ANNUAL ENVIRONMENTAL OPERATING REPORT

VOLUME 2 - RADIOLOGICAL

1/1/80 - 12/31/80

SUPPLEMENT 1

CRYSTAL RIVER - UNIT 3

FLORIDA POWER CORPORATION

FACILITY OPERATING LICENSE NO. DPR-72

DOCKET NO. 50-302

December, 1981

APPROVED BY: Manager

Nuclear Support Services

DATE:

TABLE OF CONTENTS

		PAGE
I	Introduction	1
II	Milk and Green Leafy Vegetables Census	4
III	Media Other than External Radiation	5
IV	External Radiation	88

LIST OF TABLES

		PAGE
I-1	Radiological Environmental Monitoring Program	2
III-1	Air Inhalation Pathway - Gross Beta Analyses Summary	7
111-2	Air Inhalation Pathway - I-131 Analyses Summary	8
III-3	Air Inhalation Pathway - Gamma Analyses Summary	9
III-4	Air Inhalation Pathway - Statistical Evaluation of Analyses	10
III-5	Air Inhalation Pathway - Sr-89 and 90 Analyses Summary	11
III-6	Precipitation Pathway - Gamma Analyses Summary	13
111-7	Precipitation Pathway - Statistical Evaluation of Analyses	14
8-111	Precipitation Pathway - Tritium Analyses Summary	15
111-9	Sea Water Pathway - Gamma Analyses Summary	17
III-10	Sea Water Pathway - Statistical Evaluation of Analyses	18
III-11	Sea Water Pathway - Tritium Analyses Summary	19
III-12	Sea Water Pathway - Sr-89 and 90 Analyses Summary	20
III-13	River Water Pathway - Gamma Analyses Summary	22
III-14	River Water Pathway - Statistical Evaluation of Analyses	23
III-15	River Water Pathway - Tritium Analyses Summary	24
III-16	Ground Water Pathway - Gamma Analyses Summary	26
III-17	Ground Water Pathway - Statistical Evaluation of Analyses	27
III-18	Ground Water Pathway - Tritium Analyses Summary	28
III-19	Potable Water Pathway - Gamma Analyses Summary	30
111-20	Potable Water Pathway - Statistical Evaluation of Analyses	31
111-21	Potable Water Pathway - Tritium Analyses Summary	32

LIST OF TABLES (Continued)

		PAGE
111-22	Shoreline External Sediment Pathway - Gamma Analyses Summary	34
III-23	Shoreline External Sediment Pathway - Statistical Evaluation of Analyses	35
III-24	Shoreline External Sediment Pathway - Sr-90 Analyses Summary	36
111-25	Sea Food Chain Pathway - Gamma Analyses Summary	38
III-26	Marine Plant Pathway - Statistical Evaluation of Analyses	39
111-27	Marine Plant Pathway - Sr-89 and 90 Analyses Summary	40
III-28	Ingestion Crab Pathway - Gamma Analyses Summary	42
111-29	Ingestion Crab Pathway - Statistical Evaluation of Analyses	43
111-30	Ingestion Carnivorous Fish Pathway - Gamma Analyses Summary	45
III-31	Ingestion Carnivorous Fish Pathway - Statistical Evaluation of Analyses	46
111-32	Ingestion Herbivorous Fish Pathway - Gamma Analyses Summary	48
111-33	Ingestion Herbivorous Fish Pathway - Statistical Evaluation of Analyses	49
111-34	Ingestion Oysters Pathway - Gamma Analyses Summary	51
III-35	Ingestion Oysters Pathway - Statistical Evaluation of Analyses	52
111-36	Ingestion Shrimp Pathway - Gamma Analyses Summary	54
III-37	Ingestion Shrimp Pathway - Statistical Evaluation of Analyses	55
111-38	Ingestion Milk Pathway - Gamma Analyses Summary	57
111-39	Ingestion Milk Pathway - Statistical Evaluation of Analyses	58
III-40	Ingestion Milk Pathway - Sr-89 and 90 Analyses Summary	59

LIST OF TABLES (Continued)

		PAGE
111-41	Ingestion Animals Pathway - Gamma Analyses Summary	61
III-42	Ingestion Animals Pathway - Statistical Evaluation of Analyses	62
III-43	Food Chain (Grasses) Pathway - Gamma Analyses Summary	64
III-44	Food Chain (Grasses) Pathway - Statistical Evaluation of Analyses	65
111-45	Ingestion Food Crops (Citrus) Pathway - Gamma Analyses Summary	67
III-46	Ingestion Food Crops (Citrus) Pathway - Statistical Evaluation Analyses	68
III-47	Ingestion Food Crops (Watermelon) Pathway - Gamma Analyses Summary	70
III-48	Ingestion Food Crops (Watermelon) Pathway - Statistical Evaluation Analyses	71
111-49	Food Chain (Soil) Pathway - Gamma Analysis Summary	73
III-50	Food Chain (Soil) Pathway - Statistical Evaluation of Analyses	74
III-51	Food Chain (Meat) Pathway - Gamma Analyses Summary	76
111-52	Food Chain (Meat) Pathway - Statistical Evaluation of Analyses	77
111-53	Food Chain (Poultry) Pathway - Gamma Analyses Summary	79
111-54	Food Chain (Poultry) Pathway - Statistical Evaluation of Analyses	80
III-55	Food Chain (Eggs) Pathway - Gamma Analyses Summary	82
III-56	Food Chain (Eggs) Pathway - Statistical Evaluation of Analyses	83
111-57	Food Chain (Green Leafy Vegetables) Pathway - Gamma Analyses Summary	85

LIST OF TABLES (Continued)

		PAGE
III-58	Food Chain (Green Leafy Vegetables) Pathway - Statistical Evaluation of Analyses	86
111-59	Food Chain (Green Leafy Vegetables) Pathway - Sr-90 Analyses Summary	87
IV-1	Air Submersion Pathway - TLD Analyses Summary (University of Florida)	89
IV-2	Air Submersion Pathway - TLD Analyses Summary (State of Florida)	90
IV-3	Air Submersion Pathway - Statistical Evaluation of Analyses	91

I. INTRODUCTION

The Radiological Environmental Monitoring Program provides information which can be used to assist in assessing the type and quantity of radiation exposure in unrestricted areas resulting from plant operation. The Program is conducted via a contract with the University of Florida, Department of Environmental Engineering Sciences, Gainesville, Florida and a grant to the State of Florida, Department of Health and Rehabilitative Services, Orlando, Florida. The parts of the Program for which each are responsible are listed in Table I-1. In essence, the Program provides a continuation of the preoperation program so that any increases of radioactivity in the environment can be detected. No pathway has shown any confirmed increases of radioactivity in the environment due to plant operation during this report period.

In the summary analysis tables, two terms are used which need explanation. The term "ND" means that the activity of the nuclide for the samples was non-detectable or less than half of the LLDs for those samples. The term "<LLD" means that the activity of the nuclide for the samples was less than the LLDs for those samples. In this way, an apparent change in activity below the lower limits of detection can be trended without getting bogged down in "actual" activity values.

The statistical evaluation of operational analyses were performed using one-fourth the LLD value if the activity was non-detectable and using three-fourths the LLD value if the activity was less than the LLD value. When a non-detectable or less than LLD concentration is used in an evaluation, the results are prefaced with a "<" sign to show that the results do not indicate only detected activity.

Finally, the statistical evaluation of the operational concentrations where there are preoperational results includes the median values. This is done solely for comparison to preoperational results.

Fable I-1

Radiological Environmental Monitoring Program

RESPONSIBILITY	PATHWAY	SAMPLE STATIONS (1)
University	Air Submersion	CO4, C14H*, C14M*, C14G*, C40, C41, C43, C46
State	Air Submersion	CO7, CO9, C18, C26
University	Air Inhalation	C41*
State	Air Inhalation	CO4, CO7, C18, C26, C40, C46
State	Precipitation	CO4, C26, C40
University	Sea Water	CO1, CO9, C13, C14H, C14M, C14G*
State	River Water	C15
State	Ground Water	C40
University	Potable Water	CO7, C10, C18
University	Shoreline External Sediment	CO1, CO9, C14H*, C14M*, C14G*
University	Seafood Chain	C29, C30
University	Ingestion Crab	C29*, C30
University	Ingestion Fish (Carnivorous)	C29*, C30
University	Ingestion Fish (Herbivorous)	C29*, C30
University	Ingestion Oysters	C29, C30
University	Ingestion Shrimp	C27
University	Ingestion Milk	C47, C49*
University	Ingestion Animals	C45
University	Food Chain (Grasses)	CO5, C40, C41

Table I-1 (Continued)

Radiological Environmental Monitoring Program

RESPONSIBILITY	PATHWAY	PATHWAY					
State	Ingestion Food Crops (Citrus)	C19					
State	Ingestion Food Crops (Watermelon)	C04					
University	Food Chain (Soil)	C04, C41,	C07, C18, C26, C40, C46				
State	Meat	C50					
State	Poultry	C51					
State	Eggs	C51					
University	Food Chain (Vegetables)	C47,	C48*				

^{*}Critical Pathway Sample Stations

 $^(^1)$ See ETS Table 3.2-4 and Figures 3.2-2 and 3.2-3 for the description and location of all Sample Stations.

II. MILK AND GREEN LEAFY VEGETABLE CENSUS

Environmental Technical Specification 3.2.1 requires a census of animals producing milk for human consumption to be conducted semiannually. If this census fails to locate any such animals, a census of gardens producing fresh leafy vegetables for human consumption is required annually.

The garden census, required as the result of a lack of findings on the milk animal census, was completed on April 7 and 8, 1980. The critical garden (Sample Station C48) found to be in the east sector at 4.0 miles from the plant.

A semiannual milk cow survey was completed on July 31, 1980 again with no milk animals found. The critical station for green leafy vegetables was continued at the garden 4.0 miles from the plant in the east sector.

