
- - - - -- - -- -

|

|

|

| NUREG/CR-2122
ORNL/NUREG/CSD/TM-13

| UCC-ND p%
; / 8# t\-

,

! ' t c8 ~_Di |
ti ' c, ~ 5\

h :f h bI t-

| % ~f
UNION ''

-

Improved Critic'$ lith- rchcannioEj

| Techniques for Low- and
| High-Enriched Systems

,

M. J. Lorek,

:

1

i *

!

#
.

.

j- .

i
!

I .'

' Prepared for the
j Office of Nuclear Regulatory Research

Li.S. Nuclear Regulatory Commission-

| Washington, DC 20555
| Under Interagency Agreement DOE 40-550-75 i

.

i

i

1

;

,

!

I'

l
'

! |

| 8109160021 810831
.PDR NUREG

; ' R-2122 R PDR



,. - ,

.

.

I

i
Printed in the United States of America Available from

National Technical Information Service
U.S. Department of Commerce

5285 Pon Royal Rcad, Springfield, Virgins 22161

Available from

GPO Sales Program
Division of Technical Information and Document Control

U S. Nuclear Regulatory Commission
Washington, D.C. 20555

L
.

Th3 report was prepared as an account of work sponsored by an agency of the
United S tates Government Neither the United S tates Government nor any agency
thereor, nor any of their employees, makes any warranty express or implied, or ,

assumes any legal liabihty or responsibility for the accuracy. completeness, or
usefulness of any information, apparatus, p#oduct. Or process disclosed, or
represents that its use would not inf ringe p rivstely owned *ights. Reference hereer.
to any specific commerc:al product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or empty its
v.idorsement. recommer dation, or favoring by the United States Government or
any agency thereof The views ano opinions of authors expressed heroin do not
necessarily state or reflect those of the United States Government or any agency
thereot

-

b



__
.

1

NUREG/CR-2122
ORNL/NUREG/CSD/TM-13
Dist.. Category RC

..

IMPROVED CRITICALITY SEARCH TECHNIQUES
-

FOR LOW- AND HIGH-ENRICHED SYSTEMS

M. J. Lorek

Sponsor: G. E. Whitt ides

Manuscript Completed - April 1981
Date Published - July 1981

*Prepared for the
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission

Washington, DC 20555
Under Interagency Agreement DOE 40-550-75

NRC FIN No. B-0172-

.

COMPUTER SCIENCES DIVISION
at

Oak Ridge National Laboratory
Post Office Box X

Oak Ridge, Tennessee 37830

Union Carbide Corporation, Nuclear Division
operating the '

Oak Ridge National LaboratoryOak Ridge Gaseous Diffusion Plant -

Oak Ridge Y-12 Plant Paducah Gaseous Diffusion Plant-

* under Contract No. W-7405-eng-26
for the

Department of Energy..



. . - . . .

,

-TABLE OF CONTENTS
,

'

CHAPTER PAGE.
..

I. INTRODUCTION AND PROJECT 0VERVIEW............................ 1

: II. OPTMIZ METHODOLOGY.......................................... 7
4

| 2.1 The Fixed Value Search................................. 7

; 2.1.1 XXMOD and the Mean Value Theorem (MVT)
Method.......................................... 8

2.1.2 The Extended Mean Value Theorem (EMVT)
! Method.......................................... 9

!
2.1.3 The Linear Least Squares Fi t. . . . . . . . . . . . . . . . . . . . -10j

2.1.4 The Analytical Solution of a Cubic
Eq u a ti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 The Fixed Value . Search Procedure . . . . . . . . . . . . . . . 16j
i

~

I 2.2 The Op timi za ti on Se a rch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

|. 2.2.1 The Front-End Process.......................... 20
4

2.2.2 Locating the Optimum by Differentiation'

of the Least Squares Cubic. . . . . . . . . . . . . . . . . . . . . . 21

: 2.2,3 The Optir f zation Search Procedure. . . . . . . . . . . . . . 28
1

III. RESULTS..................................................... 33
;

1 3.1 The Fi xed Val ue Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1

| 3.2 The Optimi zati on Se a rch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
:
'

IV. CONCLUSIONS AND REC 0M ENDATIONS............................. 48
:

; REFERENCES........................................................ 51

1
1

1

Y
-

i.

iii

i-
I
a

--- - ~ , ,,,m,-: , . - - - . , 7 -- , . - - .-



m-- - -

.g

r

..

LIST OF TABLES.

TABLE PAGE.

- 1. A Comparison of MVT, EMVT, and OPTMIZ Results 'for a
2;x 2 x 2 Array of 93.2% Uranium Metal Cylinders in Air. . . 37

2. A Comparison of MVT and OPTMIZ Results for a 3 x 3 Array
of PWR Fuel -Assemblies in' Water. . . . . . . . . . . . . . . 39

3. Results for the Simulated KENO-IV K-effective Calculation
of a 3 x 3 Array of DWR Fuel Assemblies in Water that
Show how the OPTMIZ iitimate of the Maximum Varies with
the Constraints. . . . . . . . . . . . . . . . . . . . . . . 43

4. Results for the Simulated KENO-IV K-effective Calculation
of a 3 x 3 Array of PWR Fuel Assemblies in Water that
Show OPTMIZ Estimates of the Maximum for Searches with
Di fferent Initial Guesses. . . . . . . . . . . . . . . . . . 44

5. Results from OPTMIZ for the XSDRNPM K-effective Calcu-
lation of a Cylindrical Tank of 4% Enriched UO2 Powder
Mixed with Water . . . . . . . . . . . . . . . . . . . . . . 46.

.

r

-
.

O

v



.

.,

; LIST OF FIGURES
.,

' FIGURE PAGE
:.

1. The SCALE. Computer Code System . . . . . . . . . . . . . . . 3

2. 'A-Cubic with No Local Extrema. . . . . . . . . . . . . . . . 13

3. 'A Cubic with Two Local Extrema . . . . . . . . . . . . . . . 14

4. Illustration of Improvement in Accuracy Obtained
by Using the Least Squares Method. . . . . . . . . . . . . . 18

5. The Maximum and Minimum Points of a Cubic with
Two Local Extrema. . . . . . . . . . . . . . . . . . . . . . 23

6. The Maximum and Minimum Points of a Cubic with
No Local Extrema . . . . . . . . . . . . . . . . . . . . . . 25

7. An Illustration of the Effect on the Number of
Roots Obtained for the Solution of a Cubic at
Different Values of K-effective. . . . . . . . . . . . . . . 26

*
8. Typical System Curve that Contains No Local Extrema. . . . . 29

9. An Illustration of how K-effective Varies with the.

Radial Lattice Pitch for a 2'x 2 x 2 Array of 93.2%
Uranium-Metal Cylinders in Air . . . . . . . . . . . . . . 34

10. An Illustration of how K-effective Varies with the
Spacing Between Assemblies for a 3 x 3 Array of PWR
Fuel Assemblies in Water . . . . . . . . . . . . . . . . . 35-

11. Curve of K-effective Versus Pitch for a Simulated
KENO-IV Criticality Calculation of a 3 x 3 Array
of PWR Fuel Assemblies in Water by a Gaussian

;

| Distribution . . . . . . . . . . . . . . . . . . . . . . . 41

12. Curve of K-effective Versus Pitch- for a Cylindrical
Tank of 4% Enriched U02 Powder Mixed with Water. . . . . . 42

.

