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ABSTRACT

In this report the nature of dependence among human failures in a multiple
sequential action is analyzed and distinguished from other types of multiple
failures. Human error causes selective failure of components depending on
when the failure started. Two models are developed for quantifying the fail-
ure probability in a nultiple sequential action. The first is very general in

nature and does not require any dependent failure data. The failure orobabil-
ity obtained from this model is a conservative one with associated uncertainty
The uncertainty is calculated considering many possible sources such as data,
coupling and modeling. In the second nodel, details of the process in multi-
pie sequential failures are taken into account. The model increments the
conditional failure probabilities by a certain amount from their lower bounds
(independent failure probability). This approach provides important insights
into the influence of dependence between failures on system reliability. The
model can be used effectively to choose an optimum system considering the in-
dividual failure probability, dependence factor and the amount of redundancy
in a system. It was. observed that in many cases it may be better to reduce
the individual failure probability and to use a different type of system,
rather than trying to decrease the dependence between the failures.
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1. INTRODUCTION

Dependent failures (also colled comon mode or comon cause failures) and
their quantitative description have received wide attention in nuclear safety
analysis in recent years. Since redundancy was first used in an attempt to
achieve high reliability in systems, the recognition that the redundant compo-
nents can fail simultanecusly because of some characteristics common to all
the components has bcen an importan+. consideration in system design. The
Reactor Safety Studyl termed such dependent failures common mode failures,
and defined them as " multiple failures which accur because of a single initia-
ting or influer.cing cause. The single cause or mechanism serves as a common
input to the failures affected. If this nechanism er cause occurs all the
failures are triggered sic.ultaneously and a commor mcde failure occurs."

The treatnent of these dependent f ailures is extremely impertant in the
reliability assessment of any complex system that must be highly reliable.
When a system is built of redundant subsystems, dependent failures may become
the determining factor in the assessment of systea reliability (or unrelia-
bility). In certain situations, the potential advantages of applying redun-
dancy may be defeated by the dependent failures introduced.

The analysis of dependent failures is an intricate problem, and many tech-
niques have been proposed. Itisesuallyapproacnedqualitatively,toiden-
tify major sources of failure, a.id the'q ypantitatively to detenaine their in-
pact on system reliability.2

In this study, a particular t$pe ot dep?endent failure is analyzed, and
modeling is attempted to quantify the' probability of such a failure. The
failure addressed is dependent huuan failure ddring testing, maintenance, and
calibration, which originates with a failur o n'one of the conponents caused
by the operator. Since, during testiny,and maintenance, an operator performs
his job sequer.tially, this type of f ailure is tenaed a multiple sequential
failure (msf) during testing and maintenarco

In Section 2 the nature af asfs during testing and maintenance is analyzed
and compared with other types of- mfs. Examples of such failures and their
importance in PWR safety analysis are provided. The available models for the
treatment of msfs during testing and maintenance are briefly presented, and
their applicability is analyzed.
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In Section 3 various distributions are applied to the bounds obtained' '

;

using bounding technique, and a central estimate is obtained using Chebyshev's

/. ine' quality. The propogation of error in such an analysis is also calculated,
u

in Section 4 azmodel is developed by increasing the probability of depen-
. dent failures by a certain. amount over the random failure probability, and the

,j parameters 'of the model are' estimated froa available data. Section 5 provides'
,

' some general conclusions about dependent failure probability based on the'

models developed in this study.
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2. DEPEfiDEflT FAILURES--0PERATOR ERRORS

2.1 Classification of Dependent Failures

Epler3 wrote the first article concerning dependent failures. He con-
cluded on the basis of some siuple calculations, which included dependent
failures, that there are " serious doubts as to the usefulness of a reliability
calculation that considers random events only, when comraon mode failures may
be dominant by as much as 10-5." Since then the various types of dependent
failures have received significant attention.

Dependent failures can be classified in many ways, and they have been as-
signed to broad categories on the basis of their causes,1.4 which may be
any of the following:

1. Design defects.
2. Manufacturing, fabrication, and quality control errors.
3. Test, maintenance, and repair errors.
4. Environmental variations.
5. Failure and degradation due to an initiating failure.
6. External initiation of failure.

Varicus measures have been recommended to reduce the probability of depen-
dent failures,1,4,5 such as the use of different types of equipment, the use
of different procedures for testing or monitoring the state of a system, the
presence of more than one operator to review personnel actions, and the
physical separation of various redundant components.

It is unlikely that a single model will be suitable for quantitative
analysis of all the different types of dependent failures, since the ways in
which the different types of dependent failures occur are different. Accor-
ding to flankamo,6 the failure of a group of components can occur in three
basic ways:

1. The failure is caused by an event outside the oro:p but conmon to the
components.

2. A failure within the roup, e.g., a single component failure, results
in the failure of all componen:.3 or.cerned.

3. The components all fail randomly.

3
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Dependent failures of the first type snould:be called " common cause failures"
and those of the second type' are usually called " cascade. failures" or "mul-
tiple failures." The tem " dependent failure": covers 'all kinds of failure 'de-
pendencies and includes the first and second types of failures and also their
combination. In this report, thi.s teminology will be used.

Cascade or multiple failures (originating from failure of a single compo-
nent within the group) that are due to human errors in testing and maintenance
differ from those due to a single hardware failure. Since hunans perform -
their tasks in a sequence, in a case of human error the state of the' system
depends 'on which component failed first, whereas in a case of hardware failure -
the final- state of the system is likely to be independent of which component
f ail ed first.. Figure 1 shows various failure states for a three-unit system.

An operator error in the component A influences the probability of error in
both components B and C, but an error in component B influences only component
C, because of the procedure followed. Once an operator has correctly per-
fomed an operation on component A and noved on to component B, he has no

reason to go back to component A, and, if he does go back to check, the action
will usually be a correct one. Thus, a failure he causes-in component B can -
result in only two component failures, and an error in component C will cause
a single component failure. The situation is different for hardware failure,

I where failure of any one component can result in failure of all: not'only can
~

failure of A cause failure of B and C, out failure of B can cause failure of

both A and C, and failure of C can cause failure of B and A.

In determining the probability of dependent failures, this distinction
between two types of multiple or cascade failures is not taken into account in '

any of the present models, but use of the same model for both types will be
erroneou s. Dependent failures should be divided into at least three general
classes, each requiring a different model:

1. Multiple sequential failure (msf) during testing and maintenance.

2. Multiple component failure due to single hardware failure within the -
group.

3. Failures caused by common events outside the group, i.e. , common cause

failures.

4
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Figure 1. Different failure states resulting from human failures during
testing and maintenance and those originating from a single
hardware failure. '

Modeling techniques described in the literature have addressed the second and

third types; this study deals with the first type, asfs during testing and
maintenance.

2.2 Situations of Multiple Sequential Failures in the Reactor Safety Study
for a PWR

Multiple sequential component failures during testing, maintenance, and
Cdlibration play a significant role in the detennination of system unavaila-
bility. In many PWR safety systems, this type of error is the dominant con-
tributor to system unavailability. Samanta et al .,7 applying an importance
measure to human errors, showed this type to be among the most important ones.'
in many. situations, given a particular type of accident, many of these errors
could cause a core melt. Such errors in PilRsl-include the following:

.

1. The possibility of repetitive human errors when calibrating three sets
of. comparators or bistable amplifiers in reactor protection system (RPS).
These comparators are tested and calib ated at about the same time, although

5
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the procedures for all of them may take ' everal days. This error was'found tos

be the most important one in terms of reliability importance to' core melt
~

probability. Also, given a small-small LOCA, with this error and no other
intervention, the probability of core melt is 1.

2. ~The operator leaves each of the three pairs of. pump discharge valves
in auxiliary feedwater system (AFWS) closed following monthly tests. ~ Since
three pump tests are done sequentially as= part of the same general procedure,
these faults are. coupled. - Given a transient event, this error was found to be
the most important one' in terms of reliability importance to core melt
probability. Also, given a small-small LOCA, with this error and no other
intervention by the operator, the probability of core melt is 1.

3. Failure to close manual valv'es of two containment spray injection sys-

tem (CSIS) pumps after monthly tests. Although the test procedure requires
opening of one valve at a time, because one system is tested immediately after
the other there is a dependence between the faults. Given this error, along~

with a small-small LOCA and no other operator intervention, the core melt

probability is 1.

4. Operator error in calibration that causes failure of at least two of
the three pressurizer low pressure comparators or of at least two of the three
pressurizer low level comparators, and also of at least two of- the four con-
tainment high pressure conparators. This error.affects three systems: SICS,
HPIS, and LPIS. It is among the important errors in terms of reliability
importance to core melt probability and also in terms of structural importance
to core melt.

5. Operator incorrectly calibrates at least two of the four sensor loops
in CLCS HI train 1A or 1B. The same four sensors are used in both trains.'

! Given a small-small LOCA with this error and no other operator intervention,
^

the core melt probability is 1.
;

2.3 Modeling of Dependent (Common Mode) Failures-*

Various models have been proposed for estimating the probability of depen-

dent failures. Some of these models are designed for specific types of depen-

dent failures and others are general.

,

| 6
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Lack of supporting data has been the major problem in validating such
models. Since . dependent failures are important only in highly reliable
systems, and recognition of the problem has been rather recent, data will
remain sparse for some time to come. Progress has been made, however, in the
realization that treatment of dependent failures should differ from conven-
tional reliability analysis in which the reliability of the system almost
reaches unity if sufficient redundancy is added. The models used in reactor
safety studies have generally been the " geometric mean" model and the "8-
factor" model. The geometric mean model was developed by the RSSI and was

used in assessing accident risks in U.S. commercial nuclear power plants. The
S-factor model8 was developed at Gulf General Atomics and was used in anal-

yzing HTGR accident initiation and progression. Both these models are general
in nature and are attractive for their simplicity. A third nodel was de-
veloped by Vesely9 using the multivariate exponential distribution of
Marshall-01 kin as the basis for common cause analysis. Most other available

models assume the occurrence of a " shock" and are not applicable to the type
of problem of interest here. The first two models mentioned above have been

used to quantify multiple sequential failures in testing and maintenance, and
the third one may be applied because of its attractive features. The general
characteristics of these three models are discussed below.

2.3.1 Geometric Mean Model

The Reactor Safety Studyl applied a bounding technique known as the
geometric mean in the assessment of dependent failures. The model first

| determined the bounds within which the failure probability lies and then used

( judgement to estimate the value of the probability within the defined range.
In general cases, defined as " loose coupling," the geometric mean of the upper

| and lower bounds was used to estimate the failure probability. This approach

| utilizes no dependent failure data; it relies on judgement to determine the
i degree of dependence. Also, it does not distinguish among different types of

dependent failures. The model is very simple to use, but as pointed out by
Lewis et al.,13 is arbitrary in its use of the geometric mean in the estima-
tion of failure probability.

Consider the example of two valves erroneously left closed by the operator
after maintenance. The failure to leave the second valve open is dependent on
the first action, i.e., whether the first valve was left open or closed. Let

7
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the symbols H 1 and H2 respectively represent failure to keep the first and the
second valve open, and let H H1 2 represent failure to keep both open.

