THIS LETTER SATISFIES COMMITMENT NO. MEHNAL DISTRICUTION THIS LETTER MOES! MOES MOTHESTABLISH A NEW COMMITME OMMITMENT CONTROL-WO/A CE LOVE-WO/A 603-87-2756 WPPSS CONGESPONDENCE NO .___ DD O'SULLIVAN/270-W/A COUTING-WO/A ITE FILES-WO/A FS PECK-WO/A JA PUZAUSKAS-WO/A G ALBERT/NRC-W/A CL QUAMME-WO/A OR COODY-W/A AM CUTRONA-WO/A CE TRAPP-WO/A E DOBSON-WO/A J DORAN-WO/A November 17, 1981 JE WERLE-WO/A B GLASSCOCK/280-W/A G03-81-2756 U. S. Nuclear Regulatory Commission, Region V Office of Inspection and Enforcement 1450 Maria Lane, Suite 210 Walnut Creek, California 94596-5368 Attention: Mr. B. H. Faulkenberry Chief, Reactor Construction Projects Branch Gentlemen: Subject: PROJECT NOS. 3 AND 5 DOCKET NUMBERS 50-508 AND 50-509 0.5 FINAL REPORT OF POTENTIAL 10CFR50.55(%) FOR SIGNATURE STRUCTURAL STEEL CONNECTIONS ONIT NO. 5 (DAN #019) Re erences: 1) Letter, G03-81-1027, R. S. Leddick to

B. H. Faulkenberry, lated Max 7; 1981.

2) Letter, G03-81-2378, A. S. Leddick to

B. H. Faulkenberry, Gazed August 14, 1981. On January 28, 1981, your office was ployided with notification of a co dition potentially reportable in accordance with the requirements of 10CFR50.55(e). The problem concerned erection of structural steel and associated documentation for both Units 3 and 5. Interim reports were submitted on May 7, 1981 and August 14, 1981 by references 1 and 2 respectively. Attached is the final report for Unit 5 only. It summarizes the problem, details corrective/preventive actions taken and provides an evaluation of the nonconforming conditions. Presently, Morrison-Knudsan As preparing a statistical analysis report for Unit 3. The Niral report for Unit 3 will be provided to your office by January 8, 1982. Should you have any questions or desire further information, please contact me directly. Very truly yours. 00 UR FUR APPR ALITHOR: R. S. Leddick Program Director, WNP-3/5 cc : . Adams - NESCO-WO/A D. Saithneter - BPA-WO/A Ebasco - New York-WO/A WNP-3/5 Files - Richland-WO/A 8112020521 811124 PDR ADOCK 05000509

WASHINGTON PUBLIC POWER SUPPLY SYSTEM

WPPSS NUCLEAR PROJECTS NO. 3 & 5

ENGINEERING FINAL REPORT

STRUCTURAL STEEL CONNECTIONS - UNIT NO. 5

OCTOBER 31, 1981

10 CFR 50.55e - D/N #019

TABLE OF CONTENTS

						PAGE
CONCLUSI	ONS					
INTRODUC	TION					1
POTENTIA	L PRO	BIFMS				2
APPROACH OF THE P	TO TI	HE RESO	LUTION			2
EVALUATI	ON OF RMING	THE	IONS			2
EXHIBIT	1	Corre	ctive Ac	tion Req	uest 33	
EXHIBIT	2	Job In for Re	nspection einspect	on Torque	e Values	,
EXHIBIT	3	Connec Turned Torque	at the	with Bolt Job Ir	ts Which espection	
EXHIBIT	4	Statis Steel	tical S Bolt Fa	itudy of illures i	Possible n Unit #5	Structural .
EXHIBIT	5	Typica	1 Pipe	Chase Fr	aming.	
EXHIBIT	6	Determ	ination		Straccae	in
EXHIBIT	7	Statis	tical S	tudy of	Potential:	for

CONCLUSIONS

The nonconforming conditions discussed in this report consisted of both documentation and hardware deviations in the structural steel connections of the Unit 5 Reactor Auxiliary Building.

A reinspection of all visible bolts was performed by the erection contractor and the results of this reinspection were used to prepare a statistical analysis. This statistical analysis along with calculations of the design stresses in the bolts was used to justify acceptance of the "AS-Built" condition of the bolts which were not accessible for reinspection.

The connections with bolts which turned at the "job inspection torque" will be repaired by welding the connection clip angles to the connecting member. The miscellaneous hardware deviations will be reworked to make the bolts and connections conform to drawing, specification and code requirements.

These nonconforming conditions constitute both significant breakdowns in Morrison-Knudsen's quality assurance program and significant deficencies in construction as defined by 10 CFR 50.55e.

INTRODUCTION

On Jan 21, 1981, Morrison-Knudsen Co., Inc. (M-K) the erection contractor of the structural steel for the Reactor Auxiliary Building, issued a Stop Work Order preventing any further bolting, welding, and erection of structural steel by their employees. On the same date M-K issued Corrective Action Request (CAR)-33 which describes the conditions which must be met prior to lifting the Stop Work Orderx (See Exhibit 1). The Stop Work Order and CAR-33 were initiated based on the discovery, by on-site NRC inspector, of numerous documentation and hardware inconsistencies in the boiled connections of structural steel members.

The NRC was notified of the deficiencies in letters G03-81-503, dated eburary 19,1981 and G03-81-1072 dated May 7, 1981.

POTENTIAL PROBLEMS

(M-K) is contractually required to install the size, quantity and type of high strength bolts as specified on the detail drawings prepared by Fought and Co. of Portland, Ore. Fought and Co. was both the detailer and steel fabricator of the structural steel supplied to M-K for erection. Failure to install the required number, size, and type of bolts, nuts, and washers may reduce the load carrying capacity of the connection and result in stresses in the building structure that exceed code allowables at the design loads.

M-K is contractually required to install the bolts, nuts, and washers in accordance with American Institute of Steel Construction's (AISC) "Manual of Steel Construction" and Ebasco Specification 3240-501 WA "High Strength Bolted Field Connections for Structural Steel." Both of these documents permit bolt tensioning by either "calibrated wrench tightening" or "turn-of-nut tightening" method. Proper bolt tensioning is required to produce the required clamping force between faying surclamping force may reduce the load carrying capacity of the connection, and result in stresses in the building structure that exceed code allowables at the design loads.

B. APPROACH TO THE RESOLUTION OF THE PROBLEM

CAR-33 required that the following three actions be performed prior to lifting the Stop Work Order.

- All accessible structural steel bolted and welded connections in both units are to be examined by zone to verify senformance to drawings, specifications, etc.
- All QC structural steel permanent plant documented records shall be verified for acceptability and conformance to actual field conditions.
- To preclude recurrence, all construction, QC, engineering and super visory personnel involved with structural steel erection shall receive documented training and indoctrination in structural steel erection and inspection requirements.

APPROACH TO THE FESOLUTION OF THE PROBLEM (con't)

Item 1 was specifically defined to require a 100% visual inspection and a 20% actual torque verification of all visible bolts. (See Exhibit 2) In areas of three(3) foot thick floor slabs and in the pipe chase slabs, some or all bolts in a connection were embedded in concrete and could not be inspected.

As a result of the inspections and verifications performed per Items 1 and 2 of CAR-33, M-K generated NCR 5779 for Unit No 3 and NCK's 5500, 5501, 5502, 5503, 5504, and 5505 for Unit No 5. NCR 5779 and the deviation discovered in Unit No 3 will be addressed in a separate report.

NCR 5500 identified the twenty-five (25) original inspection reports which covered all of the connections in the El 351 pipe chase slab. During reverification, per Item 2, documentation errors and inconsistencies were discovered. The connections could not be reinspected as they were embedded in concrete. The documentation errors and inconsistencies included incorrect identification of vendor drawings, incorrect member identification of nonexistent connections.

NCR 5501 identified eight (8) reinspection reports addressing connections with bolts which turned at the "Job Inspection Torque". In all, twenty-eight (28) connections had bolts which turned at the "Job Inspection Torque". (See Exhibit 3) Ten (10) of the connections had bolts which were 100% reinspected and eighteen (18) of the connections had bolts which were not accessible.

