NUREG/CR-2211
BNL-NUREG-51411

- - . - -

Modeling of Multiple Sequential
Failures During Testing,
Maintenance and Calibration

Prepared by P. K. Samanta, S. P. Mitra

Brookhaven National Laboratory

Prepared for
U.S. Nuclear Regulatory
Commission



NOTICE

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the
United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any thirZ varty's
use, or the results of such use, of any information, apparatus
product or process disclosed in this report, or represents that
its use by such third party would not infringe privately owned
rights.

Available from

GPO Sales Program
Division of Technical Information and Document Control
U. S. Nuclear Regulatory Commission
Washington, D. C. 20555

Printed copy price: $4.75
and

Netional Technical Information Service
Springfield, Virginia 22161



NUREG/CR-2211
BNL-NUREG-51411
RX

Modelin%of Multiple Sequential
Failures During Testing,
Maintenance and Calibration

Manuscript Completed: October 1981
Date Published: December 1981

Prepared by
P. K. Samanta, S. P. Mitra

Brookhaven National Laboratory
Upton, NY 11973

Prepared for

Division of Facility Operations

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

NRC FIN A3219



Availability of Reference Materials Cited in NRC Publications
Most documents cited in NRC publications will be available from one of the following sources

1. The NRC Public Document Room, 1717 4 Street. . N W
Washingion, DC 20555

2. The NRC/GPO Sales Program, U S Nuciear Regulatory Commission,
Washington, DC 20555

3 The National Technical information Service, Springfieid. VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not
intended to be exhaustive

Referenced documents available for inspection and copying for a fee from the NRC Public Document
Room include NRC correspondence and internal NRC memoranda, NRC Office of Inspection and Enforce-
ment bulletins. circulars, information notices, inspection and investigation notices, Licensee Event
Reports. vendor reports and correspondence, Commission papers, and applicant and licensee documents
and correspondence

The foliowing documents in the NUREG series are availabie for purchase from the NRC/GPO Sales Pro-
gram. formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC
bookiets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal
Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and
technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commis-
sion, forerunner agency to the Nuclear Reguiatory Commission

Documents available from public and special technical libraries include all open literature items, such as
books, journal and periodical articles, transactions. and codes and standards Federal Register notices,
fegeral and state legisiation, and congressional reports can usually be obtained from these libraries.

Documents such as theses. dissertations, foreign reports and translations, and non-NRC conference pro-
ceedings are available for purchase from the srganization sponsoring the publication cited

Single copies of NRC draft reports are availabie free upon written request to the Division of Techaical Infor-
mation and Document Control, U S Nuclear Regulatory Commission, Washington, DC 20555




ABSTRACT

In this report the nature of dependence among human failures in a multiple
sequential action is analyzed and distinguished from other types of multiple
failures, Human error causes selective failure of components depending on
when the failure started. Two models are developed for quantifying the fail-

ure probability in a multiple sequential action., The first is very general in

nature and does not require any dependent failure data, The failure orobabil-
ity obtained from this model is a conservative one with associated uncertainty
The uncertainty is calculated considering many possible sources such as data,
coupling and modeling, In the second model, details cf the process in multi-
ple sequential failures are taken into account, The model increments the
conditional failure probabilities by a certain amount from their lower bounds
(independent failure probability). This approach provides important insights
into the influence of dependence between failures on system reliability. The
model can be used effectively to choose an optimum system considering the in-
dividual failure probability, dependence factor and the amount of redundancy
in a system, It was observed that in many cases it may be better to reduce
the individual failure probability ana to use a different type of system,
rather than trying to decrease the dependence between the failures.



















In Section 3 various distributions are applied to the bounds obtained
using bounding technique, and a central estimate is obtained using Chebyshey's
inequality. The propogation of error in such an analysis is also calculated.

In Section 4 2 model is developed by increasing the probability of depen-
dent failures by a certain amount over the random failure probability, and the
parameters of the model are estimated from available data. Section 5 provides
some genera! conclusions about dependent failure probability based on the
models developed in this study.
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2. DEPENDENT FAILURES--OPERATOK ERRUKS
2.1 Classification of Uependent Failures

Eplerd wrote the first article concerning dependent failures. He con-
cluded onr the basis of some siuple calculations, which included dependent
failures, tnat theve are “serious doubts as to the usefulness of a reliability
calculation that considers random events only, when commion mode failures may
be dominant by s much as 10-9." Since then the various types of dependent
failures have received significant attention.

Uependent failures can be classified in many ways, and they have been as-
signed to broad categories on the basis of tneir causes, 1,4 which may be
any of the following:

1. Design defects.

2. Manufacturing, fabrication, and quality control errors.
3. Test, maintenance, and repair errors.

4. Environmental variations.

5. Failure and degradation due to an initiating failure.
6. External initiation of failure.

VariLus measures have been recommended to reduce the probability of depen-
dent failures,!s4.5 such as the use of different types of equipment, the use
of different procedures for testing or monitoring the state of a system, tne
presence of more than one operator to review personnel actions, and the
physical separation of various redundant components.

It 1s unlikely that a single model will be suitable for guantitative
analysis of all the different types of dependent failures, since the ways in
which the different types of dependent failures occur are different. Accor-
ding to Mankamo,® the failure of a group of components can occur in three
basic ways:

l. The failure is caused by an event outside the ¢'ov:p but common to the
components.

2. A failure within the (~oup, e.9., a single component failure, results
in the failure of all componenl. ~oncerned.

3. The components all fail randomly.
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Figure 1. Different failure states resulting from human failures during
testing and maintenance and those nriginating from a single
hardware failure.

Modeling techniques dezcribed in the literature have addressed the second and
third types; this study deals with the first type, msfs during testing and

maintenance.

2.2 JSituations of Multiple Sequential Failures in the Reactor Safety Study
for a PWR

Multiple sequential component failures during testing, maintenance, and
calibration play a significant role in the determination of system unavaila-
bility. In many PWR safety systems, this type of error is the dominant con-
Lributor to system unavailability. Samanta et al.,’ applying an importance
measure to human errors, showed this type to be among the most important ones.
In many situations, given a particular type of accidert, many ov these errors
could cause a core melt., Such errors in PWRs! include the following:

1. The possibility of repetitive human errors when calibrating three sets
of comparators or bistable amplifiers in reactor protection system (RPS).
These comparators are tested and calib-ated at about the same time, although



the procedures for ali of them may take several days. This error was found to
be the most important one in terms of reliability importance to core melt
probability. Also, given a small-small LOCA, with this error and no other
intervention, the probability of core melt is 1.

