3/4

# CONTENTS

...

|                                                | Page |
|------------------------------------------------|------|
| Introduction                                   | 13   |
| Commercial Nuclear Industry Growth             | 13   |
| Materials Requirements                         | 21   |
| Reactor Refueling Schedules                    | 21   |
| Plutonium Utilization                          | 24   |
| Plutonium Recyc'                               | 25   |
| Materials Flow Analysis                        | 25   |
| Shipment Requirements                          | 33   |
| APPENDIXReactor Commitments as of July 1, 1976 | 45   |
| REFERENCES                                     | 53   |

# **ULLUSTRATIONS**

| Figure |                                                         | Page |
|--------|---------------------------------------------------------|------|
| rigare | and the Designations                                    | 17   |
| 1.     | Nuclear Growth Projections                              |      |
| 2.     | Plutonium Flow to Fabrication - High Growth Case        | 30   |
| 3.     | Plutonium Flow to Fabrication - Median Growth Case      | 31   |
| 4.     | Plutchium Flow to Fabrication - Low Growth Case         | 32   |
| 5.     | Plutonium Shipments to Fabrication - High Growth Case   | 38   |
| 6.     | Plutonium Shipments to Reactors - High Growth Case      | 39   |
| 7.     | Plutonium Shipments to Fabrication - Median Growth Case | 40   |
| 8.     | Plutonium Shipments to Reactors - Median Growth Case    | 42   |
| 9.     | Plutonium Snipments to Fabrication - Low Growth Case    | 43   |
| 10     | Plutonium Shipments to Reactors - Low Growth Case       | -14  |

7/8

## TABLES

| Table |                                                              | Page |
|-------|--------------------------------------------------------------|------|
| ι.    | Near-Term Nuclear Power Growth                               | 14   |
| п.    | Committed Reactor Power Growth in MWe                        | 15   |
| ш.    | Nuclear Power Growth Projection - High Case                  | 18   |
| IV.   | Nuclear Power Growth Projection - Median Case                | 19   |
| v.    | Nuclear Power Growth Projection - Low Case                   | 20   |
| VI.   | Fuel Cycle Requirements for Individual Reactor<br>Refuelings | 22   |
| VII.  | Initial Core Loadings for 1000 MWe Reactor                   | 23   |
| VIII. | Recycle Plutonium Charge to 1000 MWe Reactor                 | 20   |
| IX.   | Annual Material Flow Summary - High Growth Case              | 27   |
| x.    | Annual Material Flow Summary - Median Growth Case            | 28   |
| xı.   | Annual Material Flow Summary - Low Growth Case               | 29   |
| XII.  | Assumed Shipment Data for a Conventional Road<br>Vehicle     | 34   |
| XIII. | Annual Shipment Summary - High Growth Case                   | 35   |
| xiv.  | Annual Shipment Summary - Median Growth Case                 | 36   |
| xv    | Annual Shipment Summary - Low Growth Case                    | 37   |

## ABBREVIATIONS

r

| BWR   | boiling water reactor                          |
|-------|------------------------------------------------|
| DU    | depleted uranium                               |
| ERDA  | Energy Research and Development Administration |
| FBR   | fast breeder reactor                           |
| HEU   | highly enriched uranium                        |
| HTGR  | high temperature gas reactor                   |
| LEU   | low enriched uranium                           |
| LMFBR | liquid metal fast breeder reactor              |
| LWR   | light water reactor                            |
| MSWU  | 1000 separative work units                     |
| MT    | metric tons                                    |
| MWe   | megawatts of electrical power                  |
| MWD   | megawatt days                                  |
| NU    | natural uranium                                |
| Pu    | plutonium                                      |
| PWR   | pressurized water reactor                      |
| SNM   | special nuclear material                       |
| Th    | thorium                                        |
| TPU   | thirty percent enriched uranium                |
| U     | uranium                                        |
| UR    | uranium recycle                                |

### SPECIAL NUCLEAR MATERIAL FLOW PROJECTIONS FOR THE COMMERCIAL NUCLEAR INDUSTRY

### Introduction

This document presents projections of the amounts of special nuclear material (SNM) required by the commercial nuclear power industry. The projections are based on assumptions concerning the growth of nuclear power plants, and the recycle of reactor products, specifically, plutonium recycle to light water reactors. Yearly values for the amounts of SNM flowing through the fuel cycle are shown, and the resulting numbers of single shipments for each transportation link in the fuel cycle are calculated assuming conventional truck shipments.

The work presented in this report was partially performed for the Nuclear Regulatory Commission project, "The Physical Protection of Nuclear Materia". The purpose of these material flow predictions is to provide a basis for determining the requirements and costs of alternative commercial SNM transportation systems. The cost of the alternative transportation systems is one element in an overall benefit/cost analysis which also considers the safeguards effectiveness of the systems.

### Commercial Nuclear Industry Growth

The status of the commercial nuclear industry as of July 1, 1976, was used as the basis for the reactor growth projections.<sup>2</sup> This consists of the presently operating reactors and those reactor projects under construction or on order. Table I presents the number of reactors of each type that are operating as of 1975 along with those scheduled to commence commercial operation through 1985. Also included in the table is the total nuclear generating capacity for each year. The list of current commitments for reactor projects by name, date, power level, and reactor type is given in the Appendix.

l'able II details the reactor growth of Table I according to the generated power of each of the reactor types. Not listed in the table is the single high

# **BLANK PAGE**

|      | Number | umber Cumulative |         | Cumulative        | Number of Reactors |     |      |
|------|--------|------------------|---------|-------------------|--------------------|-----|------|
| Year | Added  | Reactors         | Added   | MW <sub>e</sub> ' | PWR                | BWR | HTGR |
| 1975 | 8      | 53               | 7,109   | 36, 244           | 30                 | 23  | 0    |
| 1976 | 9      | 62               | 8,175   | 44, 419           | 37                 | 24  | 1    |
| 1977 | 7      | 69               | 6,411   | 50,830            | 43                 | 25  | 1    |
| 1978 | 6      | 75               | 6,278   | 57,108            | 48                 | 26  | 1    |
| 1979 | 11     | 86               | 10,974  | 68,082            | 54                 | 31  | 1    |
| 1980 | 9      | 95               | 10, 508 | 78,590            | 59                 | 35  | 1    |
| 1981 | 14     | 111              | 16, 514 | 95,104            | 72                 | 38  | 1    |
| 1982 | 19     | 130              | 21, 270 | 116, 374          | 85                 | 44  | 1    |
| 1983 | 14     | 144              | 15,780  | 132,154           | 94                 | 49  | 1    |
| 1984 | 17     | 161              | 19, 514 | 151,668           | 105                | 55  | 1    |
| 1985 | 14     | 175              | 16,307  | 167,975           | 115                | 59  | 1    |

# TABLE I NEAR-TERM NUCLEAR POWER GROWTH

\*PWR - pressurized water reactor

BWR - boiling water reactor

HTGR - high temperature gas reactor

|      |         | PWR        | BWR    |            |  |
|------|---------|------------|--------|------------|--|
| Year | New     | Cumulative | New    | Cumulative |  |
| 1975 | 3,645   | 21,034     | 3,464  | 15, 210    |  |
| 1976 | 6,778   | 27, 812    | 1,067  | 16, 277    |  |
| 1977 | 5, 590  | 33,402     | 821    | 17,098     |  |
| 1978 | 5,200   | 38,602     | 1,078  | 18,176     |  |
| 1979 | 6,380   | 44, 982    | 4, 594 | 22,770     |  |
| 1980 | 5,910   | 50, 892    | 4, 598 | 27,368     |  |
| 1981 | 13,669  | 64, 561    | 2,845  | 30, 213    |  |
| 1982 | 14,613  | 79,174     | 6,657  | 36,870     |  |
| 1983 | 7,936   | 89,:10     | 5,844  | 42, 714    |  |
| 1984 | 12, 548 | 101,658    | 6,968  | 49,680     |  |
| 1985 | 11,446  | 113,104    | 4,861  | 54, 541    |  |

| TABLE II  |         |       |        |    |     |  |  |  |  |
|-----------|---------|-------|--------|----|-----|--|--|--|--|
| COMMITTED | REACTOR | POWER | GROWTH | IN | MWe |  |  |  |  |

temperature gas reactor (HTGR) project, the 330 MWe Fort St. Vrain plant, which is assumed to commence operation at the end of 1976.

The nuclear industry was characterized in this report by a combination of the reactor projects committed as of July 1, 1976, and the growth projections through the year 2000 given by the Energy Research and Development Administration (ERDA) at an Atomic Industrial Forum conference in Gen va. <sup>3</sup> Those reactors under construction and scheduled to commence operation by the erd of 1980 were assumed to conform to their present schedule. From 1981 to 2000, the reported ERDA high, median, and low growth projections for 1985, 1990, and 2000 were fitted to the 1980 projection. Yearly values of the industry growth were obtained from a smooth curve fit of these point values. In Figure 1, the current reactor commitments are depicted as the dashed line. This line tails off after 1985 due to the small number of orders for reactors scheduled to start-up after this date. The solid lines are the fitted high, median, and low growth projections based on the point projections which were considered as mid-year values.

The amounts of nuclear capacity for the years 1976 to 2000 for the high, median, and low growth projection cases are given in Tables III, IV, and V, respectively. The light water reactor (LWR) generating capacity up to 1985 was apportioned according to the ratio of committed pressurized water reactor (PWR) capacity to boiling water reactor (BWR) capacity as given in Table II. Beyond 1985, the ratio of PWR to BWR generating capacity was maintained at 2 to 1. The Liquid-metal fast breeder reactor (LMFBR) growth projection for the high case was obtained by scaling the LMFBR projection of Reterence 4 by the total projected nuclear capacity in the year 2000. For the median growth case, commercial LMFBR introduction was delayed until 1995 and a breeder introduction schedule of one per year for the first three years, two per year for the subsequent two years, and three in the year 2000 was employed. For the low growth case, no commercial operation was assumed before the year 2000. With the exception of the Fort St. Vrain reactor, HTGRs are not included in any of the growth projections. An example of the impact of HTGRs on SNM transportation requirements can be seen in Reference 5.

In determining the material flows, the nuclear industry was characterized by individual reactor projects located at specific sites. Site selection allows the direct interface of the material flow projections with transportation system models. Through 1980 the set of committed reactors was used. From 1981 to 1990 sites were selected so as to conform to the growth projections by adding new reactors at previously established sites. After 1990, the yearly increments of nuclear capacity were sited regionally in proportion to an estimate of nuclear energy demand growth.<sup>6</sup>





|   |      |       | 1000 MWe |       |        |  |  |  |
|---|------|-------|----------|-------|--------|--|--|--|
|   | Year | PWR   | BWR      | LMFBR | Total* |  |  |  |
|   | 1976 | 27.8  | 16.3     | 0.0   | 44.4   |  |  |  |
|   | 1977 | 23.4  | 17.1     | 0.0   | 50.8   |  |  |  |
|   | 1978 | 38.6  | 18.2     | 0.0   | 57.1   |  |  |  |
|   | 1979 | 45.0  | 22.8     | 0.0   | 68.1   |  |  |  |
|   | 1980 | 50.9  | 27.4     | 0.0   | 78.6   |  |  |  |
| 1 | 1981 | 65.9  | 30.9     | 0.0   | 97.1   |  |  |  |
|   | 1982 | 78.8  | 36.7     | 0.0   | 115.8  |  |  |  |
|   | 1983 | 91.4  | 43.8     | 0.0   | 135.5  |  |  |  |
|   | 1984 | 104.2 | 51.0     | 0.0   | 155.5  |  |  |  |
|   | 1985 | 119.2 | 57.4     | 0.0   | 176.9  |  |  |  |
|   | 1986 | 132.9 | 66.4     | 0.0   | 199.6  |  |  |  |
|   | 1987 | 148.9 | 74.5     | 0.0   | 223.7  |  |  |  |
|   | 1988 | 166.9 | 83.0     | 0.0   | 249.2  |  |  |  |
|   | 1989 | 183.8 | 91.9     | 0.0   | 276.0  |  |  |  |
|   | 1900 | 202.7 | 101.3    | 0.0   | 304.3  |  |  |  |
|   | 1991 | 222.4 | 111.2    | 0.0   | 333.9  |  |  |  |
|   | 1992 | 242.9 | 121.5    | 0.0   | 364.7  |  |  |  |
|   | 1993 | 263.7 | 131.9    | 0.7   | 396.6  |  |  |  |
|   | 1984 | 285.0 | 142.5    | 1.6   | 429.4  |  |  |  |
|   | 1995 | 306.3 | 153.1    | 3.3   | 463.0  |  |  |  |
|   | 1996 | 327.1 | 163.5    | 6.3   | 497.2  |  |  |  |
|   | 1997 | 346.9 | 173.4    | 11.4  | 532.0  |  |  |  |
|   | 1998 | 366.7 | 183.4    | 16.6  | 567.0  |  |  |  |
|   | 1999 | 385.8 | 192.9    | 23.3  | 602.3  |  |  |  |
|   | 2000 | 403.5 | 201.7    | 31.5  | 637.0  |  |  |  |

