

Northeast Utilities Service Company P.O. Box 270 Hartford, CT 06141-0270 (203) 665-5000

April 26, 1994

Docket Nos. 50-245 50-336 50-423 B14828

Re: 10CFR50.4(b)(1)

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Millstone Nuclear Power Station, Unit Nos. 1, 2, and 3
Annual Radiological Environmental Operating Report

In accordance with the requirements of the Millstone Nuclear Power Station Radiological Effluent Monitoring Manual, an implementing document of the Millstone Unit Nos. 1, 2, and 3 Technical Specifications, two (2) copies of the Annual Radiological Environmental Operating Report are herewith submitted. Copies of this report are being distributed in accordance with 10CFR50.4(b)(1).

Very truly yours,

NORTHEAST NUCLEAR ENERGY COMPANY

J. F. Opeka

Executive Vice President

cc: T. T. Martin, Region I Administrator

J. W. Andersen, NRC Acting Project Manager, Millstone Unit

NO. I

G. S. Vissing, NRC Project Manager, Millstone Unit No. 2 V. L. Rooney, NRC Project Manager, Millstone Unit No. 3

D. H. Jaffe, NRC Project Manager, Millstone Station

P. D. Swetland, Senior Resident Inspector, Millstone Unit Nos. 1, 2, and 3

020000

TE25

Milistone Nuclear Power Station

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

JANUARY 1, 1993 - DECEMBER 31, 1993

NORTHEAST NUCLEAR ENERGY COMPANY HARTFORD, CONNECTICUT

Milistone Muclean Power Station

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

JANUARY 1, 1993 - DECEMBER 31, 1993

NORTHEAST NUCLEAR ENERGY COMPANY HARTFORD, CONNECTICUT

Northeast Utilities Service Compary P.O. Box 270 Hartford, CT 06141-0270 (203) 665-5000

April 26, 1994

Docket Nos. 50-245 50-336 50-423 B14828

Re: 13CFR50.4(b)(1)

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Millstone Nuclear Power Station, Unit Nos. 1, 2, and 3
Annual Radiological Environmental Operating Report

In accordance with the requirements of the Millstone Nuclear Power Station Radiological Effluent Monitoring Manual, an implementing document of the Millstone Unit Nos. 1, 2, and 3 Technical Specifications, two (2) copies of the Annual Radiological Environmental Operating Report are herewith submitted. Copies of this report are being distributed in accordance with 10CFR50.4(b)(1).

Very truly yours,

NORTHEAST NUCLEAR ENERGY COMPANY

J. F. Opeka

Executive Vice President

cc: T. T. Martin, Region I Administrator

J. W. Andersen, NRC Acting Project Manager, Millstone Unit

G. S. Vissing, NRC Project Manager, Millstone Unit No. 2

V. L. Rooney, NRC Project Manager, Millstone Unit No. 3 D. H. Jaffe, NRC Project Manager, Millstone Station

P. D. Swetland, Senior Resident Inspector, Millstone Unit Nos. 1, 2, and 3

MILLSTONE NUCLEAR POWER STATION

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

PERIOD JANUARY 1, 1993 - DECEMBER 31, 1993

MILLSTONE UNIT 1, DC KET NO. 50-245 MILLSTONE UNIT 2, DO KET NO. 50-336 MILLSTONE UNIT 3, DOCKET NO. 50-423

PREPARED FOR THE

NORTHEAST NUCLEAR ENERGY COMPANY
HARTFORD, CONNECTICUT

BY THE

NORTHEAST UTILITIES SERVICE COMPANY
BERLIN, CONNECTICUT

TABLE OF CONTENTS

		Page No.
1.0	Summary	1-1
2.0	Program Description	2-1
2.1	Sampling Schedule and Locations	2-1
2.2	Samples Collected During Report Period	2-8
3.0	Radiochemical Results	3-1
3.1	Summary Table	3-1
3.2	Data Tables	3-19
4.0	Discussion of Results	4-1
5.0	Offsite Dose Equivalent Commitments	5-1
6.0	Discussion	6-1
Appe	endix A - Cow and Goat Census for 1993	A-1
Appe	endix B - QA Program	B-1
Appe	endix C - Summary of EPA Interlaboratory Comparisons	C-1

1.0 SUMMARY

The radiological environmental monitoring program for the Millstone Nuclear Power Station was continued for the period January through December 1993, in compliance with the Radiological Effluent Monitoring and Offsite Dose Calculation Manual. This annual report was prepared for the Northeast Nuclear Energy Company (NNECO) by the Radiological Assessment Branch of the Northeast Utilities Service Company (NUSCO). All sample collections and preparations are performed by the Production Operations Services Laboratory. Gamma exposure measurements were performed by NUSCO at the Production Operations Services Laboratory. All remaining laboratory analyses were performed by the primary contractor, Teledyne Isotopes, Inc. As part of the overall quality assurance program, Yankee Atomic Environmental Laboratory was used as an independent check on the primary contractor's laboratory.

Sampling and radiological analyses were performed with gamma exposure measuring devices and on air particulates and iodine, milk, pasture grass, broad leaf vegetation, fruits, vegetables, seawater, bottom sediment, aquatic flora, fin fish, mussels, oysters, clams, and lobsters. In evaluating the results of these analyses it is necessary to consider the variability of radionuclide uptake in environmental media. This variability is dependent on many factors, including plant release rates, seasonal variability of fallout, locational variability of fallout, soil characteristics, farming practices, and feed type. Significant variations in measured levels of radioactivity could be caused by any one of these factors. Therefore, these factors need to be considered in order to properly explain any variations.

The predominant radioactivity, except for a few aquatic sample results, was that from nonplant (not Millstone) sources, such as fallout from nuclear weapons tests and naturally occurring radionuclides. In the case of the terrestrial media, the effect from Unit 1 via the direct dose pathway (i.e., scattered radiation, "skyshine", from nitrogen-16 in the turbine building; unique to Boiling Water Reactors) exists in the gamma exposure measurements at some of the on-site locations. This effect can normally be seen by a decrease in the thermoluminescent dosimeter (TLD) values during months when Unit 1 is shutdown for refueling. This direct dose pathway decreases rapidly with distance, to levels that are undetectable at the offsite locations. The gaseous releases have been reduced such that they are no longer detectable by TLD's at any on-site or offsite location. Gaseous releases of iodine were also very low, such that it was not detectable in milk, even at the new offsite goat location.

The capacity factors for 1993 were as follows: Unit 1 - 92.8%; Unit 2 - 82.5%; Unit 3 -65%.

Monitoring of the aquatic environment in the area of the discharge indicated the presence of the following plant related radionuclides: tritium in sea water; cobalt-60 in bottom sediment; cobalt-58, cobalt-60 and silver-110m in aquatic flora; cesium-137 in fish; cobalt-58, cobalt-60, zinc-65, and silver-110m in oysters; cobalt-60 and silver-110m in clams; and silver-110m in lobsters. The levels of these radionuclides are comparable to those observed since 1987. Doses from the 1993 measured levels are well below those required by each Unit's Safety Technical Specifications (10CFR50 Appendix I, Design Guidelines). Activity levels were below those of the higher discharge period of 1974-1975 (before the Unit 1 augmented liquid radwaste treatment system).

As usual, cesium-137 and strontium-90 were measured in both cow and good milk. These levels are a result of nuclear weapons testing in the 1960's and not the result of plant operation. This can be concluded based on the facts that: insufficient quantities of these isotopes have been released by the plant to account for the measured concentrations, chemically similar and plant related cesium-134 and strontium-89 have not been detected and comparable levels of cesium-137 and strontium-90 were detected prior to initial plant operation.

The radiation dose (dose equivalent commitment) to the general public from the plant's discharges has been evaluated by two methods. One method utilizes the measured station's discharges and conservative transport models and the other utilizes the measured concentrations of radioactivity in the environmental media. The maximum whole body dose (station boundary) that could occur to a member of the general public as a result of station operation was 3.4 millirem. This includes a contribution of 3.3 millirem from "skyshine" and 0.087 millirem from station effluents. The average dose to a member of the public residing within 50 miles of the plant is 0.00025 millirem. These doses are 14 percent and 0.0010 percent of the standards as set by the Environmental Protection Agency on the maximum allowable dose to an individual of the general public. These standards are a small fraction (less than 10 percent) of the 280 mrem per year normal background radiation and are designed to be inconsequential in regard to public health and safety. Plant related doses are even a smaller fraction of the natural background; they are less than 10 percent of the variation in natural background in Connecticut. Therefore, for the above stated reasons the plant related doses have insignificant public health consequences.

2.0 PROGRAM DESCRIPTION

2.1 Sampling Schedule and Locations

The sample locations and the sample types and frequency of analysis are given in Table 2-1 and 2-2 and Figures 2.1 through 2.3. The program as described here includes both required samples as specified in the Radiological Effluent Monitoring and Offsite Dose Calculation Manual and any extra samples.

TABLE 2-1

ENVIRONMENTAL MONITORING PROGRAM SAMPLING LOCATIONS

The following lists the environmental sampling locations and the types of samples obtained at each location.

L	ocation	Direction & Distance From	
Number	Name	Release Point**	Sample Types
1-1	On-site - Old Millstone Rd.	0.6 Mi, NNW	TLD, Air Particulate, Iodine, Vegetation
2-1	On-site - Weather Shack	0.3 Mi, S	TLD, Air Particulate, Iodine
3-1	On-site - Bird Sanctuary	0.3 Mi, NE	TLD, Air Particulate, Iodine
4-1	On-site - Albacore Drive	1.0 Mi, N	TLD, Air Particulate, Iodine
5-1	MP3 Discharge	0.1 Mi, SSE	TLD
6-1	Quarry Discharge	0.3 Mi, SSE	TLD
7-1	Env. Lab Dock	0.3 Mi, SE	TLD
8-1	Environmental Lab	0.3 Mi, SE	TLD
9-1	Bay Point Beach	0.4 Mi, W	TLD
10-1	Pleasure Beach	1.2 Mi, E	TLD, Air Particulate, Iodine
11-1	New London Country Club	1.6 Mi, ENE	TLD, Air Particulate, Iodine
12-C	Fisher's Island, NY	8.7 Mi, ESE	TLD
12-X	Fisher's Island, NY	8.7 Mi, ESE	Air Particulate
13-C	Mystic, CT	11.5 Mi, ENE	TLD
14-C	Ledyard, CT	12.0 Mi, NE	TLD
15-C	Norwich, CT	14.0 Mi, N	TLD, Air Particulate, Iodine
16-C	Old Lyme, CT	8.8 Mi, W	TLD
17-1	Site Boundary	0.5 Mi, NE	Vegetation
18-1	New London Country Club	1.6 Mi, ENE	Vegetation
19-1	Cow Location #1	6.0 Mi, N	Milk
20-1	Cow Location #2	9.5 Mi, WNW	Milk
21-1	Cow Location #3	13.0 Mi, ENE	Milk
22-C	Cow Location #4	16.0 Mi, NNW	Milk
23-1	Goat Location #1	2.0 Mi, ENE	Milk
24-C	Goat Location #2	14.0 Mi, NE	Milk
19-1*	Cow Location #1	9.5 Mi, WNW	Milk
20-C*	Cow Location #2	16.0 Mi, NNW	Milk
21-1*	Goat Location #1	2.0 Mi, N	Milk
23-1*	Goat Location #2 Goat Location #3	5.2 Mi, NNE	Milk Milk
24-C*	Goat Location #4	2.0 Mi, ENE 14.0 Mi, NE	Milk
25-1	Fruits & Vegetables	Within 10 Miles	Vegetation
26-C			
27-1	Fruits & Vegetables Niantic	Beyond 10 Miles 1.7 Mi, WNW	Vegetation
28-1	Two Tree Island	0.8 Mi, SSE	TLD, Air Particulate, Iodine Mussels
29-1	West Jordan Cove	0.4 Mi, NNE	Clams
29-X	West Jordan Cove	0.4 MI, NNE	Fucus
30-C	Golden Spur	4.7 Mi, NNW	Bottom Sediment
31-1	Niantic Shoals	1.8 Mi, NW	Bottom Sediment, Oysters, Scallops
	THORITO OTTOBIS	1.5 Mi, NNW	Mussels
31-X	Niantic Shoals	1.8 Mi, NW	Fucus
32-1	Vicinity or Discharge		Botton Sediment, Oysters, Lobster,
			Fish, Seawater

TABLE 2-1 (Cont'd)

Loc'tion

		Direction & Distance From	
Number	Name	Release Point**	Sample Types
32-X	Vicinity of Discharge		Fucus, Mussels
33-1	Seaside Point	1.8 Mi, ESE	Bottom Sediment
33-X	Seaside Point	1.8 Mi, ESE	Fucus
34-1	Thames River Yacht Club	4.0 Mi, ENE	Bottom Sediment
34-X	Thames River Yacht club	4.0 Mi, ENE	Oysters
35-1	Niantic Bay	0.3 Mi, WNW	Lobster, Fish
36-1	Black Point	3.0 Mi, WSW	Bottom Sediment, Oysters
36-X	Black Point	3.0 Mi, WSW	Fucus
37-C	Giant's Neck	3.5 Mi, WSW	Bottom Sediment, Oysters, Lobster,
			Seawater
37-X	Giant's Neck	3.5 Mi, WSW	Fucus
38-1	Waterford Shellfish Bed #1	1 Mi, NW	Clams
39-X	Jordon Cove Bar	0.8 Mi, NE	Clams
40-X	Quarry		Fish, Oysters, Crabs, Seawater
41-X	Upper Jordon Cove	1.2 Mi, NE	Mussels
50-X	Myrock Avenue	3.2 Mi, ENE	TLD
54-X	Billow Road	2.4 Mi, WSW	TLD
55-X	Black Point	2.6 Mi, SW	TLD
98-X	Ion Chamber Shack	0.5 Mi, NE	TLD
99-X	Schoolhouse	0.1 Mi, NNE	TLD

I = Indicator C - Control X - Extra - nonrequired sample

^{*}As of May 1, 1993, the ODCM was revised to reflect a change in milk sample locations. Two distant cow milk stations were changed to closer goat milk stations.

