QUAD-CITIES NUCLEAR POWER STATION

UNITS 1 AND 2

MONTHLY PERFORMANCE REPORT

JANUARY 1982

COMMONWEALTH EDISON COMPANY

AND

IOWA-ILLINOIS GAS & ELECTRIC COMPANY NRC DOCKET NOS. 50-254 AND 50-265 LICENSE NOS. DPR-29 AND DPR-30

TABLE OF CONTENTS

- I. Introduction
- II. Summary of Operating Experience
 - A. Unit One
 - B. Unit Two
- III. Plant of Procedure Changes, Tests, Experiments, and Safety Related Maintenance
 - A. Amendments to Facility License or Technical Specifications

-6

.

1

- B. Facility or Procedure Changes Requiring NRC Approval
- C. Tests and Experiments Requiring NRC Approval
- D. Corrective Maintenance of Safety Related Equipment
- IV. Licensee Event Reports
- V. Data Tabulations
 - A. Operating Data Report
 - B. Average Daily Unit Power Level
 - C. Unit Shutdowns and Power Reductions

VI. Unique Reporting Requirements

- A. Main Steam Relief Valve Operations
- B. Control Rod Drive Scram Timing Data
- VII. Refueling Information
- VIII. Glossary

I. INTRODUCTION

Quad-Cities Nuclear Power Station is composed of two Boiling Water Reactors, each with a Maximum Dependable Capacity of 769 MWe net, located in Cordova, Illinois. The Station is jointly owned by Commonwealth Edison Company and Iowa-Illinois Gas & Electric Company. The Nuclear Steam Supply Systems are General Electric Company Boiling Water Reactors. the Architect/Engineer was Sargent & Lundy, Incorporated, and the primary construction contractor was United Engineers & Constructors. The condenser cooling method is a closed cycle spray canal, and the Mississippi River is the condenser cooling water source. The plant is subject to license numbers DPR-29 and DPR-30, issued October 1, 1971, and March 21, 1972, respectively, pursuant to Docket Numbers 50-254 and 50-265. The date of initial reactor criticalities for Units 1 and 2 respectively were October 18, 1971, and April 26, 1972. Commercial generation of power began on February 18, 1973 for Unit 1 and March 10, 1973 for Unit 2.

This report was compiled by Becky Brown and Erich Weinfurter, telephone number 309-654-2241, extensions 127 and 194.

II. SUMMARY OF OPERATING EXPERIENCE

A. UNIT ONE

January 1-8: Unit One started the reporting period holding load at 819 MWe. On January 3 it dropped load to 675 MWe to do weekly Turbine tests and reverse condenser flow. Subsequently, load was returned to 818 MWe. On January 5 load was decreased 25 MWe to change condensate booster pumps and subsequently returned to maximum attainable load.

January 9-17: At 0015 on January 9, load was reduced to 600 MWe to do the weekly Turbine tests. Load was then increased to 813 MWe.

January 17-26: At 0100, January 17, the load was dropped to 700 MWe to do weekly Turbine testing. At 0300, load was increased to maximum attainable load. On January 23, at 0045, load was dropped to 600 MWe to perform weekly Turbine testing, reverse condenser flow, and adjust the control rod pattern. At 0300, load was increased at 5 MWe/hour. On January 25, at 0335, the load increase was terminated due to reaching the maximum flow control line. At 0815, load was increased to 813 MWe.

January 27-31: At 1338, January 27, Unit One scrammed on a spurious signal to both Reactor Protection System channels "A" and "B". By 1858, the Reactor was critical, and the Unit was back on line at 2145 and increasing load to 400 MWe in 5 hours. The load increase was stopped at 550 MWe, at 0430, on January 28 to inspect the RCIC System. At 0445, load was increased at 8 MWe/hour until at 0750 on January 29. Then the Unit increased load 25 MWe/hour. At 0930, the load increase continued at 5 MWe/hour to maximum attainable load. At 0100, January 31, Unit One load was dropped to 700 MWe to do weekly Turbine testing. At 0300 load was returned to 817 MWe.

B. UNIT TWO

January 1-4: Unit Two started the reporting period derated to a maximum output of 380 MWe due to the "B" Recirculation Motor-Generator Set being out of sequence. At 0515, on January 3, the "B" Feedwater valve went closed as a breaker was being reset. The Reactor scrammed on low water level. The Reactor was critical by 1240 and was on line at 2115, and load was then held at 378 MWe.

