ENCLOSURE 3

ERRATA AND ADDENDA TO PREVIOUS RAI RESPONSE

The following pages have been corrected as described below. The revised pages are enclosed with the changes indicated by margin sidebars. These pages supersede the respective pages in the original attachment to the letter from D. J. Chrzanowski (CECo) to T. E. Murley (NRC), "Response to NRC Request for Additional Information Regarding Commonwealth Edison Topical Report NFSR-0069", October 21, 1991. These corrections do not result in other changes to the original attachment to the above letter.

Page Description

- 41 In Section 1.1.5.3 (Results), the third paragraph was revised to clarify the discussion provided and to correct the references to the appropriate Figures.
- 42 This page continues the corrections in the paragraph from page 41 as described above.
- 195 In Table 3.1.1-1 two additional items for comparison between the CECo and FSAR analyses have been added at the end of the table as described in the response to Question 19 of Enclosure 1.
- 196 In Table 3.1.1-2 the time of the Reactor Trip Signal for the CECo analysis was revised to 0.15 seconds instead of the incorrect original value of 0.75 seconds.
- 200 In Section 3.1.2.1 (Initial Conditions) the last sentence was changed in order to be consistent with the additions to Table 3.1.2-1 on page 201. Part of the sentence was changed from "identical to" to "either identical to or more conservative than".

In Section 3.1.2.2 (Methodology) the reactor coolant pump underfrequency trip setpoint for the FSAR analysis was revised to 57.0 Hz from the incorrect original value of 56.8 Hz. Also, the CECo value was revised from 54 Hz to 54.0 Hz.

201 In Table 3.1.2-1 three additional items for comparison between the CECo and FSAR analyses have been added at the end of the table as described in the response to Question 19 of Enclosure 1.

Encl	osure 3	
9304	270342	930423
PDR	ADOCK	05000295
p		PDR

Page Description

- 202 In Table 3.1.2-2, the line originally reading Reactor Trip Signal was revised to correctly read Initiation of Control Rod Motion. Also, for clarification, a new line was added for Underfrequency Reactor Trip Setpoint Reached, with a value of 1.2 seconds for the CECo analysis and 0.6 for the FSAR analysis.
- 211 In Table 3.1.3-2, in the "Steam Generator Safety Valve Setpoints and Flows" section, the FSAR Full Open Setpoint was revised to correctly read 1133.0 instead of 1160.0 and the notation "(assumed)" below it was deleted.
- 212 In Table 3.1.3-3, the line for 112 seconds (CECo time) was revised to correctly read 1133 for the FSAR Result for the SG Safety Valves open instead of 1125.
- 217 In Table 3.2.1-1 the Scram Reactivity for the CECo analysis was revised to 1% Δk instead of the incorrect original value of 4% Δk.
- 219 In Table 3.2.1-2 the time that the 35% power level is reached for the FSAR analysis was changed to 7.76 seconds instead of Not Discussed which was incorrect. Further, for the time that the Scram is initiated for the FSAR analysis, the value was changed to 8.26 seconds instead of the original incorrect value of 7.76 seconds. The 8.26 value includes the 0.5 second trip delay reported in the FSAR.
- 220 In Table 3.2.2-1 the MTC values for the CECo analysis for MOL and EOL were revised to read 0.156 and 0.312, respectively, instead of the incorrect original values of 0.0 and 0.0. The units for the CECo values are delta rho/gm/cc. Finally, the data for the first three lines for the FSAR analysis were placed under a heading of BOL and a second column for MOL and EOL was added. All three lines for the new column read Not Discussed.

The line for Scram Reactivity has been deleted from Table 3.2.2-1 on page 220. The line for Scram Reactivity for the same table on page 221 is correct and is left unchanged.

The High Pressure Reactor Trip setpoint for the CECo analysis was changed to 2425 psia instead of the incorrect original value of 2385 psig. The High Pressure Reactor Trip setpoint for the FSAR analysis was changed to Not Credited instead of 2385 psig. The difference between the two analyses is addressed in the response to Question 19 of Enclosure 1.

Page Description

- 224 In Table 3.2.3-1 the RCS Startup Boron Concentration for the FSAR analysis was revised to 2000 ppm instead of the incorrect original value of 1900 ppm. The difference between this value and that for the CECo analysis is addressed in the response to Question 19 of Enclosure 1.
- In Table 3.2.6-1 the SG SV Drift allowance for the CECo analysis was revised to correctly describe the modeling of the drift, accumulation, and uncertainty. The revised table states that 1% drift, 3% accumulation, and an additional 28 psi for uncertainty (added to each value in the main steam safety valve fill table) were used. The original incorrectly stated that 3.5% drift and 3% accumulation were used. (The 3.5% drift value was calculated as 1% drift with 2.5% for the uncertainty added to it. The 2.5% value came from the fact that 28 psi represented 2.5% of the lowest setpoint value.)
- 230 In the "Sequence of Events (Loss of External Electric Load)", the references to the reactor being in automatic and manual control were clarified to properly refer to automatic and manual pressure control.
- 233 In Table 3.2.8-1 the MTC for EOL for the FSAR analysis was revised to -3.5E-4 delta k/ deg F instead of the incorrect original value of -3.5 delta k/ deg F.
- 236 In Table 3.2.9-1 the line reading Scram Reactivity was revised to correctly read Shutdown Margin. Also, eight additional items for comparison between the CECo and FSAR analyses have been added at the end of the table as described in the response to Question 19 of Enclosure 1.