=
.

vii



3.
l

I

p

n

ACKNOWLEDGMENTS
.

This work was performed for the Computer Sciences Division at the
.

Oak Pidge National Laboratory which is operated by the Union Carbide

Corporation, Nuclear Division and supported by the United States Depart-

ment of Energy. Funding for this project was provided by the United

States Nuclear Regulatory Commission under interagency agreement with

the U. S. Department of Energy.
,

,

This report has been submitted to the University of Tennessee
,

in fulfillment of the thesis requirement for an M.S. Degree in Nuclear,

Engineering. The author expresses deep appreciation to Dr. H. L. Dodds,

Jr., who served as thesis advisor throughout the project. His advice

; and encouragmeent ai_ greatly appreciated.
'

Special thanks also to Lester M. Petrie, section head in the

Computer Sciences Division, who suggested this work as a research.

project and provided many crucial and helpful coments, and to

, Robert M. Westfall, section head in the Ccmputer Sciences Division,

! who is in charge of the SCALE project.

The contributions of other individuals are also genuinely appre-

ciated. Specifically, I would like to thank Nancy F. Landers who is

in charge of developing the CSAS3 and CSAS4 modules, and Brenda

Neeley and Pam Young for their help in preparing the manuscript.

9

iX

|



IMPROVED CRITICALITY SEARCH TECHNIQUdS
.

FOR LOW- AND HIGH-ENRICHED SYSTEMS

* - M. J. Lorek

ABSTRACT,

,

The purpose of this work is to develop a parameter search capability '
for use in criticality safety analysis of nuclear fuel shipping containers.
This new search capability is being developed for use in the SCALE computer
code system. Sr.LE is being deve'joped for licensing evaluation of various

; transportation package designs. It can perform criticality safety analysis,
shielding analysis, and heat transfer analysis on systems described in
multi-dimensional geometry.

The work describ.ed in this report is specifically concerned with the
criticality safety analysis capability of SCALE, and particularly, with

' two sequences that will provide SCALE users with the option to perform
criticality searches on systems described in either one-dimensional or
three-dimensional geometries.

'
This search package includes a method for an optimization search4

(maxima or minima) and a method for a fixed value search. The optimiza-~

; tion search is a search for the most reactive state of a system. It

searches for the value of a parameter, such as fuel assembly lattice,

pitch or fuel concentration, that corresponds to the maxirem K-effective
of the system. Similarly, the fixed value search is a search for the .
value of a parameter that corresponds to a fixed value of K-effective.,

i Both searches rely on least squares curve fitting to obtain the informa-
tion needed to make an 2 stimate. Specifically, the data points are least

.i squares fitted to a cubic polynomial which is solved analytically for
parameter values that correspond to maximum or fixed values of K-effective.

This new searcn capability has been implemented into a FORTRAN
computer routine named OPTMIZ which is used to perfcrm the parameter'

'

modifications in SCALE's two criticality search options. Results,

obtained from OPTMIZ show that fixed value criticality searching is
greatly improved with regard to accuracy and computing cost relative
to the existing search capability available in KENO-IV. Also, results
show that the new optimum search capability available in OpTMIZ is an
accurate and reliable search for locating parameter values that corre-
spond to maximum values of K-effective.

.
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- ' CHAPTER 11
.

:
.

INTRODUCTION AND-PROJEt,T OVERVIEW-
.

L

.A' considerable effort by the Nuclear Regulatory Commission has 'y

been under way in'recent' years to develop a standardized computer-

: analysis methodology to'be 'used'for'_ licensing evaluation purposes.

The need has arisen for a uniformly accepted method of nalysis so:

|: -that licensees could know in advance how their designs'would be

evaluated. The result of this effort _is'a new modular system _ of

computer programs called SCALE 'which is being developed-in the
-

i-
'

Computer Sciences Division at the Oak Ridge National Laboratory _
-

(SCALE is an acronym for S_tandardized C_omputer A_nalysis'for L_icens-

ing Evaluation). SCALE will benefit the NE and the industry by-

j simplifying the licensing process. Applicants will have'the-option
,

of using SCALE to analyze their designs instead of using their own

,
programs and data bases which they must adequately verify.

|

| The SCALE system is a collection of computer programs that
|

perform three basic types o+' analysis: (1) criticality safety-

analysis, (2) sh_ielding analysis, and (3) heat transfer analysis.
,

;

For example,. Criticality Safety Analytical Sequence -1 (CSAS1)

performs data processing and criticality safety analysis on systems

which can be adequately described in one-dimensional geometry.

Shielding Analytical Sequence 3 (SAS3) performs data-processing and
'..

radiation shielding analysis on systems for which the user specifies'
,

the radiation source distribution and which must be modeled in three ..

dimensional geometry. Heat Transfer Analytical Sequence 2 (HTAS2)

- . - - .- . . .-- . - -.- - . , . - -
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performs Monte Carlo radiative heat transfer analysis on systems
,

,

which must be described in three-dimensional geometry.

SCALE consists of a driver module, control modules, functional '

modules and-a data base. It relies. heavily on basic neutron trans-

port analysis, data processing, and heat transfer analysis methods

that have been developed at the Oak Ridge National Laboratory over

the past several years. The neutron transport and heat transfer

analyses are performed by well-established analysis codes that have

been in use for several years. The data processing is similar to-,

that employed in the AMPX system.2 SCALE input has been designed

to be as simple as possible to help avoid costly input errors.

The components of the SCALE system are shown in Figure 1.

This report describes a new search package that is to be used in -

analytical sequences CSAS3 and CSAS4. These two sequences will allow
,

SCALE users to search for most reactive (maximum K-effective) states

of systems that c .' be described in one-dimensional and three-dimensional

geometries, respectively. For example, CSAS4 will have the capability

of determining the assembly pitch of an array of fuel assemblies that

corresponds to the maximum value of K-effective for the array. CSAS3

and CSAS4 involve iterative processes and will also include the capa-

bility to search for fixed states (fixed K-effective) of systems. The

end result of this work is a set of FORTRAN subroutines collectively

known as OPTMIZ that will be incorporated into CSAS3 and CSAS4. The

function of OPTMIZ is to take all previous information and use it to ~

modify the system parameter appropriately, i.e., make an intelligent
.

next guess based on all previous information. It is capable

.
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SCALE -

,

STANDARDIZED COMPUTER ANALYSIS FOR |

~

LICENSING EVALUATION ~

DRIVER-

FUNCTIONAL MODULES DATA BASE CONTROL' MODULES
'

NITAWL' STANDARD COMPOSITIONS LIBRARY CSAS1

XSDRNPM ORIGEN LIBRARIES 'CSAS2

COUPLE HANSEN-ROACH BONDARENK0 CSAS3

ORIGEN-S 123 GROUP AMPX CSAS4

KENO-IV 22-18 ' COUPLED SAS1
,

BONAMI -218' GROUP ENDF/B-IV SAS2

'

ICE 27-18 COUPLED ENDF/B-IV SAS3

M0RSE-SGC/S 27-18 C00'!.ED ENDF/8-V SAS4

KENO-V HTAS1

HEATING-6 HTAS2

Figure 1. The SCALE Computer Code System.
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of, seeking out' parameter values that correspond to maxi' mum values,

minimum values,'or fixed. values of K-effective ~ -
.