2. The operator leaves each of the three pairs of pump discharge valves
in auxiliary feedwater system (AFWS) closed following monthly tests. Since
three pump tests are done sequentially as part of the same general procedure,
these faults are coupled. Given a transient event, this error was found to be
the most important one in terms of reliability importance to core melt
probability. Also, given a small-small LOCA, with this error and no other
intervention by the operator, the probability of core melt is l.

3. Failure to close manual valves of two containment spray injection sys-
tem (CSIS) pumps after monthly tests. Although the test procedure requires
opening of ore valve at a time, because one system is tested immediately after
the other there is a dependence between the faults. Given this ¢iror, along
with a small-small LOCA and no other operator intervention, the core melt
probability is 1.

4. Operator error in calibration that causes failure of at least two of
the three pressurizer low pressure comparators or of at least two of the three
pressurizer low level comparators, and also of at least two of the four con-
tainment high pressure comparators. This error affects three systems: SICS,
HPIS, and LPIS. It is among the important errors in terms of reliapility
importance to core melt probability and also in terms of structural importance
to core melt.

5. Operatcr incorrectly calibrates at least two of the four sensor Toops
in CLCS HI train 1A or 1B. The same four sensors are used in both trains.
Given a small-small LOCA with this error and no other operator intervention,
the core melt probability is 1.

2.3 Modeling of Dependent (Common Mode) Failures

Various models have been proposed for estimating the probability of depen-
dent failures. Some of these models are designed for specific types of depen-
dent failures and others are general.



Lack of supporting data has been the major probiem in validating such
models. Since dependent failures are important only in highly reliable
systems, and recognition ot the problem has been rather recent, data will

remain sparse for some time to come. Progress has been made, however, in the
realization that treatment of dependent failures should differ from ronven-
tional reliability analysis in which the reliability of the system almost
reaches unity if sufficient redundancy is added. The models used in reactor
safety studies have generally been the "geometric mean" model and the "g-
factor” model. The geometric mean model was developed by the RSS! and was
used in assessing accident risks in U.S. commercial nuclear power plants. The
g-factor model? was developed at Gulf General Atomics and was used in anal-
yzing HTGR accident initiation and progression. Both these models are general
in nature and are attractive for their simplicity. A third model was de-
veloped by Vesely? usirg the multivariate exponential distribution of
Marshal1-0lkin as the basis for common cause analysis. Most other available
models assume the occurrence of a "shock" and are not applicable to the type
of problem of interest here. The first two models mentioned above have been
used to quantify multiple sequential failures in testing and maintenance, and
the third one may be applied because of its attractive features. The general
characteristics of these three models are discussed below.

2.3.1 Geometric Mean Model

The Reactor Safety Studyl applied a bounding technique known as the
geometric mean in the assessment of dependent failures. The model first
determined the bounds within which the failure probability lies and then used
judgement to estimate the value of the probability within the defined range.
In general cases, defined as "loose coupling," the geometric mean of the upper
and lower bounds was used to estimate the failure probability. This approach
utilizes no dependent failure data; it relies on judgement to determine the
degree of dependence. Also, it does not distinguish among different types of
dependent failures. The model is very simple to use, but as pointed out by
Lewis et al., 13 is arbitrary in its use of the geometric mean in the estima-
tion of failure probability.

Consider the example of two valves erroneously left closed by the operator
after maintenance. The failure to leave the second valve open is dependent on
the first action, i.e., whether the first valve was left open or ciosed. Let






2.3.2 g-Factor Hodel

Fleming® developed the g-factor model for the guantification of depen-
dont failures in HTGX risk assessment. The name is derived from the use of a
factor, 8, relating the dependent failure rate to the total failure rate for
one channel. Let

A : total failure rate of one channel,
Ai : independent failure rate of the channel,
Acm : dependent (common mode)} failure rate of the channel.

The model assumes that the total failure rate of each unit can be expanded
into its independent and dependent rates:

A= At Acm -

It also defines the parameter § as the fraction of the total failure rate at-
tributable to dependent failure:

“em “em

g = = .

A]‘ » )\Cﬂ A

Assuming exponential distribution for both independent and dependent failures,
the system failure probability for a 1 out of 2:C type* of system is obtained
as

F(t) = 1 - 2e=At + g(2-B)At

"

n

¥(2 - 45 + 82)(at)2 + gat .

The value of & lies between 0 and 1, with g = 1 implying that alil failures are
dependent (common mode), and g = O that all failures are independent. Fleming
and Raabel0 gbtained estimates of ¢ for six different component types from
reliability experience data. ihuy found that g tends to have values very
closely clustered in the range from 0.1 to 0.2.

*k cut of n:G logic configuration signifies that the system of n components is
good i.f.f. at least k components are good.






Vesely previded a technique for estimating the parameters iy, Az, or

Az based cn Poisson statistical methods considering the number of failures
sbserved in a specified time interval. This technique reduces the number of
parameters to be estimatec oy assuming that the failure rate., depend on the
number of components failed, i.e., Ay = )y where x is the total number of
components simultaneously failed by the cause. This specialized model is
called the homogeneous model. Both constant failure rate (CFR) and binomial
failure rate (BFR) assumptions within the homogeneous model were analyzed for

estimation,

In CFR, common cause failure rates are independent of the failure number:

Ay = A, X 2 X} s

where the equality is assumed only for numbers of failures greater than or
equal to xj.

In BFR, the equation for A, is obtained by factoring the common cause
failure rate into an overall occurrence rate and a detailed effect proba-
bility. The quantity i, is obtained from the expression

where A is the sum of all the common cause failure rates for x > xi.