Due to this revision, there are now two pages, numbered 236a and 236b.

237 For item 4 in Table 3.2.9-1 the line reading high containment pressure has been changed. For the CECo analysis, it now correctly reads Not Credited. For the FSAR analysis, it now correctly reads High-high containment pressure. The difference between the two analyses is addressed in the response to Question 19 of Enclosure 1.

Due to this revision, there are now two pages, numbered 237a and 237b.

Page Description

In Table 3.2.9-1 item 3 and the footnote were revised and three additional items added at the end of the table as described in the response to Question 19 of Enclosure 1. The difference between the CECo and FSAR analyses for the revised item 3 is also addressed in the response to Question 19 of Enclosure 1. Also, the "continued" in the title of the table was moved in order to be consistent with the previous pages of the table.

Due to this revision, there are now two pages, numbered 238a and 238b.

ondary heat transfer and used in this sensitivity study were the LOL with automatic pressurizer pressure control at BOL and EOL. These cases are termed LOL1 and LOL3, respectively. These two LOL cases and the LONF event were evaluated with bubble rise velocities varying from 3.0 to 1.0 E6 feet per second and bubble rise gradients from 0.7 to 0.9. The Wilson Bubble rise model was also compared to this large range of constant bubble rise velocities. Since bubble rise velocities of less than 3.0 feet per second tend to generate erroneous results due to the excessive mixture level swell, these cases were excluded from the sensitivity study results.

1.1.5.3 Results

The sensitivity study results are presented in Figures 1.1.5-1 through 1.1.5-4 for the LONF cases and Figures 1.1.5-5 through 1.1.5-12 for the LOL cases. Since the models utilized similar pressurizer relief and/or pressurizer safety valve models, there are no significant differences in the peak primary pressures. The steam generator heat removal capacity is evaluated based on the calculated RCS pressure increase during the transient. The parameters plotted are the pressurizer mixture level and the pressurizer mixture volume.

The sensitivity results shown in Figures 1.1.5-1, 1.1.5-2, 1.1.5-5, 1.1.5-6, 1.1.5-9, and 1.1.5-10 demonstrate that varying the steam generator bubble gradient did not significantly affect the pressurizer pressure or water volume for the LONF and the two LOL cases. Since it was determined not to be a sensitive parameter, the Zion model used the RETRAN recommended bubble gradient value of 0.8.

The LONF bubble gradient sensitivity study cases in Figures 1.1.5-1 and 1.1.5-2 demonstrate that the maximum calculated pressurizer water volume varies from the Reference 1 topical results by only 0.3 cubic feet. This is considered insignificant compared to the total 500 cubic feet increase calculated for the LONF transient. The bubble rise velocity did generate some variations in the LONF pressure increase rate and in the LONF Pressurizer water volume as shown in Figures 1.1.5-3 and 1.1.5-4. This is due to changing heat transfer coefficients in the steam generator as the

bubble rise velocities create more or less secondary water volume voiding. Consequently, the Zion model used a bubble rise velocity of 38 feet per second, which provides a conservative LONF pressurizer water volume response.

The Wilson Bubble rise model uses a bubble rise velocity that varies according to the mass flow, density, and voiding of the control volume. Therefore, it is reasonable for the Wilson results to be bounded by the range of 3.0 to 1.0E6 ft/sec. Figures 1.1.5-7, 1.1.5-8, 1.1.5-11, and 1.1.5-12 demonstrate there are no significant effects on the LOL transient results due to varying the bubble rise velocity. Therefore, the Wilson bubble rise model utilized in the Reference 1 LOL analyses is appropriately conservative.

Table 3.1.1-1

CECo and Zion FSAR Locked Rotor Initial Condition Comparison

INITIAL VALUE

INITIAL CONDITION	CECo	FSAR
Power (MWt)	3315.0	3315.0
Vessel Flow (GPM)	350000.0	350000.0
Inlet Temperature (°F)	534.2	534.2
Pressure (PSIA)	2220.0	2220.0
	2280.0*	2280.0*
Low Reactor Coolant Flow Trip Setpoint	87% of nominal	87% of nominal
Pressurizer Safety Valve Setpoint (psia)	2500.0	2500.0

* Pressure used for overpressurization case

Table 3.1	.1-2	an an an ann an Anna ann an Anna an Ann	La alla, in, distante das
CECo and Zion FSAR Locked Rotor Se	equence of Even	ts Comparison	
EVENT SEQUENCE (all times in sec)	CECo	FSAR	
Start of Event	0.0	0.0	
Reactor Trip Signal	0.15	0.05	
Rod Reactivity Insertion Begins	1.15	1.05	
Time of MDNBR	1.75	1.9	
Time of Peak Pressure	3.7	3.8	

3.1.2 Loss of Flow

3.1.2.1 Initial Conditions

The initial conditions for reactor power, core inlet temperature, pressurizer pressure, and reactor vessel flow are shown in Table 3.1.2-1 for both the CECo RETRAN analysis and the FSAR analysis. As the table indicates, the initial conditions used by CECo were either identical to or more conservative than those used by Westinghouse for the FSAR analysis.

