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1.0 SUMMARY

The Kewaunee Nuclear Power Plant is scheduled to shut down for the Cycle 18-19

refueling in March 1993. Startup of Cycle 19 is forecast for April 1993.

This report presents an evaluation of the Cycle 19 reload and demonstrates that the reload
will not adversely affect the safety of the plant. Those accidents which could potentially

be affected by the reload core design are reviewed.

Details of the calculational model used to generate physics parameters for this Reload
Safety Evaluation are described in References | and 15. Accident Evaluation

methodologies applied in this report are detailed in Reference 2. These reports have
been previously reviewed and approved by the NRC as shown in References 3 and 4.

The current physics model reliability factors are discussed in Section 5 of this report.

An evaluation, by accident, of the pertinent reactor parameters is performed by comparing
the reload analysis results with the current bounding safety analysis values. The
evaluations performed in this document employ the current Technical Specification

{Reference 5) limiting safety system setpoints and operating himits.

It is concluded that the Cycle 19 design is more conservative than results of previously
docketed accident analyses and implementation of this design will not introduce an

unreviewed safety question since:



1. the probability of occurrence or the consequences of an accident will not be increased,

2. the possibility for an accident or malfunction of a different type than any evaluated

previously in the safety analysis report will not be created and,

3. the margin of safety as defined in the basis for any technical specification will not be

reduced.

This conclusion is based on these assumptions: There is adherence to plant operating
limitations and Technical Specifications (Reference §), and Cycle 18 is shut down within a

+300 MWD/MTU, -250 MWD/MTU window of the nominal design End of Cycle (EOC)

burnup of 11,000 MWD/MTU.




2.0 CORE DESIGN

2.1 Core Description

The reactor core consists of 121 fuel assemblies of 14 x 14 design. The core loading
pattern, assembly identification, control rod bank identification, instrument thimble
I.D., thermocouple 1.D ., and burnable poison rod configurations for Cycle 19 are

presented in Figure 2.1.1.

Thirty-two (32) new Siemens Power Corporation (SPC) standard assemblies enriched
to 3.4 w/o U235 and four (4) new Westinghouse Electric OFA assemblies enriched to
3.1 w/o U235 will reside with BS partially depleted SPC assemblies. Table 2.1.1
‘displays the core breakdown by region, enrichment, and number of previous duty
cycles. Reference 6 describes the SPC 14 x 14 design. References 16 and 17

describe the Westinghouse OFA design.

The Cycle 19 reload core will employ 24 burnable poison rod assemblies (BPRAs)

containing 144 fresh and 144 partially depleted burnable poison rods. Fuel assemblies
with two or three previous duty cycles are loaded on the core periphery flat region to
lower power in that region and reduce reactor vessel fluence (see Reference 14) in the

critical reactor vessel locations.
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Figure 2.3.1
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3.3 Evaluation of Control Rod Misalignment

The static misalignment of an RCCA from its bank position does not cause a system
transient; however, it does cause an adverse power distribution which is analyzed to
show that core Departure from Nuclear Boiling Ratio (DNBR) limits are not

exceeded.

The limiting core parameter is the peak FAH in the worst case misalignment of

Bank D fully inserted with one of its RCCAs fully withdrawvn at full power.

Table 3.3.1 presents a comparison of the Cycle 19 FAHN versus the current safety

analysis FAH limit for the Misaligned Rod Accident.

Sinc  the pertinent parameter from the proposed Cycle 19 reload core is
conservatively bounded by that used in the current safety analysis, a control rod
misalignment accident will be less severe than the transient in the current analysis.
The implementation of the Cycle 19 reload core design, therefore, will not adversely

affect the safe operation of the KXewaunee Plant.



Table 3.3.1

Control Rod Misalignment

e

Reload Safety Current
Parameter Evaluation Value Safety Analysis

A) FAHN 1.81 2.03




3.4 Evaluation of Dropped Rod

The release of a full length control rod, or control rod bank by the gripper coils while
the reactor is at power, causes the reactor to become subcritical and produces a
mismatch between core power and turbine demand. The dropping of any control rod
bank will produce a negative neutron flux rate trip with no resulting decrease in
thermal margins. Dropping of a single RCCA or several RCCA's from the same bank
may or may not result in a negative rate trip, and therefore ihe radial power

distribution must be considered.

Table 3.4.1 presents a comparison of the Cycle 19 physics parameters 1o the current

safety analysis values for the Dropped Rod Accident.

Since the pertinent parameters from the proposed Cycle 19 reload core are

conservat. . cly bounded by that used in the current safety analysis, a dropped rod
accident will be less severe than the transient in the current analysis. The
implementation of the Cycle 19 reload core design, therefore, will not adversely affect

the safe operation of the Kewaunee Plant.

—— R




Table 3.4.1

Dropped Rod

Reload Safety Current
Parameter Evaluation Value Safety Analysis Units

A) FAHN 1.52 < 1.55 ---

B) Doppler Temp. -1.31 < -1.0 pem/ °Ff
Coefficient

C) Delayed Neutron 00632 < 00706 ---
Fraction

D) Excore Tilt .82 > .80 -
(Control)

E) Full Power Insertion 305 < 400 pem
Limit Worth (BOL)

F) Full Power Insertion 430 < 450 pcm
Limit Worth (EOL)

G) Moderator -6.23 < 0.0 pem/*Fm
Temperature
Coefficient (BOL)

H) Moderator -20.01 < -17.0 pem/“Fm
Temperature
Coefficient (EOL)
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3.5 Evaluation of Uncontrolled Boron Dilution

The malfunction of the Chemical and Volume Control System (CVCS) is assumed to

deliver unborated water to the Reactor Coolant System (RCS).

