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ABSTRACT

The performance of the Westinghouse Reactor Vessel Level
Indicating System (RVLIS) in the S-UT-3 test (a communicative

, break in the cold les of Semiscale) was analyzed. The West-
5 inghouse RVLIS gave similar indications to Semiscale Test

Facility instrumentation measuring the same phenomena [dif-
ferential pressure (dP)] over equal spans. The Westinghouse
measurement is apparently conservative when compared with the
two phase froth level. These dP measurements appear to be
nonconservative estimates of level, however, when the measure-
ment system spans the upper core support plate. Level men-
surement errors of up to 150 cm (60 in.) were observed during
S-UT-3. Westinghouse claims that these differences are caused
by differences between Semiscale and Westinghouse Reactors. A
recommendation for resolving these differences is made.

-

1. INTRODUCTION
e

During the accident at the Three Mile Island (TMI) nuclear power
plant, a condition of low water level in the reactor vessel and inadequate
core cooling was not recognized for a long period. A review of the acci-
dent was conducted by the U.S. Nuclear Regulatory Commission (NRC) TMI-2
Lessons Learned Task Force.1 Their report recommended that improved in-
strumentation systems, including reactor-vessel liquid level (coolant)
sensors, be developed and implemented in all pressurized-water reactors

(PWRs) in the United States.
! For this purpose, as part of the NRC Action Plan 8 following the TMI
| accident, the Advanced Two-Phase Flow Instrumentation Program at Oak Ridge

National Laboratory (ORNL) will evaluate instrumentation systems through
funding from the NRC Division of Reactor Safety Research. The coolant sen-
sors are intended to provide an unambiguous indication of the adequacy of
core cooling. They must survive accident conditions and work under both
natural- and forced-convection flow conditions. As part of this effort,
two types of sensors were evaluated concurrently: (1) thermal-type sen-
sors, such as heated junction thermocouples (RJTCs), and (2) ultrasonic
torsional wave sensors. Test sensors were designed and fabricated at ORNL

*
and procured from outside sources. A variety of tests were run to evala-
ate these devices for power reactor use.

*

* Instrumentation and Controls Division.

,

|
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The experiments simulated thermal and hydraulic conditions typical of
a postulated PWR loss-of-coolant accident (LOCA); both natural-convection

'

(reactor coolant pumps off) and forced-convection (pumps on) two phase
flow tests have been run. The goals of these experiments were to evaluate
the designs of the coolant sensors and to determine whether conditions ,

exist under which ambiguous readings might occur. Generally, the test
sequence for a particular device proceeded from static (covered and un-
covered) tests at room temperature to static tests in saturated steam and
water at elevated pressures to forced-convection tests at relatively
severe pressure, temperature, and flow rate conditions.

Previous testing -s has included experiments with several thermal-s

| type level devices in a high pressure and high-temperature natural-convec-
tion facility (a pressurizer). A low pressure steam and water flow visu-i

alization test was performed with thermal sensors, and tests were run with
an HJTC in the Advanced Instrumentation for Reflood Studies Test Stand, a
coeurrent steam and water flow facility rated for moderate pressures. Ad-
ditional studies of RJTC liquid level instrumentation were run in the
Thermal-Hydraulic Test Facility (THTF) at ORNL in conjunction with Tirl'F
Test 3.09.10 (Small-Break LOCA Test Series).* An interim report was pre-
pared for quasi-steady-state film-boiling TNTF Test 3.07.9 (Ref. 7).

Subsequently, an RJTC was tested in an air and water facility, which
is used to simulate flow phenomena in the core and upper plenum interface
region of a PWR. Results showed appreciable cooling of the RJTC at high
void fractions.e An additional test measured the cooling effect of mist
flows on a shielded HJTC. Detectable cooling was also observed for many

mist-flow conditions.8
~

A multiple position HJTC was designed, fabricated, and tested under
various temperatures and pressures up to 10.8 MPa (~1550 psia) and 315'C ,

! (600*F). Excellent results were obtained from the four-level stations on
the probe in steam and water natural circulation tests.e

A torsional ultrasonic level probe was developed and tested in a
steam and water pressurizer.s,s Data analysis showed that the ultrasonic
level measurements were within 15% of the actual level over a temperature
range from 28 to 230*C (82 to 450*F). A Hewlett-Packard HP85 calculator

I was interfaced with the data acquisition system to improve data quality.
Conceptual designs for a pressure seal technique in an operating reactor
for the ultrasonic level device were discussed with a reactor vendor.