^{**}For terrestrial locations, this is the MP1 stack for aquatic it is the quarry cut.

TABLE 2-2

MILLSTONE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

	Exposure Pathway and/or Sample	Number of Locations	Sampling & Collection Frequency	Type & Frequency of Analysis
1a.	Gamma Dose - Environmental TLD	17	Monthly	Gamma Dose - Monthly
1b.	Gamma Dose - Accident TLD	22	Quarterly (*)	N/A ^(a)
2.	Airborne Particulate	8	Continuous sampler - weekly filter change	Gross Beta - Weekly Gamma Spectrum - Quarterly on composite (by location), & on individual sample if gross beta is greater than 10 times the mean of the weekly control stations gross beta results
3.	Airborne Iodine	8	Continuous sampler - weekly canister change	I-131-Weekly
4.	Vegetation	5	One sample near middle & one near end of growing season	Gamma Isotopic on each sample
5.	Milk	6	Monthly	Gamma Isotopic, I-131, Sr-89 & Sr-90 on each sample
6.	Seawater	2	Quarterly - Composite of 6 Weekly Grab Samples	Quarterly - Gamma Isotopic and Tritium on each composite
7.	Bottom Sediment	7	Semiannual	Gamma Isotopic on each sample
8.	Fin Fish-Flounder and one other type of edible fin fish	2	Quarterly	Gamma Isotopic on each sample
9.	Mussels	2	Quarterly	Gamma Isotopic on each sample
10.	Oysters	4	Quarterly	Gamma Isotopic on each sample
11.	Clams	2	Quarterly	Gamma Isotopic on each sample
12.	Lobster	3	Quarterly	Gamma Isotopic on each sample

⁽a) Accident monitoring TLDs to be dedosed at least quarterly

Outer Terrestrial Monitoring Stations

2.2 Samples Collected During Report Period

The following table summarizes the number of samples of each type collected during the present reporting period:

Sample Type	Number of Required Samples	Number of Extra Samples
Gamma Exposure (TLD)	204	58
Air Particulates	416	50
Air Iodine	416	0
Dairy Milk	32	0
Goat Milk	13	0
Pasture Grass	13	0
Fruit & Vegetables	8	0
Broad Leaf Vegetation	6	14
Seawater	7	0
Bottom Sediment	14	0
Aquatic Flora	0	6
Fish	15	4
Mussels	8	0
Oystars	13	8
Clams	8	4
Lobster	12	Q
Total All Types	1,185	144

3.0 RADIOCHEMICAL RESULTS

3.1 Summary Table

In accordance with the Radiological Effluent Monitoring Manual (REMM), Section F.1, a summary table of the radiochemical results has been prepared and is presented in Table 3-1.

In the determination of the mean, the data was handled as recommended by the Health and Safety Laboratory, Idaho and NUREG/CR-4007 (Sept. 1984): all valid data, including negative values and zeros were used in the determination of the mean (see Part 3.2).

A more detailed analysis of the data is given in Section 4.0 where a discussion of the variations in the data explains many aspects that are not evident in the Summary Table because of the basic limitation of data summaries.

TABLE 3-1
ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY
NILLSTONE NUCLEAR POWER STATION, 'NITS 1, 2 AND 3
DOCKELS 50-245, 50-356 AND 50-423
JANUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	AMALVSTS AND TOTAL MUMBER OF AMALYSES PERFORMED	LOWER LIMIT OF DETECTION (LLD) (A)	LOCATIONS LOCATIONS HEAN (RANGE)(B)	LOCATION WITH F LOCATION #, DISTANCE AND DIRECTION	LOCATION WITH HIGHEST AMMUAL MEAN LOCATION #, MEAN DISTANCE (RANGE)(B)	CONTROL LOCATIONS HEAN (RANGE)(B)	MRM (C)
GAMMA DOSE (UR/HR)	144, 66 (D)	1.5	(6.4 - 16.5)	1.0C # 5 0.1 MILES SSE	(13.5 - 16.1)	(7.3 - 11.8)	0
AIR PARTICULATE AND IODINE	364,52 BETA	8.81 (E)	(0.001 - 0.029)	LOC # 2 0.3 MILES S	0.002 - 0.623)	(0.003 - 6.027)	0
(PCI/M3)	GE(11) 364,52	6.67	(888.0 - 9.00.0-)	LOC # 15C 14 MILES N	(-8.869 - 698.8-)	(909.9 - 600.0-)	6
	SE(11) 28. 9		(0.073 - 0.139)	LOC # 3 0.3 MILES NE	(6.104 - 0.139)	(0.096 - 6.119)	0
	09-00	1	0.000 (888)	1.2 MILES E	(0.00.0 - 0.00.0)	0.000 0.000)	0
	56-82	ă î	0.600 - 0.001)	LOC # 2 0.3 MILES S	(8,00,0	(0.600 - 6.601)	0
	NB-95	¥. **	0.000 0.000)	LOC # 10 1.2 MILES E	0.000 - 0.000)	0.000 - 000.0)	0
	RU-103	ž.	(-0.861 - 0.000)	LOC # 3 B.3 HILES NE	0.000 (0.000)	(8,000 - 0.000)	0
	CS-13%	6.85 (F)	(8,666 - 6,659)	LOC # 4 1 MILES N	0.000 0.000)	0.000 - 0.000)	0
	CS-137	9.00	000'0 - 000'0	LOC # 4 1 MILES N	(000.0 - 000.0)	8.656 (6.650)	0
(DAIRY)	SR-89 20,12		(-0.9 - 1.4)	13 MILES ENE	(0.1 - 1.4)	(-1.2 - 1.5)	0
	SR-90	1	(1.0 - 3.4)	13 HILES ENE	(1.5 - 3.4)	(1.1- 2.5)	0

TABLE 3-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	ANALYSIS AND TOTAL NUMBER OF ANALYSES PERFORMED	LOWER LIMIT OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS HEAN (RANGE)(B)	LOCATION WITH F LOCATION #, DISTANCE AND DIRECTION	HIGHEST ANNUAL HEAN MEAN (RANGE)(B)	CONTROL LOCATIONS HEAN (RANGE)(B)	8 OF NRM (C)
	IODINE 20,12	1	(-0.11 - 0.09)	LOC # 21 13 MILES ENE	(-9.08 - 0.06)	(-0.12 - 0.08)	0
	GE(LI) 20,12 CS-134	15	(-1.7 - 1.9)	LOC # 19 6 MILES N	(-1.7 - 1.2)	(-5.1 - 2.2)	9
	CS-137	18	(-1.8 - 8.6)	LOC # 22C 16 MILES NNW	(0.0 - 8.9)	(0.8 - 8.9)	0
	BA-140	70	(-6 - 3)	LOC # 22C 16 MILES NNW	(-4 - 11)	(-4 - 11)	0
	LA-140	25	(-4.2 - 2.9)	6 MILES N	(-0.4 - 2.4)	(-4.1 - 1.7)	0
GOAT MILK (PCI/L)	SR 6, 7	**	(-2.6 - 39.1)	LOC # 23 2 MILES ENE	(-2.6 - 39.1)	(-1.7 - 1.5)	0
GOAT HILK (PCI/L)	SR-90		(1.3 - 20.7)	LOC # 23 2 MILES ENE	(1.3 - 20.7)	(2.0 - 6.5)	9
	IODINE 6, 7	1	(-0.11 - 0.05)	LOC # 24C 14 MILES NE	(-0.12 - 0.17)	(-0.12 - 0.17)	9
	GE(LI) 6, 7 CS-134	15	(-1.3 - 1.9)	LOC # 23 2 MILES ENE	(-1.3 - 1.9)	(-1.5 - 2.5)	0
	CS-137	18	(11.0 - 95.3)	LOC # 23 2 MILES ENE	(11.0 - 95.3)	(0.0 - 15.5)	0
	BA-148	70	(-4 - 6)	LOC # 23 2 MILES ENE	(-4 - 6)	(-6 - 11)	0
	LA-140	25	(-1.7 - 1.3)	LOC # 23 2 MILES ENE	(-1.7 - 1.3)	(-3.9 - 0.6)	0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE MUCLEAR POWER STATION, UNITS 1, 2 AMD 3 DOCKETS 50-245, 50-336 AND 50-423

L	
2	
ŭ.	
z	
г	
ķ.	
R	485
æ	16.3
	SQ.
S.	Ø.
ž.	-
ě.	Section 1
ε	
	De
ĸ.	SE.
g.	200
Э.	200
9	90
	100
U	W.
ъ.	542
۶.	
	8
	Sect.
7	
N	8
ji.	
٤.	4
ű.	200
	DC:
ĸ.	40
r	200
Э,	ad.
	22
ĸ	20
Σ.	-
۰	2
ä	
ë	
۳	
e	
3	

	TOTAL NUMBER OF ANALYSES PERFORMED	DETECTION (LLD) (A)	LOCATIONS LOCATIONS HEAN (RANGE)(B)	LOCATION WITH HI LOCATION WITH HI DISTANCE AND DIRECTION	LOCATION WITH MICHES! ANNUAL HEAN DISTANCE ND DIRECTION (RANGE)(B)	CONTROL LOCATIONS MEAN (RANGE)(B)	NRW (C)
PASTURE GRASS (PCI/G)	SR-89 7, 6		(-6.010.00)	LOC # 22 5.2 MILES NNE	-0.00 - (-0.00)	-0.00 (-0.01 - 0.00)	0
	SR-98		(8,03 - 0.13)	LOC # 22 5.2 MILES NNE	(6.02 - 6.09)	(0.06 - 0.09)	0
	SELLY 7, 6	9.96	-0.606 (-5.663)	10C # 22 5.2 MILES NNE	(-0.667 - 9.668)	(-0.007 - 0.008)	0
	CS-134	9.96	(-6.005 - 6.001)	10C # 22 5.2 MILES NNE	0.002	0.002	0
	CS-137	0.08	0.218	LOC # 21 2 MILES N	0.254 (0.090 - 0.840)	8.026	0
	8A-148	1	(-0.006 - 0.011)	LOC # 23 2 HILES ENE	(0,008 - 0,008)	(0.002 - 0.011)	0
	LA-140	1	(-0.807 - 0.065)	LOC # 23 2 MILES ENE	0.004 - 0.004)	(-6.016 - 0.006)	0
FRUITS AND VEGETABLES (PCI/G)	SE(L1) 4, 4		(8,86 - 8,21)	10C # 25 <10 MILES	0.86 (0.80 - 0.21)	(-0.03 - 6.00)	0
	₩-40	T T	(9.52 - 3.39)	LOC # 25 <10 MILES	(8.52 - 3.39)	(0.68 - 3.38)	0
	MM-54	;	(0.000 - 0.002)	LOC # 25 <10 HILES	0.001 (0.002)	(-0.601 - 0.062)	0
	05-03	}	(-0.003 - 0.001)	10C # 26C >10 MILES	(-0.002 - 0.000)	(-0.602 - 0.000)	0
	09-03	1	(-0.001 - 0.004)	LOC # 25 <10 MILES	(-0.901 - 0.684)	(-0.961 - 0.962)	0

FMVIRDNMENTAL RADIOLOGICAL NONITORING PROGRAH SUMMARY MILLSTOME NUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	ANALYSTS AND TOTAL MUMBER OF ANALYSES PERFORMED	LOWER LIHIT OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS REAN (RAMGE)(B)	LOCATION WITH H LOCATION #, DISTANCE AND DIRECTION	LOCATION WITH HIGHEST AMBUAL HEAN LOCATION #, HEAN DISTANCE (RANGE)(B)	CONTROL LOCATIONS REAN (RANGE)(B)	NRM (C)
	ZR-95	1	-0.032 - 0.006)	10C # 26C >10 MILES	6-6.005 - 9.005)	(-0,005 - 0,005)	0
	NB-95	1	(0.066 - 0.066)	LOC # 25 <10 MILES	0.004	(0.006 - 0.001)	0
	RU-103	1	(-6.003 - 0.001)	LOC # 26C	-0.000 - (-0.000)	000"0- (-0.908)	0
	I-131	0.06 (S)	(-0.009 - 0.011)	LOC # 25	(-0.009 - 0.011)	(-6,005 - 8,001)	0
	CS-134	9.06	(-0.054 - 0.050)	LOC # 26C >10 MILES	-0.000 (-0.002)	(-0.002 - 0.002)	0
	CS-137	6.98	6 3,366 - 6,886)	LOC # 25 <10 MILES	0.003 (8.096)	(0,698 - 0.683)	0
	RA-226		(-0.169 - 0.011)	10C # 26C >10 MILES	-6.827 (-6.348 - 0.039)	(-0.140 - 0.039)	0
	TH-228		(-0.017 - 0.000)	10C # 26C	(-0,013 - 0,001)	(-0.013 - 0.001)	0
BROADLEAF VESETATION (PCI/G)	GE(LI) 29,	:	1.10 (0.67 - 4.42)	B.6 MILES NAM	1.46	* 1	0
	K-40	1	1 2.87 - 4.78)	1.2 MILES E	3.23 (2.20 - 4.70)	1	٥
	PRN-54	1	(-8,885 - 8,885)	LOC # 17 0.5 MILES NE	(-0.001 - 0.005)		0
	CO-58	*	-0.000 - (-0.005)	LOC % 17 0.5 MILES NE	(-8.062 - 0.663)		c

TABLE 3-1
ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SURMARY
MILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AND 3
DOCKERS 50-245, 50-336 AND 50-423
JANUARY - DECEMBER 1993

