

Carolina Power & Light Company

January 27, 1982

File: BC/A-4

Office of Nuclear Fractor Regulation
ATTN: Mr. D. B. Vassallo, Chief
Operating Reactors Branch No. 2
United States Nuclear Regulatory Commission
Washington, D.C. 20555

BRUNSWICK STEAM ELECTRIC PLANT, UNIT NOS. 1 AND 2
DOCKET NOS. 50-325 AND 50-324
LICENSE NOS. DPR-71 AND DPR-62
IMPLEMENTATION OF ODYN CODE

Dear Mr. Vassallo:

SUMMARY

Mr. D. G. Eisenhut's November 4, 1980 letter stated that all operating BWRs with General Electric (GE) reload licensing analyses must have the limiting transients recalculated with the ODYN transient code by January 1982, even if a reload submittal has not been made. In a June 30, 1981 letter, Carolina Power & Light Company (CP&L) advised the NRC that, based on the scheduled refueling date of April 1982, an ODYN reanalysis for Brunswick-1 would be applicable to only the last three months of the current operating cycle and would represent redundant analyses since the unit had already been licensed with the REDY code. Accordingly, CP&L requested that Brunswick-1 be permitted to complete Cycle 3 using the existing REDY code analysis for which GE had presented evidence demonstrating that the REDY code is, under specified conditions (ODYN Option B), more conservative than the ODYN code. Based on operating performances of Brunswick-1 and Brunswick-2 to date, the refuelings of Unit 1 and Unit 2 are now scheduled to begin September 1982 and June 1982, respectively.

DISCUSSION

Mr. T. A. Ippolito's December 22, 1981 letter and Mr. D. G. Eisenhut's December 29, 1981 letter stated that if scram time test data is bounded by the ODYN Option B scram time distribution, the use of ODYN Option B calculations would be conservative in the area of concern; therefore, a delay in implementing the ODYN code analyses until the next operating cycle would be considered reasonable and acceptable. CP&L has obtained the ODYN Option B criteria from GE and has completed calculations of the mean scram times for both Brunswick-1 and Brunswick-2. This information demonstrates that the data from Brunswick-1, Cycle 3 and Brunswick-2, Cycle 4 (the current cycles) are in compliance with the GE criteria for the use of ODYN Option B.

8202020319 820127 PDR ADOCK 05000324 Aool Sil

The scram time test data for Brunswick-1, Cycle 3 and Brunswick-2, Cycle 4 are attached. The Brunswick-1 mean scram time was calculated using three scram periodic tests that have been run in Cycle 3. A total of 167 control rods were tested, resulting in a mean scram time for Unit 1 of 0.811 seconds. Since this time is less than the Option B scram time limit specification of 0.922 seconds, the Option B criteria are satisfactorily met. The Brunswick-2 mean scram time was calculated using five scram periodic tests that have been run in Cycle 4. A total of 177 control rods were tested, resulting in a mean scram time for Brunswick-2 of 0.838 seconds. Since this time is less than the Option B scram time limit specification of 0.919 seconds, the Option B criteria are satisfactorily met. A copy of these calculations is attached.

CONCLUSION

Since this data is satisfactory, CP&L plans to complete the current operating cycles of Brunswick-1 and Brunswick-2 without performing reanalyses using the ODYN code. Subsequent reload analyses for each unit will be performed using the ODYN code. If you should require any additional information, please contact my staff.

Yours very truly,

S. Q. Zimmerman

Manager

Licensing & Permits

WRM/1r (7798)

Enclosures

cc: Mr. J. P. O'Reilly (R-II)

Following BOC Test

- Notch "x" = Notch which corresponds most closely to 20% insertion of rods = 36
- ullet The mean scram time, ullet ave , for the scram data generated to date in the cycle is determined by:

$$z_{\text{ave}} = \frac{\sum_{i=1}^{n} N_i z_i}{\sum_{i=1}^{n} N_i} = \frac{N/A}{N}$$
 sec

 τ_i = average scram time to notch x for surveillance test i.

N; = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_i = \frac{137}{(137 \cdot 0.815)} = 111.622$$

$$\tau_{ave} = \frac{111.622}{137} = 0.815$$
 sec

ullet The Option B scram time limit specification, ullet B, is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_1}{\sum_{i=1}^{n} N_i} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

O = standard deviation of above distribution (Table 1)

 N_1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{T}_{B} = 0.834 + 1.65 \left(\frac{137}{137} \right)^{1/2} \cdot 0.059 = 0.931 \text{ sec}$$

Test the following for trueness:

$$\tau_{\text{ave}} \leq \tau_{\text{B}} \Rightarrow \underline{0.815} \leq \underline{0.931} \text{ YES}$$

If yes, the MCPR for each pressurization event is determined from Option B MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

$$\frac{\text{MCPR}_{\text{adjusted}} = \text{MCPR}_{\text{Option}}}{\text{B}} + \frac{\tau_{\text{ave}} - \tau_{\text{B}}}{\tau_{\text{A}} - \tau_{\text{B}}} \cdot \left(\frac{\text{MCPR}_{\text{Option}} - \text{MCPR}_{\text{Option}}}{\text{B}} - \frac{\text{MCPR}_{\text{Option}}}{\text{A}}\right)$$

where: \mathcal{L}_{A} = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= ____ sec

 (From the cycle specific reload license supplement)

(1)	Non-pressurization
	events

- (2) TT/LR WO BP
- (3) FWCF

Manimum	W. /	8X8R	P8X8R	
Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	
MCPRA=	MCPRA=	MCPR _A =	MCPR _A =	
MCPR _B =	MCPR _B =	MCPRB=	MCPRB=	
MCPR = adj	MCPR = adj	MCPR =	MCPR = adj	
MCPRA=	MCPRA=	MCPRA=	MCPR _A =	
MCPR _B =	MCPR _B =	MCPRB=	MCPR _B =	
MCPR = adj	MCPR =	MCPR = adj	MCPR = adj	

tuse only if Z > Z

• The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R	
. OLMCPR :					-

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean	Standard Deviation o	1967 A/S* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Dropout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.074
	Dropout	0.852	0.060	1.089

Following 11/5/80 Test

- Notch "x" = Notch which corresponds most closely to 20% insertion of rods = 36
- ullet The mean scram time, ullet ave , for the scram data generated to date in the cycle is determined by:

$$z_{\text{ave}} = \frac{\sum_{i=1}^{n} N_{i} z_{i}}{\sum_{i=1}^{n} N_{i}} = 0.815 \text{ sec}$$

 τ_i = average scram time to notch x for surveillance test i.

N; = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_{i} = 137 + 16 = 153$$

 $\sum_{i=1}^{n} N_{i} z_{i} = (137 \cdot 0.815) + (16 \cdot 0.789) \approx 124.279$

$$rac{124.279}{153} = 0.812$$
 sec

• The Option B scram time limit specification, $\boldsymbol{\mathcal{Z}}_{\mathsf{B}}$, is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_{1}}{\sum_{i=1}^{n} N_{i}} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

O = standard deviation of above distribution (Table 1)

 N_1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{T}_{B} = 0.834 + 1.65 \left(\frac{137}{153} \right)^{1/2} \cdot 0.059 = 0.926 \text{ sec}$$

Test the following for trueness:

If yes, the MCPR for each pressurization event is determined from Option B MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

MCPR_{adjusted} = MCPR_{Option} +
$$\frac{\tau_{ave} - \tau_{E}}{\tau_{A} - \tau_{B}} \cdot \left(\frac{MCPR_{Option} - MCPR_{Option}}{\sigma_{A}} \right)$$

where: C_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= sec

 (From the cycle specific reload license supplement)

(1)	Non-pressurization events	

(2)	TT/LR	WO	RP
		11.00	Sec.

1	3)	pri	¥.	×	,00	-
1	.5		۰	υ	ď.		-
	~		•	۰	*	w	*

7 X 7	8 X 8	8X8R	P8X8R	
Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	
MCPRA= MCPRB=	MCPR _A = MCPR _B =	MCPRA= MCPRB=	MCPRA= MCPRB=	
MCPR =	MCPR = adj	MCPR = adj	MCPR adj	
MCPRA=	MCPRA=	MCPRA=	MCPRA=	
MCPR _B =	MCPR _B =	MCPRB=	MCPR _B =	
MCPR = adj	MCPR = adj	MCPR =	MCPR =	

tuse only if Z > Z

The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R	
. OLMCPR :					

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean	Standard Deviation	1967 A/B* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Dropout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.064
	Dropout	0.852	0.060	1.089

Following 3/20/81 Test

- Notch $\underline{"x"}$ = Notch which corresponds most closely to 20% insertion of rods = 36
- ullet The mean scram time, ullet ave , for the scram data generated to date in the cycle is determined by:

$$z_{\text{ave}} = \frac{\sum_{i=1}^{n} N_i z_i}{\sum_{i=1}^{n} N_i} = \underline{0.812} \text{ sec}$$

 τ_i = average scram time to notch x for surveillance test i.