January 5-12: On January 5, at 1235, the "B" Recirculation Motor-Generator Set was returned to service; after starting the 2B Recirculation pump, load was increased to 710 MWe. At this level condensate demineralizer problems restricted load and the unit load had to be dropped to 500 MWe. On January 8, load was increased to 625 MWe. At 1600, on January 9, load was increased to 823 MWe which was reached at 0600, January 11.

II. SUMMARY OF OPERATING EXPERIENCE (Continued)

January 13-14: January 13, at 0300, load was reduced to 770 MWe to make control rod pattern changes. Load was then increased to 809 MWe. At 2000, load was dropped to 750 MWe due to condensate demineralizer problems.

On January 14, load was reduced to 600 MWe due to condensate demineralizer problems. By 1230 a load increase to maximum attainable load was begun. At 2155, "B" Recirculation Motor-Generator Set was shut down when the exciter started to spark. Load was dropped to 357 MWe.

January 15-31: At 1105, January 15, during a Drywell entry to check the oil level in 2B Recirculation pump, a small crack was found in the Reactor Water Clean-up suction piping. The Unit was shut down by 1330 and will be down until repairs are completed, around the end of February.

III. PLANT OR PROCEDURE CHANGES, TESTS, EXPERIMENTS, AND SAFETY RELATED MAINTENANCE

A. Amendments to Facility License or Technical Specifications

On December 23, 1981, the NRC issued Amendment 69 to license DPR-30. This amendment provided changes to the license and Technical Specifications required to operate Unit Two with the fuel load for cycle 6. Unit Two began operating in cycle 6 on December 26, 1981.

B. Facility or Procedure Changes Requiring NRC Approval

There were no Facility or Frocedure Changes requiring NRC approval for the reporting period.

C. Tests and Experiments Requiring NRC Approval

There were no Tests and Experiments requiring NRC approval for the reporting period.

D. Corrective Maintenance of Safety Related Equipment

The following represents a tabular summary of the safety related maintenance performed on Unit One and Unit Two during the reporting period. The headings indicated in this summary include: Work Request Numbers, LER Numbers, Components, Cause of Malfunctions, Results and Effects on Safe Operation, and Action Taken to Prevent Repetition.

UNIT ONE MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q15517		Diesel Air Start Compressor 6601	Worn head gasket & valve gasket	1/2 & Unit 2 Diesel operable	Replaced head gasket & valve gasket
Q15829		Suppression Chamber Water Temperature Recorder 1-160-2-8	Repair thermocouple		Installed original thermocouple & wired
Q16072		Diesel Generator	Lube oil leak found in cooler	Unit 2 Diesel operable	Tightened bolts on cover of lube oil cooler
Q15375		HPC1 High Pressure Pump Outboard Oil Seal 1-2302	Leaking oil	Repaired during weekend outage (11-6-81)	Replaced gasket oil piping
Q17083	82-1/03L	Yarway LIS-1-263- 72A	Loose shaft on switch assembly	The other three switches in the system were operable	Epoxied shaft flange & assembled switches and indicator
Q17589		RCIC Turbine 1-1360-1A & 1B	Isolates for no reason	Nonestill was workingno leakage	Replaced micro- switches & recalibrated

	W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
	Q7174		Torus Vacuum Breaker 2-1601-33E	Limit switch needs acjusted	It was demonstrated the vacuum breaker would open, so safe operation is o.k.	Re-adjusted limit switch
•	Q14693		Inboard Main Steam Line Drain MO-2- 220-1	Seal ring & packing are bad	Valve failed the Local Leak Rate Test	Replaced seal ring & packing
	Q14721		Inboard ''B'' Feed- water Check Valve 2-220-58B	Seal ring & O-ring worn	Valve failed the Local Leak Rate Test	Replaced seal ring & O-ring on seat
	Q14726		RHR Torus Spray 2-1001-36A	Lock nut loose	Valve failed the Local Leak Rate Test	Weld lock nut to disc collar on stem
	Q14729		Outboard "B" Feed- water Check Valve 2-220-62B	Worn O-ring	Valve failed the Local Leak Rate Test	Repaired O-ring & re-assembled valve
	Q14530		RCIC Steam Supply Valve MO-2-1301- 17	Worn seal ring	Valve failed the Local Leak Rate Test	Repacked seal ring & replaced stem; disc o.k.
	Q14402		Reactor Head Vent 2-220-47	Leaking diaphragm	Leaking air through diaphragm	Replaced diaphragm & tested
	Q13850		2-2301-15	Motor grounded	Only alarmed when valve is exercised	Replaced motor & tested valve