NCR 5502 identified three (3) reinspection reports addressing connections embedded in concrete for which no previous traceable documentation could be found and which had bolts which could not be visually inspected. Only three(3) connections fell into this category. On connection 94E to 139B six (6) bolts out of eight (8) were tested and found acceptable. On connection 42C to 424B eleven (11) bolts out of twenty (20) were tested and found acceptable. On connection 93AB to 302F none of the four (4) bolts were visible and therefore were not tested.

NCR 5503 identified six reinspection reports addressing connections not embedded in concrete for which no previous traceable documentation could be found and which had bolts which could not be visually inspected. In all ten (10) connections fell into this category.

				Visible	Torque	Total Bolts
259E 1				4	Tested	In Connection
246E 1				19	18	10
48D 1				14	16	20
48C t				16	12	24
278G t				16	13	10
303C t				5	5	0
303C t				5	5	8
303C t				5	4	8
249A t			2490	19	16	22
48A t	to 41.	3 A		16	11	28

NCR 5504 identified nine (9) particular connections with miscellaneous nonconformaning conditions. These deviations include 1) excessive bolt projection, 2. missing hardened washers, 3) undersized washers, 4) presence of burns in bolt holes, 5) bolts exhibiting less than minimum torque, 6) missing hardened washers, 7) missing re-entrant corners, 8) lack of "flush nut" projection, and 9) a documentation error in which the original inspection report identified 7/8" Ø bolts when in fact 1" Ø bolts were installed.

NCR 5505 identified nineteen (19) particular connections for which no pretion documentation could be found. These connections were 100% visually reinspected and more than 50% torque tested. All nineteen (19) connections were found to be acceptable.

After completion of the program required by Car-33 the Stop Work Order for Unit No 5 was lifted on March 13, 1981.

EVALUATION OF THE NONCONFORMING CONDITIONS

On July 16, 1981 M-K issued a report titled "Statistical Study Of Possible Structure: Steel Bolt Failures In Unit No. 5." (See exhibit 4) In this report M-K concluded that for bolts:

- Total number of deficient structural steel bolts in Unit #5, with a 99% confidence level vary between nine (9) and thirty-two (32) each. (3273 bolts untested)
- Total number of deficient structural steel bolts in Unit #5
 with a 95% confidence level, vary! between twelve (12) and
 twenty-nine (29) each. (3273 bolts untested)
- The highest probability of bolts having less than the minimum torque in Unit #5, is twenty (20) out of 3273 bolts not tested.

and for connections

- The untested connections (794) in Unit #5 vary from 98.01% to 99.30%, of being within design strength, utilizing a 95% confidence level.
- 2. The untested connections (794) in Unit #5, vary from 97.8% to 99.51%, of being within design strength utilizing a 99% confidence level.
- 3. The probability of having less than 98% design strength in 794 untested connections in Unit #5, is 0.023%
- 4. The probability of having less than 97.5% design strength in 794 untested connections in Unit #5, is less than 0.0002.

The probabilities for the connections were generated assuming that an identified "loose bolt" has zero shear strength. In fact, most of the "loose bolts" were properly torqued but turned under the "job inspection torque" of the reinspection. Because of this, the probabilities calculated for connections are conservative.

NCR 5500

The El 351 sipe strase framing typically consists of W12 x 40 vertical hangers at ted absove to the main floor beams and bolted at the pipe chase slat level to wax 24 beams. The other end of the W8 x 24 beams are relded to embedded plates. The pipe chase hangers and beams are praced laterally by C12 x 20.7 channels which are bolted to the W8 x 24 beams: (See Exhibit 5)

The typical hangear to beam, and beam to channel connections in the pipe crase slabs were analyzed as if one bolt in each connection was carrying no load. The resulting stress in the remaining bolts was determined to be less than the allowable stress of the AISC Manual of Steel Construction. (See Exhibit 6)

The results of the rainspection were used to calculate the probabilities of having one or more and two or more loose bolts in the 794 uninspected connections, most of which are located in the El 351 pipe chase slab. (See Exhibit 7)

The results of the statistical analysis indicate that

- The high #st probability of one or more loose bolts per connection is approximately 3.64% with twenty-one (21) connections out of 754 affected.
- 2) The high st probability of two or more loose bolts per connection is approximately 11.06% with thirteen (13) connections out of 734 affected.

Based on the fact that the structural integrity of the bolted connection is achieved within code allowable stresses with an assumed one bolt per connection and the possibility of experiencing two loose bolts in any single connection is relatively small, it is the opinion of the engineer that the pipe chase connections identified in the NCR will not adversely affect the safety, operability or maintainability of the plant.

ICR 5501						
onnection	Quantity, Size and type of bolts		Stress in Calculated	Bc.ts (ksi) Allowable	Stress in remaining bolts if one bolt is assumed to carry zero load (Ksi)	over allowab
65C-44A	20-7/8" Ø A325	166K	13.80	15.0	14.53	-0-
4A-298C	16-7/8" Ø A325	102K	10.60	15.0	11.31	-0-
96G-44A	16-7/8" Ø A325	106K	11.02	15.0	11.75	-0-
4A-298E	16-7/8" Ø A325	102K	10.60	15.0	11.31	-0-
97B-41A	16-7/8" Ø A325	106K	11.02	15.0	11.75	-0-
1A-271G	16-7/8" Ø A325	120K	12.47	15.0	13.30	-0-
97C-41A	16-7/8" Ø A325	106K	11.02	15.0	11.75	-0-
1A-299A	16-7/8" Ø A325	102K	10.60	15.0	11.31	-0-
97D-41A	16-7/8" Ø A325	100K	10.39	15.0	11.09	-0-
1A-299B	16-7/8" Ø A325	102K	10.60	15.0	11.31	
54C-424B	16-7/8" Ø A325	137K	14.24	15.0	15.19	-0-
56B-425B	14-7/8" Ø A325	120K	14.25	15.0	15.19	1.3
48A-407A	24-1" Ø A490	348K	18.46	20.0	19.26	2.3
17A-252A	14-1" Ø A490	225K	20.46	20.0	22.04	-0-
52A-423B	22-1" Ø A490	245K	14.18	20.0	14.85	10.2
23B-245E	14-1" Ø A490	140K	12.73	20.0	13.71	-0-
8F-248A	8-1" Ø A490	27.3K	4.34	20.0		-0-
8A-264G	16-1" Ø A490	143K	11.38	20.0	4.97	-0-
7A-245C	8-7/8" Ø A325	78.9	16.40	15.0	12.14	-0-
5C-262F	8-7/8" Ø A325	27 .3 K	5.68	15.0	N/A*	N/A*
A-428B	14-1 1/8" Ø A490		27.88	32.0	N/A*	N/A*
88-40A	14-1 1/8" Ø A490		31.98	32.0	30.03	-0-
5G-40A	8-7/8" Ø A325	70K	14 55	35.0	34.44	7.6

onnection will be 100% retorqued

5G-40A 8-7/8" Ø A325 70K

A-297G 8-7/8" Ø A325 · 70K

14.55

14.55

15.0

15.0

16.63

16.63

10.8

10,8

R 5501 (con't)

onnection	Quantity, Size and type of bolts	Design Load	Stress in Calculated	Bolts (ksi) Allowable	Stress in 2 remaining over bolts if allowa one bolt is assumed to carry zero load (Ksi)
5D-40A	16-7/8" Ø A325	106K	11.02	15.0	11.75 -0-
A-272E	16-7/8" Ø A325	120K	12.47	15.0	13.30 -0-
4C-4298	14-7/8" Ø A325	120K	14.25	15.0	15.35 2.3
1E-402A	. 20-7/8" Ø A325	175K	14.55	15.0	N/A* N/A*
38-402A.	26-1" Ø A325	292K	14.30	15.0	N/A* N/A*
2A-243 A	· 20-1" Ø A325	200K	12.73	15.0	N/A* N/A*
8A-243B	8-7/8" Ø A325	70K	14.55	15.0	N/A* N/A*
38-2750	8-7/8" Ø A325	79K	16.42	15.0	N/A* N/A*
5C-423A	26-1" Ø A490	315K	15.43	20.0	16.04 -0-
3A-244A	26-1" Ø A490	370K	18.12	20.0	18.84 -0-
A-4258	22-11/8" Ø A490	640K	29.27	32.0	30.66 -0-
58-41A	22-1 1/8° Ø A490	640K	29.27	32.0	30.66 -0-
28-4308	24-1" Ø A325	275K	14.59	15.0	15.22 1.5
OB-252C	24-1" Ø A325	278K	14.75	15.0	15.39 2.6
OE-45A	16-7/8" Ø A325	106K	11.02	15.0	11.75 -0-
A-294A	16-7/8" Ø A325	140K	14.55	15.0	15.52 3.5
TE-4268	14-7/8" Ø A325	120K	14.25	15.0	15.35 2 3

nnections 93K-280F, 93D-264G, 93D-264F, 93AD-266B, 93AC-41A are standard ritical pipe chase hanger to floor member connections. See Exhibit 6 r design loads and bolt stresses.