P(ti ): -probability of the first error,l

P(H ): probability of the second error,2

P(H H ): probability of making both errors.12

The expression P(H H ), called the combination probability, is totally general12
and does not imply anything about the dependence or independence of the errors

H1 and H -2

If the events are completely independent,

P(H H ) = P(M )P(H ) *12 1 2

This value of P(H H ) is defined as its lower bound, P (H H ) - |12 L 12
|

If the events are dependent, the above expression is not valid. However,
even in the dependent case, in order for H H1 2 to happen, both Hi and H2

must happen. Accordi ngly ,

P(H H ) 1 P(H ) ,12 1
;

t

P(H H ) 1 P(H ) - |12 2

Since both of these are vaild,

P(H H ) 1 MIN [P(H ), P(H )] ,12 1 2

which is the upper bound, P (H H ), of the value of P(H H )-U 12 12

The boundary values define the range in which the failure probability
lies. Such ranges can be defined for other types of systems, and the tech-
nique is discussed in more detail in Section 3.2. The RSS assumed a lognormal

distribution for the range of possible values and, to obtain the best esti-
mate, used the median of the lognormal distribution, which is the geometric
mean of the range:

U(H H ) P (H H ) -Pg(H H ) * 12 L 1212

For identical acts,

and 4 (H H ) * PP (H H ) = p,P (H H ) = P ,P(H ) = P(H ) = p, 12 -U 12L 121 2

8
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| 2.3.2 6-Factor Model

f Fleming 8 developed the 6-factor model for the quantification of depen-
dpnt failures in HTGR risk assessment. The name is derived from the use of a
factor, 6, relating the dependent failure rate to the total failure rate for
one channel. Let

A : total failure rate of one channel,

l Ai : independent failure rate of the channe1,
r

Acm : dependent (common uode) failure rate of.the channel.
,

The model assumes that the total failure rate of each unit can be expanded
p

into its independent and dependent rates:

f' A = Aj + Acm -
1

It also defines the parameter 6 as the fraction of the total failure rate at--

i
= tributable to dependent failure:

A A
cm cm

'

6= = .

j Ai + Acm A

Assuming exponential distribution.for both independent and dependent failures,.
the system failure probability for a 1 out of 2:G type * of system is obtained
as

F(t) = 1 - 2e-At + e-(2-6)At:

(2 - 46 + 6 )(At)2 + 6At .2=

,

The value of 6 lies between 0 and 1, with 6 = 1 implying that all failures are
dependent (common mode), and 6 = 0 that all failures'are independent. Fleming
and Raabe10 obtained estimates of f, for six different component-types from-

; reliability experience data. They found that 6 tends to have values very
closely clustered in the range from 0.1 to 0.2.

*k o'it of niG logic configuration signifies that the system of n components is
j. ; good 1.f.f. at least k components are good.
.

' _

9
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The basic steps used to develop the reliability prediction for 1 out of
2:G type systems can be applied to larger systems and higher levels of redun-
dancy. The reliability predictions for 1 out of 3:G systems and 2 out of 3:G

systems by the S-factor model are given by Fleming.8
,

2.3.3 Marshall-Olkin Specialized itodel .

9Vesely used the multivariate exponential distribution of fiarshall and

Olkin for the treatment of common cause failures. The basic multivariate
model was specialized for the estimation of model parameters and v,?s made 4

capable of direct quantification of common cause failure probabilities. All
failures are assumed to occur at the same time, and this is taken as an ap-
proximation in cases of dependent failures occurring within short intervals.

..

The model cor4iders an arbitrary group of m comrmnts which fail from
various causes. For a components, the total number of possible failure causes
is 2A-1, and each is described by a unique vector x. For example, for two
conponents, m = 2, the vector (1,0) or (0,1) describes an independent cause
affecting only component 1 or component 2, and the vector (1,1) describes a
common cause simultaneously failing both the components.

In the model, the probability distribution associated with each failure

cause is described by an exponential distribution from its time of occurrence,

fi(t) = A-exp(- A-t) ,

where As is the failure rate associated with cause i.

All the failure causes are assumed to be competing, and the observed
failure is determined by the cause that occurs first. A multivariate expo-
nential distribution describes the observed component failure times. For two
identical components, the probability that neither couponent will fail in time
t, f(t), is given by

F(t) = exp(-A t - A t - Agt) ,l l

where Al is the individual component Gilure rate for the vector (1,0) or |

(0,1) and A2 is the common cause failere rate described by the vector (1,1). |
Smith et al.ll have shown that fct a two component system the system ~

failure probability, F(t), to seccnd order is given by,

F(t) = h(212 _ x )t2+At.2
2



|
l

I
,

f

y Vesely provided a technique for estimating the parameters A1, A , 'or j2

Ag based en Poisson statistical methods consider'ing the number of failures )
observed in a specified time-interval. This technique reduces the number of

3

parameters to be estimated oy assuming that the failure rates depend on the
number of components failed,. i .e. , Ay = Ax where x is the tntal number of
components simultaneously failed by the cause. This specialized nodel is

|
called the homogeneous model. Both constant failure rate (CFR) and binomial
failure rate (BFR) assumptions within the homogeneous model were analyzed for

:

. estimation.
,

In CFR, common cause failure rates are independent of the failure number:

Ax= A, x > x1 ,

where the equality is assumed only for numbers of failures greater than or

; equal to x1-

! In BFR, the equation for A is obtained by factoring-the common cause
. x

failure rate into an overall occurrence rate and a detailed effect proba-

bility. The quantity Ax_is obtained from the expression

m

(*) Axi A= I

x=x1
i

. here A is the sun of all the common cause failure rates for x > xi.w;

i

! ~2.4 Applicability of'the Available Dependent Failure Models

Other |models besides the three described above have-been proposed for the;

quantification of dependent failures. They are either shock or common load,

types of models. Shock models12 are applicable where the failures are
assumed to be due to a fatal " shock," defined as an event imposing abnormal
stresses on the components leading to their failure. The common load mode 16

is -useful when the load and resistance distributions are well known. For the
,

analysis of msf in testing and maintenance, such models are not applicable
because the specific cause.of the dependent failure is of a different. nature.

;

-11
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The geometric mean model was applied by' the Reactor Safety Study for all
types of dependent failures without regard to the specific cause of the depen-

! dence between the failures. The bounding technique applied by the model may.
be plausible for msfs, even though its use may be questioned for dependent
failures resulting from external shocks. It also may be used very ' effectively
for judging the importance of dependent failures with respect to random fail-

But, as pointed out in the' Lewis: report,13 use of the geometric meanures.
of the bounds is totally arbitrary, and .in many situations su:.h an approach
results in a lower bound that is absurdly low. The assumption i. bit the cen-
tral estimate lies symmetrically between the upper and lower bounds results in
an estimate that -is strongly influenced by a low lower bound which in many
cases is viewed with little confidence. This results in-increasing under-

estimation of the dependent failure probability with decreasing independent
failure probability as the lower bound becomes very . low.

The 8-factor model has been used in HTGR risk assessment at Gulf General
Atomics.14 Because of its simplicity, it is attractive, but also it is
questioned with regard to its applicability to all types of multiple failures.
Its authors claim that human operator and maintenance errors "are accurately
treated by the 8-factor approach, since a design error or an operator. error
that leads to an equipment failure would most likely be symmetrically applied
to any identical redundant equipment and-would result in simultaneous or near
simultaneous, multiple failures." But the model fails to distinguish between
msfs during testing and maintenance and msfs due to other causes, as explained
in Figure 1. Also, in the estimation of 8, the counting procedure followed
for the number of multiple failures could result in erroneous answers. For
example, in 2 out of 3:G type systems, whether 2 of the units or 3 of the
units simultaneously fail, both cases are counted as a multiple failure and
given the same weight in estinating 8.

Flening and Raabe10 have shown that the 8-factor model is based on the

Markov model of the system. The 8-factor model also specifies that failure
must be exponential and repair, if present, must also be exponential, i.e.,
the failure data must be expressed as rates. As correctly pointed out by

.

Apostolakis,15 because of the limits of the Markov model, which imposes the

I
!

12
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requireraent on the s-factor mocel that the failure data must be expressed as
rates,.the 6-factor model cannot be applied to failure on demand and dependent
raaintenance errors.

Fleming and Raabe assert that observations "that G estilaates for entirely
different types of components exhibit such little variation suggest that 6 may
be a ciore fundaciental yardstick for raeasuriag end predicting consnon cduse
failure susceptibility than, say, the coircon cause failure rate." Such
apparent stability of S values cannot be used to justify application of the
S-factor model in multiple failures due to testing and maintenance.
Apostolakisl5 argues in general that the above assertion is "not accep-
tabl e. "

Edwards and Watson 2 have also questioned the very basis of the defini-

tion of S. They argue that, since the similarity of the natures of dependent
and independent failures has not been dersonstrated, there is not rauch justi-
fication for taking the ratio of dependent failure rate to total failure rate.

The Marshall-Olkin specialized raocel of Vesely has been applied only in
the estimation of multiple rod failure probabilities in the BWR. The n.odel

has desirable characteristics; by considering the failure cause as a vector x,
all states of the system can be distinctly identified. But estimation of the
parameters of the raadel at that general level becomes extremely difficult.

The model is well suited for connon cause types of failures, where the
basic assumption of Marshall and Olkin16 that all the failure causes are
equally competing is applicable. In the situation of interest here, in which

failure of one component can result in the f ailure of another component, that
assumption is not strictly valid.

p In this study, first a taocel was investigated by assuraing various distri-
butions with the bounds obtained by use of a bounding technique, as describec
in Section 3. The model is very general ano does not use any dependent fail-
ure data. As described in Section 4, a more detailed model was then forrau-

lated by analyzing the process involved in usfs during testing and maintenance
and other types of msfs (as explained in Figure 1) was accounted for. How-

ever, assun.ptions had to be made to avoid complexity in the r..odel.

13
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3. QUANTIFICATION OF DEPENDENT FAILURE ' PROBABILITY USING .>

VARIOUS DISTRIBUTIONS

I
4

.3.1 Bounding Technique and Use of Various Distributions

lThe bounding technique of the Reactor Safety Study properly. defines the
bounds within which multiple component failure probability lies. The problem

is to obtain an estimate for the failure probability within that range. The

i RSS's use of a lognormal distribution within the . bounds is without proper jus -
<
' tification and has been criticized, but the lack of data makes the- choice of

any other distribution equally unjustifiable. - The choice of any distribution
will generate criticism whenever there is insufficient available data to

,

adequately back it up. However, Lewis et al.13 point out that "most models
,

will not give wildly different answers. The choice of one model over another
generates an uncertainty, but within that uncertainty the use of the model is
justified, provided the uncertainty is estimated and indicated." Therefore,

,

modeling that includes modeling uncertainty could be attempted by considering
a number of distributions. The estimate obtained from such a model' along with

,

the uncertainty associated with it (including data and modeling uncertainty)
will be more defensible than that obtained with a model based on any arbitrary

!

i chosen distribution.
.

Modeling was attempted, as described below, by applying various well-known

! distributions within the bounds defined by the bounding technique. The use of
various distributions provides different estimates and establishes a range of '

values for the dependent failure probability. It is argued that the uncer-

tainty generated from this range is the modesing uncertainty. A final esti-

mate for the dependent failure probability within this range was obtained by
using Chebyshev's inequality. The uncertainty associated with the estimate-,

comprised of data uncertainty, coupling uncertainty, and modeling uncer'sinty,
was calculated by using error propagation technique. The estimate obt..ned
from this model, along with the uncertainty, is considered to be more suitable
for use when little or no data are available, than an estimate obtained with

any particular distribution.

t
i
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3.2 Bounding Technique

The bounding technique establishes the bounds within which dependent fail-
ure probability should lie. The upper bound is the maxinum value, with the
assumption of total dependence between the failures, and the lower bound is
the value with failures considered to be random, i.e., with no dependence
anong them.

Consider a systen consisting of n components, where the symbols H , H ,1 2

..., H represent failure of the respective components. The expression H H12n

...P represents failure of components 1 through m. For example, HHH123n

represents the failure of components 1, 2 and 3. Let the individual . failure
thprobability of the n component be represented by P(Hn), and the probability

of the combination failure H H H by P(H H ...H )-12 m 12 m

The upper bound can be obtained by considering a single failure combina-
tion. This is suitable for the situation in which the failures are totally
dependent. In order for the conbination of components to fail, each of the
components must fail individually; therefore,

P(H H ...Hn) 1 P(H )12 1

P(H H ...H ) 1 P(H )12 n 2

. .

P(H H H ) 1 P(H ) *12 n n

Since all of the above inequalities are true, the upper bound is the minimun
of the individual failure probabilities:

P(H H H ) 1 MIN [P(H ), P(H ), ..., P(H )3 -12 n 1 2 n

Consider the situation in which all the acts are identical, i.e.,

P(H ) = P(H ) = ... = P(H ) = P i1 2 n

the upper bound is given by

Pg(H H ...H ) = P -12 n

The lower bound is obtained by considering totally random failures. In
general, for m out of n:G type systems,

n
mP = (r ) Pr,

n

15
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where mp is the probability that at least m out of the n components fail,
and r is given by

r=n-m+1.

From the above formula the lower bound of n repetitive failures is ob-

tained as

P IH H ...H ) " P" -L 12 n

lne bounds of different m out of n:G type systems, i.e. , the type such
that the system is good 1.f.f. at least m components are good, are presented

in Table 1.

