

UNITED STATES

WASHINGTON, D.C. 20555-0001

May 4, 1994

Docket No. 50-382

Mr. Ross P. Barkhurst Vice President Operations Entergy Operations, Inc. Post Office Box B Killona, Louisiana 70066

Dear Mr. Barkhurst:

SUBJECT: GENERIC LETTER (GL) 92-01, REVISION 1, "REACTOR VESSEL STRUCTURAL INTEGRITY," ENTERGY OPERATIONS, INC., WATERFORD STEAM ELECTRIC STATION, UNIT 3 (TAC NO. M83524)

By letters dated July 6, 1992, and November 8, 1993, Entergy Operations, Inc., provided its response to GL 92-01, Revision 1. The NRC staff has completed its review of your responses. Based on its review, the staff has determined that Entergy Operations, Inc., has provided the information requested in GL 92-01.

The GL is part of the staff's program to evaluate reactor vessel integrity for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). The information provided in response to GL 92-01, including previously docketed information, is being used to confirm that licensees satisfy the requirements and commitments necessary to ensure reactor vessel integrity for their facilities.

A substantial amount of information was provided in response to GL 92-01, Revision 1. These data have been entered into a computerized data base designated Reactor Vessel Integrity Database (RVID). The RVID contains the following tables: A pressurized thermal shock (PTS) table for PWRs, a pressure-temperature limit table for BWRs, and an upper-shelf energy (USE) table for PWRs and BWRs. Enclosure 1 provides the PTS table, Enclosure 2 provides the USE table for your facility, and Enclosure 3 provides a key for the nomenclature used in the tables. The tables include the data necessary to perform USE and RT_{pts} evaluations. These data were taken from your responses to GL 92-01 and previously docketed information. References to the specific source of the data are provided in the tables.

We request that you verify that the information you have provided for your facility has been accurately entered in the summary data file. No response is necessary unless an inconsistency is identified. If no comments are received within 30 days of the date of this letter, the staff will consider your actions related to GL 92-01, Revision 1, to be complete and will use the information in the tables for future NRC assessments of your reactor pressure vessel.

100044 9405120073 940504 PDR ADDCK 05000382

Mr. Ross P. Barkhurst

The information requested by this letter is within the scope of the overall burden estimated in GL 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person-hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

> Sincerely, ORIGINAL SIGNED BY:

David L. Wigginton, Senior Project Manager Project Directorate IV-1 Division of Reactor Projects - III/IV Office of Nuclear Reactor Regulation

Enclosures:

- 1. Pressurized Thermal Shock
- Table
- 2. Upper-Shelf Energy Table
- 3. Nomenclature Key

cc w/enclosures: See next page

DISTRIBUTION

- Docket File
- D. Wigginton P. Noonan
- P. Noona
- J. Roe
- S. Sheng

NRC & Local PDRs E. Adensam ACRS (10) (P-315) A. B. Beach, RIV PD4-1 Reading W. Beckner OGC (15B18) D. McDonald

OFC	LA: PD4-1	PM PD4-1	D:PD4-1,00
NAME	PNoonan	Dwigginton:pk	WBeckner
DATE	51494	514194	5 14/94
COPY	YESINO	YES NO	YES/NO

OFFICIAL RECORD COPY Document Name: WAT83524.1tr

Mr. Ross P. Barkhurst

1.4

The information requested by this letter is within the scope of the overall burden estimated in GL 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person-hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

- 2 -

Sincerely, ORIGINAL SIGNED BY:

David L. Wigginton, Senior Project Manager Project Directorate IV-1 Division of Reactor Projects - III/IV Office of Nuclear Reactor Regulation

Enclosures:

- 1. Pressurized Thermal Shock
- Table
- 2. Upper-Shelf Energy Table
- 3. Nomenclature Key

cc w/enclosures: See next page

DISTRIBUTION

- Docket File D. Wigginton P. Noonan J. Roe
- S. Sheng

NRC & Local PDRs E. Adensam ACRS (10) (P-315) A. B. Beach, RIV

PD4-1 Reading W. Beckner OGC (15B18) D. McDonald

OFC	LA: PD4-1,)	PM: PQ4-1	D:PD4-1100
NAME	PNoonan	Dwigginton:pk	WBeckner
DATE	21-194	514194	5 14/94
COPY	YES/NO/	(YES)NO	YES/NO

OFFICIAL RECORD COPY Document Name: WAT83524.1tr

Mr. Ross P. Barkhurst

The information requested by this letter is within the scope of the overall burden estimated in GL 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person-hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

Sincerely,

isma

David L. Wigginton, Senior Project Manager Project Directorate IV-1 Division of Reactor Projects - III/IV Office of Nuclear Reactor Regulation

Enclosures:

- Pressurized Thermal Shock Table
- 2. Upper-Shelf Energy Table
- 3. Nomenclature Key

cc w/enclosures: See next page Mr. Ross P. Barkhurst Entergy Operations, Inc.

