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IMPROVED CRITICALITY SEARCH TECHNIQUES
FOR LOW- AND HIGH-ENRICHED SYSTEMS
M. J. Lorek
ABSTRACT

The purpose of this work is to develop a parameter search capability
for use in criticality safety analysis of nuclear fuel shipping containers.
This new search capability is being developed for use in the SCALE computer
code system. S LE is being deve oped for licensing evaluation of various
transportation packag2 designs. 1t can perform criticality safety analysis,
shielding analysis, and heat transfer analysis on systems described in
multi-dimensional geometry.

The work described in this report is specifically concerned with the
criticality safety analysis capability of SCALE, and particularly, with
two sequences that will provide SCALE users with the option to perform
criticality searches on systems described in either one-dimensional or
three-dimensional geomctries.

This search package includes a method for an optimization search
(maxima or minima, and a method for a fixed value search. The optimiza-
tion search is a search for the most reactive state of a system. It
searches for the value of a parameter, such as fuel assembly lattice
pitch or fuel concentration, that corresponds to the maxim:= K-effective
of the system. Similarly, the fixed value search is a search for the
value of a parameter that corresponds to a fixed value of K-etficctive.
Both searches rely on leact squares curve fitting to obtain the informa-
tion needed to make an ~stimate. Specifically, the data points are least
squares fitted to a cubic poiynomial which is solved analytically for
parameter values that correspond to maximum or fixed values of K-effective.

This new searcn capability has been implemented into a FORTRAN
computer routine named OPTMIZ which is vzad to perfcrm the parameter
modifications in SCALE's two criticality search options. Results
obtained from OPTMIZ show that fixed value criticality searching is
greatly improved with regard to accuracy and computing cost relative
to the existing search capability available in KENO-IV. Also, results
show that the new optimum search cagability available in OPTMIZ is an
accurate and reliable search for locating parameter values that corre-
spond to maximum values of K-effective.

xi



CHAPTER 1
INTRODUCTION AND PROJELT OVERVIEW

A considerable effort by the Nuclear Regulatory Commission has
been under way in recent years to develop a standardized computer
analysis methodology to be used for licensing evaluation purposes.
The need has arisen for a uniformly accepted method of nalysis so
that licensees could know in advance how their designs would be
evaluated. The result of this effort is a new modular system of
computer programs called SCALE' which is being developed in the
Computer Sciences Division at the Oak Ridge National Laboratory
(SCALE is an acronym for Standardized Computer Analysis for Licens-
ing Evaluation). SCALE will benefit the Mi. and the industry by
simplifying the licensing process. Applicants will have the option
of using SCALE to analyze their designs instead of using their own
programs and data bases which they must adequately verify.

The SCALE system is a collection of computer programs that
perform three basic types o° analysis: (1) criticality safety
analysis, (2) shielding analysis, and (3) heat transfer analysis.
For example, Criticality Safety Analytical Sequence 1 (CSAS1)
performs data processing and criticality safety analysis on systems
which can be adequately described in one-dimensional geometry.
Shielding Analytical Sequence 3 (SAS3) performs data processing and
radiation shielding analysis on systems for which the user specifies
the radiation source distribution and which must be modeled in three-

dimensional geometry. Heat Transfer Analytical Sequence 2 (HTAS2)



performs Monte Carlo radiative heat transfer analysis on systems
which must be described in three-dimensional geometry.

SCALE consists of a driver module, control modules, functional
modules and a data base. It relies heavily on basic neutron trans-
port analysis, data processing, and heat transfer analysis methods
that have been developed at the Oak Ridge National Laboratory over
the past several years. The neutron transport and heat transfer
analyses are performed by well-established analysis codes that have
been in use for several years. The data processing is similar to
that employed in the AMPX system.® SCALE input has been designed
to be as simple as possible to help avoid costly input errors.

The components of the SCALE system are shown in Figure 1.

This report describes a new search package that is to be used in
analytical sequences CSAS3 and CSAS4. These two sequences will allow
SCALE users to search for most reactive (maximum K-effective) states
of systems that ¢ - be described in cne-dimensional and three-dimensional
geometries, respectively. For example, CSAS4 will have the capability
of determining the assembly pitch of an array of fuel assemblies that
corresponds to the maximum value of K-effective for the array. CSAS3
and CSAS4 involve iterative processes and will also include the capa-
bility to search for fixed states (fixed K-effective) of systems. The
end result of this work is a set of FORTRAN subroutines collectively
known as OPTMIZ that will be incorporated into CSAS3 and CSAS4. The
function of OPTMIZ is to take all previous information and use it to
modify the system parameter appropriately, i.e., make an intelligent

next guess based on all previous information. It is capable
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of seexking out parameter values that correspond to maximum values,
minimum values, or fixed values of K-effective. .

OPTMIZ is a collection of five FORTRAN subroutines: OPTMIZ,
MAXMIN, FIXEDK, CUBFIT, and DETERM. MAXMIN is devoted entirely to
the optimization search. Similarly, FIXEDK is the fixed vaiue search.
Both MAXMIN and FIXEDK rely on least squares fitting to a cubic poly-
nomial, so both routines cal) CUBFIT (fits input data to a cubic).
DETERM is a subroutine that calculates determinants which are needed
in the least squares fit, and OPTMIZ is the calling subroutine that
sets passing parameters and does preliminary calculations.

During the course of this work, many different methods were
considered including interpolation and extranclation techniques,
linear programming, and different optimization techniques. A primiry
consideration in t'is work is that during a search, relatively few
data points are a ailable, especially at the beginning of the calcu-
lation. Most sophisticated techniques, like the ones mentioned above,
are useless for this problem because there are so few data poirts
available. Indeed, one of the primary concerns of the SCALE project
is to minimize computing cost, which means to generate as few data
points as possible. Thus, the primary objective of this thesis project
is to develop a method for parameter modification in criticality safety
studies that is accurate and reliable and uses a minimum amount of com-
puter time.