# TABLE III

NUCLEAR POWER GROWTH PROJECTION - HIGH CASE

<sup>\*</sup>Includes the 330 MW<sub>e</sub> Fort St. Vrain HTGR. Through 1980 the committed reactor growth was used.

|    |      |        | 1000 .11w | e     |        |  |  |
|----|------|--------|-----------|-------|--------|--|--|
|    | Year | PWR    | BWR       | LMFBR | Total* |  |  |
|    | 1976 | 27.8   | 16.3      | 0.0   | 44.4   |  |  |
|    | 1977 | 33.4   | 17.1      | 0.0   | 50.8   |  |  |
|    | 1978 | 38.6   | 18.2      | 0.0   | 57.1   |  |  |
|    | 1979 | 45.0   | 22.8      | 0.0   | 68.1   |  |  |
| 11 | 1980 | 50.9   | 27.4      | 0.0   | 78.6   |  |  |
|    | 1981 | 62.6   | 29.2      | 0.0   | 92.1   |  |  |
|    | 1982 | 70.5   | 35.2      | 0.0   | 106.0  |  |  |
|    | 1983 | 81.3   | 39.0      | 0.0   | 120.6  |  |  |
|    | 1984 | 91.5   | 44.7      | 0.0   | 136.5  |  |  |
|    | 1985 | 103.6  | 50.0      | 0.0   | 153.9  |  |  |
|    | 1986 | 115.1  | 57.6      | 0.0   | 173.0  |  |  |
|    | 1987 | :28.9  | 64.4      | 0.0   | 193.6  |  |  |
|    | 1988 | 143.4  | 71.7      | 0.0   | 215.4  |  |  |
|    | 1989 | 158.7  | 79.3      | 0.0   | 238.3  |  |  |
|    | 1990 | 174.4  | 87.2      | 0.0   | 261.9  |  |  |
|    | 1991 | 190.6  | 95.3      | 0.0   | 286.2  |  |  |
|    | 1992 | 207.3  | 103.6     | 0.0   | 311.2  |  |  |
|    | 1993 | 224.2  | 112.1     | 0.0   | 336. C |  |  |
|    | 1994 | 242.5  | 120.7     | 0.0   | 362.5  |  |  |
|    | 1995 | 258. j | 129.3     | 0.7   | 388.8  |  |  |
|    | 1996 | 275.7  | 137.8     | 1.6   | 415.4  |  |  |
|    | 1997 | 292.9  | 146.5     | 2.6   | 442.3  |  |  |
|    | 1998 | 309.5  | 154.7     | 4.8   | 469.3  |  |  |
|    | 1999 | 326.1  | 163.0     | 7.0   | 496.4  |  |  |
|    | 2000 | 341.6  | 170.8     | 10.3  | 523.0  |  |  |
|    |      |        |           |       |        |  |  |

TABLE IV

NUCLEAR POWER GROWTH PROJECTION - MEDIAN CASE

Includes the 330  $MW_e$  Fort St. Vrain HTGR. Through 1980 the committed reactor growth was used.

|      | 1000 MWe |       |        |  |  |  |
|------|----------|-------|--------|--|--|--|
| Year | PWR      | BWR   | Total* |  |  |  |
| 1976 | 27.8     | 16.3  | 44.4   |  |  |  |
| 1977 | 33.4     | 17.1  | 50.8   |  |  |  |
| 1978 | 38.6     | 18.2  | 57.1   |  |  |  |
| 1979 | 45.0     | 22.8  | 68.1   |  |  |  |
| 1980 | 50.9     | 27.4  | 78.6   |  |  |  |
| 1981 | 59.9     | 28.0  | 88.2   |  |  |  |
| 1982 | 66.7     | 31.1  | 98.1   |  |  |  |
| 1983 | 73.0     | 35.0  | 108.3  |  |  |  |
| 1984 | 79.9     | 39.0  | 119.2  |  |  |  |
| 1985 | 88.2     | 42.5  | 131.0  |  |  |  |
| 1986 | 95.6     | 47.8  | 143.7  |  |  |  |
| 1987 | 104.7    | 52.3  | 157.3  |  |  |  |
| 1988 | 114.3    | 57.2  | 171.8  |  |  |  |
| 1989 | 124.5    | 62.3  | 187.1  |  |  |  |
| 1990 | 135.2    | 67.6  | 203.1  |  |  |  |
| 1991 | 146.3    | 73.2  | 219.8  |  |  |  |
| 1992 | 157.9    | 79.0  | 237.2  |  |  |  |
| 1993 | 169.9    | 84.9  | 255.1  |  |  |  |
| 1994 | 182.1    | 91.1  | 273.5  |  |  |  |
| 1995 | 194.7    | 97.3  | 292.3  |  |  |  |
| 1996 | 207.5    | 103.7 | 311.5  |  |  |  |
| 1997 | 220.4    | 110.2 | 330.9  |  |  |  |
| 1998 | 233.4    | 116.7 | 350.4  |  |  |  |
| 1999 | 246.5    | 123.3 | 370.1  |  |  |  |
| 2000 | 259.8    | 129.9 | 390.0  |  |  |  |

1 ABLE V

NUCLEAR POWER GROWTH PROJECTION - LOW CASE

<sup>\*</sup>Includes the 330 MW<sub>e</sub> Fort St. Vrain HTGR. Through 1980 the committed reactor growth was used.

#### Materials Requirements

Given the total power for each type reactor for any year, the amount of material needed for each refueling can be calculated. The calculations are subject to the scaling assumption and the assumption of the fraction of ine core replaced. For PWR projects, loading and discharge values were taken in proportion to the proposed 1150 MW<sub>e</sub> Jamesport reactor<sup>7</sup> with onethird of the core replaced at each refueling. For the BWR projects, onefourth of the core was replaced at each refueling, and the loading and discharge values were taken in proportion to the proposed 820 MW<sub>e</sub> Shoreham reactor.<sup>7</sup> The fuel cycle material requirements for individual reactor refuelings are given in Table VI. The data include material flows from reactors not on plutonium recycle and recycle flows at the self-generation recycle equilibrium level. The total materials required by reactors in any time period will be the sum of the refuelings and the initial core loading during that period. Initial core loading assumptions are presented in Table VI.

The scheduling of SNM shipments was determined according to representative cooling and lead times. These assumptions affect the timing of SNM shipments but not the overall material flows requirements. Following removal of irradiated fuel elements from the core, a five-month cooling period is assumed before shipment to a reprocessing plant. Shipment of appropriate amounts of recovered material to fuel element fabrication plants is assumed to take place three months before each light water reactor refueling date. 8 Plutonium for the refueling of an LMFBR is assumed to be shipped to the fabricator six menths prior to refueling.<sup>8</sup> Shipments of fuel elements to operating reactors are assumed to occur during the assigned refueling month. For the light water reactors, initial core loadings are not of concern, since no highly enriched uranium or plutonium is involved. However, initial cores for LMFBR projects will be important. One-half the required plutonium for the new core is assumed to be required by the fabricator seven months in advance of the core loading date, and the other half is assumed to be required six months in advance, 8

### **Reactor Refueling Schedules**

The interrelated variables pertaining to reactor fuel include fuel enrichment, design burn-up level, plant load factor, fraction of core replaced during each refueling, and time between refuelings. The first two of these are normally predetermined design quantities. Of the latter three variables, specifying the value for two determines the value of the third. If fuel replacement is set according to a specific core fraction and a refueling frequency, it

# TABLE VI

|               |                |             | 1000 3    | uwe      |       |                 |                      |
|---------------|----------------|-------------|-----------|----------|-------|-----------------|----------------------|
| PWR           | Fabrica<br>(M7 | ation<br>F) | Pla<br>(M | nt<br>T) | Repro | cessing<br>(1T) | Enrichment<br>(MSWU) |
| Recycle Pu    | 20.5           | LEU         | 19.3      | LEU      | 18.5  | LEU®            | 89.9                 |
| (Equilibrium) | 9.08           | NU          | 9.04      | NU       | 8.84  | DU              |                      |
|               | 0.468          | Pu          | 0.46      | Pu≉≑     | 0.475 | 5 Pu            |                      |
| No Recycle    | 30.5           | LEU         | 28.8      | LEU      | 27.5  | LEU*            | 135.7                |
|               |                |             |           |          | 0.26  | Pu              |                      |
| BWR           |                |             |           |          |       |                 |                      |
| Recycle Pu    | 27.9           | LEU         | 26.3      | LEU      | 25.2  | LEU*            | 72.0                 |
| (Equilibrium) | 9.42           | NU          | 9.38      | NU       | 9.17  | DU              |                      |
| the base of L | 0.56           | Pu          | 0.55      | Pu**     | 0.61  | Pu              |                      |
| No Recycle    | 38.4           | LEU         | 36.3      | LEU      | 34.6  | LEU*            | 99.1                 |
|               |                |             |           |          | 0.21  | Pu              |                      |
| HTGR          |                |             |           |          |       |                 |                      |
| Recycle U     | 7.07           | Th          | 7.07      | Th       | 6.55  | Th              | 83.2                 |
| (Equilibrium) | 0.053          | HEU         | 0.35      | 3 HEU    | 0.08  | 6 TPU           |                      |
|               | 0.31           | UR          | 0.31      | UR       | 0.31  | 9 UR            |                      |
|               | 0.086          | TPU         | 0.08      | 6 TPU    |       |                 |                      |
| No Recycle    | 7.07           | Th          | 7.07      | Th       | 6.55  | Th              | 150.8                |
| 1             | 0.64           | HEU         | 0.64      | HEU      | 0.15  | 5 TPU           |                      |
|               |                |             |           |          | 0.21  | 6 UR            |                      |
| LMFBR         |                |             |           |          |       |                 |                      |
|               | 6.77           | NUT         | 21.4      | NU       | 20.3  | DU              |                      |
| 1. S. S. 1983 | 2.22           | Pu          | 2.4       | Pu **    | 2.35  | i Pu            |                      |

FUEL CYCLE REQUIREMENTS FOR INDIVIDUAL REACTOR REFUELINGS

\* Approximately 0.8% U235

\*\* Fissile Pu into Plant is 63% for PWR, 57% for BWR, 71% for LMFBR

t Core Fabrication Only

ff Core Presents and Blanket Elements

|                   | PWR   | BWR   | HTGR   | LMFBR |
|-------------------|-------|-------|--------|-------|
| LEU               | 86.5  | 145.0 |        |       |
| NU                |       |       | 1.48   | 42.4  |
| Pu                |       |       |        | 3.98  |
| Th                |       |       | 32.3   |       |
| Enrichment (MSWU) | 331.7 | 373.0 | 349.4  |       |
| Fuel Elements     | 179.0 | 696.0 | 3400.0 |       |

# TABLE VII

<sup>\*</sup>Due to the lack of firm commercial-size LMFBR designs, no value for the number of fuel elements is given. implies a load factor. If the load factor varies, as present experience indicates, either the fraction of core reloaded or the refueling frequency must change if the desired burn-up is to be attained. It appears that a policy of removing more or less than the design core fraction during a refueling is not as flexible an approach as prolonging or shortening the burn period. Therefore, for light water reactors, the plant load factors were varied and the refueling intervals were calculated which achieved the design burn-up. The LWR plant load factor was taken as 0.4 for each reactor in its initial year of operation, 0.65 in the second and third years, 0.75 in the fourth throughout the fifteenth, and a decrease of 0.02 each year following the fifteenth until the load factor reaches 0.25 which is maintained thereafter until retirement. Due to the lack of load factor data for LMFBRs, the refuelings were assumed to take place annually. This implies an 80 percent load factor.