ZR-95 (-0.010 - 0.012) 0.6 MILES NAM	MEDIUM OR PATHWAY SAMPLED	ANALYSIS AND TOTAL MAMBER OF AMALYSES PERFORMED	DETECTION (LLD) (A)	LOCATIONS LOCATIONS HEAN (RANSE)(B)	LOCATION WITH H. LOCATION #, DISTANCE AND DIRECTION	LOCATION WITH WIGHEST ANNUAL MEAN LOCATION # DISTANCE (RANGE)(B)	CONTROL LOCATIONS HEAN (RANGE) (B)	NRM (C)
ZR-95 (-B.018 6.014) 0.6 MILES NRM (-0.004 - 0.014) (6.014) 0.5 MILES NRM (-0.004 - 0.013) (6.003 - 0.013) (6.003 - 0.013) (6.004 - 0.013) (6.004 - 0.013) (6.004 - 0.013) (6.004 - 0.013) (6.004 - 0.013) (6.004 - 0.013) (6.004 - 0.013) (69-03	1	(-0.010 - 0.012)	LOC 8 1 0.6 MILES NAW	0.002 (-8.004 - 0.019)		0
NB-95 (-0.003 - 0.13) 0.5 MILES NE (-0.005 - 0.013) (1	(-8.018 - 6.014)	LOC # 1 0.6 MILES MMM	(-0.004 - 0.014)		0
TH-183		MB-95		0.003 (-0.003)	LOC # 17 0.5 MILES NE	(-0.062 - 0.013)		6
TH-228 (-0.052 -0.08) 0.5 MILES NE (-0.002 0.012) (RU-163		(-0.006 - 0.013)	1.2 MILES E	6,602 (-0,004 - 0,613)		0
CS-134 0.06 (-0.066 - 0.008) 0.5 MILES NE (-0.001 - 0.008) (1		(-0.019 - 0.012)	LOC # 17 0.5 MILES ME	(-0.008 - 0.012)		0
CS-137		CS-134	9.96	(-6.066 - 8.008)	LOC # 17 0.5 MILES NE	(-0.001 0.005)		0
FA-226 (-6.420 - 6.188) 0.6 MILES NAW (-0.175 - 6.087) ((-6.420 - 6.188) 0.6 MILES NAW (-0.175 - 6.087) ((-0.642 - 6.188) 0.5 MILES NE (0.080 - 6.108) ((-2.352 - 342) (239 - 342) (239 - 342) (148 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239 - 2 (239		CS-137	80.0	0.033	LOC # 17 0.5 MILES NE	0.50		0
TH-228 (-0.042 - 0.108) 0.5 MILES NE (0.000 - 0.108) (RA-226		(-6,428 - 6,188)	LOC # 1 0.6 MILES WAN	(-0.175 - 0.087)		0
GE(LI) 9, 3 (239 - 362) LOC # 32 (239 - 342) (148 - 2 NM-54 30 (0.0 - 1.9) LOC # 32 (0.0 - 1.9) (0.2 - 0.8 CO-56 30 (-1.6 - 0.3) 3.5 MILES MSW (-1.8 - 0.5) (-1.8 - 0.3		TH-228		(-0.842 - 0.108)	10C # 17 0.5 MILES NE	(0.000 - 0.108)		6
39 (0.0 - 1.9) LOC # 32 (0.0 - 1.9) (0.2 - 3.9) (-1.6 - 0.3) 3.5 MILES MSW (-1.8 - 0.5) (-1.8 - 0.5)	WATER CI/L)	(LI) 4,	-	(239 - 342)	LOC # 32 0 MILES N/A	2.1	(148 - 265)	0
30 (-1.6 - 0.3) 3.5 MILES MSW (-1.8 - 0.5) (-1.8 - 0.5)		PM-54	99	8.8	LOC # 32 0 MILES M/A	0	80	0
		CO-58	3.0	(-1.6 - 0.3)	1.0C # 37C 3.5 MILES WSW	10	(-1.8 - 6.5)	0

TABLE 3-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AMD 3 DUCKETS 50-245, 50-336 AMD 50-423 JANUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	TOTAL NUMBER OF ANALYSES	OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS HEAR (RANGE)(B)	LOCATION WITH H LOCATION W, DISTANCE AND DIRECTION	TGHEST ANNUAL MEAN HEAN (RANGE)(B)	CONTROL LOCATIONS HEAN (RANGE)(B)	B OF NRM (C)
JAIN LLD	C0-68	30	(-1.5 - 0.6)	LOC # 37C 3.5 MILES WSW	0.0		0
	1-131		(-48 - 35)	LOC # 37C 3.5 MILES WSW	(-8 - 8)	(-8 - 8)	0
	CS-134	30	(-3.1 - 0.4)	LOC # 37C 3.5 MILES WSW	(-0.5 - 0.4)	(-0.5-0.4)	0
	CS-137	40	(0.5 - 1.5)	LOC # 32 0 MILES N/A	(0.5 - 1.5)	(-0.7 - 1.5)	0
	BA-140	120 (H)	(-56 - 29)	LOC # 37C 3.5 MILES WSW	(0 ~ 7)	(0 - 7)	0
	LA-140	30 (H)	(-17 - 61)	LOC # 32 0 MILES M/A	(-17 - 61)	(-3 - 5)	0
	TRITIUM 4, 3	2999	(65 - 811)	LOC # 32 0 MILES N/A	(65 - 811)	(-72 - 126)	0
BOTTOM SEDIMENT (PCI/G)	GE(LI) 10, 4 K-40		(8.4 - 19.6)	LOC # 34 4 MILES EME	(18.5 - 19.6)	(13.8 - 17.6)	0
1102707	MN-54		(-0.00 - 0.01)	LOC # 31 1.8 MILES NW	(0.01 - 0.01)	(-0.01 - 0.01)	0
	CO-58	**	-0.00 (-0.01 - 0.01)	LOC # 37C 3.5 MILES WSW	(0.00 - 0.00)	(-0.01 - 0.00)	0
	CO-60	**	(-0.02 - 0.12)	LOC # 31 1.8 MILES NW	(0.01 - 0.12)	(0.00 - 0.01)	6
	ZR-95		(-0.02 - 0.03)	LOC # 39C 4.7 MILES NHW	(0.00 - 0.04)	(0.00 - 0.04)	0

TABLE 3-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	ANALYSIS AND TOTAL HUMBER OF ANALYSES PERFORMED	DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS REAR (RAMSE)(B)	LOCATION WITH HI LOCATION W, DISTANCE AND DIRECTION	GHEST ANHUAL HEAN HEAN (RANGE)(B)	CONTROL LOCATIONS MEAN (RANGE)(B)	W OF NRM (C)
	NB-95		(0.00 - 0.01)	LOC # 30C 4.7 MILES NNW	(0.00 - 6.03)	(0.00 - 0.03)	0
	1-131		(-0.03 - 0.03)	LOC N 30C 4.7 MILES NNW	(0.95 - 0.98)	(0.02 - 0.08)	0
	CS-134	0.15	(0.00 - 0.01)	LOC # 30C 4.7 HILES NAW	(0.02 - 0.04)	(0.00 - 0.04)	0
	CS-137	0.18	(0.00 - 0.02)	LOC # 30C 4.7 MILES NNW	(0.20 ~ 0.39)	(0.00 - 0.39)	0
	RA-226		(0.00 - 1.03)	LOC # 38C 4.7 MILES NAW	(0.00 - 1.40)	(0.00 - 1.40)	9
	TH-228	**	(0.17 - 2.02)	LOC # 31 1.8 MILES NW	(1.21 - 2.02)	(0.17 - 1.19)	0
FISH (ALL TYPES) (PCI/G)	GE(LI) 15, . BE-7	**	(-0.06 - 0.12)	LOC # 32 6 MILES N/A	(-0.06 - 0.12)	(,)	0
	K-40		(1.9 - 4.3)	LOC # 35 0.3 MILES WNW	(1.9 - 4.3)	(,)	0
	CR-51		(-0.15 - 0.08)	LOC # 35 0.3 MILES WHW	(-0.05 - 0.08)	(', ' - ',)	0
	MN-54	0.13	(-0.00 - 0.01)	LOC # 35 0.3 MILES WHW	(-0.00 - 0.01)	-(. : .)	0
	CO-58	0.13	-0.00 (-0.01 - 0.01)	LOC # 35 0.3 MILES WNW	-0.09 (-0.01 - 0.01)	(, : ,)	0

TABLE 3-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	ANALYSIS AND TOTAL NUMBER OF ANALYSES PERFORMED	LOWER LIMIT OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS HEAN (RANGE)(B)	LOCATION WITH HE LOCATION W, DISTANCE AND DIRECTION	IGHEST ANNUAL HEAN MEAN (RANGE)(B)		LOC	NTROL ATION WEAN WGE)	€S_		# OF NRM (C)
	FE-59	0.26	(-0.02 - 0.02)	LOC # 35 0.3 MILES WNW	(-0.00 - 0.02)	- (÷)	0
	CO-60	0.13	0.00 (-0.01)	LOC # 35 0.3 MILES WHW	(-0.00 - 0.01)	(4	÷)	8
	ZN-65	0.26	(-0.03 - 0.01)	LOC # 32 0 MILES N/A	(-0.01 - 0.01)	(-)	9
	ZR-95		(-0.05 - 0.01)	LOC # 32 0 MILES M/A	(-0.01 - 0.01)	t		÷		3	8
	NB-95		(-0.01 - 0.01)	LOC # 35 0.3 MILES WWW	(0.00 - 0.01)	()	0
	RU-103		(-0.01 - 0.01)	LOC # 35 0.3 MILES WHW	(-0.00 - 0.01)	ť		:)	0
	RU-106		-0.91 (-0.11 - 0.07)	LOC # 35 0.3 MILES WNW	(-0.01 - 0.07)	ŧ		:)	0
	AG-110M		-8.00 (-0.02 - 8.01)	LOC # 35 8.3 MILES WNW	(-0.02 - 0.01)	(-)	0
	1-131		(-3.02 - 0.04)	LOC # 35 0.3 MILES WNW	(-0,02 - 0,04)	- 1		1)	0
	CS-134	0.13	-0.00 (-0.01 - 0.01)	LOC # 32 G MILES N/A	(0.00 - 0.01)	ţ		:		}	0
	CS-137	0.15	(0.00 - 0.02)	LOC # 32 9 MILES N/A	(0.00 - 0.02)	ŧ		:)	9
	RA-226	-	-0.18 (-0.37 - 0.17)	LOC # 32 0 MILES N/A	-0.15 (-0.37 - 0.17)	ŧ		:		1	0

- 1
ANALYSIS AND LOWER LIMIT ALL IMPLEATOR TOTAL NUMBER OF OF LOCATIONS OF ANALYSES DETECTION HEAN PERFORMED (LLD) (A) (RANGE)(B)
TH-228 (-0.04 - 0.01)
(8.89 - 6.83)
(1.3 - 2.5)
51 -6.03 - 0.05)
MM-54 0.13 (-0.00 - 0.00)
0.00 0.00 0.00 0.00
FE-59 0.26 (-0.01 - 0.01)
0.00 0.13 (0.00 - 0.01)
ZN-65 8,26 (-8.68 - 6.83)
(-0.01 - 0.02)
NB-95 (8.00 - 8.01)

TABLE 3-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

MEDIUM OR PATHNAY SAMPLED	ANALYSTS AND TOTAL NUMBER OF ANALYSES PERFORMED	OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS HEAN (RANGE)(B)	LOCATION WITH H LOCATION W, DISTANCE AMD DIRECTION	IGHEST AMNUAL HEAN MEAN (RANGE)(B)	CONTROL LOCATIONS HEAN (RANGE)(B)	NRM (C)
	RU-103		(-0.00 - 0.01)	LOC # 28 6.8 MILES SSE	(-0.00 - 0.01)	(. : .)	0
	RU-106		(-0.04 - 0.04)	LOC # 28 0.8 MILES SSE	(0.00 - 0.04)	(. : .)	0
	AC-110H		(-0.00 - 0.00)	LOC # 28 0.8 MILES SSE	(0.60 - 0.00)	(, ÷ ,)	0
	1-131		(-0.01 - 0.01)	LOC # 31 1.8 MILES NW	(0.00 - 0.01)	()	0
	CS-134	0.13	(-0.06 - 0.00)	1.0C # 31 1.8 MILES NW	(-0.00 - 0.00)	()	0
	CS-137	0.15	-0.00 (-0.01 - 0.01)	LOC # 31 1.8 MILES NW	(-0.01 - 0.01)	()	0
	RA-226	-	(-0.51 - 0.19)	LOC # 31 1.8 MILES NW	(-0.21 - 0.19)	(, - ,)	0
	TH-228	***	(-0.00 (-0.04 - 0.62)	LOC # 31 1.8 MILES NW	(-0.01 - 0.02)	(. : .)	0
OYSTERS (PCI/G)	GE(LI) 14, 3 BE-7	**	(-0.12 - 0.04)	LOC # 31 1.8 MILES NW	(-0.01 - 0.02)	(-0.01 - 0.02)	9
	K-40		(0.1 - 1.9)	LOC 8 31 1.8 HILES NW	(1.1 - 1.9)	(1.1 - 2.0)	0
	CR-51	**	(-0.08 - 0.06)	LOC # 34 4 MILES ENE	(-0.03 - 0.03)	(-0.06 - 0.00)	0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY NILLSTONE NUCLEAR POWER STATION, UNITS 1, 2 AMD 3 DOCKELS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

LOCATIONS RP OF (C) (RANGE)(B)	0.00 - 0.00)	0 (00'0 00'0-)	(-0.01 - 0.01)	6.06 - 0.00)	0.00 - 0.00)	(-0.04 - 0.01)	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 -0.00 - (-0.01)	(-0.01 - 6.61)	(-0.00 - 0.01)	0 (00'0 - 00'0-)	0.00
LOCATION WAIT STUDES! AMMUNE REAN DISTANCE WAS RECTION (RANGE)(B)	9 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(6.66 - 6.28) (-	(0.00 - 0.01)	0.05 - 0.06)	(0.99 - 2.16)	0.01 (-0.00)	0.60 - 0.01)	-9.00 - 0.01)	0.03 - 0.04)	(0.32 - 2.47) (-	(0.01 - 0.01) (-	8.00
LOCATION #, DISTANCE AND DIMECTION	10C # 32 0 MILES N/A	LOC # 32 0 MILES N/A	LOC # 36 3 MILES WSW	LOC # 32 0 MILES M/A	LOC # 32 @ MILES N/A	LOC # 32 0 MILES N/A	3.5 MILES WSW	1.8 MILES NW	LOC # 34 4 MILES ENE	LOC # 32 8 MILES N/A	LOC # 36 3 MILES WSW	LOC # 37C
LOCATIONS LOCATIONS HEAN (RANGE)(B)	(-0.01 - 0.01)	0.03	0.00 (-0.02 - 0.01)	8.02 (-6.00 - 9.96)	(-0.82 - 2.16)	9.00 (-0.05)	(-0.03 - 0.00)	(-8,00 - 0,01)	(-0.05 - 0.04)	(-0.00 - 2.47)	(-0.01 - 0.01)	0.00
DETECTION (LLD) (A)	6.13	PO ET	0.26	60 M.	9.26					1		0.13
ANALYSIS AND TOTAL MUMBER OF ANALYSES PERFORMED	HN-54	85-03	FE-59	09-03	59-NZ	28-95	NB-95	RU-103	RU-106	AG-110M	I-131	CS-134
MEDIUM OR PATHWAY SAMPLED												