 N_i = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_{i} = \frac{137 + 16 + 14 = 167}{(137 \cdot 0.815) + (16 \cdot 0.789) + (14 \cdot 0.795)} \approx 135.409$$

$$rac{2}{ave} = \frac{135.409}{167} = \frac{0.811}{167}$$
 sec

• The Option B scram time limit specification, T , is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_{1}}{\sum_{i=1}^{n} N_{i}} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

O = standard deviation of above distribution (Table 1)

 N_1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{T}_{B} = 0.834 + 1.65 \left(\frac{137}{167} \right)^{1/2} \cdot 0.059 = 0.922 \text{ sec}$$

• Test the following for trueness:

If yes, the MCPR for each pressurization event is determined from Option B MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

$$\frac{\text{MCPR}_{\text{adjusted}} = \text{MCPR}_{\text{Option}}}{\text{B}} + \frac{\tau_{\text{ave}} - \tau_{\text{B}}}{\tau_{\text{A}} - \tau_{\text{B}}} \cdot \left(\frac{\text{MCPR}_{\text{Option}} - \text{MCPR}_{\text{Option}}}{\text{A}}\right)$$

where: C_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= _____ sec

 (From the cycle specific reload license supplement)

(1) Non-pressurization events

(2	2)	TT/LR	wo	BP	

(3) FWCF

7X7	8 X 8	8X8R	P8X8R	
Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	
MCPRA = MCPRB =	MCPR _A = MCPR _B =	MCPRA= MCPRB=	MCPRA= MCPRB=	
MCPR = adj	MCPR =	MCPR = adj	MCPR adj	
MCPRA=	MCPR _A =	MCPRA=	MCPRA=	1
MCPRB=	MCPR _B =	MCPRB=	MCPR _B =	
MCPR = adj	MCPR = adj	MCPR =	MCPR adj	

tuse only if Z > Z

The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R
. OLMCPR :				

Scram Pilot Valve Solenoid (Sec.)

Option B

Roc Inser	ted to Notch:	Mean	Standard Deviation	1967 A/S* Tech Spec Curve
39	Pickup	0.671	0.056	0.838
	Dropout	0.688	6.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Dropout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.064
	Dropout	0.852	0.060	1.089

SCRAM TIME TESTING BEGINNING OF CYCLE (BOC) 3

ROD NUMBER	20% INSERTION TIME (SEC.)	ROD NUMBER	20% INSERTION TIME (SEC.)
02-19	0.800	18-43	0.800
02-23	0.900	18-47	0.850
02-27	0.783	18-51	0.750
02-31	0.850	22-03	0.750
02-35	0.733	22-07	0.750
06-11	0.800	22-11	0.817
06-15	0.783	22-15	0.817
06-19	1.367	22-19	0.817
06-23	0.767	22-23	0.817
06-27	0.817	22-27	0.800
06-31	0.800	22-31	0.917
06-35	0.750	22-35	0.867
06-39	0.850	22-39	0.850
06-43	0.733	22-43	0.767
10-07	0.767	22-47	0.800
10-11	0.767	22-51	0.800
10-15	0.817	26-03	0.783
10-19	0.817	26-07	0.783
10-23	0.867	26-11	0.817
10-27	0.783	26-15	0.650
10-31	0.767	26-19	0.950
10-35	0.817	26-23	0.767
10-39	0.800	26-27	0.817
10-43	0.833	26-31	0.867
10-47	0.767	26-35	0.817
14-07	0.850	26-39	0.833
14-23	0.850	26-43	0.833
14-27	0.783	26-47	0.833
14-31	0.867	26-51	0.783
14-35	0.850	30-07	0.817
14-39	0.783	30-11	0.800
14-43	0.850	30-15	0.817
14-47	0.800	30-19	0.867
18-03	0.750	30-23	0.850
18-07	0.800	30-27	0.900
18-11	0.767	30-31	0.883
18-15	0.867	30-35	0.883
18-19	0.800	30-39	0.850
18-23	0.783	30-43	0.767
18-27	0.833	30-47	0.733
18-31	0.850	30-51	0.800
18-35	0.800	34-03	0.750
18-39	0.833	34-07	0.817

BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 1 (CONT'D)

SCRAM TIME TESTING BEGINNING OF CYCLE (BOC) 3

ROD NUMBER	20% INSERTION TIME (SEC.)	ROD NUMBER	20% INSERTION TIME (SEC.)
34-11	0.767	50-27	0.817
34-15	0.900	50-31	0.783
34-19	0.850	50-35	0.733
34-23	0.850	38-15	0.850
34-27	0.867	30-03	0.867
34-31	0.850	14-11	0.850
34-35	0.833	14-15	0.633
34-39	0.817	14-19	0.800
34-43	0.800		
34-47	0.833		
34-51	0.750		
38-07	0.767		
38-11	0.783		
38-19	0.767		
38-23	0.850		
38-27	0.850		
38-31	0.800		
38-35	0.833		
38-39	0.867		
38-43	0.767		
38-47	0.817		
42-07	0.817		
42-11	0.800		
42-15	0.783		
42-19	0.867		
42-23	0.850		
42-27	0.817		
42-31	0.817		
42-35	0.783		
42-39	0.850		
42-43	0.767		
42-47	0.800		
46-11	0.783		
46-15	0.833		
46-19	0.767		
46-23	0.800		
46-27	0.783		
46-31	0.850		
46-35	0.767		
46-39	0.800		
46-43	0.833		
50-19	0.700		
50-23	0.767		

SCRAM TIME TESTING NOVEMBER 5, 1980

ROD NUMBER	20% INSERTION TIME (SEC.)
26-39	0.717
10-15	0.850
26-15	0.817
02-35	0.717
10-39	0.817
22-27	0.817
14-27	0.833
26-39	0.750
02-19	0.767
42-39	0.850
42-15	0.800
34-51	0.733
50-35	0.717
38-27	0.833
50-19	0.700
30-27	0.900

SCRAM TIME TESTING MARCH 20, 1981

ROD NUMBER	20% INSERTION TIME (SEC.)
26-51	0.767
10-43	0.767
18-43	0.800
34-43	0.800
02-27	0.783
10-27	0.800
42-27	0.850
50-27	0.800
10-11	0.783
18-11	0.783
34-11	0.800
42-11	0.800
26-03	0.733
26-35	0.817

Following BOC Test

- Notch "x" = Notch which corresponds most closely to 20% insertion of rods = 36
- ullet The mean scram time, ullet ave , for the scram data generated to date in the cycle is determined by:

$$z_{\text{ave}} = \frac{\sum_{i=1}^{n} N_i z_i}{\sum_{i=1}^{n} N_i} = \frac{N/A}{N_i}$$
 sec

 τ_i = average scram time to notch x for surveillance test i.

 N_i = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_{i} = 136$$

 $\sum_{i=1}^{n} N_{i} Z_{i} = (136 \cdot 0.846) \approx 115.015$

$$rac{136}{136} = \frac{0.846}{136}$$
 sec

• The Option B scram time limit specification, \mathcal{Z}_{B} , is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_1}{\sum_{i=1}^{n} N_i} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

= 0.834 sec

O = standard deviation of above distribution (Table 1)

= 0.059 sec

 N_1 = number of rods test at BOC (All active rods).

= 136

$$T_{B} = 0.834 + 1.65 \left(\frac{136}{136}\right)^{1/2} \cdot 0.059 = 0.931 \text{ sec}$$

Test the following for trueness:

If yes, the MCPR for each pressurization event is determined from $\mbox{Option B MCPR's}$.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

MCPR_{adjusted} = MCPR_{Option} +
$$\frac{\tau_{ave} - \tau_{B}}{\tau_{A} - \tau_{B}} \cdot \left(\frac{MCPR_{Option} - MCPR_{Option}}{\sigma_{A}} \right)$$

where: \mathcal{T}_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= ____ sec

 (From the cycle specific reload license supplement)

(1) Non-pressurization events

(2)	TT/LR	wo	BP

(3) FWCF

7X7	8 X 8	8X8R	PSXSR	
Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	1
MCPRA= MCPRB=	MCPR _A = MCPR _B =	MCPRA= MCPRB=	MCPRA= MCPRB=	1
MCPR =	MCPR = adj	MCPR = adj	MCPR = adj	}
MCPRA=	MCPRA=	MCPRA=	MCPRA=	1
MCPRB=	MCPR _B =	MCPR _B =	MCPR _B =	
MCPR =	MCPR adj	MCPR = adj	MCPR adj=	}

tuse only if Z > Z

The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R
. OLMCPR :				