2.4 Applicability of the Available Dependent Failure Models

Other models besides the three described above have been proposed for the
quantification of dependent failures. They are either shock or common 1load
types of models. Shock modelsl?2 are applicable where the failures are
assumed to be due to a fatal "shock," defined as an event imposing abnormal
stresses on the components leading to their failure. The common load mode16
is useful when the load and resistance distributions are well known. For the
analysis of msf in testing and maintenarce, such models are not applicable
because the specific cause of the dependent failure is of a different nature.

11









3. QUANTIFICATION OF DEPENDENT FAILURE PROBABILITY USING
VARIOUS DISTRIBUTIONS

3.1 Bounding Technigue and Use of Various Distributions

The bounding technique of the Reactor Safety Study1 properly defines the
bounds within which multiple component failure probability lies. The problem
is to obtain an estimate for the failure probability within that range. The
RSS's use of a lognormal distribution within the bounds is without proper Jus-
tification and has been criticized, but tne lack of data makes the choice of
any other distribution equally unjustifiable. The choice of any distribution
will generate criticism whenever there is insufficient available data to
adequately back it up. However, Lewis et al,13 point out that "most models
will not give wildly different answers. The choice of one model over another
generates an uncertainty, but within that uncertainty the use of the model is
justified, provided the uncertainty is estimated and indicated." Therefore,
modeling that includes modeling uncertainty could be attempted by considering
a number of distributions. The estimate obtained from such a model along with
the uncertainty associated with it (including data and modeling uncertainty)
will be more defensible than that obtained with a model based on any arbitrary
chosen distribution.

Modeling was attempted, as described below, by applying various well-known
distributions within the bounds defined by the bounding technique. The use of
various distributions provides different estimates and establishes a range of
values for the dependent failure probability. It is argued that the uncer-
tainty generated from this range is the mode:ing uncertainty. A final esti-
mate for the dependent failure probability within this range was obtained by
using Chebyshev's inequality. The uncertainty associated with the estimate,
comprised of data uncertainty, coupling uncertainty, and modeling uncer iinty,
was calculated by using error propagation technique. The estimate obt. .ned
from this model, along with the uncertainty, is considered to be more suitable
for use when little or no data are available, than an estimate obtained with
any particular distribution.

14



3.2 DBounding Technique

The bounding technique establishes the bounds within which dependent fail-
ure probability should 1ie. The upper bound is the maximum value, with the
assumption of total dependence between the failures, and the lower bound is
the value with failures considered to be random, i.e., with no dependence
among them.

Consider a system consisting of n components, where the symbols Hy, Ho,
+++, Hy represent failure of the respective components. The expression HyHp
«++Hn represents failure of components 1 through m. For example, HjHaHj3

represents the failure of components 1, 2 and 3. Let the individual failure
probability of the nth component be represented by P(H,), and the probability
of the combination failure HiHp...Hy by P(HiHo...Hy).

The upper bound can be obtained by considering a single failure combina-
tion. This is suitable for the situation in which the failures are totally
dependent. In order for the combination of components ton fail, each of the
components must fail individually; therefore,

P(HiHp. . .Hy) < P(Hp)
P(HiHp..hp) < P(Hp)
P(HyHoe s Hp) < P(Hn) .

Since all of the above inequalities are true, the upper bound is the minimum
of the individual failure probabilities:

P(HHp. . Hp) < MIN [P(Hy), P(H2), veu, P(Hp)] «

Consider the situation in which all the acts are identical, i.e.,
P(H1) = P(Hp) = .uu = P(H,) = p ;

the upper bound is given by
Py(HiH2...Hg) = p .

The lower bound is obtained by cons:!dering totally random failures. In
general, for m out of n:G type systems,

n
m, = (r) BT,

15



where mp is the probability that at Teast m out of the n components fail,
and r is given by

r=ne-m+ 1,

From the above formula the lower bound of n repetitive failures 1s ob-
tainec as
pL(Hle.-oHn) - pn .

ine bounds of different m out of n:G type systems, i.e., the type such
that the system is goed 1.f.f. at least m components are good, are presented
in Table 1.

Table 1

Bounds of System Failure Probability of Different Systems
for Same Individual Failure Probability

Type of G System Upper Bound, PU Lower Bound, PL
1 out of 2 p 92
1 out of 3 p p3
2 out of 3 p 3p2
1 out of 4 p p4
2 out of 4 4p3
3 out of 4 P 6p2

3.3 Choice of Various Distributions

The bounding technique establishes the bounds of the dependent failure
probability, It is resonable to assume, with high confidence, that the
failure probability lies within the bounds, but tne appropriate distribution
for describing dependent failures is not known. A choice of one distribution
over the others cannot be rigoroutly justified, It can be argued, however,

16



that the appropriate distribution, even though not known, is unlikely to be
very different from the well-known distributions followed by other known
natural processes. Therefore, by applying various well-known distributions, a
range that includes central estimates of all of thew can be established. It
is then reasonable to assume that the dependent failure probability lies
within this range.

The central estimates of various distributions were obtained by assuming
the Tower bound (PL) and the upper bound (Py) of the dependent failure
probability as 5% and 95% confidence limits of the distribution. The
distributions considered apolicavle for this analysis are the following:

(1) Nermal,
) Cauchy,

) Garma,

) Weibull,

)

)

(1
(2
(3
(4
{5) Lognormal,
(6) Log Cauchy.

The following presentation provides the probability density function (pdf)
of the distributions and the calculation of their central estimates in terms
of the upper and lower bounds of the ‘ependent failure probability (the 5k and
25% confidence limits).

(1) Normal Distribution:

The pdf of normal distribution is given by

L expl-(x - 4)2/2R2], ~=<x<e , (3-1)
.‘307:

Y. & i T i

f(x)

Mean

"

Nedian = Xg.5 = e o=l

Standard deviation = o ,

where X| and Xy are the lower and upper bounds respectively.

17




The standard deviation, o, associated with . is obtained from tables of
the standard normal distribution function, ¢(2):
. 2
o(2) = /f -—-!'~—-e'u /zdu = P(Z < z).
. o7 =

-

The normal variate, X, in our case, is related to Z by the expression

X = u

—
Z x .
"~
C

Hence,

P("O' B o< z) = i(z) .

Taking #(z) for corresponding z from the standard normal distribution function
table,20 we can obtain o for corresponding u and X.