A seminannual milk cow census was completed by December 22, 1980. No milk animals were located within five miles of the plant site in this survey.

III. MEDIA OTHER THAN EXTERNAL RADIATION

AIR INHALATION PATHWAY

The Air Inhalation Pathway is one of two pathways split between the University and the State. In addition to the assigned stations, the University operates a station at C47.

Weekly Gross Beta Analysis

The summary for the gross beta analysis is in Table III-1. Three weekly samples were not collected and analyzed:

CO7 for the week of April 21, 1980 due to missing particulate filter.

C41 for the week of May 2, 1980 due to failure to make required collection.

C47 for the week of March 7, 1980 due to personnel error that resulted in discarding the particulate filter.

All other samples were collected and analyzed.

There are no critical stations for this type of analysis. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-4.

The operational concentrations are similar to the preoperational concentrations and consistent with the 1979 operational concentrations.

Weekly I-131 Analysis

The summary for the iodine analysis is in Table III-2. One weekly sample was not collected and analyzed:

C41 for the week of January 4, 1980 due to personnel error that resulted in discarding the charcoal cartridge.

All other samples were collected and analyzed. Station C41 is the critical station for this type of analysis and no samples had activity greater than 10 times the control station's 95 percentile values. A statistical evaluation of the operational data is presented in Table III-4. There are no preoperational data.

The statistical analysis of the critical and control stations for the period of this report is presented in Table III-4.

Quarterly Gamma Analysis

The summary for gamma analysis of quarterly composites is in Table III-3. All samples were collected and analyzed. There are no critical stations for this type of analysis. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-4.

The concentrations of nuclides by gamma analysis during 1980 were generally less than the preoperational concentrations and consistent with the 1979 concentrations.

Quarterly Sr-89 and 90 Analysis

The summary for the strontium analysis of quarterly samples is in Table III-5. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-4.

There are no preoperational data and all operational concentrations are consistent.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

CITRUS COUNTY, FLORIDA REPORTI, PERIOD 01/01/80-12/31/80

PATHUAY | TYPE & NO. | LLD | ALL LOCATIONS | HIGHEST MEAN LOCATION | CONTROL LOCATION | NRI AIR INHALATION * # GROSS B 416 #0.008 #0.030(378/ 409)*C26 #0.036(46/ 52)* SEE COLUMN 4

* (0.004-0.261)* * (0.011-0.126)* (PCI/M3)

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3

DOCKET NO. 50-302

CITRUS COUNTY, FLORIDA REPORTING PERIOD 01/01/80-12/31/80

PATHWAY | TYPE & NO. | LLD | ALL LOCATIONS | HIGHEST MEAN LOCATION | CONTROL LOCATION | NRR AIR INHALATION # *Iodine- 131 415 *0.039 *0.062(2/ 411)*C47 *0.081(1/ 1)*

* (0.043-0.081)* * (0.081-0.081)* SEE COLUMN 4 (PCI/M3)

00

REPORTING PERIOD 01/01/80-12/31/80 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY DOCKET NO. 50-302 CRYSTAL RIVER UNIT 3 CITRUS COUNTY, FLORIDA

は本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本	TYPE S NU. 指字在存存并容式并含体有法律	I LLD AL	□ □□□ □ □□□□ □ □□□□□ □□□□□□□□□□□□□□□□	本本本 本次 次 本本 本 本 本 本 本 本 本 本 本 本 本 本 本 本	****	· · · · · · · · · · · · · · · · · · ·
CIR INHALATION (FCI/NS)	**************************************	******	****	*****	****	****
	E CE-144	0.000.00	05	9(0.009-0.050)*	* **	0.05r(1/ 4) * (0.050- 0.050) *
	* RA-226	*** 0.031*0	00	6(B/ 32)*C41	* * * *	0.0075(4/ 4) * (0.003- 0.02) *
9	* TH-232 *	** 0.015*0	00	2(7/ 32) *C41 (0.001-0.003) *	* * * *	0.0023(3/ 4) * (0.002-0.003) *
	# I-131	* 0.008*	***	***	***	***
	* BA-140	** 0.008	* CLLDC	12/ 32)*	* * *	***
	* RU-106	* 0.038*	** CLLD(12/ 32)*	***	***
	* CS-137	***	00	1(B/ 32) * C41 (0.001-0.002) *	* * *	0.0012(4/ 4)* (0.001-0.002)*
	* ZR-95	***	3*0.155(** (0.	2/ 32) * c41	* * *	0.075 (1/ 4) * (0.075-0.075) *
	* NN-54	* 0.00B	***	* * *	* * *	***
	\$ ZN-65	* 0.016	***	ND QN	***	***
	* K-40	* * 0.086*	0.0	37(0.010-0.20)*c41	* *	0.06 (4/ 4) * (0.01 - 0.20) *

Table III-4

AIR INHALATION PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pC1/m³)

Nuclide	Preoper	rational Values			Оре	erational			
Iodine Analysis	Median	95 Percentile	Median	Mean	95 Percentile	Contr	ol Station. 95 Percentile	Crit	ical Stations 95 Percentil
	rieuran	33 Percentile	-	-		-		mean	
I-131			<.010	<.010	.021	<.010	<.020	.010	.027
Gross Beta Analysis	.029	.12	.023	<.029	<.086	<.029	<.083	.024	.103
Gamma Analysis									
Ce-144	.003	.172	<.015	<.014	<.029	<.015	<.030	<.004	<.012
Ra-226	<.2	.241	<.010	<.009	<.016	<.009	<.013	<.008	<.024
Th-232	<.01	.008	<.005	<.004	<.007	<.005	<.007	<.002	<.004
I-131	<.07	.004	<.003	<.002	<.004	<.002	<.004	<.0001	<.0003
Ba-140	<.01	.016	<.005	<.004	<.010	<.004	<.010	<.0004	<.001
Ru-106	.025	.216	<.0125	<.019	<.049	<.022	<.050	<.001	<,002
Cs-137	<.01	.013	<.003	<.002	<.003	<.002	<.003	<.001	<.002
Zr-95	.003	.043	<.003	<.013	<.116	<.005	<.011	<.019	<.092
Mn-54	<.01	<.01	<.003	<.002	<.004	<.002	<.004	<.001	<.003
Zn-65	<.01	<.01	<.005	<.004	<.008	<.004	<,008	<.002	<.006
K-40	<16.8	<16.8	<.028	<.030	<.092	<.026	<.036	<.06	<.243
Strontium Analysis									
Sr-89	1.0	1 to 1	.0005	.0006	.002	<,000	5 <.0008	<.001	<.006
Sr-90			.0003	.0002	.0004	<.0002	2 <.0004	0	0

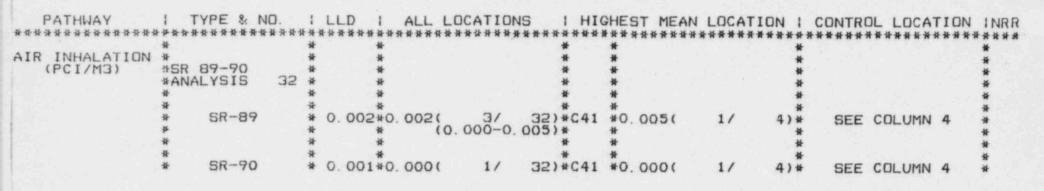


Table III-5

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PRECIPITATION PATHWAY

The State has the responsibility to collect and analyze precipitation samples. There are no additional stations for the pathway. No samples were available in May due to lack of sufficient precipitation.

Monthly Gamma Analysis

The summary for the gamma analysis of the monthly samples is in Table III-6. All monthly samples were collected (except for May) and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-7.

The 1980 operational activities of the nuclides determined by gamma analysis were non detectable as were the preoperational, 1977, 1978 and 1979 operational activities.

Monthly Tritium Analysis

The summary for the tritium analysis of the monthly precipitation sample is in Table III-8.

All samples were collected (except for May) and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-7.

All of the 1980 operational activity data for tritium were less than the LLDs as were the preoperational and 1979 operational activities.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO.	LLD	ALL LOCATION	S HIGHEST MEA	AN LUCATION I CONTROL	LOCATION INR
PRECIPITATION (PCI/L)	GAMMA ANALYSIS 36	10		* * * * * * * * * * * * * * * * * * * *		* * 0
	I-131	17 # * 17 #	ND	* * *		**
	BA-140	* 17 * * 17 *	ND	* *		*
	CS-137	*	ND	: :	:	* *
13	CS-134	* * * * * * * * * * * * * * * * * * *	ND	* *	:	* *
	CO-58	# # # # # # # #	ND	* * *	:	* *
	MN-54	* * * 15 * * #	ND	* *		* *
	ZN-65	* 30 * * *	ND	* *	*	* *
	* CD-60	* * * * * * * * * * * * * * * * * * *	ND	* *	*	*

Table III-7

PRECIPITATION PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	0p	erational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gamma Analysis					
I-131	<.4	<.4	<4.3	<4.3	<4.3
Ba-140	<10	<10	<4.3	<4.3	<4.3
Cs-137	<10	<10	<4.3	<4.3	<4.3
Cs-134	<10	<10	<4.3	<4.3	<4.3
Co-58	<10	<10	<4.3	<4.3	<4.3
Mn-54	<10	<10	<3.8	<3.8	<3.8
Zn-65	<20	<20	<7.5	<7.5	<7.5
Co-60	<10	<10	<4.3	<4.3	<4.3
Tritium Analys	is				
H-3	<320	<320	<150	<150	<150

Table III-8

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	 ****	TYPE ****	& ***	NO.	**	LLD	1	ALL	LOCATI	ONS	+ + + + +	HIGHEST	MEAN	LOCATION	CONTROL	LOCATION	INRR
PRCIP	*				*		*				*	*			*		*
AIR (PCI/L)	#	ANALYS		36	*		*				*	*			*		* 0
	*	H-3	3		*	241	*	<lld(< td=""><td>34/</td><td>,</td><td>34)#</td><td>*</td><td></td><td></td><td>* *</td><td></td><td>* *</td></lld(<>	34/	,	34)#	*			* *		* *

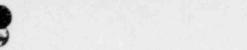
SEA WATER PATHWAY

The University has the responsibility to collect and analyze sea water samples. There are no additional stations for this pathway.