FABLE 3-1
ENVIRONMENTAL RADIOLOGICAL MALITORING PROGRAM SUMMARY
MILLSTONE MACLEAR POWER STATION, UNITS 1, 2 AND 3
DOUNETS 56-245, 58-356 AND 50-423
JAMUARY - DECEMBER 1993

MEDIUM OR PATHWAY SAMPLED	AMALYSIS AND TOTAL NUMBER OF AMALYSES PERFORMED	DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS HEAN (RANGE)(B)	LOCATION WITH PIGHEST ANNUAL MEAN LOCATION #, MEAN DISTANCE AND DIRECTION (RANGE)(B)	GHEST AMMUAL MEAN MEAN (RANGE)(B)	LOCATIONS LOCATIONS REAN (RAMGE)(B)	NRM (C)
	CS-137	0.15	-0.00 - (-0.01)	3.5 MILES WSW	(0.00 - 00.00)	(0.00 - 0.00)	0
	RA-226	¥ +	-0.69	LOC # 37C 3.5 MILES #SW	9.00 - 90.0-1	(-8.04 8.06)	0
	TH-228		-0.80	LOC # 36 3 MILES WSW	(0.90 - 0.01)	(-0.030.01)	0
(PCI/6)	2E(11) 8.	i e	6.83 - 8.85)	LOC # 29 8.4 MILES NAVE	6.02 (-0.03)	(; ;)	0
	K - 49	1	(8.7 - 2.2)	LOC # 38 1 KILES NW	(3.6 - 2.2)		0
	CR-51	1	6.01	LOC # 38 1 MILES HW	(-0.03 - 0.05)	1	0
	PPR-54	10 PT	(-0.01 - 0.01)	LOC 8 29 0.4 MILES HME	(-0.00 - 0.00)		0
	85-00 0	9.13	(-0.81 - 0.81)	LOC # 38 1 MILES HW	0.00 0.61)		0
	FE-59	0.26	(-6.91 - 9.01)	LOC # 29 8.4 MILES NRE	(-9.01 - 6.01)		0
	99-00	र्था स्ट - 8	8.88 - 8.82)	10C # 29 0.4 MILES HNE	(0.06 - 3.02)		0
	ZN-65	0.26	8.80 (-6.80)	LOC # 38 1 MILES NW	(-0.00 - 0.01)	()	0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE MUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423

PATHWAY SAMPLED	ANALVSIS AND TOTAL MUMBER OF ANALYSES PERFORMED	LOWER LIMIT OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS REAR (RANCE)(B)	LOCATION WITH HI LOCATION #, DISTANCE AND DIRECTION	LOCATION WITH HIGHEST ANNUAL HEAN LOCATION #, DISTANCE (RANGE)(B)	CONTROL LOCATIONS HEAN (RANGE) (B)	NRM (C)
	28-95		(-0.61 - 0.61)	LOC # 38 1 MILES NW	(-0.01 - 0.01)	(. ; .)	0
	NB-95	1	6.89 - 9.81)	LOC # 38 1 MILES MW	0.00 0.01)		0
	RU-103		(-6.61 - 0.06)	LOC # 38 1 MILES NW	(-0.01 - 0.00)		0
	RU-186	-	(-8.04 - 0.01)	LOC # 29 0.4 MILES NINE	(-0.520.40)	(. : .)	0
	AG-110M	* 8	0.90 (0.00)	LOC # 29 0.4 HILES NOVE	0.00 (0.00)		0
	1.33	4.8	(-0.01 - 0.01)	LOC # 38 1 MILES NW	(-6.00 - 0.01)		٥
	CS-134	0.13	(-8.61 - 6.80)	LOC # 29 0.4 MILES MME	0.00 - 0.00)		0
	CS-137	0.15	-0.00	LOC # 38 1 MILES HW	0.00 - 0.00)		0
	RA-226		(-8.26 - 8.12)	LOC # 29 0.4 MILES MNE	(-0.26 - 0.12)		0
	TH-228	1	(-6.67 - 0.61)	LOC # 38 1 MILES NW	(-6.03 - 0.01)		0
LOBSTER (PCI/6)	6 (FT) 9° 6	1.	(-0.05 - 0.06)	LOC # 35 9.3 MILES WWW	(-6.05 - 6.05)	(-8.09 - 0.03)	0

FAVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SULWARY MILLSTONE MUCLEAR POWER STATION, UNITS 1, 2 AMD 3 DNCKELS 50-245, 50-356 AND 50-423

NRM (C)	0 (9 (2	0 (1	1) 0	1) 0	1) 0	6) 0	1) 0	0) 0	1) 6	23 0	0
LOCATIONS HEAN (RANGE)(B)	(2,7 - 4.6)	0.61 (-9.65 - 0.67)	(0.01 - 0.01	0.00 - 0.0-)	(0.01 - 0.01	0.00 (-0.01)	(0.00 - 0.04)	10.0-0.01	(-0.00 - 0.00)	(-0.01 - 0.01	(-0.94 - 0.92)	0.00
10CATION #, MISS AND MEAN DISTANCE MEAN (RANGE)(B)	(2.7 - 4.6)	(-0.88 - 0.84)	(6.01 - 0.01)	(-0.00 - 0.01)	(6.01 - 6.01)	(-6.00 - 0.02)	(8.00 - 0.04)	6.86 . 6.83)	0.00 - 0.01)	0.00 - 0.01)	(-0.04 - 0.10)	8.01
LOCATION WITH ALL DISTANCE AMD DIRECTION	1.0C # 37C 3.5 MILES WSW	LOC # 35 6.3 MILES WHW	1.5 MILES WSW	LOC # 37C 3.5 MILES WSW	LOC # 37C 3.5 MILES WSW	LOC # 32 0 MILES N/A	3.5 MILES WSW	LOC # 32 0 MILES N/A	LOC # 32 # MILES N/A	LOC # 32 6 MILES N/A	LOC # 32 0 MILES M/A	LOC # 32
LOCATIONS HEAN (RAMGE)(B)	(1.3 - 3.6)	(-0.11 - 0.12)	(-0.00 - 0.01)	(-0.63 - 0.81)	0.00 (-0.01)	9.08 (-0.05)	(-0.01 - 0.03)	(-0.01 - 0.03)	(0.00 - 0.03)	(-0.00 - 0.01)	(-0.09 - 0.10)	6.61
DETECTION (LLD) (A)	1	1	9.13	9.13	9.26	8.13	9.26	1	ti.			
TOTAL NUMBER OF ANALYSES PERFORMED	K-40	CR-51	55 - NIA	85-00	FE-59	89-00	ZM-65	ZR-95	NB-95	RU-103	RU-196	AG-116M
MEDIUM OR PATHWAY SAMPLED												

TABLE 3-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY MILLSTONE HUCLEAR POWER STATION, UNITS 1, 2 AND 3 DOCKETS 50-245, 50-336 AND 50-423 JANUARY - DECEMBER 1993

ANALYSIS AND TOTAL MUMBER OF ANALYSES PERFORMED	OF DETECTION (LLD) (A)	ALL INDICATOR LOCATIONS HEAN (RANGE)(B)	LOCATION WITH HE LOCATION #, DISTANCE AND DIRECTION	IGHEST ANNUAL MEAN MEAN (RAMGE)(B)	CONTROL LOCATIONS HEAR (RANGE)(B)	# OF NRM (C)
1-131		(-0.00 0.02)	EOC # 32 0 MILES N/A	(-0.06 - 0.02)	(-0.04 - 0.02)	0
CS-134	0.13	(-0.00 - 0.01)	LOC # 32 0 HILES N/A	0.00	(-0.01 - 0.00)	0
CS-137	0.15				(-0.02 - 0.01)	0
RA-226	**					0
TH-228			LOC # 35 0.3 MILES WNW	(-0.01 - 6.01)	(-0.01 - 0.02)	0
	TOTAL NUMBER OF ANALYSES PERFORMED I-131 CS-134 CS-137	TOTAL NUMBER OF ANALYSES DETECTION PERFORMED (LLD) (A) I-131 CS-134 0.15 CS-137 9.15 RA-226	TOTAL MUMBER OF LOCATIONS OF ANALYSES DETECTION HEAN PERFORMED (LLD) (A) (RANGE)(B) I-131 (-0.00 (-0.06 - 0.02)) CS-134 0.15 0.00 (-0.00 - 0.01) CS-137 0.15 0.01 RA-226 (-0.05 - 0.01) TH-228 (-0.18 (-0.75 - 0.20))	TOTAL NUMBER OF LOCATIONS DISTANCE PERFORMED (LLD) (A) (RANGE)(B) AND DIRECTION I-131 0.08 (-6.06 - 0.02) 0 HILES N/A CS-134 0.13 0.00 LOC # 32 0 HILES N/A CS-137 9.15 0.01 LOC # 32 0 HILES N/A RA-226 0.01 LOC # 37C 3.5 MILES NSW RA-226 0.18 LOC # 35 0.3 MILES NSW	TOTAL NUMBER OF LOCATIONS LOCATION #, DISTANCE MEAN (RANGE)(B) AND DIRECTION (RANGE)(B) I-131 0.00 LOC # 32 0.01 (-0.00 - 0.02) CS-134 0.13 0.00 LOC # 32 0.00 (-0.00 - 0.01) 0 MILES M/A (0.00 - 0.01) CS-137 0.15 0.01 LOC # 37C 0.00 (-0.02 - 0.01) RA-226 0.18 LOC # 35 0.01 RA-226 0.18 LOC # 35 0.09 (-0.75 - 0.20) 0.3 MILES MNM (-0.59 - 0.20)	TOTAL NUMBER OF LOCATIONS LOCATION B, DISTANCE MEAN (RANGE)(B) (RANGE)(B) PERFORMED (LLD) (A) (RANGE)(B) AND DIRECTION (RANGE)(B) (RANGE)(B) I-131 0.08

FOOTNOTES

A. For Ge(Li) measurements the MDL's <u>LLD + 2.33</u>. For all others, MDL = 2 x σ background. These MDL's are based on the absence of large amounts of interfering activity (excluding naturally occurring radionuclides). Deviations by about factors of 3 to 4 can occur.

The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with a 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 S_b}{E * V * 2.22 * Y * exp (-\lambda \Delta t)}$$

where

ILD is the lower limit of detection as defined above (as pCi per unit mass or volume)

S_a is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute)

E is the counting efficiency (as counts per transformation)

Y is the sample size (in units of mass or volume)

2,22 is the number of transformation per minute per picocurie

Y is the fractional radiochemical yield (when applicable)

λ is the radioactive decay constant for the particular radionuclide

At is the elapsed time between sample collection (or end of the sample collection period) and time of counting

It should be recognized that LLD is defined as a priori (before the fact) limit representing the capability of a measurement system and not as a posteriori (after the fact) limit for a particular measurement.

FOOTNOTES (Cont'd)

Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidably small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these a priori LLDs unachievable. In such cases, the contributing factors will be identified and described in the *Annual Radiological Environmental Operating Report*.

- B. Analytical results are handled as recommended by HASL ("Reporting of Analytical Results from HASL," letter by Leo B. Higginbotham) and NUREG/CR-4007 (Sept. 1984). Negative values were used in the determination of mean.
- C. Nonroutine reported measurements (NRM's). These are results of samples that exceed the report levels of Table E-2 of the Radiological Effluent Monitoring Manual.
- D. First number is the number of indicator measurements, the second is the number of control measurements.
- E. Assuming 270 m³/paper
- F. Assuming 1080 m³
- G. LLD for leafy vegetables.
- H. LLD from the end of the sample period.

3.2 Data Tables

The data reported in this section are strictly counting statistics. The reported error is two times the standard deviation of the net activity. Unless otherwise noted, the overall error (counting, sample size, chemistry, errors, etc.) is estimated to be 2 to 5 times that listed.

Because of counting statistics, negative values, zeros and numbers below the Minimum Detectable Level (MDL) are statistically valid pieces of data. For the purposes of this report, in order to indicate any background biases, all the valid data are presented. In instances where zeros are listed after significant digits, this is an artifact of the computer data handling program.

Data are given according to sample type as indicated below.

- 1. Gamma Exposure Rate
- 2. Air Particulates, Gross Beta Radioactivity
- Air Particulates, Weekly I-131
- 4. Air Particulates, Quantitative Gamma Spectra
- 5. Air Particulates, Quarterly Strontium*
- 6. Soil*
- 7. Milk Dairy Farms
- 8. Milk Goat Farms
- 9. Pasture Grass
- 10. Well Water*
- Reservoir Water*
- 12. Fruits & Vegetables
- 13. Broad Leaf Vegetation
- 14. Seawater
- 15. Bottom Sediment
- 16. Aquatic Flora
- 17. Fin Fish
- 18. Mussels
- 19. Oysters
- 20. Clams
- 21. Scallops*
- 22. Lobster (and Crabs)

^{*} This type of sampling or analysis was not performed, therefore there is no table.

