ILLINDIS POWER COMPANY

1 1

U-0348 L30-81(12-31)-6 500 SOUTH 27TH STREET, DECATUR, ILLINOIS 62525

December 31, 1981

Mr. James R. Miller, Chief Standardization & Special Projects Branch Division of Licensing Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Miller:

8201050231 811231 PDR ADOCK 0500046

Clinton Power Station Unit 1 Docket No. 50-461

In the course of developing responses to NRC's request for information on seismic soil-structure interaction analysis, including soil properties variation, a review of the dynamic soil properties was undertaken. The goal of the review was to define the upper and lower bound curves of soil shear modulus values. At the same time it was decided to develop site specific response spectra for Clinton site. For this purpose an estimate of shear wave velocities for soils present below the foundation mat was required. A review of the shear wave velocities given in FSAR figures 2.5-369 thru 2.5-371 suggested that in light of the knowledge gained from recent geophysical tests conducted at various sites of comparable soil deposits, the shear wave velocities given in these figures were too high. The shear wave velocities given in the FSAR were computed from the measured compressional wave velocities and estimated Poisson's ratio. In view of the current knowledge the estimated values of Poisson's ratio are considered too low.

Based on the above, a thorough review of the shear wave velocities and the low-strain soil moduli, was started by Dames & Moore. In order not to delay the work on site-specific response spectra, an estimated value of 2500 ft/sec for the Illinoian till layer and 1000 ft/sec for the structural fill layer was given to Weston Geophysical, with the understanding that for the Illinoian till layer the velocity could range between 2000-2500 ft/sec and a variation in this range will not have any significant impact on the site specific response spectra. Mr. James R. Miller

Dames & Moore has completed its review of the shear wave velocities and the low strain soil moduli values. Results of this review are documented in the attached revised FSAR figures 2.5-369 thru 2.5-371, and tables 2.5-46 and 2.5-48.

We have evaluated the effect of the above changes on the plant design and determined that there is no impact on the design. We believe that these changes have only a conservative effect on the site specific response spectra, if any. Weston Geophysical has been informed of the latest revision in the shear wave velocity of the Illinoian till layer (from 2500 ft/sec to 2100 ft/sec) and they are proceeding to incorporate the effect of this, if any, in their work of site specific response spectra development.

The revised FSAR tables and figures included here will be docketed in the next amendment of the FSAR.

Sincerely,

J. D. Gries

J. D. Geier Manager Nuclear Station Engineering

HBP/lt

Attachments

- cc: J. H. Williams, NRC Clinton Project Manager
 - H. H. Livermore, NRC Resident Inspector
 - R. Jackson, NRC Chief Geosciences Branch
 - G. Giese-Koch, NRC Geosciences Branch
 - B. Jagannath, NRC HGEB

	GRAPHIC	0	UNIT DESCRIPTION	COMPRESSIONAL WAVE VELOCITY FT/SEC	POISSONS RATIO	SHEAR WAVE VELOCITY FT/SEC	UN WEI (pc	IT GHT f) WET	
	7		LOESS, weathered; overlain by organic topsoit						
	9		WISCONSINAN GLACIAL TILL, weathered to brown, moist	2000	0.37	900	110	130	
	19		WISCONSINAN GLACIAL TILL, unweathered	5700	0.48	1100	115	135	
EET	12	IRDEN	INTERGLACIAL ZONE; 10001 ALLUVIAL DEPOSITS					~	
AGE THICKNESS IN F (NOT TO SCALE)		OVERBU	ILLINOIAN GLAC.AL TILL; Iocai OUTWASH AND LACUSTRINE DEPOSITS						
AVER	10		LACUSTRINE DEPOSIT (Yarmouthian)	500	0.46	2100	135	147	
	65	1	PRE-ILLINOIAN GLACIAL TILL locally undertain by PRE-ILLINOIAN LACUSTRINE DEPOSIT						
	5		LIMESTONE				1		
	15	EDROCH	SHALE	10,500	0.29	5700	155	160	
			SILTSTONE			110000100000000000000000000000000000000			
					CLINTO	N POW	ER S	TATI	ON
						FIGURE 2.	5-369		
100 25 25	TEL FTE TO TREAD ON FIGURE TAILED DISCRIPTION OF O	65 (2.142) 146 # 51 1876	5 AND 2.5-276 PCN. N CNUIS.		TYPICAL G GEOPHYSICAL	EOLOGIC P PROPERTI	ROFILI ES - S	E SHO	WING ON SITE