A measurement system was developed by Westinghouse to monitor in-
vessel coolant levels by means of differential pressure (dP) cells cov-
ering selected ranges. This system, Reactor Vessel Level Indicating
System (RVLIS), and its basic requirements and components were described
previously.' Evaluation of the performance of the RVLIS was completed for
one of the tests in the upper-head injection series (S-UT-3) at the Semi-
scale Facility, EG6G Idaho, and is contained in this report.

.

.
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i 2. EVALUATION OF THE WESTINCOUSE RVLIS
; -

- The Westinghouse RVLIS monitors the in-vessel liquid level by means
f3 of dP measurements. This system was installed in the Semiscale Test Fa-

{ cility for Test S-UT-3, a 2-1/2% communicative break in the cold les of
' 'the facility, to compare performance with installed test vessel instrumen-

tation, such as densitometers and other dP sensors.
,

! The NRC requirement for a liquid level measurement system is to pro-
i vide reliable and unambiguous information as to the water level in a re-

actor vessel. The effectiveness of the Semiscale testing in meeting this
,

criterloa may be judged by comparison of the RVLIS data with test data
taken from a combination of test vessel densitometers, flow measurements,
fluid temperatures, and dP measurements covering selected ranges.

EG6G has reported the data from this test,28 and the plots in this
report are taken from the same source as the EG&G report (NRC Data Bank).
Only the data that are considered pertinent are included here; to facili-
tate comparison with the other test data, the same nomenclature used in
the EG&G report is used.

2.1 Analysis

i Figure 1 is a schematic diagram of Semiscale reproduced here from EGG-

: SEMI-5494, June 1981.18 The nomenclature used to describe the test mea-
,

i surements are included in Fig. 1. Note that all height measurements refer
to the centerline of the cold leg; both negative and positive measurements

i e refer to distances above and below the cold leg.
Figure 2 is a plot of Westinghouse upper-head measurement and Semi-

scale dP measurement from +421 to -13 cm and illustrates the dP measure-
ments during the test. Both of these measurements span the upper core '

| support plate. The level indicated by the densitometer is plotted on this
i same figure as a cross with the direction of the last liquid-to-vapor

; transition indicated by the arrowhead. These measurements indicate that
i the actual level was 50 to 125 cm lower than both dP measurements. This

occurred from 250 to 390 s and from about 675 to 910 s. These time peri-
ods will be discussed in the next paragraph.

Figure 3 is a plot of Westinghouse vessel level and the Semiscale
dP measurement from -578 to -13 cm. Figure 4 is an expanded plot of the
Semiscale dP measurement from Fig. 3 and the difference between the West-;

inghouse and Semiscale dP measurements with the Semiscale measurement'

taken as reference. The region of concern is again from 250 to 390 s and
{'

from 675 to 910 s. During these times, the densitometers indicated that
the froth level was below the upper tap of the Semiscale measurement, so
the two dP readings should have been equivalent. However, the Semiscale
measurement did not span the upper core support plate, and the Westing-
house level measurement read as much as 150 cm (60 in.) higher than the

* Semiscale measurement. Since the flow in the core is low after about
130 s, the frictional dP should be low, so the Semiscale reading should be
correct. The discussion of Fig. 5 will verify the validity of the Semi-, ,

scale reading.
Figure 5 is a plot of void fraction based on the densitometer read-

ings in the Semiscale vessel at two different times, including the time

_a__---'_v --_ _ - -w - - ~ - . - .mwr , . ~ - - - --+-w. -wy--- w+-- - - - - , - - - , - , - - - ,- ,- . w-, .w-, -w- - -
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Fig. 1. Instrumentation of significance for the Westinghouse vessel
liquid level indicating system test. Source: W. W. Tingle and R. W. .

Golden, Instattation and Initial Test Data Report: Westinghouse Reactor
Vesset Level Indicating System Performance During Semiscate Test S-UT-3,
EGG-SEMI-5494 (June 1981). .
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Fig. 2. Wescinghouse and Semiscale upper-head and upper plenum dP
measurements. Source: W. W. Tingle and R. W. Golden, InstaIIation and

Initial Test Data Report: Westinghouse Reactor Vessel Level Indicating
System Performance During Semiscale Test S-UT-3, EGG-SEMI-5494 (June
1981).

spans of concern, 250 to 390 s and 675 to 910 s. It was interesting that
this curve turned out to be linear. From this curve the distributed void
fraction can be calculated (assuming linearity between points) and a col-
lapsed liquid level calculated. This collapsed liquid level was calcu-
lated to be ~200 cm (80 in.) below the cold leg during the region of con-
cern, which confirms the level indicated in Fig. 3 by the Semiscale dP
measurement.