Initially, attention was focused on the fixed value search, since
there is more information availabie for this type of search. The

object of the first part of the project was to improve the existing




fixed v search capability that is available as ar option in the
KENO-IV® Monte Carlo . riticality program. This search option is
coritained in a subrout'ne known as XXMOD. The parameter modification
technique in XXMOD "~ based on an approximation of the mean value
theorem of calculus,” which is essentially a *~ -ation of Taylor's
series after one term. First, this parameter modification technigue
was ceplaced with or» based on an apprcximation of the extended mean
value theorem of :alculus,® which is a truncation of Taylor's series
after two terms. Next, the technigue of least squares fitting of
data points to . .urve was added to imnrove accuracy. The least
squares technique has turned out to be the heart of the OPTMIZ method.

One of the initial objectives of this project was to develop a
technique that could use all previous information to make a next
guess. This information includes standard deviations of data points
generated in a Monte Carlo ca ~ulation since CSAS4 includes a KENO-V
Monte Carlo criticality calcul on. Least squares fitting is very
appropriate here because each data point can be weighted according to
its standard deviation. The existing mean value theorem technique in
KENO-IV uses only two data points as previous information — the present
and next inmediate points It does not consider the uncertainties in
the data that are available. Thus, as shown later in this report, a
weighted least squares fitting procedure is quite useful for this
problem.

Le .t squares is also beneficial for the optimization search.
Once data points are fitted using least squares, information about
¢itical points (maxima and i inima) can be obtained simply by taking

Jerivatives of the fitted curve. Examinations of different curves of



parameter vi. s versus K-effective for systems that SCALE would
probably encounter show that considerable flexibility and relatively
good accuracy can be obtained by least squares f .irg to a cubic
polynomial. Therefore, OPTMIZ is set up to generate four initial
data points by a front-end process, and from four points on, to per-
form a least .nnares fit to a cubic polynomial. The roots of the
cubic polynomial (or .ts derivative - a quadratic) are determined
analytically to obtain the desired paramete:~ values.

The preceding material is a brief overview of the work. The
remainder of this report contains detailed information and expla-
nations about this new search capability. Chapter II describes the
actual development of the method. It eyplains in detail the pro-
cedure that has been incorporated into OPTMIZ and describes the
mathematical tools that are needed. Chapter III presents the results
obtained with this new technique and also results obtained with the
KENO-IV mean value theorem technique for comparison. Chapter IV pre-
sents conclusions and recommendations for improvements to this methed

and some suggestions for future work.



CHAPTER 11

0PTMIZ METHUDOLOGY

This chapter describes the techniques that are incorporated
into the OPTMIZ subroutine package. OPTMIZ is essentially divided
‘ato two parts: (1) a fixed value search, and (2) an optimization
search. Therefore, this chapter is divided into two major sections.
The first section describes the development of the €ixed value
search capability and introduces the concept of least squares fitting
as a search tuol. The second section describes the developmeni of
the optimization search capability and also outiines the roie of
least squares fitting in seeking out optimum points. OPTMIZ is
capable of performing both types of searches while only requiring
the user to input an initial guess, a set of boundary constraints
which will be described later in this report, and a tolerance for

convergence.

2.1 The Fixed Value Search

OPTMIZ development began as an improvement to the fixed value
search capability in the KENO-IV criticality code. Even though the
primary objective of developing OPTMiZ is to perform searches for
most reaccive states of systems (i.e., maximum searches), develop-
ment started with the fixed value search because it is a much easier
search to perform. There is more information available to work with
initially. Specifically, this means that there is a known fixed
value of K-effective available which can be used to decide which

Yirection the search should progress (i.e., whether the parameter



should be increased or decreased). This help; tn reduce the numher

of data points that must be generated to reich the desired parameter
value relative to the number that must be generated for an optimization
search. Knowing the desired value of K-effective also helps to simplify

the process that deteimines when convergence has been reached.

2.1.1 XXMOD and the Mean Value Theorem (MVT) Method

KENO-IV has a built-in fixed value search capability. It is
cuntained in a subroutine called XXMOD. The equation that does the
actual modification of the parameter in XXMOD is an approximation of
the mean value theorem of calculus. The modifying equation is:

AR

Knew = Rord * 2 (Kg - Kea1) (1)
where:

Rnew = new parameter guess
Ro]d B R1 = parameter value that is associated with the latest

data point that has been generated in the iteration
process.

Kd = desired value of K-effective

= Ki = value of K-effective that is associated with the

cal
latest data point that has been generated in the iteration
process.

AR = Ri - Ri-]

AK = K, — K

i i-1



Notice that this equation uses only two data points to make a next
guess, and it does not consider the standard deviations that KENO-IV

supplies. Equation (1) can be derived from the mean value theorem:"
f(x) - “(a) = f'(a)(x-a) (2)

The first step in the dev:lopment of OPTMIZ was an improvement
to Equation (1).

2.1.2 The Extended Mean Value Theorem (EMVT) Method

Since the mean value theorem i3 a truncation of Taylor's series,
the improvement of Equation (1) is a solutior of the mean value
theorem plus one more tarm of Taylor's series, which is known as the

extended mean value theoren:®
F(x) = f(a) = £'(a)(xa) + f* (a) (X520 (3)

The improved modifying equation, known as the EMVI equation, can
be derived from the extended mean value theorem by making some assump-
tions and solving the equation for x (which is the new parameter

value). The modifying equation is:

1/2

2 AR |
Rnew P Rold ~ AK (14 IKea1 Kdl) (4)

where the parameters are defined in Equation (1) of the previous
section. This simple improvement tas considerably reduced the amount
of time needed to run a problem by reducing the number of iterations
required to reach convergence on the desired fixed value of K-effective.