Monthly Gamma Analysis

The summary for the gamma analysis of monthly samples is in Table III-9. All samples were collected and analyzed. Sample Station C14G is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-10.

The concentrations of nuclides by gamma analysis during 1980 were generally less than the preoperational concentrations and consistent with 1979 concentrations. The critical stations and the control stations concentration were almost identical.


Quarterly Tritium Analysis

The summary for the tritium analysis of quarterly samples is in Table III-11. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-10.

The concentrations observed in 1980 were consistent with preoperational and 1979 operational concentrations.

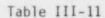
Quarterly Sr-89 and 90 Analysis

The results of the analyses for the quarterly samples of Sr-89 and 90 are presented in Table III-12. All samples were collected and analyzed. Sr-89/90 are not critical nuclides in this pathway. A statistical evaluation of operational data is presented in Table III-10. There are no preoperational data. The 1980 Sr-89/90 concentrations are consistent with those of previous operational years.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

SEA WATER (PCI/KG)	* GAMMA * ANALYSIS 72				* * *			* *			* * * 0
	* RA-226 *	11 #	31 (66/	72)*C09 * 71)* *	40(12/	12)* 71)*	33 (55/ 13-	60)* 71)*
	* TH-232 * *	10 #	17{	54/	72)*C01 * 29)* *	17{	13-	12)* 22)* *	17(46/	60)* 29)*
17	* I -131 *	5 *	6(5/	72)*C14G* 7)*	7{	7-	12)* 7)* *	6(3/	60) *
	# BA-140 # #	18 *	26(18-	72)*C14G* 34)* *	34(1/	12)*	18(1/	60)#
	* RU-106 *	40 %	47 (39-	72)*C14M* 55)* *	55(1/	12)*	47 (39-	60)* 55)*
	* CS-137 * *	6 6 4	5(16/	72)*C01 * 11)* *	7{	3/ 5-	12)# 11)#	5(14/	60)* 11)*
	* ZR -95 *	9 #	100	1/	72)*C14M*	100	1/	12)*	10(1/	60)*
	* CS-134 *	6 4	5(8/	72)*C14H* 7)* *	7(2/ 7-	12)*	5(7/ 4-	60)* 7)*
	# MN -54 #	5 *	61	1/	72)*C14G*	61	1/	12)*	0(0/	60)*
	* ZN -65 #	12 *	17(1/	72)*C14M*	17(1/	12)*	17(1/	60)*
	# K - 40	53 *	246	69/	72)*C14G* 502)* *	301	12/	12)*	235	57/	60)*

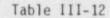

Table III-10

SEA WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values		Operational Values						
	Median	95 Percentile	Median	Moan		Cont	rol Stations		cal Stations	
	Median	33 rercentile	median	Mean	96 Percentile	Mean	95 Percentile	Mean	95 Percentile	
Gamma Ana	lysis									
Ra-226		600	<29.3	<29.0	<59.0	<30.3	<61.5	<22.5	<41.9	
Th-232		7	<15.3	<12.9	<26.4	<13.3	<26.7	<11.0	<24.9	
I-131*	<.4	<.4	<1.5	<1.5	<3.6	<1.5	<3.8	<1.4	<2.3	
Ba-140	<10	11	<5.8	<5.1	<13.4	<4.7	<9.7	<4.7	<8.6	
Ru-106	- 77		<10.8	<11.1	<25.9	<11.2	<26.8	<11.0	<20.1	
Cs-137*	<10	10	<2.0	<2.4	<6.1	<2.4	<6.3	<2.2	<5.7	
Zr-95	<10	<10	<2.3	<2.1	<3.8	<2.1	<3.8	<2.3	<3.9	
Cs-134*	<10	<10	<2.0	<1.9	<4.4	<1.9	<4.6	<1.8	<3.1	
Mn-54	<10	<10	<1.0	<1.3	<2.8	<1.2	<2.2	<1.7	<4.5	
Zn-65	<20	7	<2.8	<3.1	<7.0	<3.1	<7.3	<2.9	<4.9	
K-40	150.8	368.7	<240.0	<241.7	<419.9	<223.9	<400.4	<300.7	<480.9	
Strontium	Analysis									
Sr-89			<0.5	<0.5	<1.2	<0.5	<1.3	<0.5	<0.9	
Sr-90		-	0	<0.3	<1.4	<0.4	<1.5	0.0	0.0	
Tritium Ar	nalysis									
н-3	71	87	<290.5	<326.3	<881.72	<324.28	<899.25	<336.63	<856.62	

^{*}Critical nuclides for critical station.



ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY		NO. LLD			ST MEAN LOCATION !	CONTROL LOCATION INRR
SEA NATER (PCI/KG)	* * TRITIUM * ANALYSIS	* * * 3 24 * *	* * * *	* * *	**	* * * O
	* H-3	* 530 *	* 752(* (4/ 24) *C14M* 363- 1445) * *	977(2/ 4)* (508- 1445)*	SEE COLUMN 4 *

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3

DOCKET NO. 50-302

PATHWAY	- 1	TYPE	2, 1	N().	1	LLD	- 1	ALL	LOCA	TIONS	1 1	HIGHEST	MEAN	LOCAT	I NOI	CONTROL	LOCAT	TION	INRR
各种特殊特殊特殊特殊	大大大	* * * * * * * * * * * * * * * * * * * *	**	4 4 4 4 4	计算机	***	计计计	计分数 於	***	***	***	**	**	经存在股份的	***	经存货的存储设备	***	***	***
	46				-14		iii				#	*			*				*
SEA WATER	-36				#		-16				*	*			#				4
(PCI/KG)	35	SR-89/	90		44		-14				*	#			*				#
		ANALYS		24	46		-14				H	#			*				# 0
	- 21				-14		-18				#	*			*				#
	- 26			H	if		-14-				W	#			#				#
	it	SR-	90		-14	0	-16	1		9/	24) #CC	9 *	1(2/	4)#	SEE C	OLUMN	4	*
	-18				-18		*			0-	2)#	#	(1-	2)#				*
	-16				-14		*				*	#		7	*				#
	- 4				-36		-16				#	#			#				#
	#	SR-	139		#	1	16	1	(2/	24) #CC	9 *	5(1/	4)#	SEE C	OLUMN	4	#
	- 4				it		16			1	2)#	*			*			100	#

RIVER WATER PATHWAY

The State has the responsibility to collect and analyze river water samples. There are no additional stations for this pathway.

Quarterly Gamma Analysis

The summary for the gamma analysis of quarterly samples is in Table III-13. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-14. Neither preoperational nor operational samples have had detectable activities present within the required LLDs.

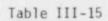
Quarterly Tritium Analysis

The summary for the tritium analysis of quarterly samples is in Table III-15. All samples were collected and analyzed. The LLD for tritium in Table III-15 is higher than the required LLD of 200 pCi/kg. This is due to fourth quarter equipment problems which caused the LLD to be 400 pCi/kg. This equipment problem has been corrected. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-14. Neither preoperational nor operational samples have had detectable activities present within the required LLDs.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY ********	TYPE & NO.	LLD	ALL LOCATIONS	HIGHES	T MEAN LOCATION	CONTROL L	OCATION INRR
RIVER WATER (PCI/KG)	# GAMMA # ANALYSIS 4 #	* *		* * * * * * * * * * * * * * * * * * * *			* * * * * * * * * * * * * * * * * * * *
	I-131	17 *	ND	* * *			*
	BA-140 H	17 *	ND	* * *			* *
	* CO-58 *	17 *	ND	* * *			*
22	CS-137	17 #	ND	* * *			* *
	CS-134	17 *	ND	* * *			* *
	# MN-54 #	15 *	ND	* * *			* *
	# ZN-65 #	30 *	ND	* *			* *
	¥ CΩ-60 %	17 *	ND	* *			*


Table III-14

RIVER WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	Ор	erational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gamma Analysi	_				
I-131	<.4	<.4	<4.3	<4.3	<4.3
Ba-140	<10	<10	<4.3	<4.3	<4.3
Co-58	<10	<10	<4.3	<4.3	<4.3
Cs-137	<10	<10	<4.3	<4.3	<4.3
Cs-134	<10	<10	<4.3	<4.3	<4.3
Mn-54	<10	<10	<3.8	<3.8	<3.8
Zn-65	<20	<20	<7.5	<7.5	<7.5
Co-60	<10	<10	<4.3	<4.3	<4.3
Tritium Analy	sis				
H-3	<320	<320	<150	<187.5	<334.5

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO			LOCATIONS	HIGHEST	MEAN LOCATION : CONTROL	LOCATION INRR
RIVER WATER (PCI/KG)	* * * TRITIUM * ANALYSIS	4 4 4	報 日 日 日 日 日		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* 0
	* * H-3	*	250 * <lld< td=""><td>(4/</td><td>4) # #</td><td>*</td><td>*</td></lld<>	(4/	4) # #	*	*

GROUND WATER PATHWAY

The State has the responsibility to collect and analyze ground water samples. There are no additional stations for this pathway.

Semiarnual Gamma Analysis

The summary for the gamma analysis of semiannual samples is in Table III-16. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-17. All operational samples had no detectable activity and there are no preoperational data.