(2) Cauchy Distribution:

The pdf of Cauchy distribution is given by

b
6%+ (x - )%] °

f(x) = a® LR £ o, (3-2)

The cumulative distribution fuction (cdf) is given by

F(x) =

rOf
+

-m(x<.1.

For 5% and 95% confidence limits we obtain

X, - a
F(X_ ) = 0.05 = % - % tan-! (—JT;-_ ) B
F(XU) = 0.95 = Zl + .1. tan'l (__xu_.,_ a) 2
T b

18






The cdf of the distribution is
X

F(x) = ff(x)d.< =1 - expL-(x/x)‘] .
0

For 5% and 95% confidence limits,

F(X,) = 0.05 = 1 - exp[-(X./2)®3 ,

F(Xy) = 0.95 = 1 - expl-(Xy/2)®] «
Solving for 8 and X gives

B = (4.067)/In(Xy/%X) ,

Inx = InXy + 0.27 In(Xy/X.) , (3-5)
and

Median = Xg, 5 = re~0-36/8

where A and g are given by Eq. (3.5).

(5) Lognormal Distribution:

The pdf of 12gnormal distribution is given by

f(x) = exp[-(1nx - p)2/2:2] , x>0, (3-6)

oveTX
Median = Xg,5 = eV ,
Mean = X = explu + (92/2)] .
Second moment about median* = exp(2u)(exp(2:2) - 2exp(c2/2) + 1] . (3-7)

The deviation associated with the median needed for working with the median is
obtained by taking the square root of the second moment about the median as
given by Eq. (3-7). The parameters, u and o, are obtained from the following

equations:
ev = viXy , (3-8)
p(lﬂl_:_k.i z) = ¢(2) . (3-9)

g

*See Appendix for derivation.

20



For lognormal distribution of X, InX is normally distributed, and z corres-
ponding to #(z) is obtained from standard normal distribution function
tables.20 o is obtained as

The

The
the
had
for

:‘nx-u
Z

g

(6) Log Cauchy Distribucion:

The pcf of log Cauchy distribution is given by

3 b
b + (Inx - a)?]’

fx) x>0 . (3-10)

cdf is given by

F(x) = 21, + % tan'l(—]i’;—);j) e

Median = Xp,5 = 'iLXU .

median obtained is the same as that cf the lognormal distribution. As in
case of the normal and the Cauchy distributions, discussed above, a choice
to be made, and the lognormal was chosen over the log Cauchy distribution
estimating dependent failure probability.

3.3.1 Range of Central Estimate

By applying the above distributions, the various central estimates (mean

or median) are obtained. For a particular individual failure probability,

these central estimates are ordered, and two extreme values provide the upper

and

lower limits of the range. The question then, is which central estimate

to use, the mean or the median. It is interesting that normal distribution

consistentiy provided the upper limit and iognormal the lower limit. Since

for

a normal distribution the mean and the median are the same, and for a

lognormal, the median is always lower than the mean, the use of medians will

provide a range that envelops all the central estimates. Following our pre-

vious argument that the distribution obeyed by the dependent failure is

probably close to one of the discussed distributions, it is plausible to
assume that the dependent failure probability lies within the range estab-

lished.

21







3.4 Application of Chebyshev's Inequality

The next step is to obtain a value of the dependent failure probability
within the defined range. We assune a 90% confidence that the dependent
failure probability lies within the range. Stated mathematically,

P[X S um‘;l - 0-05 > p(_x i uﬂ.’n] = 0095 .
Hence,

Plum,1 £ X £ upy,nd = 0.9, (3-11)

where ug 1 is the nedian value from Toynormal distribution and uy p is
that from normal distribution.

With only the knowledye of bounds we cannot construct the probability
distribution, but with the knowledye of mean and variance we can obtain bounds
to such probabilities by using Chebyshev's inequality. Since we know the
bounds, we use Chebyshev's inequality to cbtain the wean and variance of the
dependent failure probability.

3.4.1 Chebyshev's Inequality

Let X be a random variable with E(X) = u. and let ¢ be any real number.
Then, if E(X - ¢)2 is finite and ¢ is any positive nusber, Chebyshev's

inequality statesl/
PLIX = cf >e] < —E(X - ¢)2 .
el
Choosing ¢ = u. and €= ko, where c2 = Var X > 0, we obtain

PLIX = wej > ko ] < 1/ké
or

1 = P[IX = ue) < ko] < 1/k2
or

Pluc - ko < X < e + kol > 1 - 1/k2,
Conservatively,

Pluc = ko < X € 4o + ko) =1 - 1/k2 , (3-12)
Comparing Egs. (3-11) and 3-12), we obtain

1 -1/k2 = 0.9 or k=3.162 .
¥ ')
AlsS, ue = m,1 + “m,n and 5 = MmN m, 1

2 6.324

23



where uc is the value given to the dependent failure probability by this
type of analysis. Table 3 provides uc for 1 out of 2:G type systems yiven
different individual failure probabilities. Fiyures 3, 4, and 5 show the
estimates of dependent failure probability, uc, for 2-, 3-, and 4-unit

systems.
Table 3
Estinate for P(HyH,), bes Applying Chebyshev's irequality
p(Hl) Um0 “m,n e “u,m,ch
10-1 3.16x10°2 5.5 x10°2 4.33 x107° 4.7 xig™
5x10°2 1.12x10°2 2.63 x10°2 1.875x10~2 1.39x10"3
Ix1072 5.2 x1073 1.55 x10™3 1.03 x16~2 1.63x1073
10-2 1 x10°3 5.05 x10™° 3.03 x1073 6.4 x10° %
5x10°3 3.54x10~% 2.51 x10"3 1.43 x16°3 3.41x10~"
Ix10°3 1.65x10~% 1.51 x1073 8.34 x10~% 2.13x10~4
103 3.16x10™° 5.005x10"% 2.66 x107 7.41x107°
6x10°4 1.12x107° 2.5 x10~% 1.31 x10~% 3.78x10 ">
1x10-2 1 x10°P 5  x107° 1.55 x10™° 7.74x10 "8
o' T ™ V4
10“2‘»-

3 |
< |
2 |
£ 1
¥ ?
2 |
2 & |
S F |
L=
z 1
g &/ l
& & ! Figure 3. Estimate for dependent
@ | g?/ ] failure probability using Chebyshev's
oSk ¢/ 4 inequality for a 2-unit system.
/ |
{ |
|
10°® / J
10 107 1072 0!
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For each type of distribution considered to describe the dependent failure
probability, we have a central measure asscciated with an error spread. This
error spread gives a measure of the coupling uncertainty. We define °¢ 5 as
the "coupling uncertainty" due to the choice of "a" distribution, where

n: normal distribution
w: Weibull distribution
a = 1: lognormal distribution

.
.

