ANNUAL ENVIRONMENTAL OPERATING REPORT

VOLUME 2 - RADIOLOGICAL

1/1/79 - 12/31/79

SUPPLEMENT 1

CRYSTAL RIVER - UNIT 3

FLORIDA POWER CORPORATION

FACILITY OPERATING LICENSE NO. DPR-72

DOCKET NO. 50-302

November, 1981

APPROVED BY: Manager

Nuclear Support Services

DATE:

TABLE OF CONTENTS

		PAGE
I	Introduction	1
II	Milk and Green Leafy Vegetables Census	4
III	Media Other than External Radiation	5
IV	External Radiation	89

LIST OF TABLES

		PAGE
I-1	Radiological Environmental Monitoring Program	2
111-1	Air Inhalation Pathway - Gross Beta Analyses Summary	10
111-2	Air Inhalation Pathway - I-131 Analyses Summary	11
111-3	Air Inhalation Pathway - Gamma Analyses Summary	12
III-4	Air Inhalation Pathway - Sr-89/90 Analyses	13
111-5	Air Inhalation Pathway - Statistical Evaluation of Analyses	14
III-6	Precipitation Pathway - Gamma Analyses Summary	16
111-7	Precipitation Pathway - Statistical Evaluation of Analyses	17
8-111	Precipitation Pathway - Tritium Analyses Summary	18
111-9	Sea Water Pathway - Gamma Analyses Summary	21
III-10	Sea Water Pathway - Statistical Evaluation of Analyses	22
III-11	Sea Water Pathway - Tritium Analyses Summary	23
III-12	Sea Water Pathway - Sr-89/90 Analyses	24
111-13	River Water Pathway - Gamma Analyses Summary	26
111-14	River Water Pathway - Statistical Evaluation of Analyses	27
III-15	River Water Pathway - Tritium Analyses Summary	28
III-16	Ground Water Pathway - Gamma Analyses Summary	30
III-17	Ground Water Pathway - Statistical Evaluation of Analyses	31
III-18	Ground Water Pathway - Tritium Analyses Summary	32
111-19	Potable Water Pathway - Gamma Analyses Summary	34
111-20	Potable Water Pathway - Statistical Evaluation of Analyses	35
111-21	Potable Water Pathway - Tritium Analyses Summary	36

LIST OF TABLES (Continued)

		PAGE
111-22	Shoreline External Sediment Pathway - Gamma Analyses Summary	38
111-23	Shoreline External Sediment Pathway - Statistical Evaluation of Analyses	39
111-24	Shoreline External Sediment Pathway - Sr-90 Analyses	40
111-25	Sea Food Chain Pathway - Gamma Analyses Summary	42
111-26	Sea Food Chain Pathway - Statistical Evaluation of Analyses	43
111-27	Sea Food Chain Pathway - Sr-89 and 90 Analyses Summary	44
111-28	Ingestion Crab Pathway - Gamma Analyses Summary	46
111-29	Ingestion Crab Pathway - Gamma Analyses Statistical Evaluation	47
111-30	Ingestion Carnivorous Fish Pathway - Gamma Analyses Summary	49
111-31	Ingestion Carnivorous Fish Pathway - Gamma Analyses Statistical Evaluation	50
111-32	Ingestion Herbivorous Fish Pathway - Gamma Analyses Summary	52
111-33	Ingestion Herbivorous Fish Pathway - Gamma Analyses Statistical Evaluation	53
111-34	Ingestion Oysters Pathway - Gamma Analyses Summary	55
111-35	Ingestion Oysters Pathway - Gamma Analyses Statistical Evaluation	56
111-36	Ingestion Shrimp Pathway - Gamma Analyses Summary	58
111-37	Ingestion Shrimp Pathway - Semiannual Gamma Analysis	59
111-38	Ingestion Milk Pathway - Gamma Analyses Summary	61
111-39	Ingestion Milk Pathway - Statistical Evaluation of Analyses	52
III-40	Ingestion Milk Pathway - Sr-89/90 Analyses	63

LIST OF TABLES (Continued)

		PAGE
III-41	Ingestion Animals Pathway - Gamma Analyses Summary	65
111-42	Ingestion Animals Pathway - Gamma Analyses Statistical Evaluation	66
111-43	Food Chain (Grasses) Pathway - Gamma Analyses Summary	68
111-44	Food Chain (Grasses) Pathway - Gamma Analyses Statistical Evaluation	69
111-45	Ingestion Food Crops (Citrus) Pathway - Gamma Analyses Summary	71
III-46	Ingestion Food Crops (Citrus) Pathway - Annual Gamma Analysis	72
111-47	Ingestion Food Crops (Watermelon) Pathway - Gamma Analyses Summary	74
111-48	Ingestion Food Crops (Watermelon) Pathway - Annual Gamma Analysis	75
111-49	Food Chain (Meat) Pathway - Gamma Analyses Summary	7.7
111-50	Food Chain (Meat) Pathway - Semiannual Gamma Analysis	78
III-51	Food Chain (Poultry) Pathway - Gamma Analyses Summary	80
111-52	Food Chain (Poultry) Pathway - Semiannual Gamma Analysis	81
111-53	Food Chain (Eggs) Pathway - Gamma Analyses Summary	83
111-54	Food Chain (Eggs) Pathway - Semiannual Gamma Analysis	84
111-55	Food Chain (Green Leafy Vegetables) Pathway - Gamma Analyses Summary	86
III-56	Food Chain (Green Leafy Vegetables) Pathway - Statistical Evaluation of Analyses	87
III-57	Food Chain (Green Leafy Vegetables) Pathway - Sr-90 Analyses Summary	88

LIST OF TABLES (Continued)

							PAGE
IV-1	Air Submersion of Florida)	Pathway		TLD	Analyses	Summary (University	90
IV-2	Air Submersion Florida)	Pathway	-	TLD	Analyses	Summary (State of	91
IV-3	Air Submersion Evaluation	Pathway	*	TLD	Analyses	Statistical	92

INTRODUCTION

The Radiological Environmental Monitoring Program provides information which can be used to assist in assessing the type and quantity of radiation exposure in unrestricted areas resulting from plant operation. The Program is conducted via a contract with the University of Florida, Department of Environmental Engineering Sciences, Gainesville, Florida and a grant to the State of Florida, Department of Health and Rehabilitative Services, Orlando, Florida. The parts of the Program for which each are responsible are listed in Table I-1. In essence, the Program provdes a continuation of the preoperation program so that any increases of radioactivity in the environment can be detected. No pathway has shown any confirmed increases of radioactivity in the environment due to plant operation during this report period.

The most significant achievement in 1979 was that the analyses for all nuclides in all pathways had annual average Lower Limits of Detection (LLDs) that were equal to or less than that required.

In the summary analysis tables, two terms are used which need explanation. The term "ND" means that the activity of the nuclide for the samples was non-detectable or less than half of the LLDs for those samples. The term "<LLD" means that the activity of the nuclide for the samples was less than the LLDs for those samples. In this way, an apparent change in activity below the lower limits of detection can be trended without getting bogged down in "actual" activity values.

The statistical evaluation of operational analyses were performed using one-fourth the LLD value if the activity was non-detectable and using three-fourths the LLD value if the activity was less than the LLD value. When a non-detectable or less than LLD concentration used in an evaluation, the results are prefaced with a "<" sign to show that the results do not indicate only detected activity.

Finally, the statistical evaluation of the operational concentrations where there are preoperational results includes the median values. This is done solely for comparison to preoperational results.

Table I-1

Radiological Environmental Monitoring Program

RESPONSIBILITY	PATHWAY	SAMPLE STATIONS(1)
University	Air Submersion	C04, C14H*, C14M*, C14G*, C40, C41, C43, C46
State	Air Submersion	CO7, CO9, C18, C26
University	Air Inhalation	C41*
State	Air Inhalation	CO4, CO7, C18, C26, C40, C46
State	Precipitation	CO4, C26, C40
University	Sea Water	CO1, CO9, C13, C14H, C14M, C14G*
State	River Water	C15
State	Ground Water	C40
University	Potable Water	CO7, C10, C18
University	Shoreline External Sediment	CO1, CO9, C14H*, C14M*, C14G*
University	Seafood Chain	C29, C30
University	Ingestion Crab	C29*, C30
University	Ingestion Fish (Carnivorous)	C29*, C30
University	Ingestion Fish (Herbivorous)	C29*, C30
University	Ingestion Oysters	C29, C30
University	Ingestion Shrimp	C27
University	Ingestion Milk	C47, C49*
University	Ingestion Animals	C45
University	Food Chain (Grasses)	CO5, C40, C41
	University State University State State University State State University	University State Air Submersion University Air Inhalation State Air Inhalation State Precipitation University Sea Water State River Water State Ground Water University University

Table I-1 (Continued)

Radiological Environmental Monitoring Program

RESPONSIBILITY	PATHWAY	SAMPLE STATIONS (1)
State	Ingestion Food Crops (Citrus)	C19
State	Ingestion Food Crops (Watermelon)	C04
University	Food Chain (Soil)	C04, C07, C18, C26, C40, C41, C46
State	Meat	C50
State	Poultry	C51
State	Eggs	C51
University	Food Chain (Vegetables)	C47, C48*

^{*}Critical Pathway Sample Stations

 $^(^1)$ See ETS Table 3.2-4 and Figures 3.2-2 and 3.2-3 for the description and location of all Sample Stations.

II. MILK AND GREEN LEAFY VEGETABLE CENSUS

Environmental Technical Specification 3.2.1 requires a census of animals producing milk for human consumption to be conducted semiannually. If this census fails to locate any such animals, a census of gardens producing fresh leafy vegetables for human consumption is required annually.

The garden census, required as the result of a lack of findings on the January 16, 1979, milk animal census, was completed on June 14, 1979. The critical garden (Sample Station C48) was found to be in the east sector at 4.0 miles from the plant.

One Licensee Event Report (LER) was submitted to the Commission. LER 79-058/04L-0 was the result of not conducting a garden census within the surveillance interval required by Environmental Technical Specification 3.2.1.2. However, the late census did not alter the effectiveness of the sampling program because the results of the census were taken into account during the next required garden sample.

A semiannual milk cow survey was completed on June 27, 1979 again with no milk animals found. The critical station for green leafy vegetables was continued at the garden 4.0 miles from the plant in the east sector.

A seminannual milk cow census was completed by December 31, 1979. No milk animals were located within five miles of the plant site in this survey. The transmittal letter with report was submitted January 8, 1980.

III. MEDIA OTHER THAN EXTERNAL RADIATION

Environmental Technical Specification 3.2.2 requires that samples be taken and analyzed per ETS Table 3.2-2 and that analysis LLDs will be equal to or less than those in ETS Table 3.2-5A and B. Each analysis routine of each pathway in ETS Table 3.2-2 will be summarized, interpreted, and evaluated in the order presented.

AIR INHALATION PATHWAY

The Air Inhalation Pathway is one of two pathways split between the University and the State. In addition to the assigned stations, the University operates a station at C47.