However, it has done nothing about improving accuracy.
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OPTMIZ must be able to accommodate two types cof criticaliiy
calculations: one-dimensional discrete ordinates and three-dimensional
Monte Carlo. All of the work that has been done to test this new
fixed value search capability has been done with KENO-IV. Since
Monte Carlo is a statistical calculation, the exact value of
K-effective can only be determined by running an infinite number
of histories. So the answer obtained in a calculation using a
finite number of histories is '.hought of as a rarge of numbers in
which the true answer has some chance of lying in that range.
Accuracy then is defined in this work as how close the Monte Carlo
estimate is to the true answer. No improvement in accuracy is
obtained by the EMVT method because it does not attempt to get
closer to the true answer, but merely gets an approximate answer
in less computing time. The addition of least squares fitting to
OPTMIZ has improved accuracy as well as reduced computing time
because the least squares technique uses all previous data points

to make a next guess

2.1.3 The Linear Least Squares Fit

lL.east squares fitting to a polynomial is a powerful mathematical
tool for representing experimental data. It happens to be very
powerful also in the generation and location of data points for com-
puterized criticality searches. A least squares fit to a polynomial
involves fitting data points to a polynomial of some degree by mini-
mizing the sum of the squares of the residuals. This quantity is

known as x° and is defined as:
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n 2 72 n
Y 1 2 k
A ’Z:[BT] T g = Bamhy gy e T ity (5)
i=1 - i=]
where:
y = dependent variable (= K-effective in this work)
x = independent variable (= parameter value in this work)
o = standard deviation associated with y
n = number of data points
k = degree of polynomial

For the particular systems that are described later in this report,
the most advantageous polynomial to fit is a cubic. The reasons are:
(1) a cubic can fit data with a local maximum (i.e., data with a peak
between the boundaries), (2) a cubic can fit data with no local maxi-
mums, (3) a cubic can allow for as  metry (skewness) of data, and

(4) a cubic can also fit data with a local minimum. So, for this

particular application, Equation (5) becomes:

) n 0y 2 : ] ? ‘
X * - e h;?‘(yi~-a “bxy — exy? - dxy?) (6)
1=

i=]

The object of a least squares fit is to minimize v“ with respect
to each of the coefficients a, b, ¢, and d. Therefore, %ﬁ; ’ ;%€<.
Egi ,}gg are determined and set equal to zero. The resulting
equations are solved in matrix form for a, b, ¢, and d, which are the
coefficients of the cubic equation that corresponds to the least sum
of the squares of the residuals. x° is a measure of the goodness of

fit .0 the data.
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After the coefficients of the cubic polynomial have been
determined, the next step is to obtzin its roots for some desired

fixed value of K-effective.

2.1.4 The Analytical Solution of a Cubic Equation

There is another advantage to fitting the data to a third degree
polynomial. For cubic equations there exists a fairly simple and
easy way to analytically solve for its roots. However, the fact that
the soluticn is analytical rather than numerical is not the only
advantage. There is information internal tec the analytical solution
of a cubic that can be used to determine execution paths. For
example, there are two tvpes of cubic equaticus that can result from
a least squares fit. They are: (1) a cubic with no local extrema,
and (2) a cubic with two local extrema. These two types of curves
are shown in Figures 2 and 3. It will be shown later in the section
on optimization searching that information about maximum and minimum
points can be cbtained by taking the first derivative of the cubic
and solving the resulting quadratic for its roots at zero. It is
evident from the curves of Figures 2 and 3 that if data points are
fit to a cubic with no local extrema, then there is no point in taking
the derivative of thc cubic to determine maximum or minimum points
because the solution will yield the point of inflection, which is of
no use in this problem. Thus, information that is internal to the
solution of a cubic can be used to deternine which type of cuic has
been fit and consequently can eliminate calculations that are

unnecessary.
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There are two types of solutions to a cubic equation: (1) a
solution that yields one real root and two conjugate imaginary roots,
and (2) a solution that yield: three real roots. Consider the follow-

ing cubic equation:
x' +Px? + Qx +R=0 (7)

The solution for one real root is algebraic.® Equation (7) reduces
to:
y>+ Ay + B =0 (8)

by substituting x = y — P/3 into Equation (7). Then, the real root

of Equation (7) is:
x =2, +z, - P/3 (9)

where:

"

"/_e/z v y578 ¥ A2 (10)

. "/-8/2 o '/BZ,'a + AY/27 (1)

The solution for three real roots is trigonometric:’

3 2 ‘/<—A/3 cos® — P/3
2 ‘/ - A/3 cos(o + 2n/3) - P/3 (12)
g ® 2 v ~A/3 cos(6 + 4n/3) — P/3

X,s X, , and X, are the roots, and € is an angle to be

Z,

~N
"

>
"

x>
N
"

>
n

where:

determined,



The analytical solution of the least squares cubic completes the

calculations needed for one pass in OPTMIZ.
The n2xt section is a detailed summary of the fixed value
search procedure which includes a discussion of the previously

mentioned problem of accuracy that the least squares method has

helped to alleviate.

2.1.5 The Fixed Value Search Procedure

The procedure for the fixed value search is divided into two
parts: (1) a front-end process to generate enough data points for
a least squares fit, and (2) the least squares fit itself. The
front-end process for the fixed value search is the extended mean
value theorem procedure that has been previously discussed. Once
enough data points have been generated, the least squares method
takes over and is used until the search is te'minated. The follow-

ing is a step-by-step procedure for the fixed value search.

THE OPTMIZ FIXED VALUE SEARCH PROCEDURE

1. Use the extended mean value theorem routine to cal-
culate the first four data points.

2. Perform a least squares fit to a cubic un the data
points.

3. Solve the least squares cubic for its root (or roots)
it the cesired value of K-effective.

4. Use the root (or roots) as the next guess.

5. Go to Step 2; repeat until convergence is reached.
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One of the requirements of the OPTMIZ fixed value search is
that the user must specify a tolerance for convergence. In the
case of a KENO-IV Monte Carlo calculation, this tolerance could
be expressed in standard deviations. However, these standard
deviations are associated with K-effective and not with the param-
eter that is being searched for. Therefore, when the calculated
K-effective falls within the specified tolerance about the desired
value of K-effective, the search is terminated and the parameter
that is associated with the final calculated fixed value is assumed
to be the right answer. It is at this point that the previously
discussed problem of accuracy becomes important.