Mr. Barry

		GRAPHIC		UNIT DESCRIPTION	COMPRESSIONAL WAVE VELOCITY FT/SEC	POISSONS RATIO	SHEAR WAVE VELOCITY FT/SEC	UN WEI (pc DRY	IT SHT f) WET	
	10			SALT CREEK ALLUVIUM; overlain by organic topsoil	2000	0.37	900	100	122	
FEET	112		RURDEN	ILLINOIAN GLACIAL TILL; local OUTWASH AND LACUSTRINE DEPOSITS						
GE THICKNESS IN (NOT TO SCALE)	20	0.00000	ÓVEF	PRE-ILLINOIAN LACUSTRINE AND GLACIAL TILL DEPOSITS present locally	7300	0.46	2000	135	145	
AVERA	140		a substant and the substance out the substant before a	BEDROCK VALLEY OUTWASH DEPOSIT (Pre-Illinoian Manomet Valley Deposit)	5800	0.45	1750	109	127	
	10		BEDROCK	LIMESTONE SHALE SILTSTONE	10,500	0.29	5700	155	160	
						CLINTO	ON POW	ER S	TATION	RT
<u>*271</u> ,	(FL) P	- 3081%0 0-11 ASO (154 GLID 125(819710% 05)	XU AK	F1004E-2.3-277 Q18 1-015.		TYPICAL (GEOPHYSI)	FIGURE 2 GEOLOGIC F CAL PROPER	.5-370 PROFIL) .E SHOWIN - DAM SI	IG TE

	GRAPHIC COLUMN	UNIT DESCRIPTION	COMPRESSIONAL	FT/5EC	POISSORS RATIO	SHEAR WAVE VELOCITY FT/SEC	UNI WEIG (pc	T SHT I) WET	
	7	SALT CREEX ALLUVIUM; everticin by organic topsoil	204	00	0.37	\$00	105	125	
N FEET	••••••••••••••••••••••••••••••••••••••	ILLINOIAN GLACIAL TILL Iocai CUTWASH AND LACUSTRINE DEPOSITS		1993 1994					
CKNESS II	00 00 00 00 00 00 00	LACUSTRINE DEPOSIT (Yarmouthian)	75	~	0.46	2100	132	145	
AVERAGE THI	65	PRE-ILLINDIAN GLACIAL TILL; Iocal OUTWASH DEPOSITS							
	25	PRE-ILLINDIAN OUTWASH AND ALLUVIAL DEPOSIT	1						
	но	BEDROCK VALLEY OUTWASH DEPOSIT (Pre-Illinoian Manamet Valley Deposit)	60	00	0.45	1800	105	124	
	20	SILTSTONE			0.28	5300		160	
	30	SHALE		200	0.30	5500			
	(Extraction)		-	-	CLINTO	N POWE	ER ST	TATIO	ON
					FINAL SA	IGURE 2.5	-371	SRE	PORT
<u>1016</u>				T	YPICAL GE	OLOGIC FR	OFILE	SHOW	ING N E-E'

 $\begin{array}{l} e_{\mathbf{k}} \mathbf{F} \mathbf{F} = \left\{ \left[e_{\mathbf{k}} \mathbf{T} \mathbf{S}_{\mathbf{k}}^{T} + \mathbf{F} \right] = e_{\mathbf{k}} \mathbf{F}^{-1}, \quad \mathbf{F} \in \mathcal{I} \mid \mathbf{F} \mid \mathbf{F} \\ e_{\mathbf{k}} \mathbf{T} \mathbf{F} \right\}_{\mathbf{k} \in \mathbf{K}} = \left\{ \mathbf{E} \mid \mathbf{T} \mid \mathbf{F} \mid \mathbf{F}^{T} \mid \mathbf{T} \right\}_{\mathbf{k}} = \left\{ e_{\mathbf{k}} \mid \mathbf{K} \mid \mathbf{K} \mid \mathbf{K} \mid \mathbf{K} \right\} \\ \mathbf{F} = \left\{ \mathbf{E} \mid \mathbf{T} \mid \mathbf{F} \mid \mathbf{F} \mid \mathbf{F} \mid \mathbf{F} \mid \mathbf{F} \mid \mathbf{K} \mid \mathbf{K}$

 $(t_i,t_i) \in [t_i,t_i]$

ALONG NORTH FORK OF SALT CREEK

TABLE 2.5-46

FIELD SHEAR WAVE VELOCITY TABULATION

.