Semiannual Tritium Analysis

The summary for the tritium analysis of semiannual samples is in Table III-18. The tritium analysis sample for the second half of 1980 was lost in a laboratory accident. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-17. All operational samples had no detectable activity and there are no preoperational data.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

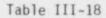

PATHWAY	1 TYPE & NO. 1	LLD 1	ALL LOCATIONS	HIGHEST ME	AN LOCATION I	CONTROL LOCATIO	IN INF
GROUND WATER (PCI/KG)	# GAMMA # ANALYSIS 2 #	* *		* * *			* * (
	F I-131	17 *	ND	* *			*
	BA-140	17 *	ND	* * *			*
	# CO-58 #	17 *	ND	* * * * * *	*		* *
26	# CS-137 #	17 *	ND	* * * * * *	*		*
	# CS-134 #	17 *	ND	* * *	*		* *
	# MN54 #	15 *	ND	* *			*
	# ZN-65 #	30 *	ND	* * *	*		*
	# CO-60 #	17 *	ND	* *	*		*

Table III-17

GROUND WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Opera	tional Values
	Mean	95 Percentile
Gamma Analysis		
I-131	<4.3	<4.3
Ba-140	<4.3	<4.3
Co-58	<4.3	<4.3
Cs-137	<4.3	<4.3
Cs-134	<4.3	<4.3
Mn-54	<3.8	<3.8
Zn-65	<7.5	<7.5
Co-60	<4.3	<4.3
Tritium Analysis		
н-3	<150	<150

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY		10. LLD			EAN LOCATION : CONTROL	LOCATION INR
GROUND WATER	*	*	*	* *	*	*
(PCI/KG)	* TRITIUM * ANALYSIS	2 *	*	* *	*	* 0
	* * H-3	* 200	* * <lld(1<="" td=""><td>/ 1)* *</td><td>*</td><td>*</td></lld(>	/ 1)* *	*	*

POTABLE WATER PATHWAY

The University has the responsibility to collect and analyze potable water samples. There are no additional stations for this pathway.

Quarterly Gamma Analysis

The summary for the gamma analysis of quarterly samples is in Table III-19. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-20. The 1985 operational activity was generally less than the preoperational activity levels and were consistent with 1979 concentrations.

Quarterly Tritium Analysis

The summary for the tritium analysis of the quarterly samples is in Table III-21. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-20. All sample activities were less than the sample LLD.

Table III-19

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE & NO. 1	LLD 1	ALL LOCATION	HAIR I AIGHE	ST MEAN	LOCATI	ON 1	CONTROL LOCATION	INRR
POT. WATER (PCI/KG) INGESTION	* * * * * * * * * * * * * * * * * * *	* * *		* * *			* *		* * 0
	* I -131 * *	7 #	ND	* *			*		*
	* BA-140 * *	21 *	ND	* * *			*		# #
	* CS-137 * *	7 #	ND	* * *			*		* *
30	* CS-134 *	7 *	3(1/	12)*C07 *	3(1/	4)#	SEE COLUMN 4	* *
	* CO-58 *	6 *	ND	* * * * *			*		*
	# MN-54 #	6 #	ND	* * *			# #		# #
	# ZN-65 #	15 #	ND	# # # # # #			* *		* *
	* CO-60 *	6 #	ND	# # # #			*		*

Table III 20

POTABLE WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pC1/kg)

Nuclide	Preope	rational Values	Op	erational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gamma Analysis					
I-131	<.4	<.4	<1.8	<1.6	<2.5
Ba-140	<10	<10	<5.9	<5.3	<9.3
Cs-137	<10	<10	<1.8	<1.7	<2.6
Cs-134	<10	<10	<1.8	<1.7	<2.6
Co-58	<10	<10	<1.5	<1.5	<2.1
Mn-54	<10	<10	<1.5	<1.6	<2.3
Zn-65	<20	<20	<3.8	<3.6	<5.7
Co-60	<10	<10	<1.6	<1.6	<2.4
Tritium Analys	is				
H-3	<320	<320	<195.5	<176.7	<286.2

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY			ALL LOCATION	HIGHEST MEAN	LOCATION CONTRO	
POT. WATER (PCI/KG)	* * TRITIUM * ANALYSIS	* * 12 *		* * * * * * * * * * * * * * * * * * * *	* * * * *	* * * * * * * * * * * * * * * * * * * *
	* H−3	* 600	* 534(1/	12)*C18 * 534(1/ 4)* SEE	COLUMN 4 *

SHORELINE EXTERNAL SEDIMENT PATHWAY

The University has the responsibility to collect and analyze shoreline external sediment samples. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-22. All samples were collected and analyzed. The critical stations for this analysis are Sample Stations C14H, C14M, and C14G and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-23.

The 1980 operational data show nuclide concentrations less than the preoperational data and consistent with the 1979 operational data.

Semiannual Sr-90 Analysis

The summary for the strontium analysis of the seminnual samples are in Table III-24. All samples were collected and analyzed. The critical stations are Sample Stations C14H, C14M, and C14G and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-23.

There are no preoperational data and 1980 operational results are consistent with previous operational data.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

	1 TYPE & NO. 1	*	******	*****	********	****	****	***	存存存存存在	****	***	#
BOT. SED. (PCI/KG) SHORELINE EXT	# GAMMA # ANALYSIS 10 #	**			* * *			*			**	0
	# RA-226 # #	8 *	317{	10/	10)*C14H* 925)* *	765(605-	2)* 925)*	141 (120-	4)* 162)*	
	* TH-232 * *	8 *	65(8/ 27-	10)*C14H* 183)* *	130(77-	2)*	44{	27-	4)* 76)*	
	# I-131 #	3 *	5(1/	10)*C0! *	5(1/	2)*	5(1/	4)*	
34	BA-140 #	9 *		ND	* *			*			* *	
	* RU-106 *	17 *		ND	* *			*			*	
	CS-137 **	3 *	9(5/ 4-	10)*C14H* 15)*	15(1/	2)#	11 (2/	4) + 14) +	
	ZR- 95 **	4 #		ND	* *			*			*	
	CS-134 *	3 *	7(2/	10)*C14H* 7)* *	7(1/	2)*		ND	**	
	* MN- 54 *	2 *		ND	* * *			*			* *	
	ZN- 65 *	6 # #		ND	* *			*			*	
	K-40 #	31 *	199(71-	10)*C14H* 612)* *	439(2/	4 612)*	121 (3/	4)*	

Table III-23

SHORELINE EXTERNAL SEDIMENT PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pC1/kg)

The second second second	rational Values			Open	ational V			
Median	95 Percentile	Median	Mean	95 Percentile		95 Percentile	Criti Mean	cal Stations 95 Percentile
lysis								
2900	10,000	192.0	316.9	847.8	140.8	175.9	434.3	1024.0
90	300	<38.0	<51.9	<155.2	44.3	87.5	<57.0	<190.3
<.4	34	<.8	<1.2	<3.9	<1.8	<6.0	<0.7	<1.7
<10	<10	<2.5	<2.2	<5.2	<2.6	<3.6	<2.0	<5.9
190	690	<4.8	<4.3	<10.5	<4.8	<7.1	<3.9	<12.1
<10	250	<2.5	<4.8	<16.0	<5.9	18.4	<4.1	<15.4
12	40	<1.0	<1.0	<2.1	<1.0	<1.6	<0.9	<2.4
<10	<10	<.9	<2.0	<7.2	<0.7	<1.2	<2.0	<6.9
<10	19	<.6	<0.6	<1.2	<0.6	<0.9	<0.6	<1.4
		<1.4	<1.4	<3.0	<1.4	<1.7	<1.4	<3.6
259.8	1,006	141.0	179.8	507.9	92.7	219.8	237.8	618.9
Analysis								
		<15.0	<13.5	<29.6	20.0	33.9	<9.2	<21.4
	2900 90 <.4 <10 190 <10 12 <10 <10 259.8 Analysis	ysis 2900 10,000 90 300 <.4 34 <10 <10 190 690 <10 250 12 40 <10 <10 <10 19 259.8 1,006 Analysis	2900 10,000 192.0 90 300 <38.0	ysis 2900 10,000 192.0 316.9 90 300 <38.0	ysis 2900 10,000 192.0 316.9 847.8 90 300 <38.0	Median 95 Percentile Median Mean 95 Percentile Mean ysis 2900 10,000 192.0 316.9 847.8 140.8 90 300 <38.0	Median 95 Percentile Median Mean 95 Percentile Mean 95 Percentile ysis 2900 10,000 192.0 316.9 847.8 140.8 175.9 90 300 <38.0	Median 95 Percentile Median Mean 95 Percentile Mean 95 Percentile Mean ysis 2900 10,000 192.0 316.9 847.8 140.8 175.9 434.3 90 300 <38.0

*Critical nuclides for critical station

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY ********	1 TYPE & N	VO. 1	LLD	1 ALL	LOCATIO			LOCATION				
BOT. SED (PCI/KG) SHORELINE EXT	* * SR-90 * ANALYSIS	10 #		# # #		# # # # # #			* *			* *
	* * * SR-90	* * *	15	* * 53	8(6/	* * * * 10)*C14H* 220)* *	550(1/	2)+	25(3/	4)* 27)*

SEA FOOD CHAIN PATHWAY (MARINE PLANTS)

The University has the responsibility to collect and analyze marine plants in the sea food chain. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-25. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-26.

The 1980 operational concentrations are less than the preoperational concentrations and are consistent with 1979 operational data.

Semiannual Sr-89 and 90 Analysis

The summary of analysis of the quarterly samples for Sr-89 is presented in Table III-27. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-26. There are no preoperational data.

The 1980 Sr-89/90 concentrations have shown a slight increase over previous operational years' concentrations.