The next two figures illustrate that the Westinghouse dP measure
ments are equivalent to Semiscale dP measurements when they cover the same
span. Figures 6 and 7 are plots of differences between Westinghouse and
Semiscale dP measurements. The Semiscale measurements are the sum of AP2
and AP4 illustrated in Fig. 1. This measurement spans the same levels as-

the Westinghouse measurements. Figure 6 is a plot of the differences be-
tween Westinghouse dynamic dP measurement and the Semiscale data, and

"
Fig. 7 is a plot of the differences between the Westinghouse vessel level
measurement and the Semiscale data. Neither plot illustrates an error or

.
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Fig. 3. Westinghouse collapsed liquid level (upper head to lower .-

plenum) compared with Semiscale collapsed liquid level (-13 cm to lower
plenum). Source: W. W. Tingle and R. W. Golden, Instattation and Ini-
tial Test Data Report: Westinghouse Reactor Vesset Level Indicating Sya-
tem Performance During Semiscale Test S-UT-3, EGG-SFL_-5494 (June 1981),

difference greater than 25 cm (10 in.) after about 130 s. Some transient
errors greater than 25 cm are caused by a difference in response time be-
tween the Westinghouse and Semiscale measurement systems. The Westing-
house measurerent should be slower because of the long line lengths [45,
60, and 75 m (150, 200, and 250 ft)], whereas the Semiscale line lengths
are only a few centimeters.

11The response time can be calculated using the equation

f=4.22[D2 dP

\L dv/ '

.

where
"

f = 3-db frequency response in hertz,
4.22 = constant in the equation to take care of unit conversion,

. . ._. . _ _ _ _ - - - _ _ _ - _ - - _ _ _ _ _ - - _ _ _ _ - _ _ _ _ _ - - _ _ _ _ _ _
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Fig. 4. Collapsed liquid levels in Semiscale as measured by dP4 and

Westinghouse vessel level system. (Expanded plot of Fig. 3 with differ-
ence between two traces plotted as trace 1).

D = inside diameter of the tube in inches,
L = length of the tube in feet,

dp/dv = compliance of the dP transmitter ITT Barton Model 752 sup-
1000 in of water

plied by vendor to be ; units are in
0.02 in.:

Ib/ A 2
in.:

Calculating the frequency response of the Westinghouse level
monitoring system yields

,

y/8
8.1 x 10-8 x 36.13

|

f=4.22( = 0.81 Hzb
400 x 0.02 / .
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Fig. 6. Plot of difference between Westinghouse dynamic measurements
and Semisc&ie measurements. (For entire vessel - note good agreement.)

Rise time is 2.2 (1/f) = 2.2 x 1.0/0.81 = 2.73 s. This time constant
corresponds to the transient times observed in Figs. 6 and 7.

A comparison of the Westinghouse RVLIS with two phase froth level is
shown in Fig. 8. Considering the time response of the Westinghouse sys-
tem, the level given by that system is a conservative indication of froth
height and possible core cooling. Approximate void values are labeled
where possible. These void fractions are from Semiscale densitometers.

The Westinghouse algorithm for calculating liquid level is:

H(p - p ) - (10s x dP,/9.80665)
"

'(p -p)
g

where
,

L = liquid level in centimeters,
H = elevation between taps in centimeters,
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Fig. 7. Plot of difference between Westinghouse level measurements

and Semiscale level measurements. (For entire vessel - note good agree-

ment.)

|

| p = density; the subscript r is for reference leg, v is for steam
'

or vapor, and f is for liquid - all in kilograms per cubic
meter,

dP,= measured dP in kilopascals,
D = distance of the lower tap above or below the reference eleva-

tion (cold leg centerline) in centimeters. The addition of D
in this equation converts the Westinghouse equation for applica-
tion in Semiscale. This equation can be simplified to:

H( p, - p ) - AP,y
"

*(pg-p) ,

y

|

| This is the same equation derived and experimentally verified in the 4

| Blowdown IIcat Transfer Program at ORN1,.
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3 densitometers. |

I
' s

In the eveat that a break occurred and steam was blowing at the ref-
erence leg (capillary tube), an error could occur of as much as 33 cm (13
in.) in the reading. However, this is an unlikely occurrence and repre-
sents moreover a relatively small error.