ESTIMATED VELOCITY (ft/sec)	SOURCE		MATERIAL TYPE	DEPTH (feet)
900*	Geophysical	P-14	Low-velocity surface layer	0-16
1100	Geophysical	P-14	Wisconsinan till	16-47
2100	Geophysical	P-14	Illinoian glacial till	47-237
5700	Geophysical	P-14	Top of bedrock	237+
900*	Geophysical	D-11	Salt Creek alluvium	0-18
2000-2100	Geophysical	D-11	Illinoian glacial till	18-150
1800	Geophysical	D-11	Bedrock valley outwash deposit	150-290
5700	Geophysical	D-11	Top of bedrock	290+
900*	Geophysical	D-31	Salt Creek alluvium	0-14
2100	Geophysical	D-31	Illinoian glacial till	14-195
1800	Geophysical	D-31	Bedrock valley	195-305
5300-5500	Geophysical	D-31	Top of bedrock	305+

*Measured.

۰.,

۰.

TABLE 2.5-48

PARAMETERS FOR ANALYSIS OF ROCK-SOIL-STRUCTURE INTERACTION

1611 - 1612 - 1613 - 161	COHESIONLESS SOIL		COHE	SIVE SOILS		
	COMPACTED STRUCTURAL FILL	RECOMPACTED WISCONSINAN GLACIAL TILL OF WEDRON FORMATION TYPE A MATERIAL (AS COMPACTED)	RECOMPACTED WISCONSINAN GLACIAL TILL OF WEDRON FORMATION TYPE A MATERIAL (SATURATED)	LOESS	WISCONSINAN GLACIAL TILL OF WEDRON FORMATION	INTERGLACIAL DEPOSITS
DENSITY (pcf): Dry density Wet density	123 132	127 141	128 144	101 120	118 137	115 131
POISCON'S RATIO: Dynamic Static	0.40 0.30	0.40 0.40	0.40 0.40	0.37 0.40	0.48 0.40	0.48 0.40
STATIC MODULUS OF ELASTICITY (Es) In-situ modulus (psf) Increase with surcharge dEs/dom (psf/psf)		8.0 x 10 ⁵ 0	2.0 x 10 ⁵ 0	2.0 × 10 ⁵ 0	13.1 × 10 ⁵ 0	15.1 × 10 ⁵ 0
DYNAMIC MODULUS OF ELASTICITY (psf) Single amplitude Shear strain = 1.0% = 0.1% = 0.01% = 0.001% = 0.001%	$\begin{array}{c} 22,000(\alpha_{0}^{*})\frac{1/2}{1/2}\\ 90,000(\alpha_{0}^{*})1/2\\ 207,000(\alpha_{0}^{*})1/2\\ 271,000(\alpha_{0}^{*})1/2\\ 280,000(\alpha_{0}^{*})1/2 \end{array}$	$ \begin{array}{r} 11 \times 10^{5} \\ 39 \times 10^{5} \\ 98 \times 10^{5} \\ 148 \times 10^{5} \\ 162 \times 10^{5} \end{array} $	3×10^{5} 0×10^{5} $3^{4} \times 10^{5}$ 76×10^{5} 95×10^{5}	3 x 10 ⁵ 8 x 10 ⁵ 33 x 10 ⁵ 74 x 10 ⁵ 93 x 10 ⁵	$\begin{array}{c} 12 \times 10^5 \\ 36 \times 105 \\ 80 \times 105 \\ 130 \times 105 \\ 160 \times 105 \end{array}$	9 x 10 ⁵ 33 x 10 ⁵ 80 x 10 ⁵ 130 x 10 ⁵ 160 x 10 ⁵
STATIC MODULUS OF RIGIDITY (GS) In-situ modulus (psf) Increase with surcharge ~GS/dom (psf/psf)		3.0 x 10 ⁵ 0	0.7 x 10 ⁵ 0	0.7 x 10 ⁵ 0	4.7 x 10 ⁵ 0	5.4 x 10 ⁵ 0
DYNAMIC MODULUS OF RIGIDITY (psf) Single amplitude Shear strain = 1.0% = 0.1% = 0.01% = 0.001% = 0.001%	$\begin{array}{c} 8,000 \left(\sigma_{qq}^{+}\right)^{1/2} \\ 32,000 \left(\sigma_{qq}^{+}\right)^{1/2} \\ 74,000 \left(\sigma_{qq}^{+}\right)^{1/2} \\ 97,000 \left(\sigma_{qq}^{+}\right)^{1/2} \\ 100,000 \left(\sigma_{qq}^{-}\right)^{1/2} \end{array}$	4 x 10 ⁵ 14 x 10 ⁵ 35 x 10 ⁵ 53 x 30 ⁵ 58 x 10 ⁵	1 x 10 ⁵ 3 x 10 ⁵ 12 x 10 ⁵ 27 x 10 ⁵ 34 x 10 ⁵	1 × 105 3 × 105 12 × 105 27 × 105 34 × 105	4 x 10 ⁵ 12 x 10 ⁵ 27 x 10 ⁵ 44 x 10 ⁵ 54 x 10 ⁵	3 x 10 ⁵ 11 x 10 ⁵ 27 x 10 ⁵ 44 x 10 ⁵ 54 x 10 ⁵
DAMPING Percent of critical damping Single amplitude Shear strain = 1.0% = 0.1% = 0.01% = 0.001% = 0.001%	16 14 6 2 1	20 9 5 3 2.5	20 15 10 6 4	20 15 10 6 4	20 9 5 3 2.5	20 9 5 3 2.5