onnection will be 100% retorqued

e four connections marked with an asterisk on Exhibit 3 will be reworked retorquing all bolts in the connections. The remaining 24 connections on hibit 3 will be repaired by welding the connection clip angles to the nnecting members in accordance with approved procedures.

u.						
~	R	-	-	-	2	
	ĸ		т.	13	11	-
-		-	,	~	-	

onnection	Quantity, and type of	Size	Design Load (Kips)	Calculated	Bolts (ksi) Allowable	Stress in remaining holts if one bolt is assumed to carry zero load (Ksi)	allowa
2C-424B	20-1 1/8"	Ø A325	295K	14.83	15.0	15.6	4.
E-139B	8-7/8" Ø	A325	54K	11.22	15.0	12.83	-0
BAB-302F.	4-7/8" Ø	A325	20K	8.31	15.0	11.09	-01

sed on the above calculated stresses and the relatively small possibility of periencing two or more loose bolts in these particular connections (See hibit 7), it is the Engineer's opinion that these connections will not versely affect the safety, operability or maintainability of the plant.

ER 5503

onnection		:	Design Load (Kips)	Stress in Calculated	Bolts (ksi) Allowable	Stress in remaining bolts if one bolt is assumed to carry zero load (Ksi)	allowa
59E-262E	10-7/8" Ø	A325	15.5K	2.58	15.0	2.86	-0-
46E-415A	20-7/8" Ø	A325	165K	13.72	15.0	14.44	-0-
BD-415A.	24-1 1/8"	Ø A490	490K	20.54	20.0	21.43	
BC-414A	28-1 1/8"	Ø A490	490K	17.61	20.0		7.2
78G-421A	18-7/8" Ø		155K '			18.26	-0-
49A-413A	14-7/8" Ø		111K ·		15.0	15.16	1.1
3A-2490.				13.19	20.0	14.20	-0-
	22-7/8" Ø		266K	20.10	20.0	21.07	5.3
3A-413A	28-1 1/8" ØA	490	481K	17.28	20.0	17.92	-0-

nnections 303C-240B, 303C-249C-303C and 303C-249B-303D are not permanent tructural steel connections

Based on the above calculated stresses and the relatively small possibility of experiencing two or more loose bolts in these particular connections (See Exhibit 7), it is the Engineer's opinion that these connections will not adversely affect the safety, operability, or maintainability of the plant.

NCR 5504

The first eight nonconforming conditions identified on this NCR will be reworked in such a manner as to make the bolts and connections conform to the drawing, specification, and code requirements. The ninth item is a documentation deficiency and the reinspection has verified that the correct bolt size has been installed in the connection.

NCR 5505

The nineteen connections were 100% visually reinspected and more than 50% torqued tested. All nineteen connections were found to be acceptable.

EXHIBIT 1

CORRECTIVE ACTION REQUEST 33

. 15V. 0

CORRECTIVE ACTION REQUEST

Satson	**	* 2500	EST >033	
HO. 3240-263	פא זואט	3 \$ 5	S DATE 1-27-81	
AZEA STructura	1 Steel		7AGE 1 07	
the documented in	structions, procedur	. "A program for inspected and executedto vertes and drawings for accordances."	tion of activities ify conformance wit	h the
inspection. Refe week of January 2 result of the abo	rence NRC Docket #80 3, 1981.	the NRC has noted numerous roperly and subsequently 1-06-04 and NRC Weekly Inter (ref. IOC-81-73) has ction. (continued Page 2	raccepted by Q.C. ispection Report for	r the
* 25GUSSTED FROM	Project Manager	MITTATED ST 46. db/cm	be 1-21-	
	בו מבאיבועבו	· C. DC:	. DATE	1
		אוסופכד פטאעודץ פאפוא	553 E53	2
באס כסנגנכחים אכ	mon server server =	1700 to the second of the second of	***	
		_		
			!	
72 D35.	ַזואָ –	NAME		
SCIIVE		NAME	3712	
ED 17	norther remaindean one discourse high transcriptions on the contract of the co	- SOUGH-UF		
وبر المرابع الم	5740 . £394 _YE C3W31Y35	رب قبرونه	EL CATE	
		אוסופת הטאנוז באפוא	132 DATE	
R. A. Davis G. Hill	J. Sowers (Sois	e) .	•	

Structural Steel Unit 3 & 5

The following conditions must be met prior to resumption of work:

- All accessible Structural Steel physical bolted and welded connections in both units are to be examined by zone to verify conformance to drawings, specifications, etc.
- All QC Stuctural Steel permanent plant documented records shall be verified for acceptability and conformance to actual field conditions.
- To preclude recurrence, all construction, QC, engineering and supervisory personell involved with Structural Steel Erection shall receive documented training and indoctrination in Structural Steel Erection and Inspection Requirements.

As evidence of compliance to the above conditions are submitted and found acceptable to the Project Quality Manager, the Stop Work Order may be lifted by zones.

737317 1 (co

EXHIBIT 2

JOB INSPECTION TORQUE VALUES FOR REINSPECTION

SUN-NOUDSEN COMPANY, INC.

INTER.OFFICE CORRESPONDENCE

IOC-81-163

February 13, 1981

TO:

Richard Dawis

FROM:

Jack Dayis

Contract 2879

LOCATION: Satsop Po-er Plant

LOCATION:

Elma, Washington

SUBJECT:

Verification of Structural Bolting

Per CAR #33

Engineering having reviewed the varying job torque as noted per IOC-81-154, is now assigning the values for minimum torque required by AISC.

During the verification of structural bolts per CAR #33 the inspection teams shall perform 100% visual and 20% actual torque verification using the ft-1b values noted on attached sheet.

If there are any questions please contact this office.

Attachment

MCL/kh

cc: D. Reed

R. Wisdom

M. Lentz

M-K File

EXHIBIT 2

A325 DIAMETER	MINIMUM TENSION REQUIRED PER TABLE 3 AISC		
		INLB	FTLB
7/8" 1" 1 1/8"	39,000# 51,000# 56,000#	6,825 10,200 12,600	569 850 1,050

A490

DIAMETER	TENSION REQUIRED PER TABLE 3 AISC	<u>T0</u>	ROUE
		INLB	FTLB
7/8" 1" 1 1/8"	49,000# 64,000# 80,000#	8,575 12,800 18,000	715 1,067 1,500

EXHIBIT 3

CONNECTIONS WITH BOLTS WHICH TURNED AT THE "JOB INSPECTION TORQUE"

EXHIBIT . 3

CONNECTIONS WITH BOLTS WHICH TURNED AT THE "JOB INSPECTION TORQUE"

			on ionq		
NCR 5501		10000			
REPORT NO.	CONNECTION	BOLTS	BOLTS TESTED	NO. BOLTS VISIBLE	NO. BOLTS IN CONNECTION
558-					TH CONNECTION
152	265C-44A-298C	2	3 .	8	20
	296G-44A-298E	2	2	4	
	2978-41A-271G	-1	1	4	16
	297C-41A-299A	1	4	4	16
	297D-41A-1)98	2	2	4	16
	2640-4248	1	10	13	16
	266B-425B	. 1	4	8	16 14
153	93K-280F	4	2	4	4
	93D-264G	4	2	4	4
	93D-264F	2	2	4	4
159	248A-407A-252A	. 4	9	20	
	252A-423B-245E	2	6	19	24
	268F-248A-264G	1	1	16	22
	267A-245C-262F	3	8	8	16 8 *
162	471 4000				
162	47A-428B-40A	4	7	7	14
	295G-40A-297G	1	1	8	8
	295D-40A-272E	2	3	4	16
	294C-429B -	1	7	8	14
165	251E-402A	1	20	20	20 *
	2438-402A-243A	7	26	26	26 *
	278A-2438-275C	4	8	8	8 *
166	93AD-266B	1	2	4	4
	93AC-41A	2	4	4	4
175	245C-423A-244A	. 1	17	17	26
	44A-425B-41A	2	6	16	22

E 3-1

'EXHIBIT'3 (cont'd)

2.7	-	-	5	-	-		
N	1	-	- Inc	Ma.	п	-31	
	~	-	-	-	~	-	

EPORT NO.	CONNECTION	BOLTS	BLTS TESTED	NO. BOLTS VISIBLE	NO. BOLTS IN CONNECITORS
5SB- 158	252B-43 DB-252C		.,		
130		۷	11	20	24
	290E-45A-294A	1	4	4	16
	271E-425B	2	3	8	14

EXHIBIT 4

STATISTICAL STUDY OF POSSIBLE STRUCTURAL STEEL BOLT FAILURES IN UNIT #3

SUBJECT:

Statistical Study of Possible Structural Steel Bolt Failures in Unit #5.