OPTMIZ 1sla collection of five' FORTRAN subroutines: OPTMIZ,
,

~

MAXMIN,fFIXEDK, CUBFIT,'and DETERM. MAXMIN is devoted entirely to

the optimization search. Similarly, FIXEDK is the fixed value search.

Both MAXMIN and FIXEDK rely on least squares fitting to a cubic poly-

nomial, so bothJroutines call CUBFIT (fits input data to a cubic).

'DETERM is' a subroutine that calculates determinants which are needed

in the least1 squares fit, and OPTMIZ is the calling subroutine that

sets passing parameters and does preliminaryccalculations.
I

During the course of this work, many-different methods were

considered including interpolation and extrapolation techniques,

linear programming,'and different optimization techniques. A primary
.

consideration in this work is that duririg a search, relatively few

'

data points are a <ailable, especially at the beginning of the calcu-

lation. Most sophisticated techniques, like the ones mentioned above,

- are useless for this problem because there are so few data poirts,

available. Indeed, one of the primary concerns of the SCALE project

is to minimize computing cost, which means to generate as few data

points as possible. Thus, the primary objective of this thesis project

is to develop a method for parameter modification in criticality safety

studies that is accurate and reliable and uses a minimum amount of com-

puter time.

Initially, attention was focused on the fixed value search, since
,

there is more information available for this type of search. The
'

object of the first part of the project was to improve the existing

- . - .
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. fixed v search capability.that is available as an option in the
* KENO-IV3 Monte Carlo triticality program. This search option is

contained in a subrout4ne known as XXMOD. The parameter modification
,

. technique-in XXM00 '< based on-an approximation of the mean value.

theorem ~of. calculus,'' which is essentially a tre:ation of Taylor's

series after one term. First, this parameter modification technique

was .eplaced with'or? based on an approximation of the extended mean

value-theorem of :alculus,5 which is a truncation of Taylor's series

after two terms. Next, the technique of least squares fitting of

data points to . iurve was added'to improve accuracy. The least

squares technique has turned out to be the heart of the OPTMIZ method.

One of the initial-objectives of this project was to develop a

technique that could use all previous information to make a next
,

guess. This information includes standard deviations of data points
~

generated in a Monte Carlo ca culation since CSAS4 includes a KENO-V

. Monte Carlo criticality calcul on. Least squares fitting is very

appropriate here because each data point can be weighted according to

| its standard deviation. The existing mean value theorem technique in

| KENO-IV uses only two data points as previous information - the present

and next immediate points. It does not consider the uncertainties in

the data that are available. Thus, as shown later in this report, a

weighted least squares fitting procedure is quite useful for this

problem.

Le et squares is also beneficial for the optimization search..

Once data points are fitted using least squares, information about
s

critical points (maxima and rdnima) can be obtained simply by taking

' derivatives of the. fitted curve. Examinations of different curves of

'|
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.

parameter viitas versus K-effective for systems that SCALE would '

probably encounter show that considerable flexibility and relatively .

good-accuracy can be obtained by least squares f .irg to a cubic

polynomial. Therefore, OPTMIZ is set up to generate four initial

data points by a front-end process, and from four points on, to per-
,

form a least ;onares fit to a cubic polynomial. The roots of the
'

cubic polynomial (or its derivative - a quadratic) are determined

analytically to obtain the desired parameter values.

The preceding material is a brief overview of the work. The

remainder of this report contains detailed information and expla-

nations about this new search capability. Chapter II describes the

actual development of the method. It explains in detail the pro-'

,

cedure that has been . incorporated into OPTMIZ and describes the
.

mathematical tools that are needed. Chapter III presents the results

obtained with this new technique and also results obtained with the

KENO-IV mean value theorem technique for comparison. Chapter IV pre-

sents conclusions and recommendations for improvements to this method

and some suggestions for future work.
,

!

.
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CHAPTER'II
-.

OPTMIZ METHODOLOGY
.

U This chapter describes the techniques that are incorporated

..
~into the OPTMIZ subroutine package. OPTMIZ is essentially divided

L

'nto two-parts: (1) a fixed value search, and (2) an optimization-

search. Therefore, this chapter is' divided into two major sections.'

_

The first section describes the development of the 'ixed value

search capability and introduces the concept of least squares fitting

as a search tool. The second section describes the development of

|' the optimization search capability and also outlines the roie of

least squares fitting in seeking out optimum points. OPTMIZ is
! -

capable of performing both types of searches while only requiring.-,

!

I the user to input an initial guess, a set of boundary constraints

which will be described later in this report, and a tolerance for

convergence.
L
|

! 2.1 The Fixed Value Search
|

OPTMIZ development began as an improvement to the fixed value

| search capability in the KENO-IV criticality code. Even though the

|

| primary objective of developing OPTMlZ is to perform searches for

most reaccive states of systems (i.e., maximum searches), develop-

ment started with the fixed value search because it is a much easier;

l

search to perform. There is more information available to work with

initial.ly. Specifically, this means that there is a known fixed

value of K-effective available which can be used to decide which-

direction the search should progress (i.e. , whether the parameter

|

!

7
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should be increased or decreased). This helps to reduce the number
~

! of data points that must be generated to resch the desired parameter

value relative to the number that must be generated for an optimization ,

search. Knowing _the desired value of K-effective also helps to- simplify

-the process that determines when convergence has been reached.

2.1.1 XXMOD and the Mean Value Theorem (MVT) Method

KENO-IV has a built-in fixed value search capability. It is

contained in a subroutine called XXMOD. The equation that does the

actual modification of the parameter in XXMOD is an approximation of
,

the mean value theorem of calculus. The modifying equation is:

-

N =Rold + (Kd-Kcal) (I)new

i
-

, where:
!

'

R = new parameter guess
new

R =R$ = parameter value that is associated with the latestold
data point that has been generated in the iteration

process.

K = desired value of K-effective
d

Kcal = Kj = value of K-effective that is associated with the

latest data point that has been generated in the iteration

process.

AR = R - R ,)4 4

'AK = K - K ,)4 j ,

.
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Notice that this equation uses only two data points to make a next I
< ,

guess, and it does not consider the standard deviations that KENO-IV

supplies. Equation (1) can be derived from the mean v'alue theorem:".

f(x) f(a) = f'(a)(x--a) (2)

! The first step in the development of OPTMIZ was an inprovement

to Equation (1).

2.1.2 The Extended Mean Value Theorem (EMVT) Method

Since the mean value theorem is a truncation of Taylor's series,

the improvement of Equation (1) is a solutior of the mean value

theorem plus one more term of Taylor's series, which is known as the

extended mean value theorem:5
,

i~

f(x) - f(a) = f'(a)(x-a) + f" (a) )!

(3)

; The improved modifying equation, known as the EMVT equation, can

| be derived from the extended mean value theorem by making some assump-

tions and solving the equation for x (which is the new parameter

value). The modifying equation is:

- R =Rold ZK ' + !Ecal-K!)/2 (4)
AR t

I dnew
t

where the parameters are defined in Equation (1) of the previous

section. This simple improvement tas considerably reduced the amount

of time needed to run a problem by reducing the number of iterations
.

required to reach convergence on the desired fixed value of K-effective.