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean	Standard Deviation	1967 A/B* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Dropout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.064
	Dropout	0.852	0.060	1.089

Following 2/8/81 Test

- Notch $\frac{"x"}{}$ = Notch which corresponds most closely to 20% insertion of rods = 36
- The mean scram time, \mathcal{T}_{ave} , for the scram data generated to date in the cycle is determined by:

$$z_{\text{ave}} = \frac{\sum_{i=1}^{n} N_i z_i}{\sum_{i=1}^{n} N_i} = \underline{0.846} \text{ sec}$$

 τ_i = average scram time to notch x for surveillance test i.

N; = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_i = 136 + 14 = 150$$

 $\sum_{i=1}^{n} N_i Z_i = (136 \cdot 0.846) + (14 \cdot 0.807) \approx 126.316$

$$rac{126.316}{150} = 0.842$$
 sec

• The Option B scram time limit specification, $\boldsymbol{\mathcal{C}}_{\mathsf{B}}$, is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_1}{\sum_{i=1}^{n} N_i} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

O = standard deviation of above distribution (Table 1)

 N_1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{T}_{B} = 0.834 + 1.65 \left(\frac{136}{150} \right)^{1/2} \cdot 0.059 = 0.927 \text{ sec}$$

• Test the following for trueness:

$$\tau_{\text{ave}} \leq \tau_{\text{B}} \Rightarrow 0.842 \leq 0.927 \text{ YES}$$

If yes, the MCPR for each pressurization event is determined from Option B MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

MCPR_{adjusted} = MCPR_{Option} +
$$\frac{\tau_{ave} - \tau_{B}}{\tau_{A} - \tau_{B}} \cdot \left(\frac{MCPR_{Option} - MCPR_{Option}}{\sigma_{A}} \right)$$

where: C_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= ____ sec

• (From the cycle specific reload license supplement)

(1) Non-pressurization events		Maximum MCPR =	
			-

(2)	TT/LR	WO	BP

(3)	FWCF
(0)	11101

7X7	8 X 8	8X8R	P8X8R	
Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	
MCPRA= MCPRB=	MCPR _A = MCPR _B =	MCPRA= MCPRB=	MCPRA= MCPRB=	1
MCPR = adj	MCPR = adj	MCPR = adj	MCPR = adj	}
MCPRA=	MCPRA=	MCPRA=	MCPR _A =	1
MCPRB=	MCPR _B =	MCPRB=	MCPR _B =	1
MCPR = adj	MCPR =	MCPR = adj	MCPR adj	}

tuse only if Z ... > Z.

The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R	
. OLMCPR :					

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean u	Standard Deviation	1967 A/E* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Dropout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.064
	Dropout	0.852	0.060	1.089

Following 7/28/81 Test

- Notch "x" = Notch which corresponds most closely to 20% insertion of rods = 36
- ullet The mean scram time, ullet ave , for the scram data generated to date in the cycle is determined by:

$$z_{\text{ave}} = \frac{\sum_{i=1}^{n} N_{i} z_{i}}{\sum_{i=1}^{n} N_{i}} = 0.842 \text{ sec}$$

where: n = number of surveillance tests performed to date in the cycle. (Including BOC)

 τ_i = average scram time to notch x for surveillance test i.

 N_i = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_i = \frac{136 + 14 + 14 = 164}{(136 \cdot 0.846) + (14 \cdot 0.807) + (14 \cdot 0.819)} \approx 137.782$$

$$rac{137.782}{164} = 0.840$$
 sec

• The Option B scram time limit specification, $\boldsymbol{\mathcal{C}}_{\mathrm{B}}$, is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_1}{\sum_{i=1}^{n} N_i} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

C = standard deviation of above distribution (Table 1)

N1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{T}_{B} = 0.834 + 1.65 \left(\frac{136}{164} \right)^{1/2} \cdot 0.059 = 0.923 \text{ sec}$$

Test the following for trueness:

$$\tau_{\text{ave}} \leq \tau_{\text{B}} \Rightarrow \underline{0.840} \leq \underline{0.923} \text{ YES}$$