PREPARED BY: Henry Burgell and Chung Ho Chen

DATED:

- July 16, 1981

REFERENCE:

Ronald Walpole and Raymond Harris, Probability and Statistics for Engineers and Scientists, MacMillan Company, New York.

REPORT LISTING

TITLE PAGE			 	 ٠.	٠.	 			. ,			1
REPORT LIST	TING		 	 		 						2
	S											
	OF PROBLEM											
	METHOD SYN											
	REProbabi											
	Probabi											
	Probabi											
	Confider											
CONNECTION	INTEGRITY											
		Prot										
		Prot										
		Conf										
DATA ATTACH	MENTS											

CONCLUSIONS

A. BOLTS

- Total number of deficient structural steel bolts in Unit #5, with a 99% confidence level varing between nine (9) and thirty-two (32) among 3,273 bolts not tested.
- Total number of deficient structural steel bolts in Unit #5, with a 95% confidence level, varing between twelve (12) and twenty-nine (29) among 3,273 bolts not tested.
- The highest probability of bolt failures in Unit #5, is twenty (20) failures out of 3,273 bolts not tested.

B. CONNECTIONS

- The untested connections in Unit #5 lie between 98.01% to 99.30%, of design strength, utilizing a 95% confidence level.
- The untested connections (794) in unit #5 lie between 97.8% to 99.51% of design strength utilizing a 99% confidence level.
- The probability of having less than 98% design strength in 794 untested connections in Unit #5, is 0.023.
- 4. The probability of having less than 97.5% design strength in 794 untested connections in Unit #5, is less than 0.0002.

STATEMENT OF PROBLEM

Nonconformance Reports 5500, 5502, and 5503 deal with the fact that documentation deficiencies existed for a portion of Units #5 that preceded the acceptance of structural steel bolts. The bolts in question were either loaded with concrete, otherwise inaccessible, such that conventional bolt testing methods became impossible. This report has been generated to support the Morrison-Knudsen Company, Inc., recommended disposition of "Accept As Is" based upon the lack of such documentation should not seriously impact the true structural intent of the connections.

Data to present a statiscal analysis was based upon Non-Conformance Reports 5501 and 5505.

STATISTICAL METHOD SYNOPSIS

All data was based upon that furnished by H. W. Holcombe, Contract 263, Quality Assurance Auditor to Jack Davis, Contract 263 Engineering Manager on Interoffice Memorandum, IOC-81-560, dated May 18, 1981. This IOC has been included in this report as an attachment.

A portion of structural steel bolts in Unit #5 were retested. The statistics involved in finding the probability and confidence level involving individu. Its, was the binomial distribution curve. This type of distribution is appropriate since all the testing was done on a "pass - reject" basis. Thus all probabilities and confidence levels on bolts were estimated in the binomial distribution basis.

The structural design strength of the connections in question was statistically estimated using the normal distribution. The assumption was made that percentage of design strength can be estimated on a simple ratio of bad versus good bolts in any one connection. This assumption was necessary to generate data in order to statistically estimate design strength. Thus all probabilities and confidence levels on connection integrity were estimated using the normal distribution.

SUBJECT:

Statistical Study of Bolt Failure Test.

PREPARED BY:

Henry Eurgell - Chung Ho Chen

DA .E:

June 30, 1981

REFERENCE:

Ronalc E. Walpole and Raymond H. Myers, probability and statistics for Engineers and Scientists, MacMillan Company, N.Y., 1972, Pages 81 - 84.

A) Given conditions: (see attached IOC-81-560)

Bolts tested: 9940 pieces

Bolts failed to pass the test: 61 pieces

Bolts not tested: 3273 pieces

B) Assumption: Probability of failure is $\frac{61}{9940}$ or 0.00613682.

C) Numerical Study: From reference, the Binomial Distributions can be presented as:

 $b(x;n,p) = {n \choose x} p^x q^{n} + x, x=0,1,2,...n$

* Please refer to sample calculation (page 8 of 21)

- D) Results: See attached Table 1 and Figure 1.
- E) Conclusion: From Fig. 1, the highest probablity of failure is approximately 8.87%, with twenty bolts failure among 3273 bolts. It also shows that the probability of failures of 30 (or above) bolts is almost zero.

CHANCES OF FAILURES FOR UNTESTED BOLTS

NUMBER OF FAILURES PR	OBAB	BILIT	TY
2.6	2 x 1	0	%
5 3,	8 x l	0 3	%
10 4.	6 x 1	0-1	%
15	4	.63	%
20	8	.87	%
25		4.9	%
30 - 4 - 4		~0	%

TABLE 1. THE PROBABILITY OF FAILURE

FIG. 4 BINGMIAL DISTRIBUTION OF FAILURES OF BOLTS.

E4-7

Sample calculation*: (*page-6 of 21)

Note: Formula:

 $b(x;\pi,p) = {n \choose x} p^x q^{n-x}, x=0,1,2...n$

where b(x; r,p) : binomial distribution

x: no. of failures (or successes)

n: total no. of trials
p: success or failure probability

q = 1-p : failure or success probability

Ex: In this study the failure probability was assumed as $\frac{61}{9940}$ or

0.00613682. Find the probability that exactly 20 of the next 3273 bolts tested failed.

 $p = \frac{61}{9940} = 0.00613682$

q = 1 - p = 0.99386318

x = 20

n = 3273

 $b(x;n,p) = {3273 \choose 20} (0.00613682 20 0.99386318) 3273 - 20$

= 0.0887278225 = 8.87%

Page 8 of 21. - Probability Study..Bolt Failure

Bolts tested - 9940 pieces

Bolts failed to pass the test - 61 pieces

Bolts not tested - n = 3,273 pieces

C) Numerical study:

Confidence interval can be approximated as"

$$p - z\sqrt{\frac{pq}{n}}$$
 $\langle \hat{p} \rangle \langle p + z \rangle \sqrt{\frac{pq}{n}}$

Where \hat{p} is the probability of failures in a untested sample of size n, p is the probability of failure in the sample tested and q=1-p, z is the value of the standard normal curve leaving an area of d/2 to the right where d=1-2 confidence interval. (see ref.)

In our case, the untested sample number n=3,273 and probability of failure is p=0.00613682. Using the value of z=1.96 from reference for 95% confidence interval. The 95% confidence interval of failures (\hat{p}) can be calculated as:

The same formula can be followed to calculate the 99% of confidence interval as: 9 No. of failures < 32

Reference: Ronald E. Walpole and Raymond H. Myers, Probability and statistics for Engineers and Scientists, MacMillan Company, N.Y., 1972. pp.203

Page 9 of 21 - Confidence Level..Bolt Failure

RAW DATA LISTING

CONNECTION	LOOSE BOLTS	NO. OF TESTED BO IN CONNECTION	LTS PERCENT OF DESIGN STRENGTH
265C-44A-298C	2	3	33
2968-44A-298E	2	2	0
2978-41A-271G	1	1	0
297C-41A-299A	1	4	75
297D-41A-2998	2	2	0
264C-4248 ·	1	10	90
2668-4258	1	4	75
93K-280F	4	4	0
93D-264G	4	4	0
93D-264F	2	4	50
248A-407A-252A	4	9	55
252A-4238-245E	2	6	67
258F-248A-254G	1	1	0
267A-245C-262F	3	8	62.5
47A-428B-40A	4	7	43
295G-40A-297G	1	1	0
295D-40A-272E	2	3	33
294C-429B	1	7	8.7
251E-402A	1	20	95
2438-402A243A	7	26	73
278A-243B-275C	- 4	8	50
93AD-266B	1	2	50
93AC-41A.	2	4	50 .
245C-423A-244A	1	17	94
44A-425B-41A	2	6	67
252B-430B-252C	2	11	82 -
290E-45A-294A	1	4	75
271E-425B	2	3	33
29-1020	all of the	e rest of the connection	s 100.0

lotal n	umber of connections 1814
Total n	umber of connections inspected
Total n	umber of connections with deficiency
	28
lotal n	umber of connections uninspected
Percent	age of con-ection strength (compared to design strength).98.66%
Deviati	on 9.33%
Probabi	lity of 794 uninspected connections in Unit #5, have
av	erage strength less than 98% of design strength is 0.023%
Probabi	lity of 794 uninspected connections in Unit #5, have
av	erage strength less than 97.5% of design strength is 0.0002%
NOTE:	Since all bolts which failed to pass the test were hand tightened
	to connections , the bolts still can resist some shear stress.
	The percentage shown in this list should be treated as a maximum
	value (or worst condition).