However, it has done nothing about improving accuracy.'
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OPTMIZ must be able to accommodate two types of criticality
~

calculations: 'one-dimensional discrete ordinates and.three-dimensional

Monte Carlo. All of the work that has been done to test this new .

fixed value search capability has been done with KENO-IV. Since

Monte Carlo is a statistical calculation, the exact value of
;

- K-effective can only_ be determined by running an infinite number
i

of histories. So the answer obtained in a calculation using a

finite number of histories is *.hought of as a range of numbers in

which the true answer has some chance of lying in that range.

Accuracy then is defined in this work as how close the Monte Carlo

estimate is to the true answer. No improvement in accuracy is

.obtained by the EMVT method because it does not attempt to get
.

closer to the true answer, but merely gets an. approximate answer
,

in less computing time. The addition of least squares fitting to
.

OPTMIZ has improved accuracy as well as reduced computing time

because the least squares technique uses all previous data points

to make a next guess.

2.1.3 The Linear Least Squares Fit

least squares fitting to a polynomial is a powerful mathematical
,

tool for representing experimental data. It happens to be very

powerful also in the generation and location of data points for com-
~

.puterized criticality searches. A least squares fit to a polynomial

involves fitting data points to a polynomial of some degree by mini-
.

mizing the sum of the squares of the residuals. This quantity is
2known as X and is defined as: -

.

.
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n
_O k

n_

" i 2(y$ - ai-a2x -a x9 - ... - a +1*i ). (5)2_x, 9 3 kg g,
~

i=1
-

i=1,.

where:

y = dependent variable (= K-effective in this work)
x .= independent variable (= parameter value in this work)-
o = standard deviation associated with y
n = number of data points
k = degree of polynomial'

For the particular systems that are described later in' this report,

the most advantageous polynomial to fit is a cubic. The reasons are:

(1) a cubic can fit data with a local maximum (i.e., data with a peak

between the boundaries), (2) a cubic can fit data with no local maxi-

mums, (3) a cubic can allow for asymetry (skewness) of data, and-

(4) a cubic can also fit' data with a local minimum. So, for this
,

particular application, Equation (5) becomes:

-2 nn
3

a 3

o a2 (Yj -a -bxj - cxj - dx$ ) (6)X' = *

i= - - i=1

2The object of a least squares fit is to minimize X with respect

to each of the coefficients a, b, c, and d. Therefore, , ,

E ,haredeterminedandsetequal.tozero. The resulting
equations are solved in matrix form for a, b, c, and d, which are the

coefficients of the cubic equation that corresponds to the least sum
..

of the squares of the residuals. X is a measure of the goodness of2

" fit to the data. ,

i

|
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After the. coefficients of the cubic polynomial have been

determined, the next step is to obtcin its roots for some desired '

fixed value of K-effective.
,

2.1.4 The Analytical Solution of a Cubic Equation

There is another advantage to fitting the data to a third degree

polynomial. For cubic equations there exists a fairly simple and

easy way to analytically solve for its roots. However, the fact that

the solution is analytical rather than numerical is not the only

advantage. There is information internal to the analytical solution

of a cubic that can be used to determine execution paths. For

example, there are two types of cubic equaticas that can result from

a least squares fit. They are: (1) a cubic with no local extrema,

and (2) a cubic with two local extrema. These two types of curves '

are shown in Figures 2 and 3. It will be shown later in the section
,

on optimization searching that information about maximum and minimum

points can be ebtained by taking the first derivative of the cubic

and solving the resulting quadratic for its roots at zero. It is

evident from the curves of Figures 2 and 3 that if data points are

fit to a cubic with no local extrema, then there is no point in taking

the derivative of the cubic to determine maximum or minimum points

because the solution will yield the point of inflection, which is of

no use in this problem. Thus, information that is internal to the

solution of a cubic can be used to determine which type of cubic has
'

been fit and consequently can eliminate calculations that are

unnecessary. ,

.
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I

There are two types of solutions to a cubic equation: (1)a
.-

7

solution that yields one real root and two conjugate imaginary roots,

and (2) a solution that yields three real roots. Consider the follow-*

'ing cubic equation:

x + Px + Qx + R = 0 (7)3 2
. .

i

; The solution for one real root is algebraic.8 Equation (7) reduces

| to:
|

| _y + Ay + B = 0 (8)3

|

by substituting x = y - P/3 into Equation (7). Then, the real root

of Equation (7) is:

( x = zi + z2 - P/3 (9)-

|
'~

where:

-B/2 + fB /4 + A3/27 (10)
2zi =

|
2-B/2 - B /4 + A3/27 (11)z *

2

7The solution for three real roots is trigonometric:

= 2 f - A/3 cos0 - P/3x
3

= 2 f - A/3 cos(0 + 2n/3) - P/3 (12 )x 2

= 2 f -A/3 cos(0 + 4n/3) - P/3x
3

i- where:

x , x , and x are.the roots, and 0 is an angle to be; 3 2 3

determined,

. .
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I The analytical solution of the least squares cubic completes.the

calculations needed for one pass in OPTMIZ. .

.

The next section is a detailed suninary of the fixed value

. search procedure which includes a discussion of the previously

mentioned problem of accuracy that the least squares method has

helped to alleviate.

i

2.1.5 The Fixed Value Search Procedurej

The procedure for the fixed value search is divided into two

parts: (1) a front-end process.to generate enough data points for

a.least squares fit, and (2) the least squares fit itself. The

- front-end process for the fixed value search is the extended mean
'

value theorem procedure that has been previously discussed. Once
|

enough data points have been generated, the least squares method .

I takes over and is used until the search is tenninated. The follow-

ing is a step-by-step procedure for the fixed value search.

|

THE OPTMIZ FIXED VALUE SEARCH PROCEDURE

1. Use the extended mean value theorem routine to cal-

culate the first four data points.

2. Perform a least squares fit to a cubic on the data
!

points.
t.

j 3. Solve the least squares cubic for its root (or roots)

at the desired value of K-effective. -

4. Use the root (or roots)~as the next guess.
7

5. Go to Step 2; repeat until convergence is reached.

,
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| One'of the-requirements of the OPTMIZ' fixed value search is
,,

' that the user must specify a tolerance for convergence. In the
~

case of a KENO-IV Monte Carlo calculation, this tolerance could

! be expressed in standard deviations. However, these standard

deviations are associated with K-effective and not with the param-

eter that-is being searched for. Therefore, when the calculated

K-effective falls within the specified tolerance about the desired

-value of K-effective, the search is terminated and the parameter
-

that is associated with. the final calculated fixed value is assumed

to be the right answer. It is at this point that the previously

discussed problem of accuracy becomes important.

; Consider the coordinate axes illustrated in Figure 4. Since
!

~ there is a standard deviation associated with K-effective, it is
,

quite valid to assume that there exists a standard deviation associ-
,

ated with the parameter that is being searched for. However, this

parameter standard deviation is not known and would be extremely

difficult to calculate. It does, however, exist and can be used

!

| here to illustrate how improved accuracy can be obtained by using

| least squares instead of the MVT or EMVT methods.
l'
; When an MVT or an EMVT calculation is being performed, the

search essentially progresses from the initial guess to the desired

j - value and converges when one of the guesses falls within the user-

specified tolerance region. Keep in mind that the only requirement

!' for convergence is that'the guess must fall within the tolerance

4- region, meaning that the. converged answer could lie 'very close to

the true answer, or it could lie near the outer boundaries of the

.