3.1.2.2 Methodology

The transient assumptions used by CECo in the loss of flow analysis were the same or more conservative than those used by Westinghouse. Both analyses assumed a reactor trip on a reactor coolant pump underfrequency signal. However, the Westinghouse FSAR analysis used a value of 57.0 Hz, while the CECo analysis used a more conservative value of 54.0 Hz. No control systems are credited for mitigation, and there is no single active failure which adversely impacts the transient.

3.1.2.3 Results

The sequence of events for the loss of flow analyses are shown for both the Westinghouse FSAR analysis and the CECo Reference 1 analysis in Table 3.1.2-2. The RETRAN analysis is run with a 1.0 second null transient at the beginning of the case. The event times have been offset by this amount. The table shows that the event sequences are very similar, as would be expected, with the exception of the time of the reactor trip signal and the rod reactivity insertion time. This is due to the more conservative underfrequency trip setpoint which resulted in a 0.6 second additional delay.

The comparison of the core flow, core power, and heat flux results are shown in Figures 3.1.2-1, 3.1.2-2, and 3.1.2-3, respectively. Figure 3.1.2-1 shows almost identical agreement of the flow coastdowns. Figures 3.1.2-2 and 3.1.2-3 show the RETRAN core power and heat flux results are conservative compared to the FSAR results. This is due to the more conservative underfrequency trip setpoint discussed previously.

Table 3.1.2-1

CECo and Zion FSAR Loss of Flow Initial Condition Comparison

	INITIAL	ALUE
INITIAL CONDITION	CECo	FSAR
Power (MWt)	3315.0	3315.0
Vessel Flow (GPM)	350000.0	350000.0
Inlet Temperature (°F)	534.2	534.2
Pressure (PSIA)	2220.0	2220.0
Control Rod Drop Delay Time (from LOOP to initiation of rod motion) (seconds)	1.8	1.2
Credit for Underfrequency Trip	Yes	Yes
Credit for Undervoltage Trip	No	Yes
Underfrequency Reactor Trip Setpoint	54.0 HZ	57.0 HZ

Table 3.1.	2-2		
CECo and Zion FSAR Loss of Flow Se	quence of Even	ts Comparison	
EVENT SEQUENCE (all times in sec)	CECo	ESAR	
Start of Event	0.0	0.0	
Underfrequency Reactor Trip Setpoint Reached	1.2	0.6	
Initiation of Control Rod Motion	1.8	1.2	
Rod Reactivity Insertion Begins	2.2	1.2	
Time of MDNBR	2.8	2.8	
	and the property of the second	NAMES AND ADDRESS OF ADDRES	