Table 1

Bounds of System Failure Probability of Different Systems
for Same Individual Failure Probability

Type of G System Upper Bound, P Lower Bound, P
U

21 out of 2 p p

31 out of 3 p p

2 out of 3 p 3p2

41 out of 4 p p

32 out of 4 p 4p

3 out of 4 p 6p2

3.3 Choice of Various Distributions

The bounding technique establishes the bounds of the dependent failure

probability, it is resonable to assume, with high confidence, that the
failure probability lies within the bounds, but the appropriate distribution
for describing dependent failures is not known. A choice of one distribution
over the others cannot be rigorously justified. It can be argued, however,

16
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that the appropriate distribution, even though not known, is unlikely to be
very different from the well-known distributions followed by other known
natural processes. Therefore, by applying various well-known distributions, a
range that includes central estimates of all of theia can be established. It

is then reasonable to assume that the dependent failure probability lies
within this range.

The central estimates of various distributions were obtained by assuming
the lower bound (P ) and the upper bound (P ) of the dependent failureL U

probability as 5% and 95% confidence limits of the distribution. The
distributions considered applicable for this analysis are the following:

(1)I4caal,

(2) Cauchy,
(3) Gamma,

(4) Weibull ,
(5) Lognormal,

(6) Log Cauchy.

The following presentation provides the probability density function (pdf)
of the distributions and the calculation of their central estimates in tenas
of the upper and lower bounds of the dependent failure probability (the 5% and

95% confidence limits).

(1) Normal Distribution:

The pdf of normal distribution is given by

I 2f(x) = exp[-(x - p)2/2c ] , --<x<= (3-1),

a@?
-

X
L+ U

!!ean = X = =
,

2

Nedian = X0.5 " '

2

Standard deviation = c ,

where XL and Xu are the lower and upper bounds respectively.

17
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i

The standard deviation, o , associated with u is obtained'from tables of'
~

- -

|- the standard normal distribution function, & (z):
I
i z g

~ ~_[f2T
I -u /2e(z) = e du = P(Z < z).~

,

The normal variate, X, in our case, is- related to Z by the expression

i X-p
Z~= .

a,

i Hence,

P(X - u
o -< z)~= (z).

Taking 4(z) for corresponding z from the standard normal distribution function
table,20 we can obtain a for corresponding u and X.-:

!

(2) Cauchy Distribution:,

f The pdf of Cauchy distribution is given by

b
;- f(x) = "<X<

n[b2 + (x - a)2] (3-2)
"

->

The cumulative distribution fuction (cdf) is given by -
.

F(x) = f+1 -I(* - a) ' ' -"# * # **tan
b

!
I For 5% and 95% confidence limits we obtain

F(X)=0.05=f+1 tan-1 ( Xl-aL )'b

F(X ) = 0.95 = 1 + 1 tan-1 ( U ~
'

U ).2 x b;-

;

4

18
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' Solution of the above equatior.s gives

XfL+XU
and b=

2 2 tar.(0.45n) .

Median = X .5 = a = )0 .

2

The results show that for our analysis with the lower and upper bounds the
median for the Cauchy distribution is the same as thtt obtained with normal
distribution. This is expected since the plot of the Cauchy density resembles
that of the nomal density except that its tail tends toward zero much more
slowly as |x| + . Since use of both the normal and the Cauchy distribution

will not provide additional infomation, a choice between them had to be made
and normal distribution was chosen over Cauchy for estimating dependent fail-

ure probability.

(3) Gamma Distribution:

The pdf of gamma distribution is given by

f(x) = * **P(~*IO) (3-3)x>0.,

8"r(a)

Since the median of the gamma distribution cannot be expressed analytically in
terms of the bounds, the parameters a, 8 of the distribution and the corres-
ponding median were obtained from tables and graphs of gamma distribution.21
Hence, the median estimate of the gamma distribution used in this study is an
approximate one.

(4) Weibull Distribution:

The pdf of the Weibull distribution is given by

s-1
f(x) = 0* exp[(-x/A)0], x _> 0, 8 < 0, A > 0. (3-4)

g _

A

19
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The cdf of the distribution is
x

F(x)=ff(x)dx=1-expl-(x/A)0]._
o

For 5% and 95% confidence limits,

F(X ) = 0.05 = 1 - exp[-(X /A)83>L L

F(X ) = 0.95 = 1 - exp[-(X /A) 3 -U U

Solving for 8 and A gives

S = (4.067)/in(X /X ) =U L

inA = InXU + 0.27 In(X /X ) , (3-5)U L

and

itedian = X .5 = xe-0.36/s0

where A and 6 are given by Eq. (3.5).

(5) Lognormal Distribution:

The pdf of icgnormal distribution is given by

I 2f(x) = exp[-(lnx - u)2/2o ] , x>0, ( 3-6)
c/2nx

Median = X .5 = eV0 >

Mean = X = exp[p + (o2/2)].

Second moment about median * = exp(2p)[exp(2o2) - 2exp(o2/2) + 1] . (3-7)

The deviation associated with the median needed for working with the median is

obtained by taking the square root of the second moment about the median as

given by Eq. (3-7). The parameters, p and o, are obtained from the following

equations:

eu= /X X (3-8)LU ,

P(I" - " < z) = 4(z) . (3-9)y

*See Appendix for derivation.

20



For lognormal distribution of X, InX is normally distributed, and z corres-
ponding to 4(z) is obtained from standard normal distribution function
tables.20 o is obtained as

inX - p
y, ,

z

(6) Log Cauchy Distribution:

The pdf of log Cauchy distribution is given by

b
f(x) = x>0. (3-10)n[b2 + (inx - a)2],

The cdf is given by

F(x) = f + h tan-1(I"* - a) 'b

tiedian = X .5 = /X X0 Lg.

The median obtained is the same as that of the lognormal distribution. As in
the case of the normal and the Cauchy distributions, discussed above, a choice
had to be made, and the lognormal was chosen over the log Cauchy distribution
for estimating dependent failure probability.

3.3.1 Range of Central Estimate

By applying the above distributions, the various central estimates (mean
or median) are obtained. For a particular individual failure probability,
these central estimates are ordered, and two extreme values provide the upper
and lower limits of the range. The question then, is which central estimate
to use, the mean or the median. It is interesting that normal distribution

consistently provided the upper limit and lognormal the lower limit. Since

for a normal distribution the mean and the median are the same, and for a
lognormal, the median is always lower than the mean, the use of medians will
provide a range that envelops all the central estimates. Following our pre-
vious argument that the distribution obeyed by the dependent failure is
probably close to one of the discussed distributions, it is plausible to
assume that the dependent failure probability lies within the range estab-
lished.

21
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The nedian values obtained by the use of various distributions for the
dependent failure probability for 1 out of 2:G type systems are presented in
Table 2 and plotted in Figure 2. The shaded portion of the figure is the
range within which the dependent failure probability is expected to lie.
Similar ranges can be established for other types of systems.

Table 2

Median Value of P(H H ) for Various Distributionsi2
Considered with.Given P(H )-1

Type of
Distri- Dependent' Failure Probability P(H H3) with P(H )3 3

- - -

bution -I 5x10-2 10-2 5x10-3 10-3 5x10-4 10-410

Normal 5.5 x10- 2.63x10" 5.05x10- 2.51x10 5.01x10- 2.5 x10 - bx10-5
-4-

Gamma 3.8 x10- 1.52x10 2. 0x10- 3 8. 2 x10-4 1.1. x10-4-2

Weibull 4.39x10 1.71x10 1.92x10 7.51x10 8.90x10- 3.29x10- 3.7x10-
- - -

Lognormal 3.16x10-2 1.12x10-2 1x10-3 3. 54x10-4 3.16x10-5 1.12x10-6 1x10-6

-- -
.

iv' i i

DISTRIBUTION

@ NORMAL

@ GAMMA

lo #- @ WElBULL _
-

@ LOG-NORMAL

-3io - -

"u -

|

|- @

r.
IO'*- -

Median values (point estimates)@ Figure 2.
of P(H H ) for different types of distribu-e tionsboksideredwithgivenP(H) fora 1

3out of 2:G type system
io-5-

g

' '
10-8

40 " to'3 IO'* 1o''
P( H,) .
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3.4 Application of Chebyshev's Inequality

The next step is to obtain a value of the dependent failure probability
within the defined range. We assume a 90% confidence that the dependent'

f ailure probability lies within the range. Stated mathematically,;

P[X < u ,;] = 0.05 , P[X < u ,n] = 0.95 .m m

Hence,

P[pm,1 < X < um,n] = 0.9 , (3-11)

where u ,1 is the median value from lognormal distribution and um,n 15m

that from normal distribution.

With only the knowledge of bounds we cannot construct the probability
distribution, but with the knowledge of mean and variance we can obtain bounds
to such probabilities by using Chebyshev's inequality. Since we know the
bounds, we use Chebyshev's inequality to obtain the mean and variance of-the
dependent failure probability.

3.4.1 Chebyshev's Inequality

Let X be a random variable with E(X) = pc and let c be any real number.
Then, if E(X - c)2 is finite and c is any positive number, Chebyshev's
inequality states 17

P[|X - cl > c] < d (X - c)2 ,E
2c

Choosing c = pc and c = ko , where 02 = Var X > 0, we obtain

P[| X - pc | > ko ] < 1/k2
or

1-P[jX-pc|<ko]<1/k2
or

P[pc - ko < X < pc + ko] 2.1 - 1/k2,

Conservatively,

P[pc - k o < X < Ec + k a] = 1 - 1/k2 (3-12)
"

Comparing Eqs. (3-11) and 3-12), we obtain

1 - 1/k2 = 0.9 or k = 3.162 .
+ '" "'" **I*Also, uc= and a=
2 6.324

23
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where uc is the value given to the dependent failure probability by this
type of analysis. Table 3 provides Uc for 1 out of 2:G type systeus given
.different individual failure probabilities. Figures 3, 4, and 5 show the
estimates of dependent failure probability, uc, for 2 , 3 , and 4-unit
systeus.

Table 3

Estimate for P(H H )> Dc, Applying Chebyshev's inequalityi2

P(H ) u ,1 "m,n "c "p.m.ch1_ m

10-1 3.16x10-2 5. 5 x10-2 4.33 x10-2 3.7 x10-3

5x10-2 1.12x10-2 2.63 x10-2 1.875x10-2 1. 39x10 -3

3x10-2 5.2 x10-3 1. 55 x10-3 1.03 x10-2 1.63x10-3
-4

10-2 1 x10-3 5.05 x10-3 3.03 x10-3 6.4 x10

5x10-3 3.54x10-4 2.51 x10-3 1.43 x10-3 3.41x10-4

3x10-3 1.65x10-4 1.51 x10-3 8. 34 x10-4 2.13x10 -4

10-3 3.16x10-5 5.005x10-4 2.66 x10-4 7. 41x10-5

5x10-4 1.12x10-5 2. 5 x10-4 1.31 x10-4 3. 78x10 -5

1x10-4 1 x10-6 5 x10-5 1.55 x10-5 7. 74x10 -6
_-

io'' i i

10-2_ y

/u

{b
! io-3- c/ -

E
3 .~
5 i

i ~ id* .? -

$ 8
z J

$ f Figure 3. Estimate for dependent

'f failure probability using Chebyshev's,

!

iaa _
inequality for a 2-unit system.

r

4io
to-* io'' i o-* t o''

tNDiviDUAL FAILURE PROBABILITY;

24

:
s



_. _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _

W

d 4io i i i0 . i 7
Q 2 oVT OF 3: G @ i out oF 4 8 G

@ I OUT OF I G i @ ' 2 00T CF 4; G

@ 3 ouT OF 4: G c

,ge_ , _,g2_ _

,

E @ E ~

3- /j'
d. e

! #

# j
g ig3 -

o*'og iv3_
# g c s" * ,

~> G y ; 9g f>

3 e 23 a m
*

a J t a : .
" * '' *

8' _ - g ig* s'''yig* - . =
8 ? .~

~

8 / ~

E ! $ $ $ $i* / J |'?
'* 1 ]

iO-5 _ f - ig5 -

{
3 3 3 p -

'*
e' 2

O $ d ? EE*
& J g=

u

ia *. / ig6 e i

1o'* i fo-2 scy ,ge 10~3 to-2 - 10-'3

iN0iV100AL FAILURE PROBABILITY INDIVIDUAL FAILURE PROBABILITY

Figure 4. Estimate of dependent Figure 5. Estimate of dependent failure
failure probability using Chebyshev's probability using Chebyshev's inequality
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3.5 Uncertainty in the Estimation of Dependent Failure Probability

3.5.1 Sources of Uncertainty in the Dependent failure Probability
Estimations

The estimation of any paraueter or quantity always has an uncertainty
E associated with it particularly when the estimate of the parameter in question

is too small, e.g., in the region of 10-2 to 10-5 The sources of uncer-

tainty in the estimation of the pararaeter inay be saany. In this section ruany

possible sources of uncertainty in the final estimate of the dependent failure
probability are discussed and defined.