Burn-up levels assumed in this report were 33,000 MWD/tonne for the PWR and 27,500 MWD/tonne for the BWR. Initial core burn-ups vary from these values due to the initial absence of nonfissile neutron absorbers. For the PWR, 42,000 MWD/tonne was used, and for the BWR, 56,000 MWD/tonne was used. A refueling schedule for each reactor was then determined from the refueling intervals and the reactor start-up date. Through 1980, the scheduled start-up dates were used. After 1980, reactor start-up dates were chosen so as to evenly distribute the new capacity over the year.

### Plutonium Utilization

If plutonium is utilized within the nuclear power industry, the LWR will be the source of plutonium for either recycle to LWRs, or for the initial cores and early refuelings of LMFBRs. Refueling of the breeders will eventually use self-generated plutonium, but this is not foreseen before the year 2000. The median and high growth projections include LMFBR projects, and the associated plutonium demand must be served. Therefore, the amount of plutonium which could be recycled into the light water reactors would be less than the total plutonium produced, and there exists a maximum percentage of light water reactors which could initiate plutonium recycle. There are other factors affecting the ability of the light water reactors to recycle plutonium which may serve to lower this maximum percentage. These include plutorium oxide fuel fabrication capacity and existing reactor control and fuel-handling systems. It has been shown<sup>5</sup> that for projected nuclear power levels similar to the high growth case, 80 percent recycle is the maximum percentage recycle possible. By the end of 2000, all available plutonium has been used; however, it is important to note that significant quantities of plutonium through the 1930s and 1990s must be stored in order to meet the large demand of the late 1990s. Using this plutonium to increase the recycle percentage in the light water reactors would not allow for the refueling of LMFBRs on the schedule assumed.

### Plutonium Recycle

The actual extent to which plutonium recycle will be practiced depends on as yet unresolved economic, environmental, and safeguards issues. For current analyses, two alternative recycle schedules have been postulated in which 25 percent or 80 percent of those reactors eligible for recycle in that year are actually on recycle. Eligibility is achieved at the end of initial core burn-up. In no case does plutonium recycle begin before 1982 due to the current lack of operational reprocessing plants. An additional assumption was that the plutonium recycle fraction applied equally to PWR and BWR projects. There may be a preference for the PWR in the recycle mode. However, as there are approximately twice as many PWRs as BWRs at any time, the number on recycle as calculated here results in a 2:1 ratio for PWR relative to BWR.

Plutonium charges to and discharges from reactors on self-generating plutonium recycle build up to equilibrium operation values over a period of time. Gradual increases in the amount of plutonium fed to the reactor are the established practice due to the different neutronic and thermal characteristics of plutonium and the control problems arising from its use. For the PWR projects, ten refuelings were assumed necessary with recycle beginning during the loading of the second core, i.e., three recycling periods after initial start-up.<sup>7</sup> For BWR projects, 24 refuelings were assumed to be required before equilibrium was attained.<sup>7</sup> Recycle begins with the loading of the second core, or four refuelings after initial start-up. The values for charges of plutonium to the reference 1000 MW<sub>e</sub> reactors of the PWR and BWR type during the approach to equilibrium are given in Table VIII.

### Materials Flow Analysis

The annual amounts of materials required in the total nuclear fuel cycle are summarized in Tables IX, X, and XI for the high, median, and low growth cases, respectively. Values for plutcnium flowing to mixed oxide fabrication plants are given for 25 percent and 80 percent recycle levels. This is expected to be in the form of PuO<sub>2</sub>. Approximately the same amount of plutonium will also be flowing from the fabrication plant to the uranium oxide fabrication plant, if separate, and then to the reactor in the form of mixed oxide fuel elements. For all reactors, plutonium will also flow from reactor to reprocessor within the spent fuel elements. Figures 2, 3, and 4 illustrate the total plutonium flow to fabrication plants for the high, median, and low growth cases, respectively. (Notice the changes in scale.)

# TABLE VIII

# RECYCLE PLUT ONIUM CHAPGE TO 1000 MW REACTOR

|       | - | -   |  |
|-------|---|-----|--|
| - 3.1 | T | Du  |  |
| - 294 |   | 1 4 |  |

| No. of Refuelings<br>After Start-Up | PWR   | BWR    |
|-------------------------------------|-------|--------|
| 3                                   | 0.180 |        |
| 4                                   | 0.262 | 0.107  |
| 5                                   | 0.239 | 0.140  |
| 6                                   | 0.307 | 0.174  |
| 7                                   | 0.310 | 0.208  |
| В                                   | 0.379 | 0.242  |
| 9                                   | 0.434 | 0.276  |
| 10                                  | 0.454 | 0.309  |
| 11                                  | 0.459 | 0.343  |
| 12                                  | 0.460 | 0.361  |
| 12                                  | 0.460 | 0.380  |
| 14                                  | 0.460 | 0.400  |
| 15                                  | 0.460 | 0.420  |
| 16                                  | 0.460 | 0.440  |
| 17                                  | 0.460 | 0.465  |
| 18                                  | 0.460 | 0.490  |
| 19                                  | 0.460 | 0.514  |
| 20                                  | 0.460 | 0. 520 |
| 21                                  | 0.460 | 0.522  |
| 22                                  | 0.460 | 0.522  |
| 23                                  | 0.460 | 0.524  |
| 24                                  | 0.460 | 0.536  |
| 25                                  | 0.460 | 0.542  |
| 26                                  | 0.460 | 0.548  |
| 27                                  | 0.460 | 0.550  |
| 28                                  | 0.460 | 0.550  |

|      |           | Pu to Reactors |      | Pu to Fab | ricators | To Reprocessors |  |
|------|-----------|----------------|------|-----------|----------|-----------------|--|
| Year | % Recycle | LWR            | FBR  | LWR       | FBR      | LWR Spent Fuel  |  |
| 1985 | 25        | 6.3            | 0    | 6.5       | 0        | 3,769           |  |
|      | 80        | 17.0           | 0    | 18.0      | 0        | 3,769           |  |
| 1990 | 25        | 15.4           | 0    | 15.7      | 0        | 7 038           |  |
|      | 80        | 44.7           | 0    | 47.3      | 0        | 7,038           |  |
| 1995 | 25        | 21.8           | 10.1 | 23.7      | 16.3     | 11,276          |  |
|      | 80        | 71.6           | 10.1 | 72.9      | 16.3     | 11, 276         |  |
| 2000 | 25        | 37.2           | 81.5 | 36.0      | 84.5     | 15,644          |  |
|      | 80        | 112.5          | 81.5 | 110.3     | 84.5     | 15,644          |  |

# TABLE IX

ANNUAL MATERIAL FLOW SUMMARY - HIGH GROWTH CASE

Metric Tons

| Metric Tons |           |          |        |           |          |                 |  |  |  |
|-------------|-----------|----------|--------|-----------|----------|-----------------|--|--|--|
|             |           | Pu to Re | actors | Pu to Fab | ricators | To Reprocessors |  |  |  |
| Year        | % Recycle | LWR      | FBR    | LWR       | FBR      | LWR Spent Fuel  |  |  |  |
| 1985        | 25        | 5.3      | 0      | 5.3       | 0        | 3, 397          |  |  |  |
|             | 80        | 16.7     | 0      | 17.6      | 0        | 3, 397          |  |  |  |
| 1990        | 25        | 10.2     | 0      | 13.3      | 0        | 6, 237          |  |  |  |
|             | 80        | 36.7     | 0      | 38.5      | 0        | 6, 237          |  |  |  |
| 1995        | 25        | 17.9     | 2.8    | 20.4      | 5.0      | 9, 437          |  |  |  |
|             | 80        | 58.0     | 2.8    | 60.5      | 5.0      | 9,437           |  |  |  |
| 2000        | 25        | 29.9     | 27.8   | 27.2      | 23.2     | 13,106          |  |  |  |
|             | 80        | 94.3     | 27.8   | 90.4      | 23.2     | 13, 106         |  |  |  |

TABLE X

ANNUAL MATERIAL FLOW SUMMARY - MEDIAN GROWTH CASE

|      |           | Pu to Reactors | Pu to Fabricators | To Reprocessors |
|------|-----------|----------------|-------------------|-----------------|
| Year | % Recycle | LWR            | LWR               | LWR Spent Fuels |
| 1985 | 25        | 4.4            | 4.3               | 2,974           |
| ÷.,  | 80        | 16.2           | 16.6              | 2,974           |
| 1990 | 25        | 8.0            | 9.9               | 4,933           |
|      | 80        | 31.4           | 35.0              | 4,933           |
| 1995 | 25        | 13.2           | 14.8              | 7,211           |
|      | 80        | 46. 5          | 48.9              | 7,211           |
| 2000 | 25        | 21.7           | 20.6              | 10,149          |
|      | 80        | 66.7           | 67.5              | 10,149          |

### TABLE XI

ANNUAL MATERIAL FLOW SUMMARY - LOW GROWTH CASE

Metric Tons











While there were no projections made for future HTGR plants, there is a small material now requirement for the single existing HTGR, the Fort St. Vrain plant. The yearly material flow requirements for this reactor would be 0.2 if of highly enriched uranium (HEU) shipped to the fabrication plant and then to the reactor. The amount of spent fuel shipped each year is 2.3 MT. These amounts were calculated assuming annual refueling. No recycle mode was considered.

### Shipment Requirements

Given the carrier capacity and the form of the special nuclear material (i.e., PuO<sub>2</sub> powder or fresh fuel elements), the number of shipments can be calculated. For example purposes, the mode of SNM transportation was assumed to be a conventional truck. The number of shipments associated with the material flow requirements is calculated using conventional shipment sizes. These shipment size assumptions are summarized in Table XII. Alternative SNM transportation modes can be investigated if the carrier capabilities are known. In the case of spent reactor fuel, rail shipment may be favored over truck. This reduces the required number of single shipments by about a factor of five.

For LWRs, the shipments of both fresh and spent fuel are determined under the assumption that the required numbers of fuel elements are proportional to reactor power levels, i.e., the ratio of fuel elements between any reactor and the reference reactor is equal to the ratio of power levels. The amount of special nuclear materials within the elements will vary according to whether or not the reactor is on recycle and the length of time on recycle as previously discussed. For the LMFBR, because of a lack of a firm commercial-size design, no value for the number of fuel elements in the core was used. Shipment size for the LMFBR fresh fuel elements was determined by the amount of plutonium in the fuel. A value of 200 kg of plutonium per shipment was used to calculate the number of LMFBR fuel shipments.

Using the data of Table XII, the material flows portrayed in Figures 2 through 4 have been converted to numbers of shipments. Tables XIII through XV summarize the number of required shipments for the high, median, and low growth cases, respectively.

Since total numbers of shipments at different stages of the fuel cycle are important in overall transportation safeguards analyses, the following figures are included:

 Shipments of plutonium to fabrication plants, plotted in Figures 5, 6, and 7

|                       | and the second |
|-----------------------|------------------------------------------------------------------------------------------------------------------|
| PWR <sup>7</sup>      | 193 @ 1085 MWe                                                                                                   |
| BWR <sup>7</sup>      | 764 @ 1093 MWe                                                                                                   |
| HTGR <sup>9</sup>     | 3944 @ 1160 MWe                                                                                                  |
| Shipment Capacities 1 | or Trucks                                                                                                        |
| PWR Fuel              |                                                                                                                  |
| Fresh                 | 14 elements                                                                                                      |
| Spent                 | 2 elements                                                                                                       |
| BWR Fuel              |                                                                                                                  |
| Fresh                 | 32 elements                                                                                                      |
| Spent                 | 4 elements                                                                                                       |
| HTGR Fuel             |                                                                                                                  |
| Fresh                 | 90 elements                                                                                                      |
| Recycle               | 45 elements                                                                                                      |
| LMFBR Fuel            |                                                                                                                  |
| Fresh                 | 200 kg Pu**                                                                                                      |
| PuO2                  | 300 kg Pu <sup>10</sup>                                                                                          |
| UF.                   | 1149 kg U <sup>235</sup>                                                                                         |

TABLE XII ASSUMED SHIPMENT DATA FOR A CONVENTIONAL ROAD VEHICLE

\*Due to the lack of firm commercial-size I.MFBR designs, no value for the number of fuel elements is given.