			Table	3.1.3-2					
		CECo and F	SAR LONF A	ssumptions	Comparison				
		DESCRIPT	NON			CECo	FSAR		
Symmetri	: Flows, Pr	ressures, To	emperatures	and Levels	in all Loo	ps YES	YES		
Pressurizer Heaters and Sprays are off						YES	YES		
Loss of (Offsite Pov	ver occurs	at reactor	trip		YES	YES		
Reactor !	Trips on Lo	w-Low Steam	Generator	Level		YES	YES		
Reactor (Coolant Pur	mps Trip and	d Coast down	n after Rea	actor trip	YES	YES		
Low-Low 1	Steam Gener	ator Level	Setpoint (lbm per SG)		61,000	61,000		
Low-Low !	Steam Gener	ator Level	Trip Delay	(seconds)		2.0	2.0		
Core Deca	ay Heat (%	ANS 5.1 19	71)			120	120		
AFW Flow	Delay (sec	conds After	Trip)			60.0	60.0		
Auxiliary	y Feedwater	provided	(# of Motor	Driven Pum	ups)	1	1		
AFW Flow	Rate actua	lly deliver	red to 4 Sta	eam Generat	cors (GPM)	261.2	308.0		
AFW Flow	Purge Volu	ume of Feedy	water Pipin	g per SG (c	cubic ft)	72.4	72.4		
AFW Temperature/Enthalpy (degrees F) / (btu/lbm)					120/90	120/90			
and a south of				Credit for Steam Generator Relief Valves					
Credit fo	or Steam Ge	enerator Rel	lief Valves			NO	NO		
Credit fo	or Steam Ge or Pressuri	nerator Rel zer Relief	lief Valves Valves			NO NO	NO NO		
Credit fo	or Steam Ge or Pressuri	nerator Rel zer Relief	lief Valves Valves			ио Ио	NO NO		
Credit fo Credit fo Steam Gen	or Steam Ge or Pressuri merator Saf	enerator Rel zer Relief	lief Valves Valves Setpoints a	nd Flows:		NO NO	NO NO		
Credit fo Credit fo Steam Gen	or Steam Ge or Pressuri nerator Saf CECo vift	enerator Rel zer Relief ety Valve S CECo	lief Valves Valves Setpoints au	nd Flows: FSAR	FSAR	NO NO	NO NO		
Credit fo Credit fo Steam Gen	or Steam Ge or Pressuri nerator Saf CECo Lift	enerator Rel zer Relief ety Valve S CECo Full Open	lief Valves Valves Setpoints an CECo	nd Flows: FSAR Lift	FSAR Full Open	NO NO FSAR	NO NO		
Credit fo Credit fo Steam Gen	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint	enerator Rel zer Relief CECo Full Open Setpoint	lief Valves Valves Setpoints an CECo Capacity (Dr)	nd Flows: FSAR Lift Setpoin:	FSAR Full Open Setpoint	NO NO FSAR Capacity	NO		
Credit fo Credit fo Steam Gen Valve #	or Steam Ge or Pressuri CECo Lift Setpoint (psia)	enerator Rel zer Relief ety Valve S CECo Full Open Setpoint (psia)	lief Valves Valves Setpoints an CECo Capacity (lbm/hr)	nd Flows: FSAR Lift Setpoin' (psia',	FSAR Full Open Setpoint (psia)	NO NO FSAR Capacity (lbm/hr)	NO		
Valve #	or Steam Ge or Pressuri CECo Lift Setpoint (psia) 1103.3	enerator Rel zer Relief Gety Valve & CECo Full Open Setpoint (psia) 1135.6	lief Valves Valves Setpoints au CECo Capacity (lbm/hr) 584,105	nd Flows: FSAR Lift Setpoin: (psia; 1129.6	FSAR Full Open Setpoint (psia) 1133.0	NO NO FSAR Capacity (lbm/hr) 3,705,500	NO		
Credit fo Credit fo Steam Gen Valve #	or Steam Ge or Pressuri CECo Lift Setpoint (psia) 1103.3 1116.5	enerator Rel zer Relief Gety Valve S CECo Full Open Setpoint (psia) 1135.6 1149.1	lief Valves Valves Setpoints au CECo Capacity (lbm/hr) 584,105 584,105	nd Flows: FSAR Lift Setpoin: (psia; 1129.6	FSAR Full Open Setpoint (psia) 1133.0	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed)	NO		
Valve #	or Steam Ge or Pressuri CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6	enerator Rel zer Relief Gety Valve S CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7	lief Valves Valves Setpoints au CECo Capacity (lbm/hr) 584,105 584,105 845,763	nd Flows: FSAR Lift Setpoin: (psia; 1129.6	FSAR Full Open Setpoint (psia) 1133.0	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed)	NO		
Valve #	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7	enerator Rel zer Relief Sety Valve S CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1	lief Valves Valves Setpoints at CECo Capacity (lbm/hr) 584,105 584,105 845,763 845,763	nd Flows: FSAR Lift Setpoin: (psia; 1129.6	FSAR Full Open Setpoint (psia) 1133.0	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed)	NO		
Valve #	or Steam Ge or Pressuri Derator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8	enerator Rel zer Relief ety Valve S CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6	lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 845,763 845,763 845,763	nd Flows: FSAR Lift Setpoin' (psia', 1129.6	FSAR Full Open Setpoint (psia) 1133.0 - - -	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed)	NO		
Credit fo Credit fo Steam Gen Valve # 1 2 3 4 5 Pressuriz	or Steam Ge or Pressuri nerator Saf CECO Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8 eer Safety	enerator Rel zer Relief CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6 Valve Setpo	lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 845,763 845,763 845,763 845,763	nd Flows: FSAR Lift Setpoin: (psia; 1129.6 - - -	FSAR Full Open Setpoint (psia) 1133.0	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed)	NO		
Credit fo Credit fo Steam Gen Valve # 1 2 3 4 5 Pressuriz	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8 eer Safety CECo	enerator Rel zer Relief CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6 Valve Setpo CECo	lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 845,763 845,763 845,763 845,763	nd Flows: FSAR Lift Setpoin' (psia', 1129.6 - - - - - - - - - - - - - - - - - - -	FSAR Full Open Setpoint (psia) 1133.0 - - - - - - - - -	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed)	NO		
Credit fo Credit fo Steam Gen Valve # 1 2 3 4 5 Pressuriz	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8 eer Safety CECo Lift	enerator Rel zer Relief CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6 Valve Setpo CECo Full Open	lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 845,763 845,763 845,763 845,763 bints and Find CECo	nd Flows: FSAR Lift Setpoin: (psia; 1129.6 - - - - - - - - - - - - - - - - - - -	FSAR Full Open Setpoint (psia) 1133.0 - - - - - - - - - - - - - - - - - - -	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed) - - - -	NO		
Credit fo Credit fo Steam Gen Valve # 1 2 3 4 5 Pressuriz	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8 eer Safety CECo Lift Setpoint	enerator Rel zer Relief CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6 Valve Setpo CECo Full Open Setpoint	lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 845,763 845,763 845,763 845,763 bints and Find CECo Capacity	nd Flows: FSAR Lift Setpoin: (psia; 1129.6 - - - - - - - - - - - - - - - - - - -	FSAR Full Open Setpoint (psia) 1133.0 - - - - - - - - - - - - - - - - - - -	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed) - - - - FSAR Capacity	NO		
Valve # Valve # Valve #	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8 ter Safety CECo Lift Setpoint (psia)	enerator Rel zer Relief (ety Valve S CECo Full Open setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6 Valve Setpo CECo Full Open Setpoint (psia)	lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 584,105 584,105 845,763 845,763 845,763 845,763 bints and F1 CECo Capacity (lbm/hr)	nd Flows: FSAR Lift Setpoin' (psia' 1129.6 - - - - - - - - - - - - - - - - - - -	FSAR Full Open Setpoint (psia) 1133.0 - - - - - - - - - - - - - - - - - - -	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed) - - - - FSAR Capacity (lbm/hr)	NO		
Valve #	or Steam Ge or Pressuri nerator Saf CECo Lift Setpoint (psia) 1103.3 1116.5 1129.6 1141.7 1153.8 er Safety CECo Lift Setpoint (psia) 2474.7	enerator Rel zer Relief CECo Full Open Setpoint (psia) 1135.6 1149.1 1162.7 1175.1 1187.6 Valve Setpo CECo Full Open Setpoint (psia) 2548.9	Lief Valves Valves Setpoints an CECo Capacity (lbm/hr) 584,105 584,105 584,105 845,763 845,763 845,763 bints and Fi CECo Capacity (lbm/hr) 1,260,000	nd Flows: FSAR Lift Setpoin' (psia', 1129.6 - - - - - - - - - - - - - - - - - - -	FSAR Full Open Setpoint (psia) 1133.0 - - - - - - - - - - - - - - - - - - -	NO NO FSAR Capacity (lbm/hr) 3,705,500 (assumed) - - - - FSAR Capacity (lbm/hr) 1.260,000	NO		