Consider the coordinate axes illustrated in Figure 4. Since
there is a standard deviation associated with K-effective, it is
quite valid to assume that there exists a standard deviation associ-
ated with the parameter that is being searched for. However, this
parameter standard deviatior is not known and would be extremely
difficult to calculate. It does, however, exist and can be used
here to illustrate how improved accuracy can be obtained by using
least squares instead of the MVT or EMVT methods.

When an MVT or an EMVT calculation is being performed, the
search essentially progresses from the initial guess to the desired
value and converges when one of the guesses falis ¢ithin the user-
specified tolerance region. Keep in mind that the only requirement
for convergence is that the guess must fall within the tolerance
region, meaning that the converged answer could lie very close to

the true answer, or it could lie near the outer boundaries of the
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region. So essentially, these two methods do not necessarily seek
out the true answer, but instead they seek cut the tolerance region.

On the other hand the least squares method not only finds the
tolerance region, but gets closer to the true answer by using all
previous information to make a next guess. The reason is that unlike
the MVT and EMVT methods, which are essentially a progression of
“jumps" from one data point to the next, the least squares tech-
nique is fitting the points to a curve on every iteration. The
equation obtained from the least squares fit is then solved for a rcot.
So every iteration provides more information, and when convergence is
finally reached, the answer obtained using least squares generally
lies closer to the true answer than the answers obtained by the MVT
or EMVT methods, as will be shown in Chapter 111,

The remainder of this chapter uescribes the development of the
optimization search. Some of the techniques employed in the fixed
value search are incorporated into the optimization search, such as

the least squares technique.

2.2 The Optimization Search

[t is probably very evident that the name OPTMIZ comes directly
from the word optimization. The reason for this is that the version
of OPTMIZ that will initially be incorporated into modules CSAS3 and
CSAS4 will only have optimum searching capabilities. The fixed value
search will eventually be available but is conside-«o an extra feature.
The CSAS3 and CSAS4 modules are defined as searches for most reactive
states of systems (i.e.. optimum states), therefore the package is

called OPTMIZ even though it does have the capacity for a fixed value
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search. The optimization search relies heavily on least squares
fitting. Once an equation has been determined, differentiation of
the least squares cubic supplies all of the information necessary

to locate optimum values.

2.2.1 The Front-End Process

The generation of the first four data points for the optimi-
zation search is considerably different than the method used for
the fixed value search. The extended mean value thecorem method
cannot be utilized for an optimum search because a specified desired
value of K-effective is needed to perform the EMVT calculation.
Since no fixed value is available, a different generation scheme
has been developed. This new scheme is relatively simple, yet it
is of ccnsiderable importance to the least squares fit that follows.
It requires the user to input boundary constraints. These con-
straints essentially define a parameter region in which a maximum
can be located.

Given a starting guess and a set of boundary constraints, the
idea behind this new generation scheme is quite simple: generate
four equally spaced data points within the parameter constraints
that will give the least squares method the best chance of approxi-
mately locating the maximum after the first curve fit. The genera-
tion of equally spaced points across the parameter region is very
important assuming there is no prior knowledge about the system
available. Equally spaced points provide the least squares method
with the best chance of locating the maximum regardless of where in

the parameter region it lies. It is not pessible to equally space
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the points exactly because the spacing depends or the initi:1 guess,
but an attempt is made to come as close to equal spacing as possible.
The first three points are, respectively, the initial guess,
the left parameter constraint, and the right parameter constraint.
The fourth point varies according to where in the region the initial
guess lies. It is usually generated equidistant between the initial
guess and the parameter constraint that is furthest away from the
initial guess. In some cases the initial guess may lie so clz:2 to
one of the constraints that it is not advantageous to use both points.
When this happens, the initial guess is assumed to be the constraint.
The other constraint becomes the second point and the last two
points are generated equidistant from the constraints and from each
other. Similar to the fixed value search, after the first four points
are generated, the least squares technique takes over and is utilized
until the search 1s terminated.

Btk ing the Optimum by Differentiation cf the Least Squares

Lubic

Once again, least squares fitting the data points io a cubic
polynomial is the method that is employed. This time, however, the
analytical solution of a cubic is not needed. The object of the
optimization search is to seek out parameter values that correspond
to maximum (or minimum) values of K-effective. These maximum (or
minimum) values of K-effective are not known quantities, so it is not
clear for what value of K-effective the cubic must be solved. There-
fore, some other method of solution must be utilized for this tive of

sea;ch.
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Recall from basic calculus that the first and second derivat.ves
of a polynomial provide information about maximum and minimum points.
The first derivative of a cubic is a quadratic which can be solved for

its roots at zero:

flx) = ax’ + bx? + cx + d (13)
f'(x) = 3ax” + 2bx + ¢ = 0 (14)
L« =2b + V ab? — 12ac (15)
ba
N p 2 E Im
o ¢ SDAYS e, |, . ~2b -V 12ac (16)
6a 6a

The two roots x, and x, are the maximum and minimum points of
Equation (13) as 1llustrated in Figure 5. The second derivative
of Equation (13) tells which root is tho maximum and which one is

the minimum. The <econd derivative of a :ubic is:

f(x) = ax® ¢+ bx* + cx + d ()
fi(x) = 3ax’ + 2bx + ¢ (18)
f'{x) = 6ax + 2b (19)

Substituting x and x, into Equation (19) determines whick root
is the maximum and wiich one is the minimum. The determination is

made by the following procedure:

>0 root is a minimum point
If £"(x) = 0 vroot is a point of inflection

<0 root is a maximum point
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Therefore, all of the information necessary to locate and determine
the optimum points is contained in the least squares cubic and its
derivatives. However, there is one more item to consider.