MISC-9-A8/A3

TABLE 2.5-48 (continued)

		COHESION SALT CREEK ALLUVIUM	NLESS SOIL INTERGLACIAL SAND DEPOSITS	ILLINDIAN GLACIAL TILL	COHESTVE SOTLS LACUSTRINE DEPOSITS	PRE-ILLINDIAN DEPOSITS	COHE STONLESS SOIL PRE - ILLINDIAN DE POSITS	ROCK*
UISON'S MATIC: Spread: 0.37 0.40 0.40 0.35 0.41 0.41 0.41 0.40 0.29 0.20	ENSITY (pcf): Dry density Wet density	100 125	108 120	138 150	123 134	130 145	107 126	156 159
MAIL HOULUS OF EXSTETITY [43]	OISSON'S RATIO: Dynamic Static	0.37 0.40	0.40	0.46 0.35	0.47 0.35	0.4/ 0.35	0.40 0.40	0.29 0.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IATIC MODULUS OF ELASTICITY (Es) In-situ modulus (psf) Increase with surcharge dEs/dom (psf/psf)			43.6 × 10 ⁵ 0	24.9 × 10 ⁵ 0	42.4 × 10 ⁵ 0	110 × 10 ⁵ 1100	0.7 to 3.8 × 10 ¹ 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>YNAMIC MODULUS OF ELASTICITY (psf) Single amplitude Shear strain = 1.0%</pre>	$\begin{array}{c} 2_{*} 700 \left(\begin{smallmatrix} a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{1}\\ a_{2}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{3}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{1}\\ a_{2}\\ a_{2}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{2}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{2}\\ a_{1}\\ a_{1}\\ a_{1}\\ a_{2}\\ a_{1}\\ a$	$\begin{array}{c} 4,200\left(\frac{\alpha_{1}}{\alpha_{1}}\right)\frac{1/2}{1/2}\\ 17,000\left(\frac{\alpha_{1}}{\alpha_{1}}\right)\frac{1/2}{1/2}\\ 62,000\left(\frac{\alpha_{1}}{\alpha_{1}}\right)\frac{1/2}{1/2}\\ 81,000\left(\frac{\alpha_{1}}{\alpha_{1}}\right)\frac{1/2}{1/2}\\ 84,000\left(\frac{\alpha_{1}}{\alpha_{1}}\right)\frac{1/2}{1/2} \end{array}$	23 x 10 ⁵ 88 x 10 ⁵ 89 x 10 ⁵ 292 x 10 ⁵ 496 x 10 ⁵ 584 x 10 ⁵	Z4 x 105 76 x 105 226 x 105 338 x 105 338 x 105	24 × 105 76 × 105 226 × 105 338 × 105 338 × 105 412 × 105	28,000(01/1/2 95,000(01/1/2 174,000(01/1/2 218,000(01/1/2 238,000(01/1/2 238,000(01/1/2	3.6 to 7.8 × 10 ⁵
YNAMIC MODULUS OF RIGIDITY (psf)Single amplitude Single amplitude $= 0.011x$ 1,000($a_{11}^{(1)}$)1/2 $1/2$ 1,500($a_{11}^{(1)}$)1/2 $1/2$ 1,500($a_{11}^{(1)}$)1/2 $1/2$ 8 × 105 26×105 8 × 105 26×105 10,000($a_{11}^{(1)}$)1/2 $1/2$ 1.4 to 3.0 × 1 $1/2$ Shear strain = 1.0x $= 0.011x$ 1,000($a_{11}^{(1)}$)1/2 $1/2$ 1,500($a_{11}^{(1)}$)1/2 $1/2$ 8 × 105 26×105 8 × 105 26×105 8 × 105 $1/2$ 1.4 to 3.0 × 1 $1/2$ Shear strain = 1.0x $= 0.0011x$ 1,000($a_{11}^{(1)}$)1/2 $1/2$ 200($a_{11}^{(1)}$)1/2 $200 (a_{11}^{(1)}$)1/2100 × 105 110×105 8 × 105 110×105 1.4 to 3.0 × 1 112×105 AMPING Percent of critical damping $= 0.0011x$ 21 $20,000(a_{11}^{(1)}$)1/2 