TABLE 1 MONTHLY
GAMMA EXPOSURE RATE (UR/HR) ×

LOCATIONS

PERIOD	1	2	3	4	5 e	7	8	9	10	11
JAN 93 FEB 93 MAR 93 APR 93 JUL 93 JUL 93 SEP 93 OCT 93 NOV 93 DEC 93	8.4 .3 8.1 .2 7.6 .2 8.1 .1 9.0 .2 9.2 .0 9.2 .4 9.2 .2 9.3 .2 9.8 .0	11.6 .1 10.7 .4 10.3 .1 11.4 .1 11.7 .1 11.9 .1 11.8 .0 11.5 .6 11.6 .2 11.5 .4	7.9 .3 7.9 .2 7.6 .2 8.1 .2 8.5 .1 8.5 .2 8.8 .5 8.8 .8 8.8 .8	8.7.9.2.2.9.9.5.9.9.5.9.9.5.9.9.9.9.9.9.9.9	14.4 .2 10.3 13.9 .0 A 10.3 13.3 .2 9.9 15.7 .0 10.5 15.5 .3 10.5 16.1 .2 10.6 15.5 .1 10.8 15.5 .1 10.8 15.5 .2 10.6 15.6 .4 10.9	0 A 6.7 .0 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	12.7 .1 12.7 .6 12.0 .5 13.0 .0 13.6 .2 13.8 .4 13.2 .1 13.3 .4 13.4 .8	14.0 .7 13.7 .2 13.6 .5 15.4 .2 15.6 .1 16.5 .5 16.0 .3 15.7 .3 15.9 .1 15.4 .6	8.6 .2 8.3 .1 8.1 .2 8.8 .2 8.9 .2 9.4 .2 9.2 .4 9.2 .4 9.2 .1	7.9.4 7.2.3 7.2.3 7.2.3 7.2.0 8.1.4 8.8.0 8.8.0 8.6.0 8.5.2 8.9.3
PERIOD	12C	13C	14C	15C	16C 2	7 50X	54X	55X	98X	99X
JAN 93 FEB 93 MAR 93 APR 93 JUN 93 JUN 93 AUG 93 SEP 93 OCT 93	8.1 .1 7.4 .8 7.7 .4 8.0 .6 8.6 .1 8.2 .1 7.5 .8 9.0 .2	8.5 .1 8.3 .0 7.9 .0 8.6 .1 8.8 .3 8.9 .1 9.1 .1 8.9 .0	10.9 .4 A 10.5 .1 9.9 .4 10.8 .1 11.3 .1 11.8 .6 11.5 .1	7.9 .0 8.4 .0 A 7.4 .2 8.6 .1 9.2 .1 9.3 .1 9.5 .2	7.8 .1 8.1 7.9 .1 7.6 7.3 .3 7.5 7.8 .1 7.8 8.2 .1 8.9 8.5 .2 8.6 8.5 .2 8.6 8.5 .1 8.2 8.6 .5 8.6	.2 7.8 .0 .3 7.6 .1 .1 7.5 .1 .3 7.8 .1 .2 8.4 .0 .0 8.6 .1 .2 8.5 .0	8.4 .0 8.7 .0 7.7 .2 8.8 .0 8.7 .1 9.3 .0 9.4 .1 9.5 .1	7.4 .0 7.6 .7 7.9 .0 7.3 .1 7.6 .1 7.7 .0 8.2 .0 8.1 .1	9.3 .1 9.2 .2 9.0 .1 9.2 .1 9.7 .1 9.7 .0 18.1 .1 10.8 .1	9.8 .6 A 9.3 .1 8.9 .1 10.0 .0 10.2 .2 10.5 .0 10.9 .2

^{*} Values listed are the average of two TiDs. Errors listed are 1 sigma.
A: Single TiD result.

MILLSTONE POINT

AIR PARTICULATES GROSS BETA RADIOACTIVIY (PCI/M3)

		(+/-) 0.803 0.002 0.003 0.003	0.0003	6.003 6.003 6.003 6.003	0.002	6.002 6.002 6.002 6.002	0.005 0.005 0.002 0.002	
	22	0.014 0.014 0.019 0.015	0.017	0.018 0.019 0.018 0.019	0.000 0.000 0.000 0.000 0.000	0.007	0.010 0.001 0.007 0.010	
	SC	(*/-) 0.063 0.063 0.663	0.003 0.003 0.003	0.003 0.003 0.003 0.003	0.002	0.003	0.003	
		0.014 0.018 0.019 0.011	0.013 0.014 0.015 0.011	0.018 0.011 0.011 0.018	0.003 0.007 0.005 0.010	0.010	0.015 0.003 0.008 0.008	
	2X	(*/-) 6.983 6.982 9.063A	9.602	0.0028 0.003 0.002 0.002	6.002	0.002	00.000000000000000000000000000000000000	
	-	0.613 0.019 0.011	0.020	0.014 0.017 0.017 0.019 0.010	0.061 0.066 0.011 6.009	0.014 0.016 0.012 0.011	0.0013	
	pref.	(+/-) 0.003 0.003 0.003	9.003 0.003 0.002 0.003	9.003 6.003 9.003 9.003	0.002 0.002 0.002 0.003	0.003	0.005 0.005 0.005 0.005	
	1	0.017	0.009 0.016 0.014	0.015 0.017 0.013 0.018	9.992 9.993 9.996 6.911	0.010	0.016 0.05 0.05 0.05 0.05	
OMS	9	00.003	6.003 6.003 6.003	6.003 6.003 6.003 6.003	9.005 9.005 9.002 9.003	6.002 9.002 9.002 9.002	0.002	
CATI	ped 1	00000	0.008	6.022 6.022 6.015 6.015	6.666 6.665 6.665 6.665	6.016 6.005 6.005 6.005	0.0000	
0 7		(+/-) 6.802 9.803 9.603	0.003	0.0003	6.692 6.002 6.002 0.002	6.003	6.002 6.002 6.002 6.002	
	9	0.017	00.00	00.000000000000000000000000000000000000	9.692 0.007 0.006 0.007	0.808 0.007 0.511 0.004	8.012 8.003 9.005 9.012	
		(+/-) 0.003 0.003 0.003	8.003 8.003 8.003 8.003	99999	6.662 6.662 6.662 6.663	0.003	9.962 9.962 9.962 9.962	
	10	0.013 0.013 0.012 0.011	0.016 0.015 0.015	0.013	6.665 6.665 6.665 6.665	0.011 0.007 0.011 0.003	6.009 6.003 6.007 9.001	
		6 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0000 0000 0000 0000 0000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.602 6.602 8.602 8.602	9.663 9.662 9.662 8.692	9.002 0.002 0.002 0.002	
	EV.	NNN 8	0.0010	000000000000000000000000000000000000000	0.602 0.007 0.007 0.007	0.016 0.006 0.013 8.005	9.011 9.002 9.014 9.014	
			6.003 6.003 6.003	9.000 9.000 9.000 9.000 9.000 9.000 9.000	0.005 0.005 0.005 0.005	0.0002	6.002 0.002 0.002 0.002	
		912	0.011 0.019 0.019 6.011	0.017	0.982 0.686 0.086 0.088	0.906 9.906 9.911 9.994	0.003 0.003 0.009 0.009	
	PERIOD	AAMA	FE863 FE816 FE812	MARGI MAR15 MAR22	APR05 APR12 APR19 APR26	MAY83 MAY18 MAY17 MAY24	JUN01 JUN07 JUN01 JUN021	

Sample dates may vary by a couple of days.
A: Collection period greater than 8 days.
B: Collection period less than 6 days.

		2	
		E	
	14	200	
	102	PH	
	S	Jess	
	Borr.	64	
	WS.	ALC:	
vi:	-4	0	
3	35	-	rin.
14	75	0%	10
'n	=	200	的里
贤		2	-
9		SKi	70%
ĸ.	æ		319
m	蚁	45	ω
	S.	-	ã.
		illi	145
	OC.	80	
	Kel	777	
	2	15	
	~	22	
		32	
		20	
		発	
		6.6	

27	(+/-) 0.002 9.003 6.002 6.002	6.662 6.062 6.092 6.093	0.002 0.002 0.003	0.002 0.002 0.003 6.003	0.003 0.003 0.003 0.003	0.662
	0.007 0.009 9.007 3.007	0.000 0.014 0.016 0.009	0.010 0.009 0.005 0.012	0.009 0.011 0.006 0.012	8.011 6.011 0.025 0.025 6.006	00.000000000000000000000000000000000000
5c	0.002	0.000 0.000 0.000 0.000 0.000	0.002 0.003 0.003	0.0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	0.000	0.007 0.013 0.010 0.010	6.011 6.001 6.008 0.013	0.009 0.012 0.007 0.010	0.013	0.021
2X	0.002	0.002	000000000000000000000000000000000000000	0.002	88888888888888888888888888888888888888	0.003
3.	0.012	0.018	0.015	6.016 0.013 0.019	00.000	0.023
est 1	(+/-) 0.002 0.002 0.002	6666 6660 6660 6660 6600 6600 6600 660	6.662 6.662 6.662 6.663	0.0003	000000000000000000000000000000000000000	0.003
-	0.008 0.011 0.007 0.006	0.000	0.019 0.011 0.005 0.013	0.010	0.00 0.013 0.013 0.013	8.620 0.017 0.007
0	00000	000000000000000000000000000000000000000	6.002 0.003 0.003	000000000000000000000000000000000000000	00.000	00.00
and i	0.000 0.000 0.000	00.000000000000000000000000000000000000	9.010 9.011 9.008 9.008	0.011 0.007 0.007	0.014 0.014 0.012 0.012	0.019
		0.000 0.000 0.000 0.000 0.000 0.000	6.662 9.663 9.663 9.663	6.000 6.000 6.000 6.000 6.000 6.000	000000000000000000000000000000000000000	0.003
4	6.007 6.008 6.007 6.007	0.006 0.012 0.010 0.010	0.010 0.012 0.004 0.011	0.010	000000000000000000000000000000000000000	0.020
	(+/-) 9.002 0.003 0.002 0.002	8.000 0.000 0.000 0.000 0.000 0.000	0.0000000000000000000000000000000000000	8.003 0.003 0.003	99999	0.003
ю		0.006 0.014 0.011 0.013	6.869 0.018 0.064 0.011	0.011 0.013 0.066	0.017	0.017
		8 . 8 8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.002 0.002 0.003 9.003	0.662	0.0003	000000000000000000000000000000000000000
2		0.015	6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.009 6.016 9.006	0.013	0.020
- 3	(+/-) 0.092 0.093 0.092 0.002	0.0002	0.002	0.002	000000000000000000000000000000000000000	0.003
	0.007 0.009 0.007 0.006	0.007 9.012 9.007 0.012 0.018	6.088 6.012 6.006 6.011	0.012 0.010 0.005 6.911	0.013 0.013 0.013 0.011	0.018
EMDING	UL 96 UL 12 UL 19 UL 26	AUGUZ AUGUS AUG16 AUG23 AUG30	SEP07 SEP20 SEP20	0CT04 0CT12 0CT18 0CT25	NOV81 NOV85 NOV22 NOV29	DEC86 DEC13 DEC20

Sample dates may vary by a couple of days. A: Collection period greater than 8 days. B: Collection period less than 6 days.

	쎂		
	æ	17	3
	Seet	×	7
	8	×	1
NO.	0	3	Ç.
	\$HG	ga	ŧ.
144		Ĺ,	j.
_1	LES	6	
ä	垄	-	į.
eg.	磊		
jii.	ö	pri	ė
	葯	30	ş.
	Dic.	24	à
	Said	7	
	MC.	£	è

_	0.005 0.005 0.003 0.003	0.005 0.005 0.005 0.007	00000000000000000000000000000000000000	0.005 0.005 0.005	9.067 9.006 6.007 0.005	0.000.000.000.000.000.000.000.0000.0000.0000
27	0.996 003 0.001 9.004	0.0000		0.002	0.006 0.003 004 0.003	0.005
26	0.005 0.005 0.005 0.005	0.004	0.000	0.005	0.005 0.053 0.004 0.006	9.004 9.006 0.006 0.005 9.005
pred	0.061	0.003	990 990 995 - 996 - 996	0.003 0.000 0.000	0.000	9.002 0.009 0.009 6.003 9.003
	0.003 0.003 0.005 0.005	6.003 6.005 6.005 9.005	000000000000000000000000000000000000000	6.005 9.005 9.005	8.005 0.005 0.005 0.005	999999999999999999999999999999999999999
ert	0.661	0.003	- 002 0 002 0 006 0 006	003 0 . 003 005	0.003 0.000 002 0.004	0.000 0.000 0.000 0.003 0.003
y o	0.005 0.005 0.005 0.005	0.007 0.005 0.005 0.006	0.000 0.000 0.000 0.000 0.000 0.000	0000 0000 0000 0000 0000	0.002 0.054 0.005 0.005	0.000 0.000 0.000 0.000 0.000 0.000
0 7	0.001	0.000		00000	0.0003	0.000
L 0 C A		0.002	9.003 9.002 9.002 9.002 9.002	000000000000000000000000000000000000000	0.020 0.020 0.002	9.862 9.862 9.962 9.962
4	0.000	00000	0.001 0.001 0.001 0.001	001	0.660 661 0.092	9.001 9.000 002 0.001 0.001
	0.005	6.005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99.000.0000.000000000000000000000000000	9.00.00	9.000 0.000 0.000 0.000 7.000 7.000 9.000
HS.	0000	8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		6.003	0.000	0.000
	0.000 0.000 0.000 0.000 0.000	0.000	999999999999999999999999999999999999999	9.000.000.000.000.000.000.000.000.000.0	0.007 0.000 0.000 0.000	8.006 6.006 6.006 6.003
N	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000	0.0000000000000000000000000000000000000	9000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00000
	0.005 0.005 0.006 0.006 0.006	8.005 6.005 9.005	900000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	9.097	0.0000
pel	0.006 003 0.003 0.003	00.0000	005 005 005 002	190°0 200°0 190°0	0.006 0.003 004 8.003	00000
PERTOD	XXXX	EB 63 EB 98 EB 16 EB 22	MAR 01 MAR 15 MAR 22 MAR 29	APR 05 APR 12 APR 19	MAY 83 MAY 17 MAY 24	JUN 01 JUN 14 JUN 14 JUN 29
		Mic Mic Mic Mic			***	11111

Sample dates may wary by a couple of days.