If yes, the MCPR for each pressurization event is determined from Option B MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

$$\frac{\text{MCPR}_{\text{adjusted}} = \text{MCPR}_{\text{Option}}}{\text{B}} + \frac{\tau_{\text{ave}} - \tau_{\text{B}}}{\tau_{\text{A}} - \tau_{\text{B}}} \cdot \left(\frac{\text{MCPR}_{\text{Option}} - \text{MCPR}_{\text{Option}}}{\text{B}} - \frac{\text{MCPR}_{\text{Option}}}{\text{A}}\right)$$

where: C_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= ___sec

 (From the cycle specific reload license supplement)

(1)	Non-pressurization
	events

(2)	Tī/LR	Wu	BP	

4	-	-					
1	2	٦	- 12	٠,	18	m	E
١.	3	- 1	- 17	4	16	L.	F
		*	-7	- 2	7	~	٠.

/X7	8 X 8	8X8R	P8X8R	
Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	
MCPRA = MCPRB =	MCPR _A = MCPR _B =	MCPRA= MCPRB=	MCPRA= MCPRB=	1
MCPR = adj	MCPR =	MCPR = adj	MCPR = adj	}
MCPRA=	MCPRA=	MCPRA=	MCPRA=	1
MCPR _B =	MCPR _B =	MCPRB=	MCPR _B =	
MCPR = adj	MCPR = adj	MCPR = adj	MCPR adj=	}

tuse only if Tor. > T.

The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R
. OLMCPR :				

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean <u>u</u>	Standard Dr iation	1967 A/S* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Drópout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.064
	Dropout	0.852	0.060	1.089

Following 10/30/81 Test

- Notch "x" = Notch which corresponds most closely to 20% insertion of rods = 36
- ullet The mean scram time, ullet ave , for the scram data generated to date in the cycle is determined by:

$$\tau_{\text{ave}} = \frac{\sum_{i=1}^{n} N_{i} \tau_{i}}{\sum_{i=1}^{n} N_{i}} = \underline{0.840} \text{ sec}$$

 τ_i = average scram time to notch x for surveillance test i.

N; = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_i = \frac{136 + 14 + 14 + 1 = 165}{\sum_{i=1}^{n} N_i Z_i} = \frac{(136 \cdot 0.846) + (14 \cdot 0.807) + (14 \cdot 0.819) + (1 \cdot 0.867)}{2 \cdot 138.649}$$

$$= 138.649$$

$$rac{138.649}{165} = 0.840$$
 sec

• The Option B scram time limit specification, $\tau_{\rm B}$, is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_{1}}{\sum_{i=1}^{n} N_{i}} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

O = standard deviation of above distribution (Table 1)

 N_1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{T}_{B} = 0.834 + 1.65 \left(\frac{136}{165} \right)^{1/2} \cdot 0.059 = 0.922 \text{ sec}$$

• Test the following for trueness:

$$\tau_{\text{ave}} \leq \tau_{\text{B}} \Rightarrow 0.840 \leq 0.922 \text{ YES}$$

If yes, the MCPR for each pressurization event is determined from Option B MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

$$\frac{\text{MCPR}_{\text{adjusted}} = \text{MCPR}_{\text{Option}}}{\text{B}} + \frac{\tau_{\text{ave}} - \tau_{\text{B}}}{\tau_{\text{A}} - \tau_{\text{B}}} \cdot \left(\frac{\text{MCPR}_{\text{Option}} - \text{MCPR}_{\text{Option}}}{\text{B}} - \frac{\text{MCPR}_{\text{Option}}}{\text{A}}\right)$$

where: C_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

= _____ sec

• (From the cycle specific reload license supplement)

(1) Non-pressurization

	/ / / /	8X8	8X8R	P8X8R	
ation	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	Maximum MCPR =	7
	MCPRA= MCPRB=	MCPR _A = MCPR _B =	MCPR _A = MCPR _B =	MCPRA = MCPRB =	1,
- [MCPR = adj	MCPR =	MCPR adj	MCPR = adj	}:
1	MCPRA=	MCPR _A =	MCPRA=	MCPRA=	1
{	MCPR _B =	MCPR _B =	MCPR _B =	MCPR _B =	
	MCPR =	MCPR =	MCPR =	MCDD =	1.