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE CPERATION	ACTION TAKEN TO PREVENT REPETITION
Q13328		RCIC Flow Con- troller FIC 2- 1340-1	Limit pot hoods adjusted	Will not maintain 400 gpm at 1250 psi in AUTO. In manual o.k.	Adjusted hi limit pot; recalibrated
Q12384	81-9/03L	RHR Suppression Chamber Dump Line 2-1001-37B	Worn shaft bearing	Higher than normal current when open closed	Replaced worn shaft bearing; clean valve
Q11042		Diesel Generator Heat Exchanger 6601	Keep losing level on Unit 2 Diesel Generator cooling water	The Diesel was still operable.	Plugged one tube on heat exchanger; re-installed coolers
Q14942	81-19/03L-1	RHR Service Water Vault Penetrations	Seal needs adjusted	Penetrations failed the Local Leak Rate Test	Adjusted seals & caulked
Q14963	81-20/03L-1	Drywell Purge Isolation AO- 2-1601-21	Packing needs adjusted	Drywell Purge failed Local Leak Rate Test	Adjusted packing at end opposite valve operator
Q16137	81-18/03L	Torus Spray Bypass 2-1001-36B	Rebuild & re-weld bushing	Valve failed Local Leak Rate Test	Rebuilt & re-welded bushing & re-lapped valve
Q14712		Service Water 2C RHR 2-1001-65C	Pinhole leak in pump casing	The pump was still operable	Drilled & tapped pinhole leak; installed 1/8 inch

UNIT TWO MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q12930		2D RHR Service Water Pump 2-1001- 65D	Cooling water line leaking	The pump was still operable	Repaired leak on inboard cooling water line
Q16430		CHR Heat Exchanger Bypass 2-1001-16A	Worn torque switch in the valve operator	Operable, but needs to be replaced	Replaced torque switch
Q16456		Pressure Suppression System Check Valve 2-220- 81E	Check valve will not operate	Cold shutdown ISI testing	Cleaned & inspected check valve; works o.k.
Q16457		Pressure Suppression System Check Valve 2-220- 81B	Check valve will not operate	Cold shutdown ISI testing	Cleaned & inspected check valve; works o.k.
Q16542		Excessive Flow Check Valve 2-263- 2-15A	Inspected check valve; not working properly	Failed test ST 47, the check valve operability	Removed valve & checked for proper operation
Q16558		595-123 PC1	The relay coil was burnt	A Group III Isolation occurred in the safety mode	Replaced the relay & tested
Q16575		Main Steam Drain MO-2-220-1	Dirt was found in the seating area	Failed Local Leak Rate Test	Cleaned & inspected valve
Q16587		Inboard Main Steam Line 2-220-1	Loose seat	Failed Local Leak Rate Test	Adjusted the torque switch so seat would be tighter

	W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
	Q15277		24/48 VDC Battery 2-8325	The plates in cell #2 were degraded	The cell failed during the battery discharge test	The cell was replaced & the discharge test was performed
•	Q15275		24/48 VDC Battery 2-8325	The plates in cell #4 were degraded	The cell failed during the battery discharge test	The cell was replaced & the discharge test was performed
	Q15276		24/48 VDC Battery 2-8325	The plates in cell #5 were degraded	The cell failed during the battery discharge test	The cell was replaced & the discharge test was performed
	Q16603		Valve 2-1601-57 N2 Make-up	Bad torque switch in the valve operator	Valve doesn't close from Control Room	Replaced torque switch & tested
	Q16661		Drywell Equipment Drain Valve 2- 2001-16	Bad operator; the piston seals were worn	Valve does not open with control switch	Installed new operator
	Q16692		CRD Accumulator 22-77	Worn packing & worn O-rings	Accumulator loses pressure	Repacked with new packing & installed new O-ring
	Q16842		Steam Line Rad Monitor	Needs calibration	Surveillance test	Calibrated 2D Main Steam Line Monitor
	Q09092		2B Recirc Pump Suction Valve	Gasket leaking between the body & bonnet	The valve had a small leak. Leakage was monitored in the Drywell sumps	Repalced lock nut gasket & stem