Weekly Gross Beta Analysis

The summary for the gross beta analysis is in Table III-1. Six weekly samples were not collected and analyzed:

CO4 for the week of 01-28-79 due to equipment failure.

C41 for the week of 08-03-79 due to power failure.

C41 for the week of 11-02-79 because air filter was not sent with charcoal cartridge.

C46 for the week of 11-05-79 because of operator error.

C47 for the week of 09-21-79 because of annual meter calibration.

C47 for the week of 10-05-79 due to equipment failure.

All other samples were collected and analyzed.

There are no critical stations for this type of analysis. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-5.

The operational concentrations are similar to the preoperational concentrations and are lower than the 1978 operational concentrations.

Weekly I-131 Analysis

The summary for the iodine analysis is in Table III-2. Six weekly samples were not collected and analyzed:

C41 for the week of 06-15-79 because the charcoal cartridge fell apart while being removed from the particulate filter.

C41 for the week of 08-03-79 due to power failure.

C41 for the week of 10-05-79 because the pump was reported to be unplugged.

C46 for the week of 11-05-79 due to operator error.

- C47 for the week of 09-21-79 due to annual meter calibration.
- C47 for the week of 10-05-79 due to equipment failure.

High LLDs for the third quarter, Station C41, can be attributed to long time elapsed until counting due to equipment failure. High LLDs were noted on 02-09-79 and 02-23-79 at Station C47 due to low volume of air collected with faulty pump.

All other samples were collected and analyzed. Station C41 is the critical station for this type of analysis and no samples had activity greater than 10 times the control stations' values. A statistical evaluation of the operational data is presented in Table III-5. There are no preoperational data.

The statistical analysis of the critical and control stations for the period of this report is as follows:

Critical Station Mean Value = $<.012 \text{ pCi/m}^3$ Critical Station 95 Percentile Value = $<.040 \text{ pCi/m}^3$ Control Stations Mean Value = $<.011 \text{ pCi/m}^3$ Control Stations 95 Percentile Value = $<.030 \text{ pCi/M}^3$

As with the gross beta concentrations, the Iodine-131 concentrations in 1979 were lower than the 1978 concentrations. The critical station and control station concentrations are less than their respective 1978 concentrations. Even though all samples at the critical station resulted in non detectable activity, the 95 percentile concentration appears high because of LLD differences in the two contractors collecting the data.

Quarterly Gamma Analysis

The summary for gamma analysis of quarterly composites is in Table III-3. All samples were collected and analyzed. High LLDs noted for the fourth quarter at Station C41 were due to decreased sample volumes resulting from loss of the Air Particulate Filter and failure of person changing sample to calibrate flow to one cubic foot per minute. All other samples were collected and analyzed and had LLDs equal to or less than those required. There are no critical stations for this type of analysis.

One Licensee Event Report (LER) was issued to the Commission. LER 80-014/04L-0 was the result of the air concentration for Thorium-232 exceeding ten times the preoperational level at Sampling Station C41. The apparent cause of the occurrence was a coal slag pile, located six (6) meters south of the air sampler at Station C41.

The increased air concentration is attributed to the high Th-232 concentration in the coal slag pile.

Quarterly Sr-89 and 90 Analysis

The summary of the quarterly analysis for Strontium-89 and 90 is presented in Table III-4. All samples were collected and analyzed. There are no critical monitoring stations in this pathway for this type of analysis. Table III-5 presents a statistical analysis of the data. There are no preoperational data.

The 1979 Sr-89/90 concentrations in this pathway are similar to previous operational years' concentrations.

Table IIi-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO	LLD	ALL LOCATION	S HIGHEST MEAN	LOCATION CONTRO	
AIR INHALATION # (PCI/M3) #	GROSS B 4	* * 16 *0.003	# #0.025(389 / # (0.002-0.	416) #C46 #0. 027 (210) # # (0.	51/ 52)* SEE 010-0. 921)*	COLUMN 4 *

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

**	PATHWAY		8 NO.						ONS							L LOCAT		
Α.Τ	R INHALATION	#		林		#				분 분	#			#	2 - 11			*
MI	(PCI/M3)	#IODINE-1	31 416	*().	045	# < 1,	LD (1/	416)	# C4	7 # <1	LD (1/	1)#	SEE	COLUMN	4	*
		#		#		廿				#	#							*

REPORTING PERIOD 01/01/79-12/31/79 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY DUCKET NO. 50-302 CRYSTAL RIVER UNIT 3 CITRUS COUNTY, FLORIDA

PATHWAY	PATHWAY TYPE & NO. 1 LLD	L.L.	3	ALL 1.C	CATIONS	3 - HI	3.HES	T MEAN	LOCATION :	OCATIONS HIGHEST MEAN LOCATION CONTROL LOCATION NAR	******
AIR INHALATION	* *GAMMA ANALYSIS* *GUARTERLY **COMPOSITE 32 **		本本本本本本			*****	*****		*****		*****
	CE-144 **	0	057#0	0376	1	32) # (41	· • * *	0.037 ((1/) *	SEE COLUMN 4	***
	** RA-226 **	Ö	031*0.	003(0	005-0.	6/ 32) # C47 . 002-0. 005) #	* * * *	0.003 ((4 / 4) ** (0.002-7.005) **	SEE COLUMN 4	***
1.	TH-232 **	0	016*0	016*0.019(8/ 001-0.	8/ 32)*(41)	****	0.036 (4/ 4)	(4, 4) (9,001-9,140)	SEE COLUMN 4	****
2	I-13i **	o.	**		QN	***	* * *		***		* * *
	# BA-140 *	0	*600		QN	***	* * *		* * 4		***
	RU-106 **	0	040#0.) 500	1/	32)*(41	***	n.305 ((0.005-0.005)	SEE COLUMN 4	***
	CS-137 **	0	**	. 004(B/ 32) * (41 001-0. 024) *	****	0.005 (4/ 4)	(0.001-0.024)	SEE COLUMN 4	****
	* 26-42	0	*800		QN	***	* * *		4 * *		***
	M4-54 #	0	*800		QN	***	***		* * *		***
	* 59-NZ *	0	017#		QN	***	* * *		***		* * *
	* K-40	0	08580	030	002-0	0.007-0.120)#		.046 (* 0.046 (3/ 4) **	SEE COLUMN 4	***

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY		TYPE &	NO).	L	LD	1	ALL	LO	CAT	ION	5	! HI	GHES	T MEA	AN L	DCAT	ION	1	CONTROL	LOCA	TION	INRR
R INHALATION	*	*****			#		#						lir H	4					*				*
(PCI/M3)	*SR	89-90 ALYSIS		35	*		*						松	*					* *				*
	* *	SR-8	19		* 0 * 0	. 002	* 0.	000	(0.	000-	/ -0.	32)	#C41	*0.	000(0.00	2/0-0.	000	* * *	SEE	COLUMN	4	*
	* *	SR-9	10		* 0	. 001	* *0.	000	(0.	000	/ ₀ .	32)	* *C47	*0.	000(0.00	4/0-0.	001	* *	SEE	COLUMN	4	* * * *

Table III-5

AIR INHALATION PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/m³)

Nuclide	Preope	rational Values	0p	erational '	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gross Beta Ana	lysis				
Gross	.029	.12	<.020	<.023	<.049
Iodine Analysis	s				
I-131*	-			<.011	<.032
Gamma Analysis					
Ce-144	.003	.172	<.015	<.015	<.028
Ra-226	<.2	.241	<.010	<.008	<.014
Th-232	<.01	.008	<.005	<.008	<.055
I-131	<.07	.004	<.003	<.002	<.004
Ba-140	<.01	.016	<.003	<.002	<.004
Ru-106	.025	.216	<.013	<.011	<.019
Cs-137	<.01	.013	<.003	<.003	<.011
Zr-95	.003	.043	<.003	<.002	<.004
Mn-54	<.01	<.01	·.003	<.002	<.004
Zn-65	<.01	<.01	005	<.004	<.008
K-40	<16.8	<16.8	<.028	<.027	<.064
Strontium Analy	ysis				
Sr-89			<.001	<.0004	<.0008
Sr-90			<.0003	<.0002	<.0006
*Critical nucl	ide for crit	ical station			

PRECIPITATION PATHWAY

The State has the responsibility to collect and analyze precipitation samples. There are no additional stations for the pathway.

Monthly Gamma Analysis

The summary for the gamma analysis of the monthly samples is in Table III-6. All monthly samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-7.

The 1979 operational activity of the nuclides determined by gamma analysis were non detectable as were the preoperational, 1977 and 1978 operational concentrations.

Monthly Tritium Analysis

The summary for the tritium analysis of the monthly precipitation sample is in Table III-8. Two monthly samples were not analyzed:

- CO4 No analysis performed on sample collected on O8-06-79. Sample was spilled during move to new laboratory.
- C40 No analysis performed on sample collected on 08-06-79. Sample was spilled during move to new laboratory.

All other samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-7.

All of the 1979 operational activity data for tritium was less than the Sample LLD(s) as were the 1978 operational activities.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO. 1	LLD :	ALL LOCATIONS	HIGHEST MEAN LOCATION	CONTROL LOCATION INRR
PRECIPITATION (PCI/L)	# GAMMA # ANALYSIS 36 #	15 15 15 15 15		*	* * * * * * * * * * * * * * * * * * * *
	i I -131 #	17 #	ND	# # # # # #	
1	BA-140	17 *	ND	计	* * *
8	CS-137 #	17 #	ND	# # # # # # #	* * *
16	CS-134 *	17 #	ND	# # # # # #	
6	CO-58 #	17 #	ND	# # # #	
	MN-54 #	15 *	ND	# # # # # #	
	ZN-65 #	30 *	ND	* # # # #	* * *
•	CD-60 *	17 #	ND	廿 甘	

Table III-7

PRECIPITATION PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/)

Nuclide	Preope	rational Values	0p	erational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gamma Analysis					
I-131	<.4	<.4	<4.3	<4.3	<4.3
Ba-140	<10	<10	<4.3	<4.3	<4.3
Cs-137	<10	<10	<4.3	<4.3	<4.3
Cs-134	<10	<10	<4.3	<4.3	<4.3
Co-58	<10	<10	<4.3	<4.3	<4.3
Mn-54	<10	<10	<3.8	<3.8	<3.8
Zn-65	<20	<20	<7.5	<7.5	<7.5
Co-60	<10	<10	<4.3	<4.3	<4.3
Tritium Analysi	S				
H-3	<320	<320	<150	<150	<150

Table III-8

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1	TYPE				LLD	1	ALL L										CONTROL			
***	各种特殊	***	* # #	林林林林	操 提 4	* * * * * * *	*##	存在本本本	华林林	*	**	**	* #	***	**	**	* * *	***	***	设备	本本本作
	- 24				#		#					Ħ		#			#				*
PRECIP.	. #				#		H					H		#			#				#
(PCI/L)	44	TRITIL	IM		11		44					- ti		*			被				#
AIR	- 15	ANAL YS		36	*		#					H		*			H				# 0
	- 44	Particular 1 s	,	- 55	-11		#					H		*			#				#
	46				#		44					44		#			- #				#
	#	H-	-3		#	200	Ħ	<lld(< td=""><td>34</td><td>1/</td><td></td><td>36)#</td><td></td><td>#</td><td></td><td></td><td>Ħ</td><td></td><td></td><td></td><td>*</td></lld(<>	34	1/		36)#		#			Ħ				*

SEA WATER PATHWAY

The University has the responsibility to collect and analyze sea water samples. There are no additional stations for this pathway.