\*\* LMFBR fresh fuel shipments were assumed to be determined by the amount of plutonium in the fuel.

|      |           | Pu to R | eactors | Pu to Fabricators |     | To Reprocessors |  |
|------|-----------|---------|---------|-------------------|-----|-----------------|--|
| Year | % Recycle | L.WR    | FBR     | LWR               | FBR | LWR Spent Fuel  |  |
| 1985 | 25        | 93      | 0       | 33                | 0   | 4,350           |  |
|      | 80        | 204     | 0       | 74                | 0   | 4,350           |  |
| 1990 | 25        | 165     | 0       | 68                | 0   | 3, 160          |  |
|      | 80        | 438     | 0       | 171               | 0   | 8,160           |  |
| 1995 | 25        | 171     | 53      | 97                | 55  | 13,080          |  |
|      | 80        | 624     | 53      | 261               | 55  | 13,080          |  |
| 2000 | 25        | 329     | 420     | 144               | 270 | 18,150          |  |
|      | 80        | 962     | 420     | 390               | 270 | 18,150          |  |

# TABLE XIII

ł.

# ANNUAL SHIPMENT SUMMARY - HIGH GROWTH CASE

Number of Shipments

|      |           | N        | umber o | f Shipments |           |                 |
|------|-----------|----------|---------|-------------|-----------|-----------------|
|      |           | Pu to Re | eactors | Pu to Fat   | oricators | To Reprocessors |
| Vear | % Recycle | LWR      | FBR     | LWR         | FBR       | LWR Spent Fuel  |
|      | 25        | 75       | 0       | 28          | 0         | 3, 925          |
| 1985 | 80        | 200      | 0       | 67          | 0         | 3,925           |
|      | 25        | 119      | 0       | 59          | 0         | 7,200           |
| 1990 | 80        | 365      | 0       | 145         | 0         | 7,200           |
|      | 95        | 171      | 14      | 88          | 17        | 10,900          |
| 1995 | 80        | 492      | 14      | 288         | 17        | 10,900          |
|      | 25        | 306      | 145     | 112         | 76        | 15,200          |
| 2000 | 80        | 815      | 145     | 326         | 76        | 15, 200         |

.

# ANNUAL SHIPMENT SUMMARY - MEDIAN GROWTH CASE

TABLE XIV

| Year | % Recycle | Pu to Reactors<br>LWR | Pu to Fabricators<br>LWR | To Reprocessors<br>LWR Spent Fuels |
|------|-----------|-----------------------|--------------------------|------------------------------------|
| 1985 | 25        | 65                    | 23                       | 3, 440                             |
| 10.1 | 80        | 196                   | 66                       | 3, 440                             |
| 1990 | 25        | 96                    | 47                       | 5, 710                             |
|      | 80        | 307                   | 130                      | 5,710                              |
| 1995 | 25        | 116                   | 66                       | 8,335                              |
|      | 80        | 388                   | 187                      | 8,335                              |
| 2000 | 25        | 191                   | 89                       | 11,800                             |
|      | 80        | 545                   | 248                      | 11,800                             |

# ANNUAL SHIP MENT SUMMARY - LOW GROWTH CASE Number of Shipments

TABLE XV











Figure 7. Plutonium Shipments to Fabrication · Median Growth Case

 Shipments of plutonium fuel to reactors, plotted in Figures 8, 9, and 10

Potential shipments not detailed here are those of excess plutonium to storage sites, if different from the reprocessing location.

For the Fort St. Vrain HTGR, the annual number of shipments is one shipment of HEU to the fuel fabricator and four shipments of fresh fuel to the reactor. The number of spent fuel shipments each year is 47.

SNM shipment requirements depend on the size of the nuclear industry, the structure of the fuel cycle, and the specific transportation modes which are assumed. For example, requirements such that plutonium be shipped only in the form of mixed oxide (20 - 30 wt % Pu) would affect the number of shipments from reprocessors to fabrication depending on the container design and type of carrier. Co-location of reprocessing and fabrication facilities would eliminate this transportation leg within the fuel cycle and reduce the number of SNM shipments. These considerations affect the structure of the transportation network. Given such assumptions, a network simulation model, as described in Reference 11, can be used to predict capital and manpower requirements for a commercial SNM transportation industry. Such an analysis is to be performed at a future date in the physical protection analysis project. 1



. . . . . 8. Plutonium Shipments to Reactors - Median Growth Case



Figure 9. Plutonium Shipments to Fabrication - Low Growth Case



.

Figure 10. Plutonium Shipments to Reactors - Low Growth Case

### APPENDIX

Reactor Commitments as of July 1, 1976

| NO. | TYPE | MUE  | INITIAL<br>OPERATICH | REACTOR           | NEAREST             | CODE                  |
|-----|------|------|----------------------|-------------------|---------------------|-----------------------|
|     |      | 200  | 1058                 | DRESDEN 1         | JOLIET, ILL.        | DJI                   |
| 1   | BUR  | 200  | 1900                 | VONKEE            | NORTH ADAMS, MASS.  | NAR                   |
| 5   | PUR  | 175  | 1961                 | TNOTAN POINT 1    | PEEKSKILL, N.Y.     | IPP                   |
| 3   | PUR  | 265  | 1962                 | DIC BOCK POINT    | GAYLORD. MICH.      | BRP                   |
| 4   | BUR  | 78   | 1962                 | BIG RUCK FOILT    | FURFKA.CAL.         | HBC                   |
| 5   | BUR  | 63   | 1963                 | HUHBULDI BHT      | OCEANSIDE .CAL.     | SOC                   |
| 6   | PUR  | 430  | 1968                 | SAM UNUFRE I      | MIDDLETOUN CONN.    | HCO                   |
| 7   | PUR  | 575  | 1968                 | HADDAM NECK       | IA CROSSE UIS.      | LCU                   |
| 8   | BUR  | 48   | 1969                 | LA CROSSE         | CH CROSSERESS       | NMP                   |
| ä   | BUR  | 610  | 1969                 | NINE FILE POINT 1 | TONC DILED N 1      | TRN                   |
| 10  | RUR  | 650  | 1969                 | OYSTE! CREEK      | TUNS RIVER, H.J.    | CNV                   |
|     | PUR  | 490  | 1970                 | GINNA             | ALTON, N.Y.         | DIT                   |
| 12  | RUP  | 888  | 1970                 | DRESDEN 2         | JOLIET, ILL.        | PRU                   |
| 12  | PUP  | 497  | 1970                 | POINT BEACH 1     | MANITOUOC, WIS.     | RNI                   |
| 13  | BUD  | 652  | 1970                 | MILLSTONE 1       | NEW LONDON, CONN.   | FEC                   |
| 17  | DUD  | 665  | 1971                 | ROBINSON 2        | FLORENCE, S.C.      | F SC                  |
| 15  | PUID | 548  | 1971                 | HONTICELLO        | ST. CLOUD, MINN.    | nsn                   |
| 16  | DUR  | 000  | 1971                 | DRESPEN 3         | JOLIET, ILL.        | DJI                   |
| 17  | BUR  | 200  | 1071                 | PALISADES         | ST. JOSEPH, MICH.   | CSJ                   |
| 18  | PUR  | 100  | 1072                 | QUAD CITIES 1     | CLINTON, IA.        | 001                   |
| 19  | BUR  | 800  | 1072                 | QUAD CITIES 2     | CLINTON, IA.        | QCI                   |
| 20  | BUR  | 800  | 1972                 | POINT REACH 2     | MANITOWOC, WIS.     | PBU                   |
| 21  | PUR  | 497  | 1976                 | UEDBONT YANKEE    | GREENFIELD, MASS.   | UYU                   |
| 55  | BUR  | 515  | 1972                 | BATNE VANKEE      | AUGUSTA, ME.        | MYM                   |
| 53  | PUR  | 799  | 1976                 | DILCOTH 1         | BOURNE, MASS.       | PPM                   |
| 24  | BUR  | 670  | 1972                 | CUDDY 1           | WILLIAMSBURG, VA.   | SUV                   |
| 25  | PUR  | 788  | 1972                 | SURRT A           | MIANI.FLA.          | TPF                   |
| 26  | PUR  | 666  | 1972                 | TURKET FOITT J    | UTLL TAMSBURG. VA.  | SUV                   |
| 27  | PUR  | 788  | 1973                 | SURRY C           | UNITEGAN, ILL.      | ZUI                   |
| 28  | PUR  | 1100 | 1973                 | 2101 1            | and the army a said | and the second second |