RAI-1 Revision: 1

		Table 3.1.3-	3 of Events Company	con	
		CECO and FOAR LONF Sequence	or Events Compan	ISON	
CECo Time	FSAR			CECo	FSAR
sec	sec	EVENT	Condition	Result	Result
0	0	Steady State Full Power	(* Power)	102	102
1	10	Feedwater Flow Stops	PZR Pres (psia)	2280	2280
32	50	Pressurizer Safety Valve opens	PZR pres (psia)	2475	2500
55	58	Low-Low SG Level Trip	Water Mass lbm	61000	61000
57	60	Reactor Trips, RCPs Trip, Loss of Offsite Power occurs, AFW Start Signal Sent			
56	75	PZR Liq Volume 1st Peak	(cubic feet)	1481	1328
62	75	PZR Safety Valves close	(< psia)	2475	2500
112	75	SG Safety Valves open	SG Pres (psia)	1118	1133
117	118	AFW Pumps started, Flow at 409 btu/lbm enters SG	SG water Mass (lbm)	55263	50500
596	ii	PZR Safety Valve reopens	(psia)	2475	#
614	540	AFW Flow at 90 btu/lbm enters Steam Generator	SG water mass (lbm)	40703	37500
1857	n/a	AFW flow increased to 400 GPM, Operator Action mitigates filling of the pressurizer	Elapsed Time from Reactor trip (min)	30	N/A
#	2500	PZR Safety Valve reopens	(psia)	#	2500
2400	5440	Hot Leg temperature at maximum	(degrees F)	608	603
2720	5440	Cold Leg temp at maximum	(degrees F)	585	582
2720	5440	PZR Max Water volume	(cubic feet)	1690	1556
2960	#	PZR Safety Valve closes	(< psia)	2475	#
3080	5500	Min SG Level, then it rises ending the transient. Decay Heat = AFW Cooling capacity	SG level (ft) SG water mass (lbm per SG)	4.8 27356	*
#	6000	PZR Safety Valve closes	PZR Pres less than (psia)	#	2500
10000	7000	Plant stable	SG Water level (ft above tubes)	14.1 neet)	*
* Da # The	ta not e FSAI	t supplied in FSAR analysis R and the CECo analysis had a di	fferent sequence	of ever	nts