Monthly Gamma Analysis

The summary for the gamma analysis of monthly samples is in Table III-9. All samples were collected and analyzed. Sample Station C14G is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-10.

The concentrations of nuclides by gamma analysis during 1979 was less than the concentrations during 1978 and the preoperational concentrations. The critical stations and the control stations concentration were almost identical and both were less than the respective concentrations during 1978.

One Licensee Event Report (LER) was issued to the Commission. LER 79-016/04-L was the result of Zn-65 analysis having an LLD greater than the required LLD for January at Station CO9. Inadequate sample time was the apparent cause of the greater than required LLD.

Quarterly Sr-89 and 90 Analysis

The summary of the quarterly analysis for Sr-89 and 90 is presented in Table III-10. All samples were collected and analyzed. Strontium 89/90 are not critical nuclides in this pathway. A statistical evaluation of 1979 operational data is presented in Table III-10.

The concentrations of these nuclides are lower than both 1977 and 1978 concentrations.

Quarterly Tritium Analysis

The summary for the tritium analysis of quarterly composites is in Table III-11. All quarterly composites were collected and analyzed. There are no critical stations for this type of analysis.

A comparison of the preoperational and operational analyses is in Table III-10. The operational concentrations in 1979 were less than those in 1978 except for K-40, and less than preoperational concentrations except for I-131 and K-40. Some preoperational activities that were reported were less than the minimal detectable activities and this skewed the statistics downward.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

SEA NATER (PCI/KG)	# # # # # # # # # # # # # # # # # # #	**			* *			#			*
	* ANALYSIS 72 *	#			# #			#			* 0
	* RA-226 * *	12 *	58(63/	72)*C09 * 60)* *	34(12-	12)* 53)*	30{	52/ 12-	60)*
	# TH-232 # #	10 #	17{	51/	72)*C09 * 28)* *	19(8/ 9-	12)* 28)*	17(42/	60)* 28)*
	# I -131 #	*		ND	* *			# #			* *
	# BA-140 #	# 20 # # *	18(1/	72)*C09 *	18(1/	12)#	18(1/	60)#
# # # #	# RU-106 # #	# 45 # # 45 # # #	39(5/ 33-	72)*C14M* 46)* *	42(38-	12)* 46)* *	40 (37-	60)*
	# CS-137 # #	# 6 # # 6 #	5(6/	72)#C09 # 7)# #	6(2/ 5-	12)*	5(6/ 4-	60)*
	* ZR -95 *	* 8 *	11(1/	72)*C13 *	11(1/	12)#	11(1/	60)#
	# CS-134 #	# 6 # # 6 #	6(9/ 4-	72)*C01 * 10)* *	10(1/	12)*	6(9/	60)*
	# MN -54 #	# # # 5 # # #	5(4/2-	72)*C09 * 6)* *	6(1/	121#	5(3/	60)*
	# # ZN -65 #	# # # # # # # # # # # # # # # # # # #		ND	按 按 按 按			**			*
	# K - 40	# 60 #	329{	68/	72)*C14H* 2315)* *	488(12/	12)*	333(57/ 98-	60) # 2315) #

Table III-10

SEA WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values			Oper	ational V	alues		
	Median	95 Percentile	Median	Mean	95 Percentile		rol Stations	Criti	cal Stations
	-					Mean	95 Percentile	Mean	95 Percentile
Gamma Ana	lysis								
Ra-226		600	<24.0	<25.1	<51.4	<26.0	<53.5	<20.8	<37.7
Th-232		7	<15.0	<13.1	<27.8	<12.9	<27.8	<14.1	<28.2
I-131*	<.4	<.4	<1.5	<1.4	<2.3	<1.5	<2.4	<1.4	<2.2
Ba-140	<10	11	<4.8	<5.1	<9.7	<5.2	<10.1	<4.6	<7.8
Ru-106			<11.5	<13.4	<29.4	<13.6	<29.9	<12.8	<27.0
Cs-137*	<10	10	<1.5	<1.7	<4.0	<1.9	<4.3	<1.3	<2.3
Zr-95	<10	<10	<2.0	<2.2	<4.8	<2.3	<5.1	<2.0	<3.3
Cs-134*	<10	<10	<1.5	<2.0	<5.5	<2.2	<5.9	<1.3	<2.1
Mn-54	<10	<10	<1.3	<1.4	<3.3	<1.4	<3.3	<1.4	<3.2
Zn-65	<20	7	<2.5	<2.8	<4.7	<2.9	<4.8	<2.6	<3.9
K-40	150.8	368.7	<291.0	<313.2	<888.4	<318.0	<944.0	<289.3	<465.3
Strontium	Analysis								
Sr-89				<0.6	<1.9	<0.6	<2.0	<0.6	<1.3
Sr-90				<0.4	<2.1	<0.4	<2.3	<0.4	<1.3
Tritium A	nalysis								
H-3	71	87	<89.3	<152.5	<413.85				

^{*}Critical nuclides for critical station.

Table III-11

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL BIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1	TYPE				LLD	1 4 4 4			RATIONS							CONTROL			
	*				#		Ħ				#	#				#				#
SEA WATER	- 15				Ħ		#				*	#				*				*
(PCI/KG)	*	TRITIL	JM		#		#				#	*				#				#
01/	#	ANALYS		24	#		#				#	#				#				* 0
	*			-	H		#				廿	*				#				*
	*				#		#				*	*				#				*
	#	H-3	3		#	361	#	668	(1/	24) #C	01 *	668	3(1/	4)#	SEE C	OLUMN	4	*

Table III-12

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	- 1	TYPE	80	NO.	1	LLD	1	ALI	_ L	DCAT	IDNS	1	HI	GHEST	MEAN	LOCA	TION	1	CONTRO	L LOCA	TION	INRR	
***	**	**	於於於	***	4 本	不存存存在	女长	***	中华世	***	计算计算计	* # # # .	444	***	**	***	* * * *	**	**	***	农 华 华 华	***	
	*				*		#					並		#				*				*	
SEA WATER	- 55				*		-14					- #		#				#				*	
(PCI/KG)	*	SR-89	190)	-15-		#					*		#				#				*	
11 01/110/	45-	ANALY	SIS	24	#		-14					*		#				#				* 0	
	- 15-				44		- 15					*		#				#				#	
	*				11-		-14					#		#				4				*	
	*	SR	-90)	-15-		1		1 (10	1 :	24) #(C141	M#	3(1/	4) #	SEE	COLUMN	4	4	
	35.	Cit	, .		44		- 15		(0-		3)*		#	-	-		#	- L	00001114		*	
	45				-8-		В					#		#				4				*	
	ж.				-35							14		*								*	
	34	CD	-89)	34		36		11	7	/ .	24) #1	001	44	2(2/	Λ) #	CEE	COLUMN	4	*	
	- 14	Sit	-0,	mp	34		24		1	1.		3)*	CUL	21.	-;	1-	3) #	SEE	COLONIA	**	*	
	*				R		n					7) 1		**	1			7 10				W	

RIVER WATER PATHWAY

The State has the responsibility to collect and analyze river water samples. There are no additional stations for this pathway.

Quarterly Gamma Analysis

The summary for the gamma analysis of quarterly samples is in Table III-13. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-14. Neither 1979 operational, nor preoperational analyses showed detectable activities in any sample.

Quarterly Tritium Analysis

The summary for the tritium analysis of quarterly samples is in Table III-15. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-14. Neither operational, nor preoperational analyses showed detectable activities in any sample.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY !	TYPE & NO.	LLD	ALL LOCATIONS	1	HIGHEST	MEAN LOCATION	CONTROL LOCATION	INRR
RIVER WATER (PCI/KG)	GAMMA ANALYSIS 4	计 计 计 计 计 计 计		# # # #	**			* * * * * * * * * * * * * * * * * * * *
# # # # # # # # # # # # # # # # # # #	1- 131	# # 17 # # # #	ND	# #	*			*
4	BA-140	# 17 # # 4 #	ND	*	*			*
4	CO- 58	# 17 # # #	ND	# #	#			* *
26	CS-137	# 17 # # #	ND	*	*			*
	CS-134	# 17 # # #	ND	**	* *			*
1	MN-54	* 15 * * *	ND	*	**			* *
H H	ZN-65	# 30 # # #	ND	* *	*			*
4	CO- 60	# 17 #	ND	#	#			*

Table III-14

RIVER WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	Ор	erational	al Values		
	Median	95 Percentile	Median	Mean	95 Percentile		
Gamma Analysis							
I-131	<.4	<.4	<4.3	<4.3	<4.3		
Ba-140	<10	<10	<4.3	<4.3	<4.3		
Co-58	<10	<10	<4.3	<4.3	<4.3		
Cs-137	<10	<10	<4.3	<4.3	<4.3		
Cs-134	<10	<10	<4.3	<4.3	<4.3		
Mn-54	<10	<10	<3.8	<3.8	<3.8		
Zn-65	<20	<20	<7.5	<7.5	<7.5		
Co-60	<10	<10	<4.3	<4.3	<4.3		
Tritium Analysi	S						
H-3	<320	<320	<50	<50	<50		

Table 111- 15

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY ********	1	TYPE	8 4 4 4	NO.		LLD	+ # #	ALL	LOC	ATIONS	****	HIGHEST	MEAN ****	LOCATION	: CONTROL	LOCATION	INRR
RIVER WATER	林				#		#				H	*			* *		*
(PCI/KG)	林	ANAL		5 4	# #		#				Ħ	#			#		* 0
	H				#		#				*	*			#		*
	H	1	1-3		Ħ	500	#		N	D	#	*			#		#

GROUND WATER PATHWAY

The State has the responsibility to collect and analyze ground water samples. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of semiannual samples is in Table III-16. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-17. All operational samples had no detectable activity and there are no preoperational data.

Semiannual Tritium Analysis

The summary for the tritium analysis of semiannual samples is in Table III-18. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data is presented in Table III-17. All operational samples had no detectable activity and there are no preoperational data.