__ % , -
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region. So essentially, these two methods do not necessarily seek
s

out the true answer, but instead they seek cut the tolerance region.

0n the other hand the least ' squares method not only finds the-

tolerance region, but gets closer to the true answer by using all

previous information to make a next guess. The reason is that unlike

the MVT and.EMVT methods, which are essentially a progression of

" jumps" from one data point to the next, the least squares tech-

nique is fitting the points to a curve on every iteration. The

equation obtained from the least squares fit is then solved for a root.

So every iteration ~provides n' ore information, and when convergence is

finally reached, the answer obtained using least squares generally

lies closer to the true answer than the answers obtained by the_MVT

or EMVT methods, as will be shown in Chapter III.-

The remainder of this chapter aescribes the development of the

optimization search. Some of the techniques employed in the fixed

value search are incorporated into the optimization search, such as

the least squares technique.

2.2 The Optimization Search

It is probably very evident that the name OPTMIZ comes directly

from the word optimization. The reason for this is that the version

of OPTMIZ that will initially be incorporated into modules CSAS3 and

CSAS4 will oaly have optimum searching capabilities. The fixed value

search will eventually be available but is considerto an extra feature.,

The CSAS3 and CSAS4 modules are defined as searches for most reactive

states of systems (i.e.. optimum states), therefore the package is*

called OPTMIZ even though it does have the capacity for a fixed value
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search.. The' optimization search relies heavily on least squares -

fitting. Once an equation has been determined, differentiation of -

the least squares cubic supplies all of the information necessary
-

to locate optimum values.

2.2.1 The Front-End Process

. The generation of _the first four data points for the optimi-

~zation search is considerably different than the method used for

the fixed value search. The extended mean value theorem method

cannot be utilized for an optimum search because a specified desired i

value of K-effective is needed to perform the EMVT calculation.

Since no fixed value is available, a different generation scheme

has been developed. This new scheme is relatively simple, yet it

is of considerable importance to the least squares fit that-follows. -

It requires the user to input boundary constraints. These con-
.

straints essentially define a parameter region.in which a maximum

can be located.

Given a starting guess and a set of boundary constraints, the

idea behind this new generation scheme is quite simple: generate-

four equally spaced data points within the parameter constraints
'

that will give the least squares method the best chance of approxi-
/

mately locating the maximum after the first curve fit. The genera-

tion of equally spaced points across the parameter region is very

important assuming there is no prior knowledge about the system-

available. Equally spaced points provide the least squares method -

with the best chance of locating the maximum regardless of where in
,

-the parameter region it lies. It -is not possible to equally space
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the points exactly because the spacing depends on the inithl guess,
*,

but an attempt is made to come as close to equal spacing.as possible.
J' The first three points are, respectively, the initial guess,

the left parameter constraint, and the right parameter constraint.

The' fourth point varies according to where in the region the initial

-guess lies. It is usually generated equidistant between the initial

guess and the parameter constraint that is furthest away from the

initial guess. In some cases the initial guess may lie so closa to

one of the constraints that it is not advantageous to use both points.

When this happens, the initial guess is assumed to be the constraint.
<

The other constraint becomes the second point and the last two

points are generated equidistant from the constraints and from each

other. Similar to the fixed value search, after the first four points-

are generated, the least squares technique takes over and is utilized
,

until the search is terminated.

2.2.2 Locatina the Optimum by Differentiation of the Least Squares
Cubic

Once again, least squares fitting the data points i.o a' cubic

polynomial is the method that is employed. This time, however, the

analytical solution of a cubic is not needed. The object of the

optimization search-is to seek out parameter values that correspond

to maximum (or minimum) values of K-effective. These maximum (or

minimum) values of K-effective are not known quantities, so it is not

clear for what value of K-effective the cubic must be solved. There-
*

fore, some other method of solution must be utilized for this type of j,

;

seacch. l

|

:

- --
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Recall from basic calculus that the first and second derivatives

of a polynomial provide' information about maximum and minimum points. ,

|

.The first derivative of a cubic is a quadratic which can be solved for
'

'its roots at zero:

8 2 + cx + d (13)f(x) = ax + bx

f'(x) = 3ax: + 2bx + c = 0 (14)

-2b : Y 4b2 - 12acx= (15)
6a

-2b + d4b2 - 12ac -2b - Y 4ba - 12ac (16)x = x ", 23 6a 6a

The two roots x and x, are the maximum and minimum points of
3

Equation (13) as Illustrated in Figure 5. The second derivative .

of Equation (13) tells which root is the maximum and which one is
.

the minimum. The second derivative of a :ubic is:

'

2 2 + cx + d (17)f(x) = ax + bx

f'(x) = 3ax: + 2bx + c (18)

f"(x) = 6ax + 2b (19)

Substituting x, and x, into Equation (19) determines which root

is the maximum and which one is the minimum. The determination is

made by the following procedure:
i

r -

>0 root is a minimum point
]

Iff"(x) =0 root is a point of inflection -

l < 0 root is a maximum point
6
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Therefore, all of the information necessary to locate and determine

the optimum points is contained in the least squares cubic and its -

derivatives. However, there is one more item to consider.
.

What if the ct:rve that is fit turns out to b'e a cubic of the

type.shown in Figure 2 (page 13)? Then.the method involving derivatives

that was just discuised is totally useless. All that it will do is

locate.the' point 9f inflection, as shown in Figure 6. In order to

be useful then, OPTMIZ must be able to recognize what type of cubic >

is being fit, and determine the proper path of execution. This is

the advantage that was previously discussed. The analytical solution

of a cubic provides'information about what type of cubic is being

fit. Consider the quantity under the square root in Equations (10)

and (11). The type of cubic that has been fit is determined by the
.

following procedure:

If - +h>0 There will be one real root and two

conjugate imaginary roots;

If 5 + a 0' There will be three real roots of which=

at least two are equal;

If - +h<0.
There will be three real and unequal roots.

Of course, the value of this quantity depends on what value

of K-effective the cubic equation is set equal to before it is

solved for its roots at that value of K-effective. For example.

consider the curve of Figure 7. When a cubic with three real roots

is set equal to K , the analytical solution will yield three real -

g

.

w e H +w r- r
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i

roots.- However, if the same cubic is set equal to X , the analytical2.

solution will ~ yield only one real root because that is all that is

available. Therefore, the procedure for determining whether thea

'

least squares method has fit the data to a cubic of the type shown

| in Figure 2 (page 13) or a cubic of the type shown in Figure 3 (page 14)

is to solve the , equation for each data point (i.e., set the cubic equa-

tion equal to the value of K-effective that corresponds to each data

point and solve the equation for its roots at that value of K-effective)

and determine if the quantity +a is negative for any of the data

points. If this quantity is negative for at least one data point,

then the cubic has to be of the type shown in Figure 3 because this

! situation could not arise for the type shown in Figure 2. If the

quantity +hispositiveforeverydatapoint,thenthecubic-

+ h is zera for anyhas to be of the type shown in Figure 2. If

data point then the cubic must again be of the type shown in

Figure 3. However, it is highly unlikely that this latter situation
!

| would occur on a computer because of round-off errors associated with

floating point arithmetic. The situation of + = 0 is not
;

really important though, because if the fitted curve looks like

Figure 3, then there will be at least one data point that causes

b2 a 8

7 + y to be negative.