Although the boron dilution rate and shutdown margin are the key parameters in this |
event, additional parameters are evaluated for the manual reactor control case. In this ;
case core thermal limits are approached and the transient is terminated by a reactor |

trip on over-temperature AT.

Table 3.5.1 presents a comparison of Cycle 19 physics analysis results to the current
safety analysis values for the Uncontrolled Boron Dilution Accident for refueling and

full power core conditions.

Since the pertinent parameters from the proposed Cycle 19 reload core are
conservatively bounded by those used in the current safety analysis, an uncontrolled
boron dilution accident will be less severe than the transient in the current analysis.
The implementation of the Cycle 19 reload core design, therefore, will not adversely

affect the safe operation of the Kewaunee Plant.

.27 |
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Table 3.5.1

Uncontrolled Boron Dilution

Parameter
i) Refueling Conditions
A) Shutdown Margin 11.1
i) At-Power Conditions
A) Moderator Temp. Coefficient 0.23
I B) Doppler Temp. Coefficient -1.32
C) Reactivity Insertion Rate by Boron 0022
D) Shutdown Margin 2.28
E) FAHN 1.52
F) Delayed Neutron Fraction 00632

-28 .-




3.6 Evaluation of Startup of an Inactive Loop

The startup of an idle reactor coolant pump in an operating plant would result in the
injection of cold water (from the idle loop hot leg) into the core which causes a rapid

reactivity insertion and subsequent core power increase.

The moderator temperature coefficient is chosen 10 maximize the reactivity effect of
the cold water injection. Doppler temperature coefficient is chosen conservatively low
(absolute value) to maximize the nuclear power rise. The power distribution (FAH) is

used to evaluate the core thermal limit acceptability.

Table 3.6.1 presents a comparison of the Cycle 19 physics calculation results to the

current safety analysis values for the Startup of an Inactive Loop Accident.

Since the pertinent parameters from the proposed Cycle 19 reload core are
conservatively bounded by those used in the current safety analysis, the startup of an
inactive loop accident will be less severe than the transient in the current analysis.
The implementation of the Cycle 19 reload core design, therefore, will not adversely

affect the safe operation of the Kewaunee Plant.
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Table 3.6.1

Startup of an Inactive Loop

Reload Safety
Evaluation Values

Current
Safety Analysis

| A) Moderator Temp. -33.21 > -40.0
Coefficient

B} Doppler Coefficient -1.87 < -1.0

C) FAHN 1.52 1.55




3.7 Evaluation of Feedwater System Malfunction

The malfunction of the feedwater system such that the feedwater temperature is
decreased or the flow is increased causes a decrease in the RCS temperature and an
attendant increase in core power level due 10 negative reactivity coefficients and/or

control system action.

Minimum and maximum moderator coefficients are evaluated to simulate both BOC
and EOC conditions. The doppler reactivity coefficient is chosen to maximize the

nuclear power peak.

A comparison of Cycle 19 physics calculation results 1o the current safety analysis

values for the Feedwater System Malfunction Accident is presented in Table 3.7.1.

Since the pertinent parameters from the proposed Cycle 19 reload core are
conservatively bounded by those used in the current safety analysis, a feedwater
system malfunction will be less severe than the transient in the current analysis. The
implementation of the Cycle 19 reload core design, therefore, will not adversely affect

the safe operation of the Kewaunee Plant.

3=
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Table 3.7.1

Feedwater System Malfunction

Parameter Values Analysis U-ats
{ i) Beginning of Cycle
A) Moderator Temp. Coefficient 6.23 < 0.0 pem/“Fm
3) Doppler Temp. Coefficient -1.32 < -1.0 pem/°Ff
i) End of Cycle
A) Moderator Temp. Coefficient -28.26 > -40.0 pem/“Fm
B) Doppler Temp. Coefficient -1.31 < -1.0 pem/°Ff
1i1) Beginning 2nd End of Cycle
C) FAHN 1.52 < 1.55 -

9



Table 3.8.1

Excessive Load Increase

Parameter

i) Beginning of Cycle |

A) Moderator Temp. Coefficient

B) Doppler Temp. Coefficient -1.32 < -1.0 peny/ °Ff :
ii) End of Cycle
A) Moderator Temp. Coefficient -28.26 2 -40.0 pem/°“Fm |
B) Doppler Temp. Coefficient -1.31 < -1.0 pem/°Ff I
ii1) Beginning and End of Cycle
C) FAHE, 1.52 < 1.55 |

-34 -



3.8 Evaluation of Excessive Load Increase

An excessive load increase causes a rapid increase in steam generator steam flow.
The resulting mismatch between core heat generation and secondary side load demand
results in a decrease in reactor coolant temperature which causes a core power

increase due to negative moderator feedback and/or control system action.

This event results in a similar transient as that described for the feedwater system

malfunction and is therefore sensitive to the same parameters.

Table 3.8.1 presents a comparison of Cycle 19 physics results to the current safety

analysis values for the Excessive Load Increase Accident.

Since the pertinent parameters from the proposed Cycle 19 reload core are
conservatively bounded by those used in the current safety analysis, an excessive load
increase accident will be less severe than the transient in the current analysis. The
implementation of the Cycle 19 reload core design, therefore, will not adversely affect

the safe operation of the Kewaunee Plant.
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