Table III-16

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY I	TYPE & NO.	1 LLD 1	ALL LOCATIONS	HIGHEST ME	AN LOCATION I CONTROL	L LOCATION INRR
GROUND WATER (PCI/KG)	GAMMA ANALYSIS 2	# # # # # # # # # # # # # # # # # # #		计	计 计 计 计	* * * O *
3 3	1- 131	# # 17 # # #	ND	* *	# #	:
3 4	BA-140	# # 17 # # #	ND	* *	# # #	:
# #	CO- 58	# # # # # #	ND	# # # #	# # #	* *
30	CS-137	# 17 # # # #	ND	# # # #	# # #	*
1	CS-134	# # 17 # # # #	ND	* *		:
1	MN-54	* 15 * *	ND	* *	* *	* *
1 to	ZN-65	# 30 #	ND	# # # #		* *
1	CO- 60	# 17 #	ND	# #	:	*

Table III-17

GROUND WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Opera	tional Values
	Mean	95 Percentile
Gamma Analysis		
I-131	<4.3	<4.3
Ba-140	<4.3	<4.3
Co-58	<4.3	<4.3
Cs-137	<4.3	<4.3
Cs-134	<4.3	<4.3
Mn-54	<3.8	<3.8
Zn-65	<7.5	<7.5
Co-60	<4.3	<4.3
Tritium Analysis		
H-3	<50	<50

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1	TYPE	8. ##+	NO.	1	LLD	1	LOC		1	HIGHES	T MEAN	LOCATION		CONTROL		
GROUND WATER (PCI/KG)	* * * * *	TRITI		3 2	* * *		* * *			**	* *			* * * *			* * * * * * * * * * * * * * * * * * * *
	#	н	-3		#	200	*	N	D	*	*			*			*

POTABLE WATER PATHWAY

The University has the responsibility to collect and analyze potable water samples. There are no additional stations for this pathway.

Quarterly Gamma Analysis

The summary for the gamma analysis of quarterly samples is in Table III-19. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-20. The 1979 operational activity was less than both the 1978 operational concentrations and the preoperational activity levels.

Quarterly Tritium Analysis

The summary for the tritium analysis of the quarterly samples is in Table III-21. All samples were collected and analyzed. There are no critical stations in this pathway and all samples had activity that was less than the sample LLD. All preoperational samples had an average activity of less than 320 pCi/kg. There was, therefore, no evidence of increase in activity over the preoperational levels, or the 1978 operational levels.

Table 111-19

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY *********	1 TYPE & NO.	LLD	ALL LOCATION	NS HIGHE	ST MEAN LO	CATION	CONTROL LOCATION	NRR
POT WATER (PCI/KG) INGESTION	* GAMMA * ANALYSIS 12	t ## ## ## ## ## ## ## ## ## ## ## ## ##		* * *		* *		0
	# I-131	* 6 * 4	ND	* *		# #		*
	# BA-140	# # 19 # # #	ND	# #		*		*
	# CS-137	*	7(1/	12)*CO7 *	7(1/ 4)#	SEE COLUMN 4	*
	* CS-134	# # 5 # #	9(1/	12)*C10 *	9(1/ 4)#	SEE COLUMN 4	*
34	* co-58	# # # # 4 #	ND	# # # #		# #		t tr
	# MN-54	# # # # # # # # # # # # # # # # # # #	ND	* *		# #		*
	# # ZN-65	# # 10 #	ND	* * *		#		* *
	* CC-60	# # 5 #	ND	# # # #		*		*

Table III-20

POTABLE WATER PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	0р	erational	Values
	Median	95 Percentile	Median	Mean	95 Percentile
Gamma Analysis					
I-131	<.4	<.4	<1.8	<1.5	<2.7
Ba-140	<10	<10	<5.3	<4.6	<8.9
Cs-137	<10	<10	<1.3	<1.7	<5.2
Cs-134	<10	<10	<1.5	<1.9	<6.4
Co-58	<10	<10	<1.0	<1.0	<2.0
Mn-54	<10	<10	<1.0	<1.1	<2.3
Zn-65	<20	<20	<2.8	<2.6	<4.4
Co-60	<10	<10	<1.3	<1.2	<2.4
Tritium Analysis					
H-3	<320	<320	<89	<136.9	<306.1

Table III-21

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE &		LLD ! ALL	LOCATIONS !	HIGHEST N	MEAN LOCATION !	CONTROL LOCATION INRE	t
****	**	林林林林林林林	***	**	***	***	***	į.
	#	#	#	#	*	#	*	
POT. WATER	*	#	#	#	*	#		
(PCI/KG)	* TRITIUM	*	*	*	#	*		
	# ANALYSIS	12 *	*	#	#	*	* 0	
	#	#	#	#	*	#		
	ti .	#	#	#	*	#		
	* H-3	#	361 * <lld< td=""><td>(3/ 12)*</td><td>*</td><td>*</td><td>*</td><td></td></lld<>	(3/ 12)*	*	*	*	

SHORELINE EXTERNAL SEDIMENT PATHWAY

The University has the responsibility to collect and analyze shoreline external sediment samples. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-22. All samples were collected and analyzed. The critical stations for this analysis are Sample Stations C14H, C14M, and C14G and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-23.

The 1979 operational nuclide concentrations are lower than the preoperational concentrations and the 1978 operational concentrations for almost every nuclide. The lack of more operational data prevents a more thorough comparison. Also, the control station data are similar to the critical station data.

Semiannual Sr-90 Analysis

The summary for the semiannual analyses for Sr-90 is presented in Table III-24. All samples were collected and analyzed. Sr-90 is not a critical nuclide in this pathway. A statistical evaluation of 1979 operational data is presented in Table III-23. There are no preoperational data. Sr-90 concentrations were consistent with previous operational years' concentrations.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

OT. SED. CI/KG) HORELINE EXT	GAMMA ANALYSIS 10	林林林			# # # # # #			* * * * * * *			**
	* RA-226 *	12 *	419(10/ 158-	10)*C14H* 1050)* *	749(447-	2)# 1050)#	353(242-	4)* 462)*
	# TH-232 #	12 #	55 (9/	10)*C14H* 181)* *	96(11-	2)# 181)#	53(40-	4) * 67) *
	I-131	6 #		ND	* * *			* *			**
ω ∞	BA-140	17 *	14(1/	10) #C14G#	14(1/	2)*	0(0/	4)#
	RU-106	36 *	33(1/	10 HC01 #	33(1/	5)*	33(1/	4)*
	CS-137	5 *	19(7/	10)*C14M* 38)* *	38(1/	5)#	15(4/	4) # 25) #
	ZR-95	8 *		ND	* *			# #			44 44
	CS-134	5 *	7(5/ 4-	10)*C14H* 11)* *	11(1/	# 5)#	6(3/	4) # 7) #
3	MN-54	4 #	8(1/	10)#01 #	8(1/	5)#	8(1/	4)*
	ZN-65	10 #		ND	* *			# #			*
	K-40	40 #	245(10/	10) #C14M# 533) # #	403(272-	2)* 533)*	205(152-	4)*

Table III-23

SHORELINE EXTERNAL SEDIMENT PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Preoper	rational Values				ational Va	lues		
	Median	95 Percentile	Median	Mean	95 Percentile		ol Stations		al Stations
Gamma Ana	lysis					Mean	95 Percentile	Mean	95 Percentile
Ra-226	2900	10,000	350.0	418.5	901.8	323.3	518.0	482.0	1074.6
Th-232	90	300	<34.5	<50.1	<147.6	52.5	74.4	<48.5	<178.1
I-131	<.4	34	<1.5	<1.4	<2.1	<1.5	<2.6	<1.4	<1.8
Ba-140	<10	<10	<4.3	<4.2	<7.6	<4.9	<8.3	<3.7	<7.0
Ru-106	190	690	<9.3	<11.6	<28.4	<16.9	<39.8	<8.1	<15.2
Cs-137*	<10	250	<12.0	<13.4	<36.7	<15.0	30.8	<12.4	<40.9
Zr-95	12	40	<1.8	<2.0	<3.0	<2.1	<3.6	<2.0	<2.4
Cs-134*	<10	<10	<2.3	<4.2	<10.9	<4.8	<9.0	<3.8	<12.1
Mn-54	<10	19	<1.0	<1.8	<6.1	<2.7	<9.6	<1.1	<1.4
Zn-65			<2.3	<2.5	<4.0	<2.6	<5.2	<2.4	<2.9
K-40	259.8	1,006	205.0	244.6	480.0	205.3	304.1	270.8	564.0
Strontium	n Analysis								
Sr-90			<10.1	<22.6	<79.8	<20.4	<48.6	<24.0	<97.4

^{*}Critical nuclides for critical station

Table III-24

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & N	10. :		ALL LOCATION		MEAN LOCATION		
	k-	*	#		* *		*	it
BOT. SED	#	*	#		# #		*	*
(PCI/KG)	\$ SR-90	*	*		**		*	*
SHOREL INE EXT		10 #	*		* #		*	# 0
District time	¥	*	**		# #		#	*
	k .	*	*		# #		*	*
	* SR-90	*	17 *	47(4/	10) #C14M#	98(1/ 2)	# 31(2	2/ 4)*
	*	*	#	(53-	98) # #		* (23	3- 39)*

SEA FOOD CHAIN PATHWAY

The University has the responsibility to collect and analyze marine plants in the sea food chain. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-25. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data comparison with the preoperational data is presented in Table III-26.

The 1979 operational concentrations are less than both the 1978 operational and the preoperational concentrations.

Semiannual Sr-89 and 90 Analysis

The summary for the strontium analysis of the semiannual samples is in Table III-27. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data presented in Table III-26. There are no preoperational data.

The 1978 and 1979 operational concentrations are very similar.

