

Structural Materials Research within the Gen IV International Forum

William Corwin Advanced Reactor Materials LLC

Advanced Non-Light Water Reactors – Materials and Component Integrity Workshop U.S. NRC Headquarters, Rockville, MD December 9-11, 2019

Generation IV Concept

- GIF Framework Agreement implemented 2005
- Goals Sustainability, Safety & Reliability, and Proliferation Resistance & Physical Protection
- Nearly 100 reactor designs were evaluated and down selected to 6 most promising concepts
 - Sodium Fast Reactor
 - Gas-Cooled Fast Reactor
 - Lead Fast Reactor
 - Very High Temperature Reactor
 - Supercritical Water Cooled Reactor
 - Molten Salt Reactor
- System Steering Committee for each reactor concept
 - Plan and integrate R&D Projects
 - Project Arrangements are technology-specific

International Fourteen Current Members of **Generation IV International Forum**

•	Japan
:•:	Republic of Korea
-	Russian Federation
	Republic of South Africa
•	Switzerland
	United Kingdom
	United States

*Inactive members

Generation IV Evolution

Sodium Fast Reactor

Integral part of the closed fuel cycle

- Can either burn actinides or breed fissile material
- R&D focus
 - Analyses and experiments to demonstrate safety approaches
 - High burn-up minor actinide bearing fuels development
 - Develop advanced components and energy conversion systems
- BN-800 operating in Russia & CEFR in China
- No specific materials R&D projects active, but extensive work on highdose-tolerant fuel claddings

Lead Fast Reactor

- Lead is not chemically reactive with air or water and has lower coolant void reactivity
- Variants include both lead and lead-bismuth cooled systems
- LFR MOU working towards SteeringCom & technical projects
- Principal materials issue is materials compatibility with lead or lead-bismuth coolant
 - Precise oxygen-chemistry control or protective cladding layers needed
- Europe's ELFR lead-cooled system, Russia's BREST-OD-300 and the U.S. SSTAR system are actively being developed

Molten Salt Reactor

Two design options: fuel dissolved in MS coolant, solid fuel with MS coolant

Variants include both thermal & fast designs, with fluoride or chloride salts

- Key technical focus
 - Neutronics
 - Materials and components
 - Safety and safety systems
 - Liquid salt chemistry and properties
 - Salt processing
- MOU working towards SteeringCom & technical projects
- Materials compatibility with MS
 - Salt chemistry controls
 - Stable alloys w/o oxide layers
 - High-dose-tolerant, fine-grained graphites that avoid salt intrusion

Gas Fast Reactor

- High temperature, inert coolant and fast neutrons for a closed fuel cycle
- Fast spectrum enables extension of uranium resources and waste minimization
- High temperature enables nonelectric applications
- Very advanced system
- Passive safety challenges
- Requires advanced materials and fuels
 - Key technical focus: SiC-clad carbide fuel
 - Lack of graphite will impact helium chemistry
- High temperature materials issues include in VHTR Materials Project

Supercritical Water Cooled Reactor

Merges GEN-III+ reactor technology with advanced supercritical water technology used in coal plants

- Operates above the thermodynamic critical point (374°C, 22.1 MPa) of water
- Fast and thermal spectrum options
- Includes pressure vessel and pressure tube variants
- Key technology issues:
 - Materials, water chemistry, and radiolysis
 - Thermal hydraulics and safety to address gaps in SCWR heat transfer and critical flow databases
 - Fuel qualification

Materials and Chemistry R&D project focused on corrosion and SCC of alloys in SCWR conditions

Very High Temperature Reactor

- High temperature He-cooled reactor enables both electrical generation and process heat applications
- Goal VHTR outlet temperature of 950-1000°C, with near term (HTGR) focus on 750-850°C
- Reference configurations: prismatic & pebble bed cores
- Japan HTTR & China HTR-10 in operation; China HTR-PM demo plant nearing completion
- Includes strong materials R&D focus
 - Graphite
 - Metals & Design Methods
 - Ceramics & Composites
 - Contributions shared via Gen IV Materials Handbook

Advanced Reactors Need Additional Limited Options for Approved Alloys for Elevated Temperature Construction