UNIT TWO MAINTENANCE SUMMARY

 W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q16273		2A2 24V Battery Cell #3	The plates in cell #3 were degraded	The cell failed during battery discharge test	Installed new cell & performed discharge test
Q16274		2A1 24V Battery Cell #8	The plates in cell #8 were degraded	The cell failed during battery discharge test	Installed new cell & performed discharge test
Q16275		2Al 24V Battery Cell #9	The plates in cell #9 were degraded	The cell failed during battery discharge test	Installed new cell & performed d'scharge test
Q16276		2Al 24V Battery Cell #11	The plates in cell #11 were degraded	The cell failed during battery discharge test	Installed new cell & performed discharge test
Q12930		2D RHR Service Water Pump 2- 1001-65D	Pump leak on inboard cooling water line	The pump was still operable	Repaired leak on inboard cooling water line
Q16659		HPCI Steam Line Drain Valve 2- 2301-29	Bad valve will be repaired under Work Request 017321	Valve will not close from Control Room	Replaced valve

IV. LICENSEE EVENT REPORTS

The following is a tabular summary of all licensee event reports for Quad-Cities Units One and Two occurring during the reporting period, pursuant to the reportable occurrence reporting requirements as set forth in sections 6.6.B.1. and 6.6.B.2. of the Technical Specifications.

	UNIT ONE	
Licensee Event Report Number	Date	Title of Occurrence
82-1/03L	1-13-82	ECCS Yarway Inoperable
	UNIT TWO	
82-1/01T	1-15-82	Reactor Water Clean-up Line crack (in Drywell)
82-2/01T	1-26-82	Main Steam Line Low Pressure SwitchSet- point Drift

V. DATA TABULATIONS

. .

The following data tabulations are presented in this report:

A. Operating Data Report

.

- B. Average Daily Unit Power Level
- C. Unit Shutdowns and Power Reductions

OPERATING DATA REPORT

DOCKET NO. 50-254

UNIT ONE

DATEFebruary 04 1982

COMPLETED BYErich Weinfurter

TELEPHONE309-654-2241x194

OPERATING STATUS

0000 010182

1. Reporting period: 2400 013182 Gross hours in reporting period: 744

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769* Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5.	Number of hours reactor was critical	738.7	738.7	69837.8
6.	Reactor reserve shutdown hours	0.0	0.0	3421.9
7.	Hours generator on line	735.9	735.9	66867.4
8.	Unit reserve shutdown hours,	0.0	0.0	909.2
9.	Gross thermal energy generated(MWH)	1743343	1743343	136801702
1.0 .	Gross electrical energy generated(MWH)	575642	575642	44104575
11.	Net electrical energy generated(MWH)	536439	536439	41120523
12.	Reactor service factor	99.3	99.3	81.9
13.	Reactor availability factor	99.3	99.3	85.9
14.	Unit service factor	98.9	98.9	78.4
15.	Unit availability factor	98.9	98.9	79.5
16,	Unit capacity factor (Using MDC)	93,8	93.8	62.7
17.	Unit capacity factor (Using Des.MWe)	91.4	91.4	61.1
18.	Unit forced outage rate	1.1	1.1	7.1
19.	Shutdowns scheduled over next 6 months	(Type,Date,	and Duration	of each):
20.	If shutdown at end of report period, es	timated date	of startup	NA

\$The MDC may be lower than 769 NWe during periods of high ambient temperature due to the thermal performance of the spray canal.

OPERATING DATA REPORT

DOCKET NO. 50-265

UNIT TWO

DATEFebruary 04 1982

COMPLETED BYErich Weinfurter

TELEPHONE309-654-2241x194

OPERATING STATUS

0000 010182

1. Reporting period: 2400 013182 Gross hours in reporting period: 744

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769* Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if .ny):

		This Month Y	r, to Date	Cumulative
5.	Number of hours reactor was critical	342.1	342.1	65193.9
6.	Reactor reserve shutdown hours	0.0	0.0	2985.8
7.	Hours generator on line	336,5	336.5	62577.7
8.	Unit reserve shutdown hours,	0.0	0.0	702.9
9	Gross thermal energy generated(MWH)	619093	619093	128506176
10.	Gross electrical energy generated(MWH)	196377	196377	40902617
11.	Net electrical energy generated(MWH)	183410	183410	38307994
12.	Reactor service factor	46.0	46.0	77.3
13.	Reactor availability factor	46.0	46.0	80.8
14.	Unit service factor	45.2	45.2	74.2
15.	Unit availability factor	45.2	45.2	75.0
1.6.	Unit capacity factor (Using MDC)	<u>32.i</u>	32.1	59.1
17.	Unit capacity factor (Using Des.MWe)	31.2	31.2	57.6
18.	Unit forced outage rate	54.8	54.8	8.9
19.	Shutdowns scheduled over next 6 months	(Type, Date, and	Duration	of each):

20. If shutdown at end of report period, estimated date of startup Feb 23, 1982

\$The NDC may be lower than 769 NWe during periods of high ambient temperature due to the thermal performance of the spray canal.