One Licensee Event Report (LER) was issued to the Commission. LER 79-112/04X-0 was the result of Sr-89 analysis having an LLD greater than required LLD for the first half at C29. Inadequate sample time was the apparent cause of the greater than required LLD.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

MARINE PLANT		* *			# #			*				*
PCI/KG SEAFOOD CHAIN	GAMMA ANALYSIS 4	* * *			* *			# #				* O
	RA-226	* 8 * * * * * * * * * * * * * * * * * *	25 (3/	4)*C30 * 28)* *	59(53-	29)*	SEE	COLUMN	4	**
	** * TH-232	* * 6 * * * *	20 (4/	4)*C30 * 25)* *	24(53-	2)* 25)* *	SEE	COLUMN	4	* * * * *
	# # I-131	# # # # 4 #		ND	# # # #			#				* *
42	# BA-140	* 12 *		ND	* *			*				* *
	# # RU-106	* 29 * *		ND	# # # # # # #			*				* *
	CS-137	# 4 # # #	9(1/	4)#C29 # # #	9(1/	2)*	SEE	COLUMN	4	* *
	* ZR- 95	* 5 * * *		HD	* 4 * 4			# #				* *
	# MN- 54 #	* 3 * * * * * * *	3(1/	4) #C29 # # #	3(1/	4 4 2) 4	SEE	COLUMN	4	* *
	# ZN-65 #	# 7 # # #		ND	# # # #			# #				* *
	₩ K-40	* 58 *	779(27-	4) #C30 # 1620) # #		562-	1620)*	SEE	COLUMN	4	*

Table III-26

SEA FOOD CHAIN PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Preope	rational Values	Оре	rational	Values
Median	95 Percentile	Median	Mean	95 Percentile
624	3300	23.0	<18.8	<42.4
	280	23.5	19.5	37.2
<10	37	<0.9	<0.9	<1.2
<10	75	<2.9	<2.9	<4.3
	360	<7.3	<7.2	<12.3
<10	181	<1.1	<2.9	<10.9
18	157	<1.4	<1.3	<10.0
	43	<1.0	<1.4	<3.5
	156	<2.0	<1.8	<3.1
1508.4	12570	734.5	779.0	2087.1
is				
		<4.9	<9.6	<34.9
200		<0.3	<0.4	<1.2
	Median 624 <10 <10 18	624 3300 280 <10 37 <10 75 360 <10 181 18 157 43 156 1508.4 12570	Median 95 Percentile Median 624 3300 23.0 280 23.5 <10	Median 95 Percentile Median Mean 624 3300 23.0 <18.8

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	: TYP	E &	NO.		L	LD	1	ALL	LO	CATIO	INS	HI	CHEST	MEAN	LOCAT	ION :	CONTRI	DL LOCA	TION	INRR
MAR PLANT (PCI/KG) SEAFOOD CH	* SR89 * ANAL			4 4	# 1		***	***	****	* * * * *	######################################	* # # # # 	* * * * * * * * * * * * * * * * * * *	****	* * * * *	**************************************	***	*****	***	****
	* S	R-8	9	拉		5	* * *	18	(2/	28)	# #C29 #	* *	28(1/	2)#	SEE	COLUMN	4	* *
	* S	R-9	0	H		1	#	1	(1/	4)	+C29	#	1(1/	2)#	SEE	COLUMN	4	*

INGESTION CRAB PATHWAY

The University has the responsibility to collect and analyze crabs. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-28. All samples were collected and analyzed. Sample Station C29 is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-29.

Except for naturally occurring Ra-226 and K-40, the 1979 operational concentrations are consistent with the 1978 operational and lower than the preoperational concentrations. The concentrations of the critical and control stations during 1978 were in close agreement.

One Licensee Event Report (LER) was issued to the Commission. LER 79-016/04-L was the result of Zn-65 analyses having LLDs greater than the required LLDs for the first half at Stations C29 and C30. Inadequate sample time was the apparent cause of the greater than required LLDs.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

CRABS (PCI/KG) INGESTION	* * GAMMA * ANALYSIS	# # 4 #		* * * * *			# # # # # #			**			* (
	# RA-226	* *	14	* *	153(72-	4)*C29 * 280)* *	193(106-	580)* 5)*	72(1/	2)#
	* TH-232 *	计计	11	* * * *	56(24-	4)*C29 * 28)* *	28(1/	5)*	24(1/	5)#
	* I -131	*	8	* *		ND	* *			*			**
46	# BA-140 #	# #	21	* *		ND	# # # #			# #			* *
	# RU-106 #	# #	69	* *		ND	# # # # 4)#029 #	12(1/	* * 2)*	10(1/	* * * * * * * * * * * * * * * * * * * *
	* CS-137 *	**	10	* * *	11(10-	4)*** * *	12(1/	# #	101	.,	* *
	* ZR- 95 *	#	10	# #		ND	# # # #			# # #			*
	* CS-134 *	* *	6	* *		ND	* *			# # #			* *
	# MN -54 # # ZN -65	**	16	* *		ND	* # # # # #			*			* *
	#	#	10	#		1167	# #			#	3000(2)*

4/

Table III-29

INGESTION CRAB PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preoper	rational Values	Operational Values											
	Median	95 Percentile	Median	Mean	95 Percentile		ol Stations 95 Percentile		al Stations 95 Percentile					
Ra-226	1325	3600	<89.0	<115.1	<346.8	<37.1	<133.8	193.0	434.2					
Th-232	92	170	<12.6	<13.6	<41.9	<12.5	<44.4	<14.6	<51.7					
I-131*	<10	<10	<1.9	<1.9	<3.0	<1.8	<3.1	<2.0	<3.4					
Ba-140	<10	55	<4.9	<5.3	<12.1	<4.9	<12.2	<5.6	<15.0					
Ru-106			<16.6	<17.3	<20.3	<16.6	<17.7	<17.9	<22.4					
Cs-137*	<10	75	<6.5	<7.0	<16.2	<6.5	<16.2	<7.5	<20.0					
Zr-95	<10	13	<2.5	<2.6	<5.0	<2.5	<5.3	<2.6	<5.7					
Cs-134*	<10	<10	<1.0	<1.6	<3.4	<1.5	<3.6	<1.6	<4.1					
Mn-54	<80	24	<1.4	<1.4	<3.0	<1.4	<3.1	<1.5	<3.6					
Zn-65	<160	127	<4.0	<4.1	<7.0	<4.0	<7.5	<4.1	<7.9					
K-40	1424.6	2011.2	<2820.0	<2412.5	<5709.9	<1517.5	<5626.8	3307.5	5157.7					

^{*}Critical nuclides for critical station

INGESTION CARNIVOROUS FISH PATHWAY

The University has the responsibility to collect and analyze carnivorous fish. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-30. All samples were collected and analyzed. Sample Station C29 is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-31.

The operational concentrations for 1979 are consistent with 1978 concentrations, and generally lower than the preoperational concentrations except for naturally occurring K-40 where the concentrations were similar.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

****	**************	****	***	* * * * * * * * * * * * * * * * * * *	****	* **	2 * * * * * * * * * * * * * * * * * * *	****	*	***	****	********
C. FISH (PCI/KG) INGESTION	# GAMMA # ANALYSIS	4 4 4 4		# # #		# # # # # # #			# # #			* * 0 *
	# RA-226	* *	12	# 41(# (22-	4)#C30 # 68)# #	57(45-	2)* 68)* *	57(45-	2)# 68)# *
	* TH-232	* *	10	* * 25(* (14-	4)#C30 # 40)# #	30(20-	2)* 40)* *	30 (50-	2)* 40)* *
	* I- 131	**	7	th th th	ND	# #			#			*
49	# BA-140	**	24	# # #	ND	# #			*			*
	# RU-105	#	51	# #	ND	* ;			*			*
	# CS-137	**	6	* 31(* (14-	4)*C29 65)*	40(14-	2)* 65)*	53(21-	2)* 24)*
	* ZR- 95	#	10	# #	ND	# #			#			*
	* CS-134	#	7	# #	ND	# #			#			*
	* MN- 54	*	5	# #	ND	# #			*			*
	# ZN- 65	*	14	* 9(1/	4) #C29	9(1/	5)*	0(0/	2)*
	* K - 40	#	55	* 2505(2140-		2800(2700-	2)*	2800(2700-	2)*

Table III-31

INGESTION CARNIVOROUS FISH PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preoper	rational Values	Operational Values											
	Median	95 Percentile	Median	Mean	95 Percentile		1 Stations 5 Percentile		1 Stations 5 Percentile					
Ra-226	335	2400	36.0	40.5	81.3	56.5	88.4	24.5	31.4					
Th-232		92	23.5	25.3	47.2	30.0	57.7	20.5	38.5					
I-131*	<10	<10	<1.8	<1.8	<2.9	<2.3	<2.9	<1.4	<1.7					
Ba-140	<10	72	<6.0	<5.9	<9.0	<7.3	<7.9	<4.6	<5.7					
Ru-106			<13.1	<12.7	<20.2	<15.9	<16.9	<9.5	<13.0					
Cs-137*	<10	43	17.5	31.0	76.2	22.5	26.7	39.5	110.2					
Zr-95	<10	12	<2.5	<2.4	<3.7	<3.0	<3.0	<1.9	<2 ^					
Cs-134*	<10	<10	<1.8	<1.7	<2.4	<2.0	<2.0	<1.4	<1.7					
Mn-54	<80	<80	<1.3	<1.3	<2.0	<1.6	<2.0	<1.0	<1.0					
Zn-65	<160	99	<4.4	<5.3	<10.3	<4.4	<4.7	<6.1	<14.1					
K-40	2346.4	3854.8	2490.0	2505.0	3200.6	2800.0	3077.2	2210.0	2404.0					

^{*}Critical nuclides for critical station

INGESTION HERBIVOROUS FISH PATHWAY

The University has the responsibility to collect and analyze herbivorous fish. There are no additional stations for this pathway.

Sem annual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-32. The sample for the second half at C29 was collected and counted but values were not reported because the sample was only 202 grams. Since the first half data at C30 had slightly high LLDs due to the small size of the sample collected, the data was not reported. All other samples were collected and analyzed. Sample Station C29 is the critical station in this pathway and no sample had activity greater than 10 times the control station value. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-33.

The 1979 operational concentrations are consistent with the 1978 operational, and lower than the preoperational concentrations.

One Licensee Event Report (LER) was issued to the Commission. LER 79-016/04-L was the result of Zn-65 analyses having LLDs greater than the required LLDs for the first half at Stations C29 and C30. Inadequate sample time and small sample size were the apparent cause of the greater than required LLDs.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

H. FISH	#	t 14			# #			#			*
(PCI/KG) INJESTION	* GAMMA * ANALYSIS 4	* *			# #			#			*
THUESTION	* MML 1010 4	4 4			# #			*			*
	* RA-226	17 # 18 # # # # #	60(54-	2)*C29 * 66)* *	66(1/	1)*	54(1/	1)*
	* TH-232	* 15 * 15 * 15 * 15 * 15 * 15 * 15 * 15	58(27-	2)*C29 * 28)* *	28(1/	1)#	27(1/	1)*
	* I- 131	* 8 *		ND	# # # #			* *			*
52	# BA-140	# 27 # # 27 #		ND	* *			*			*
	# RU-106	# 69 # # 8		ND	* *			#			*
	* CS-137	9 # # 9	22(1/	2)#C30 # # #	55(1/	1)*	55(1/	1)*
	# ZR-95	13 4		ND	* *			# #			*
	* CS-134	и 9 и и и		ND	# # # #			**			* *
	# MN-54 #	# 8 # # #		ND	# # # #			**			*
	* ZN-65	# 20 # # #		ND	* *			# #			*
	% K-40	# 73 #	1989(858-	2)#C30 # 3120)# #	3120(1/	1)#	3120(1/	1)#

Table III-33

INGESTION HERBIVOROUS FISH PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preone	rational Values	Operational Values											
wac) rue	Median	95 Percentile	Median	Mean	95 Percentile	Control	Stations Percentile		1 Stations 5 Percentile					
Ra-226	960	3100	60.0	60.0	76.6	54.0		66.0						
Th-232		84	27.5	27.5	28.9	27.0		28.0						
I-131*	<10	<10	<2.0	<2.0	<2.0	<2.0		<2.0						
Ba-140	<10	50	<6.8	<6.8	<7.4	<7.0		<6.5						
Ru-106		90	<16.9	<16.9	<20.7	<15.5		<18.3						
Cs-137*	<10	110	<12.3	<12.3	<39.3	22.0		<2.5						
Zr-95	<10	9	<3.3	<3.3	<3.3	<3.3		<3.3						
Cs-134*	<10	<10	<2.1	<2.1	<2.5	<2.0		<2.3	- 44					
Mn-54	<80	<80	<1.9	<1.9	<2.2	<1.8		<2.0						
Zn-65	<160	63	<5.0	<5.0	<5.7	<4.8		<5.3						
K-40	2178.8	3100.6	1989.0	1989.0	5124.0	3120.0		858.0						

^{*}Critical nuclides for critical station

INGESTION OYSTERS PATHWAY

The University has the responsibility to collect and analyze oysters. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the edible portion of semiannual samples is in Table III-34. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-35.