Waterford 3

CC:

Mr. William H. Spell, Administrator Radiation Protection Division Office of Air Quality and Nuclear Energy Post Office Box 82135 Baton Rouge, Louisiana 70884-2135

Mr. Jerrold G. Dewease
Vice President, Operations Support
Entergy Operations, Inc.
P. O. Box 31995
Jackson, Mississippi 39286

Mr. R. F. Burski, Director Nuclear Safety Entergy Operations, Inc. P. O. Box B Killona, Louisiana 70066

Mr. Robert B. McGehee Wise, Carter, Child & Caraway P.O. Box 651 Jackson, Mississippi 39205

Mr. D. F. Packer General Manager Plant Operations Entergy Operations, Inc. P. O. Box B Killona, Louisiana 70066

Mr. L. W. Laughlin, Licensing Manager Entergy Operations, Inc. P. O. Box B Killona, Louisiana 70066

Winston & Strawn Attn: N. S. Reynolds 1400 L Street, N.W. Washington, DC 20005-3502 Regional Administrator, Region IV U.S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 1000 Arlington, Texas 76011

Resident Inspector/Waterford NPS Post Office Box 822 Killona, Louisiana 70066

Parish President Council St. Charles Parish P. O. Box 302 Hahnville, Louisiana 70057

Mr. Harry W. Keiser, Executive Vice-President and Chief Operating Officer
Entergy Operations, Inc.
P. O. Box 31995
Jackson, Mississippi 39286-1995

Chairman Louisiana Public Service Commission One American Place, Suite 1630 Baton Rouge, Louisiana 70825-1697

Enclosure 1

Plant Name	Beltline Ident.	Heat No. Ident.	ID Neut. Fluence at EOL/EFPY	I R T _{non}	Method of Determin, IRT _{ogt}	Chemistry Factor	Method of Determin. CF	%CU	2N i
Waterford 3	Int. Shell M-1003-1	56488-1	3.68E19	-30°F	MTEB 5-2	20	Table	0.02	0.71
EOL: 12/18/ 2024	Int. Shell M-1003-2	56512-1	3.68E19	-50°F	MTEB 5-2	20	Taple	0.02	0.67 *
	Int. Shell M-1003-3	56484-1	3.68E19	-42°F	MTEB 5-2	20	Table	0.02	0.70
	Lower Shell M-1004-1	57326-1	3.68E19	-15°F	MTEB 5-2	20	Table	0.03	0.62
	Lower Shell M-1004-2	57286-1	3.68E19	22°F	MTEB 5-2	20	Table	0.03	0.58
	Lower Shell M-1004-3	57359-1	3.68E19	-10°F	MTEB 5-2	20	Table	0.03	0.62
	Lower Shell Axial Welds 101-142A/C	83653	3.68E19	- 80° F	Plant Specific	35	Table	0.03	0.20
	Int. Shell Axial Welds 101-124A/C	BOLA, HODA	3.68819	-60°F	Plant Specific	27	Table	0.02	0.96
	Int./Lower Shell Circ. Weld 101-171	88114	3.68E19	- 70 ° F	Plant Specific	44.4	Table	0.05	0.16

Summary File for Pressurized Thermal Shock

Reference

14

 $|\mathbf{x}| = 1$

Chemical composition and IRT_{ede} data are from July 6, 1992, letter from R. F. Burski (EC) to USNRC Document Control Desk, subject: Waterford 3 SES, Generic Letter 92-01, Revision 1, Response

Fluence data is from from BAW-2177 (November 1992).

Plant Name	Beltline Ident.	Heat No.	Material Type	1/4T USE at EOL	1/4T Neutron Fluence at EOL	Unirrad. USE	Method of Determin. Unirrad. USE
Waterford 3	Int. Shell M-1003-1	56488-1	A 5338-1	72	2.193E19	94	65%
EOL: 12/18/ 2024	Int. Shell M-1003-2	56512-1	A 5338-1	75	2.193E19	97	65%
	Int. Shell M-1003-3	56484-1	A 5338-1	69	2.193E19	90	65%
	Lower Shell M-1004-1	57326-1	A 5338-1	88	2.193E19	106	65%
	lower Shell M-1004-2	57286-1	A 5338-1	72	2.193E19	94	65%
	Lower Sheil M-1004-3	\$7359-1	A 5338-1	73	2.193E19	94	65%
	Lower Shell Axial Welds 101-142A/C	83653	Linde 0091, SAW	99	2.193E19	129	Direct
	Int. Shell Axial Welds 101-124A/C	BOLA, HODA	E8018, SMAW	82	2.193E19	106	Direct
	Int./Lower Shell Circ. Weld 101-171	88114	Linde 0091, SAW	128	2.193E19	166	Direct

Summary File for Upper Shelf Energy

References

*

× 4

Weld UUSEs are from November 8, 1993 letter to MRC (Response to GL 92-01 RAI).