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. 50-254

UNIT ONE

DATEFebruary 04 1982

9

COMPLETED BYErich Weinfurter

TELEPHONE309-654-2241x194

DAY AVERAGE	E DAILY POWER LEVEL (MWe-Net)	DAY AVERAGE	E DAILY POWER LEVEL (MWe-Net)
1	764.9	17.	744.7
2.	771.4	18	763.4
3.	724.6	19	759.4
4	752.8	20.	747.3
5.	756.2	21.	738.5
6.	761.7	22.	740.2
7.	759.3	23.	571.7
8	755.7	24.	679.4
9	657.2	25.	745.0
.0.	725.1	26.	763.8
.1.	774.4	27.	439.5
2.	750.6	28	509.0
.3	757.3	29	680.9
14	757.1	30 .	742.5
15	763.5	31	735.6
16.	759.0		

INSTRUCTIONS

On this form, list the average daily unit power level in MWe-Met for each day in the reporting month. Compute to the mearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. 50-265

UNIT TWO

DATEFebruary 04 1982

COMPLETED BYErich Weinfurter

TELEPHONE309-654-2241x194

DAY AVERAGE	E DAILY POWER LEVEL (MWe-Net)	DAY AVERAGE	E DAILY POWER LEVEL (MWe-Net)
1.	358.3	17.	-10.9
2.	361.5	18.	-10.8
3.	142.6	19.	-10.8
4	349.8	20.	-10.5
5	427.0	21.	-10.7
6	627.0	22.	-10.3
7.	628.9	23,	-10.3
в	550.1	24.	-10.2
9.	619.9	25	-10,3
10	677.6	26.	-10.1
11.	787.0	27.	-8.5
12.	757.3	28.	-8.6
13	748.8	29.	-8.5
14	596.4	30.	-8,7
1.5.	168,5	31.	-8.6
16.	-11.0		

INSTRUCTIONS On this form, list the average daily unit power level in NWe-Net for each day in the reporting month. Compute to the nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 1882 line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

DOCKET NO. <u>50-254</u> UNIT NAME Quad-Cities Unit One DATE February 1, 1982		UNIT SHUTD	APPEN OWNS AN DNTH	QTP 300-S13 Revision 5 March 1978 COMPLETED BY E. Weinfurter 309-654-2241, ext. 194					
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
82-1	820109		0,0	В	5		RB	CONROD	Reduced load for weekly Turbine tests and to change control rod pattern
82-2	820123		0.0	В	5		RB	CONROD	Reduced load for weekly Turbine tests and to change control rod pattern
82-3	820127		8.1	н	3		AI	ZZZZZZ	Reactor scram on spurious scram signal

En and

-

Ken can a

-

-1-(final)

3 C

100

53

	3	-		,			1	, , ,	
DOCKET NO UNIT NAME DATE		50-265				UNIT SHUTD	APPEN OWNS AN	QTP 300-513 Buction 5 March 1978	
		Quad-Cities Unit Two February 1, 1982				REPCRT M	ONTH .	JANUARY 19	COMPLETED BY <u>E. Weinfurter</u> 309-654-2241, ext. 194
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
82-1	820103	F	12.75	А	3		СН	VALVEX	Reactor scram on low water level due to the "B" Feedwater Regulation Valve failing closed
82-2	820114		0.0	А	5		CB	GENERA	"B" Recirculation Motor-Generator Set shut down due to exciter sparking
82-3	820115	F	394.75	A	2		CG	PIPEXX	Unit shutdown to repair crack in Reactor Water Clean-up line

-1-(final)

VI, UNIQUE REPORTING REQUIREMENTS

The following items are included in this report based on prior commitments to the commission:

A. Main Steam Relief Valve Operations

There were no Main Steam Relief Valve Operations for the reporting period.

. . . .

B. Control Rod Drive Scram Timing Data for Units One and Two

There were no Control Rod Drive Scram Timing Data for Units One and Two for the reporting period.

VII. REFUELING INFORMATION

The following information about future reloads at Quad-Cities Station was requested in a January 26, 1978, licensing memorandum (78-24) from D. E. O'Brien to C. Reed, et al., titled "Dresden, Quad-Cities, and Zion Station--NRC Request for Refueling Information", dated January 18, 1978.