What if the curve that is fit turns out to be a cubic of the
type shown in Figure 2 (page 13)? Then the method involving derivatives
that was just discussed is totally useless. All that it will do is
locate the point »f inflection, as shown in Figure 6. In order to
be useful then, OPTMIZ must be able to recognize what type of cubic
is being fit, and determine the proper path of execution. This is
the advantage that was previously discussed. The analytical solution
of a cubic provides information about what type of cubic is being
fit. Consider the quantity under the square root in Equations (10)
and (11). The type of cubic that has been fit is determined by the

following procedure:

2
If %‘ + %7 >0 There will be one real root and two

conjugate imaginary roots;

1f 5 + 35 = 0 There will be three real roots of which
at least two are equal;
if 3; + ;; < 0 There will be three real and unequal roots.
Of course, the value of this quantity depends on what value
of K-effective the cubic equation is set equal to before it is
solved for its roots at that value of K-effective. For example,

consider the curve of Figure 7. When a cubic with three real roots

is set equal to K, , the analytical solution will yield three real
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roots. However, if the same cubic is set equal to K,, the analytical
solution will yield only one real root because that is all that is
available. Therefore, the precedure for determining whether the

Teast squares method has fit the data to a cubic of the type shown

in Figure 2 (page 13) or a cubic of the type shown in Figure 3 (page 14)
is to solve the equation for each data point (i.e., set the cubic equa-
tion equal to the value of K-effective that corresponds to each data
point and solve the equation for its roots at that value of K-effective)
and determine if the quantity %; + %; is negative for any of the data
points. If this quantity is negative for at least one data point,

then the cubic has to be of the type shown in Figure 3 because this
situation could not arise for the type shown in Figure 2. If the
quantity %; + %; is pesitive for every data point, thern the cubic

has to be of the type shown in Figure 2. If %; + %; is zeru for any
data point, then the cubic must again be of the type shown in

Figure 3. However, it is highiy unlikely that this latter situation
would occur on a computer because of round-off errors associated with
floating point arithmetic. Tne situation of %; + %;= 0 is not

really important though, because if the ritted curve looks like

Figure 3, then there will be at least one data point that causes

b‘.’ a!
4 * 77 to be negative.

Since an execution path already exists for a cubic of the type
shown in Figure 3, then one must be developed for a cubic of the
type shown in Figure 2. It turns out to be a relatively simple

technique. If CSAS3 and CSAS4 encounter a system with no local

extrema (i.e., a system with no maximum or minimum between the
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boundaries), then most likely it will be similar to the solid portion
of the curve of Figure &. The dashed portion of the curve represents
the portion of the least squares cubic that is not a part of the
actual system. In other words, tne entire curve of Figure 8 (solid
and dashed portions) is the cubic that the least squares process has
fit to the data, while the actual data points are confined to the
portion of the curve that is between the constraints (the solid
portion of the curve). For this system the maximum and minimum points
1ie on the boundaries. Therefore, all OPTMIZ is required to do is to
make sure that the system really is similar to Figure 8, and then con-
clude that the optimum lies on one of the boundaries.

The next section is a summary of the optimization searching
method. It also introduces two new conceptc that are essent al to

obtaining accurate results from the optimization search.

2.2.3 The Optimization Search Procedure

The procedure for the optimization search is similar to the
procedure for the fixed value search in that it consists of a front-
end process, a least squares fit, and an analytical solution for the
roots of an equation. However, the front-end process and the analyt)-
cal solution are considerably different because different information
is needed. The least squares fit is essentially the same except for
an additional weighting factor. Recall from Equation (6) that the
least squares fit for the fixed value search is weignted by 5%; (the
inverse of the square of the standard deviation associated wilh data

point i). This weighted least squares process allows for a better

fit by weighting each data point according to the uncertainty
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associated with it. However, when a least squares fit is performed
for the optimization search, the data points are weighted not only
according to their standard deviaticns, but also according to how

far away they are from the estimated optimum. The weighting factor

for the optimization search is:

where:
g = standard deviation associated with data point i

Di = parameter distance between data point i and the most

recent estimate of the optimum

This new weighting factor has been introduced to help alleviate some
convergence problems that will be discussed in the next chapter.
Another technique has also been introduced to help with the con-
vergence problems. It is an attempt to locate data points such
that the best least squares fit is obtained, as described below.

The object of this "optimum location of data points” is to gen-
erate data points on both sides of the optimum. Experience has
shown that after the first four data points have been generated,
the estimates obtained thereafter from the ieast squares fit con-
sistently lie on one side or the other of the optimum. The problem
that is encountered here is similar to the problem associated with
interpolation versus extrapolation of points on a curve. Recall
that interpolating a curve is a much more accurate method of obtain-
ing values on that curve than extrapolating it because interpolation

implies that there are data points on both sides of the point that
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is sought, Extrapolation is usually a somewhat dangerous technique
because it involves trying to determine a point beyond the realm of
data points that are available. The situation is similar for the
OPTMIZ least squares process of determining optimum peints in that

a better fit (and subsequently a better estimate of the optimum) can
be obtained if there are data points on both sides of the optimum,
and if those points are raasonably close to the cptimum. Therefure,
this new concept of “"optimum location of data points" has been
introduced to obtain an even better answer than what could be obtained
by using the new weighting scheme described eariier by itself. The
following is a step-by-step procedure for the optimization search.
It includes procedures for handling both types of cubics (i.e.,
Figures 2 and 3 on pages 13 and 14, respectively).

THE OPTMIZ OPTIMIZAT{ON SEARCH PROCEDURE

1. Generate four equally spaced points within the parameter
boundary constraints.

2. Perform a least squares it to a cubic polynomial.

3. Determine the type of cubic that has been fit. If it is
of the type shown in Figure 2, go to Step 8. If it is of

the type shown in Figure 3, go to Step 4.

e m BB W O W e B S e B W B e W W e W S e @ e e W m e @ W w -

4. Take the first derivative of the least squares cubic.

5. Solve the resulting quadratic for its roots at zero.

6. Take the second derivative of the least squares cubic to
determine which root is the maximum (or minimum). Use

root as next guess.