. . .

Values of oc 5 are obtained by calculating the square root of the seconu no-
nant with respect to the central estimate, in this case, the median.

Ir obtaining the distribution, the two bounds considered could be anywhere
within the range of uncertainties of thcse bounds. By choosing the bounds
randomly within the respective ranges we obtain a slightly different distribu-
tion each time and the corresponding value of © ¢ 5 chanyes. Thus, the ef.
fective uncertéi v associated with the central estimate will be some comtina-
tion of propagated data uncertainty and coupling uncertainty, which in reality
is an integral representation involviug o¢ 5. But here 2n approximation is
made with the assumption that the uncertainty is composed of two separate
parts: (i) the “coupling uncertainty" obtained from the distribution with the
choice of the respective cerural pecints in the intervals as bounds, ¢ 4,
and (i) tne uncertainty due to the propagation of the data uncertainty in the
calclation of the central estimate, o4 a-

It s furtner assumed that the effective uncertainty.o"a , associated
with the central estimate, wug s’ for the choice of the distribution "a" is the
»
root mean sguare of the above two uncertainties:
2 2 %
c,2a *4,a) -

s(g
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TARLE 5

Fstimating the Total lincertainty e Associated With

The Estimation of Ve for 1 out of 2:G Type System
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One interestinyg property of the result is its changing dependence on the
lower bound of the dependent failure protability. When the lower bourd is
significant, it influences the final estimate of the dependent failure proba-
bility; but, as the lower bound (denoting complete indepenience) decreases in
magnitude, its 1nfluence alsc decreases so that the dependent failure proba-
bility becomes more and more dependent on the upper bound. Such a character-
istic is justified because the lower bound becomes too small in magnitude, as
the independent failure probability decreases, to have any significant influ-
ence. The geometric mean model is thought to underestimate th. dependent
failure probability as the individual failure probability decreases hecause of
its strong dependence on the lower bound.

Our approach also proviues the basis for incorporating many possible kinds
of uncertainties including moceling uncertainties. The uncertainties in the
estimate of the dependent failure probability for a 1 out of 2:G type system
are significant, as shown in Table 5. This is expected and reflects our state
of knowledge. The data uncertainty in the individual failure probability
plays a significant role. With the improvement of our knowledye >f individual
failure rates, that uncertainty will decrease. Also, as mor~ data become
7vailable on dependent failures, the distributions applicable to such failures
could also be limited and thus the uncertainty due to modeling might be
reduced. Jverall, such an approach, an estimate of dependent failure proba-
bility with an associated uncertainty considering various distributions, is
attractive when data are non-existent or very limited.
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4, MODELING OF MULT'PLE SEQUENTIAL FAILURES

4,1 Basis of the Model

In this section a multiple sequential failure {(msf) during testirg and
caintenance is modeled by taking into account the processes involved in such a
failure. D.pcendence between two successive failures is accounted for oy in-
creasing the probability of the dependent failure by a certain amount over its
indepandent or random faiiure probability. Modeling is carried out at a ‘evel
sufficiently detailed to distinauish between msfs during testing and mainte-
narce and those due to hardware failures, as discussed in Section 2,1. In
that sen.: this approach is distinct from other dependence failure modeling
approaches and is directly applicable to an mzf during testing and mainte-
nance,

The phy<ical processes considered in this modeling approach may be ex-
plained as follows, Given two sequential actions, the second action, given
failure in the first action, is ro longer independent; accordinaly, the proba-
bility of failure 7 the second action will be larger than its :ncependent
failure probability. Given three sequential actions, the thiid action, given
failure in the first two, is not independent, and its dependence con previous
failure is expected to be stronger than the dependence of the second action on
the first action, The probability of failure in the third action, given fail-
ure in the first two, should exceed its independent failure probabiliiy by an
amourt greater than that in the case of second failure, given the first failure.
Similarly, the probability of failure in the fourth action. ‘'‘ven failure in
the first three, should exceed its independent failure probability by an
amount greater than that in the case of third failure, given first two faii-
ures, and so on. It is argued that in multiple sequential failures the proba-
bility of failure in the third action is more dependent on the probability of
failure in the second action, given the first failure, than on the independent
failure probability of the third action, unless the independent failure proba-
hility of the third action is larger. Thus, the range of the probability of
failure in the third action is shrunk by increasing its lower bourd from its
independent failure probability to the probability of second failure, given
f the first failure, For similar dependent actions the probability of second
' failure, given the first failure, is always greater than the independent fail-

ure probability of the third action. In this way the ranges of probability of
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higher and higher aclions are shrunk, and the respective probabilities are
increased because of the change in the lower bound of the respective shrunken
ranges. To some extent, this approach automatically takes into account the
increased dependence for any action compared with the preceding action in a
multiple sequential action. That is, such increased dependence is built into
the model.

Let us consider n sequential actions and let the symbols Hys Moy eeey Hy
represent failure in the respective actions. The expression HyHy... by
represents repetitive failures in actions 1 through m.

In.reliability analysis, the probability of n sequential failures is given
by

P(HyHoeooly) = P(Hy) P(Hp/by )P(Hy/HyHp )uuuP(Hy/Hyhpe e oy 1),

where the bounds of the conditional probabilities are yiven by

P(H2) < P(Ha/H)) <1
"(H3) < P(lH3/HiH2) <1
P(Hp) < P(Hp/H1H2e 4 eHpo1) <1, (4-1)

The lower bound represents total independence between the failures, whereas
the upper bound represents total dependence between the failures. It is the
determination of the conditional failure proLability that makes the problen
difficult. Following is the method applied in this wodel for calculating such
conditional failure probabilities.