TABLE 3 AIRBORNE IODINE I-131 (PCI/M3)

Part 1	0.007	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.000 0.000 0.000 0.000 0.000	8.884 9.006 9.011 0.005	000000000000000000000000000000000000000	900 0 900 0 900 0
23	0.003	0002	6.602 9.601 901	001 004 0.003	0.0000000000000000000000000000000000000	0.000
25	(+/-) 6.005 0.006 0.005 0.005	9.906 0.005 0.005	0.004 0.004 0.007	6.007 6.005 6.009	9.096 9.010 9.010 0.006	0.005 0.005 0.005 0.005
-	90000	0.000 0.001 001 0.001	0.983 091 0.099 0.095	0.000	000000000000000000000000000000000000000	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00
	0.005 0.005 0.005 0.005	900000000000000000000000000000000000000	\$.004 0 .004 0 .004 0 .004	6.005 0.005 0.005	0.000 0.004 0.004 0.000 0.000	0.004 0.004 0.005 0.005
pol	0.005	0.000 002 001 001	0.983 601 9.93 0.995	0.000	000000000000000000000000000000000000000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	(+/-) 6.995 0.006 9.006	0.995 0.095 0.004 0.005	9.004	0.005	9.607 9.010 9.010 9.006	9.005 9.005 9.005
1 0	0.0055	8.000 6.000 6.000 8.0001	0.000	8.005 0.000 003 003	000000000000000000000000000000000000000	8.000 6.0005 0005
U	(+/-) 0.862 0.882 0.993	0.002 0.002 0.002 0.002	0.002	8 . 9 8 3 3 4 9 8 3 3 4 9 8 3 3 4 9 3 4 9	0.003 0.003 0.003 0.003	0.000
ď	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.000 6.000 6.000 6.000 6.000		2000	0.000	0.002
	6.005 0.005 0.005 0.005	0.000 0.000 0.000 0.000 0.000 0.000	\$ 00.00 \$ 00.00 \$ 00.00	9.007	0.007 0.005 0.007 0.005 0.005	00.00 00.00 00.00 00.00 00.00 00.00
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			4000	0.000	0.000
	(+/-) 9.034 9.038 0.004 9.004	0.000 0.000 0.000 0.000 0.000 0.000	6.064 6.063 6.067 6.067	8.00% 8.00% 8.00% 9.00%	900000000000000000000000000000000000000	9.993 9.994 9.994 9.995
	0.900.0		0.001		00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 0	
	(+/-) 6.864 6.887 9.887	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.084 6.063 0.067 9.063	0.004 0.004 0.001 0.001	0.00¢ 0.00¢ 0.00¢ 0.00¢	8.003 6.005 8.005 9.005
	NAME	9999	0.001 0.662 0.001		2000	0.000 001 001
PERIOD	ALL 15	MG 02 MG 16 MG 23 MG 30	P 194	T 125	V 222	C 13 C 20 C 27
2.0	. 5555	AUG AUG AUG AUG	S S S S	2888	NOV NOV NOV NOV	200

Sample dates may wary by a couple of days.

į	Ħ	ľ	þ
j		ř	ķ
j	₫	r	k
į	ñ	Á	ė

		and .		
	-	DC		
	977	QTS		
	hose			
	100	1		
10	del		No.	
a	3	型!	2	
la.	i lest	1	6	
1	ba	U	à	
ä¢	SEC.	ILI I	۵	
爥	45	B. I	ķ.	
po	Nh.	SPECTRA	w/	
	Dic	100		
	AI	£		
	195	Ξ.		
		32		
		w		

RU-103	8 . 88822 9 . 88822 9 . 88824 9 . 88834 9 . 88834 9 . 88835 9 . 88835	CE-141 6.8998 6.9998 6.9998 6.9998 6.9998 6.9998 6.9998 6.9998
	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000	BA-146 0.0006 0.0054 -0.0130 0.0054 -0.0130 0.0035 -0.0200 0.0110 0.0114 0.0117 0.0027 0.0089
28-95	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS-137 6.0000 6.0000 6.0000 6.0000 6.0001 6.0001 6.0001 6.0001 6.0002 6.0001 6.0002 6.0002 6.0002 6.0002 6.0002 6.0002 6.0002 6.0002 6.0002
89-00	6.0000 0.0002 0.0000 0.00002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	CS.136 6.9001 6.9001 6.9001 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000 6.9000
BE-7	0,000 0,000 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130 0,130	RU-166 (4/-) 6.6012 0 0013 -0.0012 0 0013 -0.0012 0 0013 0.0012 0 0013 0.0010 0 0013 0.0010 0 0013 0.0010 0 0013
LOCATION	7.00 X X X X X X X X X X X X X X X X X X	LOCATION 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE 4B AIR PARTICULATES GAMMA SPECTRA - QTR 2 (PCI/M3)

ANALYSES

LOCATION	BE-7	CO-68	ZR-95	NB-95	RU-103
1 2 3 4 10 11 12× 15c 27	(+/-) 0.073	(+/-) 0.0001 0.0002 0.0000 0.0001 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002	0.0000 0.0004 0.0002 0.0004 0.0007 0.0007 0.0000 0.0005 0.0004 0.0006 0.0001 0.0006 0.0001 0.0006 0.0001 0.0007	(+/-) 0.0001 0.0002 0.0600 0.0002 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0000 0.0003 0.0000 0.0003 0.0003 0.0003	(+/-) 0.0000 0.0003 0.0003 0.0003 0.0003 0.0005 0.0005 0.0005 -0.0010 0.0005 6.0001 0.0003 0.0000 0.0004 0.0001 0.0003

LOCATION	RU-186	CS-134	CS-137	BA-140	CE-141
1 2 3 4 10	0 0014	9.0901 0.0001 0.0001 0.0001 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	(+/-) 0.0001 0.0001 0.6000 0.0002 0.0000 0.0002 0.0000 0.0002 0.0000 0.0001	-0.0018 0.0073 -0.0020 0.0074 0.0059 0.0120 0.0064 0.0105 0.0070 9.0115 0.0000 0.0074	(+/-) 0.0008 0.0004 0.0000 0.0006 -0.0010 0.0007 0.0000 0.0008 -0.0010 0.0009 0.0008 0.0006
12X 15C 27	-0.0010 0.0011 -0.0010 0.0017	0.0001 0.0002 0.0000 0.0002	0.0000 0.0002 0.0001 0.0001 0.0000 6.0002	-0.0030 0.0110 -0.0030 0.0072 0.0122 0.0120	0.0004 0.0008 0.0000 0.0004 0.0003 0.0007

M.	
96	
prof	
jes Sp	

		0-	0.0	10.4	9.4	0.5	2 6	2 50	
## -95	BA-146	. 8864	0000 0.010	.0020 0.608	0.8541 8.80/	.0010 0.011	0110 0 0020	A 55.40 A 55.000	6.0857 6.011
AMMA SPECTRA - GTR 3 (PCL/M3)	CS-137	(+)	0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.8861 6 .886.	0000 0 000	0.00.0	8 6 B B B B B B B B B B B B B B B B B B
	CS-134	.0001 0.000	0.6561 6.6662	0.00000	D C COM	0.00	4 6 6 6 6 6	5000 B B	6667 8 8
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RU-166	.0010 0.001	9000	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9500	. 00000 B . 0000	2000	2007 4 C000	8638
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOCATION		2	M3 4	5 4	S F	15.6	227	328

MILLSTONE POINT 1993

		4	
	TES	QTR	
-	45	1	4
14	CUE	RA	K33
M	944	E	5
TABL	PART	SPEC	IPCI
	AIR	GAMMA	
		-	

	4+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(4) (+/-) 0.0000 0.0010 0.0017 0.0017 0.0011
RU	60000000	00.00000000000000000000000000000000000
- 95	* 000000000000000000000000000000000000	466 (+/-) 0.0222 0.0184 0.0184 0.0184 0.0214 0.0233
- GW	00000000000000000000000000000000000000	BA-146 0 0078 0. 0 0053 0. 0 0036 0. 0 0270 0. 0 0121 0.
56-	**************************************	(+/-) (+
-82		
99	00000000000000000000000000000000000000	# # # # # # # # # # # # # # # # # # #
9-00		2
7	00000000000000000000000000000000000000	
SEA BEX		
LOCATION		10CATION 2 3 3 3 3 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1

THIS PAGE LEFT BLANK INTENTIONALLY

TABLE 7
DARY MEX
(pCM.)

90	255	ð	Cate	30	Sr-89	S	51-90	-	L131	Ö	Cs-134	Ö	Cs-137	S.	Sa-140	67	La-140
		0.00631			(±		(+/+)		(++)		(+/+)		(74)		(+/+)		(+/+)
	11.5 MB	HRW	1/12/83	00	47	1.4	0.2	0.03	0.12	1.2	6.1	#C)	2.0	60	40	2.4	2.4
	11.5 ME	NWW	2/9/93	0.0	0.4	1.0	0.1	0.07	60.0	1.0	40	1.8	60	17	80	1.7	2.5
10	11.5 ME	NNW	3/9/93	0.8	23	1.5	0.3	-0.11	0.09	-17	13	1.8	9)	κņ	SC)	1.7	2.0
(D)	11.5 MB	MANA	4/8/33	0.5	1.7	13	0.2	10.0	0.10	0.2	1.4	0.0	1,5	7	NO.	-0.4	*
	5 346	WWW	1/12/93	103	67	2.2	0.5	2000	0 to	-	P.	7.4	3.6	*	W		
	O F. B.E.	WINNE	2/0/04	0.1	0.8	10	0 4	200	0.00	00	9	00		1 7) M		4 8
	2 2 26	MANA	340,014	70	6.4			200	800		2 6	000	2.0	, w	o e	9 6	4 0
	200	WANAN	44.00	0.4		2 4	200	200	0 44	2 0 4	, e	¥ 6	7 7 7	, ,	ч и	9.0	
			20000				3 6	20.00	5					7.	n	0.0	
	9.5 MB	WWW	5/10/93	9	0.0	1.4	0.1	90'0	0.11	70	1.7	00	90	(1)	9	9.0-	22
	9.5 M	WWW	8/7/83	1.3	2.4	2.3	9.0	0.04	0.06	0.8	0)	1.0	1.9	*	1	4.2	53
	9.5 MI	WINN	7/7/83	9.3	40.	1.4	0.1	50.0	0.09	0.5	1.7	-0.3	1.7	0	10	2.1	2.4
	9.5 MI	WWW	8/10/93	0.1	2.1	1.6	0.3	-0.09	0.06	-0.8	9.	0.0	1.8	2	10	1.3	22
	8.5 Mil	WNW	8/12/93	60	2.7	5	0.3	0.03	0.11	-0.1	1.8	0.0	1.9	7	60	9.0	23
	9.5 MB	WWW	10/13/93	-0.1	10	1.3	0.2	-0.02	0.13	0.1	1.00	0.0	22	7	NO.	2.9	2.4
	9.5 MB	WWW	11/8/93	-0.5	80.5	2.4	0.2	10.01	0.07	0.3	40	2.3	2.2	φ	40	90	2,4
	9.5 MB	WARW	12/14/83	0.0	1.6	1.0	0.2	0.09	0.14	10.1	60	2.0	1.7	ч	in	00	2.3
	43.038	TA BE	CONCHIN		ř		4			;	4						
	12.0 mm	212	26/7:11		K. 1	2	N C	97.79	21.72	1.4	D.	10	2.0	?	Ф	2.8	2.5
	13.0 MI	ENE	2/9/83	0.2	50	3.0	0.2	0.04	90.0	0.0	100	0.1	60	0	9	0.0	2
	13.0 Mil	ENE	3,9/83	0.7	Oh -	3.4	0.3	0.01	0.08	-0.4	£.	0.0	1.7	2	10	0.4	2.4
9)	13.0 Mil	ENE	446/83	0.1	1.4	2.8	0.3	90.0	90.0	-10	13	0.0	4.	9	so.	9.0	*
	16.0 MB	NAMA	1/12/93	9.0	1.5	1.6	0.2	-0.06	0.10	1.0	E.	2.3	60	-7	10	0.0	2
		NNW	2/9/93	-0.8	0.4	1.7	0.2	0000	0.06	-1.0	2.2	1.5	2.3	Ф	60	0.7	ci
22C		NNW	3/9/93	-0.3	1.0	1.3	0.2	-0.11	0.10	6.0	1.6	80	3.0	sO.	Θ	10.7	2
		NNW	4583	9.0	1.1	1.1	0.2	00.00	900	1.5	1.8	6.0	1.7	40	80	9.0	N
	16.0 MI	HANN	5/10/83	-1.2	1.4	2.3	0.2	00.00	90.0	0.1	1.7	0.0	10	.2	80	0.4	2
20C	16.0 MS	NANN	65/83	1.0	1.9	1.9	0.3	-0.12	60.0	-0.7	40	8.8	3.5	2	NO.	-0.5	2
	16.0 ME	MWW	7/6/83	8.0	1.3	2.5	0.2	10.01	0.12	1.1	1.7	8.4	3.3	0	40	90	2
	18.0 ME	NNW	8/9/83	0.3	1,4	4,0	0.2	10.01	0000	-0.1	6	2.7	2.0	60	80	10	25
	16.0 MB	NNW	9/12/93	-0.1	12	00,	0.2	-0.01	90'0	1.7	2.0	60	3.6	4	Pa	0.0	2.8
200	16.0 MI	NAMA	10/12/93	1.5	5	1.4	0.2	-0.02	0.14	-0.9	40	0.0	2.0	80	80	0.7	2.4
	16.0 MF	NNW	11/7/83	-0.1	12	1,5	0.2	0.08	0000	-1.4	40)	0.2	6	4	40	1.7	22
-	1	A 44. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	The second second														

^{*} Starting May 1, 1993, the ODCM was revised to reflect a change in milk sample locations. Two distant cow milk stations were deleted and replaced with two closer goat milk stations. As shown the location numbers were also changed as of May 1.