Since an execution path already exists for a cubic of the type

shown in Figure-3, then one must be developed for a cubic of the
<

,

type shown in Figure 2. It turns out to be a relatively simple

technique. If CSAS3 and CSAS4 encounter a system with no local-

extrema (i.e., a system with no maximum or minimum between the

. . - . -
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boundaries), then most likely it will' be similar to the solid portion
.

of the curve of Figure 8. The dashed portion of the curve represents '

the portion of the least squares cubic that is not a part of the
.

actual system. In other words, the entire curve of Figure 8 (solid

and dashed portions) is the cubic that the least squares process has

fit to the data, while the actual data points are confined to the

portion of the curve that is between the constraints (the solid

portion of the curve). For this system the maximum and minimum points

lie on the boundaries. Therefore, all OPTMIZ is required to do is to

make sure that the system really is similar to Figure 8, and then con-

clude that the optimum lies on one of the boundaries.

The next section is a summary of the optimization searching

method. It also introduces two new concepte that are essent ~al to
,

obtaining accurate results from the optimization search.
.

2.2.3 The Optimization Search Procedure

The procedure for the optimization search is similar to the

procedure for the fixed value search in that it consists of a front-

end process, a least squares fit, and an analytical solution for the

roots of an equation. However, the front-end process and the analyti-

cal solution are considerably different because different information

is needed. The least squares fit is essentially the same except for

an additional weighting factor. Recall from Equation (6) that the

least squares fit for the fixed value search is weighted by (thea2
1 ,

inverse of the square of the standard deviation associated with data

pointi). This weighted least squares process allows for a better -

fit by weighting each data point according to the uncertainty

.
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associated with it. f!owever, when a least squares fit is performed

for the optimization search, the data points are weighted not only '
|

according to their standard deviations, but also according to how
,

far away they are from the estimated optimum. The weighting factor

for the optimization search is:

Weight = Ma2 Daj

where:

g = standard deviation associated with data point io

Dj = parameter distance between data point i and the most

recent estimate of the optimum

This new weighting factor has been introduced to help alleviate some

convergence problems that will be discussed in the next chapter. -
i.

Another technique has also been introduced to help with the con-
,

vergence problems. It is an attempt to locate data points such

that the best least squares fit is obtained, as described below.

The object of this " optimum location of data points" is to gen-

erate data points on both sides of the optimum. Experience has

shown that after the first four data points have been generated,

the estimates obtained thereafter from the least squares fit con-;

sistently lie on one side or the other of the optimum. The problem

that is encountered here is similar to the problem associated with

interpolation versus extrapolation of points on a curve. Recall

that interpolating a curve is a much more accurate method of obtain- '

ing values on that curve than extrapolating it because interpolation
,

implies that there are data points on both sides of the point that

. . _-
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__
is sought. Extrapolation is.usually a somewhat dangerous technique

o
because it involves trying to determine a point beyond the realm of

i

data points that are available. The situation is similar for the*

OPTMIZ least squares process of determining optimum points in that

a better fit (and subsequently a better estimate of the optimum) can

be obtained if there are data points on both sides of the optimum,

and if. those points are reasonably close.to the optimum. Therefore,

this new concept of " optimum location of data points" has been

introduced to obtain an even better answer than what could be obtained

by using the new weighting scheme described earlier by itself. The

following is a step-by-step procedure for the optimization search.

It includes procedures for handling both types of cubics (i.e.,

Figures 2 and 3 on pages 13 and 14, respectively).*

*
THE OPTMIZ OPTIMIZATION SEARCH PROCEDURE

1. Generate _ four equally spaced points within the parameter

boundary constraints.

2. Perform a least squares fit to a cubic polynomial.

3. Determine the type of cubic that has been fit. If it is

of the type shown in Figure 2, go to Step 8. If it is of

the type shown in Figure 3, go to Step 4.

___...... --______________________

4. Take the first derivative of the least squares cubic.

5. Solve the resulting quadratic for its roots at zero..

'6. Take the second derivative of the least squares cubic to

determine which root is_the maximum (or minimum). Use

root as next guess.

-
,
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7.- Go'to Step 2; Repeat until convergence is reached.
~

,

j_ _ .. --........___________.......

-8. Generate a 'few more data points to be sure that a

cubic of'the type shown.in Figure 2 (page 13) is the

actual situation that is occurring.

9. If the actual situation is a cubic of the type shown

in Figure 2, then conclude that the optimum lies on

one of the boundaries. If the fit changes to the

type shown in F:gure 3 (page 14), then go to Step 4

and continue.

The next chapter presents results that have been obtained from
,

|
OPTHIZ for both the fixed value search and the optimization search. .

It also includes some discussion of the improvement of accuracy that
.

has been achieved for the fixed value search and the convergence prob-

lems that have been encountered in the optimization search.;

.

..

.

i

4
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CHAPTER III

*
i

RESULTS

*,

The-results that have been generated to test and validate the OPTMIZ
,4

method are-divided into two sections. The first section deals with results-

obtained for the fixed value search. 'hese results include not only OPTMIZ

results, but also results for the-EMVT method. Both OPTMIZ and EMVT results

are compared to results _obtained with the existing MVT technique in _ KENO-IV.

The results for the fixed value search were presented at the 1979 American

Nuclear Societv Winter Meeting in San Francisco, California.8

The second section deals with results obtained for the optimization

| search. Since there is no current automated technique available for opti-

mum searching, there is no standard technique to compare with. Therefore,
_ ,

these results emphasize bow accurate and reliable OPTMIZ is in predicting
i .

optimum points by testing it on a system for which the maximum is known,

as described in the next section, and on a system for which many data

points were generated.

i

| 3.1 The Fixed Value Search

.

The 0PTMIZ fixed value search procedure sss tested on the two

systems that are illustrated in Figures 9 and 10. Figure 9 shows how

| K-effective varies with the radial lattic pitch _for a 2 x 2 x 2 array

of 93.2% Uranium metal cylinders in air. This particular problem was

i chosen .for the following t aasons: (1) critical experiments have been.
'

performed and documented for this system,' so there is'an experimental ~

[. critical lattice pitch available to compare the various results with,.

-(2) since there ~is ~no moderating or reflecting material present, the
~

33-
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. K-effective calculations' for tnis problem consume 'relatively modest
.

~ amounts of computer time, and (3) this problem illustrates how'0PTMIZ-
<

can handle systems in which the optimum values occur on the boundaries. . -

The results obtained for. this high enriched array are presented in

~ Table 1. These'results indicate that computational efficiency has

,

-been improved. The EMVT method provides a considerable reduction of
r

computer time over the MVT method. Also, OPTMIZ not only reduces

computer time but improves accuracy too. Notice that the OPTMIZ con-

verged values-of the critical ~1attice pitch for this system are

consistently closer to the value obtained from critical experiments

than are the converged values o'btain~ed from the EMVT and MVT methods.

These results indicate that the concept of least squares curve fitting

does indeed improve accuracy relative to the EMVT and MVT methods. .