The 1979 operational concentrations are consistent with the 1978 operational and lower than preopoerational concentrations.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

YSTERS PCI/KG) NGESTION	* GAMMA * ANALYSIS 4	# # # # # # # # # # # # # # # # # # #			12 4 14 5 14 6 14 6	# # #		# # # #		* * *
	* RA-226 *	* 18 *	36(16-	4)*C30 + 56)*	45(34-	2)# 56)#	SEE COLUMN	4 *
	* TH-232 *	# # # # # # # #	29(20-	4)#C30 # 46)#	35(53-	2)# 46)# #	SEE COLUMN	4 #
	# I -131	# # # # 9 #	8(1/	4)#C30 H	# # 8(1/	5)#	SEE COLUMN	4 #
55	# BA-140	# 29 # # #		ND	# #	# #		# #		*
	# RU-106	# 50 #	36(1/	4) #C29	36(1/	2)#	SEE COLUMN	4 #
	# CS-137	# 12 #		ND	**	# #		# #		*
	# ZR -95	# 10 #		ND	# # #	ir ir ir		*		*
	# MN -54	* 6 * *		ND	计计计	# #		**		*
	* ZN -65	* 12 *		ND	故故	it it it		# #		*
	# K - 40	* 129 #	853(551-	4)*C30 1270)*	1004(738-	2)*	SEE COLUMN	4 #

Table III-35

INGESTION ÖYSTERS PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preope	rational Values	Operational Values						
	Median	95 Percentile	Median	Mean	95 Percentile				
Ra-226		534	35.5	35.8	67.9				
Th-232			25.5	29.3	52.1				
I-131	<10	<10	<3.1	<4.0	<9.4				
Ba-140	<10	<10	<4.3	<7.2	<14.2				
Ru-106		82	<17.0	<19.6	<42.2				
Cs-137	<10	<10	<3.0	<3.1	<7.5				
Zr-95	<10	<10	<2.6	<2.6	<4.5				
Mn-54	<80	<80	<1.4	<1.4	<2.4				
Zn-65	<160	33	<2.9	<2.9	<4.3				
K-40		1843.6	<644.5	<650.3	<1644.1				

INGESTION SHRIMP PATHWAY

The University has the responsibility to collect and analyze shrimp. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-36. The samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-34.

The 1979 operational concentrations are generally lower than both the 1978 operational and preoperational concentrations except for K-40.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

SHRIMP	*	#	#			#	# #		*			*
(PCI/KG) INGESTION	* GAMMA * ANALYSIS 2	**	#			# #	# # #		#			* 0
	* RA-226 *	* 1	4 #	67 (64-	2)*C27 70)*	* 67 *	(64-	2)* 70)* *	SEE	COLUMN	4 *
	* TH-232	# 1 # 1	# 5 # 5	29(2/ 18-	2)*C27 40)*	* * 29 *	(2/	2)# 40)#	SEE	COLUMN	4 #
	* I -131	* *	7 #		ND	# # #	# #		# #			*
58	# BA-140	# 2 #	3 #		ND	*	# # #		*			**
	# RU-106	# 5	7 #		ND	**	# #		#			* *
	* CS-137	*	7 #	16(1/	2)*C27	* 16	(1/	5)*	SEE	COLUMN	4 *
	# ZR-95	# 1	1 #		ND	# #	# # #		*			*
	# MN-54	#	7 #		ND	# #	# # #		#			*
	* ZN-65 *	# 1 #	6 #		ND	# #	# # #		# #			*
	# K - 40	# 7	5 #	1900(1430-		# 1900 #	(1430-	2)#	SEE	COLUMN	4 *

Table III-37

INGESTION SHRIMP PATHWAY

SEMIANNUAL GAMMA ANALYSES (pCi/kg)

Nuclide	Preope	rational Values	0p	Operational Values				
	Median	95 Percentile	Median	Mean	95 Percentile			
Ra-226			67.0	67.0	75.3			
Th-232		36	29.0	29.0	59.5			
I-131	<10	<10	<1.8	<1.8	<1.8			
Ba-140	<10	<10	<5.8	<5.8	<5.8			
Ru-106			<14.3	<14.3	<17.7			
Cs-137	<10	37	<8.9	<8.9	<28.6			
Zr-95	<10	<10	<2.8	<2.8	<3.4			
Mn-54	<80	<80	<1.6	<1.6	<2.0			
Zn-65	<160	<160	<3.9	<3.9	<4.2			
K-40	921.8	2514	1900.0	1900.0	3202.8			

INGESTION MILK PATHWAY

The University has the responsibility to collect and analyze milk. There are no additional stations for this pathway.

Monthly Gamma Analysis

The summary for the gamma analysis of the monthly samples is in Table III-38. The samples at Sample Station C49 were not collected due to the unavailability of milk. All other samples were collected and analyzed. Sample Station C49 is the critical station for this type of analysis. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-39.

The 1979 operational concentrations are less than both the 1978 operational and the preoperational concentrations.

Monthly Sr-89 and 90 Analysis

The summary for the monthly analyses for Sr-89 and 90 is in Table III-40. The samples at Station C49 were not collected due to the absence of milk animals in the area. All other samples were collected and analyzed. Strontium 89/90 are not critical nuclides in this pathway. A statistical evaluation of the operational data, and comparison with preoperational data (Sr-90 only) is presented in Table III-39.

Strontium 89 showed some increase over the 1978 concentration, while Sr-90 remained consistent with 1978 concentrations and lower than preoperational concentrations.

NOTE: These milk samples were collected at Control Station C47, which is in Gainesville, 52 miles away from the plant, and beyond the plant's zone of influence.

Table 111-38

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO.	I LLD	1	ALL L	OCATION	45 HI	HEST	MEAN	LOCA	LION !	CONTROL	LOCA	TION INRR
	#	#	#			#	*			*			*
MILK	4	#	Ħ			*	#			*			#
(PCI/L)	# GAMMA	#	#			#	#			#			*
INGESTION	# ANALYSIS 24	#	#			*	*			*			* 0
		#	#			*	*			**			*
	₽ I −131	W £	H		ND	*	*			*			*
	4 1 -131	# 6	34		MD	#	H			*			
		#	*			*	#			*			*
	BA-140	# 19	*		ND	#	#			*			*
	#	#	if		112	*	#			*			#
	tit	#	#			#	#			#			*
	# CS-137	# 6	- 11	15(10/	12) *C47	#	15(10/	12)*	15(10/	12)*
	H .	#	#	(9-	35)*	H	(9-	35)*	(9-	35)*
	tt .	Ħ	#			*	#			ti			*
	it.	#	#			#	Ħ			#			*
61	# ZR- 95	# 9	#	14(1/	12) #C47	Ħ	14(1/	12)*	14(1/	12)*
	b	#	#			*	*			*			*
	* 66 101	#	#			1714047	#			477			4714
	* CS-134	# 7	- 52	4 (1/	12) *C47	2	4(1/	12)*	4(1/	12)*
	P	*	- 17			*	N H			*			*
	* CO-58	# 5	34	6(1/	12)*C47	H	61	1/	12)#	61	1/	12)*
	* CU-30	*	34	01	1,	16/4/4/	*	01	1/	16.7%	01	1/	12/*
	*	H	34			*	*						
	* MN- 54	# 6	- 14		ND	#	*			#			*
	#	#	#		. 467	*	*			#			*
	4	16	H			*	#			#			*
	# CD- 60	# 6	**	4 (1/	12)*C47	*	4(1/	12)#	4(1/	12)#

Table III-39

INGESTION MILK PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide	Nuclide Preope Median	rational Values			0per	ational V	alues				
	Median	95 Percentile	Median	Mean	95 Percentile	Cont Mean	trol Stations 95 Percentile	Crit Mean	ical Stations 95 Percentile		
Gamma Ana	lysis										
I-131*	<10	<10	<1.3	<1.4	<2.6	<1.4	<2.6	NC/M	NC /M		
Ba-140	<30	<30	<3.5	<4.8	<9.6	<4.8	<9.6	NC/M	NC /M		
Cs-137	16	22	<11.0	<12.6	<29.7	<12.6	<29.7	NC/M	NC/M		
Zr-95	<20	<20	<3.1	<3.3	<10.2	<3.3	<10.2	NC/M	NC/M		
Cs-134	<10	<10	<2.3	<1.7	<3.9	<1.9	<3.9	NC/M	NC /M		
Mn-54	<10	<10	<1.5	<1.4	<2.7	<1.4	<2.7	NC/M	NC/M		
Co-58	<10	<10	<1.5	<1.7	<4.6	<1.7	<4.6	NC /M	NC/M		
Co-60	<10	<10	<2.1	<1.9	<3.9	<1.9	<3.9	NC /M	NC/M		
Strontium	Analysis										
Sr-89			<3.7	<12.4	<59.6	<12.4	<59.6	NC/M	NC/M		
Sr-90	4.0	6.0	<2.5	<2.1	<5.3	<2.1	<5.3	NC/M	NC /M		

^{*}Critical nuclides for critical station

Table 111-40

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	- 1	TYP	E &	1	10.	1	LLD			ALL	LO	CAT	ION	S	HI	GH	EST	MEAN	LOCAT	MOLT	1	CONTROL	LOCA	TION	IN	00
****	* * * *	***	计计计	상성	***	\$ \$ 1	* * * *	**	林谷林	***	**	* * *	计设计	***	***	***	* * *	***	****	***	**	***	4444	***	1 14	433
MILK (PCI/L) INGESTION	* * *	SR 8	9/9 YSI	05	24	拉 拉 拉 拉 基		4 4 4 4 4	th th th th						は 計 計 計 対	***					* * * *				* * * *	0
	* *	S	R-8	19		各分分		6	H 라 라	33 (12	/	12)		7 # # #	:	33(12-	12)	* *	33(12-	12	* * * * * *	
	* *	S	R-9	0		*		0	計算	3()_	12)	# #C47	7 #		3(9/	12)		3(9/	12	* (*) (*)	

INGESTION ANIMAL PATHWAY

The University has the responsibility to collect and analyze small terrestrial animals. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-41. All samples were collected and analyzed. There are no critical sample stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-42.

