Advanced Structural Materials for Non-Light Water Reactors

Steven J. Zinkle^{1,2}

¹Dept. Nuclear Engineering and Dept. Materials Science & Engineering, University of Tennessee, Knoxville, TN, USA

²Oak Ridge National Laboratory, Oak Ridge, TN, USA

Workshop on Advanced Non-Light Water Reactors: Materials and Component Integrity

Nuclear Regulatory Commission

December 9-11, 2019

Overview

- High sink strength has been a long-standing scientific tenet for superior radiation resistance in structural alloys
 - Cold-worked and Ti-modified SS alloys (e.g., D9) developed by LMFBR program in the 1970s
- Improved structural materials are needed for nuclear power to fully achieve its promise
 - High burnup, accident tolerant LWRs
 - Fusion and Gen IV reactors
- Nanostructured alloys enable simultaneous achievement of radiation resistance and high performance (strength)
 - Radiation resistance ("sink strength"): S~4 π RN
 - Dispersed barrier hardening: $\Delta \sigma_y \sim \alpha \mu b (2 N R)^{1/2}$
 - ⇒For a given precipitate volume f= $4\pi R^3/3$, best radiation resistance and mechanical strength simultaneously occurs for high N, small R $\Delta \sigma_y \sim f^{1/2}/R$

High density of uniformly distributed nanoscale precipitates preferred

Thermal creep and void swelling in sodium-cooled fast reactor cladding is problematic for conventional steels

Current "either/or" dilemma if structural alloy selection is limited to conventional steels

3 THE UNIVERSITY of TENNESSEE

S.J. Zinkle, K.A. Terrani, L.L. Snead, Current Opin. Sol. State & Mater. Sci. <u>20</u> (2016) 401

Effect of initial sink strength on the volumetric void swelling of irradiated FeCrNi austenitic alloys

KNOXVILLE

Dramatic reduction in void swelling occurs when average spacing between voids is >10x average spacing between defect sinks

$N_v^{-1/3} > 10 S_{tot}^{-1/2}$

For void swelling resistance, sink strengths $>10^{15}/m^2$ are generally sufficient for fission reactors; fusion reactor irradiation may require even higher sink strengths (>10^{16}/m^2?) due to transmutant He production

S.J. Zinkle and L.L. Snead, Ann Rev. Mat. Res., <u>44</u> (2014) 241

ODS steels provide improved void swelling resistance compared to standard ferritic/martensitic steels

5

Effect of Initial Sink Strength on the Radiation Hardening of Ferritic/martensitic Steels Current Next-generation steels (TMT, ODS) steels 700

S.J. Zinkle et al., Nucl. Fusion 57 (2017) 092005

KNOXVILLE

Dramatic reduction in radiation hardening occurs when average spacing between defect cluster nuclei (dislocation loops, etc.) is much greater than average spacing between defect sinks

 $N_{loop}^{-1/3} >> S_{tot}^{-1/2}$

or equivalently,

S_{tot} >> S_{rad defects}

Creep rupture behavior for TMT vs. conventional 9Cr steels

KNOXVILLE

Creep rupture behavior for ODS vs. conventional 9Cr steels

Conclusions

- Nanostructured (high sink strength) alloys are promising options for the structural materials in next-generation fission reactors
 - Enables simultaneous superior radiation resistance and superior mechanical property performance
- ASME code qualification is needed to enable their deployment
 - Currently in "boutique" materials stage

Timeline of structural materials used in light water reactors

10 THE UNIVERSITY of TENNESSEE UT KNOXVILLE

S.J. Zinkle, K.A. Terrani, L.L. Snead, Current Opin. Sol. State & Mater. Sci., <u>20</u> (2016) 401

Evolution in light duty personal vehicles

Greatly improved safety, along with improved performance (horsepower, fuel economy)

New Propulsion Materials and Architectures Have Driven Marked Improvements in Jet Engine Fuel Efficiency

Plus: 40x improvement in durability: 10x improvement in in-flight shutdown rate

Near-term Importance of Advanced Steam

I	Nomenclature	Conditions	Net plant efficiency (%)	Net plant heat rate (HHV)
00	Subcritical	2,400 psi	35	9,751 Btu/kWh
		1,050F/1,050F		
Supercritical		>3,600 psi	38	8,981 Btu/kWh
		1,050F/1,075F		
sions, %	Fuel; ash; NO _x ; So 30 ≪ − − − − − − −	O _x ; CO ₂ ; Hg	>42	8,126 Btu/kWh
ion & Emiss	20 Modern SuperC	Babcock Power	>45	7,757 Btu/kWh
Reduction in Fuel Consumpt	10 US Baseline		Source: Electric Power Research Institute	
	0 Subcrit Current SubC	Supercrit Ultra-Supercrit Evolution of efficiency	essential to reduce cost of CCS	
	30 35	40 45 50		
Net Plant Efficiency (HHV), %]	Pro CAK
TH	EUNIVERSITY of TEN	NNESSEE UT		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13 THE UNIVERSITY of I ENNESSEE KNOXVILLE

Advanced Steam Conditions Push Metallurgical Limits of Alloys in Use Today

Illustration: EPRI Data: Alstom

14 THE UNIVERSITY of TENNESSEE

Tubing/piping materials for advanced ultrasupercritical (A-USC) steam (760°C, 350 bar)

- Objective: qualify/develop advanced alloys to enable reliable, high efficiency operation of A-USC plants
- Key Deliverables:
 - Generate alloy properties database for U.S. boiler manufacturers to enable component design and fabrication
 - Qualification of fabrication/welding techniques for use with specific alloys
 - ASME Boiler and Pressure Vessel Code case for Inconel 740
 - Evaluate environmental compatibility

Demonstration header fabricated from advanced alloys qualified by the U.S. A-USC Consortium

Qualification of new, commercial ODS alloys for use in advanced FE processes

 Objective: Determine capabilities of new commercially-produced ODS alloys for application at temperatures up to 1200C in advanced fossil combustion and conversion processes

- Key Deliverables
 - Data on the full range of properties required to qualify the alloy for fossil applications
 - Evaluate joining technologies
 - Feasibility of employing a less costly route for producing ODS alloy powders

25 mm diam x 4 m long ODS FeCrAl tubes used in British Gas/COST 501 1100°C air heater demonstrator

Historical development of improved high-temperature steels has exhibited slow and steady progress

17

National Laboratory