The probability of failure in the second action, given failure in the
first action, is assumed to be larger than its independent failure probabil-
ity, and 1t is expressed as the sum of the independent failure probability,
P(Hj), and a dependent failure probability (Pdf)' The dependent failure
probability is assumed to be a fraction of the total range of the conditional
failure probability. From Figure &,

P(H/Hy) = DB = DC + CB
= P(Hp) + P(dfy)
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where P(dfz) is given by
P(dfz) = [ - P(H2)] k)
and k] is the dependence factor.

The probability of failure in the thii: action, given failure in the first
two, is given by

P(Hy/H K, ) = Max[P(H,), P(H,/H )] + {1 - Max[P(H,), P(H,/H )11k,
PiM, /)
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Figure 8. Representation of the conditional failure probabilities
in a probabilit; diagram.

In a multiple sequential action, the previous action is usually the deter-
mining factor in the probability of the present action be.ause of .he depen-
dence among the acticns. That is, the probability of failure in the third
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action, given faiire in the first two, is expected to depend more on the
probability of failure in the second action, given failure in the first, than
on the independent failure probability of the third action, unless the latter
is larger. Thus the lower bound of P(H3/H1H2) is the larger of P(H3) and
P(“Z/Hl)’ and its probability is determined by adding a certain amount to this
Tower bound.

The reason for using the maximus, or larger value, of P(H3) and P(HZ/HI)
is also clear frow Figure 8. Given the dependence amonyg the failures, the
probability of failure in the third action, given failures in the first two,
is expected to be greater than the probability of failure in the second
action, given failure in the first; i.e., P(H3/H1H2) > p(HZIHl)' Thus, when
P(H3) < P(HZ/HI)’ the range of the conditional probability P(H3/H1H2) is BA
and not EIA. But when P(h3) > P(HZ/HI)’ the range of the conditional proba-
bility is EA.  That is,

Max [P(Hy), P(H/H )] < P(Hy/HHy) < 1.

Even though certain amounts of increase in the dependence are accounted
for by appropriately shrinking the range of the failure probabilities, strict-
ly speaking the factor by which the failure probability is increased from the

lower bound should be different for different actions, as the dependence be-
tween different sets of actions changes.

The dependence factor (kz) used in the case of P(H3/H1H2) is different
from that (kj) used in the case cf P(H, /My ) because the dependence between
third and second failure is expected to differ frow that between second and
first failure by more than the amount accounted for by shrinking the range of
P(H3/HiH2).

Similarly, the probability of failure ir a fourth sequential action, given
failure in the first three, is given by

P(Ha/MHafty) = Hax[P(H,), P(H,/HH,)T + |1 - Max[PIH,), P(Hy/H H )]} ky -

In many practical situations, all the actions are similar in type, and
their independent failure probabilities are usually the same:

P(Hy) = P(H2) = ees = p .
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Therefore, k must lie between 0 and 1, and its value determines the degree
of dependence between the actions, which increases as the value of k approaches
1.

4.2 Multiple Sequential Failure Probability

For identica’ actions, with the above wodeling approach, ultisle sequen-
tial failure probability can be expressed in terns of two parameters: the
independent failure probability, p, and the depencence factor, k.

L% P, be defined as the probability of n sequential failures, i.e.,
repetition of the error for the nth time. For similar actions, the condi-
tional failure probability is always larger than the individual failure prob-
ability, for example, P“‘W“l) > P(Hz) - P(H3). and Pn can be written as

Pl o P(Hl) =

P, = P )P(Hy/H,) = Py i P(Hy) + [1 - P(K,)] ki

Py = PpP(Hy/ty ) * P AFUR ) 3 L3 = RO/ D) b
Pt ™ Pucg PUR g MM too ooty o) e P olP (R My i et o)

+

(1 = P4 _,/MHyeeah 2)] ki
n Pn-IP(Hn/Hl’%'”m-l) 3 Pn-l {P(Hn-l/Hl“Z"'Hn-Z)
[1 - p(Hn-l/HIHZ'"Hn-Z)] k). (4-2)

HWith the conditional probabilities expressed in terws of p and k, sowe alge-

-
"

+

braic manipulation gives

o=

Bo=R {p+ (1-p0 -1 -Kil

B =B fp+ (1-p)0l- (1 -1

Pacl = Pop P+ (1 =p)1 = (1 - kM2 1)

Py = Ppoy 10 (1o p)L - (1= k1L, (4-3)
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As expected,
P(0/2) + P(1/2) + P(2/2) = 1.
For a 1 out of 2:G logic type of system, the failure probability is given by

1, = P(2/2) = p2-kp? + kp (4-7)

where "p, indicates the probability of system failure for a system of the
odt of n:G type.

4.2.2 3-Unit System

For a 3-unit system, we yive below the probabilities of the following
different states resulting from husan errors:

none of the units is failed: (0,7,0);

one of the units is failed: (1,0,0), (0,1,0), (0,0,1);

two ¢t the units ar>» failed: (1,1,0), (C,1,1;, (1,0,1);

all three units are failed: (1,1,1).

Assumption: The probability of failure in a particular action, yiven no
failure in the preceding action, is assumed to be the independent or random
failure probability of that action. For example, P(H3/H1ﬁ2), i.e., the
probability of failure in the third sequential action, given that failure has
occurred in the first but not in the second, is the independent failure
probability, P(H3). This assumption is plausible because, as soon as a cor-
rect action is performed following a failure, the dependence on that failure
is assumed to be lost. That is, following a success or correct action, the
probability of success or failure of the next action is treated as thougch it
were an action in the first unit.