(2) TT/LR WO BP

events

(3) FWCF

tuse only if Z ... > Z

• The Operating Limit MCPR is the maximum of all three event MCPR's.

adi

	7X7	8X8	8X8R	P8X8R
OLMCPR :				

adj

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean u	Standard Deviation	1967 A/S* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	0.056	0.988
	Drópout	0.797	0.057	1.013
36	Pickup	0.834	0.059	1.064
	Dropout	0.852	0.060	1.089

Following 12/21/81 Test

- Notch "x" = Notch which corresponds most closely to 20% insertion of rods = 36
- lacktriangle The mean scram time, lacktriangle ave , for the scram data generated to date in the cycle is determined by:

$$\mathcal{Z}_{\text{ave}} = \frac{\sum_{i=1}^{n} N_i \mathcal{Z}_i}{\sum_{i=1}^{n} N_i} = \underline{0.840} \text{ sec}$$

 τ_i = average scram time to notch x for surveillance test i.

N; = number of rods tested in surveillance test i.

therefore;
$$\sum_{i=1}^{n} N_i = \frac{136 + 14 + 14 + 1 + 12}{177}$$

 $\sum_{i=1}^{n} N_i Z_i = \frac{(136 \cdot 0.846) + (14 \cdot 0.807) + (14 \cdot 0.819) + (1 \cdot 0.867) + (12 \cdot 0.867)}{12 \cdot 0.867}$
 ≈ 148.382
 $\Rightarrow ave = \frac{148.382}{177} = 0.838$ sec

• The Option B scram time limit specification, \mathcal{T}_{B} , is determined as follows:

$$\tau_{B} = \mu + 1.65 \left(\frac{N_1}{\sum_{i=1}^{n} N_i} \right)^{1/2} \cdot \sigma$$

where: μ = mean value for statistical scram time distribution to notch x. (Table 1)

C = standard deviation of above distribution (Table 1)

 N_1 = number of rods test at BOC (All active rods).

$$\therefore \quad \mathcal{Z}_{B} = 0.834 + 1.65 \left(\frac{136}{177} \right)^{1/2} \cdot 0.059 = 0.919 \text{ sec}$$

• Test the following for trueness:

(3) FWCF

$$\tau_{\text{ave}} \leq \tau_{\text{B}} \rightarrow 0.838 \leq 0.919 \text{ YES}$$

If yes, the MCPR for each pressurization event is determined from Option 3 MCPR's.

If no, the MCPR for each pressurization event is determined from the following linear interpolation:

MCPR_{adjusted} = MCPR_{Option} +
$$\frac{\tau_{ave} - \tau_{B}}{\tau_{A} - \tau_{B}} \cdot \left(\frac{\text{MCPR}_{Option} - \text{MCPR}_{Option}}{\sigma_{A}} \right)$$

where: C_A = present tech spec scram time requirements to notch x. (Table 1 or Tech Spec)

sec • (From the cycle specific reload license supplement) 7X7 8 X 8 8X8R P8X8R (1) Non-pressurization Maximum Maximum Maximum Maximum events MCPR = MCPR = MCPR = MCPR = MCPRA= MCPRA= MCPR = MCPR = MCPRR= MCPR = (2) TT/LR WO BP MCPR = MCPRA= MCPRA=

t use only if $\gamma_{eve} > \gamma_{eve}$

MCPR_B=

MCPRp=

MCPR adj

The Operating Limit MCPR is the maximum of all three event MCPR's.

	7X7	8X8	8X8R	P8X8R	
. OLMCPR :					

MCPR_R=

Scram Times From De-Energization of Scram Pilot Valve Solenoid (Sec.)

Option B

Rod Inser	ted to Notch:	Mean	Standard Deviation	1967 A/B* Tech Spec Curve
39	Pickup	0.671	0.050	0.838
	Dropout	0.688	0.052	0.862
38	Pickup	0.723	0.054	0.911
	Dropout	0.741	0.055	0.937
37	Pickup	0.778	C.056	0.988
	Drópout	0.797	0.057	1.013
36	Pickup	(0.834)	0.059	1.064
	Dropout	0.852	0.060	1.089