The esti'.'ation process starts with the bounds defined from the individual
failure probability, which is .obtaineo f rom experimental data. The data base

provides the failure rate in the form of an assigned median value and an
associated error factor. The error factor denotes the araount of variation

25
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,

-(i.e., the range) in the failure probability. The data,.in this case the

failure rates, are treated as random' variables and not as constant values. In

- essence, the random variable, representing a range of values, gives the pos-,

sible values that the data may assume in various applications. A probability
distribution is assigned to this range, which gives-the probability associated
with the.particular assumed values. The error spreads are interpretable as
uncertainties of the data. These uncertainties are due to data variability
from component to component and with differing environmental conditions. -The!

uncertainty also represents the basically random nature.of the data,-i.e. ,'the
data may assume various possible values given various possible applications.
These uncertainties are termed as " data uncertainty" in this analysis.- The
probability distribution believed to represent the range of the individudl
failure probability, the random variable in question, is the lognormal dis-
tribution.

Given the individual failure probability, we obtain the bounds within
which the dependent failure probability lies. The point value, which re-
presents the dependent failure probability within the range, depends on the
degree of dependence between the actions. The degree of dependence among the

human actions is also referred to as the amount of coupling of human actions.
In tenns .of the bounds, the upper bound represents complete coupling (i.e. ,
complete dependence) and the lower bound represents no coupling (complete
independence). The amount of coupling for the situations being modeled is
said to be " loose," i.e. , somewhere between complete and no coupling. We as-

sumed various distributions between the bounds and claimed that the central
estimate of the assumed distribution expresses the loose coupling. Given that
bounds are perfectly defined, i.e. , they are of constant values and the dis-
tribution assumed for the dependent failure probability is correctly known,
there is some uncertainty in the coupled or dependent failure probability ob-
tained from the central estimate of the distribution. This uncertainty can be
attributed to two factors. First, looseness of coupling is random in nature,
i.e. , given the same two human actions defined to be loosely coupled, the

- coupled or dependent failure probability will be different for different sets
of experiments. Second, there is no basis for claiming that the central es-
timate of the distribution perfectly detenaines the loosely coupled probabil-
ity. It is then asserted that the central estimate associated with the error

|
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spreads given by the distributior defines the range within which the dependent
failure probability lies. TN .mcertainty expressed by this error spread is
termed " coupling uncertainty."

Because of the data uncertainty, the bounds of the dependent failure

probability are not defined to be of constant value. They lie within a range.

Along with the ccupling uncertainty, the data uncertainty also introduces an
uncertainty in the coupled or dependent failure probability. By sampling the

respective ranges of the bounds, we obtain different bounds for each sample.
The median and the associated error spread due to coupling uncertainty from

one set of bounds will be different from those from another. Thus, the net

uncertainty at tois point of the calculation will be a combination of the
propagated data uncertainty and the coupling u7 certainty.

The probability distribution followed by the dependent failure probabil-
ity was varied. Each distribution considered defined a central estimate and
the associated net error spread. A final estimate of the dependent failure
probability was obtained by using Chebyshev's inequality as applied to the end
points of the range of central estimates. If the bounds of the dependent

failure probability are perfectly defined to a constant value and the loose
coupling is perfectly defined and represented by the central estimate of the
distribution chosen, a range will be obtained for the dependent failure
probability due to the use of various distributions, i.e. , due to different
modeling approaches. The uncertainty in the central estimate obtained from
this range expresses the "modeling uncertainty" in the final estimate. In our

analysis the standard deviation obtained by the use of Chebyshev's inequality
expresses this modeling uncertainty.

'

Along with the modeling uncertainty in the final estimate there will be
uncertainty due to the variation of the bounds obtained from the individual
failure probability and due to variance in the amount of coupling. The cou-

pling and data uncertainties are propa n ted to the final estimate. The com-

bination of these two uncertainties with the modeling uncertainties provides
the total uncertainty in the final estimate of the dependent failure probabil-
ity.
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The discussion of various sources of uncertainty in the estiraation of de-
_

pendent failure probability can be summarized by saying that the uncertainty
originates from three sources:

'

(1) Data uncertainty - this is due to the variability of the individual

failure probability and arises from the data base of the indi idual '

failure probability.
.

(2) Coupling uncertainty - this expresses the variability in the amount
of coupling.

(3) Modeling uncertainty - this is associated with the estimate of de-
pendent failure probability and is due to the assumption of different
models in the estimation process. In this case it is due to the cho-

ice of various distributions. 1 -

In the following section, the above three types of uncertainties are all
accounted for in calculating the uncertainty in the estimate of dependent

,

failure probability. 1
,

1

3.5.2 Calculation of Uncertainty in the Estimation of Dependent Failure ,

Probability

The uncertainty in the dependent failure probability for a 1 out of 2:G

type of system is calculated as follows.

The individual failure probability, P(H1), in the mode' is estimated from
the data base and is the source of basic data uncertainty. The available data

are in the form of a failure probability (rnedian value) and the associated
error factor, EF.

|
The error factor denotes the amount of variation (i.e. , the range) in the I

failure probability. The median value is the reference point value. Accord-

ingly, P(H )/EF is the lower bound and P(H )*EF is the upper bound. We1 1

assume that the data are lognormally distributed with the lower bound as the
5% and the upper bound as the 95% confidence limit.

P(H ) is the rnedian of the distribution. If we were working with the1

raean of the distribution, the second moment about the raean (the variance)
would provide a rneasure of the uncertainty cf tim distribution. The square

|

|
|
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root of the variance, 'She standara(deViat}gn. -is usually; qscd i l ti.e propa-

gation of . uncertainty cal (ulations. However,'since 'We are workin'9 with the
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.- N
median of the distr'ibution, the appropriate enedsurn 6f 'ance 'tdi'ity is the
second moment aboJt the pedian. The square raot of this ;,easbre is died for

'

' xthe propaguion 'of uncertainty'v:alcul gion. - '^

. ~ ~, ,

"datauncertainty"assocfateLythP(H)-
-

3 1d1
s ,

, N ..
-

2d2=23d3,P(H ): " data uncertainty" spstciated dith P(H )2;1 1
,

yhere P(H1) "isJ the Icgtr bound in l'aut ef.2;G t[pt systsms with the sanc
^

' s,t

- individual failur.c,preDJbility for both the units. Ucte..th'at P(H ) <; 1 and''
'

~

1

d;, but cd /P(H ) ,'the coefficient of variation for P(H )2
s - - 'i' s

therefor jd 2 1 1<
7 2

is twice as largegsNapP(H ),.the coefficient of variatien for PUf ). Tabl e
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, ,4'provides cdy' and og for differeat.: values of Ff,H ').1
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* - & Tableu'
~

-
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a .-

Est.imating cd' 6'';d 3d[,.R Dif ferect Incivicuai-
' 's '

1

Failure Probabilities, Plh ), ap.)A'tsocijtec Error Factor (EF)j.

4 g
e-

,

U = '- L'' r ' 'a = u= Second mo- o =,

d2P(H ) Error P(H ). EF - P(H )/EF" ' inP(H ). hd!J/() ment wrt
7 I NH )8 1 Facto r 3.2 64 median c * d1

~

1
d

(EF) 1

-2 -2
10-1 3 3x 0 3. 3Jx 10 - -2.303 .u69 9.72'x10 1.94x10

3x10-2 3 9410-2 10- -3.bO7 0.669 2. 92 x lC - 2 1.75 10
-3
-4

10-2 3 3x10-2 3.33x10-3 -4.605 0.669 9. 72x 10 - 3 1.94x10
-1 -3 -3

10-2 10 1C yg -4.605_ 1.46 C.79x10 - 1.30x10

3x10-3 3 9x1C 10 -5.COV C.669~ 2.92x10- 1.75x10 --3 - 3.

3x10- 10 3x10 3 x10-4 -5.009 1.40 2.04x10- 1.22x10 --2

-3 -4
10-3 3 3x10 3.33x10 -6.908 0.609 9.73x10- 1.95x10

' -2 a
'

10 " 10 10 10 -6.908 1.40 4. 79x10' 3 1.36x10 "
--

!"(* - 2# + l)*cd =

1
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' For each type of distribution considered to describe the dependent failure' '

probability, we have a central measure asscciated with an error spread. This

error spread gives a measure of the coupling uncertainty. We define o ,a asc

the " coupling uncertainty" due to the choice of "a" distribution, where-

i
<

/ n:~ normal distribution
h w: Weibull-distribution9

V r.
a= ( 1: lognormal distributionQ ,

.. a
,t" . .

i. ..

'

s ( . . .

H
~

Values of o ,1 are obtained by calculating the square root of the secono mo-c

dont with respect to the central estimate, in this case, the median.

'In obtaining the distribution, the two bounds considered could be anywhere
'

.:.n-

,\ withTn 'thenrange of uncertainties of these bounds. By choosing the bounds
. v

ran$omly within the respective . ranges we obtain a slightly different distribu-
~

.e
tion each time and the corresponding value of c,a changes. Thus, the ef-

. fective uncerteitty associated with the central estimate will be some conbina-
ti6n of propagated data uncertainty and coupling uncertainty, which in reality
is an integral representation involviN'o ,a. But here an approximation isc4

made with the assumption that the uncertainty-is composed of two separate"

I - ' , parts: (i) the " coupling uncertainty" obtained from the distribution with thes

( (choice of the respective cer. tral points in the intervals as bounds, o ,a.c

|
'; and, (ii) th'e uncertainty due to the propagation of the data . uncertainty in the

,

l' calculation of the central estimate, od,a*-2

,

It js furth'er assumed that the effective uncertainty, p,a , associated
withgthe central astimate, u ,a, for the choice of the distribution "a" is the

m

root mean square of the above two uncertainties:'

s

p a " (Oc ,a + % ,a } h
'2 2

O *

; *

>

t

>

f

30^
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Values for o are obtained by using the propagation of error equation,d,a

af[P(H ), P(H )2)
~

2
2 2 3 y

o =cd,a d l a[P(H )]
,_

g

For nornial distribution,

P(H ) + P(H )2y g

= f[P(H ), P(H )2] .1 1p 'm,n 2

and "d
][I*4IIN)+4P(H)2]"d n =

2 1 y

For lognormal distribution,

"m,1 = P(H )3/2 ,1

and

7 (H )h .P 1"d,1 "d*

Finally, the dependent failure probability, a , was estimated by usingc

Chebyshev's inequality, and the corresponding 1 obtained (op,m,ch) denotes
the uncertainty due to the choice of various distributions and is ternied the

"modeling uncertainty." The effective uncertainty associated with oc is the
combination of the "modeling uncertainty" and the uncertainty propagated in
the calculation of pc.

. Here, again, it is assumed that the total uncertainty associated with the
estimate, pc, is the root mean square of the two separate uncertainties con-
tributing to the total uncertainty: (1) modeling uncertainties obtained by
using Chebyshev's inequality and (ii) propagated data and coupling uncertain-
ty. Let be the total uncertainty associated with pc, given byUc

Uc * ( u,d,ch + ,m,ch}#
'
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where op,m.ch is the standard deviation obtained by using Chebyshev's in-
equality signifying the "modeling uncertainty," and o ,d,ch is the uncer-p

tainty obtained in the calculation of pc by propagating both the basic " data
uncertainty" and the " coupling uncertainty" and given by

u,d,ch * (3 +o
.n s.1

*

Figure 6 provides the graphical representation of various types of uncertain-
tiis considered and Table 5 provides the numerical estimates of the uncertain-

ties for different P(H ).1

Fc
2 2 1/2bc # #p,d,ch Mc p,d,ch+#p,m , c h )

7 I

*

p. m , L h

b I
% y

ps! p,n 2 2 ||2
7 7 ' '" "'"d,i dn

: :

NL Nm,r]

#c,i 7 ,nc

P( H,) p( )

"d 7,2 d

.
,

Figure 6. Propagation of error in the determination of central estimate.
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TABLE 5
!.