The uninspected connections in Unit #5, lie between 98.01% to 99.30% of design strength utilizing a 95% confidence interval.

The uninspected connections lie between 97/8% to 99.51% of design strength, utilizing a 99% confidence interval.

REF: Probability and Statistics for Engineer's and Scientist's; page 162 thru 189.

Inspection results of Unit #5 bolts.

STATISTICAL ANALYSIS:

1. Mean percentage of design strength.

$$X = \frac{\sum_{i=1}^{n} X_i}{n}$$
 where n = 1020, $X_1 = 33$, $X_2 = 0.0$ etc.
 $X_{29} = 100$, $X_{30} = 100$
 $X_{1020} = 100$

2. Deviation
$$\sigma = \int_{-1}^{2} \frac{\sum_{i=1}^{2} x_{i}^{2} - (\sum_{j=1}^{2} x_{i}^{2})^{2} / n}{1}$$

$$= 9.33\%$$

 Probability of 794 connections with average strength less than 98% of design strength (normal dist.)

$$\sigma_{x} = \frac{\sigma}{\sqrt{n}} = \frac{9.33}{\sqrt{79.4}} = 0.331$$

$$Z = \frac{\bar{x} - x}{\sigma_{x}^{2}} = \frac{98 - 98.66}{0.331} = 1.99$$

$$Pr(\bar{x} < 98\%) = Pr(z < -1.99) = 0.023$$

Where = coordinate of normal curve , $\alpha =$ sampling deviation, $\bar{x} =$ sampling mean, Pr = probability.

 Probability of 794 connections with average strength, less than 97.5% of Design strength.

Pr
$$(\bar{x} < 5.5\%) = Pr / z < -3.5)$$
 < 0.0002
Page 12 of 21 - Propability Study.. Connection Integrity

cont.

5. 95% confidence interval.

$$\bar{x} - \bar{z}_{42} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + \bar{z}_{42} \frac{\sigma}{\sqrt{n}}$$
 or
$$98.66 - \frac{1.96 \times 9.33}{\sqrt{794}} < \mu < 98.66 + \frac{1.96 \times 9.33}{\sqrt{794}}$$

OR 98.01% </44 99.30%

6. 99% confidence interval

Where $\bar{x} = sampling mean$

Z₄= value of the standard normal distribution leaving an area of 2/2 to the right. (Ref: Page 459 of Ruference)

 σ = deviation

n = sample size

MORRISEN-KNUDSEN COMPANY, INC.

INTER-OFFICE CORRESPONDENCE

IOC-81-560

CATE

May 18, 1981

to: J. Davis

FROM:

H. W. Holcombe

LOCATION: Satsop Power Plant

LOCATION: Contract 2879 Elm., Washington

susser: Statistical Analysis of

Results of CAR #33

As per your request, attached is the Statistical Report for Structural Steel Bolting Reinspection as per Corrective Action Request No. 33 for Unit No. 5.

This report consists of the following attachments:

- Attachment A Overall statistical results of Unit 5, including the baseline numbers used as reference throughout report.
- Attachment 8 Statistical results of the number of loose bolts which were not correctable during reinspection. Includes NCR 5501 and a portion of NCR 5504.
- Attachment C Statistical results of documentation deficiencies noted and not correctable during reinspection, excluding 351 pipe chase. Includes NCR 5502 and NCR 5503.
- Attachment 0 Statistical results of NCR 5300 which deals with documentation deficiency in the 351 pipe chase.

When reviewing this report, there are several points that should be noted:

- 1. NCR 5500 deals with the elevation 351 pipe chase which is a unique condition in which documentation for this area is suspect and all connections are embedded in concrete. It was realized that if this point was not taken into consideration, misleading conclusions could be drawn, i.e. if the number of loose bolts is taken only as a total of Unit 5, it assumes that the 2,751 bolts in the pipe chase is satisfactory. For this reason, percentages in this report are given in three manners: percentage of total Unit & connections and bolts, percentage of total Unit 5 excluding 351 pipe chase and percentage of total reinspected.
- 2. NCR 5504 deals with several miscellaneous hardware problems. A separate breakdown of this NCR was not provided in that each condition should be considered on a case basis and the overall percentage of Unit 5 is negligible. NCR 5504 was considered in the overall hardware problem referenced on Attachment A and the portion dealing with loose bolts on Attachment 8.
- 3. It is recommended that this report be used in conjunction with the referenced Nonconformance Reports and not as the sole basis for accept/ reject criteria. There is information in each individual report which may not a evident in this report, i.e. 1 bolt out of 20 may be icose, but only . bolt was able to be tested. This report will only indicate 1 out of 20 boits were loose..

E 4-14

ATTACHMENT A

Statistical Analysis of Results of . Corrective Action Request No. 33

TOTAL	Number (of	Connections in Unit 5
TOTAL	Number o	of	Bolts in Unit 5
TOTAL	Number o	of	Connections in Unit 5 excluding connections in 351 Pipe Chase1,142
TOTAL	Number o	of	Bolts in Unit 5 excluding bolts in 351 Pipe Chase
Total	Number o		nections in Unit 5 Reinspected
			56.2% of total in Unit 5. 89.3% of total excluding 351 pipe chase
Total	Number o	of	Bolts in Unit 5 Reinspected9,440
			74.3% of total in Unit 5. 94.7% of total excluding pipe chase.
Total	Number o	of	Connections with Hardware Problem (includes NCR 5501 & 5504)36
			2% of total in Unit 5. 3.2% of total excluding 351 pipe chase. 3.5% of connections reinspected.
Total	Number (of	Bolts with Hardware Problem (includes NCR 5501 & 5504)91
			0.7% of total in Unit 5. 0.9% of total excluding 351 pipe chase. 0.96% of bolts reinspected.
Total	Number	of	Connections with Paper Deficiency (includes 351 Pipe Chase)585
			37.8% of total Unit 5.
Total	Number o	of	Bolts with Paper Deficiency (includes 351 Pipe Chase)2,816
			22.25 of total Unit 5.

See Attachment C for Paper Deficiencies excluding 351 Pipe Chase. See Attachment O for 351 Pipe Chase.

ATTACHMENT B

Statistical Analysis of Results of Corrective Action Request No. 33

Condition: Connection with bolts which did not meet "Job Inspection Torque". Includes connections listed on NCR 5501 and 5504.

Total No. of Connections with loose bolts......28

1.54% of total in Unit 5. 2.45% of total excluding 35% pipe chase. 2.74% of connections reinspected.

> 0.5% of total in Unit 5. 0.6% of total excluding 351 pipe chase. 0.66% of bolts reinspicted.

See Page 2 of Attachment B for specific Connections.