The operational concentrations for 1979 are lower than both the 1978 operational and the preoperational concentrations except for Cs-137 and K-40. Cs-137 is still elevated due to residual Chinese weapons test fallout; K-40 concentration is similar to preoperational concentration.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

NIMALS	*	* *			* *			*			*
PCI/KG)	* GAMMA	# 1			* *			*			*
INGESTION	* ANALYSIS 2	* *			# #			*			*
	* RA-226	* 12 *	49(1/	2)*C45	49(1/	2)*	SEE	COLUMN	4 #
	# # TH-232	# 10 #	38(1/	2) #C45 #	38(1/	5)*	SEE	COLUMN	4 *
	* I -131	* 7 * * * * * * * * * * * * * * * * * *		ND	#			# #			*
	# BA-140	* 21 *		ND	# # # #			* *			*
65	* RU-106	# 45 # # 45 #		ND	# # # #			# #			*
	* CS-137	* 6 *	314(1/	2)#C45	314(1/	5)*	SEE	COLUMN	4 #
	* ZR -95	* 8 *		ND	## # ## #			# #			*
	# MN -54	# 4 #		ND	* *			*			*
	# ZN -65	# 15		ND	# # # #			*			*
	# # K - 40	# 224	1760(2/	2)*C45	.7.0.	2/	2)#		COLUMN	. *

Table III-42

INGESTION ANIMALS PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preope	rational Values	Operational Values				
	Median	95 Percentile	Median	Mean	95 Percentile		
Ra-226		720	<25.8	<25.8	<90.2		
Th-232			<20.0	20.0	<69.9		
I-131	<10	100	<1.8	<1.8	<3.8		
Ba-140	<10	<10	<5.3	<5.3	<11.5		
Ru-106	10.00	4-57	<11.1	<11.1	<18.2		
Cs-137	<10	80	<157.6	<157.6	<591.1		
Zr-95	<10	70	<1.9	<1.9	<2.9		
Mn-54	<80	<80	<1.0	<1.0	<1.7		
Zn-65	<160	160	<3.6	<3.6	<4.7		
K-40	1656.5	3586.6	1760.0	1760.0	2757.9		

FOOD CHAIN (GRASSES) PATHWAY

The University has the responsibility to collect and analyze grass samples. There are no additional stations for this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-43. All samples were collected and analyzed. There are no critical stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-44.

The 1979 operational concentrations are similar to the 1978 operational and preoperational concentrations except for K-40.

One Licensee Event Report (LER) was issued to the Commission. LER 79-112/04X-0 was the result of the Zn-65 analysis having an LLD greater than the required LLD for the second half at CO5. Inadequate sample time was the apparent cause of the greater than required LLD.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1 TYPE % NO.	2. 军事准计准律律	***	****	*****	****	****	****	***	****	****
GRASS (PCI/KG) FUOD CHAIN	# GAMMA # ANALYSIS 6	# # # # # # #			# # #	# # #		* *			*
	# RA-226	# 15 # # # #	90 (24-	6)*C05 203)*	* 138(* (72-	503)*	SEE	COLUMN	4 *
	* TH-232 *	# 14 # # # #	71 (25-	6)*C40 115)*	112(108-		SEE	COLUMN	4 *
	# I -131	* 8 *		ND	* *	₩ ₩ ₩		#			*
6 8	# BA-140	* 25 #		ND	# #	당 참 참		*			* *
	# # RU-106	# 59 #	73(1/	6)#C40	# 73(#	1/	2)#	SEE	COLUMN	4 #
	* CS-137	* 8 *	174(6/ 5-		# 350(# (247-	2)# 452)#	SEE	COLUMN	4 *
	* * ZR- 95	# 11 # # 11 #		ND	# #	16 16 16		*			*
	# MN- 54	# 6 #	11(1/	6)*C05	11(1/	2)#	SEE	COLUMN	4 #
	* ZN- 65	# 15		ND	*	# #		*			*
	# K - 40	# 86 #	2004	1120-	6) CO5	2425	2380-	2)*	SEE	COLUMN	4 *

Table III-44

FOOD CHAIN (GRASSES) PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preoper	rational Values	Operational Values				
	Median	95 Percentile	Median	Mean	95 Percentile		
Ra-226		2363	66.0	90.0	219.9		
Th-232		120	69.0	70.7	147.0		
I-131	<10	<10	<2.0	<1.9	<2.9		
Ba-140	26	253	<6.3	<6.3	<9.9		
Ru-106			<16.1	<24.6	<72.1		
Cs-137	1363	5416	153.5	173.7	505.2		
Zr-95	<10	31	<2.5	<2.8	<4.7		
Mn-54			<1.5	<3.0	<10.7		
Zn-65		589	<3.4	<3.8	<6.4		
K-40	578.2	2430.2	<1935.0	<1677.5	<3589.0		

INGESTION FOOD CROPS (CITRUS) PATHWAY

The State has the responsibility to collect and analyze citrus samples. There are no additional stations in this pathway.

Annual Gamma Analysis

The summary for the gamma analysis of the annual samples is in Table III-45. All samples were collected and analyzed. There are no critical sample stations in this pathway. A statistical evaluation of the operational data and a comparison with the preoperational data is presented in Table III-46.

The 1979 operational concentrations were non detectable as were the 1978 operational and the preoperational concentrations.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHUAY I	TYPE & NO.	I LLD I AL	L LOCATIONS	HIGHES	T MEAN LOCATION : CONTROL	LOCATION INRR
#		# #		¥ ¥	*	
CITRUS #		# #		# #	*	*
PCI/KG #	GAMMA	# #		拉 益	#	*
INGESTION #	ANALYSIS 1	社		# #	그 그 그 그리는 그 그를 내가 없었다.	*
		# #		# #		
4		4 4	KIP	H H		
*	I- 131	# 24#	ND	# #		
*		* *		H H		
	DA 1.10	4 74	ND	4 4	*	
	BA-140	# 24#	MD	4 4		
		11 H		# #		
	CO- 58	# 24#	ND	# #	*	
	00 00	# 24	1412	# #	*	*
		# #		# #	*	*
	CS-137	# 24#	ND	# #	#	*
	00 10,	# #		# #	*	*
71		# #		# #	#	*
4	CS-134	# 24#	ND	# #	*	#
4		h P	1.00	# #	#	#
4		# #		# #	4	*
4	MN- 54	# 21#	ND	# #	#	*
4		# #		# #	*	*
4		# #		# #	*	*
	ZN- 65	# 42#	ND	# #	*	*
		# #		* *	*	*
		# #		* *	*	*
	CO- 60	# 24#	ND	# #	*	*

Table III-46

INGESTION FOOD CROPS (CITRUS) PATHWAY

ANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Preope	rational Values	Operational Values				
	Median	95 Percentile	Median	Mean	95 Percentile		
I-131	<10	<10	<6.0	<6.0	~*		
Ba-140	<10	<10	<6.0	<6.0			
Co-58	<10	<10	<6.0	<6.0			
Cs-137	<10	<10	<6.0	<6.0			
Cs-134	<10	<10	<6.0	<6.0			
Mn-54	<10	<10	<5.3	<5.3			
Zn-65			<10.5	<10.5			
Co-60	<10	<10	<6.0	<6.0			

INGESTION FOOD CROPS (WATERMELON) PATHWAY

The State has the responsibility to collect and analyze watermelon samples. There are no additional stations in this pathway.

Annual Gamma Analysis

The summary for the gamma analysis of the annual samples is in Table III-47. All samples were collected and analyzed. There is no critical sample station in this pathway. A statistical evaluation of the operational data is presented in Table III-48. There are no preoperational data for this pathway and all 1979 operational analyses resulted in non-detectable activity as did the 1978 operational analyses.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO.	1 1	LLD 1	ALL LOCATIO	NS HI	GHEST ME	AN LOCATION : CO	NTROL LOCATION INRR
WATERMELON (PCI/KG) INGESTION	* * GAMMA * ANALYSIS	* * 1 *	# # #		# # #	# # #	# # #	* * *
# # # # # # # # # # # # # # # # # # #	# # I- 131	# #	24#	ND	# # #	* * *	* *	*
	# # BA-140	#	24*	ND	# # #	*	* *	* *
	* CO- 58	# #	24#	ND	#	**	*	*
74	* CS-137 * * CS-134	# # #	24# # 24#	ND	# #	**	* # # #	* *
	# # # MN- 54	# #	* 21*	ND	# # #	* *	* *	*
	# # ZN- 65	# #	42# #	ND	# #	# # #	# #	* *
	* CO- 60	計	24#	ND	#	#	*	*

Table III-48

INGESTION FOOD CROPS (WATERMELON) PATHWAY

ANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Operational Values					
	Mean	95 Percentile				
I-131	<6.0					
Ba-140	<6.0					
Co-58	<6.0					
Cs-137	<6.0					
Cs-134	<6.0					
Mn-54	<5.3					
Zn-65	<10.5					
Co-60	<6.0					

FOOD CHAIN (MEAT) PATHWAY

The State has the responsibility to collect and analyze meat samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-49. All samples were collected and analyzed. There is no critical sample station in this pathway. A statistical evaluation of the operational data is presented in Table III-50. There are no preoperational data for this pathway and all 1979 operational analyses resulted in non-detectable activity, except for Cs-137 which was detected during the first half. The 1978 operational analysis also resulted in nondetectable activity.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	1	TYPE	8 NO		LLD	1 1	ALI L	OCATION	S HI	GHES	T MEAN	LOCAT	ION !	CONTROL LOCATI	ON INR
	*			1	+	#			#	*			*	нининининини	****
MEAT	#			1	£	#			#	#			#		#
(PCI/KG)	# (AMMA		1	ŧ	廿			*	#			#		*
DOD CHAIN	# 4	MALYS	SIS	2 4	1	#			#	# ,			*		# 0
	*			- 4	t	#			长	#			#		*
	#			. 1	ŧ	#			#	#			*		*
	*	I -	131	4	¥ 3	3 #		ND	长	#			#		#
	*				i .	#			#	¥			*		*
	#			4	ŧ .	#			ti i	計			ti-		*
	H	BA-	-140	- 4	÷ 3	7 #		ND	#	#			計		#
	#			- 1	ŧ	#			#	甘			甘		#
	长			- 1	1	#			#	*			*		#
	Ħ	CO-	- 58	1	+ 6	0 #		ND	#	#			tł .		*
	*				4	林			*	#			*		*
	#				#	#			#	-12			#		*
	#	62.	-137		# 3	/ #	120(1/	2)#C50	#	120(1/	2)*	SEE COLUMN 4	*
77	#				t .	拉			*	*			#		*
7	- 12				N-	#		NIE	12	**			*		*
	#	72.	-134		4 6	0 #		ND	*	#			#		*
					R	#			- 12	**			*		*
	-13		C 4		th C	#		NID		Ħ			*		*
	4	LIM.	- 54		# 3	c' #		ND	*	Ħ			*		#
	- 12			- 1	Q.	*			R V	*			#		*
	-14	741			R .	#		NID	R	**			*		*
	-	ZN.	- 65		6	0 #		ND	R	#			*		*
	- 47				R	#			R	R			- 12		*
	- 12	00	10		H .	4		NID	8	-52			4		*
	- 14	CO.	- 60		6	0 #		ND	R	*			#		*

Table III-50

FOOD CHAIN (MEAT) PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Operational Values					
Mean	95 Percentile				
<9.5	<9.5				
<9.8	<9.8				
<15.0	<15.0				
<64.6	<218.1				
<15.0	<15.0				
<8.0	<8.0				
<16.5	<16.5				
<15.0	<15.0				
	Mean <9.5 <9.8 <15.0 <64.6 <15.0 <8.0 <16.5				

FOOD CHAIN (POULTRY) PATHWAY

The State has the responsibility to collect and analyze poultry samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-51. All samples were collected and analyzed. There is no critical sample station in this pathway. A statistical evaluation of the operational data is in Table III-52. There are no preoperational data for this pathway.