SCRAM TIME TESTING BEGINNING OF CYCLE (BOC) 4

ROD NUMBER	20% INSERTION TIME (SEC.)	ROD NUMBER	20% INSERTION TIME (SEC.)
02-19	0.817	18-31	0.867
02-23	0.783	18-35	0.900
02-27	0.817	18-39	0.867
02-31	0.783	18-43	0.883
02-35	0.883	18-47	0.967
06-11	0.817	18-51	0.800
06-15	0.800	22-03	0.833
06-19	0.767	22-07	0.850
06-23	0.800	22-11	0.850
06-27	0.817	22-15	0.867
06-31	0.850	22-19	0.867
06-35	0.867	22-23	0.833
06-39	0.850	22-27	0.900
06-43	0.783	22-31	0.967
10-07	0.800	22-35	0.850
10-11	0.883	22-39	0.917
10-15	0.850	22-43	0.850
10-19	0.933	22-47	0.817
10-23	0.900	22-51	0.883
10-27	0.850	26-03	0.800
10-31	0.883	26-07	0.833
10-35	0.817	26-11	0.833
10-39	0.850	26-15	0.650
10-43	0.833	26-19	0.950
10-47	0.767	26-23	0.817
14-07	0.900	26-27	0.800
14-11	0.867	26-31	0.817
14-15	0.800	26-35	0.817
14-19	0.867	26-39	0.883
14-23	0.833	26-43	0.917
14-27	0.900	26-47	0.850
14-31	0.883	26-51	0.783
14-35	0.850	30-03	0.767
14-39	0.933	30-07	0.850
14-43	0.817	30-11	0.800
14-47	0.883	30-15	0.850
18-03	0.800	30-19	0.833
18-07	0.783	30-23	0.833
18-11	0.933	30-27	0.900
1815	0.900	30-31	0.850
18-19	0.983	30-35	0.833
18-23	0.900	30-39	0.817
18-27	0.850	30-43	0.867

BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 (CONT'D)

SCRAM TIME TESTING BEGINNING OF CYCLE (BOC) 4

ROD NUMBER	20% INSERTION TIME (SEC.)	ROD NUMBER	20% INSERTION TIME (SEC.)
30-47	0.783	46-39	0.900
30-51	0.800	46-43	0.850
34-03	0.800	50-19	0.817
34-07	0.800	50-23	0.783
34-11	0.833	50-27	0.850
34-15	0 833	50-31	0.833
34-19	0.833	50-35	0.833
34-23	0.883		
34-27	0.950		
34-31	0.850		
34-35	0.967		
34-39	0.800		
34-43	0.867		
34-47	0.833		
34-51	0.817		
38-07	0.817		
38-11	0.833		
38-15	0.850		
38-19	0.817		
38-23	0.833		
38-27	Ins. Rod		
38-31	0.917		
38-35	0.900		
38-39	0.867		
38-43	0.817		
38-47	0.750		
42-07	0.900		
42-11	0.833		
42-15	0.817		
42-19	0.850		
42-23	0.833		
42-27	0.850		
42-31	0.850		
42-35	0.833		
42-39	0.850		
42-43	0.883		
42-47	0.817		
46-11	0.783		
46-15	0.833		
46-19	0.850		
46-23	0.817		
46-27	0.783		
46-31	0.867		
11 00	0.000		

46-35

0.850

SCRAM TIME TESTING CYCLE 4 - TEST NO. 1 FEBRUARY 8, 1981

ROD NUMBER	20% INSERTION TIME (SEC.)
50-27	0.817
42-07	0.833
34-07	0.767
42-47	0.800
42-39	0.850
42-15	0.783
34-47	0.817
10-07	0.783
02-27	0.800
10-47	0.783
10-15	0.817
18-07	0.817
18-47	0.817
10-39	0.817

SCRAM TIME TESTING CYCLE 4 - TEST NO. 2 JULY 28, 1981

ROD NUMBER	20% INSERTION TIME (SEC.)
34-39	0.833
34-15	0.833
34-31	0.833
50-31	0.783
34-23	0.867
34-51	0.800
50-23	0.767
34-03	0.783
18-51	0.817
02-31	0.800
02-23	0.783
18-03	0.817
18-15	0.867
18-31	0.883

SCRAM TIME TESTING CYCLE 4 - TEST NO. 3 OCTOBER 30, 1981

20% INSERTION

ROD NUMBER TIME (SEC.)

18-47 0.867

SCRAM TIME TESTING CYCLE 4 - TEST NO. 4 DECEMBER 21, 1981

ROD NUMBER	20% INSERTION TIME (SEC.)
02-35	0.850
02-33	0.833
06-43	0.867
06-39	0.800
06-15	0.833
26-51	0.783
26-03	0.817
46-39	0.817
46-15	0.767
46-11	0.733
50-35	0.833
50-19	0.800