No apparent reason for this increase could be determined. Florida Power Corporation will continue to monitor this pathway.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

	•	#	4	+	нинин	* 4	*	****	在	***	****	不安在保存的	乔 ·
MARINE PLANT PCI/KG SEAFOOD CHAIN	GAMMA ANALYSIS 4	* *	4 4			* *			* *			# # #	0
	RA-226	*	13 #	51 (15-	4) #C30 # 74) #	57(2/ 40-	2)* 74)*	SEE	COLUMN	4 3	
	TH-232	* *	12 #	54(27-	4)*C30 * 82)*	67(52-	2)* 82)*	SEE	COLUMN	4 #	
	1-131	* *	3 *		ND	* *			*			*	
38	BA-140	* *	9 #		ND	* *			*			*	
1	RU-106	* *	55 #		ND	\$ \$ \$ \$ \$			*			**	
	CS-137	* *	3 *	6(2/	4)*C30 # 6)*	6(1/	2)*	SEE	COLUMN	4 #	
*	ZR- 95	*	4 #		ND	# # # # # #			# #			*	
9	MN- 54	*	5 *	9(1/	4)*C29 *	9(1/	2)#	SEE	COLUMN	4 #	
1	ZN-65	*	5 #		ND	* 4			*			*	
4	K-40	*	69 #	2327(4/	4)*C30 * 5930)* *	2999(2/	2)* 5930)*	SEE	COLUMN	4 4	

Table III-26

MARINE PLANT PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	0p€	erational '	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gamma Analysis					
Ra-226	624	3300	56.5	50.5	106.3
Th-232		280	54.0	54.3	98.4
I-131	<10	37	<0.6	<.9	<2.0
Ba-140	<10	75	<1.9	<2.1	<6.4
Ru-106		360	<4.9	<5.4	<16.3
Cs-137	<10	181	<2.6	<2.9	<8.9
Zr-95	18	157	<0.8	<1.0	<2.9
Mn-54		43	<1.1	<2.9	<10.9
Zn-65		156	<1.3	<1.5	<4.4
K-40	1508.4	12570	1654.5	2326.8	7461.9
Strontium Anal	ysis				
Sr-89			8.5	21.1	78.9
Sr-90			2.0	2.5	8.4

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY I	TYPE & N	(). *****	LLD	1 A	LL	LOCATIO	NS I H	HIGHEST	MEAN	LOCAT	I NOI	CONTROL	LOCA	TION	INRR
	SR89/90 ANALYSTS	4 4 4		*			* *	# # #			* *		****	****	* * *
3 3 3 3	ER-119	# # #	5	· · · · · · · · · · · · · · · · · · ·	27(3/	4) +C: 65) +	30 *	35(2/	2)*	SEE C	OLUMN	4	*
38 38	ER-90	41	0	**	5(2/	4) *C2	29 *	6(1/	2)*	SEE C	OLUMN	4	# # #

INGESTION CRAB PATHWAY

The University has the responsibility to collect and analyze crabs. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-28. All samples were collected and analyzed. Sample Station C29 is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-29.

Except for naturally occurring K-40, the 1980 operational concentrations are less than the preoperational concentrations and consistent with previous years' operational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

RABS PCI/KG) NGESTION	* GAMMA * ANALYSIS 4	* * * * * * * * * * * * * * * * * * *			# # # # # # #			* *			
	* RA-226 *	*	102(4/ 69-	4)*C30 # 190)* #	130(69-	2)* 190)*	130(2/	190)
	* TH-232	* 12 * * 12 *	28 (24-	4)*C30 * 30)* *	30(2/	30)*	30 (27-	30)
	* I-131	* 7 *		ND	* *			*			
	# # BA-140	* * 23 *		ND	* *			*			
	* * RU-106	*		ND	* *			*			
	* CS-137	* 7 * *	11(3/	4)*C30 * 12)* *	11{	2/	2)*	11(2/	12)
	* ZR-95	* 11 *		ND	* *			*			
	* * CS-134	* * 7 * * * * * * * * * * * * * * * * *	8(1/	4) #C29 #	8(1/	2)*	0(0/	2)
	# # MN-54	* 6 * 4		ND	* *			* *			
	# ₩ ZN-65	# 16 # # 16 #		ND	* *			* *			
	* K-40	* 78 *	1969	224-	4)*C30 * 2830)* *	2630	2/30-	2830)*	2630	2430-	2)

Table III-29

INGESTION CRAB PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pC1/kg)

Nuclide	Preoper	rational Values			0per	ational Val	ues		
	Median	95 Percentile	Median	Mean	95 Percentile		1 Stations 5 Percentile		Stations Percentile
Ra-226	1325	3600	75.0	102.3	217.3	129.5	297.2	75.0	88.9
Th-232	92	170	29.0	28.0	33.3	29.5	30.9	26.5	33.4
I-131*	<10	<10	1.8	1.8	2.3	1.8	2.4	1.8	2.4
Ba-140	<10	55	5.9	5.8	7.1	5.9	6.9	5.8	7.8
Ru-106			14	13.9	16.7	14.1	17.2	55	68.9
Cs-137*	<10	75	10	8.4	17.6	11.0	13.8	5.8	17.5
Zr-95	<10	13	3.0	2.7	3.5	2.6	3.0	2.8	4.1
Cs-134*	<10	<10	1.6	3.3	9.5	1.9	2.2	4.8	13.8
Mn-54	<80	24	1.5	1.5	1.9	1.5	1.5	1.5	2.2
Zn-65	<160	127	4.1	4.0	5.2	4.1	5.2	3.9	5.6
K-40	1424.6	2011.2	2410.0	1969.0	4279.6	2630.0	3184.4	1308.0	4307.2

^{*}Critical nuclides for critical station

INGESTION CARNIVOROUS FISH PATHWAY

The University has the responsibility to collect and analyze carnivorous fish. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-30. All samples were collected and analyzed. Sample Station C29 is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-31.

The operational concentrations for 1980 are less than the preoperational concentrations and consistent with previous years' operational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

C. FISH	***************************************	* * * * * * * * * * * * * * * * * * *	****	*****	NS HIGH ***********************************	*******	****	不 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	*****	***	维尔法证证指数 推 被
(PCI/KG) INGESTION	* GAMMA * ANALYSIS 4	* * *			* 4			* *			*
	* RA-226 *	* 11 * * * *	63(22-	4)*C30 # 85)* #	76(67-	2)* 85)*	76{	67-	2)* 85)*
	* TH-232	* 10 *	29(20-	4)*C30 * 41)* *	34(26- 2/	2)* 41)*	34 (26-	2)# 41)#
	* I-131	* 7 *		ND	* *			*			* *
45	# BA-140	* 22 *		ND	* *			*			*
	* RU-106	* 47 *		ND	* *			*			* *
	* CS-137 *	* 6 3	21(4/	4)*C29 * 39)*	23(2/	2)* 39)* *	20(12-	2)* 27)* *
	* ZR-95	* 10 *		ND	* *	ŧ		*			* *
	* CS-134	* 7 5		ND	* *			*			* *
	* MN-54	* 6 4		NB	* *			* *			*
	# # ZN-65	* 14 *		ND	* *			*			* *
	* K-40	* 79	2868	1630-	4)*C30 *	2985	2840-	2)* 3130)*	2985	2840-	2130)*

Table III-31
INGESTION CARNIVOROUS FISH PATHWAY
STATISTICAL EVALUATION OF ANALYSES (pC1/kg)

Nuclide	Preoper	rational Values			0per	ational Va	lues		
	Median	95 Percentile	Median	Mean	95 Percentile		ol Stations 95 Percentile	Critic Mean	95 Percentile
Ra-226	335	2400	71.5	76.0	100.9	62.5	117.3	49.0	123.8
Th-232		92	26.5	28.5	45.9	33.5	54.3	23.5	33.2
I-131*	<10	<10	<1.6	<1.6	<1.6	<1.8	<1.8	<1.5	<1.5
Ba-140	<10	72	<5.4	<5.4	<6.5	<5.9	<6.2	<4.9	<5.2
Ru-106			<10.3	<11.8	<15.5	<13.4	<15.1	<10.3	<10.3
Cs-137*	<10	43	18.5	21.0	50.2	19.5	40.3	22.5	68.2
Zr-95	<10	12	<2.4	<2.4	<3.0	<2.6	<3.0	<2.1	<2.5
Cs-134*	<10	<10	<1.6	<1.7	<2.2	<1.9	<2.2	<1.5	<1.5
Mn-54	<80	<80	<1.4	<1.4	<1.7	<1.5	<1.5	<1.3	<1.3
Zn-65	<160	99	<3.6	<3.6	<4.4	<3.9	<4.2	<3.3	<3.9
K-40	2346.4	3854.8	2985.0	2867.5	4694.3	2985.0	3386.9	2750.0	5854.5

^{*}Critical nuclides for critical station

INGESTION HERBIVOROUS FISH PATHWAY

The University has the responsibility to collect and analyze herbivorous fish. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-32. No samples were caught during either semiannual period at the control location C30. All other samples were collected and analyzed. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-33.