Estimating the Total Uncertainty opc , Associated With
*

The Estimation of u f r 1 out of 2:G Type Systenc
!

I

P(H ) EF Od "d,1 cl "d,n "c n p .1 u,n u,d,ch u,m,ch p
1 y co o

10 3 9.72x10' 4.61x10' 3.35x10' 5.83x10' 2.74x10' 5.70x10' 6.44x10' 4.3 x10' 3.7 x10' 4. 32x1 r
-

3x10' 3 2492x10' 7.59x10 1. 37x10' 1.55x10' 8.86x10' 1.56x10' 1.79x10' 1.19x10' 1.63x10 1.69x10'

10' ~3 9.72x10 2.92x10' 6.78x10' 4.96x10' 3.02x10' 7.38x10' 5.81x10' 4.70x10' 6.4 x10 4.74x10'

10- 10 6. 79x10' 1.02x10' 6. 78x10 3.46x10' 3.02x10' 1.23x10' 3.47x10' 1.84x10' 6.4 x10 1.84x10' .

m

3x10' 3 2.92x10' 2.40x10 3.75x10 1.47x10' 4.11x10' 3. 76x10 1.73x10' 2.07x10 2.1'3x10 2.08x10'
-3 -2 -3 -3 -2 -4 -3 -3 -3 -4 -3 -

3x10 10 2.04x10 1.68x10 3.75x10 1.03x10 9.11x10 4.11x10 1.03x10 5.55x10 2.13x10 5.55x10

l 10 3 9. 73 x10' 4.62x10' 2.60x10' 4.88x10' 3.04x10' 2. 60x10' 5.75x10' 1.33x10' 7.41x10' 1.33x10
,

10' 10 6.79x10 3.22x10 2.60x10' 3.40x10 3.04x10' 2.62x10 3.41x10' 2.15x10' 7.41x10~ 2.15x10' f

1

|
-1

;
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3.6 Discussion of Results

The dependent failure probability obtained by the use of various dis-
tributions is more conservative than those obtained by using the geometric
mean model or the 8-factor model (Figure 7). In reality, whether the
dependent failure failure probability is more closely approximated by this
approach than by some other modeling approach can be determined only by an
adequate data base on dependent failures. But, in the absence of a data bnse,
such an approach seems to be more appropriate than the use of any particular
distribution or 8-factor model with a particular value of 8 When knowledge

is limited, being conservative in safety analysis is probably the prcper
Course.

d
10 i i

@ PROPOSED MODEL
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@ S-FACTOR MOoEL
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Figure 7. Comparison of the results of
the proposed model with the geometric'g-, mean and the 8-factor model for a 1 out

,

io-4 ,o-3 ,o-a ,o-
iNomount raituRE PROsasiuTv of 2:G system.
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One interesting property of the result is its changing dependence on the
lower bound of the dependent failure probability. When the lower bound is
significant, it influences the final estimate of the dependent failure proba-
bility; but, as the lower bound (denoting complete independence) decreases in
magnitude, its influence alsc decreases so that the dependent failure proba-
bility becomes more and more dependent on the upper bound. Such a character-

istic is justified because the lower bound becomes too small in magnitude, as
the independent failure probability decreases, to have any significant influ- |

ence. The geometric n.ean model is thought to underestimate the dependent
failure probability as the individual failure probability decreases because of
its strong dependence on the lower bound.

Our approach also provides the basis for incorporating raany possible kinds
of uncertainties including modeling uncertainties. The uncertainties in the
estimate of the dependent failure probability for a 1 out of 2:G type system
are significant, as shown in Table 5. This is expected and reflects our state
of knowledge. The data uncertainty in the individual failure probability

;

plays a significant role. With the improvement of our knowledge af individual
failure rates, that uncertainty will decrease. Also, as mor$ data become

sailable on dependent failures, the distributions applicable to such failures
could also be limited and thus the uncertainty due to modeling might be i

reduced. Overall, such an approach, an estimate of dependent failure proba-
bility with an associated uncertainty considering various distributions, is
attractive when data are non-existent or very limited.
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4 MODELING 0F MULTIPLE SEQUENTIAL FAILURES

4.1 Basis of the Model

In this section a nultiple sequential failure (asf) during testir.g and
naintenance is modeled by taking into account the processes involved in such a
failure. Ocperdence between two successive failures is accounted for oy in-
creasing the probability of the dependent failure by a certain amount over its
independent or random failure probability. Modeling is carried out at a level
sufficiently detailed to distinguish between msfs during testing and mainte-
nar,ce and those due to hardware failures, as discussed in Section 2.1. In

that sen4- this approach is distinct from other dependence failure modeling
approaches and is directly applicable to an r.sf during testing and mainte-
nance.

The physical processes considered in this modeling approach may be ex-
plained as follows. Given two sequential actions, the second action, given
failure in the first action, is no longer independent; accordingly, the proba-

| bility of failure in the second action will be larger than its incependent

failure probability. Given three sequential actions, the third action, given

f ailure in the first two, is not independent, and its dependence on previous

failure is expected to be stronger than the dependence of the second action on
the first action. The probability of failure in the third action, given fail-

ure in the first two, should exceed its independent failure probability by an

amourt greater than that in the case of second failure, given the first failure.
Similarly, the probability of failure in the fourth action, f ven failure in

the first three, should exceed its independent failure probability by an
amount greater than that in the case of third failure, given first two fail-

ures, and so on. It is argued that in multiple sequential failures the proba-

bility of failure in the third action is more dependent on the probability of
f ailure in the second action, given the first failure, than on the independent
failure probability of the third action, unless the independent failure proba-
bility of the third action is larger. Thus, the range of the probability of

failure in the third action is shrunk by increasing its lower bound from its
independent failure probability to the probability of second failure, given

the first failure. For similar dependent actions the probability of second'

failure, given the first failure, is always greater than the independent fail-
ure probability of the third action. In this way the ranges of probability of

36
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higher and higher actions are shrunk, and the respective probabilities are
increased because of the change in the lower bound of the respective shrunken
ranges. To some extent, this approach automatically takes into account the,

increased dependence for any action compared with the preceding action in a
multiple sequential action. That is, such increased dependence is built into
the nodel.

Let us consider n sequentia! actions and let the symbols H ' H ' * ' H1 2 n

represent failure in the respective actions. The expression H H ...ht2 g

represents repetitive failures in actions 1 through m.

In. reliability analysis, the probability of n sequential failures is given

by

P(H Hg...H ) = P(H ) P(H /h )P(H /H H )...P(H /H H ...Hn-1)'1 n 1 2 l 3 12 n 12

where the bour.ds of the conditional probabilities are given by

P(H ) 1 P(H /H ) i12 2 I

P(H ) 1 P(H /H H ) i13 3 12

. . .

. . .

. . .

P(H ) 1 P(Hn/H H H -1) i1- (4-1)n 12 n

l The lower bound represents total independence between the failures, whereas
the upper _ bound represents total dependence between the failures. It is the

detenaination of the conditional failure proLability that makes the problem
difficult. Following is the method applied in this model for calculating such
conditional failure probabilities.

i

The probability of failure in the second action, given failure in the
first action, is assumed to be larger than its independent failure probabil-
ity, and it is expressed as the sum of the independent failure probability,
P(H ), and a dependent failure probability (Pdf). The dependent failure2

probability is assumed to be a fraction of the total range of the conditional
failure probability. From Figure 8,

P(I)/H ) = DB = DC + CB1

= P(H ) + P(df )2 2

,

37

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



. _ _ . . _ _ _ _. .-

,

>

where P(df ) is given by2

P(df ) = [1 - P(H )] k12 2

l and k -is the dependence factor.i

The probability of failure in the thirn action, given failure in the first-
two, is given by

I + 1 - MaxWH3' ?["1 2*MaxP(H }' "2 "1P(H I"1"2
=

3 3

I

P( M '"ia
t

(I-P(H)|k,eI g a
I O C, .

.... ....,
|O P(H,) P(H,/M,)

1

P(H /H,H,b5

(1-P(H,/ H,)]t,'
3

' I P(H ) $ P(H,/H,)* - - - - - - - + - - - * - - - 3

i 0 P(H,) PlH) P(H,/ H,) P(H/M,HI I
3 2

('' PINI]"2E
'

P(H)>P(H,lH,1
0 P(H) P(H,/H,) P(H) P(H,/M,H,) L

,

h

P(It,/H,HH}'23
(1-P(H fH N }jI5 It 3y

--5 '. P(H)$ P(H,/H,H)- - - - - - - - - - - - - - + - - - - - -

0 P(H #H) P(H) P(M /M,H) P(H,/H,H,H) 1
.

2 s 3

(1-P(Hy]t y

! ... I . " p( gj > p(n,/y,y)
I

,.._.._.._.... _......_..

O P(H,/ H,1 P(H /H,H) P(H) P(H,/H,H H ) I
3 3

<

!- Figure 8. Representation of the conditional failure probabilities
in a probabilitj diagram.

.

.

9

In a multiple sequential action, the previous action is usually the deter-
mining factor in the probability of the present action because of the depen-,

dence among the actions. Th'at is, the probability of failure in the third

!

A
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action, given failure in the first two, is expected to depend more on the
probability of failure in the second action, given failure in the first, than
on the independent failure probability of the third action, unless the latter
is larger. Thus the lower bound of P(H /N H ) is the larger of P(H ) and3 12 3
P(H /H ), and its probability is determined by adding a certain amount to this2 1
lower bound.

The reason for using the maximum, or larger value, of P(H ) and P(H /H )
3 2 1

is also clear from figure 8. Given the dependence among the failures, the
probability of failure in the third action, given failures in the first two,
is expected to be greater than the probability of failure in the second
action, given failure in the first; i.e. , P(H /H H ) > P(H /H ). Thus, when3 y2 2 y
P(H ) < P(H /N ), the range of the conditional probability P(H /H H ) is BA3 2 1 3 y2

But when P(H ) > b"2 "1), the range of the conditional proba-and not E A. /y 3
bility is E A. That is,

2

Max [P(H),P(fg/H)]1P(H/NN)11.3 3 3 12

Even though certain amounts of increase in the dependence are accounted
for by appropriately shrinking the range of the failure probabilities, strict-
ly speaking the factor by which the f ailure probability is increased from the
lower bound should be different for different actions, as the dependence be-
tween different sets of actions changes.

The dependence factor (k ) used in the case of P(H /H fi ) is different
2 3 y2

from that (k ) used in the case cf P(H /H ) because the dependence between1 2 1
third and second failure is expected to differ froni that between second and
first failure by more than the amount accounted for by shrinking the range of
P(H /H H )-3 12

Similarly, the probability of failure ir, a fourth sequential action, given
failure in the first three, is given by

P(li /H H N ) = Max [P(H ), P(H3 "1"2} + ~ "'* "4),P(H3 "1"2 3*4 t 23 4

In many practical situations, all the actions are similar in type, and

their independent failure probabilities are usually the same:

P(H ) = P(H ) = ... = p .1 2
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Because estimating separate dependence factors with the available data is al-
most impossible--although a very general model must consider the dependence
factors to be different--the dependence factor is assumed to be constant in
order to simplify the estimation process:

kl=k2 = ... = k .
Even with this assumption, a certain amount of increase in the dependence is
accounted for in the nodel by the built-in process of appropriately shrinking
the ranges of the failure probabilities.

With the above assunptions, the expressions for the conditional probabil-

ities can be written as

P(H /N ) = p + (1 - p)k2 1

P(H /H H ) = P(H /H ) + [1 - P(H /H )]k3 12 2 1 2 1

=p+(1-p)k+{1-[p+(1-p)k]}k. |
i

. .

. .

. .

For k = 1,

P(Hp/H ) =1
1

P(H /H H ) " I3 12
. .

. .

. .

i.e. , all the conditional probabilities reduce to 1, signifying complete de-
pendence between the actions.

For k = 0,

P(Hp/H ) =p
1

P(H /H H ) " D3 12
. .

. .

. .

i.e., all the conditiccal probabilities reduce to randon failure probabilities
signifying total independence between the actions.
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Therefore, k saust lie between 0 and 1, and its value detenaines the degree
of dependence between the actions, which increases as the value of k approaches

1.

4. 2 Multiple Sequential Failure Probability

For identica; actions, with the above raudeling approach, uultiple sequen-4

tial failure probability can be expressed in terms of two parameters: the
independent failure probability, p, and the dependence factor, k.