LOCATION	COLLECTION DATE	SR-89		SR-9	9	1-1	31	CS-1	34	CS-1	37	BA-1	40	1.A-1	40
23 23 23 23 23 23 23 23	01/12/93 06/06/93 07/06/93 08/09/93 09/13/93 10/13/93	-1.1 -2.0 -1.6	/-) 2.8 2.7 2.1 2.8 1.9	1.3 20.7 14.6 14.7 12.1 8.1	(+/-) 8.3 8.5 0.4 0.4 0.4	-0.03 -0.02 0.67 -0.11 6.00 0.08	(+/-) 0.11 0.10 0.15 0.13 0.09 0.12	-1.3 1.9 -8.4 8.6 1.5	(*,'-) 1.7 1.5 1.9 1.7 1.7	11.0 95.3 67.6 68.8 52.3 46.0	(+/-) 3.4 9.5 6.8 6.9 5.2 4.7	6 -4 5 3 2	(+/-) 6 4 7 5 5	-1.7 -1.3 -0.8 -0.9 1.3 -1.0	(+/-) 2.1 1.3 2.4 1.7 2.0 2.1
24C 24C 24C 24C 24C 24C 24C 24C	01/12/93 05/10/93 06/06/93 07/06/93 08/09/93 09/13/93 10/13/93	-0.9 -1.7 0.6 1.5	1.8 1.9 3.2 2.3 1.8 1.7 2.6	3.8 2.9 5.2 4.1 3.7 3.9 6.5	8.3 8.2 8.4 8.3 8.2 0.3 8.4	-0.12 -0.02 -0.03 -0.03 -0.05 0.17	0.10 0.10 0.16 0.11 0.11 8.09 0.18	1.9 -1.5 2.5 0.2 -1.5 8.0 9.2	2.3 0.0 2.0 1.8 1.6 1.9	0.0 8.2 9.8 15.0 15.5 9.4 7.7	2.4 3.1 4.1 4.0 3.5 2.5 3.7	11 -6 0 -3 4 -6 -9	8 9 5 6 5 6	-3.9 0.0 0.6 -1.9 0.0 -0.8 -1.9	2.5 0.0 2.0 2.1 2.2 2.0 2.5

Neither goat milk nor pasture grass were available in Feb.-Apr. at Locations 23 and 24C.

Starting May 1, sampling of new goat farms (21) and (22) was initiated as per REMODCH requirements.

Neither goat milk nor pasture grass were available in Mov. or Dec. at any goat milk locations.

PASTURE GRASS * (PCI/G WET WT.)

Ø-	(+/+)		0.010	278.0	0.000	0.699	0.010							0.011	0.612
FE-59		000	0 000	0000	- 0 000	0.602	0.005							-0.998	0.605
CO-58	(+/-)	0.005	8.085	0.003	6.002	900.0	9.064		6.004	9.69.6	9.007	0.006	0.005	9.005	0.005
00		0.689	-0.003	-0.002	0.001	908.6	0.000		0000					-0.005	0.001
FBN-54	14/-3	18.		-		900.0			900	8 007	0 007	000	0000	622.2	6.065
Ē		-0.803	3.066	-6.001	0.001	2000		-0.003	0.004	-6.802	0.000	9 885	0 000	70000	0.005
51		90.0	4		-8-	W 1		8.63	8.05	9.86	8.05	0.04	0.04		9.04
CR-51		1 CO	5 0 0	000	-8.02	-0.82		-0.02	9.63	9.00	00.0	-0.01	-0.03		0.03
(+/-)	4	3 C	1 00	90.0	0.32	6.28		9.56	44.0	0.65	0.94	8.87	8.63		6.63
84-X	0	5.20 5.20 5.20	5.76	2.56	3.16	2.81		0 10	8.04	0.03	7.36	6.74	6.34	1	8.9
(-/-)	0 07	0.00	9.03	0.07	0.12	6.21	9 97	00.0	200.00	0 0	24.46	0 0	8.18	** *	
DE-	0.18	0.43	0.26	69.0	1.22	2.12	0 13	0 R4	0 3.8	0 41	6 RR	3 2 2	4.00	6 75	
COLLECTION	05/10/93	86/07/93	07/01/93	00/10/93	18/12/93	10/13/73	05/10/93	06/07/93	07/07/93	68/18/63	09/13/93	16/13/93		05/10/93	
LOCATION	23	21	22	2.5	21		22	22	55	22	25	22		23.34	

RU-196	(+/-)	0 063	8.047	0.024	0.018	196.0	U . 940	8.633	0.054	9.065	9.059	0.041	0.843	9.046
RU		9.034	-0.096	600.0	0.001	9.042	676.0	8.833	-0.016	-0.046	0.015	-0.010	-0.003	9.836
RU-103	(+/+)	9.995	906.8	0.002	6.002	0.005		0.004	990.0	9.007	0.007	0.002	6.885	6.665
RU-1		-0.901	0.003	0.000	0.00	-0.864		-0.002	8 . 095	999.0	000.00	500.00	Tanta	0.001
MB-95	1-/41	9.005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	200.0	6.005	-	500.0	0000	0.007	0 000	B B B F		0.005
MB		0.002	00000	0 000	0.005	0.000		00000						0.005
ZR-95		0.610	0.005	0.004	0.010	0.000	0 000	0.011	9.014	0.814	9.654	0.010		0.012
ZR		9.000	-0.008	9.004	000.0	90.00	0.900	-0.048	-8.696	0.000	0.003	-0.033	1	0.012
ZN-65	0 011	0.612	0.006	0.005	0.036	9.016	6.88.0	0.014	9.016	0.016	9.011	8.012		0.013
NZ	8 555	6.003	9.896	9.000	400.00	6.019	9.999	0.001	0.011	-0.083	6000	-8.865	0 000	9
69-03	- 0.9	9.005	. 16	*			9.684	9.000	0.007	9 90 5	9 9 9 9	6.863	0.885	
93		0.003					0.003	0.000	9 000	0 000	-8.002	1	-6.001	
COLLECTION	05/10/93	06/87/93	38/10/93	09/13/93	16/13/93	00.110.100	06/07/07	87/87/03	08/10/03	09/13/93	19/13/93		05/10/93	
LOCATION	21	21	21	21	21	23	22	22	22	22	22		23	

^{*} Samples taken as a substitute for unavailable goat wilk.

	N 550	MT.)
4	GRAS	MET
TABL	TURE	9/13
	PAS	D.

\$\text{\$6\text{16\times}\$} \tag{6\times} \ta	LOCATION	COLLECTION	M	31	S	134	CS	137	K	0	LA	140	CE	ped 1 -
06/19/33				(+/+)		(+/+)		(-/+)		(+/-)		(-/+)		(+/+)
05/18/93		05/10/93	9 8	8.0	69	000	0.0	0 0	0.0	0.0	0.00	8 . 60	90	90
05/13/93		87/87/93	. 96	. 00	. 99	. 9.6	1. 16	(4)	0.0	00	0.00	0.00	0.0	. 50
86/18/93 -8.003 0.004 0.005 0.025 0.025 0.014 0.015 0.005 0.025 0.014 0.015 0.005 0.005 0.005 0.015 0.005 0.		88/19/93	99	. 00	00.	. 69	. 84	9	0	. 0.0	0.00	0.60	0.0	. 90
## ## ## ## ## ## ## ## ## ## ## ## ##		09/13/93	. 80	. 00	. 86	00	.26	0	0.0	. 0 .	. 00	00.00	0	69.
05/12/93 0.000 0.0		10/13/63	9.99	0	. 00	. 80	.27	0	0	. 0	8.89	0.09	0	. 6.9
07/18/93 0.000 0.0		85/18/93	40	. 6 0	0.0	6.9	0.0	0.0	0	. 0 1	90	0 0	00.0	60
05/18/93 - 0.017 0.011 0.005 0.006 0.025 0.005 0.005 0.005 0.007 0.001 0.005 0		06/07/93	0	. 00	90.	. 86	. 9 0	. 00	0	. 0 .	. 08	0.00	0.00	0
08/18/93 0.000 0.001 0.000 0.001 0.000 0.001 0.005 0.0		67/67/93	0.0	. 01	. 86	. 00	. 02	.03	0.	. 02	00.0	0.00	00.	0
COLLECTION CE-144 CE		08/10/93	9	. 01	0.00	. 0.0	P I	. 61	0	. 82	0.61	0.00	. 89	0
COLLECTION CE-144 CE-144 RA-226 TH-228 SR-99 (*/-)		10/13/93	00	.00	9.69	. 69	. 99	.00	90	10.	0.01	0.00	0.00	00
COLLECTION CE-144 RA-226 TH-228 SR-89 SR-90 (*/-) (5/110/9	9.6	0.0	0	8.0	0	0.0	000	0	0	00 0	0 01	C
-8.001 0 027 -0.069 0 086 -0.011 0.007 -0.004 0.008 0.032 0.009 0.032 0.009 0.032 0.003 0.	OCATION	OLLECTION	4	144	ret.	226	20	228	ac so	90	ac V)	0		
-8.001 0.027 -0.069 0.086 -0.011 0.007 -0.004 0.008 0.032 0.00 -8.019 0.032 -0.340 0.096 -0.014 0.009 -0.002 0.003 0.027 0.00 -8.019 0.032 -0.049 0.096 0.006 -0.014 0.011 0.003 0.003 -0.024 0.013 0.049 0.050 0.006 -0.014 0.011 0.003 0.003 -0.026 0.025 -0.049 0.040 0.006 0.004 0.014 0.128 0.003 -0.028 0.026 -0.013 0.062 0.006 0.006 0.001 0.004 0.014 0.025 0.00 -0.028 0.029 -0.019 0.062 0.006 0.006 0.001 0.004 0.005 0.006 -0.028 0.029 -0.019 0.062 0.006 0.010 -0.001 0.004 0.055 0.00 -0.027 0.036 -0.039 0.127 0.006 0.010 -0.001 0.010 0.055 0.00 -0.027 0.026 -0.036 0.006 0.006 0.001 0.010 0.010 0.055 0.00	-			1	1	3	-	4.	日本日本日本日		***	1		
-9.001 0.027 -0.069 0.086 -0.011 0.007 -0.004 0.008 0.032 0.00 -0.019 0.032 -0.049 0.049 0.006 -0.014 0.002 0.013 0.003 -0.012 0.013 -0.049 0.009 0.005 -0.014 0.013 0.003 -0.025 0.025 -0.049 0.009 0.005 -0.014 0.011 0.027 0.00 -0.025 0.025 -0.049 0.009 0.005 0.004 0.014 0.128 0.00 -0.026 0.025 -0.019 0.062 0.006 0.006 0.004 0.014 0.128 0.00 -0.027 0.026 0.026 -0.008 0.006 0.004 0.014 0.028 0.00 -0.027 0.026 0.026 0.006 0.006 0.005 0.001 0.004 0.005 0.00 -0.025 0.026 -0.024 0.114 0.006 0.012 -0.001 0.004 0.014 0.055 0.00 -0.025 0.036 -0.234 0.114 0.006 0.012 -0.001 0.004 0.010 0.055 0.00 -0.025 0.036 -0.234 0.114 0.006 0.012 -0.001 0.014 0.071 0.00 -0.025 0.036 -0.034 0.114 0.008 0.008 0.013 0.011 0.071 0.00				-/+		1.0		4		-/+		+		
-0.019 0.032 -0.340 0.696 -0.014 0.009 -0.002 0.003 0.		05/10/93	- 8	0	9.96	.91	6.01	96	0	0.0	0	0.00		
-0.024 0.013 -0.049 0.049 0.020 0.006 -0.014 0.011 0.003 0.00 0.004 0.015 0.005 0.005 0.005 0.014 0.014 0.011 0.003 0.005 0.00		06/07/93	60		0.34		0.01	0.0	9.8	. 66	0	00.00		
-0.002 0.013 0.026 -0.046 0.000 0.003 -0.024 0.025 -0.044 0.001 0.006 0.004 0.014 0.128 0.006 0.024 0.024 0.025 0.006 0.006 0.010 0.025 0.006 0.014 0.025 0.006 0.024 0.012 0.025 0.006 0.012 0.015 0.004 0.025 0.006 0.012 0.015 0.004 0.055 0.006 0.012 0.015 0.004 0.055 0.006 0.012 0.012 0.015 0.004 0.055 0.006 0.012 0.012 0.015 0.004 0.055 0.006 0.012 0.012 0.012 0.055 0.001 0.012 0.027 0.026 0.011 0.011 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.010 0.000 0.010 0.000 0.010 0.001 0.0		07/07/43	0	0	0.64	- 10	. 82	. 00	0.0	187		00.0		
-0.055 0.025 -0.045 0.079 0.001 0.008 0.004 0.014 0.128 0.00 -0.024 0.025 -0.141 0.084 -0.005 0.007 -0.004 0.014 0.128 0.00 -0.028 0.035 -0.111 0.006 0.012 -0.001 0.004 0.015 0.005 0.00 -0.027 0.035 -0.036 0.111 0.006 0.012 -0.001 0.019 0.055 0.00 -0.025 0.036 -0.234 0.111 0.002 0.012 -0.001 0.019 0.055 0.00 -0.025 0.036 -0.234 0.111 0.008 -0.003 0.011 0.071 0.00		68/19/93		9	. 83	. 8	00-	00.		*				
-0.024 0.024 0.026 -0.141 0.084 -0.005 0.007 -0.004 0.014 0.128 0.00 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.011 0.028 0.025 0.008 0.011 0.028 0.025 0.008 0.011 0.028 0.028 0.028 0.011 0.028 0.008 0.008 0.008 -0.008 0.011 0.011 0.00 0.028 0.00 0.027 -0.030 0.011 0.008 0.008 -0.008 0.011 0.071 0.00 0.008 0.008 0.008 0.011 0.071 0.00 0.008 0.008 0.008 0.008 0.011 0.00		89/13/93		0	9.84	- 20	. 99	6.0	16		4			
-0.028 0.029 -0.019 0.062 0.000 0.006 0.001 0.008 0.065 0.00 -0.020 0.039 -0.309 0.117 -0.006 0.010 -0.015 0.004 0.092 0.00 -0.027 0.036 -0.234 0.111 -0.000 0.011 0.010 0.055 0.00 -0.016 0.027 -0.057 0.006 0.000 0.008 -0.003 0.011 0.071 0.00 0.001 0.027 -0.030 0.004 -0.017 0.008 -0.003 0.011 0.071 0.00		10/13/93	63	9	9.14	- 80	. 88	. 00	0	69	(FIRE)	8.66		
-0.020 0.039 -0.309 0.117 -0.006 0.010 -0.015 0.004 0.092 0.00 -0.027 0.036 -0.234 0.111 -0.002 0.011 0.010 0.055 0.00 -0.015 0.035 -0.234 0.011 0.000 0.003 -0.015 0.027 -0.057 0.005 0.000 0.003 0.001 0.027 -0.030 0.001 -0.017 0.008 -0.003 0.011 0.071 0.00		05/10/93	- 20	0	0	0	00	. 09	. 06	. 0.0	0	6.00		
-0.027 0.036 -0.082 0.124 0.000 0.012 -0.001 5.010 0.055 0.00 0.025 0.000 0.011 -0.000 0.005 0.010 0.055 0.00 0.011 0.014 0.027 -0.057 0.066 0.000 0.008 -0.003 0.011 0.071 0.00 0.000 0.002 0.003 0.011 0.071 0.00 0.000 0.002 0.010 0.071 0.000 0.000 0.000 0.010 0.001 0.001 0.001		86/87/93	At	0	0	m	0.60	. 03	. 01	. 00	0	0.60		
-6.025 0.036 -0.234 0.111 -0.002 0.011 0.005 0.001 0.007 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.000 -0.002 0.012 0.030 0.010 0.000 -0.016 0.008 -0.009 0.010 0.001 0.00		07/07/93		0.	0	-	. 00	TO.	0.00	. 01	0	0.99		
-6.016 0.027 -0.057 0.056 0.000 0.008 -0.003 0.011 0.071 0.00 0.001 0.027 -0.030 0.051 -0.017 0.008 -0.003 0.011 0.071 0.00 -0.022 0.030 -0.180 0.090 -0.016 0.008 -0.009 0.010 0.061 0.00		08/16/93	8	0	0	700	03.0	. 01			*			
0.001 0.027 -0.630 0.081 -0.917 0.008 -0.003 0.011 0.071 0.00 -0.022 0.630 -0.180 0.090 -0.016 0.008 -0.009 0.010 0.061 0.00		09/13/93	6	0	60	0	. 99	. 00						
3 -0.022 0.030 -0.180 0.090 -0.016 0.008 -0.009 0.010 0.061 0.00		10/13/93	×	0		0	0.91	. 96	9.00	. 01	0	00		
		05/10/93		. 83	0.18	60.	0.01	. 69	0 . 00	. 61	.06	. 00		