All K-effective calculations for this system were performed by
,

KENO-IV. In Table 1, "rrethod failed" in the MVT column means that the

KENO-IV search (XXM00) was terminated because of a violation of a

geometry constraint. For example, for an initial guess of 24 cm, the

third guess in the search on radial lattice pitch was less than the

diameter of the cylinders. This means that the MVT search was smashing

the cylinders together, which is obviously unacceptable. In Table 1,

" CPU" is the Central Processor time needed to run each case on an

IBM 360 Model 91 computer.

.The second system that was used to test the fixed value search is-

shown in Figure 10. It is an attempt to simulate a problem that CSAS4 -

is being designed to handle. This problem is criticality safety analy-
.

sis of. fuel assemblies in a shipping cask. Figure 10 shows the
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Table 1. A Comparison of MVT, EMVT, and OPTMIZ Results for a 2 x 2 x 2
Array of 93.2% Uranium Metal Cylinders in Air.

Kd = 1.00 MV~i EMVT OPTMIZ
.

Converged CPU Converged i CPU Converged CPU
Initial Guess Value (sec) Value (sec) Value (sec)

:

20.00 cm 13.78 cn 360 13.50 cm 195 13.75 cm 200g

1

24.00 cm Method Did not 350 13.73 cm 240
Failed Converge d

in 8
Iterations

26.00 cm Method 13.77 cm 304 13.72 cm 320,

Failed

30.00 cm Metnod Did not 351 13.73 cm 320
Failed Converge '

in 8 |
Iterationsi

_

flote: Experimental critical lattice pitch = 13.74 cm.
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variation'of K-effective with the spacing.between assemblies for 'a
'1 3 x 3 array of PWR fuel assemblies surrounded by water. This prob-

lem is considerably mue expensive than the previous one because a .

light water moderator and reflector is present. Ir other words, the

Monte Carlo tracking of a neutron requires a lot of computer time

scattering in the water thereby driving up the time required to track
i

a specified number of histories. However, this system closely simu-

-lates the situation that would arise in the analysis of a spent fuel

shipping cask.

Table 2 presents OPTMIZ and MVT results for this low enriched

array of PWR assemblies. Results were obtained for searches on two

different values of K-effective. The results of the search on

K-effective = 1.00 indicate that OPTMIZ is a' big help in problems
,

that consume a large amount of computer time. A 10- to 20-minute
,

reduction in computer time was achieved by the OPTMIZ method relative

to the KENO-IV MVT method. In Table 2, " CPU" is the Cuitral Processor

time needed to run each case on a CDC-7600 computer. The results for

K-effective = 1.00 also further illustrate the improved accuracy of the

OPTHIZ method over the MVT method. Notice that the converged values

from OPTMIZ for 30,000 neutron histories'are closer to the values from

the MVT method for 100,000 neutron histories than are the values from

the MVT method for 30,000 neutron histories. These results indicate

that OPTMIZ is a considerable improvement in computational efficiency

(i.e., improved accuracy and reduced cnmputing time) over the MVT -

technique.
.

Also included in Table 2 are results obtai d for searches on

K-effective = 1.26. These resultstare presented only to show that if



--

.

. . .. . .. ,,

.

'i

Table 2. A Comparison of MYT and OPTMIZ Results for a 3 x 3 Array of PWR Fuel
Assemblies in Water.' '

Kd = 1.00
'

MVT OPTMIZ

Initial Guess Converged Value CPU Converged.Value CPU

(min) (min)
.

8.439 cm (30,000 tilstories) 62.9 8.297 cm 43.7-
10.00 cm 8.276 cm (100,000 Histories) (30,000 Histories).

8.460 cm (30,000 Histories) 55.7 8.278 cm 44.7
15.00 cm 8.338 cm (100,000 Histories) (30,000 Histories)

$

Kg = 1.26 MVT OPTMIZ

-Initial Guess Converged Value. CPU. Converged Value CPU

l.7i3 cm (30,000 Histories) 0.172 cm
10.00 cm 1.834 cm (100,000 Histories) - 1.444 cm -

(30,000 Histories)

0.725 cm (30,000 Histories) 0.109 cm
15.00 cm 1.506 cm (100,000 Histories) - l'.904 cm -

(30,000 Histories)
1

- - . .

. _ _ - . , _ _ _ , -
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L

desired, OPTMIZ can. locate two parameter values that correspond.to one
F .s
| .value of K-effective, if both parameter values exist.

5

*
.

'

3.2 The Optimization Search

! ~The optimization search precedure was tested on the two systems

whose curves of.K-effective versus pitch are shown in Figures 11 and

12. The first system shown in Figure 11 does not result from real

KENO-IV Monte Carlo K-effective calculations but is rather an attempt

to simulate KENO-IV K-effective calculations. The curve of Figure 11

is very similar to the curve of Figure 10. Indeed, the idea here is

to simulate a KENO-IV Monte Carlo calculated curve.of K-effective ver-

sus pitch for a 3 x 3 PWR fuel assembly system with a similar curve

that is much cheaper to calculate. The curve of Figure 11 is actually
;
< .

|. a Gaussian probability distribution curve with a mean value of 0.8100 cm
L t

|. and a standard deviation of 7.00 cm. This simulation has proven to be *

very efficient in the testing of the new optimization search method.

|
The big acvantage of a simulated calculation like this is that the exact

,

maximum value is known. Therefore, it is very easy to see how well

| OPTMIZ performs in- finding the 'true maximum. OPTMIZ results for this

isimulated calculation of K-effective are presented in Tables 3 and 4.
.

The results in Table 3 show how the OPTMIZ estimate of the maximum

varies with different sets of boundary constraints. Four searches were

performed with the same initial guess but with different boundary con-

straints. These results indicate that the OPTMIZ estimate of the
.

maximum improves as the constraints are tightened. Table 4 presents
'

results that show how well 0PTMIZ estimates the maximum for searches-
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Figure 11. Curve of K-effectic/e Versus Pitch for a Simulated KENO-IV
Criticality Calculation of a 3 x 3 Array of PWR Fuel
Assemblies in Water by a Gaussian Distribution.
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Figure 12. Curve of K-effettive Versus Pitch for a
Cylindrical Tank of 4% Enriched U02
Powder Mixed with Water.
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Table 3. Results for the Simulated KENO-IV K-effective Calculation of a 3 x 3 -
Array of PWR Fuel Assemblies in Water that Show how the OPTMIZ
Estimate of the Maximum Varies with the Constraints.

;

Parameter Value from
. |<

Initial Left Right- OPTMIZ that Corresponds Maximum Value i
'

Guess Constraint Constraint to Maximum K-effective of K-effective
'

|
. .

10.00 cm 0.0 cm 25.0 cm 0.211 cm 1.249- |

10.00 cm 0.0 c~.: 20.0 cm 0.663 cm 1.253

10.00 cm 0.0 cm 15.0 cm 0.797 cm ' l.254 j
1 i

i 10.00 cm 0.0 cm 10.0 cm 0.797 cm 1~.254 ),

Note: Parameter value associated with true maximum value of
k-effective = 0.810 cm.

!

4

"

-4+= .,. - _ _ _ _ _ _ _ _ _ _
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Table 4. Results for the Simulated KENO-IV K-effective Calculation
of a 3 x 3 Array.of PWR Fuel Assemblies in Water that
Show OPTMIZ Estimates of the Maximum for Searches with-
Different Initial Guesses.