| 29         PUR         871         1973         OCONEE 1         ANDERSON, S.C.         OAS           30         PUR         666         1973         TURKEY POINT 4         MIAMI, FLA.         TPF           31         PUR         457         1973         FORT CALHOUN 1         BLAIR, NEB.         FCH           32         PUR         530         1973         PRAIRIE ISLAND 1         RED UING, MINN.         PIM           33         PUR         1100         1973         ZION 2         WAUKEGAN, ILL.         ZUI           34         BUR         545         1974         ARNOLD 1         CEDAR RAPIDS, IA.         ACI           35         PUR         540         1974         KEWAUNEE         GREEN BAY, UIS.         KGB           36         PUR         873         1974         INDIAN POINT 2         PEKSKILL, N.Y.         IPP           37         BUR         1865         1974         PEACH BOTTOM 2         LANCASTER, PA.         FLP           38         BUR         778         1974         COOPER         MEBRASKA CITY, NEB         CNB           39         BUR         1667         1974         BROWNS FERRY 1         DECATUR, ALA.         BFD                                                                                                                                     | NO. | TYPE | MUE  | INITIAL | REACTOR             | NEAREST            | CODE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|---------|---------------------|--------------------|------|
| 30         PUR         666         1973         TURKEY POINT 4         MIAMI,FLA.         TPF           31         PUR         457         1973         FORT CALHOUN 1         BLAIR,NEB.         FCH.           32         PUR         530         1973         FRAIRIE ISLAND 1         RED UING,MINN.         PIM           33         PUR         1100         1973         ZION 2         WAUKEGAN,ILL.         ZUI           34         BUR         545         1974         ARNOLD 1         CEDAR RAPIDS,IA.         ACR           35         PUR         540         1974         ARNOLD 1         CEDAR RAPIDS,IA.         ACR           36         PUR         873         1974         INDIAN POINT 2         PEKSKILL,N.Y.         IPF           37         BUR 1067         1974         PEACH BOTTOM 2         LANCASTER,PA.         FLP           38         BUR 1067         1974         BROWHS FERRY 1         DECATUR,ALA.         BFD           39         BUR 1067         1974         BROWHS FERRY 1         DECATUR,ALA.         BFD           40         PUR 818         1974         THREE MILE ISLAND 1         HARRISBURG,PA.         TMI           41         PUR 836         <                                                                                                                      | 29  | FUR  | 871  | 1973    | OCONEE 1            | ANDERSON, S.C.     | OAS  |
| 31         PUR         457         1973         FORT CALHOUN 1         BLAIR, MEB.         FCM           32         PUR         530         1973         PRAIRIE ISLAND 1         RED WING, MINN.         PIM           33         PUR         1100         1973         ZION 2         WAUKEGAN, ILL.         ZUI           34         BUR         545         1974         ARNOLD 1         CEDAR RAPIDS, IA.         ACG           35         PUR         540         1974         KEWAUNEE         GREEN BAY, UIS.         KCB           36         PUR         873         1974         INDIAN POINT 2         PERKSTILL, N.Y.         IPP           37         BUR         1065         1974         PEACH BOTTOM 2         LANCASTER, PA.         FLP           38         BUR         778         1974         COOPER         NEBRASKA CITY, NEB         CHB           39         BUR         1067         1974         BROWHS FERRY 1         DECATUR, ALA.         BFD           40         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG, PA.         THI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSELUVILLE, ARK. <td< td=""><td>30</td><td>PUR</td><td>666</td><td>1973</td><td>TURKEY POINT 4</td><td>MIAMI, FLA.</td><td>TPF</td></td<> | 30  | PUR  | 666  | 1973    | TURKEY POINT 4      | MIAMI, FLA.        | TPF  |
| 32         PUR         530         1973         PRAIRIE ISLAND 1         RED WING, MINN.         PIM           33         PUR         1100         1973         ZION 2         WAUKEGAN, ILL.         ZUI           34         BUR         545         1974         ARNOLD 1         CEDAR RAPIDS, IA.         ACR           35         PUR         540         1974         KEWAUNEE         GREEN BAY, UIS.         KGB           36         PUR         873         1974         INDIAN POINT 2         PEEKSKILL, N.Y.         IPP           37         BUR         1865         1974         ROUNS FERRY 1         DECATUR, ALA.         BFD           38         BUR         778         1974         COOPER         NEBRASKA CITY, NEB         CNB           39         BUR         1667         1974         BROWNS FERRY 1         DECATUR, ALA.         BFD           40         PUR         871         1974         COOPER         NEBRASKA CITY, NEB         CNB           39         BUR         1665         1974         PRACHER SUCLEAR 1         RUSELLVILLE, ARK.         ARA           40         PUR         871         1975         COONEE 3         ANDERSON,S.C.C.         CAS                                                                                                                            | 31  | PUR  | 457  | 1973    | FORT CALHOUN 1      | BLAIR, NEB.        | FCN  |
| 33         PUR         1100         1973         ZION 2         UAUKEGAN, ILL.         ZUI           34         BUR         545         1974         ARNOLD 1         CEDAR RAPIDS, IA.         ACR           35         PUR         540         1974         ARNOLD 1         CEDAR RAPIDS, IA.         ACR           36         PUR         873         1974         INDIAN POINT 2         PEEKSKILL,N.Y.         IPP           37         BUR         1865         1974         PEACH BOTTOM 2         LANCASTER,PA.         FLP           38         BUR         778         1974         COOPER         NEBRASKA CITY,NEB CNB           39         BUR         1867         1974         BROUNS FERRY 1         DECATUR,ALA.         BFD           40         PUR         871         1974         OCONEE 2         ANDERSON,S.C.         OAS           41         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG,PA.         TMI           42         PUR         816         1974         ARKANSAS NUCLEAR 1         RUSSELUVILLE,ARK.         ARA           43         PUR         871         1975         RACH BOTTOM 3         LANCASTER,PA.         FLP                                                                                                                                  | 32  | PUR  | 530  | 1973    | PRAIRIE ISLAND 1    | RED WING, MINN.    | PIM  |
| 34         BUR         545         1974         ARNOLD 1         CEDAR RAPIDS, IA.         ACR           35         PUR         540         1974         KEWAUNEE         GREEN BAY, WIS.         KGB           36         PUR         873         1974         INDIAN POINT 2         PEEKSKILL, N.Y.         IPP           37         BUR         1665         1974         PEACH BOTTOM 2         LANCASTER, PA.         FLP           38         BUR         778         1974         COOPER         NEBRASKA CITY, NEB         CNB           39         BUR         1667         1974         BROWNS FERRY 1         DECATUR, ALA.         BFD           40         PUR         871         1974         OCONEE 2         ANDERSON, S.C.         OAS           41         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG, PA.         TMI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLUILE, ARK.         ARA           43         PUR         871         1974         PRACH BOTTOM 3         LANCASTER, PA.         FLP           44         BUR         1665         1974         PRAIRIE ISLAND 2         RED WING, MINN.                                                                                                                     | 33  | PUR  | 1100 | 1973    | ZION 2              | WAUKEGAN, ILL.     | ZUI  |
| 35         PUR         540         1974         KEUAUNEE         GREEN BAY, UIS.         KGB           36         PUR         873         1974         INDIAN POINT 2         PEEKSKILL,N.Y.         IPP           37         BUR         1065         1974         PEACH BOTTOM 2         LANCASTER, PA.         FLP           38         BUR         778         1974         COOPER         NEBRASKA CITY, NEB         CNB           39         BUR         1067         1974         BROWNS FERRY 1         DECATUR, ALA.         BFD           40         PUR         818         1974         TREE MILE ISLAND 1         HARRISBURG, PA.         TMI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLVILLE, ARK.         ARA           43         PUR         871         1974         PRACH BOTTOM 3         LANCASTER, PA.         FLP           44         BUR         1065         1974         PRACH BOTTOM 3         LANCASTER, PA.         FLP           45         PUR         530         1974         PRACH BOTTOM 3         LANCASTER, PA.         FLP           46         BUR         1067         1975         BROWNS FERY 2         DECATUR, ALA.                                                                                                                 | 34  | BUR  | 545  | 1974    | ARNOLD 1            | CEDAR RAPIDS, IA.  | ACR  |
| 36         PUR         873         1974         INDIAN POINT 2         PEEKSKILL,N.Y.         IPP           37         BUR         1065         1974         PEACH BOTTOM 2         LANCASTER,PA.         FLP           38         BUR         778         1974         COOPER         NEBRASKA CITY,NEB         CNB           39         BUR         1067         1974         BROWHS FERRY 1         DECATUR,ALA.         BFD           40         PUR         871         1974         OCONEE 2         ANDERSON,S.C.         OAS           41         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG,PA.         TMI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLUILLE,ARK.         ARA           43         PUR         871         1574         OCONEE 3         ANDERSON,S.C.         CAS           44         BUR         1065         1974         PEACH BOTTOM 3         LANCASTER,PA.         FLP           45         PUR         530         1975         RAICHO SECO 1         LODI,CAL.         RSC           46         BUR         1067         1975         RANCHO SECO 1         LODI,CAL.         RSC     <                                                                                                                       | 35  | PUR  | 540  | 1974    | KEUAUNEE            | GREEN BAY, WIS.    | KGB  |
| 37         BUR         1065         1974         PEACH BOTTOM 2         LANCASTER, PA.         FLP           38         BUR         778         1974         COOPER         NEBRASKA CITY, NEB         CNB           39         BUR         1067         1974         BROWHS FERRY 1         DECATUR, ALA.         BFD           40         PUR         871         1974         OCONEE 2         ANDERSON, S.C.         OAS           41         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG, PA.         TMI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLUILLE, ARK.         ARA           43         PUR         871         1974         OCONEE 3         ANDERSON, S.C.         CAS           44         BUR         1065         1974         PEACH BOTTOM 3         LANCASTER, PA.         FLP           45         PUR         830         1974         PRAIRIE ISLAND 2         RED UING, MINN.         PIM           46         BUR         1065         1974         PRAIRIE ISLAND 2         RED UING, MINN.         PIM           46         BUR         1067         1975         BROWNS FERRY 2         DECATUR, ALA.                                                                                                               | 36  | PUR  | 873  | 1974    | INDIAN POINT 2      | PEEKSKILL, N.Y.    | IPP  |
| 38         BUR         778         1974         COOPER         NEBRASKA CITY,NEB         CNB           39         BUR         1067         1974         BROUNS FERRY 1         DECATUR,ALA.         BFD           40         PUR         871         1974         BROUNS FERRY 1         DECATUR,ALA.         BFD           40         PUR         871         1974         OCONEE 2         ANDERSON,S.C.         OAS           41         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG,PA.         TMI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLVILLE,ARK.         ARA           43         PUR         871         1974         PEACH BOTTOM 3         LANCASTER,PR.         FLP           45         PUR         530         1974         PRAIRIE ISLAND 2         RED UING,MINN.         PIM           46         BUR         1067         1975         BROUNS FERRY 2         DECATUR,ALA.         BFD           47         PUR         913         1975         RANCHO SECO 1         LODI,CAL.         RSC           48         PUR         850         1975         CALUERT CLIFFS 1         ANNAPOLIS,MD.         CAM                                                                                                                  | 37  | BUR  | 1065 | 1974    | PEACH BOTTOM 2      | LANCASTER, PA.     | FLP  |
| 39         BUR         1067         1974         BROWNS FERRY 1         DECATUR, ALA.         BFD           40         PUR         871         1974         OCONEE 2         ANDERSON, S.C.         OAS           41         PUR         818         1974         THREE MILE ISLAND 1         HARRISBURG, PA.         TMI           42         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLUILLE, ARK.         ARA           43         PUR         836         1974         ARKANSAS NUCLEAR 1         RUSSELLUILLE, ARK.         ARA           43         PUR         836         1974         PEACH BOTTOM 3         LANCASTER, PA.         FLP           44         BUR         1065         1974         PEACH BOTTOM 3         LANCASTER, PA.         FLP           45         PUR         530         1974         PRAIRIE ISLAND 2         RED WING, MINN.         PIM           46         BUR         1067         1975         BROWNS FERRY 2         DECATUR, ALA.         BFD           47         PUR         913         1975         RANCHO SECO 1         LODI, CAL.         RSC           48         PUR         850         1975         CALVERT CLIFFS 1         ANNAPOLIS,                                                                                                         | 38  | BUR  | 778  | 1974    | COOPER              | NEBRASKA CITY, NEB | CNB  |
| 40       PUR       871       1974       OCONEE 2       ANDERSON, S.C.       OAS         41       PUR       818       1974       THREE MILE ISLAND 1       HARRISBURG, PA.       TMI         42       PUR       836       1974       ARKANSAS MUCLEAR 1       RUSSELLUILLE, ARK.       ARA         43       PUR       871       1974       OCONEE 3       ANDERSON, S.C.       CAS         44       BUR       1065       1974       PEACH BOTTOM 3       LANCASTER, PR.       FLP         45       PUR       530       1974       PEACH BOTTOM 3       LANCASTER, PR.       FLP         46       BUR       1067       1975       BROWNS FERRY 2       DECATUR, ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI, CAL.       RSC         48       PUR       850       1975       CALUERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       FITZPATR'CK       OSWEGO, N.Y.       NMP         50       PUR       1054       1975       COX 1       ST. JOSEPH, MICH.       JSJ         51       BUR       786       1975       HATCH 1       MC RAE, GA.<                                                                                                                                                                                                 | 39  | BUR  | 1067 | 1974    | BROWNS FERRY 1      | DECATUR, ALA.      | BFD  |
| 41       PUR       818       1974       THREE MILE ISLAND 1 HARRISBURG, PA.       TMI         42       PUR       836       1974       ARKANSAS NUCLEAR 1       RUSSELLUILLE, ARK.       ARA         43       PUR       871       1974       OCONEE 3       ANDERSON, S.C.       CAS         44       BUR       1065       1974       PEACH BOTTOM 3       LANCASTER, PR.       FLP         45       PUR       530       1974       PRACH BOTTOM 3       LANCASTER, PR.       FLP         46       BUR       1067       1975       BROWNS FERRY 2       DECATUR, ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI, CAL.       RSC         48       PUR       850       1975       CALVERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       FITZPATR'CK       OSUEGO, N.Y.       NMP         50       PUR       1054       1975       BRUNSUICK 2       WILMINGTON, N.C.       BNC         51       BUR       786       1975       HATCH 1       MC RAE, CA.       HMG         53       PUR       828       1975       MAILISTONE 2       NEU LONDON, CONN. <td>40</td> <td>PUR</td> <td>871</td> <td>1974</td> <td>OCONEE 2</td> <td>ANDERSON, S.C.</td> <td>OAS</td>                                                                                 | 40  | PUR  | 871  | 1974    | OCONEE 2            | ANDERSON, S.C.     | OAS  |