The 1980 operational concentrations are generally lower than preoperational concentrations and are consistent with 1979 operational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

FISH PCI/KG) NGESTION	# GAMMA # ANALYSIS	4 #	*			* *			* * *		* *
	# RA-226	# # #	13 *	36 (10-	2)*C29 # 61)*	36(10-	2)*	ND	*
	* TH-232	* *	13 #	20 (14-	2)*C29 * 26)*	20(2/	2)* 26)*	ND	* *
4	* I-131	* *	6 4		ND	* *			* *		*
48	* BA-140	*	23 #		ND	# # # #			*		* *
	* RU-106	# # #	56 #		ND	# # # # # #			**		* *
	* CS-137	* *	7 #	23 (18-	2)*C29 28)*	23(18-	2)*	ДИ	*
	# # ZR-95	* *	11 #		ND	* 1			*		*
	* CS-134	* *	7 4	9(1/	2)*C29	9(1/	2)*	0(0/	0)*
	# # MN-54	*	7 #		ND	# 1	f f		* *		# #
	* ZN-65	* *	17 #		ND	* *			* *		*
	* K-40	*	90 #	3125	2910-	2)*C29 4 3340)*	3125	2910-	2)*	ND	*

Table III-33
INGESTION HERBIVOROUS FISH PATHWAY
STATISTICAL EVALUATION OF ANALYSES (pC1/kg)

Nuclide	Preope	rational Values			0per	ational \	alues		
	Median	95 Percentile	Median	Mean	95 Percentile		trol Stations 95 Percentile	Critica Mean 9	Stations Dercentile
Ra-226	960	3100				-		35.5	106.2
Th-232		84	-	-	-	-	-	20.0	36.6
I-131*	<10	<10	-		-	-		<1.5	<2.2
Ba-140	<10	50	-	-		-	-	<5.8	<8.5
Ru-106		90	_	-		-		<13.9	<17.7
Cs-137*	<10	110	_	1				<2.3	<36.9
Zr-95	<10	9				-		<2.8	<3.4
Cs-134*	<10	<10		-		-	-	<5.4	<15.4
Mn-54	<80	<80	-			-	-	<1.6	<2.0
Zn-65	<160	63						<4.1	<5.2
K-40	2178.8	3100.6						3125.0	3720.9

^{*}Critical nuclides for critical station

INGESTION OYSTERS PATHWAY

The University has the responsibility to collect and analyze oysters. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-34. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-35.

The 1980 operational concentrations are consistent with the 1979 operational and lower than the preoperational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO.	! LLD	ALL	LOCATI	ONS HIGH	HEST ME	AN LOCA	ATION :	CONTR	OL LOCA	TION	INRI
OYSTERS (PCI/KG) INGESTION	GAMMA ANALYSIS 4	* ;	* * *		# # # # #	* * * * * * * * * * * * * * * * * * *	***	***************************************	****	****	***	* * 0
	RA-226	* 14 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	66(34-	4)*C29 5	75(53-	2)* 99)*	SEE	COLUMN	4	* * *
	TH-232	* 11 *	31 {	19-	4)*C29 # 38)* #	33(2/	2)* 34)*	SEE	COLUMN	4	* *
4	I-131	* 7 1		ND	* *			*				*
55 #	BA-140	* 24 *		ND	* *			*				* *
18 18 18	RU-106	* 57 *		ND	# # # #			*				* *
1	CS-137	* 7 * * *	8(2/	4)*C30 # 8)*	8(2/	2)* B)*	SEE	COLUMN	4	* *
# #	ZR-95	* 11 4		ND	* *			* *				* *
# #	MN-54	* 7 *		ND	* *			*				*
# #	ZN65	* 15 *	-	ND	* *			*				* * *
# #	K-40	* 58 # * 58 #	1220(1000-	4)*C30 * 1360)* *	1330 (1300-	2)* 1360)*	SEE	COLUMN	4	* * *

Table III-35

INGESTION OYSTERS PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	Оре	erationa!	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Ra-226		534	66.0	66.3	124.2
Th-232			32.5	30.5	46.5
I-131	<10	<10	<1.8	<1.8	<2.4
Ba-140	<10	<10	<5.4	<5.9	<8.3
Ru-106	-	82	<13.0	<14.1	<21.3
Cs-137	<10	<10	<5.1	<5.1	<11.7
Zr-95	<10	<10	<2.6	<2.7	<3.5
Mn-54	<80	<80	<1.5	<1.6	<2.5
Zn-65	<160	33	<3.8	<3.6	<4.6
K-40	-	1843.6	1260	1220.0	1528.7

INGESTION SHRIMP PATHWAY

The University has the responsibility to collect and analyze shrimp. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-36. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-37.

The 1980 operational concentrations are consistent with the 1979 operational and the preoperational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE & NO.	LLD	ALL I	OCATI	ONS HIGH	EST ME	AN LOCA	ATION	CONTROL LOCA	ATION	INRR
SHRIMP (PCI/KG) INGESTION	* * GAMMA * ANALYSIS	*			# # # # # # #			* *			* * * * * * * * * * * * * * * * * * * *
	* RA-226	* 31 *	102(1/	2) #C27 #	102(1/	2)*	SEE COLUMN	4 4	*
	* TH-232	* 15 * * * *	56(47-	2)*C27 # 65)*	56(47-	2)* 65)*	SEE COLUMN	4	* *
	* I-131	* 3 *		ND	# # # #			*			* *
54	# BA-140	* 30 *		ND	* *			* *			*
	* RU-106	* 72 * * 72 *		ND	* *			* *			*
	* CS-137	* # # # # # # #	13(11-	2)*C27 * 15)* *	13(11-	2)* 15)*	SEE COLUMN	4 4	* *
	* ZR-95	* 15 * * 15 *		ND	* *			* *			* *
	* MN-54	* 8 *		ND	* *			* *			*
	* ZN-65	* 20 *		ND	* *			*			* *
	* K-40	* 93 * * * *	2412(2340-	2)*C27 * 2483)* *	2412(2340-	2)* 2483)*	SEE COLUMN	1 4	* *

Table III-37

INGESTION SHRIMP PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	Ор	erational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Ra-226			<56.0	<56.0	<183.5
Th-232		36	56.0	56.0	80.9
I-131	<10	<10	<1.9	<1.9	<2.9
Ba-140	<10	<10	<7.5	<7.5	<11.7
Ru-106			<18.4	<18.4	<29.1
Cs-137	<10	37	13.0	13.0	<18.5
Zr-95	<10	<10	<3.4	<3.4	<6.5
Mn-54	<80	<80	<2.0	<2.0	<3.4
Zn-65	<160	<160	<4.9	<4.9	<8.0
K-40	921.8	2514	2411.5	2411.5	2609.6

INGESTION MILK PATHWAY

The University has the responsibility to collect and analyze milk. There are no additional stations for this pathway.

Monthly Gamma Analysis

The summary for the gamma analysis of the monthly samples is in Table III-35. The samples at Sample Station C49, the critical station for this pathway, were not collected due to the unavailability of milk. All other samples were collected and analyzed. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-39.

The 1980 operational concentrations are consistent with the 1979 operational, and lower than the preoperational concentrations.

Monthly Sr-89 and 90 Analysis

The summary for the strontium analysis of monthly samples is in Table III-40. All samples were collected and analyzed. Sample Station C49 is the critical station for this pathway and no samples were collected due to the unavailability of milk. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-39.

The 1980 operational concentrations are less than the operational values and are consistent with other operational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

MILK	* *	*			* *			*			*
(PCI/L) INGESTION	* GAMMA * ANALYSIS 24 *	*			* *			*			* *
	* I -151 * *	6 *		ND	* *			* *			* *
	# BA-140 # # #	21 *	28(21-	12)*C47 * 35)* *	28(2/	12)* 35)* *	28(21-	12)* 35)*
	* CS-137 * * *	7 *	11(8/ 7-	12)*C47 * 15)* *	11(B/ 7-	12)# 15)# *	11(8/	12)* 15)*
57	* ZR- 95 * *	11 *		ND	* *			* *			* *
	# CS-134 #	8 *		ND	* *			*			* *
	* CO- 58 *	6 *		ND	* * *			*			살 참 참
	* * MN- 54 * *	7 *		ДИ	* *			*			* *
	* CO- 60 *	7 *		ND	* *			*			*

Table III-39

INGESTION MILK PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values			Open	ational V	alues		
	Median	95 Percentile	Median	Mean	95 Percentile		rol Stations 95 Percentile	Crit Mean	95 Percentile
Gamma Ana	lysis								
I-131*	<10	<10	<1.3	<1.4	<2.6	<1.6	<2.7	NC/M	NC/M
Ba-140	<30	<30	<3.5	<4.8	<9.6	<5.1	<9.1	NC/M	NC/M
Cs-137	16	22	<11.0	<12.6	<29.7	<7.7	<16.7	NC/M	NC/M
Zr-95	<20	<20	<3.1	<3.3	<10.2	<2.8	<5.0	NC/M	NC/M
Cs-134	<10	<10	<2.3	<1.9	<3.9	<1.9	3.4	NC/M	NC/M
Mn-54	<10	<10	<1.5	<1.4	<2.7	<1.7	<2.9	NC/M	NC/M
Co-58	<10	<10	<1.5	<1.7	<4.6	<1.5	<2.7	NC/M	NC/M
Co-60	<10	<10	<2.1	<1.9	<3.9	<1.8	<3.1	NC/M	NC/M
Strontium	Analysis								
Sr-89						<6.3	<19.9		
Sr-90	4.0	6.0				<0.8	<3.0		

^{*}Critical nuclides for critical station

ENVIRONMENTAL RAPIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1	TYP	E &	ND	. 1	LLD		AL	L L	CAT	IONS	1 1	HIGHE	ST MEAL	I LOCA	TION	1 C	DNTROL	LOCAT	ION	NRR
在安存存在存在存在存在	计	**	**	**	外共林林	**	* * *	各种特殊	计技技计	华华华	4.4.4.4.4	***	***	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	****	公公公公司	***	***	***	*****	****
	4				-14		- 24					#	*				₽				*
MILK	-14				- 14		-14-					*	#				#			1	+
(PCI/L)	- 48	SR E	19/9	0	-11		*					*	#			1 3	#			1	+
INGESTION	*	ANAL	YSI	S	24 #		- 12					#	*				H-			4	+ O
11100011011	-18				-14		-14					*	*				#				+
	- 11				-81		- 3					#	*				N.				1
	- la		R- 8	9	-11		3 :	1	0(É	1-	10) #C4	17 #	10(6/	23)	#	10(6/	23)	ti-
	-18-				-11		-78		(1	}	23)*	*	(4-	23)	Ħ	(4-	53)	lt .
	-18				- 11		-31					#	#				H				ti-
	- 11				-14		-74					#	#				#				H
	*		R- 9	0	- 11) 4		2(1	1/	10) #C	47 *	5(4/	10)	好	2(4/	10)	H-
	- 24				-11		-18		(1	-	3)*	#	(1-	3)	*	(1-	3)	lt-
	24				- 74		24		,												

INGESTION ANIMAL PATHWAY

The University has the responsibility to collect and analyze small terrestrial animals. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-41. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-42.