.

QUAD-CITIES REFUELING INFORMATION REQUEST QTP 300-S32 Revision 1 March 1978

1.	Unit:	1	Reload: 6 Cycle:	7
2.	Scheduled	date	for next refueling shutdown:	Sept 12, 1982
3.	Scheduled	date	for restart following refueling:	Dec 4, 1982

4. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment:

YES

5. Scheduled date(s) for submitting proposed licensing action and supporting information:

JULY 26, 1982

6. Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

IMPLEMENTATION OF THE ODYN TRANSIENT ANALYSIS CODE AND RESULTS (MCPR SCRAM TIME DEPENDENCE)

7. The number of fuel assemblies.

a. Number of assemblies in core:

224 new/724 total

1940

2920

4636 new/7556 total

b. Number of assemblies in spent fuel pool: outage

 The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a. Licensed storage capacity for spent fuel:

b. Planned increase in licensed storage:

 The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity:

-1-

LOSS OF FULL CORE DISCHARGE CAPABILITY - 3/34 LOSS OF RELOAD CORE DISCHARGE CAPABILITY - 2/86

APPROVED

APR 2 0 1978

Q. C. O. S. R.

QUAD-CITIES REFUELING INFORMATION REQUEST QTP 300-S32 Revision 1 March 1978

1.	Unit:	2	Reload:	6	Cycle:	7	
2.	Scheduled	date fo	or next refueling	shutdown:		Feb 27, 1983	
3.	Scheduled	date fo	or restart follow	ing refuel	ing:	April 23, 1983	

 Will refueling or resumption of operation thereafter require a technical specification change or other license amendment:

NO

5. Scheduled date(s) for submitting proposed licensing action and supporting information:

NONE

6. Important licensing considerations associated with refueling, e.g., new or 'different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

NONE

7. The number of fuel assemblies.

a.	Number of	assemblies	in core:			192 new/724 total	
					after the		
b.	Number of	assemblies	in spent fuel	pool:	outage	2132	

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a. Licensed storage capacity for spent fuel:

b. Planned increase in licensed storage:

 The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity:

-1-

LOSS OF FULL CORE DISCHARGE CAPABILITY - 3/84 LOSS OF RELOAD CORE DISCHARGE CAPABILITY - 2/86 APPROVED

2920

4636 new/7556 total

APR 2 0 1978

Q. C. O. S. R.

VIII. GLOSSARY

ACAD/CAM	-	Atmospheric Containment Atmospheric Dilution/Containment
ANST	-	American National Standards Institute
APRM	-	Average Power Range Monitor
ATWS		Anticipated Transient Without Scram
RUP	_	Boiling Water Reactor
CRD	-	Control Rod Drive
EHC		Electro-Hydraulic Control System
EOF	-	Mergency Operations Facility
GS EP	-	Generating Stations Emergency Plan
HEPA	-	High-Efficiency Particulate Filter
HPCI	-	High Pressure Colant Injection System
HRSS	-	High Radiation Sampling System
IPCLRT	-	Integrated Primary Containment Leak Rate Test
IRM	-	Intermediate Range Monitor
ISI	-	Inservice Inspection
LER	-	Licensee Event Report
LLRT	-	Local Leak Rate Test
LPCI	-	Low Pressure Coolant Injection Mode of RHRS
LPRM	-	Local Power Range Monitor
MAPLHGR		Maximum Average Planar Linear Heat Generation Rate
MCPR	-	Minimum Critical Power Ratio
MFLCPR	-	Maximum Fraction Limiting Critical Power Ratio
MPC	-	Maximum Permissible Concentration
MSIV	-	Main Steam Isolation Valve
NIOSH	-	National Institute for Occupational Safety and Health
PCI	-	Primary Containment Isolation
PCIOMR	-	Preconditioning Interim Operating Management Recommendations
RBCCW	-	Reactor Building Closed Cooling Water System
RBM	-	Rod Block Monitor
RCIC	-	Reactor Core Isolation Cooling System
RHRS		Residual Heat Removal System
RPS	-	Reactor Protection System
RWM	**	Rod Worth Minimizer
SBGTS	-	Standby Gas Treatment System
SBLC		Standby Liquid Control
SDC	-	Shutdown Cooling Mode of RHRS
SDV	-	Scram Discharge Volume
SRM		Source Range Monitor
TBCCW	-	Turbine Building Closed Cooling Water System
TIP	-	Traveling Incore Probe
TSC		Technical Support Center