7. Go to Step 2; Repeat until convergence is reached.
8. Cenerate a few more data points to be sure that a ’
cubic of the type shown in Figure 2 (page 13) is the
actual situation that is occurring.
9. If the actual situation is a cubir of the type shown
in Figure 2, then conclude that the optimum lies on
one of the boundaries. If the fit changes to the

type shown in F_gure 3 (page 14), then go to Step 4

and continue,

The next chapter presents results that have been obtained from
OPTMIZ for both the fixed value search and the optimization search.
It also includes some discussion of the improvement of accuracy that

has been achieved for the fixed value search and tne convergence prob-

lems that have been encountered in the optimization search.




CHAPTER I11

RESULTS

The results that have been generated to test and validate the OPTMIZ
method are divided into two sections. The first section deals with results
obtained for the fixed value search. ‘hese results include not only OPTMIZ
results, but also results for the EMVT meithod. Both OPTMIZ and EMVT results
are compared to results obtained with the existing MVT technique in KENO-IV.
The results for the fixed value search were presented at the 1979 American
Nuclear Societv Winter Meetin~ in San Francisco, California.®

The second section deals with results obtaired for the optimization
search. Since there is no current automated technique available for opti-
mum searching, there is no standard technique to compare with. Therefore,
these results emphasize how accurate and reliable OPTMIZ is in predicting
optimum points by testing it on a system for which the maximum is known,
as described in the next section, and on a system for which many data

points were aenrerated.

3.1 The Fixea Value Search
The DPTMIZ fixed value search prccedure 315 tested on the two

systems that are illustrated in Figures 9 and 10. Figure 9 shows how
K-effective varies with the radial lattic. pitch for a 2x 2 x 2 array
of 93.2% Uranium metal cylinders in air. This particular problem was
chosen for the following i *asons: (1) critical experiments have been
performed and documented for this system,” so there is an experimental
critical lattice pitch available to compare the various results with,

(2) since there is no moderating or reflecting material present, the

33
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K-effective calculations for tnis problem consume relatively modest

amounts of computer time, and (3) this problem illustrates how OPTMIZ

can handle systems in which the optimum values occur on the boundaries. .

The results obtained for this high enriched array are presented in

Table 1. These results indicate that computational efficiency has

been improved. The EMVT method provides a considerable reduction of

computer time over the MVT method. Also, OPTMIZ not only reduces

computer time but improves accuracy too. Notice that the OPTMIZ con-

verged values of the critical lattice pitch for this system are

consistently closer to the value obtained from critical experiments

than are the converged values obtained from the EMVT and MVT methods.

These results indicate that the concept of least squares curve fitting

does indeed improve accuracy relative to the EMVT and MVT methods. .
All K-effective calculations for this system were performed by

KEND-IV. Ir Table 1, "methoc failed" in the MVT column means that the

YENO-IV cearch (XXMOD) was terminated because of a viclation of a

geomatry constraint. For example, for an initial guess of 24 cm, the

third guess in _he search on radial lattice pitch was less than the

diameter of the cylinders. This means that the MVT search was smashing

the cylinders together, which is obviously uracceptable. In Table 1,

"CPU" 1s the Central Processor time needed to run each case on an

IBM 360 Model 91 computer.
The second system that was used to test the fixed value search is

shown in Figure 10. It is an attempt to simulate a problem that CSAS4 g

is being designed to handle. This problem is criticality safety analy-

sis of fuel assemblies in a shipping cask. Figure 10 shows the




Table 1. A Comparison of MVT, EMVT, and OPTMIZ Results for a 2 x 2 x &
Array of 93.2% Uranium Metal Cylinders in Air.

Kg = 1.00 MV ! EMVT 0OPTMIZ
Converged ; CPU Converged CPU Converged cPu
Initial Guess Value !(sec) Jalue (sec) Value (sec)
20.00 cm | 13.78 cm 360 ! 13.50 cm 195 13.75 cm 200
! J
24.00 cm Method ' Did not 350 13.73 cm 240
Failed converge
in 8
| Iterations
iy 1
26.00 cm Method | 1377 cm | 308 | 13.72cem | 320
Failed !
30.00 cm Metnod Did not | 351 13.73 cm 320
Failed Converge
in 8
Iterations

e — . e e et o

Note: Experimental critical lattice pitch = 13.74 cm

LE




variation of K-effective with the spacing between assemblies for a

3 x 3 array of PWR fuel assemblies surrounded by water. This prob-
lem is considerably mcce expensive than the previous one because a
light water moderator and reflector is present. In other words, the
Monte Carlo tracking of a neutron requires a lot of computer time
scattering in the water thereby driving up the time required to track
a specified number of histories. However, this system closely simu-
lates the situation that would arise in the analysis of a spent fuel
shipping cask.

Table 2 presents OPTMIZ and MVT results for this low enriched
array of PWR assemblies. Results were obtained for searches on two
different values of K-effective. The results of the search on
K-effective = 1.00 indicate that OPTMIZ is a big help in problems
that consume a large amount of computer time. A 10- tu 2G-minute
reduction in computer time was achieved by the OFTMIZ method relative
to the KEMO-IV MVT method. In Table 2, "CPU" is the Central Processor
time needed Lo rur each case on a COC-7600 computer. Th2 results for
K-effective = 1.00 21so further illustrate the improved accuracy of the
OPTMIZ method over the MVT method. Notice that the converged values
from OPTMIZ for 30,000 neutron histories are closer to the values from
the MVT method for 100,000 neutron histories than are the values from
the MVT method for 30,000 nautron histories. These results indicate
that OPTMIZ is a considerable improvement in computational efficiency
(i.e., improved accuracy and reduced computing time) over the MVT
technique.