- Only six alloys are qualified in ASME Sec III Division 5 for service in inelastic temperature range
 - Two ferritic steels: 2 ¹/₄Cr-1Mo and 9Cr-1Mo steels
 - Two stainless steels: 304 and 316
 - Two high-temperature alloys: Alloy 800H and Alloy 617
- Hastelloy N (and similar foreign alloys, GH3535) are not yet approved for liquid salt service
- Advanced alloys (e.g., high-entropy, ODS, TMT, Ni, etc.) need development and qualification
- Corrosion resistant alloys for lead and SCW compatibility (Modified 310 SS, high Si F/M steels, FeCrAI alloys, new Ti & Zr alloys) need development and qualification
- Beryllium for compact reactor reflectors

Graphites, Ceramics, and Composites Need Qualification and Code Coverage for Advanced Reactors

- Graphite used for core supports in HTGRs, VHTRs & MSRs
- Ceramics & composites used as specialized reactor internals
- Special issues
 - Insufficient material standards
 - Lack of ductility
 - Need for statistically set load limits
 - Coupled irradiation and environmental effects
- Now included in ASME Code Section III Division 5
- Additional qualification required

Graphite Core Supports

Very High Temperature Alloys (800H, 617, Hast X(R) & Hast N) for IHXs and SGs Are of Greatest Concern for HTRs

- Temperatures 700 up to 950°C
- Corrosion and creepfatigue damage
- 800H & 617 are ASME Code qualified to 762°C & 950°C
- Alloys X & X(R) suitable but not yet Code qualified
- 2 1/4Cr-1Mo Codequalified for lower SG temperatures
- Improved high temperature design methodology essential

THTR-300 Steam Generator

HTR PM Heat Exchanger

Printed Circuit Board Heat Exchanger

High Temperature Design Methodologies Need Updating

- Weldments
 - Weldment evaluation methods, metallurgical & mechanical discontinuities, transition joints, tube sheets, validated design methodology

Aging & environmental issues

 Materials aging, irradiation & corrosion damage, short-time overtemperature/load effects

Creep and fatigue

 Creep-fatigue (C-F), negligible creep, racheting, thermal striping, buckling, elastic follow-up, constitutive models, simplified & overly conservative analysis methods

Multi-axial loading

 Multi-axial stresses, load combinations, plastic strain concentrations

High Temperature Code Materials and HTDM Need Updating (cont)

Materials allowables

- Elevated temperature data base & acceptance criteria, min vs ave props, effects of melt & fab processes, 60-year allowables
- Failure criteria
 - Flaw assessment and LBB procedures
- Analysis methods and criteria
 - Strain & deformation limits, fracture toughness, seismic response, core support, simplified fatigue methods, inelastic piping design, thermal stratification design procedures
- Rules for design/use of clad structures for high temperature service, including efficacy and reliability of coatings or cladding for corrosion prevention
- Construction rules for CHEs for high temperature service

SiC/SiC Composites Are Potentially Applicable to Many Advanced Reactor Concepts

Reactor Concept	Application	Operating Condition	Project / Design Examples	Possible Deployment
Fusion	Blanket structuresVarious functions	• He, Pb-Li • 400-900°C • >50 dpa	• ARIES • EU-PPCS • DREAM	• Long-term
HTGR VHTR	 Reaction control systems Core support 	• He • 600-1100°C • Up to ~40 dpa	• SC-HTGR • GT-HTR300C	• Near-term
LWR	 Channel box Grid spacer Fuel cladding 	• Water • 300-500°C • ~10 dpa	PWR (WHC)BWR (EPRI)	• Mid-term? (ATF)
FHR AHTR	Core structuresRCS	• Liquid salt • ~700°C • >10 dpa	• AHTR • SMR's	• Long-term
SFR	 Core structures Fuel cladding/support 	• Liquid sodium • 500-700°C • >100 dpa	• CEA	• Long-term
GFR	 Core structures Fuel cladding/support 	• He • 700-1200°C • >100 dpa	• CEA • GA EM ²	• Long-term

Structural Composites Are Being Developed & Qualified for Advanced Reactors

- SiC-SiC and C-C are best candidates for non-metallic control rods
- C-C composites also evaluated for structural reactor internals applications at lower doses
- Irradiation, corrosion, architecture, manufacture & testing standard development all needed

Alloys & Graphite in High Temperature Coolant Environments Must Be Qualified

- Oxidation, carburization, and decarburization of metallic components
- SCC and LME effect
- Microstructural stability & strength impacts during long-term aging
- Mass and strength loss in graphite and composites
- Impact of coolants on metallic tribology
- High temperature strength, environmental compatibility & corrosion in Hi Temp coolants