3.2 RETRAN-FSAR Transient Comparisons

3.2.1 Uncontrolled RCCA Withdrawal at Subcritical

	Table 3.2.1-1				
Initial Conditions: Uncontrolled RCCA Withdrawal at Subcritical					
Parameter	CECo	<u>*FSAR</u>			
DTC	-0.65 pcm/deg F	NOT DISCUSSED			
МТС	0 delta k/deg F (value must remain negative per Tech. Specs.; a 0 value is bounding)	1.0E-4 delta k/deg F			
Prompt n lifetime (l*)	30 microseconds	NOT DISCUSSED			
Beta	0.0075	NOT DISCUSSED			
System Pres.	2220 psia (2250-30), (conservative steady state error)	2220 psia			
Coolant Temp.	551 deg F (547+4) (conservative steady state error)	551 deg F			
Coolant Flow	135E6 lb/hr (Thermal Design Flow)	135E6 lb/hr			
Reactivity Insertion Rate	8.0E-4 delta k/s	8.0E-4 delta k/s			
Source or Intermediate Range Trips	Not Credited	Not Credited			
Power Range Trip Setpoint	35% Power	35% Power			
Scram Reactivity	1% delta k	NOT DISCUSSED			
* - Values taken from	Section 14.1.1 of the FSAR.				

Formeres of Eventer Unes		1
Sequence of Events: Unco	ntrolled RCCA withdraw	al at Subcritica
Event	CECo	*FSAR
eactor at hot zero power	0.0	0.0
eactivity insertion begins	0.0	0.0
5% power level reached	10.75	7.76
cram initiated	11.25	8.26

3.2.2 Uncontrolled RCCA Withdrawal at Power

			Table 3.2.2-1		
Initial Conditions: Uncontrolled RCCA Withdrawal at Power					
Parameter			CECo	*FSAR	
	BOL	MOL	EOL	BOL	MOL and EOL
DTC	-0.7	-1.6	-2.5 (pcm/deg. F)	Not Discussed	Not Discussed
Beta	0.007	0.005815	0.00463	Not Discussed	Not Discussed
MTC	0.0	0.156	0.312 (delta rho/gm/cc)	0.0 delta k/deg F	Not Discussed
Pressurizer Pressure	2220 p (Conser state er	sia (2250-3(rvative stea rror.)	D) dy	2220 psia	
Coolant Flow	135E6 l (Therm	lb/hr al Design Fl	ow)	135E6 lb/hr	
Reactivity Insertion Rate Range	1E-6 to	1E-3 delta l	k/s	1E-6 to 1E-3 delta k/s	
Power Range Trip	118% n full pov	ominal ver		118% nominal full power	
Reactor Trip	Delta-T setpoin	exceeds O t plus uncer	TDT rt.	Delta-T exceeds OTDT setpoint plus uncert.	
	Delta-T setpoin	exceeds OF t plus uncer	PDT rt.	Delta-T exceeds OPDT setpoint plus uncert.	
High Pressure Reactor Trip	2425 ps (< 248) safety v	sig 5 for pressu valves)	rizer	Not Credited	
* - Values taker	n from Se	ection 14.1.	2 of the FSAR.		

Table 3.2.3-1

Initial Conditions: CVCS Malfunction (cont.)

	DILUTION DURING STARTUP	
Parameter	CECo	<u>*FSAR</u>
RCS Startup Boron Conc.	1900 ppm	2000 ppm
Core Monitoring	Source Range Detectors	Source Range Detectors
Rx Protection	SR High Flux and all Rx trips active.	SR High Flux and all Rx trips active.
RCS Mixing	Four RCPs	Four RCPs
Maximum Dilution	420 gpm (2 charging pumps at 210 gpm each)	208 gpm
RCS Volume	10,068 cubic ft (active volume excluding the pressurizer)	10,068 cubic ft (active volume excluding the pressurizer)
Critical Cb	1200 ppm	1200 ppm
Time to Critical	91 min.** (sufficient time to terminate dilution)	140 min. (sufficient time to terminate dilution)

* - Values taken from Section 14.1.4 of the FSAR.

** - Actual calculated time > 91 min. but kept consistent with the current FSAR Startup case to provide added conservatism.

3.2.6 Loss of External Electric Load

Table 3.2.6-1 Initial Conditions: Loss of External Electric Load					
Parameter	CECo	<u>*FSAR</u>			
Beta	0.007	Not Discussed			
DTC	-1.0 pcm/deg F	Not Discussed			
MTC BOL EOL	0 pcm/deg F 0.312 delta rho/gm/cc	0 pcm/deg F -3.5E-4 delta k/deg F			
System Pres.	2220 psia (2250 - 30) (Conservative steady state error).	2220 psia			
System Power	102% (3315 MWth)	102% (3315 MWth)			
Coolant Temp.	566.2 deg F (562.2+4) (Conservative steady state error).	566.2 deg F			
Coolant Flow	135E6 lb/hr (Thermal Design Flow)	135E6 lb/hr (Thermal Design Flow)			
Scram Reactivity	4% delta k	Not Discussed			
Decay Heat	120% ANS	Not Discussed			
PZR PORV and Spray	Automatic - Active Manual - Inactive	Automatic - Active Manual - Inactive			
SG SV Drift Allowance	1% Drift 3% Accumulation 28 psi for Uncertainty **	Not Discussed Not Discussed Not Discussed			
Pressurizer Safety Valve Setpoint	2735 psig	Not Discussed			
Steam Dump System	Inactive	Inactive			
* - Values taken	from Section 14.1.7 of the FSAR.				