Also included in Table 2 are results obtai 4 for searches on

K-effective = 1.26. These resuits are precented only to show that if




Table 2. A Comparison of MVT and OPTMIZ Results for a 3 x 3 Array of PWR Fuel
Assemblies in Water.
Kg = 1.00 | My T OPTMIZ
Initial Guess Converged Vaiue CPU Converged Value CPU
(min) (min)
8.439 cm (30,0CU Histories) |62.9 8.297 cm 43.7
10.00 cm 8.276 cm (100,000 Histories) (30,000 Histories)
8.460 cm (30,000 Histories) {55.7 8.278 cm 43.7
15.00 cm 8.338 cm (100,000 Histories) (30,000 Histories)
Kg = 1.26 MY OPTMIZ
Initial Guess ¥ I CPU Converged Value CPU

onve-ged Value

1.7:3 cm (20,000 Histories) 0.172 cm
10.00 cm 1.834 cm (100,000 Histories) | - 1.444 cm -
(30,000 Histories)
0.725 cm (30,000 Histories) 0.109 cm
15.00 cm 1.506 cm {1} - 1.904 cm -

00,000 Histories)

(30,000 Histories)

]

ol N
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desired, OPTMIZ can locate two parameter values that correspond to one

value of K-effective, if both parameter values exist,

3.2 The Optimization Search

The optimization search prccedure was tested on the two systems
whose curves of K-effective versus pitch are shown in Figures 11 and
12. The first system shown in Figure 11 does not result from real
KENO-IV Monte Carlo K-effective calculations but is rather an attempt
to simulate KENO-1V K-effective calculations. The curve of Figure 11
is very similar to the curve of Figure 10. Indeed, the idea here is
to simulate a KENO-IV Monte Carlo calculated curve of K-effective ver-
sus pitch for a 3 = 3 PWR fuel assembly system with a similar curve
that is much cheaper to calculate. The curve of Figure 11 is actually
a Gaussian prebability distribution curve with a mean value of 0.8100 cm
and & standard deviation of ?.00 cm. This simulation has proven to be d
very efficient in the testing of the new optimizatios search method.
The big acvantage of a simulated calculation like this is that the exact
maximum value is known. Therefore, it is very easy to see how wel!
0PTMIZ performs in finding the true maximum. OPTMIZ results for this
simulated calculation of K-effective are presented in Tables 3 and 4.
The results in Table 3 show how the OPTMIZ estimate of the maximum
varies with different sets of boundary constraints. Four searches were
performed with the same initial guess but with different boundary con-
straints. These recults indicate that the OPTMIZ estimate of the

maximum improves as the constraints are tightened. Table 4 presents

results that show how well OPTMIZ estimates the maximum for searches




SIMULATED KENO-T¥ K.,

ORNL-DWG 80-830%

p—— T T i T l T T T
'.2 e A —
E
. MEAN VALUE x=0.8100 cm
10 STANDARD DEVIATION op=7.00 cm —
&
e
0.0 i po—
-
F Y
0.6 - —
A
a
04 | -
Y
& POINTS CALCULATED BY A GAUSSIAN -
0.2 DISTRIBUTION - o
® CONVERGED VALUES FROM UPTMIZ ® a
. el -
. 1 | L | P T
0 2 4 6 8 12 12 14 s 8

SPACING BETWEEN ASSEMBLIES (cm)

Figure 11. Curve of K-effectise Versus Pitch for a Simulated KENO-1V
Criticality Calculation of a 3 x 3 Array uf PWR Fuel
Assemblies in Water by a Gaussian Uistribution.

iy



ORNL -DWG 80-8306

14 SRIED Somn Mute i R Mo SN TRANE )
A
1.2 - "
A
A A —
10 A A
&
09 A —
o8} ;
Kett

0.7 —

(Y
06 - ~
0.8 p- ey
04 A
03 - A POINTS CALCULATED BY XSDRNPM "

® CONVERGED VALUES FROM OPTMIZ

0.2 - ard
0.1 BRI ARSIV, SRS TR T

0 0.2 0.4 06 08 10

H,0 VOLUME FRACTION

Figure 12. Curve of K-effective Versus Pitch for a

Cylindrical Tank of 4% Enriched UO,
Powder Mixed with Water.




Table 3.

Results for the Simulated KENO-IV K-effective Calculation of a 3 x 3
Array of PWR Fuel Assemblies in Water that Show how the OPTMIZ

Estimate of the Maximum Varies with the Constraints.

§
A

1 Parameter Value from

R —

k-effective

0.810 cm.

Initial |  Left i Right ~  OPTMIZ that Corresponds | Maximum Value
~ Guess Constraint | Constraint | to Maximum K-effective of K-effective
10.00cn | 0.0cm | 25.0cm |  0.211 cm 1.249
10.00 cm 0.0 cu 70.0 cm ; 0.663 cm 1.253
10.00 cm | 0.0 cm 15.0cm | 0.797 cm 1.254
10.00 cm 0.0 cm 10.0 cm ! 0.797 cm ‘ 1.254
Noté: Parameter value associated with true maximum value of

bt alier- L e o . | a4

ey



Table 4. Results for the Simulated KENO-IV K-effective Calculation
of a 3 x 3 Array of PWR Fuel Assembiies in Water that
Show OPTMIZ Estimates of the Maximum for Searches with
Different Initial Guesses.
. Parameter Value from

Initial | OPTMIZ that Corresponds | Maximum Value Number of

Guess ' to Maximum K-effective of K-effective | Iterations

0.0 cm | 0.797 cm 1.254 6

5.0 cm 0.797 cm 1.254 €

7.5 cm 0.590 cm 1.254 6

15.0 cm 0.797 cm 1.254 6

Note: Left constraint = 0.0 cm.

Right constraint - 15.0 cm.

Parameter value associated with true maximum value of

k-ef“ective = 0.810 cm.



45

that have the same boundary constraints __t different initial guesses.
These results indicate that OPTMIZ is very reiiable in finding the
maximum no matter where the search originates.