| 42       PUR       836       1974       ARKANSAS NUCLEAR 1       RUSSELLUILLE, ARK.       ARA         43       PUR       871       1974       OCONEE 3       ANDERSON, S.C.       CAS         44       BUR       1065       1974       PEACH BOTTON 3       LANCASTER, PR.       FLP         45       PUR       530       1974       PRAIRIE ISLAND 2       RED WING, MINN.       PIM         46       BUR       1067       1975       BROWNS FERRY 2       DECATUR, ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI, CAL.       RSC         48       PUR       850       1975       CALVERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       FITZPATR*CK       OSWEGO, N.Y.       NMP         50       PUR       1054       1975       COOK 1       ST. JOSEPH, MICH.       JSJ         51       BUR       790       1975       BRUNSUICK 2       WILMINGTON, N.C.       BNC         52       BUR       786       1975       MATCH 1       MC RAE, CA.       HMG         53       PUR       828       1976       TROJAN       KELSO, UASH.                                                                                                                                                                                                         | 41  | PUR  | 818  | 1974    | THREE MILE ISLAND 1 | HARRISBURG, PA.    | TMI  |
| 43       PUR       871       1974       OCONEE 3       ANDERSON, S.C.       CAS         44       BUR       1065       1974       PEACH BOTTOM 3       LANCASTER, PR.       FLP         45       PUR       530       1974       PRAIRIE ISLAND 2       RED WING, MINN.       PIM         46       BUR       1067       1975       BROWNS FERRY 2       DECATUR, ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI, CAL.       RSC         48       PUR       850       1975       CALUERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       COK 1       ST. JOSEPH, MICH.       JSJ         50       PUR       1054       1975       BRUNSUICK 2       WILMINGTON, N.C.       BNC         51       BUR       786       1975       MATCH 1       MC RAE, CA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEW LONDON, CONN.       MNL         54       PUR       852       1976       BEAUER VALLEY 1       ROCHESTER, PA.       BUP         55       PUR       1130       1976       TROJAN       KELSO, UASH.                                                                                                                                                                                                           | 42  | PUR  | 836  | 1974    | ARKANSAS NUCLEAR 1  | RUSSELLVILLE, ARK. | ARA  |
| 44       BUR       1065       1974       PEACH BOTTOM 3       LANCASTER, PA.       FLP         45       PUR       530       1974       PRAIRIE ISLAND 2       RED WING, MINN.       PIM         46       BUR       1067       1975       BROWNS FERRY 2       DECATUR, ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI, CAL.       RSC         48       PUR       850       1975       CALVERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       FITZPATR*CK       OSWEGO, N.Y.       NMP         50       PUR       1054       1975       COOK 1       ST. JOSEPH, MICH.       JSJ         51       BUR       786       1975       BRUNSUICK 2       WILMINGTON, N.C.       BNC         52       BUR       786       1975       MATCH 1       MC RAE, GA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEW LONDON, CONN.       MNL         54       PUR       852       1976       BEAUER VALLEY 1       ROCHESTER, PA.       BUP         55       PUR       1130       1976       TROJEN       KELSO, WASH.                                                                                                                                                                                                         | 43  | PUR  | 871  | 1974    | OCONEE 3            | ANDERSON, S.C.     | CAS  |
| 45       PUR       530       1974       PRAIRIE ISLAND 2       RED WING,MINN.       PIM         46       BUR       1067       1975       BROWNS FERRY 2       DECATUR,ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI,CAL.       RSC         48       PUR       850       1975       CALVERT CLIFFS 1       ANNAPOLIS,MD.       CAM         49       BUR       821       1975       FITZPATR*CK       OSUEGO,N.Y.       NMP         50       PUR       1054       1975       COOK 1       ST. JOSEPH,MICH.       JSJ         51       BUR       790       1975       BRUNSUICK 2       WILMINGTON,N.C.       BNC         52       BUR       786       1975       HATCH 1       MC RAE,GA.       HMC         53       PUR       828       1975       MILLSTONE 2       NEW LONDON,CONN.       MNL         54       PUR       852       1976       BEAVER VALLEY 1       ROCHESTER,PA.       BUP         55       PUR       130       1976       TROJAN       KELSO,UASH.       TPO         55       PUR       130       1976       TROJAN       KELSO,UASH.       TPO <td>44</td> <td>BUR</td> <td>1065</td> <td>1974</td> <td>PEACH BOTTOM 3</td> <td>LANCASTER, PR.</td> <td>FLP</td>                                                                                                     | 44  | BUR  | 1065 | 1974    | PEACH BOTTOM 3      | LANCASTER, PR.     | FLP  |
| 46       BUR       1067       1975       BROWNS FERRY 2       DECATUR, ALA.       BFD         47       PUR       913       1975       RANCHO SECO 1       LODI, CAL.       RSC         48       PUR       850       1975       CALUERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       FITZPATR'CK       OSWEGO, N.Y.       NMP         50       PUR       1054       1975       COOK 1       ST. JOSEPH, MICH.       JSJ         51       BUR       790       1975       BRUNSWICK 2       WILMINGTON, N.C.       BNC         52       BUR       786       1975       HATCH 1       MC RAE, GA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEU LONDON, CONN.       MNL         54       PUR       852       1976       BEAUER VALLEY 1       ROCHESTER, PA.       BUP         55       PUR       1130       1976       TROJAN       KELSO, UASH.       TPO         56       PUR       965       1976       INDIAN POINT 3       PEEKSKILL, N.Y.       IPP         57       PUR       802       1976       ST. LUCIE 1       OKEECHOBEE, FLA.                                                                                                                                                                                                             | 45  | PUR  | 530  | 1974    | PRAIRIE ISLAND 2    | RED WING, MINN.    | PIM  |
| 47       PUR       913       1975       RANCHO SECO 1       LODI,CAL.       RSC         48       PUR       850       1975       CALUERT CLIFFS 1       ANNAPOLIS,MD.       CAM         49       BUR       821       1975       FITZPATR'CK       OSWEGO,N.Y.       NMP         50       PUR       1054       1975       COOK 1       ST. JOSEPH,MICH.       JSJ         51       BUR       790       1975       BRUNSWICK 2       WILMINGTON,N.C.       BNC         52       BUR       786       1975       HATCH 1       MC RAE,GA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEW LONDON,CONN.       MNL         54       PUR       852       1976       BEAVER VALLEY 1       ROCHESTER,PA.       BUP         55       PUR       1130       1976       TROJAN       KELSO,UASH.       TPO         56       PUR       965       1976       INDIAN POINT 3       PEEKSKILL,N.Y.       IPP         57       PUR       802       1976       ST. LUCIE 1       OKEECHOBEE,FLA.       SLF         58       HTGR       330       1976       FORT ST. VRAIN       GREELEY,COL.       FSU                                                                                                                                                                                                               | 46  | BUR  | 1067 | 1975    | BROWNS FERRY 2      | DECATUR, ALA.      | BFD  |
| 48       PUR       850       1975       CALUERT CLIFFS 1       ANNAPOLIS, MD.       CAM         49       BUR       821       1975       FITZPATR'CK       OSUEGO, N.Y.       NMP         50       PUR       1054       1975       COOK 1       ST. JOSEPH, MICH.       JSJ         51       BUR       790       1975       BRUNSUICK 2       WILMINGTON, N.C.       BNC         52       BUR       786       1975       HATCH 1       MC RAE, GA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEU LONDON, CONN.       MNL         54       PUR       852       1976       BEAVER VALLEY 1       ROCHESTER, PA.       BUP         55       PUR       1130       1976       TROJUN       KELSO, UASH.       TPO         56       PUR       965       1976       INDIAN POINT 3       PEEKSKILL, N.Y.       IPP         57       PUR       802       1976       ST. LUCIE 1       OKEECHOBEE, FLA.       SLF         58       HTGR       330       1976       FORT ST. URAIN       GREELEY, COL.       FSU         59       BUR       1067       1976       BROUNS FERRY 3       DECATUR, ALA.                                                                                                                                                                                                        | 47  | PUR  | 913  | 1975    | RANCHO SECO 1       | LODI, CAL.         | RSC  |
| 49       BUR       821       1975       FITZPATR'CK       OSWEGO,N.Y.       NNP         50       PUR       1054       1975       COOK 1       ST. JOSEPH,MICH.       JSJ         51       BUR       790       1975       BRUNSWICK 2       WILMINGTON,N.C.       BNC         52       BUR       786       1975       HATCH 1       MC RAE,GA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEW LONDON,CONN.       MNL         54       PUR       852       1976       BEAVER VALLEY 1       ROCHESTER,PA.       BUP         55       PUR       1130       1976       TROJUN       KELSO,UASH.       TPO         56       PUR       965       1976       INDIAN POINT 3       PEEKSKILL,N.Y.       IPP         57       PUR       802       1976       ST. LUCIE 1       OKEECHOBEE,FLA.       SLF         58       HTGR       330       1976       FORT ST. URAIN       GREELEY,COL.       FSU         59       BUR       1067       1976       BROUNS FERRY 3       DECATUR,ALA.       BFD         60       PUR       855       1976       CRYSTAL RIVER 3       OCALA,FLA.       CRF <td>48</td> <td>PUR</td> <td>859</td> <td>1975</td> <td>CALVERT CLIFFS 1</td> <td>ANNAPOLIS, MD.</td> <td>CAN</td>                                                                                           | 48  | PUR  | 859  | 1975    | CALVERT CLIFFS 1    | ANNAPOLIS, MD.     | CAN  |
| 50         PUR         1054         1975         COOK 1         ST. JOSEPH, MICH.         JSJ           51         BUR         790         1975         BRUNSWICK 2         WILMINGTON, N.C.         BNC           52         BUR         786         1975         HATCH 1         MC RAE, CA.         HMG           53         PUR         828         1975         MILLSTONE 2         NEW LONDON, CONN.         MNL           54         PUR         852         1976         BEAVER VALLEY 1         ROCHESTER, PA.         BUP           55         PUR         1130         1976         TROJUN         KELSO, UASH.         TPO           56         PUR         965         1976         INDIAN POINT 3         PEEKSKILL, N.Y.         IPP           57         PUR         802         1976         ST. LUCIE 1         OKEECHOBEE, FLA.         SLF           58         HTGR         330         1976         FORT ST. URAIN         GREELEY, COL.         FSU           59         BUR         1067         1976         BROUNS FERRY 3         DECATUR, ALA.         BFD           60         PUR         855         1976         CRYSTAL RIVER 3         OCALA, FLA.         CRF  <                                                                                                                                | 49  | BUR  | 821  | 1975    | FITZPATR'CK         | OSUEGO, N.Y.       | NMP  |
| 51       BUR       799       1975       BRUNSWICK 2       WILMINGTON, N.C.       BNC         52       BUR       786       1975       HATCH 1       MC RAE, GA.       HMG         53       PUR       828       1975       MILLSTONE 2       NEW LONDON, CONN.       MNL         54       PUR       852       1976       BEAVER VALLEY 1       ROCHESTER, PA.       BUP         55       PUR       1130       1976       TROJUN       KELSO, UASH.       TPO         56       PUR       965       1976       INDIAN POINT 3       PEEKSKILL, N.Y.       IPP         57       PUR       802       1976       ST. LUCIE 1       OKEECHOBEE, FLA.       SLF         58       HTGR       330       1976       FORT ST. URAIN       GREELEY, COL.       FSU         59       BUR       1067       1976       BROUNS FERRY 3       DECATUR, ALA.       BFD         60       PUR       855       1976       CRYSTAL RIVER 3       OCALA, FLA.       CRF                                                                                                                                                                                                                                                                                                                                                                                     | 50  | PUR  | 1054 | 1975    | COOK 1              | ST. JOSEPH, MICH.  | SJ   |
| 52         BUR         786         1975         HATCH 1         MC RAE, GA.         HMG           53         PUR         828         1975         MILLSTONE 2         NEW LONDON, CONN.         MNL           54         PUR         852         1976         BEAVER VALLEY 1         ROCHESTER, PA.         BUP           55         PUR         1130         1976         TROJUN         KELSO, UASH.         TPO           56         PUR         965         1976         INDIAN POINT 3         PEEKSKILL, N.Y.         IPP           57         PUR         802         1976         ST. LUCIE 1         OKEECHOBEE, FLA.         SLF           58         HTGR         330         1976         FORT ST. URAIN         GREELEY, COL.         FSU           59         BUR         1067         1976         BROUNS FERRY 3         DECATUR, ALA.         BFD           60         PUR         855         1976         CRYSTAL RIVER 3         OCALA, FLA.         CRF                                                                                                                                                                                                                                                                                                                                                      | 51  | BUR  | 799  | 1975    | BRUNSUICK 2         | WILMINGTON, N.C.   | BNC  |
| 53PUR8281975MILLSTONE 2NEW LONDON, CONN.MNL54PUR8521976BEAVER VALLEY 1ROCHESTER, PA.BUP55PUR11301976TROJUNKELSO, UASH.TPO56PUR9651976INDIAN POINT 3PEEKSKILL, N.Y.IPP57PUR8021976ST.LUCIE 1OKEECHOBEE, FLA.SLF58HTGR3301976FORT ST.URAINGREELEY, COL.FSU59BUR10671976BROUNS FERRY 3DECATUR, ALA.BFD60PUR8551976CRYSTAL RIVER 3OCALA, FLA.CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52  | BUR  | 786  | 1975    | HATCH 1             | MC RAE, CA.        | HMG  |
| 54PUR8521976BEAUER UALLEY 1ROCHESTER, PA.BUP55PUR11301976TROJENKELSO, UASH.TPO56PUR9651976INDIAN POINT 3PEEKSKILL, N.Y.IPP57PUR8021976ST.LUCIE 1OKEECHOBEE, FLA.SLF58HTGR3301976FORT ST.URAINGREELEY, COL.FSU59BUR10671976BROUNS FERRY 3DECATUR, ALA.BFD60PUR8551976CRYSTAL RIVER 3OCALA, FLA.CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53  | PUR  | 828  | 1975    | MILLSTONE 2         | NEW LONDON, CONN.  | MNL  |
| 55         PUR         1130         1976         TROJEN         KELSO, WASH.         TPO           56         PUR         965         1976         INDIAN POINT 3         PEEKSKILL, N.Y.         IPP           57         PUR         802         1976         ST. LUCIE 1         OKEECHOBEE, FLA.         SLF           58         HTGR         330         1976         FORT ST. URAIN         GREELEY, COL.         FSU           59         BUR         1067         1976         BROWNS FERRY 3         DECATUR, ALA.         BFD           60         PUR         855         1976         CRYSTAL RIVER 3         OCALA, FLA.         CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54  | PUR  | 852  | 1976    | BEAVER VALLEY 1     | ROCHESTER, PA.     | BUP  |
| 56PUR9651976INDIAN POINT 3PEEKSKILL,N.Y.IPP57PUR8021976ST. LUCIE 1OKEECHOBEE,FLA.SLF58HTGR3301976FORT ST. URAINGREELEY,COL.FSU59BUR10671976BROUNS FERRY 3DECATUR,ALA.BFD60PUR8551976CRYSTAL RIVER 3OCALA,FLA.CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55  | PUR  | 1130 | 1976    | TROJEN              | KELSO, WASH.       | TPO  |
| 57PUR8021976ST. LUCIE 1OKEECHOBEE,FLA.SLF58HTGR3301976FORT ST. URAINGREELEY,COL.FSU59BUR10671976BROUNS FERRY 3DECATUR,ALA.BFD60PUR8551976CRYSTAL RIVER 3OCALA,FLA.CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56  | PUR  | 965  | 1976    | INDIAN POINT 3      | PEEKSKILL, N.Y.    | IPP  |
| 58 HTGR 330 1976 FORT ST. URAIN GREELEY,COL. FSU<br>59 BUR 1067 1976 BROWNS FERRY 3 DECATUR,ALA. BFD<br>60 PWR 855 1976 CRYSTAL RIVER 3 OCALA,FLA. CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57  | PUR  | 208  | 1976    | ST. LUCIE 1         | OKEECHOBEE, FLA.   | SLF  |
| 59 BUR 1067 1976 BROWNS FERRY 3 DECATUR, ALA. BFD<br>60 PWR 855 1976 CRYSTAL RIVER 3 OCALA, FLA. CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58  | HTGR | 330  | 1976    | FORT ST. URAIN      | GREELEY, COL.      | FSU  |
| 60 PUR 855 1976 CRYSTAL RIVER 3 OCALA, FLA. CRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59  | BUR  | 1067 | 1976    | BROWNS FERRY 3      | DECATUR, ALA.      | BFD  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60  | PUR  | 855  | 1976    | CRYSTAL RIVER 3     | OCALA, FLA.        | CRF  |