LM. Pn be defined as the probability of n sequential failures, i.e. ,
repetition of the error for the nth time. For similar actions, the condi-

tional failure probability is always larger than the individual failure prob-

ability, for example, P(H /f() > P(H ) = P(H ), and P can be w h en asj 2 3 n

P = P(H ) =py y

y{P(H)+[1-P(H)]k|P = P(if;)P(R /H ) =P
2 2 1 2 2

P = P P(H /H H ) *P'iP(N/H)+[1-P(H/H)]k}3 2 3 y2 i 2 1 2 1

. .

. .,

n-2 (f(,7 /H H ***Hn-2) = Pn-2|P(H n-2 "1 "2 * * * k- 3 )/Pn-1 = P P y2

+ [1 - P(H /H R ...H 3)] k} -|2 y2

"n-1"1h***"n-2}P(l(/Hn...Hn-1 ) =P /P =P
n n-1 yj n-1

+ [1 - P(H /gg...H )] k } . (4-2)

|With the conditional probabilities expressed in tenas of p and k, some alge-
|

braic manipulation gives

P =py

P2 *P1 { p + (1 - p)[1 - (1 - k)]}

{ p + (1 - p)[1 - (1 - k) llP3 =P2

. .

. . .

Pn-1 = Pn-2 { p + (1 - p)[1 - (1 - k p-2 3g

n-1 { p + (1 - p)[1 - (1 - k[-I ] } . (4-3)P *P
n

1
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Finally, after some more algebra, Pn can be expressed as

n-1
n [1 - (1 - p) (1 - k)i]P =

n
i=0

4.2.1 2-Unit System

For a 2-unit system, we give below the probabilities of the following
different states of the system resulting from human failures:

none of the units is failed: (0,0);

one of the units is failed: (0,1) and (1,0);

both the units are failed: (1,1).
|
'

The vector (0,1) denotes no failure in unit 1, but failure in unit 2 of the

j systera. Also, P(m/n) denotes the probability that m out of n of the units are
failed.

P(0/2) = probability that none of the units is failed by human error

= [1 - P(H )][1 - P(H /b )3g 2 1

= (1 - p)2 ,

since P(H /b ) is the probability of a second failure, given that the first2 1
failure did not occur,

P(H /5 ) = P(H ) = P -2 1 2

P(1/2) = probability that one of the units is failed by human error

= P(H )[1 - P(H /H )] + [1 - P(H )]P(H /b )i 2 1 i 2 1

= P { 1 - [p + (1 - p)k ] } + (1 - p)p

= 2p(1 - p) - kp(1 - p) (4-5).

P(2/2) = P2 = Probability that both units are failed by human error

= P(H )P(H /H )g 2 1

= p[1 - (1 - p)(1 - k)]

=p - kp + kp . (4-6)

\
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As expected,

P(0/2) + P(1/2) + P(2/2) = 1. |

For a 1 out of 2:G logic type of system, the failure probability is given by

1 = P(2/2) = p - kp2 + kp (4-7)2
p

where mp indicates the probability of system failure for a system of the
n

out of n:G type.

4.2.2 3-Unit System

For a 3-unit system, we give below the probabilities of the following
different states resulting from huraan errors:

none of the units is failed: (0,0,0);

one of the units is failed: (1,0,0),(0,1,0),(0,0,1);

two et the units ara failed: (1,1,0),(0,1,1),(1,0,1);

all three units are failed: (1,1,1).

Assumption: The probability of failure in a particular action, given no
failure in the preceding action, is assumed to be the independent or random

For example, P(H /H 5 ), i.e. , thefailure probability of that action. 3 12
probability of failure in the third sequential action, given that failure has

occurred in the first but not in the second, is the independent failure

probability,P(li). This assumption is plausible because, as soon as a cor-
3

rect action is performed following a failure, the dependence on that failure
is assumed to be lost. That is, following a success or correct action, the
probability of success or failure of the next action is treated as though it
were an action in the first unit.

P(0/3) = probability that none of the units is failed by human error

= [1 - P(H )][1 - P(H /H )][1 - P(H /H H )31 2 1 3 12

= (1 - p)3 (4-8)

43

. , _ __ ._. . _. . -. . . . _



P(1/3) = probability that one of the units is failed by human error

= P(H )[1 - P(H /H )][1 - P(K /H II )31 2 1 3 12

+[1-P(H)]P(H/E)[1-P(ll/FIh)31 2 I 31

+ f.1 - P(H )][1 - P(II /T1 )]P(H I lb)1 2 1 3

= P (1 - P /P )(1 - P ) + (1 - P )P (1 - P /P ) + (1 - P ) P1 2 1 1 1 1 2 1 1 1

= 2p(1 - p)[1 - 14 (1 - p)(1 - k)] + p(1 - p)2

= 2p(1 - p)2[1, k) p(1, p)2 (4,g),

P(2/3) = probability that two cf '.he units are failed by human error

= P(H )P(H /H )[1 - P(H /H H )31 2 1 3 12

+ P(H )[1 - P(H /H )]P(H /H il ) + [1 - P(H )]P(H / 1)P(H I 1 2}H
1 2 1 3 l2 1 2 3

= P (1 - P /P ) & P (1 - P /P )P1 + (1 - P )P22 3 2 1 2 1 1

= p[1 - (1 - p)(1 - k)][1 - 1 - (1 - p)(1 - k)2]

+ p [1 - 1 + (1 - p)(1 - k)] + p(1 - p|li. - (1 - p)(1 - k)]

= P(1 - p) - p(1 - p)(1 - 2p)(1 - k)

+ p(1 - p) (1 - k)2 - p(1 - p)2(1 - k)3 , (4-10)

P(3/3) = probability that all three units are failed by human error

= P(H )P(Hp/H )P(H /H H )1 1 3 12

=P3

= p[1 - (1 - p)(1 - k)][1 - (1 - p)(1 - k) ]

= p - p(1 - p)(1 - k) - p(1 - p)(1 - k)2

+ p(1 - p)2(1 - k) (4-11).

As expected,

P(0/3) + P(1/3) + P(2/3) + P(3/3) = 1 .

For a 1 out of 3:G logic type of systera, the failure probability is given by

1p3 = P(3/3)

= p - p(1 - p)(1 - k) - p(1 - p)(1 - k) _+ p(1 - p)2(1 - k) (4-12).
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For a 2 out of 3:G logic type of systen, the failure probability is given by

2p3 = P(2/3) + P(3/3)

= p(1 - p) - p(1 - p)(1 - 2p)(1 - k) + p(1 - p) (1 - k)2

- p(1 - p) (1 - k)3 + - p(1 - ) (1 - k) - p(1 - p)(1 - k)2

+ p(1 - p)2(1 - k)3

= p(2 - p) - 2p(1 - p)2(1 - k) , (4-13)

4.2.3 4-Unit Systen

For a 4-unit system, the different states of the systea resulting from

human failures are as follows:

none of the units is failed: (0,0,0,0);

one of the units is failed: (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1);

two of the units are failed: (1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),

(0,1,0,1),(0,0,1,1);

three of the units are failed: (1,1,1,0),(1,0,1,1),(1,1,0,1),(0,1,1,1);

all four units are failed: (1,1,1,1).

The probabilities of these different states are given by the following:

P(0/4) = probability that none of the units is failed by human error

= [1 - P(H )][1 - P(H /II )][1 - P(H /IIII )][1 - P(H /IiI II )31 2 I 3 I2 4 123

= (1 - p)4 (4-14)

P(1/4) = probability that one of the units is failed by human error

= P(H )[1 - P(It /H )][1 - P(H /H II )][1 - P(H /H y 3)31 2 I 3 32 4 y

+ [1 - P(H )]P(H /II )[1 - P(li /E U )][1 - P(H /E H H )31 j 1 3 12 4 i23

1)]P(H /II I )[1 - P(H /E IgH )3+ [1 - P(H;)][1 - P(H / 3 I2 4 1 32

+ [1 - P(H )][1 - P(h /II )][1 - P(H /I II )]P(H /5 5 E )1 2 I 3 I2 4 123

= 3(1 - P )2(P1 - P ) + P (1 - P )31 2 1
p

= p(1 - p)3 + 3(1 - p)2 (1 - p)(1 - k)p

= p(1 - p)3 + 3p(1 - p)3 (1 - k) . (4-15)
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P(2/4) = probability that two of the units are failed by human error

= P(H )P(H /H )(1 - P(H /H H )][1 - P(H /H H b )31 2 1 3 12 4 i23

+ P(H )[1 - P(H /H )]P(H /H b )[1 - P(H /H U H )31 2 1 3 12 4 i23

+ P(H )[1 - P(H /H )][1 - P(H /H 5 )]P(H /H 5 b )1 2 1 3 12 4 123

+[1-P(H)]P(H/b)P(H/bH)[1-P(H/5HH)31 2 1 3 12 4 123

+ [1 - P(H )]P(H /b )[1 - P(H /b H )]P(H /5 H b )1 2 1 3 12 4 123

+ [1 - P(H )][1 - P(H /b )]P(H /b b )P(H /5 5 H )i 2 1 3 i2 4 123

= 2(1 - P )(P - P ) + 2P (P -P )(1 - P ) + (P - P )21 2 3 1 i 2 1 i 2

+ P (1 - P )22 1

= 2(1 - p)(1 - p)(1 - k)2 [1 - (1 - p)(1 - k)]p

+ 2p(1 - p)p(1 - p)(1 - k) + [p(1 - p)(1 - k)]2

+ (1 - p)2 [1 - (1 - p)(1 - k)]p

= p(1 - p)2 + [2p (1 - p)2 . p(1 _ p)3](1 - k)2

+ p(1 - p)2(2 + p)(1 - k)2 - 2p(1 - p)3(1 - k)3 (4-16)

P(3/4) = probability that three of the units are failed by human error

= P(H )P(H /H )P(H /H H )[1 - P(H /H H H )31 2 1 3 12 4 123

+ P(H )'(H /H )[1 - P(H /N H ) (H /H Hy 2 3)g 2 1 3 12 4

+ P(H )[1 - P(H /H )]P(H /H1 2)P(H /H1 2 3)H
1 2 1 3 4

+ [1 - P(H )]P(H /b )P(H /b H )P(H /5 H H )1 2 1 3 12 4 123

= (1 - p)(1 - k) p[1 - (1 - p)(1 - k)][1 - (1 - p)(1 - k) ]

+ p(1 - p)(1 - k) p[1 - (1 - p)(1 - k)]

+ p[1 - (1 - p)(1 - k)]p(1 - p)(1 - k)

+ (1 - p)p[1 - (1 - p)(1 - k)][1 - (1 - p)(1 - k)]
,

= p(1 - p) + p(1 - p)(2p - 1)(1 - k)

+ [p (1 - p) - p (1 - p)$ - p(1- p) ](1 - k)2

+ [p(1 - p) + p(1 - p) - P (1 - p) ](1 - k) - p(1 - p) (1 - k)

- p(1 - p) (1 - k)! + p(1 - p) (1 - k)6 , (4_17)
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P(4/4) = probability that all four units are failed by human error

= P(H )P(H /H )P(H /"1"2}'("4 "1"2"3)
'

!
3 2 3 3

=P4

= p[1 - (1. - p)(1 - k)][1 - (1 - p)(1 - k)2][1 - (1 - p)(1 - k) ]

= p - p(1 - p)(1 - k) - p(1 - p)(l' - k)2 , p (3 , p)(1 - k) 32
-

+ p(1 - p)2(1 - k)4 + p(1 - p)2(1 - k)5 , p(3 , p)3(1 - k)6 (4-18).

As expected,

P(0/4) + P(1/4) + P(2/4) + P(3/4)~+ P(4/4) = 1 .

For a 1 out of 4:G logic type of system, the system failure probability is
given by

1p4 = P(4/4) = P4,

which is obtained from Eq. (4-18).