Plate material type and UUSEs are from Table A1 of BAW-2177 (November, 1992).

Chemical composition and fluence data are from July 6, 1992, letter from R. F. Burski (ED) to USNRC Document Control Desk, subject: Waterford 3 SES, Generic Letter 92-01, Revision 1, Response

PRESSURIZED THERMAL SHOCK TABLES AND USE TABLES FOR ALL PWR PLANTS

NOMENCLATURE

٠

Pressurized Thermal Shock Table

Column Column Column Column Column	2:3:	Beltline material location identification. Beltline material heat number; for some welds that a single- wire or tandem-wire process has been reported, (S) indicates single wire was used in the SAW process, (T) indicates tandem wire was used in the SAW process. End-of-life (EOL) neutron fluence at vessel inner wall; cited directly from inner diameter (ID) value or calculated by using Regulatory Guide (RG) 1.99, Revision 2, neutron fluence attenuation methodology from the quarter thickness (T/4) value reported in the latest submittal (GL 92-O1, PTS, or P/T limits submittals).
		<u>Plant-Specific</u> This indicates that the IRT was determined from tests on material removed from the same heat of the beltline material.
		MTEB 5-2 This indicates that the unirradiated reference temperature was determined from following MTEB 5-2 guidelines for cases where the IRT was not determined using American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, NB-2331, methodology.
		<u>Generic</u> This indicates that the unirradiated reference temperature was determined from the mean value of tests on material of similar types.
Column	7:	Chemistry factor for irradiated reference temperature
Column	8:	evaluation. Method of determining chemistry factor.
		Table This indicates that the chemistry factor was determined from the chemistry factor tables in RG 1.99, Revision 2.
	8	<u>Calculated</u> This indicates that the chemistry factor was determined from surveillance data via procedures described in RG 1.99, Revision 2.

110 1

Column 9: Copper content; cited directly from licensee value except when more than one value was reported. (Staff used the average value in the latter case.)

No Data

This indicates that no copper data has been reported and the default value in RG 1.99, Revision 2, will be used by the staff.

Column 10: Nickel content; cited directly from licensee value except when more than one value was reported. (Staff used the average value in the latter case.)

No Data

This indicates that no nickel data has been reported and the default value in RG 1.99, Revision 2, will be used by the staff.

Upper Shelf Energy Table

Column Column	2:	Plant name and date of expiration of license. Beltline material location identification.
Column	3:	wire was used in the SAW process. (T) indicates tandem wire was used in the SAW process.
Column		Material type; plate types include A 533B-1, A 302B, A 302B Mod., and forging A 508-2; weld types include SAW welds using Linde 80, 0091, 124, 1092, ARCOS-B5 flux, Rotterdam welds using Graw Lo, SMIT 89, LW 320, and SAF 89 flux, and SMAW welds using no flux.
Column	5:	EOL upper-shelf energy (USE) at $T/4$; calculated by using the EOL fluence and either the cooper value or the surveillance data. (Both methods are described in RG 1.99, Revision 2.)
		EMA This indicates that the USE issue may be covered by the approved equivalent margins analysis in a topical report.
Column €		EOL neutron fluence at T/4 from vessel inner wall; cited directly from T/4 value or calculated by using RG 1.99, Revision 2, neutron fluence attenuation methodology from the ID value reported in the latest submittal (GL 92-01, PTS, or P/T limits submittals).

Column 7: Unirradiated USE.

EMA

* 1 0 PA . . *

This indicates that the USE issue may be covered by the approved equivalent margins analysis in a topical report.

Column 8: Method of determining unirradiated USE.

Direct

For plates, this indicates that the unirradiated USE was from a transverse specimen. For welds, this indicates that the unirradiated USE was from test date.

65%

This indicates that the unirradiated USE was 65% of the USE from a longitudinal specimen.

Generic

This indicates that the unirradiated USE was reported by the licensee from other plants with similar materials to the beltline material.

NRC generic

This indicates that the unirradiated USE was derived by the staff from other plants with similar materials to the beltline material.

10, 30, 40, or 50 °F

This indicates that the unirradiated USE was derived from Charpy test conducted at 10, 30, 40, or 50 °F.

Surv. Weld

This indicates that the unirradiated USE was from the surveillance weld having the same weld wire heat number.

Equiv. to Surv. Weld

This indicates that the unirradiated USE was from the surveillance weld having different weld wire heat number.

Sister Plant

This indicates that the unirradiated USE was derived by using the reported value from other plants with the same weld wire heat number.

Blank

Indicates that there is insufficient data to determine the unirradiated USE.