Added to each value in the main steam safety valve fill table.

Sequence of Events (Loss of External Electric Load)

The transient response for a total loss of load from 102% full power operation is analyzed for four cases, two cases for the beginning of core life (automatic pressure control and manual pressure control) and two cases for the end of core life (again, automatic pressure control and manual pressure control). The sequence of events for the two most limiting cases, discussed below, is summarized in Table 3.2.6-2.

The FSAR's most limiting MDNBR case is the automatic pressure control BOL case where the MDNBR reached 1.74 at 11.0 seconds after the loss of load occurs. The MDNBR for all four cases of the CECo analysis is 2.13 which occurs at the beginning of the transient. However, it should be noted that for all four cases of both analyses the DNBR remains fairly constant for the first 10 to 12 seconds of the transient, and therefore the time at which the MDNBR occurs is relatively insignificant. The variation in magnitudes is primarily due to the different DNB calculation methods and the computer modeling techniques utilized. The MDNBR values, for both analyses, are significantly greater than the current safety limit which precludes fuel damage with a Loss of Load Event.

The FSAR's most limiting peak pressurizer pressure case is the manual pressure control BOL case where the pressure reached a maximum value of 2532 psia with the high pressurizer pressure setpoint (2425 psia) reached at 6.1 seconds. The CECo analysis has the same limiting case with a peak pressurizer pressure of 2532 psia, but the high pressurizer pressure setpoint (2425 psia) is reached at approximately 9 seconds. The peak RCS pressure is approximately 50 psi above the peak pressurizer pressure, which is significantly below the primary system pressurization limit of 2735 psig. Therefore, system overpressurization does not occur.

The pressurizer pressure and neutron flux curves also exhibit similar trends and magnitudes. No other information about the sequence of events could be identified in the FSAR for this transient.

3.2.8 Excessive Load Increase Incident

		Table 3.2.8-1			
	I	nitial Conditions: Excessive Loa	id Increas	se	
Parameter		CECo		*FSAR	
Beta	0.007		Not	Not Discussed	
DTC	-1.0	pcm/deg F	Not	Not Discussed	
MTC BOL EOL	0 pc 0.31	cm/deg F I 2 delta rho/gm/cc	0 pc -3.5	cm/deg F E-4 delta k/deg F	
Pressurizer Pressure	222 stea	2220 psia (2250-30) (Conservative steady state error)		0 psia	
System Power	102% (3315 MWth)		102	102% (3315 MWth)	
RCS Tavg	566.2 deg F (562.2+4) (S.S. error in most conservative direction)		566	.2 deg F	
RCS Flow	135 (The	E6 lb/hr ermal Design Flow)	135 (The	E6 lb/hr ermal Design Flow)	
Scram Reactivity	4% c	4% delta k		delta k	
Protection for an Excessive Load Increase	Overpower delta T Reactor Trip		Ove Rea	rpower delta T ctor Trip	
	Ove Rea	rtemp. delta T ctor Trip	Ove Rea	rtemp. delta T ctor Trip	
	Power Range High Neutron Flux Rx Trip		Pow Neu	Power Range High Neutron Flux Rx Trip	
4 Cases Analyzed for 10% Step Load	1.	Reactor in Manual	1.	Reactor in Manual	
Increase from Rated Load	2.	Reactor in Manual	2.	Reactor in Manual	
	3.	Reactor in Automatic	3.	Reactor in Automatic	
	4.	Reactor in Automatic at EOL	4.	Reactor in Automatic at EOL	
* - Values taken	from	Section 14.1.10 of the FSAR			

3.2.9 Small and Large Steam Line Breaks.

Table 3.2.9-1					
Initial Conditions: Small and Large Steam Line Breaks					
Parameter	CECo	*FSAR			
Time in Life	EOL	EOL			
Beta	0.0046	Not Discussed			
DTC	-1.0 pcm/deg F	Not Discussed			
MTC	0.312 delta rho/gm/cc	Not Discussed			
Pressurizer Pressure	2250 psia	2250 psia			
System Power	0% (subcritical)	0% (subcritical)			
RCS Temp.	547 deg F	Not Discussed			
RCS Flow	135E6 lb/hr (Thermal Design Flow)	135E6 lb/hr (Thermal Design Flow)			
Shutdown Margin	1.6% delta k	Not Discussed			
Low Steam Line Pressure Signal	445 psig	Not Discussed			
High Delta Steamline Pressure	160 psig	Not Discussed			
High Steam Line Flow (0% Power)	8.4E5 lb/hr	Not Discussed			
Low RCS Tavg Trip	536 deg F	Not Discussed			
Main Steam Isolation Value Closing Time	5 seconds	5 seconds			

Table 3.2.9-1 (continued)					
	Initial Conditions:	Small and Large Steam	Line Breaks		
Parameter		CECo	<u>*FSAR</u>		
ECCS System Modeling					
Number of Charging Pumps Credited	1		1		
Number of SI Pumps Credited	1		0		
Accumulators	No		Yes		
R ^E System	No		No		
Initial Boron Concentration in the RWST Line	Not Credited		Not Credited		
Time to Full SI Flow with Offsite Power	25 seconds		10 seconds		
Time to Full SI Flow without Offsite Power	37 seconds		22 seconds		
* - Values taken from Section 14.2.5 of the FSAR.					