The second system used to evaluate the optimization search pro-
cedure is shown in Figure 12. This curve illustrates the variaticn
of K-effective with the volume fraction of water in a stainless steel
cylindrical tank of 4% enriched U0, powder mixed with water. This
system is presented to show how OPTMIZ handles one-dimensional CSAS3
problems. When the fuel concentration is being altered, the param-
eter versus K-effective curves can be very difficult to fit to a cubic
and convergence can be a problem. The difficulty is that many times
the search wil' not converge at the true maximum, but rather a little
bit to the right or ieft of che maximum. Convergence in an optimiza-
tion search is much more difficult to achieve than convergence in a
fixed value search because the maximum value of K-effective is not a
known quantity. If the data calculated for the system is difficult
to fit to a least squares cubic (such as the curve of Figure 12), then
locating the maximum value can be very difficult. The concept of
weighting the data points according tn how far away they are from the
estimated maximum, and also the concept of "optimum location of data
points" as discussed earlier have been introduced to help obtain a
better fit in the region around the maximum.

Table 5 presents results obtained from OPTMIZ for searches that
yield the volume fraction of water that corresponds to the maximum
value of K-effective in a cylindrical stainless <teel tank of 4%

enriched U0, powder mixed with water. The calculation of K-effective
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Table 5. Results from GPTMIZ for the XSDRNPM K-effective Calcula-
tion of a Cylindrical Tank of 4% Enriched U0; Powder
Mixed with Water.

SR e .
H:0 Velune Content from
Initial OPTMIZ that Corresponds | Maximum Value Number of
Guess to Maximum K-effective of K-effective | Iteracions
i e ). el o . vl sttt B et i lalls B *
0.01% 0.800% 1.288 W 10
0.20% 0.780% 1.291 "
0.50% 0.745% 1.288 8
0.60% l 0.790% 1.290 n |
| A - =
Note: Left constraint = C.01%.

Ri

ght constraint = 0.99%.

Maximum value of k-effective obtained from generation
of numerous data points = 1,291,

;0 volume content that corresponds to maximum value

of k-effective = 0.780%.

Tank inner diameter = 100 cm.

Tank height = 100 cm.
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for this system was performed by the SCALE module CSAS1 since CSAS3

is not yet operatiunal. CSASI is a one-dimensional criticality safety
analysis module that utilizes the ¢‘screte ordinates transport code,
XSDRNPM,'® to calculate K-effective. Since the calculation is one-
dimensional, a correction must be made for the leakage in the transverse
direction of the cylinder so that K-effective will not be over-estimated.
The results presented in Table 5 indicate that OPTMIZ is very accurate
and reliable even for curves of parameter values versus K-effective

that do not fit well to a cubic. The accuracy and reliability of the
results in Table 5 are based on the fact that many data points were
generated prior to running OPTMIZ searches on this system. So the
maximum value has been established by visual observation of the curve

of Figure 12 and by the maximum value obtained by the numerous points
that were generated in the region around the maximum (all data points
calculated are not shown in Figure 12).

The results presented in this sectyon do indicate that the optimi-
zation search procedure that has been developed for use in OPTMIZ
provides an accurate and dependable method for locating the most
reactive states of systems.

The next chapter presents conclusions about the OPTMIZ method for
both the fixed value search and the optimization search. It also
presents some recommendations for improvements and further work on the

OPTMIZ methodology. é
‘4



CHAPTER IV
CONCLUSIONS AND RECOMMENDAT IONS

There are two major conclusions that can be stated regarding
the OPTMIZ methodology. First, improved computational efficiency is
quite evident for the fixed value search. Having a method (the
XXMOD-MVT method) av.ilable to compare with makes it very easy to
show how OPTMIZ has improved fixed value criticality searches.

Based on the resuits presented in this report, OPTMIZ is consis-
tently more accurate than the KENO-IV MVT method. [t also reduces
computer time substantially.

Second, the same method used for fixed value searches can be
modified and used to perform optimization searches. Since no auto-
mated optimization searches are available to compare with, resulis
for this new technique can only show how close OPTMIZ comes to pre-
dicting the true maximum of a pre-determined curve. The simulation
of the KENO-IV K-effective calculation of a 33 array of PWR fuel
assemblies in water that is shown in Figure 11 has played a very
important part in the development of the optimization search. The
advantage of this approach is tha' the true maximum is a known value,
which has helped many times in deciding what kind of intelligence
should be incorporated into the search. The cylindrical tank of 4%
enriched UD, powder mixed with water has also been very important in
the development of the optimization search. ne concept of "optimum
location of data points" was conceived as a result of problems that

were encountered with this system. Results indicate that the OPTMIZ
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optimization search has performed very well even on data that is
Jifficult to least squares fit to a cubic.

Aithough OPTMIZ has been tested only for fixed vaiue and maximum
searches, it should also work for a minimum search, which means that
it should just as easily locate a minimum. It can also handle systems
that have no local optimum points. In general, OPTMIZ will provide
the nuclear criticality safety community with a much improved automated
method for performing fixed value searches. More importanily, it will
provide an automated capability that herctofore was not available:
namely, performing searches for optimum points (i.e., maximums and
minimums ).

The fixed value search is a fairly straightforward procedure and
has been extensively tested. Thus, the bulk of the work that remains
is that of improving the optimization searching capability. Optimiza-
tion searches are inherently more difficult to perform because it is
very difficult to decide when the optimum point has been reached.

Thus, further research should strive to improve decisions about con-
vergence. The optimization search must also be tested more extensively.
Even though the results presented have showr that the optimization
search method works, testing on more realistic systems must be performed
in order tc complete validation of the method.

It should also bc pointed out that advanced versions of the search-
ing techniques in CSAS3 and CSAS4 will allow for searches on more than
one parameter simultaneously. A preliminary suggestion for this simul-
taneous search is to use least squares to search on one parameter at a

time while holding all other parameters constant. Success searches
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on all parameters would hopefully locate the overall optimum of the
system ({.e., the determination of the values of all parameiers that
are being searched on that wuuld yield the most reactive state of
the system). There are also more sophisticated techniques that have
been developed for locating optimums, such as gradient’' techniques
and acceleration along a ridge.'? These methods should also be con-

sidered for solving the simultaneous parameter search problem.
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