P(0/3) = probability that none of the units is failed by human error
= [1 - P(Hy)I01 - p(Hz/Hl)][l - p(“3/“1“2)]
=(1-p)3. (4-8)
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P(1/3) = probability that one of the units is failed by human error
= P(H L1 = P(Hp/H) 0L - P(Hy/H{T,)]
+ [1 - P(H )IP(HY/F )1 - P(Hy T ib)]
+ 11 = P(H )I0L - P, /By ) IP(Hy/Fi T, )
PL(L = Py/Py)(1 = Py) + (1= PP (1 = Py/Py) + (1 - )PP
2p(1 = p)[1 =14 (1-p)(1-=K)]+p(1 - p)?
2p(1 - P21 -0+ p(1 - p)? . (4-9)

P(2/3)

probability that two cf “he units are failed Ly human error

P(Hy )P(Hp/Hy JL1 - P(H3/HHp)]

+ P(H) L1 = P(Hp/Hy ) IP(Ha/tigTip) + [1 = P(Hy JIP(H,/H, )P(H,/H H,)

= Pp(1 = P3/Py) + Py(l = Pp/Py)Pp + (1 = Py)Pp

=pll - (1 =-p)(1 =k)I01 -1~ (1-p)1 -k)?]

$ P01 =1+ (1= p)(L - K)1+p(1 = pris = (1 = p)(1 - K)]

=p(l =p) -pli - p)(1 - 2)(1 - k)

+p(1 -p) (1 -k)2-p(1-p)21-k)3. (4-10)

P(3/3) = probability that all three units are failed by human error

P(H1)P(Hp/Hy )P (H3/H1Hp)

3

pl1 = (1 = p)(1 - k)L - (1 - p)(1 - K4

p-p(l =p)(l -k)=-p(l=p)i-=-x)2

+p(1 - p)2(1 - k)3 . (4-11)

i

As expected,
P(0/3) + P(1/3) + P(2/3) + P(3/3) = 1.
For a 1 out of 3:G loyic type of systen, the failure probability is given by
1P3 = P(3/3)
N 2 2 3
=p=-p(l=p){l =k)=-p(l=-p)(1-k) +p(1-p)(-k). (4-12)
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P(2/4) = probability that two of the units are failed by human error
= P(Hy )P(Hp/Hy )1 = P(H3/HyHp) (1 = P(Hg/HiHaH3)]
# P(H )L = P(Hp/Hy ) IP(Ha/HyHa )1 = P(Hg/HyHaH3) ]
+ P(Hy)L1 = P(Hp/Hy (1 = P(Hg/HyHy) IP(Ha/HqHoH3)

+ [1 = P(Hy ) IP(Hp/lly )P(H3/Hyta ) (1 = P(Hg/Hykigh3)]
+ [1 = P(H)IP(Hp/Hy )[1 = P(Hg/HyHo) IP(ig/HyMoH3)
+[1 - P(Hl)]{l - P(Hz/ﬁl)]P(H3/|'.'|1}:|2)P(H4/ﬁli.'lzﬂ3)

= 2(1 = Py)(Pp= P3) + 2P1(P1-P2)(1 - Pp) + (P1~ P2)2

+ Pa(1 - P1)2

= 2(1 - p)(1 - p)(1 - k)%[1 - (1 - p)(1 - k)]

+2p(1 = p)pll - p){1 - k) + [p(1 - p)(1 - k)I2

+ (1 - p)2[1 - (1 - p)(1 ~ k)]

= p(1 - p)2 + [2p2(1 - p)2 - p(1 - p)31(1 - k)

+p(l - p)2(2 +p)(1 - k)2 - 2p(1 - p)3(1 - k)3 (4-16)
P(3/4, = probability that three of the units are tailed by human error

= P(Hy )P (Hy/Hy JP(Hy/H M, )1 - P(Ha/H HoH4) ]

- P(Hl)’(HZ/Hl)[l - P(H3/H1H2)]P(H4/H1H2R3)

+ P(H) - P(H2/Hl)]P(H3/H1ﬁ2)P(H4/HIHZH3)

+ [1 = P(Hy ) IP(Hy/Hy )P (Hg/HyHp )P (Hg/HyHoHs)

=1 -9 -3 - (1-p)( - I - (1 - p)(1 - k)

s p(t - p)(1 - K%L = (1 = p)(1 = K)]

+pl1 - (1 - p)(1 - k)Jp(1 - p)(1 - k)

b (1=p)pll - (1 -p)(1 =K1 - (1 - p)(1 =K

=p(l -p) +p(l -p)(2 - 1){1 - k)

s 020 - p) - P21 - )T - pli- )P0 - K)2

v Ip(1 - 9%+ pl1 - p) - P21 - )AL - 0 - et - P - )

e - pP(1-K0° w1 - p) Y1 - K6 (4-17)
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Multiple Failure Probabilities Lue tc
Huwan Error for Uifferent G-Logic Types of Systens

Type of

G-Logic System System Failure Probability

1 out of 2 kp + pz(l - k)

; ; . , Pl 2, 3

L out of 3 oo p(1 = p)(1 = k) = p(l =p)(1 -k} +p(l =) (1 -K)

2 out of 3 p(2 - p) - 2p(1 - P31 = k)
3 ;

1 out of 4 v (1= (1-p)(1=-Kk)?]
i=0

2 out of 4 (2 - p) - 2601 = )AL = k) + p(1 - p)(p2ep - 2001 - k)P
+ 2p(1 - p)3(1 - k)3

_3 out of 4 (3 -3p +p2p - 3p{l - p)3(1 - k)
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w05 - 1 out of n:G type system failure proba-
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fixed individual failure probability,
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s 10° o w? 103
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The moments equations for this data set are
3p + 2pk + 2k%p = 0.03147,
3p + 6p2 + 6pk + 10kZp = 0.03475 ,

and their solution is

k = 0.0603 . (4-26)
This is justified because a low value of k, approaching zero, is expected

for random failur+s, and binowial failure data represent such a situation. A

perfect binomial data will resuit in k = C.

prets data represerting randcw failures.

Thus, the riodel properly inter-
This 1s borne out by the fact that
the probability expressions in Section 4.2 represent binomial distribution for
k = 0.

The seccnd data set, also with p maintained at 102, is shown in Table
11.

