CPB feating

MEMORANDUM FOR: P. S. Check, Chief, Core Performance Branch, DSS

THRU:

R. O. Meyer, Section Leader, Reactor Fuels Section

FROM:

M. Tokar, Reactor Fuels Section, CPB

SUBJECT:

MEETING SUMMARY; IRRADIATION BEHAVIOR OF Al203 - B4C

On October 8, 1976 a meeting was held with Samuel C. Weaver, President of U. S. Nuclear, Inc., on the irradiation behavior of $Al_2O_3 - B_4C$. U. S. Nuclear is a fabricator of $Al_2O_3 - B_4C$ burnable poison pellets for B&W. Dr. Weaver's presentation to the staff was essentially a summary of (1) U. S. Nuclear experience with $Al_2O_3 - B_4C$ pellets and (2) a literature survey of observations of the irradiation and corresion behavior of Al_2O_3 and B_4C . A list of attendees is herewith attached. Copies of the meeting slides are available in the PDR and branch files.

Dr. Weaver subdivided his talk into the following seven segments:

- 1. Characteristics of U. S. Nuclear Al₂O₃ B₄C Pellets
- 2. U.S. Nuclear Fabrication Experience
- 3. Al₂O₃ B₄C Irradiation Behavior
- 4. Al₂O₃ Irradiation Behavior
- . 5. B.C Corrosion Behavior
 - 6. Al₂O₃ Corrosion Behavior
- 7. Al203 B4C Compatability With Zircaloy Tubing

The following major points were made by Dr. Weaver:

- 1) U. S. Nuclear cold presses and sinters its B₄C Al₂O₃ pellets. The dimensional control obtained via this fabrication process is so good that no centerless grinding is required. Therefore, a major potential source of water adsorption is avoided.
- 2) A review of KAPL and BMI data on Al₂O₃ B₄C indicated that desirable characteristics for good irradiation performance of Al₂O₃ B₄C include (a) intermediate densities (65 85% T.D.), (b) small grain size Al₂O₃, and (c) low moisture content.

- 3) Expected irradiation behavior of Al203 B4C includes (a) a diameter increase of -1% at 100% burnup of 10B, and (b) 1 - 2% gas release at 100% burnup of 10B.
- 4) A rate equation for ByC water corrosion (obtained on ByC powder) was provided as:

Assuming 1600 psi H20 pressure, 0.44m /g surface area, and 575°F, the reaction rate determined by this equation is 0.34%/h.

5) Al2C3 degrades in H2O at PWR temperatures (exact mechanism uncertain).

In summary, Dr. Weaver made a convincing case that B4C - Al203 burnable poison pellets, when properly fabricated and incorporating the above cited characteristics, will perform satisfactorily.

M. Tokar

Reactor Fuels Section Core Performance Branch Division of Systems Safety

cc: S. Hanauer

R. Heineman

F. Schroeder

R. Fraley, ACRS (16)

OR, SS&EA, PM & SS ADS

LD & RES ADS

I&E (3)

L. Tripp

Meeting Attendees

NRC PDR (3)

R. Bear

R. Lobel

Contact: M. Tokar

LIST OF ATTENDEES

U. S. NUCLEAR, INC.

B&W

S. C. Weaver

R. Copeland

R. Borsum

NRC

F. D. Coffman

R. O. Meyer

M. Tokar

B. Siegel

D. Houston