ATTACHMENT 8

Statistical Analysis of Results of Corrective Action Request No. 33

Page 2

NCR 5501		1.0005	201 70	NO 501 75	
REPORT NO.	CONNECTION	LOOSE BOLTS	BOLTS TESTED	NO. BOLTS VISIBLE	NO. BOLTS IN CONNECTIONS
558- 152	255C-44A-298C 296G-44A-298E 297B-41A-271G 297C-41A-299A 297D-41A-299B 254C-424B 266B-425B	2 2 1 1 2 1 1	3 2 1 4 2 10 4	8 4 4 4 13 8	20 16 16 16 16 16 16
153	93K-280F 93D-264G 93D-254F	4 1	2 2 2	4 4 4	4 4 4
159	248A-407A-252A 252A-4238-245E	4 2	9	20 · 19	24 22
	268F-248A-264G 267A-245C-262F	1 .	8 .	16	16 8
152	47A-4288-40A 295G-40A-297G 2950-40A-272E 294C-4298	4 1 2 1	7 1 3 7	7 8 4 8	14 8 16 14
165	251E-402A 243B-402A-243A 278A-243B-275C	1 7 4	20 26 8	20 25 8	20 25 8
166	93AD-2568 93AC-41A	1 2	2 4	4	4
175	245C-423A-244A 44A-425B-41A	1 2	17 6	17 16	25 22
NCR 5504					
5S3- 158	2528-4308-252C 290E-45A-294A 271E-4258	2 1 2	11 4 3	- 20 4 8	24 16 14

E 4-17

ATTACHMENT C

Statistical Analysis of Results of Corrective Action Request No. 33

Condition: Connections with fasteners not 100% accessible for reinspection and there is no previous traceable documentation for these connections. Includes reports covered by NCR 5502 and 5503 (excludes reports covered by NCR 5500).

0.7% of total Unit 5.
1.1% of total excluding 351 pipe chase.
1.3% of total reinspected.

Total No. of bolts unaccessible and no inspection documentation....55

0.5% of total Unit 5. . . 0.6% of total excluding 351 pipe chase. 0.7% of total reinspected.

See Page 2 of Attachment C for specific Connections.

ATTACHMENT C

Statistical Analysis of Results of Corrective Action Request No. 33 Page 2

NCR 550	2			
REPORT	CONNECTION	BOLTS	NO. BOLTS VISIBLE	NO. BOLTS IN COMMETTIONS
5SB- 96	42C-4243	11	14	20
127	94E-139B	6	6	8
148	9~~~-302F	0	0	4
NCR 550	3			
5S3- 77	259E-262E 246E-415A	4 13	4 -	10
. 84	480-415A 48C-414A	14 12	16 16	24 28
- 88	278G 421A	13	16	18
95	303C-2498 303C-249C-303C 303C-2498-303D	5 5 · 4	5 ` 5 5	8 8 8
100	249A-413A-2490	16	19	72
114	. 48A-413A	11	16	28

E 4-19

ATTACHMENT D

Statistical Analysis of Results of Corrective Action Request No. 33

Condition: The inspection reports for the 351 pipe chase reference connections that do not correspond to configurations as shown on contract drawings. These connections are now embedded in concrete and no reinspection was performed. This condition is addressed on NCR 5500.

37% of total Unit 5.

21.6% of total Unit 5.

See NCR 5500 for specific Connections.

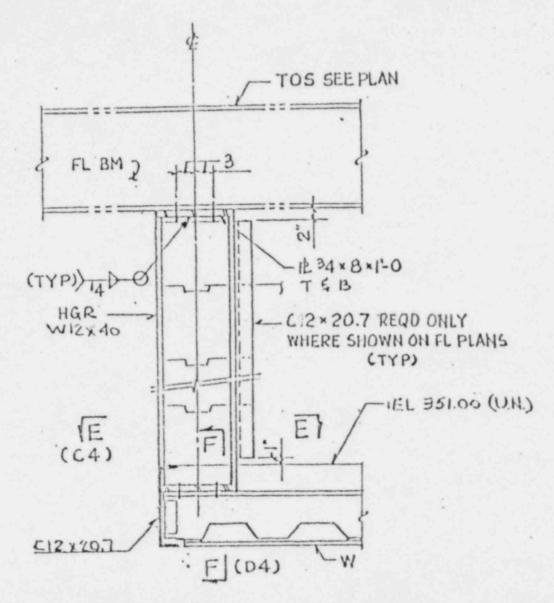
Statistical Analysis of Results of CAR #33 Page 2

If there are any questions or if clarification is needed as to the basis of this information, please contact the M-K Quality Assurance Department.

H. W. Holcombe

Q. A. Manager

1 !


HWH/tb

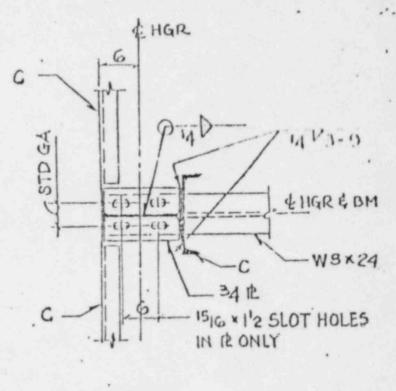
Attachments

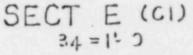
cc: R. A. Davis D. E. Reed J. Sowers (Edise) O. Shapira CAR 33 File G. H111 8. Wisdom File 10-21 File 17-14 D/C

EXHIBIT 5

TYPICAL PIPE CHASE FRAMING

m


TYP PIPE CHASE SECT, EXCEPT AS NOTED


TYPE HI

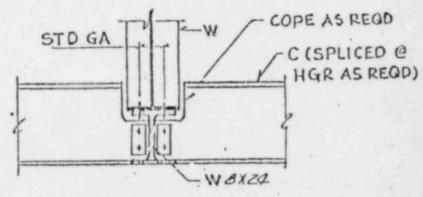

NTS

EXHIBIT 5

TYPICAL PIPE CHASE FRAMING

SECT F (02)

EXHIBIT 6

DETERMINATION OF BOLT STRESSES IN PIPE CHASE CONNECTIONS

	16. 1
	BY I MY 2 - DATE - 172/2 NEW YORK SHEET _ OF _2
	CHKO. BY H. Tatterque part = = 128/81 OFS NO. 3240-265 NO. 67
	PROJECT WILD 3 5
	SUBJECT PRE CLES EL 35100'
	PROBLEM: CHECK ADEQUACY OF EACH CONNECTION SHOWN ON ATTACHED.
	SHEET IF ONE BOXT CARRIES NO LOAD.
ı	2
	REFERENCES: 1- WEPSS CALCULATION. NO. 3200 - TAZ-12
	Z AISC STEL CONSTRUCTION MANUAL EGYTH ED.
	2. EGIZO VESKIN. GUIDE
	G: 3432 SH5
	SOLUTION:
	- LOADINGS
	The Landing of the land of the
*	HAVEER TRESPENT INTO - 176/001 (
	HANGER DESIGNS LOAD = 17k/EACH - (REF. 1 SIT 285 OF 3
	DESIGN HANGER COWN. TYPE HI LOAD - 20 - (TET. 1 SAT 3211 05 30)
	(12.1 34) 22/18 35)
	DESIGN LOADS CONSERVATINE BY 15%-20%
	Z. DESIGN OF CONNECTIONS
	CI HAKER TO WE CONVECTION
	ALLOWADLE TENSION = 20.05 / 2017 - (REF. 1 SH) 3212 OF 3
	PETUAL IEISION LOAD = 16°
	ACTUAL TESSICIS LOAD TER BOX
	1/2 /2, T - 1/2 /2 T
	In = 2(1)2+1(2)2=611; In = 2(2)2-1(4)2-2011
	CS 23 . T = 16 + 16x 5x2 of 1 = 1k
	TEISLON 20' 3 TI = 16x.5x2 = 8 220 k
	18/2013 20
-	1 1 E 6-1

BY CAMICION - CATE MIZEBI	YORK SHEET OF
CHIENT 10055	OFS NO. 2205 - Z65 NO. 67
PROJECT WIND 375	
SUBJECT PIPE 1115E A 351.00'	
22 CHANNE TO NO CONN_ TON	
NOTE: NO BEAM CARRIES ALM	ALGUES FROM CHANNE & THE
July State No.	the second second second second
AGUAL SHEEK LOAD - 12 - 2 E	(NOT), NORY CONSERVATINE)
- AMONIBOLE SHEET = 10.5 / DOLT	FRICTION THE CONSECTION, SWELE SHE STO HOLE - AIX 79.4-5
	WAL SHEAR LOAD PER BOUT.
29. 1 3.	= 18 IN. Z
4	= 9/3 + 0x(2.125-1.42) x(0.25-1.42)
	= <u>4(2.125-142)(2)</u> = 0.3 ^k
$V_{HAX} = \sqrt{(1.8)^2 + (.3)^2} = 1.83^k$	< 10.5t
3.0 COMPARICAL OF ACTUAL TO ALLOW	ABLE LOADS ON BOLTS
3.1 TENSION	
ATHL TAKON WEST 13 13	THE ALLOWAUE FUSIONS. (EZA = 3)
3.2 SHEYE	
- AGUAL SHEAR WONE BOXT IS	~ 1/2 THE ALLOWARDE STER. (1.0% = 0.17)