! i
Parameter Value from

}OPTMIZthatCorrespondsInitial Maximum Value Number of'
Guess to Maximum K-effective of K-effective Iterations

_

0.0 cm 0.797 cm 1.254 6 jt

5.0 cm 0.797 cm 1.254- 6

7.5 cm 0.690 cm 1.254 6

15.0 cm 0.797 cm 1.254 6
,

Note: Left constraint = 0.0 cm.
Right constraint - 15.0 cm.
Parameter value associated with true maximum value of

k-effective = 0.810 cm.

i

e g e. . a e 4
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that have the same boundary constraints LJt different initial guesses.
.

These results indicate that OPTMIZ is very reliable in finding the

maximum no matter where the search originates.,

The second system used to evaluate the optimization search pro-

cedure is shown in Figure 12. This curve illustrates the variation

of K-effective with the volume fraction of water in a stainless steel

cylindrical tank of 4% enriched U0 powder mixed with water. This
2

system is presented to show how OPTMlZ handles one-dimensional CSAS3

problems. When the fuel concentration is being altered, the param-

eter versus K-effective curves can be very difficult to fit to a cubic

and convergence can be a problem. The difficulty is that many times

the search will not converge at the true maximum, but rather a little

bit to the right or lef t of the maximum. Convergence in an optimiza-.

tion search is much more difficult to achieve than convergence in a
w

fixed value search because the maximum value of K-effective is not a

known quantity. If the data calculated for the system is difficult

to fit to a least squares cubic (such as the curve of Figure 12), then

locating the maximum value can be very difficult. The concept of

weighting the data points according to how far away they are from the

estimated maximum, and also the concept of " optimum location of data

points" as discussed earlier hcve been introduced to help obtain a

better fit in the region around the maximum.

Table 5 presents results obtained from OPTMIZ for searches that

yield the volume fraction of water that corresponds to the maximum=

value of K-effective in a cylindrical stainless steel tank of 4%
.

enriched UO powder mixed with water. The calculation of K-effective
2
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! Table 5. 'Results from GPTMIZ for the XSDRNPM K-effective Calcula-
tion of a Cylindrical Tank of 4% Enriched 002 Powder

i Mixed with Water.
_

*

1120 Voltme Content from
Initial 0PTMlZ that' Corresponds- Maximum Value Number of
Guess to Maximum K-effective of K-effective Iterations

0.01% 0.800% 1.288 10

'

O.20% 0.780% 1.291 11
'

0.50% 0.745% 1.288 8 -

0.60% 0.790% 1.290 11
.

| flote: Left constraint = 0.01%.

; Right constraint = 0.99%.
|

| Maximum value of k-effective obtained from generation
L of numerous data points = 1.291,

il 0 volume content that corresponds to maximum value2

of k-effective = 0.780%.

l Tank inner diameter = 100 cm.
.

Tank height = 100 cm.

,

se

=

J

, _ . , - -
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1

for this system was performed by the SCALE module CSASl since CSAS3
o.

'is not yet operational. CSAsl is a one-dimensional criticality safety
* analysis module that utilizes the discrete ordinates transport code,

|

XSDRNPM,3' to calculate K-effective. Since the calculation is one-
| dimensional, a correction must be made for the leakage in the transverse

direction of the cylinder so that K-effective will not be over-estimated.,

i

The results-presented in Table 5 indicate that OPTMIZ is very accurate

and reliable even for curves of parameter values versus K-effective

that do not fit well to a cubic. The accuracy and reliability of the

| results'in Table 5 are based on the fact that many data points were

generated prior to running OPTMIZ searches on this system. So the
l

maximum value has been established by visual observation of the curve

of Figure 12 and by the maximum value obtained by the numerous points
-

'

that were generated in the region around the maximum (all data points,

calculated are not shown in Figure 12).
:

The results presented in this section do indicate that the optimi-

zation search procedure that has been developed for use in OPTMIZ

provides an accurate and dependable method for locating the most

reactive states of systems.

The next chapter presents conclusions about the OPTMIZ method for
!

both the fixed value search and the optimization search. It also.

presents some recommendations for improvements and further work on the

OPTMIZ methodology.
*g

*
1

-

9

I
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CHAPTER IV.
|- e

r

CONCLUSIONS AND RECOMMENDATIONS
.

,

There are two major conclusions that can be stated regarding

the OPTMIZ methodology. First, improved computational efficiency is

quite evident for the fixed-value search. Having a method (the

XXM00-MVT method) av',ilable to compare with makes it very easy to

show how OPTMIZ has improved fixed value-criticality searches.

Based on the results presented in this report, OPTMIZ is consis-

'tently more accurate than the KENO-IV MVT method. It also reduces

computer time substantially.
_

Second, the same method used for fixed value. searches can be
i

modified and used to perform optimization searches. Since no auto- -

mated optimization searches are available to compare with, results
-

.

| for this new technique.can only show how close OPTMIZ comes to pre-
|

| dicting the true maximum of a pre-determined curve. The simulation
,

| of the KENO-IV K-effective calculation of a 3 x 3 array of PWR fuel

assemblies in water that is shown in Figure 11 has_ played a very

important part in the development of the optimization search. The

advantage of this approach is that the true maximum is a known value,

which has helped many times in deciding what kind of intelligence

should be incorporated into the search. The cylindrical tank of 4%

enriched U0, powder mixed with water has also been very important in

the development of the optimization search. Yne concept of " optimum -

location of-data points" was conceived as a result of problems that
.

were encountered with this system. Results indicate that the OPTMIZ

48
,
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optimization search has performed very well. even on data that is
' Jifficult to least ' squares fit to a. cubic.

Although.0PTMIZ has been tested only for fixed value and maximum,

searches, it should also work for a minimum search, which means that

it should just as easily. locate a minimum. It can also handle systems

that have no local' optimum' points. In general, OPTMIZ will provide

the nuclear criticality safety comunity with a much improved automated

method for performing fixed value searches. More importantly, it will
~

provide an automated capability that heretofore was not available:

namely, performing searches for optimum points (i.e., maximums and

minimums).

Tha fixed value search is a fairly straightforward procedure and

has been extensively tested. Thus, the bulk _of the work that remains
,

is that of improving the optimization searching capability. Optimiza-
*

tion searches are inherently more difficult to perform because it is

very difficult to decide when the optimum point has been reached.

Thus, further research should strive to improve decisions about con-

vergence. The optimization search must also be tested more extensively.

Even though the results presented have shown that the optimization

search r;ethod works, testing on more realistic systems must be performed ~

in order to complete validation of the method.

It should also bc pointed out that advanced versions of the search-

ing techniques in CSAS3 and CSAS4 will allow for searches on more than

one parameter simultaneously. A preliminary suggestion for this simul-.

i taneous search is to use least squares to search on one parameter at a
.

time while holding all other parameters constant. Successhee searches
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on all parameters would| hopefully locate the overall optimum of the
~

,

system-(i.e., the determination of the' values of all parameters that

- are being searched on that would yield the most reactive state of *

thesystem). There are also more sophisticated techniques that have

been developed for' locating optimums,'such as gradient techniquesil

and acceleration along a ridge.12 These methods ~should also be con-

sidered for solving the simultaneous parameter search problem.

|
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