The operational concentrations for 1980 are consistent with the 1979 operational and lower than the preoperational concentrations except for Cs-137 and Ra-226. Cs-137 is still elevated due to residual Chinese weapons test fallout; Ra-226 concentrations are similar to preoperational concentration.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY *********	1 TYPE & NO.	! LLD	ALL L	****	************	****	****	******	CONTROL LOCAT	*********
ANIMALS (PCI/L) INGESTION	* GAMMA * ANALYSIS 2	* * *	H H H		* :	# #- #-		* *		* * 0
	* RA-226 *	* 16	* 64(* (55-	2)*C45	# 64(# (55-	2)*	SEE COLUMN	4 *
	* TH-232	* 12 4	21(8-	2)*C45 34)*	# 21(# (8-	2)* 34)*	SEE COLUMN	4 *
	* * I-131	* 9 9	¥ 3(1/	2)*C45	* * 3(1/	5)*	SEE COLUMN	4 *
61	# # BA-140	* 26 ;	t t	ND	* *	t t		*		*
	* RU-106	* 52 *	} } }	ND	# # #	t t		*		* *
	* CS-137	* 16 5	2890(20-	2)*C45 5760)*	2890(50-	2)* 5760)* *	SEE COLUMN	4 *
	* ZR-95	* 6 5	* *	ND	* *	f f t		*		* *
	* MN-54	* 4 4	* * *	ND	* ;	* *		*		* *
	* ZN-65	* 8 9	* *	ND	* *	+		*		* *
	* K-40	* 42 5	1252(303-	2)*C45 ±	1252(303-	2200)*	SEE COLUMN	4 *

Table III-42

INGESTION ANIMALS PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preoper	rational Values	0pe	rational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Ra-226		720	64.0	64.0	180.4
Th-232			<21.0	21.0	57.0
I-131	<10	100	<3.3	<3.3	<3.9
Ba-140	<10	<10	<6.5	<6.5	<18.3
Ru-106			<13.0	<13.0	<37.9
Cs-137	<10	80	2890.0	2890.0	10845.2
Zr-95	<10	70	<1.5	<1.5	<3.6
Mn-54	<80	<80	<0.9	<0.9	<1.9
Zn-65	<160	160	<2.0	<2.0	<4.8
K-40	1656.5	3586.6	1251.5	1251.5	2880.6

FOOD CHAIN (GRASSES) PATHWAY

The University has the responsibility to collect and analyze grass samples. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-43. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-44.

The 1980 operational concentrations are similar to the 1979 operational and preoperational concentrations except for Ra-226, Th-232 and Cs-137. Cs-137 is still elevated due to residual Chinese weapons test fallout; Ra-226 and Th-232 are both naturally occurring and their concentrations are consistent with preoperational data.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

GRASS (PCI/L)	* * GAMMA	* 1	t t		*	R H		*			*
DOD CHAIN	* ANALYSIS 6	* ;			:	*		*			*
	* RA-226	* 16 *	107{	63-	6)*C41 157)*	* 131(* (128-	2)* 133)* *	SEE	COLUMN	4 *
	* TH-232	* 14 * *	111{	6/ 56-	6)*C41 201)*	# 145(# (2/ 88-	2)*	SEE	COLUMN	4 *
	* I-131	* 8	ł.	ND	* *	H H		* *			*
64	# BA-140	* 25 s	ł ł	ND	# #	# # #		* *			* *
	* RU-106	* 54 s	B2(1/	6)*C05	# # 82(1/	5)*	SEE	COLUMN	4 *
	* CS-137	# 7 # # # #	256(12-	6)*C05 513)*	# 308(# (118-	2)* 498)* *	SEE	COLUMN	4 # # #
	* ZR-95	* 11 *	t t	ND	* *	k k k		*			* *
	* * MN-54	* 7 1	t t	ND	* *	k * *		* *			*
	* ZN-65	* 15 4	t t	ND	* *	# # #		*			* *
	₩ ₩ K-40	* 72	1715	6/	6)*C40 2290)*	1915(2/	2290)*	SEE	COLUMN	4 #

Table III-44

FOOD CHAIN (GRASSES) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preoperational Values		Operational Values		
	Median	95 Percentile	Median	Mean	95 Percentile
Ra-226		2363	108.5	106.7	181.3
Th-232		120	78.0	111.3	246.3
I-131	<10	<10	1.9	<2.0	<3.1
Ba-140	26	253	<6.3	<6.2	<8.4
Ru-106			<14.1	<25.0	<79.8
Cs-137	1363	5416	223.5	255.8	689.7
Zr-95	<10	31	<2.8	<2.8	<3.2
Mn-54			<1.6	<1.6	<2.1
Zn-65		589	<3.6	<3.8	<5.1
K-40	578.2	2430.2	1600.0	1715.0	2350.0

INGESTION FOOD CROPS (CITRUS) PATHWAY

The State has the responsibility to collect and analyze citrus samples. There are no additional stations in this pathway.

Annual Gamma Analysis

The summary for the gamma analysis of the annual samples is in Table III-45. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-46.

The 1980 operational concentrations were nondetectable as were the 1979 operational and preoperational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY *********	TYPE & NO.	LLD	ALL LOCATIONS	HIGHEST	MEAN LOCATION	CONTROL LO	CATION INRR
CITRUS (PCI/KG) INGESTION	# GAMMA # GAMMA # ANALYSIS 1	* * * * * * * * * * * * * * * * * * *		* * *			* * *
	# I-131	* 24*	ND	* *			*
	# # BA−140	* * * 24*	ND	* *			*
	* CO-58	* * * * 24*	ND	* *			* *
67	* * CS-137	* * 24* * 24*	ND	* *			*
7	* CS-134	* 24* * 24*	ND	* *			*
	* * MN-54	* * 21* * * *	ND	* *			* *
	* ZN-65	* * 42* * 42*	ND	* *			*
	* CO-60	* * * 24*	ND	* *			*

Table III-46

INGESTION FOOD CROPS (CITRUS) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuc1ide	Preope	rational Values	Ор	Mean Mean	Values		
	Median	95 Percentile	Median	Mean	95 Percentile		
I-131	<10	<10	<6.0	<6.0			
Ba-140	<10	<10	<6.0	<6.0			
Co-58	<10	<10	<6.0	<6.0			
Cs-137	<10	<10	<6.0	<6.0	-		
Cs-134	<10	<10	<6.0	<6.0	-		
Mn-54	<10	<10	<5.3	<5.3			
Zn-65			<10.5	<10.5			
Co-60	<10	<10	<6.0	<6.0	+		

INGESTION FOOD CROPS (WATERMELON) PATHWAY

The State has the responsibility to collect and analyze watermelon samples. There are no additional stations in this pathway.

Annual Gamma Analysis

The summary for the gamma analysis of the annual samples is in Table III-47. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-48. There are no preoperational data for this pathway. All 1980 operational analyses resulted in non-detectable activity as did the 1979 operational analyses.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE & NO.	! LLD	ALL LOCATIONS	HIGHEST MEAN	LOCATION : CONTR	OL LOCATION INRR
WATERMELON (PCI/KG) INGESTION	* GAMMA * ANALYSIS 1	* * * * * * * * * * * * * * * * * * *		*	# # # #	**************************************
	* I-131	*	ND	* *	*	*
	* BA-140	* * * 24* * *	ND	* *		
	* CO-58	* 24* * 24*	ND	* * *	*	*
70	* CS-137	* 24* * 24*	ND	* *	*	
	* CS-134	*	ND	* * *	*	*
	# # MN-54	* 21* * *	ND	* *	*	*
	* ZN-65	* * * * 42* * *	ND	* *	*	# #
	* CD-60	* 24*	ND	* *	*	*

Table III-48

INGESTION FOOD CROPS (WATERMELON) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Opera	tional Values
	Mean	95 Percentile
I-131	<6.0	
Ba-140	<6.0	
Co-58	<6.0	
Cs-137	<6.0	
Cs-134	<6.0	
Mn-54	<5.3	
Zn-65	<10.5	**
Co-60	<6.0	-

FOOD CHAIN (SOIL) PATHWAY

The University of Florida has the responsibility to collect and analyze soil samples. Soil samples are required every third year. The last sample was taken in 1978, therefore, no sampling was required in 1980.

FOOD CHAIN (SOIL) PATHWAY

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

NOT REQUIRED IN 1980

Table III-50 FOOD CHAIN (SOIL) PATHWAY STATISTICAL EVALUATION OF ANALYSES

NOT REQUIRED IN 1980

FOOD CHAIN (MEAT) PATHWAY

The State has the responsibility to collect and analyze meat samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-51. All samples were collected and analyzed. There is no critical station in this pathway. A statistical evaluation of the operational data is presented in Table III-52. There are no preoperational data for this pathway. All 1980 operational analyses resulted in nondetectable activity which is consistent with previous operational analyses.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYST RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY *********	1 TYPE & NO.	LLD	ALL LOCATIONS	HIGHEST MEAN	LOCATION CONTRO	L LOCATION INRR
MEAT (PCI/KG) FOOD CHAIN	* GAMMA * ANALYSIS 2	# # # # #		* * * * * * * * * * * * * * * * * * * *	# # #	* 0
	* I-131	* * 38 * *	ND		•	*
	# # BA-140	* 39 *	ND			*
	* CO-58	* 60 *	ND	* *	*	*
76	* CS-137	* * 37 * *	ND	* *		
	* CS-134	* 60 *	ND	* *	*	*
	# # MN~54 #	* * 32 * *	ND	: :		*
	* ZN-65	* 66 *	ND	* *	*	*
	# CD-60	* 60 *	ND	* *		*

Table III-52

FOOD CHAIN (MEAT) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Operat	tional Values
	Mean	95 Percentile
I-131	<9.5	<9.5
Ba-140	<9.8	<9.8
Co-58	<15.0	<15.0
Cs-137	<9.25	<9.25
Cs-134	<15.0	<15.0
Mn-54	<8.0	<8.0
Zn-65	<16.5	<16.5
Co-60	<15.0	<15.0

FOOD CHAIN (POULTRY) PATHWAY

The State has the responsibility to collect and analyze poultry samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-53. All samples were collected and analyzed. There is no critical station in this pathway. A statistical evaluation of the operational data is in Table III-54. There are no preoperational data for this pathway.