EXHIBIT 7

STATISTICAL STUDY OF POTENTIAL FOR LOOSE BOLTS IN A CONNECTION

av 16 m	MATE - 23/81	SERVICES INCORPOR	ATED	
		NEW YORK	5×	EET _/_ OF
	ATTUON DATE 10/28/81		OFS NO. 3200-26	3 DEPT
	MPRES	1 19 20 20 20 30 36		
PROJECT_	WIP 5:5			
SUBJECT_				
-				
1	GNESS CONT TOUS			
		. //20	8 87 FT (8 86 8	
	CONNECTIONS TESTED.	1020		
	- CONSECTIONS NITH LOR HOT	E LOSE EUTS:	28	
	CONNECTINO WITH 2 OF	HORE LOOSE BOTS	2.17	
	TOTAL CONSECTIONS	ED: 794		
3_	LECTURETTALE.			
	- THOBABILTY OF LOT MOVE THOBABILTY OF 200 MOVE	· mes and law	25	
	PROBABILTY OF 200 MAY	es ince acre law.	== 1020 =	0.045
		- we wy specie	1050 =	0.01661
2				
	NUMERICAL STUDY: FROM F	ETERNE, HE DA	ICHIAL DETRIBU	TIONS -
		FRESENTED AS:		
	h(x, n =) = (n) =	x n-x		
	b(x; n,p) = -(n)p	9. , 1=0,1,2,=	3 n	
	FROM THE	EFERENCE, THE	NORMAL AMPROX	MOTAHIN
	IN THE DINOMINE DIST	F/A/17/11		
	$f(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sqrt{2}}}}{\sqrt{12\sqrt{2}}}$		`	
	- +(x) - E 24-	(-02x20)	
	7/27			
	h	VHERE LEND		
		V=/np	0_	
			0	
	* SEE SHALE CALCUL	ATICUS		* *
D	RESULTS: SEE ATTACHE	D TAKES		* * *
e e		7		
E	CONTROLS; FROM	DIELE / THE UN	ISST -SCALLEUM	7
	I CE MORE INDER EN	TO THE KINDS	al is seedly	CF
	864% WILL 21	CAULETTA LA VIT	15 APATONIA	17/2/
	8.69%, HITH 21 C	and plant will	or 154 AFTE	40.
		7.1		
		. 7-1		

TO MOUNT IN TO THE TENTION OF THE TE
BY MIPHOL DATE 10/23/31 NEW YORK SHEET Z OF
OFS NO. 2767 717 DEPT.
CLIF IT MESS NO. 6
PROJECT NIP 355
SUBJECT
- CANDSINS - (COS).)
- TEL COULECTION IS PAPERSIMATELY 11.06%, WITH 13 CONNECTIONS
FROM TREVE 3. THE HIGHEST DOLARDINAN 1- 412- 1
BOUTS PER CONNECTION IS CORREST FROM BILITY OF 1 CT. MORE LOOSE
CONVERTINIS ASSETTION IS APPROXIMATELY 5.73%, WITH 50
CONNECTIONS AFFECTED OUT OF A TOTAL OF 1812.
- FROM THELE 4, THE HIGHEST PROCESSIUTY OF 2 OR HOPE LOSE
THE THE POWER OF HPPROXIMATELY 1.319 WITH
30 CONSCIONS AFFECTED OUT OF A TOTAL OF 1812.
- REPORTINES: HEURY BURGEL AND CHUIS HO CHEN, STATISTIKAL STUDY OF
- TREPORTIES: HEURY BURGEL AND CHUIS HO CHEN, STATISTICAL STUDY OF TRESIDENE STRUCTURAL STEEL BOY FAILURES IN CHIT = 5,
JUH 16, 1981.
WHILM METERLUON THEODY 3
- WILLIAM MESTERIHALL, INTRODUCTION TO PROGREUTY AND
STATISTIES, DUXBURY PRESS, BELHAUT.

BY Of DIENCEL DATE 10/23/8	NEW YORK
CAND. BY H. Toturaloute 10/28/81	SHEET
CLIENT MPES	OFS NO. <u>2720</u> -263
PROJECT_ WILL 3-5	
SUBJECT	
TABLE 1.	
CHANCES OF 1 OF MORE LO	OSE BOXTS PER CONVIECTION!
	7 . 2 . 2
LO. OF CXUECTONS	- PROBABILITY
	2.02 × 10 70
	5.04 × 10 %
5	1.4×10-3 %
	0.205 %
15	3.01 %
	8.29 %
21.	8.64%
25	6.45%
30	1.81%
50	0.0123 % 7.87 x10 -9 %
30	7.8/1/0 /0
_TAUEZ.	
- CHANCES OF E OR MOTIE	LOSSE BOLTS FER CONNECTION
	J. S. Carellina
NO. OF CONNECTIONS	PROBABILITY
	1.60×10-4%
- /	2.16 x 10 3 %
	0.58%
10.	8.12%
13	11.06%
	9.22%
	1.96%
30	0.12%
40	2.36 × 10 %
	1.26 1.10 /5

= 7.3

2	, ,	שבתיונבש ואנטמו	TURATED
84/ W DIFTERL	- DATE P/23/61	NEW YORK	
CHAR ON ATOM	10080ATE 10/28/81		SHEET &
	1 /		OFS NO. 3200-263
PROJECT NO			
	17 312		
SUBJECT			
TAME 3			
1-11-0			
	CHANCES OF 1 OR MORE	1005E 30175	FER CONSECTION
		/	
	NO. C = CONNECTIONS		
	- W. J. CHINZ IONIS		PROBABILITY -
		*** ** ******	1.15 × 10 %
			4.30 × 10-7 %
	20		5.76×10-2%
	30		0.097%
	40		2.09%
	50		5.73%
	60		
	100		1.995% -110/
			3.28 × 10-11%
			~0
TABLE 9	2		
-/			
W. W. C.			
	CHANCES OF 2 OR MO	RE LOOSE BOL	TS FER CONSECTION).
	NO. OF CONNECTION!	5	PROBABLITY
	7		· ····································
	,		20, -60/
	,		9.19 X 10 % % 7.98 X 10 3 %
-	10		7.98×10 %
	20		1.26 %
	30		7.31%
	90		
			1.47%
-	50		0.01%
	60		2. 97 × 10 6%
	100		~0

E7-4

NEW YOR	SHEET 5 OF
CLIENT MPPSS	OFS NO. 200-263 DEPT.
PROJECT NINP 5-5	
SUBJECT	
SAMPLE CALCULA FIRMS:	
EX IN THIS STUDY THE PROGRAMITY	
MAS ISSUMED AS THE THOCAGUITY MAS ISSUMED AS THE THE	02/5. THE THE PORTERION
I THE NEXT	- 174 CONNECTIONS TESTED WILL
HAIE LOSE EN	×73
P: 100 = 0.0275	
Q = 1-p = 0.9725	그 사람이 되는 사람들은 결국
9=2/	
n = 734	
L/V. C - V (1) X D-X	
$b(x;n,p)=\binom{n}{x}p^{x}q^{n-x},x$	- 0,1,2n
= (792)(.0275)21(.9725	794-21 = 1 181,1221
2//\	= 8.64%
	/0
Ex Til The soul of	
- EX. IN THIS STUDY THE PROBABILITY THE CONNECTION WAS ASSURED.	OF OR MORE LOOSE BOOKS -
THE PROBABILITY THAT BLACTY	() 13 The - 1/1/5 FUN
CONNECTIONS . WILL HAVE I OF	MOTE LOOSE BOUTS
78	
P = 1020 = 0.0275 11.	-np-1814(.0275) = 69.885 npg=1814(.0275) .9725) . 98.5132.
2=1-p=0.9725 ==	npg=1814(.0275).9725) · 98.5132.
n = 1814	
- f(x) = \frac{1}{\tan} e^{-(x-\pi)^2/2\pi^2}	
- (20 V = -2) - E	\2/
= (27. X G3.5132) exp[-(3	50-29.685) /ZX 88.713Z
= 0.05726919 - 5.73% E 7-5	
FORM 531 REY 7-71	