For a 2 out of 4:G logic type of system, the system failure probability is
given by

2p4 = P(3/4) + P(4/4)

= p(2 - p) - 2p(1 - p)2(1 - k)

+ p(1 - p)(p2 + p - 2)(1 - k)2 + 2p(1 - p)3(1 - k)3 , (4-19)'

For a 3 out of 4:G logic type of system, the system failure probability is
given by

3p4 = P(2/4) + P(3/4) + P(4/4)

2= (3 - 3p + p )p'- 3p(1 - p)3(1 - k) . (4-20)

4.3 Investigation of the. Influence of the Dependence Factor on System Failure
Probability

,

The impact of the dependence between failures is that it reduces the gain
in system reliability achieved by the use of redundant units. The degree of-
dependence between failures is the determining factor in such reliability re-
duction and its detnuination is the most important part of the problem. If-
the individual failure probability (p) and the degree of dependence among the
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various failures (the dependence factor, k) are known, the optimum system can

be chosen. Two types of systems with the same random failure probability are j

seen to have different failure probabilities when the dependence between
failures is taken into account. The advantage of using one system rather than
another may be altered when the degree of dependence between failures is in-
creased or decreased. Often the reduction of dependence between failures
receives too much attention, when it might be better to reduce the individual
failure probability and use a different type of system, the reason being that
the degree of dependence would have to be reduced to an unachievably low value
to achieve the same reliability. Therefore, choice of an optinum system re-
quires consideration of the individual failure probability (p), the degree of
dependence (k), and the type of system. With the help of the model described
above, the influence of these three parameters on system reliability is an-
alyzed here.

Figure 9 shows the variation in failure probability due to changes in de-
gree of dependence between failures, for a fixed individual failure probabil-
ity (p = 10-2), for redundant systems of the m out of n:G logic type (i.e. ,
the system of n conponents is good i.f.f. at lcast m components are good) in-
cluding a 1 out of 2:G, a 1 out of 3:G, and a 1 out of 4:G system. The ran-

dom failure probabilities of these systems differ by at least two orders of
magnitude but ar.y significant gain in system reliability due to redundancy is
largely wiped out when the degree of dependence (k) between the failures re-
aches about 0.3. For k > 0.3, the advantage of using redundancy beyond 3 is

_

almost nil. When the failures due to different actions are totally dependent

on each other (k = 1), the advantage of using extra redundancy is totally
lost, as shown by the convergence of the curves at that point.

Figure 10 shows the relation between system failure probability and degree j

of dependence between failu es for the same three systems, but with individ-
ual failure probabilities adjusted so as to make the random failure probabil-
ity the same for all three systems. The individual failure probability (p) is
then 1x10-3 , 1x10-2, and 3.16x10-2 for a 1 out of 2:G, 1 out of 3:G, and 1 out
of 4:G system respectively. In this case the curves for a 1 out of 2:G and a
1 out of 3:G system intersect at k = 0.032. That is, a 1 out of 2:G system

with p = 10-3 is the better choice for k > 0.032, but not for k < 0.032.
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Table t;

11ultiple failure Probabilities Due to
Hunian Error for Different G-Logic Types of Systeias

Type of
G-Logic System System Failure Prot, ability

1 out of 2 kp + p (1 - k)

I out of 3 p - p(1 - p)(1 - k) - p(1 - p)(1 - k) + p(1 - p) (1 - k)
2 out of 3 p(2 - p) - 2p(1 - p)2(1 _ g)

3
L1 - (1 - p)(1 - k)i]1 out of 4 w

i=0

2 out of 4 p(2 - p) - 2p(1 - p)2(1 - k) + p(1 - p)(p 2 + p - 2)(1 - k)2
+ 2p(1 - p)3(1 - k)3

(3 - 3p + p )p - 3p(1 - p)3(1 - k)2l out of 4

sc2

\ Q 'P * p e t0
2

4
@ 'P , p a lO

3

@ 'P, , p . to-2

io-3_ -

O

@a
iv _

-

@

s''

io-5- -

Figure 9. Relation between different
io 5- - 1 out of n:G type system failure proba-

bilities and dependence factor for a
fixed individual failure probability,

y < 1

__10-3gg 10-' 470

DEPENDENCE FACTOR (k)

49

I



-

Sinilarly, for the choice between a 1 out of 2:G and a 1 out of 4:G system
the determining value of k is 0.046. Thus, for k values > 0.046, as they
usually are, it appears more beneficial to reduce the individual failure

robability ratrer than to increase the redundancy of the system.

The results of a similar analysis of a 2 out of 3:G and a 2 out of 4:G
systen are presented in Figure 11. For k > 0.033, the failure probability was

;

founa to be much lower for a 2 out of 3:G systen with p = 10-3 than for a 2 |

out of 4:G system with p = 10-2
|
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Figure 10. Relation between different Figure 11. Relation between different
1 out of n:G system failure probabil- m out of n:G type system failure proba-
ities (with some random system failure bilities and dependence factor.
probabilities) and dependence factor.

4.4 Estimation of the Parameters of the Model

The parameters of the model were estimated from the available data. The

two parameters needed are the individual failure probability (D) and the de-
pendence factor (k). Since p is largely known, k is the parameter that it is

important to estimate.
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The estimation procedure used was the moment estimation technique, which

provides point estimates for the parameters. This is not as flexible as the
raaxiraum likelihood estimation technique, but it leads to much sirapler equa-

tions. For our case, even for three-unit systems, the maxiraum likelihood

estimation procedure leads to very complicated fifth-order simultaneous equa-
tions that would require sophisticated computer prograras for solution. Since

at this stage an understanding of where the value of the dependence factor
lies is of interest, momerit estimates are considered suitable. For raore

accurate results, these estimates can be used as the initial value (seed) in
an iterative caaputer program to obtain a raaxir.,um likelihood estimate.

The genaral technique of moment estiration is to match the moments of the
data to the moments of the hypothesized distribution.18 If the numbers

xl> x2, > Xn represent a set of data, then an unbiased estimator of
the kth origin moment of the data is

n

mk = - {xjk,r

n
i=1

The moments of the distribution are given by
.

kuk = t f(t)dt .
o

In our case,

n

}] jk (i/n) ,Puk =
i=1

where P(i/n) is the probability that i out of n components of the system fail.

If the hypothesized distribution has n parameters, n equations are ob-
tained by equating mi to p1, m2 to p2, ... , and rdn to Un. For our

case with two unknown parameters, ml is equated to p1 and mz to p2,
and the solution of the resulting equations provides estimates of the para-
meters.
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The data required for such an analysis are scarce. The model developed

requires data on the number of occurrences, each, of 1, 2, ..., n failures in
an n-unit system. Rasmussen19 reviewed Licensee Event Reports as a source

of human error data and judged 111 reported errors to be in the category
"calabration, setting, and testing." These are the only available data on
such failures and are presented in Table 7. Rasmussen points out that "the
reports do not give information on the actual frequency of errors connitted
but rather on the frequency of errors which are immediately corrected by the
operator. This means that the error frequencies found in the reports are
heavily biased by opportunities for self monitoring and error correcticr. in
the specific task." But, since the prceability of system failure due to human
errors rather than the specific hunan error rates is of interest here, these
data are suitable for our analysis. Also, since the model developed does not
take into acccunt possible feedback alerting the operator to the commission of
successive errors, (recovery factor), the failure data obtained after the
operator's error correction due to feedback are appropriate for use.

As evidt nt from Table 7, the total number of opportunities for such fail-
ures is usually not available, i.e. , the problera is lack of "cenominator data."
The purpose of this study is not the development of human error rates, but
rather the detemination of the dependence between human f ailures. Therefore,
based on RSS,1 the assumption is raade that failure to return a manually
operated test valve to its proper configuration af ter maintenance has a rate
of 10-2, i.e., p = 10-2 Based on this and the available data, a deter-
mination of the total number of opportunities for failure can be raade, as
foll ows.

The data indicating failures in 17 channels are neglected because this
happened only once and no simultaneous failures in 5 to 16 channels have been

recorded, and its incorporation would involve unnecessary complications. This
leaves data for a 4-unit system.

Let xo be the number of times none of the units was affected by human
error. Then

(xo + 96 + 11 + 2 + 2) = (xo + 111)

is the total number of opportunities for human error, and (1 - p)4, the
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i,A

probability that none of the channels is affected by human error, is

x
c(1 - p)4 = ,

x + 111
o

For p = 10-2,

xo = 2706 and 11 = xo + 111 = 2817 .

By using a similar technique and cata for the first three units, the total
number of opportunities for failure can be estimated for three units; these
data are used for the analysis of the 3-unit system in the next section.

Table 7 Table 8

Hur.en Errors in Test Derived Data for Hur.an Errors in
and Calibraticn Test and Calibration

_

kumber of Channels ilumber fluh.ber of Channels fiuuber
Affectea by Operator of Cases Affected by Operator of Cases

1 95 j 0 x 27CG1 x
0

2 x2 11 1 *1 95

3 x 2 2 x II
3 ; 2

4 x 2 3 x 2
4 3

17 x 1 4 2
17 *4

it = 2817

3-Unit System

The uoment estimation technique and the available data Stere used to deter-
mine the dependence factor (k) and the individual failure probability (p).
Since p stas assur..ed to be 10-2 in developing the derived data, the estimated
value of p is expected to be around 10-2 Application of the technique used
above for a 4-unit systeu in a 3-unit system gave the total number of opportunities
for failure for a 3-unit system, listed in Table 9.
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Table 9

Derived Data for Human Errors in
Test and Calibration for a 3-Unit System

fiumber of Channels f4uniber
Affected by Operator of Cases

0 x 3528
0

1 x1 95

2 x2 11

3 x3 2

fl = 3636
1

The monents equations for a 3-unit system are

P(1/3)+2P(2/3)+3P(3/3)=f(x1+2x2+3x3)>

P(1/3)+4P(2/3)+9P(3/3)=f(x1+4X2+9x3). (4-21)

Use of P(1/n)'s in the fora presented in Section 4.2 gives very compli-
cated simultar.eous equations. These are avoided by using approximations

neglecting the higher-order terms:
i.

Tiie expression

P(1/3) = 2p(1 - p)2(l'- k) + p(1 - p)2

= 3p - 2pk - 6p2 + 4p k2

2becones, with the p k term neglected,

P(1/3) ~ 3p - 6p2 - 2pk .

For the expression

P(2/3) = p(1 - p)[1 - (1 - 2p)(1 - k) + (1 - k)2 - (1 - )(1 - k)3)
2 2 2 3 3 3 22 32= 2pk + 3p - 7p k - 2k p + k p - 3p - 5p k - iK p -kp,

since k is expected to be about an order of niagnitude greater than p, the
tonns containing up to third orders of k were kept whereas higher orders of
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2 3 3 22p k, k p , and kh2 tenas givesp were neglected. fleglecting p k, p ,

2 - 2k p + k p ,2 3P(2/3)2 2kp + 3p

The expression

P(3/3) = p - p(1 - p)(1 - k) - p(1 - p)(1 - k)2 + p(1 - p)2(1 - k)3

3 + 3p k + 2pk2 - Sk p22-kp2 3=p

becomes, with the k p22 tenn neglected,

3 + 3p k + 2pk2-kp,2 3P(3/3) = p

Use of the approximate expressions for P(i/n)'s in the moinents equations
and the data in Table 9 gives

2 3 3 23p + 2pk + 2k p + 3p - 4k p # gp k = 0.0342,

and

3p + 6p2,g 3 + 6pk + 10k p - Sk p + 27p k = 0.0436 . (4-22)
2 3 2p

Again, neglecting the higher-order terms reduces the equations to the form
23p + 2pk + 2k = 0.0342 , (4-23)

3p + 6p + 6pk + 10k p = 0.0436 . (4-24)
'

From Eq. (4-23),

2p = 0.0342/(3 + 2k + 2k ) ,

Use of this value of p in Eq. (4-24) gives an equation for k:

0.5096; 4 + 0.7456k3 + o,944k2 + 0.296k - 0.205 = 0 .

This equation was solved in a prograntaable calculator, which gave the fol-
lowir.g results:

k = 0.301 and p = 9.04x10-3 (4-25)

The model was tested with two hypothetical data sets representing extreme .i
situations -- (1) complete independence and (2) coraplete dependence between
failures. The first data set was created by simulating almost binomial data,
with the p value maintained at 10-2, and is shown in Table 10.
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The mouents equations for this data set are

23p + 2pk + 2k p = 0.03147,

22 + 6pk + 10k p = 0.03475 ,3p + 6p

and their solution is

k = 0.0603 . (4-26)

This is justified because a low value of k, approaching zero, is expected
for random failuras, and binomial failure data represent such a situation. A

perfect binomial data will result in k = 0. Thus, the r.odel properly inter-

prets data represer, ting random failures. This is borne out by the fact that

the probability expressions in Section 4.2 represent binomial distribution for
k=0.

The second data set, also with p maintained at 10-2, is shown in Table

11.