Table 3.2.9-1 (continued) Initial Conditions: Small and Large Steam Line Breaks					
Systems that provid	de the necessary protection against	steam pipe rupture.			
1. Safety Injection System Actuation from	2 of 4 coincident low pressurizer pressure	Not Discussed			
any of the following:	2 of 3 differential pressure signals between a steam line and the remaining steam lines.	2 of 3 differential pressure signals between a steam line and the remaining steam lines			
	High steam line flow in 2 out of 4 main steam lines (1 of 2 per line), in coincidence w/ either low low RCS Tavg (2 of 4 loops) or low main steam line pres. (2 of 4 lines)	High steam line flow in 2 out of 4 main steam lines (1 of 2 per line), in coincidence w/ either low low RCS Tavg (2 of 4 loops) or low main steam line pres. (2 of 4 lines)			
	2 of 4 high containment pressure signals	2 of 4 high containment pressure signals			
2. Reactor trip from:	High flux	High flux			
	Overpower delta T	Overpower delta T			
	Trip on SI Signal	Trip on SI Signal			
3. Redundant isolation of Main Feed- water Lines	Sustained High FW flow would cause additional cooldown	Sustained High FW flow would cause additional cooldown			
	A safety injection signal will rapidly close all FW control valves, trip main FW pumps, & close FW header stop valves	A safety injection signal will rapidly close all FW control valves, trip main FW pumps, & close FW header stop valves			

2.

3.

Table 3.2.9-1 (continued)

Initial Conditions: Small and Large Steam Line Breaks

Parameter

CECo

*FSAR

4. Trip of the Fast Acting Main Steam Line Stop Valves on: High steam flow in any 2 steam lines in coincidence with either low-low RCS Tavg or low steam line pressure in any two lines

Not credited

High steam flow in any 2 steam lines in coincidence with either low-low RCS Tavg or low steam line pressure in any two lines

High-high containment pressure

* - Values taken from Section 14.2.5 of the FSAR.

Table 3.2.9-1 (continued)

Initial Conditions: Small and Large Steam Line Breaks

Input Assumptions* (conditions at time of steam break accident)

- The design end of life shutdown margin at no-load, equilibrium xenon conditions and with the most reactive rod stuck in its fully withdrawn position. Operation of the control rod banks during core burnup is restricted in such a way that addition of positive reactivity in a steam break accident will not lead to a more adverse condition than the case analyzed.
- The negative moderator coefficient corresponding to the end of life rodded core with the most reactive rod in the fully withdrawn position.
- 3. Minimum capability for injection of high concentration boric acid solution corresponding to the most restrictive single active failure in the Safety Injection System. In the FSAR analysis, this corresponds to the flow delivered by one charging pump delivering its full flow to the cold leg header. In the CECo analysis, this corresponds to one charging pump and one SI pump.
- 4. A conservative value of the steam generator heat transfer coefficient. (No corresponding assumption found in FSAR.)
- 5. Hot channel factors corresponding to the worst stuck rod at end of core life.
- Complete severance of a pipe inside the containment at the outlet of the steam generator (upstream of the flow restriction) with the plant initially at no-load conditions and all reactor coolant pumps running.
- In computing the steam flow during a steam line break, Moody choked flow was assumed.
- 8. Perfect moisture separation in the steam generator is assumed. The assumption leads to conservative results since, in fact, considerable water would be discharged. Water carryover would reduce the magnitude of the temperature decrease in the core and the pressure increase in the containment.
- 9. The properties of the hot sector of the core and the properties for the remainder of the core are combined for use in calculating reactivity feedback. The FSAR also uses a uniform power distribution for calculating reactivity feedback from the Doppler power coefficient. The CECo analysis does not use a Doppler power coefficient.

Table 3.2.9-1

Initial Conditions: Small and Large Steam Line Breaks (cont.)

- 10. The core inlet temperature distribution is non-uniform with the coldest conditions assumed to occur at the location of the stuck rod.
- 11. The FSAR assumes that the intact steam generators blow down until the MSIV's close or until 10 seconds after the break, whichever occurs first. The CECo analysis assumes that the blowdown from the intact steam generators ends only upon closure of the MSIVs.

*- Input assumptions are for both analyses, except where noted, with the FSAR information taken from Section 14.2.5 of the FSAR.