-

|            | TYPE | NUE  | INITIAL | REACTOR            | NEAREST CITY        | CODE |
|------------|------|------|---------|--------------------|---------------------|------|
| NO.        |      |      |         | STARLO CANVON 1    | SAN LUIS OBISPO,C   | DCC  |
| <i>c</i> • | PUR  | 1084 | 1976    | DIABLO CHATON I    | DEEPHATER.N.J.      | SNJ  |
| 61         | PUP  | 1090 | 1976    | SALER 1            | ANNAPOLIS. MD.      | CAM  |
| 62         | PUR  | 850  | 1977    | CALUERT CLIFFS C   | HILMINGTON, N.C.    | BHC  |
| 63         | RUR  | 821  | 1977    | BRUNSWICK 1        | FREMONT . OHIO      | DBO  |
| 64         | PUR  | 906  | 1977    | DAUIS BESSE 1      | CHARLOTTESUILLE, V  | NCU  |
| 65         | PUP  | 934  | 1977    | NORTH ANNA 1       | DOTHEN ALA.         | FDA  |
| 66         | DUD  | 860  | 1977    | FARLEY 1           | CON LUIS ORISPO.C   | DCC  |
| 6.         | PWR  | 1186 | 1977    | DIABLO CANYON 2    | CUAPI ATTESUILLE.U  | NCU  |
| 68         | PUR  | 034  | 1977    | NORTH ANNA 2       | CHARLOTTE N.C.      | CNC  |
| 69         | PUR  | 1130 | 1978    | HC GUIRE 1         | OUCCELLUITLE ARK.   | ARA  |
| 70         | PUR  | 012  | 1978    | ARKANSAS NUCLEAR 2 | CT LOCEDH SICH.     | CSJ  |
| 71         | PUR  | 1054 | 1978    | COOK S             | ST. JUSEPHINA TENN. | SCT  |
| 72         | PUR  | 1149 | 1978    | SEQUOYAH 1         | CHATTAROUGH, TEL    | THI  |
| 73         | PUR  | 1140 | 1978    | THREE MILE ISLAND  | 2 HARRISBURG, FR.   | LSI  |
| 74         | PUR  | 900  | 1978    | LA SALLE 1         | LA SALLE, ILL.      | SCT  |
| 75         | BUR  | 10/8 | 1979    | SEQUOYAH 2         | CHATTANOUGH, TENT.  | CNC  |
| 76         | PUR  | 1148 | 1979    | MC GUIRE 2         | CHARLOTTE, H.C.     | HMG  |
| 77         | PUR  | 1180 | 1070    | HATCH 2            | AC RAE, GA.         | EDA  |
| 78         | BUR  | 785  | 1070    | FARLEY 2           | DOTHAN, ALA.        | CNV  |
| 79         | PUR  | 860  | 1979    | SHOREHAN 1         | PATCHOQUE, N.Y.     | CCC  |
| 80         | BUR  | 850  | 1979    | SUMMER 1           | SUNTER, S.C.        | 533  |
| 81         | PUR  | 900  | 1979    | CALEN 2            | DEEPWATER, N.J.     | 5113 |
| 82         | PUR  | 1115 | 1979    | WATTS BAR 1        | CROSSUILLE, TENN.   |      |
| 83         | PUR  | 1177 | 1979    | 210860 1           | CINCINNATI, OHIO    | 200  |
| 84         | BUR  | 810  | 1979    | LA CALLE 2         | LA SALLE, ILL.      | LSI  |
| 85         | BUR  | 1078 | 1979    | LA SALLE C         | PASCO, WASH.        | UPU  |
| 86         | BUR  | 1100 | 1979    | COMONCHE PEAK 1    | HILLSBORD, TEX.     | CPT  |
| 87         | PUR  | 1150 | 1980    | HATTE BAP 2        | CROSSUILLE, TENN.   | UBI  |
| 88         | PUR  | 1177 | 1380    | OFDEN 1            | ASHTABULA, OHIO     | PAU  |
| 89         | BUR  | 1285 | 1980    | BELLEFONTE 1       | HUNTSUILLE, ALA.    | BHH  |
| 90         | PUR  | 1213 | 1980    | COAND CHIE 1       | VICKSBURG, MISS.    | GGP  |
| 91         | BUR  | 1250 | 1980    | CCONT 2            | WILLOW RUN, MICH.   | FUR  |
| 92         | BUR  | 1093 | 1980    | FERNIC             |                     |      |

.

| NO. | TYPE | MUE  | INITIAL | NAME            | CITY               | CODE |
|-----|------|------|---------|-----------------|--------------------|------|
|     | DUD  | 1120 | 1980    | BYRON 1         | ROCKFORD, ILL.     | BRI  |
| 93  | PUR  | 1250 | 1980    | SOUTH TEXAS 1   | VICTORIA, TEX.     | STX  |
| 94  | PUR  | 1050 | 1989    | SUSQUEHANNA 1   | HAZLETON, PA.      | SHP  |
| 95  | BUR  | 1050 | 1981    | CATAUBA 1       | CHARLOTTE, N.C.    | CNC  |
| 96  | PUR  | 1153 | 1021    | LIMERICK 1      | POTTSTOWN, PA.     | LPP  |
| 97  | BUK  | 1055 | 1001    | RELLEFONTE 2    | HUNTSUILLE, ALA.   | BHA  |
| 98  | PUR  | 1213 | 1091    | UPPSS 1         | PASCO, WASH.       | UPU  |
| 99  | PUR  | 1220 | 1901    | RIDIAND 2       | MIDLAND, MICH.     | MDM  |
| 100 | PUR  | 818  | 1901    | HATEPEOPD 3     | NEW ORLEANS, LA.   | UNO  |
| 101 | PUR  | 1165 | 1981    | NORTH ANNA 3    | CHARLOTTESUILLE.   | NCU  |
| 102 | PWR  | 938  | 1981    | PEAUED HALLEY 2 | ROCHESTER .PA.     | BUP  |
| 103 | PUR  | 852  | 1981    | SEAVER VALLET L | PORTSHOUTH .N.H.   | SNH  |
| 104 | PUR  | 1200 | 1981    | SENBROOK A      | CLINTON, IA.       | OCI  |
| 105 | BUR  | 950  | 1981    | CELINION I      | OKEECHOBEE .FLA.   | SLF  |
| 106 | PUR  | 805  | 1981    | ST. LUCIE E     | JOLIFT, ILL.       | DJI  |
| 107 | PUR  | 1120 | 1981    | BRAIDWOOD I     | BOTON POLICE . LA. | BRL  |
| 108 | BUR  | 840  | 1981    | RIVER BERD I    | COLUMBIA. MO.      | CMO  |
| 109 | PUR  | 1150 | 1981    | CALLAUNY 1      | OCEANSIDE CAL.     | SOC  |
| 110 | PLR  | 1100 | 1981    | SAN UNUFRE E    | CHARLOTTESUILLE, U | NCU  |
| 111 | PUR  | 938  | 1981    | NORTH ANNA .    | UTIL CROPO TEX     | CPT  |
| 112 | PUR  | 1150 | 1982    | COMANCHE PERK 2 | ALLUSBORD, TEA.    | CNC  |
| 113 | PUR  | 1153 | 1982    | CATAUBA 2       | CHARLOTTE, H.C.    | UAU  |
| 114 | PUR  | 1240 | 1982    | UPPSS 3         | HBERDEEN, WHON.    | STY  |
| 115 | PUR  | 1250 | 1982    | SOUTH TEXAS 2   | UICTURIN, TEX.     | MDM  |
| 116 | PUR  | 492  | 1982    | MIDLAND 1       | MIDLAND, MICH.     | UDU  |
| 117 | PUR  | 1220 | 1982    | UPPSS 4         | PASCO, WASH.       | UCK  |
| 118 | PUR  | 1150 | 1982    | WOLF CREEK 1    | EMPORIA, KAN.      | RAD  |
| 119 | BUR  | 1205 | 1982    | PERRY 2         | ASHTABULA, UHIO    | PHU  |
| 120 | PUR  | 1150 | 1982    | MILLSTONE 3     | NEW LONDON, CONN.  | DUID |
| 121 | PUR  | 1270 | 1982    | PALO VERDE 1    | PHOENIX, ARIZ.     | CUD  |
| 122 | BUR  | 1050 | 1982    | SUSQUEHANNA 2   | HAZLETON, PA.      | TON  |
| 123 | PUR  | 1168 | 1982    | FORKED RIVER 1  | TOMS RIVER, N.J.   | 100  |
| 124 | BUR  | 1055 | 1982    | LIMERICK 2      | POTTSTOWN, PA.     | LPP  |