The 1979 operational concentrations were nondetectable as were the preoperational concentrations.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO.	LLD	ALL LOCATIONS	HIGHEST MEA	N LOCATION : CONTR	OL LOCATION INRR
Trans. militaria	GAMMA ANALYSIS 2	# # # # # # # # # # # # # # # # # # #		* * * * * * * * * * * * * * * * * * *	# # # #	* * * 0
	1- 131	* 38 * * *	ND	* *	# #	*
	BA-140	* * * 39 * * *	ND	# # # # # #	*	*
	* CO- 58	* * 60 * * *	ND	* *	*	*
88	cs-137	* * 37 * *	ND	* *	:	*
	CS-134	* * * * * * * * * * * * * * * * * * *	ND	# # # # # #	*	*
	# # MN- 54	* 32 * * 32 *	ND	# # # # # #	*	*
	zN- 65	# # 66 # # # #	ND	# # # # # #	:	:
	+ CO- 60	* 60 *	ND	# # # #	*	*

Table III-52

FOOD CHAIN (POULTRY) PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Operational Values					
	Mean	95 Percentile				
I-131	<9.5	<9.5				
Ba-140	<9.8	<9.8				
Co-58	<15.0	<15.0				
Cs-137	<9.3	<9.3				
Cs-134	<15.0	<15.0				
Mn-54	<8.0	<8.0				
Zn-65	<16.5	<16.5				
Co-60	<15.0	<15.0				

FOOD CHAIN (EGGS) PATHWAY

The State has the responsibility to collect and analyze egg samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-53. All samples were collected and analyzed. There is no critical sample station in this pathway. A statistical evaluation of the operational data is presented in Table III-54. There are no preoperational data for this pathway and all 1979 operational analyses resulted in non-detectable activity as did all 1978 operational analyses.

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY I	TYPE & NO.	LLD :	ALL LOCATIONS	1	IIGHEST MEAL	N LOCATION : CONTR	OL LOCATION INRR
EGGS # (PCI/KG) # FOOD CHAIN #	GAMMA ANALYSIS 2	6 H 6 H 6 H 6 H		# # #	# # # #	# # #	* * * * *
	1- 131	38 #	ND	社	*	*	*
	BA-140	39 #	ND	# #	*	*	*
#	CO- 58	+ 60 # + #	ND	· · ·	*	*	*
# \tilde{	CS-137	# 37 # # #	ND	#	* *	# #	# # #
4 #	CS-134	# 60 # # #	ND	#	*	*	*
## ##	MN- 54	# 32 # # #	ND	# #	* *	*	
#	ZN- 65 CO- 60	# 66 # # # # 60 #	ND	# #	* *	#	*
	CU- 60	W 00 W	140				

Table III-54

FOOD CHAIN (EGGS) PATHWAY

SEMIANNUAL GAMMA ANALYSIS (pCi/kg)

Nuclide	Opera	ional Values		
	Mean	95 Percentile		
I-131	<9.5	<9.5		
Ba-140	<9.8	<9.8		
Co-58	<15.0	<15.0		
Cs-137	<9.3	<9.3		
Cs-134	<15.0	<15.0		
Mn-54	<8.0	<8.0		
Zn-65	<16.5	<16.5		
Co-60	<15.0	<15.0		

FOOD CHAIN (GREEN LEAFY VEGETABLES) PATHWAY)

The University has the responsibility to collect and analyze green leafy vegetable samples. There are no additional stations in this pathway.

Semiannual Gamma Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-55. All samples were collected and analyzed. There is no critical sample station in this pathway. The critical station for this type of analysis (Sample Station C48) is in the east sector at 4.0 miles from the plant. A statistical evaluation of the operational data is presented in Table III-56. There are no preoperational data for this pathway.

The 1979 operational concentrations are generally less than the 1978 operational concentrations.

Semiannual Sr-90 Analysis

The summary for the gamma analysis of the semiannual samples is in Table III-57. All samples were collected and analyzed. There is no critical station for this type of analysis. A statistical evaluation of the operational data is presented in Table III-56. There are no preoperational data for this pathway. The 1978 operational data showed no detectable activity. The 1979 samples also showed no detectable activity.

REPORTING PERIOD 01/01/79-12/31/79 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY DOCKET NO. 50-302 CRYSTAL RIVER UNIT 3 CITRUS COUNTY, FLORIDA

PATHWAY	PATHWAY TYPE % NO	- LLD -	ALL L	OCATIONS		HIGHEST MEAN LOCATION	N LOC		CONTROL LOCATION	JL LOC/	NOI L	****
G. L. VEG (PCI/KG)	* GAMMA * ANALYSIS 6 *	* * * * *				****		***			****	0
	** RA-226 **		35(20-	5) #C48 + 62) #	446	252	****	26(20-	350	
	TH-232 **	10	33(24-	5)*C48	35(24-	41)**	306	25-	34)**	
8	I-131 **	n * * * *	20(25	5)*C47	20(5-1	35)*	20(55	32)**	
6	* BA-140 *	18 * *		QN	***	***		***			* * *	
	** RU-106 **	4 4 4 4		QN	***	***		* * *			***	
	cS-137 **	4 * * *	351(3/	524)# 524)#	351(3/	33,*		QN	***	
	* ZR-95 * *	* * *		ND	* * *	***		* * *			* * *	
	MN-54	4 4 4	3(1	5)*C48	3(1/	***	0	10	* * *	
	* \$9-NZ *	111		QN	***			* * *			* * *	
	* * * * * * * * * * * * * * * * * * *	4 \$	1400(75	\$)*C47	1570(1490-	1650)*	2)* 1570(2/	1490-	2)*	

Table III-56

FOOD CHAIN (GREEN LEAFY VEGETABLES) PATHWAY

STATISTICAL EVALUATION OF ANALYSES (pCi/kg)

Nuclide			Oper	rational Values		
	Mean	95 Percentile		Control Stations		ritical Stations
			Mean	95 Percentile	Mean	95 Percentile
Gamma Anal	ysis					
Ra-225	<28.6	70.5	26.0	42.6	30.3	<88.0
h-232	32.6	47.9	29.5	42.0	34.7	<52.9
-131*	<8.9	<37.7	20.0	90.3	<1.5	<2.5
8a-140	<4.6	<7.4	<3.9	<4.9	<5.1	<8.5
Ru-106	<11.0	<17.7	<9.3	<10.6	<12.2	<20.5
s-137	<210.9	<720.1	<1.3	<1.3	350.7	837.7
r-95	<1.9	<3.0	<1.8	<2.4	<2.0	<3.5
In-54	<1.6	<3.2	<1.0	<1.0	<1.9	<3.8
n-65	<2.7	<3.9	<2.6	<3.0	<2.7	<4.8
-40	1400.0	2245.5 1	570.0	1791.7	1286.7	2391.3
Strontium	Analysis					
r-90	<0.6	<1.7	<0.9	<2.6	<0.4	<1.0

^{*}Critical nuclides for critical station

Table 111-57

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	!	TYPE					. !			ATION					CONTROL	
有效分类的分类的分类的	京 京 司	***	RRR	***	RAN	RAAN	RRI	****	***	***		ининии	***	*****	****	
	廿				#		析				#	*			#	*
G. L. VEG	計				#		#				¥	*			*	#
PCI/KG	林	SR-90			H		¥				計	*			#	*
FUOD CHAIN	#	ANALY	SIS	4	H		#				*	*			#	* 0
	#				-14		H				钕	#			#	*
	#				45		新				#	#			*	#
	#	SR	-90)	#	1	H	<lld< td=""><td>(</td><td>2/</td><td>5)#</td><td>*</td><td></td><td></td><td>#</td><td>*</td></lld<>	(2/	5)#	*			#	*

IV. EXTERNAL RADIATION

The External Radiation portion of the Radiological Environmental Monitoring Program (Specification 3.2.3) is split between the University and the State (See Table I-1). The University also has a TLD at Sample Station C47 and the State has additional TLDs at Sample Stations C04, C40, and C46. The summaries for the University's data is in Table IV-1 and for the State's data in Table IV-2. Fourth quarter TLDs for Station C04 were lost during transit from Crystal River to the University. Because of vandalism, the fourth quarter TLDs at Station C47 were lost. No other TLDs were lost during the report period. Sample Stations C14H, C14M, and C14G are the critical stations in this pathway.

Table IV-3 presents a statistical summary of all data. The 1979 data from all TLD stations compares very well with the 1978 data and the preoperational data. Additionally, the critical stations and the control stations of the University also compare very well. However, because the University and the State use different types of TLDs, it is necessary to report their results separately.

Table IV-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY ********	1 TYPE & NO	D. LLD		LOCATION			LOCATION	: CONTROL	LOCATION INRR
AIR SUBMERSION (MREM/YR)	** ** ** ** ** ** ** ** ** ** ** ** **	# #	*		# # # #			* * *	* *
	* EXTERNAL * RADIATION *	36* 15	* 48 *	(34/	34) #C47 # 73) # #	61 (3/ 3) 54- 68)		22/ 22)* 0 29- 73)*

Table IV-2

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

CRYSTAL RIVER UNIT 3 DOCKET NO. 50-302

PATHWAY	TYPE & NO).	LLD	+	ALL	LOCATION	1S HI	GHEST	MEAN	LOCATI	ON 1	CONTROL	LOCAT	ION I	NRR
AIR SUBMERSION #	t t	#		*			# #	# #			#			4	
	EXTERNAL RADIATION	28#	20	# #	41 (28-	28)*C26	# #	54(4/ 51-	4)*	SEE (COLUMN	4 #	

Table IV-3

EXTERNAL RADIATION PATHWAY

QUARTERLY TLD ANALYSIS (mrem/yr)

	Median Value	Mean Value	95 Percentile Value
Preoperational	62		77
All Stations	45	44.9	65.1
State	39	40.8	57.1
University (All Stations)	47.5	48.3	69.2
University (Critical Stations)	50.5	50.9	67.2
University (Control Stations)	45.5	46.8	69.7