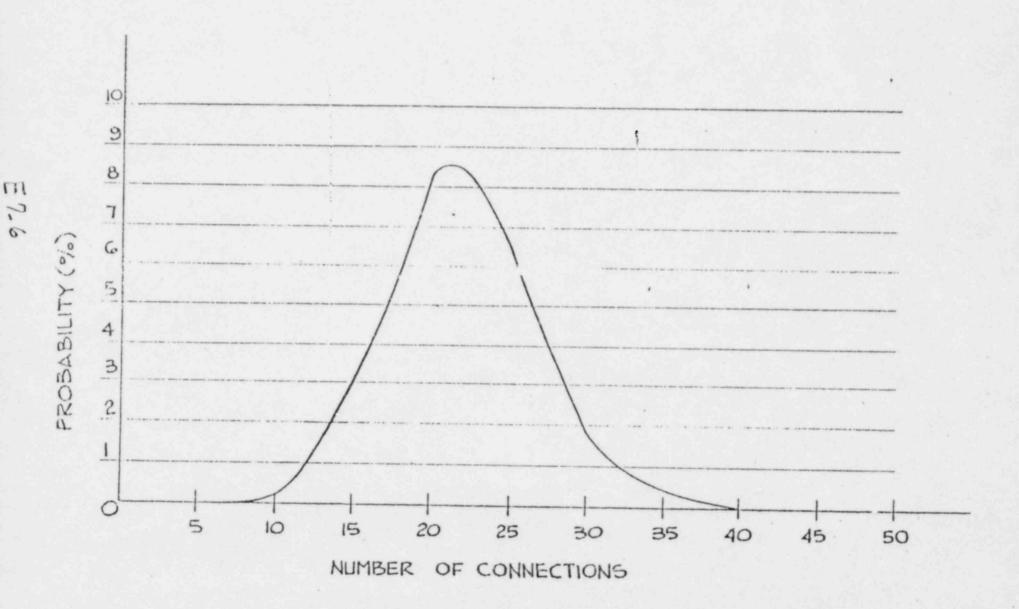
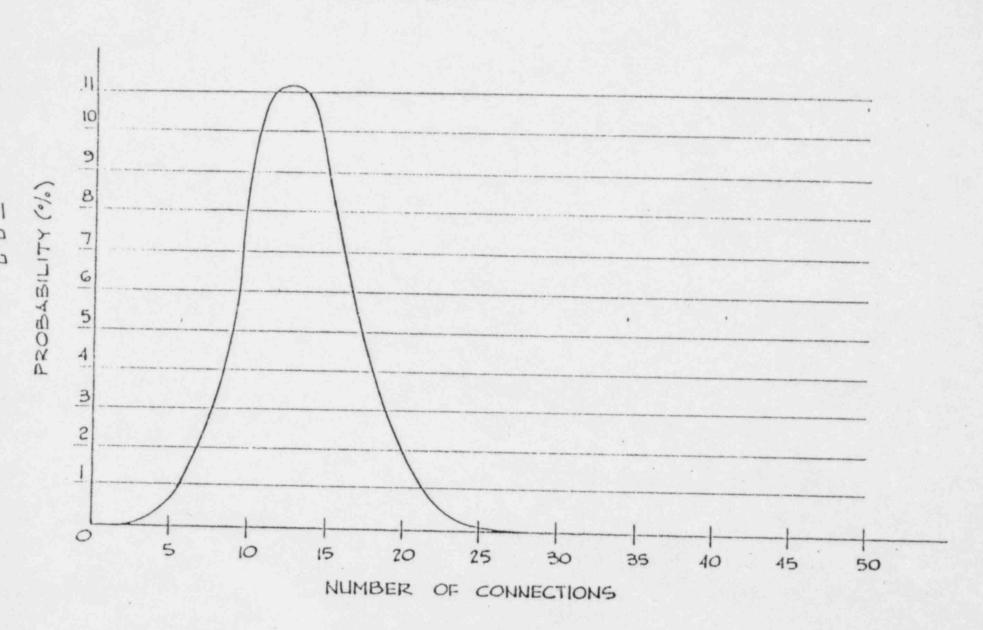
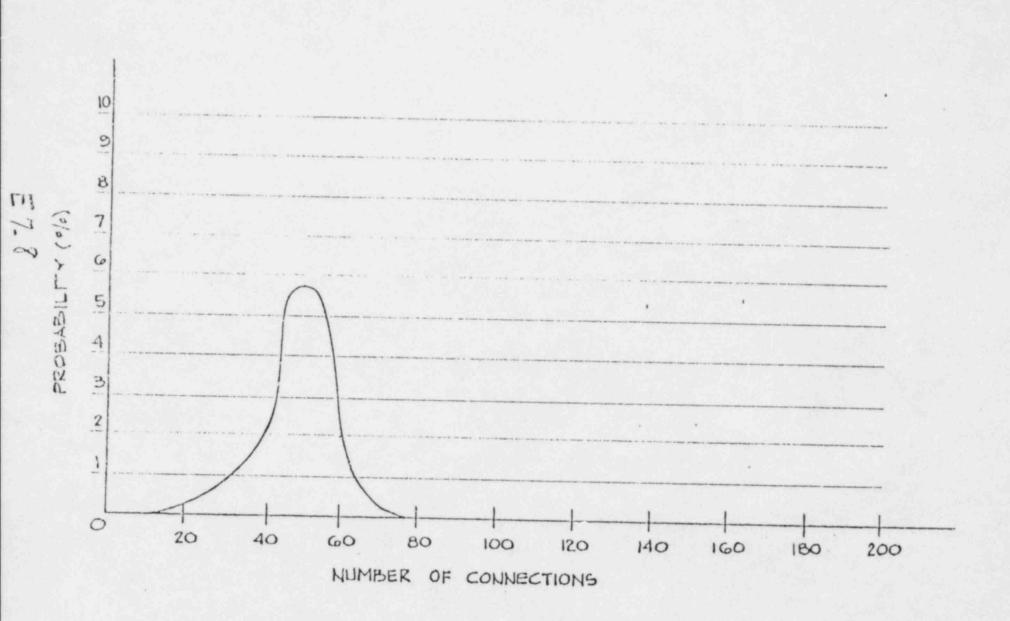
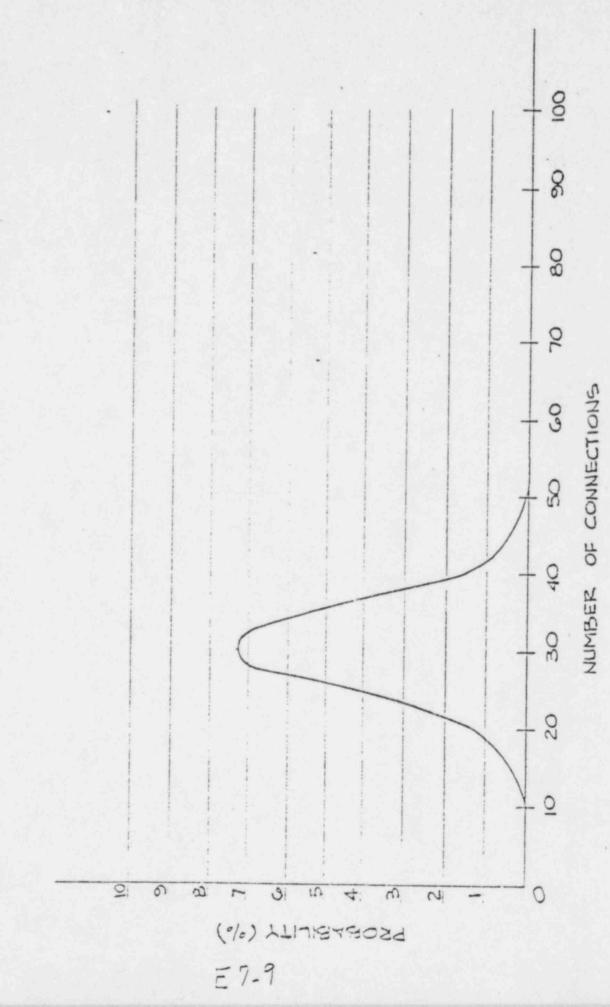





FIGURE 2. PROBABILITY OF 2 OR MORE LOOSE BOLTS
PER CONNECTION IN THE 794 UNINSPECTED
CONNECTIONS