Table 10 Table 11

Exanple Data Set Representing
Complete Independence Eetween
Failures for Human Errors in

Exauple Data Set Representiny
Complete Dependence Letween
Failures for Human Errors in

Test and Calibration for a
3-Unit Systemni

Test and Calibration for a
3-Unit System

Number of Channels Number Numcer of Channels number

Affected by Operator of Cases Affected by Uperator of Cases
—

. G Xq 3267 0 Xg 1164

1 Xq 95 1 1 10

2 Xo 3 2 Xy 2

3 vq 3 Xq 24

N = 3366 N = 1200
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The moments equations for this data set are
3p + 2pk + 2k%p = 0.07167,
3p + 6p2 + Gpk + 10k&p = 0.19500,
and their solution is
k = 0.988 . (8-27)

This data set shows strong dependence between failures because the failure
data are dominated by the failure of all three units. Other combinations also
can result in k > 1, and these are interpretecd as totally dependent situa-
tions.

4-Unit Systen

The value of k *or a 4-unit system was determined from the data in Table &
The approximarions tor P(i/n)'s for a 4-unit system are as follows:

"

P(C/4) =1 - 4p ,
Pl1.4) = &p - i2p2 - 3pk .

Pla/8) = 3pk = 6p€ - 4pké ,

n

P(2/8) = Bp% + (4p - 26p2)k2 - (8p - I/p2)k3 + 9pk? - 5pk3
P(4/8) ~ 132 + (6p - 31p2)k3 - 9pkd + Gpk® . (4-28)
The moments equations for a 4-urit systew are
P(1/4) + 2P(2/8) + 3P(3/8) + 4P(4/8) = glxy + 2xp + 3x3+ 4xg) = ¢;
vd .
P(1/4) + 4P(2/4) + 9P(3/4) + 16P(4/4) = L{xy + 4x, + 9x 4+ Iix,) = C, .

Lse of P(i/n)’§ from Eq. (4-28) in soments equations, negiecting some of the
higher-order terms, gives

p(4 + 3k + 4k2 - skde k%) + pP(20k - 26k7) - ¢4

p(d + 9 + 20k2 + 243 - 5% + p2(12 4 12k - 26k?) = c,
Use of the data from Tablz € gives

c1 = 0.04878 and ¢z = 0.070z1.
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With some algebraic manipulation, these values result in

o - 0.585 + 3.392k + 0.558K"- 8.098K’

48 + 228k + 48K~ 436k°+ 1432k

Replacing p by the above expression provides an equation for k.
0.05 + 4,44k + 12.4ka - 17.148k3 - 95.98&4 - 36.821(5 + 25.51k6 + 77.9k7 =0.
The solution for k is

k = 0.403 . (4-29)

2<Unit System

The momerits equations for a Z-unit system are
P(1/2) + 2P(2/2) = g (x1 + 2x7) ,
P(1/2) + 4P(2/2) = %-(xl - 4xp) .
Replacing the P(i/n)'s gives
2p + kp(l - p) + %-(xl + 2x2),
2p + 2p2 + kp(l - p) = % (x] + 2x2) . (4-30)

Use of data up to 2 units from the original data set, and maintaining p = 10'2
gives the data set shown in Table 12. Solving Eq. (4-30) with these data
results in

k = 0.199 . (4-31)

Table 12

Derived Data for Human Error in
Test and Calibration for a 2-Unit System

Number of Channels Number
Affected by Operator of Cases
0 XQ 5270
2 XZ 11
N = 5376
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5. SUMMARY AND CONCLUSIONS

In analyzing the nature of dependence among human failures in a multiple
sequential action, the way human error causes failure of the components of a
system was found to differ from the way a single hardware failure causes fail-
ure of all the components. Human error causes selective failure of compo-
nents depending on when the failure started. This type of dependent failure
was distinguished from other types 2f dependent failures in which all the
components failed, and it was termec uultiple sequential failure (usf).

Available models for dependent feilures were analyzed with regard to their
applicability to msfs and were found to be lacking. These models do not dis-
tinguish among various types of dependent failures, and the same quantifica-
tion technique has been applied regardless of the basic nature of the depen-
dent failures. In our opinion it is erroneous to apply the same depencent
failure model to cifferent types of dependent failures, ard therefore depen-
dent failures were separatec intc three broad categyories, each requiring a
different model for gquantification.

This study avuressed the type of dependent failure categorized as multiple
sequential failure duvring testiny, maintenance, ana calibration. Two models
were develped. The first is very general in nature and does not require any
dependent failure davra. Verious we!l-krnown distributions were used to de-
scribe the dependent failure in this model. The final estinate cobtained with
this model is a conservative one with associated uncertainty. The uncertainty
was calculated considering wany possible sources--data, coupling, and riod-
eling. Such a method of estimaticn seems to be apprcpriate when no data on
dependent failures are available.

In the second model developed, details of the process in msfs were taken
into account. The niodel includes two parameters-- -.ependent failure proba-
bility and the dependence factor between fai.ures. This model provided in-
teresting insights into the influence of dependence between failures on systew
reliability. The results indicated that for a 1 out of n:G system the advan-
tage of using redundance > 3 units is almost coupletely lost when the depen-
dence factor between failures 1s > 0.3. Also, use of the linited data avail-

abie sugyested that dependence among the failures due to human error is much
stronger than that among those due to hardware failures. The dependence fac-
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APPENDIX

SECOND MOMENT ABOUT THE MEDIAN OF A
LOGNORMAL DISTRIBUTION

The lognormal distribution is defined by its probability density function
(pdf),

f(x) = exp[-(1nx - u)2/202] s x>0,

Xoven

where u and o are the standard lognoimal parameters;

median = e .

The second mement about the median is

o

;
} (x - e“)zf(x)dx

- 00 0

J{ (x2 - 2xe" + eZ”) -5%: 1 expl-(1nx - u)2/202]dx
o2n X

- -Sl"_g_-ﬂf » _ (nx-p)?
/ 2¢" /‘e 25 2

Make change of variibles:
Inx = t or dx = etdt

and
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The equation for the second moment about the median is transformed into
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BWR
CLCS-HI
CSIS
HPIS
HTGR

7% S o8
LOCA
LPIS
msf
PWR
)
SICS

LIST OF ACRUNYMS

Boiling Water Reactor

Consequence Limiting Control System - Hi
Containment Spray Injection System
High Pressure Injection system
High Temperature Gas Cooled Reactor
if and only if

Loss of Coolant Accident

Low Pressure Iniection System
Multiple Sequert’al Failure
Pressurized Water Reactor

Reactor Protection System

Safety Injection Control System
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