| ND. | TYPE | MUE  | INITIAL | REACTOR           | NEAREST            | CODE       |
|-----|------|------|---------|-------------------|--------------------|------------|
|     |      |      | 1092    | MARBLE HILL 1     | MADISON, IND.      | MHT        |
| 125 | PUR  | 1130 | 1092    | NINE MILE POINT 2 | OSWEGO, N.Y.       | nnr<br>nnr |
| 126 | BUR  | 1100 | 1902    | BYRON 2           | ROCKFORD, ILL.     | BRI        |
| 127 | PUR  | 1120 | 1900    | S GOONGIAS        | JOLIET, ILL.       | DJI        |
| 128 | PUR  | 1120 | 1900    | S MIGDING         | BOURNE, MASS.      | PPN        |
| 129 | BUR  | 1180 | 1986    | HOPE CREEK 1      | DEEPWATER, N.J.    | SNJ        |
| 130 | BUR  | 1067 | 1986    | CON ONOFRE 3      | OCEANSIDE, CAL.    | SOC        |
| 131 | PUR  | 1100 | 1983    | CODT CALHOUN 2    | BLAIR, NEB.        | FCN        |
| 132 | PUR  | 1150 | 1983    | OF DETING 1       | STATESUILLE, N.C.  | PSN        |
| 133 | PUR  | 1280 | 1983    | PERKINS L         | NASHUILLE, TENN.   | HNT        |
| 134 | BUR  | 1233 | 1983    | MARISVILLE HI     | AUGUSTA, GA.       | AUG        |
| 135 | PUR  | 1100 | 1983    | UDGILE 1          | COLUMBIA. NO.      | CMO        |
| 136 | PUR  | 1150 | 1983    | CALLAURY 2        | IANESUILLE, UIS.   | KKU        |
| 137 | PUR  | 900  | 1983    | KOSHKONONG 1      | EPENONT OHIO       | DBO        |
| 139 | PUR  | 906  | 1983    | DAUIS BESSE C     | DTUERHEAD, N.Y.    | JHY        |
| 130 | PUR  | 1150 | 1983    | JANESPORT 1       | PELLINCHAM . HASH. | SBU        |
| 140 | BUR  | 1288 | 1983    | SKAGIT 1          | THI CA OF          | BFO        |
| 141 | BUR  | 1150 | 1983    | BLACK FOX 1       | NACHUTLLE TENN.    | HNT        |
| 142 | RUR  | 1233 | 1983    | HARTSUILLE BI     | BATON POUCE IA.    | BRL        |
| 142 | BUP  | 940  | 1983    | RIVER BEND 2      | BRICH ROUGLICH     | SNH        |
| 143 | DUP  | 1208 | 1983    | SEABROOK 2        | PURISHUUR 6 C.     | CHE        |
| 144 | PUP  | 1288 | 1984    | CHEROKEE 1        | SPARTANBURG, S.C.  | HNT        |
| 145 | PUR  | 1233 | 19.4    | HARTSUILLE AZ     | MASHUILLE, TEAM.   | CPH        |
| 145 | DUR  | 1209 | 1984    | GREENWOOD 2       | PORT MURON, HICH.  | HNC        |
| 147 | PUR  | 000  | 1984    | HARRIS 1          | RALEIGH, H.C.      | NRP        |
| 148 | PUR  | 1150 | 1924    | STERLING          | OSUEGO, N.Y.       | UAU        |
| 149 | PUR  | 1240 | 1984    | UPPSS 5           | ABERDEEN, WHSH.    | ALIG       |
| 150 | PUR  | 1640 | 1084    | VOGTLE 2          | AUGUSTA, GA.       | PRT        |
| 151 | PUR  | 1222 | 1984    | PHIPPS BEND 1     | KINGSPORT, TEAM.   | PUA        |
| 152 | BUR  | 1233 | 1084    | PALO VERDE 2      | PHOEMIX, HRIZ.     | SN.I       |
| 153 | PUR  | 1007 | 1084    | HOPE CREEK 2      | DEEPWATER, N.J.    | OCT.       |
| 154 | BUR  | 1007 | 1084    | CLINTON 2         | CLINTON, IM.       | HNT        |
| 155 | BUR  | 1000 | 1084    | HARTSUILLE B2     | NASHUILLE, TENN.   | mitt       |
| 156 | BUR  | 1633 | 1904    |                   |                    |            |

| NO.  | TYPE | MUE  | INITIAL<br>OPERATION | NAME             | CITY               | CODE |
|------|------|------|----------------------|------------------|--------------------|------|
|      | DUD  | 1150 | 1984                 | MARBLE HILL 2    | MADISON, IND.      | MHI  |
| 151  | PWR  | 000  | 1084                 | KOSHKONONG 2     | JANESVILLE, WIS.   | KKW  |
| 158  | PUR  | 1250 | 1084                 | GRAND GULF 2     | VICKSBURG, MISS.   | GGM  |
| 159  | BUR  | 1150 | 1084                 | CHARLESTOWN 1    | NEWPORT, R.I.      | CRI  |
| 160  | PUR  | 1150 | 1084                 | GREENE COUNTY    | CATSKILL, N.Y.     | GCC  |
| 161  | PUR  | 1200 | 1095                 | PERKINS 2        | STATESUILLE.N.C.   | PSN  |
| 162  | PUR  | 1280 | 1985                 | DAUTS RESSE 3    | FREMONT, OHIO      | DBO  |
| 163  | PUR  | 900  | 1905                 | SOUTH DADE 1     | MIAMI.FLA.         | TPF  |
| 164  | PUP  | 1150 | 1905                 | VELLOU CREEK 1   | CORINTH.MISS.      | YCM  |
| 165  | BUR  | 1300 | 1965                 | DOUCLOS POINT 1  | FREDERICKSBURG.MD  | FDP  |
| 166  | BUR  | 1178 | 1985                 | CUNDECEDT 1      | RI YTHE CA.        | ARZ  |
| 167  | PUR  | 950  | 1985                 | DUTODC DEND 2    | KINGSPORT TENN.    | PBT  |
| 168  | BUR  | 1533 | 1985                 | PHIPPS BENE C    | NELSON UTS.        | TNU  |
| 169  | PUR  | 1150 | 1985                 | TYRUNE I         | ATLANTIC CITY N.J  | ANJ  |
| 170  | PUR  | 1150 | 1985                 | HILMNIIC I       | PTUEPHEAD N.Y.     | JNY  |
| 171  | PUR  | 1150 | 1985                 | JANESPORT 2      | MIONT FLA          | TPF  |
| 172  | PUR  | 1150 | 1985                 | SOUTH DADE 2     | DEC BOINES TOUS    | DSM  |
| 173  | PUR  | 1300 | 1985                 | CENTRAL TOWN     | BACCO HASH         | UPU  |
| 174  | PUR  | 1260 | 1985                 | PEBBLE SPRINGS 1 | THUCA OF           | BEO  |
| 175  | BUR  | 1150 | 1985                 | BLACK FOX 2      | COADTANDUDC 6 C    | CHE  |
| 176  | PUR  | 1280 | 1986                 | CHEROKEE 2       | SPARTANBURG, S.C.  | 200  |
| 177  | BUR  | 1150 | 1986                 | ZIMMER 2         | CINCINNATI, ONIO   | UCH  |
| 173  | BUR  | 1300 | 1986                 | YELLOW CREEK 2   | CORIMIN, MISS.     | COL  |
| 179  | PUR  | 1208 | 1986                 | GREENWOOD 3      | PORT MURON, HICH.  | UND  |
| 180  | PUR  | 900  | 1986                 | HARRIS 2         | RALEIGH, N.C.      | HINI |
| 181  | BUR  | 1150 | 1986                 | MONTAGUE 1       | GREENFIELD, MASS.  | CUN  |
| 182  | PUR  | 900  | 1986                 | SURRY 3          | WILLIAMSBURG, VA.  | 500  |
| 183  | PUR  | 1270 | 1986                 | PALO VERDE 3     | PHOENIX, ARIZ.     | COL  |
| 18 / | PUR  | 1150 | 1986                 | CHARLESTOWN 2    | NEUPORT, R.I.      | CRI  |
| 185  | BUR  | 1288 | 1986                 | SKAGIT 2         | BELLINGHAM, WASH.  | 550  |
| 186  | PUR  | 1280 | 1987                 | PERKINS 3        | STATESUILLE, N.C.  | CI N |
| 187  | PUR  | 1150 | 1987                 | SR 1             | LUABERTON, N.C.    | CLA  |
| 188  | BUR  | 1178 | 1987                 | DOUGLAS POINT 2  | FREDERICKSBURG, MD | FUP  |

| NO.                                                  | TYPE | MUE                                                              | INITIAL<br>OPERATION                                                         | NAME                                                                                                                 | CITY                                                                                                                                                                  | CODE                                                   |
|------------------------------------------------------|------|------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 189<br>190<br>191<br>192<br>193<br>194<br>195<br>196 |      | 900<br>1150<br>1280<br>1150<br>900<br>950<br>1260<br>1150<br>900 | 1987<br>1987<br>1983<br>1988<br>1988<br>1988<br>1988<br>1988<br>1989<br>1989 | SURRY 4<br>ATLANTIC 2<br>CHEROKEE 3<br>MONTAGUE 2<br>HARRIS 4<br>SUNDESERT 2<br>PEBBLE SPRINGS 2<br>SR 2<br>HARRIS 3 | WILLIAMSBURG, UA.<br>ATLANTIC CITY, N.J<br>SPARTANBURG, S.C.<br>GREENFIELD, MASS.<br>RALEIGH, N.C.<br>BLYTHE, CA.<br>PASCO, WASH.<br>LUMBERTON, N.C.<br>RALEIGH, N.C. | SUU<br>ANJ<br>CHE<br>UYNC<br>ARU<br>ARU<br>ARU<br>CLNC |

### REFERENCES

- 1. <u>Program Plan for the Physical Protection of Nuclear Material</u>, R. L. Rinne and L. D. Chapman, under preparation for the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research.
- Nuclear News, Vol. 19, No. 10, August 1976, p. 66.
- 3. Nuclear Fuel, Prototype issue, Occober 11, 1976, p. 7.
- 4. <u>Nuclear Power Growth 1974-2000</u>, WASH-1139(74), U.S. Atomic Energy Commission, Office of Planning and Analysis, February 1974.
- Physical Protection of Special Nuclear Material in the Commercial Fuel Cycle, Volume IV: Transportation Mode Analysis, March 1976.
- R. J. Olsen, ORNL Internal Correspondence Memo to C. C. Burwell, Oak Ridge National Laboratory, Oak Ridge, Tennessee, April 1975.
- 7. <u>Plutonium Recycle in Light Water Reactors</u>, Part I, Brookhaven National Laboratory, Brookhaven, New York, February 1974.
- 8. <u>Compute: Program NUFUEL for Forecasting Nuclear Fuel Requirements</u> and Related Quantities, WASH-1348, Office of Planning and Analysis, U.S. Atomic Energy Commission, Washington, D.C., October 1974.
- R. C. Dahlberg, R. F. Turner, and W. V. Goeddel, <u>HTGR Fuel and</u> <u>Fuel Cycle Summary Description</u>, GA-A12801 (Rev), <u>General Atomic</u> <u>Company</u>, San Diego, California, January 1974.
- 10. Nuclear Energy Center Site Survey Fuel Cycle Studies, Battelle Pacific Northwest Laboratories, BNWL-B-456, May 1976.
- 11. E. H. Hasseltine and P. L. Leary, Trucking I, A Computerized Transportation Model, Sandia Laboratories, SAND76-8236, July 1975.

u na tinta industria. Na sina si nadari na pang sala na tinta na tang sala na tinta na tinta na tinta na tinta