200×105 28 × 105 140×105 18,000($a_{11}^{(1)}$)1/2 $11/2$ 1.4 to 3.0 × 1 112×105 AMPING Percent of critical damping $= 0.0011x$ 21 28 28 26×105 20 20×105 20 20×105 20 20×105 AMPING Percent of critical damping $= 0.0011x$ 21 28 28 26×105 20 26×200 20 26×200 1 to 2 26×200 AMPING $= 0.0011x$ 10 21×2 21 28 28 $26 \times 200 \times 200$ 1 to 2 $26 \times 200 \times 200$ Percent of critical damping $= 0.0011x$ 21 $26 \times 200 \times 200$ 20 $26 \times 200 \times 200 \times 200$ 1 to 2 $26 \times 200 \times 200 \times 200 \times 200$ Provint1 $26 \times 200 \times 2$	iATIC MODULUS OF RIGIDITY (6s) In-situ modulus (psf) Increase with surcharge d6s/dem (psf/psf)	1 3	1 8	16.1 × 10 ⁵ 0	9.2 × 10 ⁵ 0	15.7 × 10 ⁵ 0	40 × 10 ⁵ 392	0.3 to 1.5 x 10 ⁶ 0
AMPING Ampling 20 20 20 20 20 100 110 2 Percent of critical damping \$ingle amplitude 21 28 22 20 20 20 20 100 140 2 Single amplitude .0.1x 10 13 16 2 20 20 20 100 1 40 2 .0.01x 1 1.5 4.5 7.5 3 4.5 7.5 3 4.5 1 40 2 20 20 20 100 1 40 2 20 1 40 2 20	<pre>YNAMIC MODULUS OF RIGIDITY (psf) Single amplitude Shear strain = 1.0%</pre>	$\begin{array}{c} 1,000\left(\begin{smallmatrix}\alpha\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	$\begin{array}{c} 1,500(\frac{m}{2})1/2\\ 6,000(\frac{m}{2})1/2\\ 22,000(\frac{m}{2})1/2\\ 22,000(\frac{m}{2})1/2\\ 29,000(\frac{m}{2})1/2\\ 30,000(\frac{m}{2})1/2 \end{array}$	8 × 10 ⁵ 30 × 10 ⁵ 100 × 10 ⁵ 170 × 10 ⁵ 200 × 10 ⁵	8 × 105 26 × 105 77 × 105 115 × 105 140 × 105	8 × 105 26 × 105 77 × 105 115 × 105 115 × 105	$\begin{array}{c} 10,000\left(\begin{smallmatrix}\sigma_{1}\\\sigma_{1}\\\sigma_{1}\\\sigma_{2}\\\sigma_{2}\\\sigma_{3}\\\sigma_{1}\\\sigma_{1}\\\sigma_{2}\\\sigma_{2}\\\sigma_{3}\\\sigma_{1}\\\sigma_{2}\\\sigma_{2}\\\sigma_{3}\\\sigma_{2}\\\sigma_{3}\\\sigma_{2}\\\sigma_{3}\\\sigma_{2}\\\sigma_{2}\\\sigma_{3}\\\sigma_{2}\\\sigma_{2}\\\sigma_{2}\\\sigma_{3}\\\sigma_{2}\\\sigma_$	1.4 to 3.0 × 10 ⁶
	AMPING Percent of critical damping Single amplitude Snear strain = 1.0% = 0.11% = 0.001% = 0.001%	21 10 3 0.5	28 13 1.5 0.5	22 16 7.5 3	20 9 3.5 2.5	20 12 7.5 3	1 5 3 0 0	1 to 2

Notes: 1. di = mean effective stress (pif). 2. The static modulus of elasticity values for cohesive soils were calculated based on the constrained modulus derived from the reloading portion of the consolidation turve. 3. Pre-Illinoian cohesive deposits include Mahomet Valley deposits. 5. The selected parameters reflect both the results of geophysical and laboratory tests performed during this investigation and results published and previously developed for similar soils.

1

a gran

Side Textine