Environmental Compatibility Is Especially Challenging for MSRs, LFRs, and SCWRs

- Protective oxide films not formed in molten salts
- Lead coolants require very tight oxygen control & may cause liquid metal embrittlement
- Enhanced stress corrosion cracking in supercritical water plus impact of irradiationinduced free radicals
- Development of coatings, claddings & associated design methods needed
- Qualification of new materials may be required
 - Modified 310 SS, high Si F/M steels, FeCrAl alloys, advanced hi temp nickel alloys, new Ti & Zr alloys

GIF SCWR ROUND ROBIN EXERCISE #2 Canadian Nuclear Laboratories Reference # 900-511300-STD-001

1.4970 steel exposed to LBE at 600°C *A. Weisenburger et. al. IAEA Tech Mtg on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October*

Compact Heat Exchanger Usage in HTRs Requires Qualified Design and Construction Rules

- Complex channels & corners result in stress concentrations
 - Transfer external boundary conditions transfer to internals
 - Significant pressure & thermal stress redistribution

Southall et al., ICAPP '08

Southall et al., ICAPP '09

MicroChannel

- Chemically etched integral flow channels
- Good for high pressure

PlateFin

- Corrugated plate fin sandwiched between two flat plates or shims
- More efficient use of materials and larger flow passages

Each Advanced Reactor Requires Materials for Its Own Temperature, Dose & Coolant Compatibility Needs

Primary Circuit Materials (classic- <i>future</i>)												
Reactor ROT °C		Dose-dpa		RPV Piping	Piping	Internals	НХ	SG	Cladding			
		RPV	Internals									
LWR	288	<<1	10-20	508/533 (clad w/ss)	low alloy or SS	304/316/ <i>NF-709</i>	N/A	508/533/ 600/690	Zirc/ <i>SiC-SiC</i>			
Helium cooled	750-800/ <u>850-950</u>	<<1	1-5	508/533/ Gr 91	508/533/ Gr 91	graphite/ 304/316/ <i>800H <mark>/</mark>SiC-SiC</i>	800H/ <mark>617</mark>	2.25Cr-1Mo/ 800H/ <mark>617</mark>	SIC TRISO			
Sodium cooled fast	500-550	<1	10-20/ <u>80-150</u>	304/316/ NF-709	2.25Cr-1Mo/ 316/Gr 91/Gr 92/NF-709	304/316/ NF-709/ SiC-SiC	304/316/ <i>NF-709</i>	2.25Cr-1Mo/ 800H/ <u>Gr 91/Gr 92</u>	HT-9/ Gr 92 ODS			
Molten Salt cooled	700/ 750-900	<<1	1-25	Hast N/316SS or 800H- clad/new Ni alloy	Hast N/ 316SS or 800H-clad/ new Ni alloy	Hast N/C-C or SiC-SiC/new Ni alloy	Hast N/ 316SS, 800H or 617 w Ni clad/ new Ni alloy/ SiC-SiC	Hast N/ 316SS, 800H or 617 w Ni clad/ new Ni alloy/ SiC-SiC	SiC TRISO			
Pb/ Pb-Bi cooled fast	500-550	<30	100-200	HT-9/Gr 91/ Si mod steel	HT-9/Gr 91/ Si mod steel	HT-9/Gr 91/ Si mod steel/ SiC-SiC	HT-9/Gr 91/ Si mod steel	HT-9/Gr 91/ Si mod steel	HT-9/ Gr92/ ODS			
SCWR	510-625	<<1	20-30	508/533 (clad w/ss)	low alloy/ SS/ new <mark>SS</mark>	304/316/new SS/ 800H/NF- 709	N/A	508/533/ 600/690/625/ new SS	Zirc/TI- alloys/ SiC-SiC			

Materials R&D in the Gen IV International Forum Is Generated and Shared

Some Project Arrangements for Materials R&D are in place

- Very High Temperature Reactor
- Gas-Cooled Fast Reactor
- Supercritical Water Cooled Reactor
- Other reactor systems have identified R&D needs
 - Lead Fast Reactor
 - Molten Salt Reactor
 - Sodium Fast Reactor
- R&D needs for metals, graphite, ceramics, composites, and high temperature design methods span multiple systems
- Environmental challenges related to coolant compatibility, irradiation doses, and service temperatures are reactor specific