2.2 Westinahouse Internretation of Measurement Differences

According to Westinghouse, the structural differences between Semi-
scale and a Westingbouse reactor probably caused the large differences
illustrated in Fig. 4. Their schematic of the Semiscale vessel, illus-
trated in Fig. 9, shows how the solid guide tubes block flow communica-

f tion between the upper plenum and the upper head, resulting in the trap-
ping of a two phase mixture between the water below and water in the upper
head. A typical design of a Westin2 house PWR is illustrated in Fig. 10.
These reactors have perforated guide tubes that allow good flow communica-

| tion between the upper plenum and the upper head. According to Westing-
house, the guide tubes in Semiscale would require modification (perfora-

*

tion like a Westinghouse reactor) before the Semiscale tests would accu-
rately simulate the behavior of a Westinghouse PWR.

The guide tube in the upper plenum at Semiscale contains four slots*

near the bottom of the tube. These slots permit flow communication be-
tween the upper plenum and the upper head. Since the slots are relatively

_
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Fig. 9. Semiscale simulation of a PWR.

low in the upper plenum, Westinghouse suggests that a two phase mixture
may be trapped in the guide tube when there is a froth around the lower
end of the tube. This trapped mixture adds to the level measured by the
Westinghouse vessel system, but not to the Semiscale dP measurement from
-13 to 578 cm. To evaluate this explanatior for the difference between
these two dP measurements, the following we+ 4?cMi,

The top of the first slot is -36 cm * w t t?,e cold leg, and the bot-
tom of the fourth slot is at -91 cm. W p. le tube is ~437 cm long. The

4ture in the guide tube can"added" level resulting from the twe 5 . = 'e s

be calculated by
.

Added Level = (1 - =)H ,
.

where = is the void fraction in the guide tube and H is the guide tube

_ _ _ _ - _ _ _ _ _ _ _ _ _ -
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Fig. 10. Westinghouse reactor vessel configuration (PWR).

height. Using Fig. 5, a void fraction can be found at -36 and -91 cm
to give a range of possible densities in the guide tube.

The possible added effect of the guide tube's trapping a two phase
mixture during the test is shown in Table 1. Also tabulated is the dif-
ference between Westinghouse and Semiscale dP measurements along with the
difference between the Westinghouse upper-head value and Semiscale densi-
tometers for the time range of 250-390 s. The discrepancies between the
Westinghouse and Semiscale values are within the range of apparent guide
tube levels. The only possible exception is that the upper-head measure-
ment difference is slightly larger than the added guide tube level.,

This table illustrates the point that the guide tube effect is certainly a
plausible explanation for the discrepancies between Westinghouse and Semi-

5 scale measurements.
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Table 1. Level differences in Semiscale
for test S-UT-3 ,

Time after Apperent guide Difference in Westinghouse .

rupture tube level and Semiscale levels
(s) [cm (in.)] [cm (in.)]

220 100-165 (40-65) 150 (60)"

250-390 70-60 (5-25) 40-50 (15-20)"

250-390 17-60 (5-25) 25-115 (10-45)b

500 85-130 (35-50) 100 (40)"

675-910 10-50 (5-20) 25-50 (10-20)"

" Difference between Westinghouse and Semiscale dP
values,

bDifference between Westinghouse upper-head value
and Semiscale densitometer.

2.3 Conclusions and Recommendations
.

Many conclusions and observations could be main, however, only those
dealing with the possible ambiguous reading of the kVLIS are listed here: ,

1. The Westinghouse level and dynamic menstrements read the same as
Semiscale dP instrumentation when the tap locattens were approximately the
same.

2. Level measurements recorded during S-UT-3 that spanned the upper
core plate were in error by as much as 150 cm (60 in.); this included all
three Westinghouse measurements as well as Semiscale's Ap2.

3. The regions of concern discussed previously are times when data
f rom other Semiscale measurements indicate that both Westinghouse and Semi-
scale measurements in Fig. 2 are incorrect and that the Semiscale measure-
ment in Fig. 3 is correct. The Westinghouse dP level indication is in er-
ror during these times. Level estimates outside these regions of concern
may also be in question. Our understanding is that Westinghouse does not
intend to use the upper-head measurements in Fig. 2 for level measurement;
they will only use this measurement for head venting.

4 Note that the Westinghouse level measurement was conservative
when compared with the two phase froth level (possible coolant level).

5. A trapped two-phase mixture in the guide tube can cause an
added level value from 13-153 cm (5-60 in.) . This effect is certainly a

plausible reason for the differences between the Westinghouse and Semi- -

scale level measurements. However, as seen in the dP measurements in the
upper head, additional effects may be present. '

Based on the analysis of this data, the recommendation is made that
the Westinghouse explanation of level differences should be experimentally
verified at Semiscale if possible.

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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