The 1980 operational concentrations were nondetectable as were the 1979 operational concentrations.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE & NO.	LLD	ALL LOCATIONS	HIGHEST MEAN	N LOCATION CONTROL	LOCATION INRR
POULTRY (PCI/KG) FOOD CHAIN	* * GAMMA * ANALYSIS 2	は 株 は は は は は せ		* * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	* I-131	* 38 *	ND	* *	*	*
	# # BA-140	* * 39 *	ND			*
	* * CO-58	* 60 *	ND	* *		*
79	* * CS-137	* * * * * * * * * * * * * * * * * * *	ND	* *		*
	* CS-134	* 60 * * *	ND	: :	:	*
	* MN-54	* 32 * * *	ND	: :		*
	* ZN-65	*	ND	* *	*	*
	* CO-60	* 60 *	ND	* *	*	*

Table III-54

FOOD CHAIN (POULTRY) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)


Nuclide	Opera	tional Values		
	Mean	95 Percentile		
I-131	<9.5	<9.5		
Ba-140	<9.8	<9.8		
Co-58	<15.0	<15.0		
Cs-137	<9.3	<9.3		
Cs-134	<15.0	<15.0		
Mn-54	<8.0	<8.0		
Zn-65	<16.5	<16.5		
Co-60	<15.0	<15.0		

FOOD CHAIN (EGGS) PATHWAY

The State has the responsibility to collect and analyse egg samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-55. All samples were collected and analyzed. There is no critical sample station in this pathway. A statistical evalution of the operational data is presented in Table III-56. There are no preoperational data for this pathway and all 1980 operational analyses resulted in nondetectable activity as did all 1979 operational analyses.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 BOCKET NO. 50-302

PATHWAY ********	1 TYPE & NO.	LLD	ALL LOCATIONS	I HICHEST MEA	N LOCATION CONT	ROL LOCATION :NRR
EGGS (PCI/KG) FOOD CHAIN	# GAMMA # ANALYSIS 2	* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	* * *	* * 0
	# # I-131	* 38 *	ND	* *	*	**
	¥ ¥ BA−140	* * 39 *	ND	* *	*	
	* CO-58	* 60 *	ND	* *		
88	* CS-137	* 37 *	ND	* *		
	* CS-134	* 60 *	ND	* *	*	
	# # MN-54	* 32 *	ND	* *	*	
	* * ZN-65	* * 66 *	ND	* *	:	
	* CO-60	* 60 *	ND	* *	*	

Table III-56

FOOD CHAIN (EGGS) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Opera	tional Values
	Mean	95 Percentile
I-131	<9.5	<9.5
Ba-140	<9.8	<9.8
Co-58	<15.0	<15.0
Cs-137	<9.3	<9.3
Cs-134	<15.0	<15.0
Mn-54	<8.0	<8.0
Zn-65	<16.5	<16.5
Co-60	<15.0	<15.0

FOOD CHAIN (GREEN LEAFY VEGETABLES) PATHWAY

The University has the responsibility to collect and analyze green leafy vegetable samples. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-57. All samples were collected and analyzed. The critical station for this type of analysis (Sample Station C48) is in the east sector at 4.0 miles from the plant. A statistical evaluation of the operational data is presented in Table III-58. There are no preoperational data for this pathway.

The 1980 operational concentrations are less than the 1979 operational concentrations except for Ra-226, Th-232 and K-40, all of which are naturally occurring.

Semiannual Sr-90 Analysis

The analysis of the semiannual samples for Sr-90 is presented in Table III-59. All samples were collected and analyzed. The critical station for this type of analysis is Station C-48. The critical station showed a Sr-90 concentration of 87 pCi/kg, which exceeded the control station concentration (no detectable activity) by more than ten times. LER No. 80-028/04T-0 was generated to report this occurrence.

Resample analysis confirmed the high level of Sr-90 was a valid finding. Sr-89 was not detected in either original or follow-up sample. Operation of Crystal River Unit 3 is not believed to be responsible for this finding. Supplemental LER 80-028/04T-1 supports this determination.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

G.L. VEG. PCI/KG	* GAMMA * ANALYSIS 6	* * * * * *	* * * * * *		* * *			***			*
	* RA-226 *	* 15 *	* 76(* (48-	4) #G41 # 103) #	100{	96-	2)* 103)* *	53(2/ 48-	2)* 58)*
	* TH-232 *	* 14 *	* 102(* (45-	4)*C47 + 171)*	150(129-	2)* 171)*	150 (129-	2)*
	* I-131	* 7	*	ND	* *			# #			*
85	# # BA-140	* * 23	* * *	ND	* *			**			*
	* RU-106	* * 55	* *	ND	* *			*			*
	* CS-137	* 7 * 4	* 335(* (11-	4)*C41 # 1170)*	657(143-	2)* 1170)*	13(2/	2)* 14)*
	* ZR-95	* 11	*	ND	* *			*			* *
	* * MN-54	* 6	*	ND	* *			* *			* *
	* ZN-65	* * 17	* *	ND	* *			*			*
	* K-40	* * 79 *	* 2632(*	828-	4) ±C47 # 4430) * *	3505(2/	2)*	3505	2/	2)* 4430)*

Table III-58

FOOD CHAIN (GREEN LEAFY VEGETABLES) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide				itional Values	6.141	16	
	Mean	95 Percentile	Mean	ontrol Stations 95 Percentile	Mean	95 Percentile	
Gamma Analysis							
Ra-226	76.3	129.8	53.0	60.1	99.5	109.2	
Th-232	101.5	217.0	150.0	208.2	53.0	75.2	
I-131*	<1.75	<2.44	<1.50	<1.50	<2.00	<2.69	
Ba-140	<5.69	<7.82	<5.00	<5.69	<6.38	<8.80	
Ru-106	<13.7	<17.4	<12.6	<13.7	<14.8	<10.5	
Cs-137	334.5	1432.9	12.5	<16.7	656.6	2079.8	
Zr-95	2.75	3.15	<2.63	<2.80	<2.88	<3.22	
Mn-54	1.50	1.50	<1.50	<1.50	<1.50	<1.50	
Zn-65	4.12	4.76	<4.25	<4.94	<4.00	<4.69	
K-40	2632.0	5515.6	3505.0	6069.0	1759.0	4340.0	
Strontium Analysis							
Sr-90	23.5	106.6	3.0	11.3	44.0	163.2	

*Critical nuclides for critical station

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302
CITRUS COUNTY, FLORIDA REPORTING PERIOD 01/01/80-12/31/80

**	PATHUAY	1	S JAKE								TIONS		HIGHEST	MEAN	LOCAT	TION :	CONTROL	LOCAT	ION	INRR	all sections in
	G. L. VEG	ं व व	SR-90			计计		計量				**	*			*				*	Section .
	FOOD CHAIN		ANALYS	(8)	4	が		**				* *	* *			#				* 0	-
		(d)	SR-5	()(#	1	**	31	(3/	4)*C4 87)*	# 81	44(2/	2)*	SEE C	OLUMN	4	ti ti	

IV. EXTERNAL RADIATION

The External Radiation portion of the Radiological Environmental Monitoring Program (Specification 3.2.3) is split between the University and the State (See Table I-1). The University also has a TLD at Sample Station C47 and the State has additional TLDs at Sample Stations C04, C40, and C46. The summaries for the University's data is in Table IV-1 and for the State's data in Table IV-2. Sample Stations C14H, C14M, and C14G are the critical stations in this pathway.

Table IV-3 presents a statistical summary of all data. The 1980 data from all TLD stations is consistent with the 1979 data and the preoperational data. Additionally, the critical stations and the control stations of the University also compare very well. However, because the University and the State use different types of TLDs, it is necessary to report their results separately.

Table IV-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE & NO). LI	LD	ALL L(DCATION:	B HI	GHEST	MEAN	LOCATION	1 1 C	ONTROL	LOCAT	ION INRR
AIR SUBMERSION (MREM/YR)	당 당 당	*	**			* * *	* *			*			* *
	* EXTERNAL * RADIATION *	36*	15 *	43(34/27-	34)*C41 58)*	* 4	9(*	44 (23/	23)* 0 58)*

Table IV-2

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

P/THWAY	TYPE & NO). LL	D	ALL I	LOCATION	NS HIGH	HEST MEAN	N LOCA	TION	CONTROL	LOCATION	I NRR
AIR SUBMERSION (MREM/YR)	# # #	* **	* *			*	*		*			* *
	* EXTERNAL * RADIATION *	28* 2	0 #	50(28/	28)*C26 160)*	* 130(* (4/	4)* 160)*	SEE CO	LUMN 4	* * * *

Table IV-3

EXTERNAL RADIATION PATHWAY

QUARTERLY TLD ANALYSIS (mrem/yr)

	Median Value	Mean Value	95 Percentile Value
Preoperational	62		77
All Stations	42.0	46.4	97.9
State	37.5	50.1	124.6
University (All Stations)	44.2	43.3	60.1
University (Critical Stations)	44.8	41.1	55.2
University (Control Stations)	45.5	44.4	62.2