Table 10 Table 11

Example Data Set Representing Example Data Set Representing
Complete Independence Between Complete Dependence Between
Failures for Hunan Errors in Failures for Human Errors in
Test and Calibration for a Test and Calibration for a

3-Unit System 3-Unit System

Number of Channels Number Humner of Channels humber

Affected by Operator of Cases Affected by Operator of Cases
_-

O x 67 0 x 1164
0 0.

1 xy 95 1 x 10
1

3 2 x 22 x2 2

241 3 *33 x3

H = 3366 H = 1200
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The ::.ouents equations for this data set are

23p + 2pk + 2k p = 0.07167,

23p + 6p2 + 6pk + 10k p = 0.19500,

and their solution is '

,

k = 0.988 . (4-27),
,,

This data set shows strong dependence between failures because the failure

data are dominated by the failure of all three units. Other combinations also

can result in k > 1, and these are interpreted,as totally dependent situa-
' -tions.

'

4-Unit Systera
,

The value of k for a 4-unit system was determined frora the data in Table 8

The approximations'for P(i/n)'s ~for a 4-unit system are as follows:

, P(0/4) = 1 - 4p , .'..

-s ,
'

.P(1 4) = 4p -12p2 - 3pk .'
' -

,

.s , ,

P,(1/4) = 3pk - 6p2 - 4pka,'
h

s. ,\
, . '-

,, , s s-
s ,

P(S/4) = 8p k + (4p - 26p )k '- (8p ij7p )k3 + 9pk ,- Spk5,2 2 2 2 4

| ,\P(4/4) ~ Q3p k2 2 + (6p - 31p )k3 I9pk4 .v i>pk5, (4 28)2

x cs
The mocients equations for a 4-unit s-[steu are, '

,

, s

(P(1/4) + 2P(2/4) + 3P(3/4) + 4P(4/4) = f()i + 2x 2 + 3x 3 + 4X ) = cii 4 ,

P(1/4]+4P(2/4)+9P(3/4)+'16Pf4/)=f(
'

+ 4x 2 + 9* 3 + $4) = c2*
'

Use of P(1/n)'s f rom Eq. (4-28) in r.oments e' uations, neijlect'ing some of theq

* 'higher-order terms, gives
4 S ?- Sk '+ 9k ) # , 2(24k - 26k ). ' c2' '

p(4 + 3k + 4k ,-
,

4 2 2p(4 + 9k + 20%2 '+ 24k3 .;3k ). + p (-12 +' 72k - 26k ) = c' *

2
'

Use,of the dat6 from Table B'gives, t
,

,

i r
s . s

c1 =-0.04878 a,d c2 = 0.07021.-
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,a

With some algebraic-manipulation, these values ' result in i

2 3g 0.585 + 3.392k + 0.558k - 8.098'k ,

348 + 228k + 48k - 436k +'1432k"

. Replacing p by the above expression provides an equation .for k:

-0.05 + 4.44k + 12.46k - 17.148k - 95.98k - 36.82k + 25.51k + 77.9k =0~.

The solution for k is

k = 0.403 . (4-29)
,

2-Unit System

The moments equations for a 2-unit system are

P(1/2)+2P(2/2)=h(x1+2x2).

P(1/2)+4P(2/2)=h(x1+4x2).
Replacing the P(1/n)'s gives

2p + kp(1 - p) + f (x1 + 2x2).

2 + 3kp(1 - p) = f (x1 + 2x2) . (4-30)2p +-2p
~

Use of data up to .2 units from the original data set, and maintaining p = 10 ~

.g ves the data set shown in Table 12. Solving Eq. (4-30) with these datai .

results in
,.

~ i -
'

k = 0.199 . (4-31)

Table 12 4

4

Derived Data for Htnan Error in ,

Test and Calibration for a 2-Unit System ,

i

Nmber of Channels Number <

Affected by Operator of Cases

.
'

0 x0 5270

1 xi
~

95

2 x2 11

|

N = 5376

.

~ Y
1
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4.5 Discussion of Results'

Significant liberties had to be taken in cianipulating the data base be-
cause of the scarcity of available cata. Strictly speaking, in analyzing an

n-unit system, only data from an n-unit systeu shoulc be used. That is, data

from a 4-unit system should be used only for detern.ining the dependence f actor
in a 4-unit system and should not be manipulated for use with a 3-unit or
2-unit system. However, even though such aanipulations were performed in the

study, and the coment estimation technique used was simpler than superior ones
such as the maximum likelihood estintation technique, the results obtained

provide interesting insights into dependent failure probability. .

The cependence factors obtained for 2-unit, 3-unit, and 4-unit systems are
0.199, 0.301, ano 0.403 respectively. These factors it.. ply that the contribe- -

tion of dependent failure probability is much larger than the cor.saonly accep-
ted estimate that such a contribution is 10V, of the individual failure proba-
bility, which was basec on data for hardware failures only. The comparable

6-value in a s-factor rnocel for the same failure probability is > 0.1. The

values of dependence factor obtained indicate that aependence is much stronger
among hur..an failures than among failures Gut to other causes.

These li...ited data also suggest that the dependence among failures in-
creases as the number of components in the system increases. If this is so,

it will offset the gain in system reliability due to added redundancy. Since

increased redundancy and increased dependence among failures have a competing

influence on system failure probability, an optirous choice regarding the
amount of redundancy can be made from the point of view of human failures.
The results in Table 13 show that in going from a 1 out of 2:G tc a 1 out of
3:G systeu, the failure probability decreases even though the dependence
factor increases from 0.199 to 0.301 because the increase in dependence does

not fully offset the gain due to added redundancy. In going from a 1 out of
3:G to a 1 out of 4:G system, however, the dependence factor increases from
0.301 to 0.403, and this raises the system failure probability from 1.59x10 3.
to 2.1x10-3, f ully offsetting the gain due to added redur dancy. These

limited data indicate that, with respect to human failures, a 1 out of 3:G
system is the nost reliable one of the 1 out of n:G type. This is consistent
with the observation in Section 4.3 that any significant gain in system
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reliability in 1 out of n:G type systems due to redundancy > 3 is largely -
wiped out when the degree of ' dependence between failures reaches about 0.3.

P

As more data becorte available, it will be possible to use this mocel to choose
the most reliable system for application when dependent failures play a

'
significant role.

Table 13

System Failure Probabilities Due to liuman Error
for Different G Type Systems

Type of G-Logic- System Failure
'

System p k Probability

1 out of 2 10-2 0.199 2.07x10-3

1 out of 3 10-2 0.301 1.59x10-3

2 out of 3 10-2 0.301 5.20x10-3

1 out of 4 ' 10-2 0,403 2.1 x10-3
2 out of 4 10-2 0.403 -5.31x10-3

3 out of 4 10-2 0,403 1.23x10-2

|

1
I
!

l
!
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5. SU!EARY AliD C0fiCLUSI0fiS

In analyzing the nature of dependence among human failures in a multiple
sequential action, the way human error causes failure of the components of a
system was found to differ from the way a single hardware failure causes fail-
ure of all the components. Hur.an error causes selective failure of compo-
nents depending on when the failure started. This type of dependent failure
was distinguished from other types of dependent failures in which all the
components failed, and it was termed multiple sequential failure (msf).

Available models for depencent failures were analyzed with regard to their
applicability to esfs and were found to be lacking. These models do not dis-
tinguish among various types of dependent failures, and the same quantifica-
tion technique bas been applied regardless of the basic nature of the depen-
dent failures. In our opinion it is erroneous to apply the saine dependent
failure model to different types of dependent failures, ard therefore depen-
dent failures were separated into three broad categories, each requiring a
different model for quantification.

This study accressed the type of dependent failure categorized as multiple
sequential failure during testing, maintenance, ano calibration. Two models

were develped. The first is very general in nature and does not require any
dependent failure dau. Various well-known distributions were used to de-
scribe the dependent failure in this model. The final estin. ate obtained with
this model is a conservative one with associated uncertainty. The uncertainty

was calculated considering many possible sources--data, coupling, and nod-
eling. Such a method of estimation seems to be apprcpriate when no data on
dependent failures are available.

In the second model developed, details of the process in msfs were taken

into account. The model includes two parameters- dependent failure proba-
bility and the dependence factor between failures. This model provided in-
teresting insights into the influence of dependence between foilures on' system
reliability. The results indicated that f or a 'l out of n:G system the advan-

tage of using redundance > 3 units is almost coupletely lost when the depen-

dence factor between failures is 10.3. Also, use of the limited data avail-

able suggested that dependence among the failures due to human error is much
stronger than that among those due to hardware failures. The dependence fac-
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tors obtained for 2-unit, 3-unit, and 4-unit systems are 0 19, 0 30, and 0.40
respectively. ' For hardware failure, tna comparable cependence factor is about
0.1. Also, the dependence factor appears to increase as the number of cciapo-
nents in the systeu increases. Since the dependence actor and the redundancy
ina system have competing influences, this model can be effectively used to
choose an optimum system from the point of view of reliability.

|
|

f,
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APPENDIX

4

SECOND M0 MENT ABOUT THE hEDIAN OF A,

LOGNORMAL DISTRIBUTION.*

.

The lognormal distribution is defined by its probability density function
~(pdf),

1 2f(x) = exp[-(inx p)2/2o ] x>0,,,

xo S i
.!

!-
; where y and o are the standard lognormal parameters;
4

median = e" .

i The second moment about the median is
i -

(x - e")2 (x)dxf

(x - 2xe" + e ") 1 exp[-(inx - p) /2o ]dx2 2 I 2
=

ch X
..

(inx-u)(inx-u) .-.

2
1 23 2a= xe dx- :: e dx

o/2n om
.. ..

L

2p
- (lnx-p)2,

2.
y 2o' +e -e dx .*' c5

--

Make change of vari.ibles:
t

Inx = t or dx = e dt ;

and.
~

e =x.

!
'
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The equation for the second moment about the median is transformed into

(t-u)2 2
(." ~

V 2p
-

1 f 2t 20 dt 2e 2 t 2
e e e dt + e e dt

oE :/
e

ov2n j gg jr
.

, =

2 2~

f1 t + t + F-- _ u2 t2 U1" t +2t+ L t--

f 2 2 2 2 2 2go 0 20 dt 2e" 2o a 2o
- 1 dt
- a6 J o5 k, ee

-.

E *t+Egt-2p f 23g 2o, dt+g o
e

oG ],

2

2 2 t2,1 2~

_o +" t-p / 2o
-

2 2
2a o

= g dt
og

-

2
1 2 * y+o t

*

2

_ 2e*' V |E'2f ~ gg2 2
dt

og j
.

1 2+ t
*

2 2 t-

2 - p /2o 2
2a o+e e dt .

og
-.

Use of the standard integral,
.

2 2+9* dx = e9 /4P
2 2f ~ E'*

e
E

-.
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gives

-p /2o 2
e 2p+2o +u /2a yg-e
a5

,2e p /202 ,,2/2,gp-p /2a u- p /2a 2
e p /2o

e y e g
c5 c5

2
=e - 2e2p+o /2 + e2p2p+2a

2p(e - 2eo /2 ,7)=e
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LIST OF ACRONYMS

BWR Boiling Water Reactor

CLCS-HI Consequence Limiting Control Systen - Hi

CSIS Containment Spray Injection System

HPIS High Pressure Injection system
HTGR High Temperature Gas Cooled Reactor

i.f.f. if and only if

LOCA Loss of Coolant Accident
LPIS Low Pressure Iniection System

msf Multiple Sequertf al Failure
PWR Pressurized Water Reactor

RPS Reactor Protection System

SICS Safety Injection Control System
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In this report the nature of dependence among human failures in a
sequential action is analyzed and distinguished from other types of multiple failures.
Human error causes selective failure of components depending on when the failure started.
Two nodels are developed for quantifying the failure probability in a multiple sequentialac2ien. The first is very general in nature and does not require any dependent failure
uata. The failure probability obtained from this model is a conservative one with associa-
ted uncertainty. The uncertainty is calculated considering many possible sources such as
data, coupling and modeling. In the second model, details of the process in multiple
sequential failures are taken into a' count. The model increments the conditional failurec

probabilities by c certain amount from their lower bounds (independent failure probability)
This approach provides important insights into the influence of dependence between
failures on system reliability. The model can be used effectively to choose an optimum
system considering the individual failure probability, dependence factor and the amount
of redundancy in a system.
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Human Error
Dependent Fai, lures
Common Mode Failures
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