* Samples taken as a substitute for unavailable goat milk.

10		1 44	HAND	NMN0		D 10 T 0 1 10	
AGE 3	0	-/+)	0.004	0000	VD 1	0.043	0.028 0.112 0.030 0.029
PA	MA MA	1	000	005	5	NABR	
	Mic		0000	0000		000.000	007
			1111	0000		0000	0000
		1-1	0002	00000	1	002	500
	5.00	+	0000	0000	103	0000	9969
	-03		000	052	2	99	900
			0000	8000		0000	0000
			200M	80 ml 80 80			
		-/+	0000	0000			003
	-34	1 100	0000	0000	2		0000
	£		691	0000	9	999 999 993 995	000000000000000000000000000000000000000
			0000	0000		0000	0000
		-	007	8000			2003
	100	1+3	0000	0000	50		0000
BLES.	DC.		M M M M	N en en m	OK 1	SHIP	CV = 10 10
	000		0000	0000	7	00.00	000000000000000000000000000000000000000
WEGETA WET WI				1111		777	777
-et an en		1-1	34	26	13		0008 0003 0007
RUITS	0	*	0000	8000	10 1 7	4 4 4 4	8000
ld.	K-4		20000	8 K 8 K	9-11-2	912	101
			MMON	N M O N		0000	0000
			\$ 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	nenn		2000	N H N J
		-	0000	0000	- 13	0000	0003
	7-38				69-03		CHER
	- 70		0.00	003	0	.004	0000
				0000		0000	0000
			52	\$/S		40	10
	SAZ .		NCE RRI ES AGE	S S S S S S S S S S S S S S S S S S S	w i	PRIE RRIE FS AGE	RRIE ES AGE
	TYPE		LETTUCE AMBERRI APPLES CABBAGE	OTHER AWBERRI APPLES CABBAGE	34.1	LETTUCE AMBERRI APPLES CABBAGE	OTHER AWBERRI APPLES CARBAGE
1993			LETTUCE STRAWBERRIES APPLES CABBAGE	OTHER STRAMBERRIES APPLES CABBAGE		LETTUCE STRAMBERRIES APPLES CABBAGE	STRAMBERRIE APPLES CABBAGE
	WO.				TOW		
N.	DATE		96/15/93 96/15/93 99/23/93	23/23/	COLLECTION	06/15/93 06/15/93 09/23/93	86/15/93 86/15/93 89/23/93 89/23/93
POI	COLLECTION		86/15/93 86/15/93 89/23/93	06/15/93 06/15/93 09/23/93	100	86/15/93 86/15/93 89/23/93	06/15/93 06/15/93 09/23/93 09/23/93
MILLSTONE POINT							
LEST	LOCATION		25 25 25 25 25 25 25 25 25 25 25 25 25 2	260	LOCATION	2222	26C 26C 26C 26C
K	9				8		

7.2	
0	
'n	
87.7	
14	
CD	
45	
-	
	į,
	м
	м
	N N
	S 181
en.	FABI E
32	ETABLE
32	CHAPTER
E 3.2	¥
BLE 12	¥
ABLE 12	¥
TABLE 12	¥
TABLE 12	SUZUE OF
TABLE 12	TO B UENE
TABLE 12	SUZUE OF
TABLE 12	TO B UENE
93 TABLE 12	TO B UENE
POST TABLE 12	TO B UENE

III 8.014	FRUITS AVE (-) -3 -6-34 614 -9-804 0-804 605 -9-801 0-805 606 -9-801 0-805 607 -9-801 0-805 608 0-805 0-805 609 0-805 0-805 609 0-805	FRUITS & VEGETABLES (PCI/G WET WT.) (-) (-) (-) (-) (-) (-) (-) (FRUITS AND EXAMINES (FLIST FRUITS AND EXAMINES AND EXAMINES (FLIST FRUITS AND EXAMINES AND EXAMINES (FLIST FRUITS AND EXAMINES AND EXAMINE	FRUITS # VECETABLES (PCI/G WET WI) (+/-)	FRUITS WEE 17 HT.) (PCI/G WET WT.) (F/-) (FCI/G WET WT.) (F/-) (F/-	FRUITS AVEGETABLES (PCI/G WET WILL (+/-)
134 (PCI/S WEE IX (PCI/S WEE IX MEE I	134 CS-137 135 CS-137 147-) 14	134 PEGETABLES (PCI/G WET WIT) 134 CS-137 (F/-) (+/) (+/) (+/) (+/) (+/	134 RVEGETABLES (PCI/G WET MT) 134 CS-137 BA-140 BA-140 B-002 B-003 B-00	### PALLS PA	## PE # F # F # F # F # F # F # F # F # F #	### PEGETABLES PCI/G WET WIT) 134
777 777 666 666 666 666 666 666 666	WEETABLES	WET HALES WET MALES WET MALES	VECTABLES WET WILL CS-137 0.003 0.005 0.001 0.001 0.000 0.003 0.001 0.005 0.000 0.003 0.001 0.005 0.000 0.000 0.005 1.14-28 TH-228 TH-228 1.14-1 0.001 0.005 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005	VECETABLES WET WILL CS-137 BA-140 1 (*/-)	VECTABLES WET WIT.) CS-137 BA-140 (*/-)	VECTABLES WET WIT. CS-137 BA-140 LA-140 CS-137 BA-140 LA-140 LA-140 CS-137 BA-140 CS-137 CS-130 CS-137 CS-137 CS-130 CS-137 CS-130 CS-137 CS-137 CS-137 CS-130 CS-137 CS-137 CS-130 C
	Min 8888 8888 814 8888 88	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8A-140 6.005 6.005 6.005 6.005 6.005 6.012 6.005 6.012 6.005 6	8A-140 (*/-) 0.0055 0.0055 0.0011 0.0055 0.0011 0.0055 0.0055 0.0011 0.0055	84-140 (*/-) (87 BA-140 LA-140 LA-140 (*/-)

人名人人人人 印印印印印印 电电电电电阻 医电阻电阻阻 医电阻电阻阻

of April the Site Boundary location (17) in the south met due to insufficient count time. performed due to a laboratory oversight. at to not No sample was available I-131 MDL of 0.025 was The Sr-59 analysis was

HILLSTONE POINT

90	(+/+)	0.043		8.845					0.058				196.0					0.055			
RU-106		838	030	010	634	926	000		698	117	900	22	990	800	022	800.0-	616	924	645	987	003
0.3	(+/+)	0.005	900.0	0.036	6.00.0	6.00.0	6.00.0	980.0	9.607	6.00.0	986.8	6.812	0.006	9.00.0	900.0	0.007		0.007			
RU-103		9.894	-0.005	0.003	-8.096	-0.004	9.003	-0.003	-0.004	-0.003	0.907	0.013	-0.001	-8.963	0.603	0.091	0.000	0.808	-0.001	9.003	-6.002
SC .	(-/+)	0.605		0.695					-100	-	1.0	-	0.005		9.69.6			9.007			
NB-95		9.696	8.909	0.000	0.000	0.00.0	8.667	-0.003	0.001	0.000	0.690	8.096	0.003	0.000	0.000	9.000	6.009	0.013	0.302	-6.002	9.004
32	(-/+)	0.010	0.011	0.011	6.916	0.018	6.017	0.013	6.013	8.012	9.610	0.621	0.012	0.068	0.010	6.014	0.015	9.814	0.011	0.616	0.010
ZR-95				0000.0					-6.903	9.000	-0.005	-6.018	6.568	0.007	-0.003	-0.901	9.000	6.901	-0.882	0.010	-0.015
in.	(+/+)	0.012	0.013	0.911	0.018	9.019	0.016	0.012	0.014	0.012	0.011	0.023	6.012	6.669	0.011	6.017	9.816	0.013	6.613	0.010	0.010
S9-NZ		0.004	-0.005	6.061	8.883	-0.668	-0.010	8.001	0.000	-8.008	0.012	0.696	-0.603	-0.094	0.007	9.866	900.0	-8.803	0.001	0.001	0.008
99		986.0	8.996	6.665	8.698	6.609	0.008	900.0					6.005		900.0	8.00.0					
-03			- 0	-6.002	4	10		0.000	-0.007	. 0	0	0	9.00%	0	9.00%	0	-0.008	9.000	9.896	-0.001	
COLLECTION		84/27/93	125/	06/15/93	7/89/7	8/24/	No.	8/2	94/27/93	05/25/93	06/15/53	67/89/93	8/24/	- %	8/2	05/25/93 ×	86/15/93	67/09/93	08/24/95	2	0
(book	3 3 2 2 3 4 5 6 6 7 7		-	***	100	-	,000	mi							10			17			3.7

* No sample was available at the Site Boundary location (17) in the month of April. A: I-151 MDL of 0.625 was not met due to insufficient count time. B: The Sr-89 analysis was not performed due to a laboratory oversight.

141	(+/+)							0.000							6.899	3.011	0.012	0.010	600 0	0.010	0.011
CE-141		900	93.6	183	984	116	233	002	101	500	681	563	000	101	900	182	901	0.1	187	63	0.07
		0.0	- 8 . 6	0.0	0.0	0.0	-9.6	0.0	6.9	-9.0	0.0	- 9.0	0.0	-0.8	-8.0	0.0	- 8	-0.0	-0.0	0.0	-0.0
4.0	(+/+)	g anr	0.007	600.0	6.015	0.012	0.013	0.012	2.754				9.007		0.011					0.007	0.012
LA-148		PE 40	200	93	8	00	93	23			0			u.							
Ą		-0.0	6.8	6.0	- 9.0	8.8	-0.0	0.0-	0.0	-0.0	-0.9	0.0	0.002	-8.9	-9.0	9.8	9.00	0.0	0.9	0.0-	-0.003
95	(+/+)	9.918	6.915	0.022	0.638	0.032	0.035	0.030					0.019			9.022	0.032	0.027	0.622	6.019	0.628
BA-146		12.2	500	98	33	N)	23	20	20	9.0	96	50	613	10	23	56	9.5	90	18	000	93
		8.8	0.0	0.0	0.0	0.0	9.6-	-0.6	- 8	-8.0	0.0	-8.0	9.6	0.0	9.6	8.8	0.0	0.0-	0.0	0.0	0 0
CS-137	1+/-1	9.00.0	8.097	6.00.0	0.018	6.019	0.015	0.010	0.012	0.013	0.010	0.011	0.686	0.008	9.005	800.0	0.014	0.913	9.013	0.610	0.011
-S3		0.801	0.000.0										0.690							0.035	
CS-134	(-/+)	0.005	950.0	0.005	600.0	600.0	0.998	9.00.0					6.005							0.006	
-53		63	906	280	101	600	187	102	103	600	102	501	500	0.0	96	10	10	61	88	000	90
		0	-0.5	0	0	0.1	0	0	0	-8.	0	0	- 8.6	0.0	-0.0					0.0	
												45									
-131	(+/+)	6.669	0.007	. 3		0.016		- 1	0.012	-	- 18		6.010	0	14	*		18	*	0.010	*
1-1		8.008	1.9	0.003	-0.013	·6.019	-6.001	9.019	-6.697	- 5.802	9.882	-0.010	-0.007	6.867	-8.863	0.002	-0.698	6.608	-6.865	0.003	0.612
× .																*					
COLLECTION		84/27/93	05/25/93	86/15/93	67/09/70	08/24/93	89/23/93	16/20/93	04/27/93	05/25/93	06/15/93	67/00/193	08/24/93	89/23/93	10/26/93	85/25/93	06/15/93	07/09/93	08/24/93	89/23/93	10/28/93
LOCATION			eri	ms	1	pret	-	peq	10	10	1.6	20	10	10	10	17	17	17	17	27	1.7

^{*} No sample was available at the Site Boundary location (17) in the month of April. A: I-131 MDL of 0.025 was not met due to insufficient count time. B: The Sr-89 analysis was not performed due to a laboratory oversight.

TABLE 13 BROADLEAF VEGETATION (PCI/G WET WT.)

LOCATION	COLLECTION	CE-144	RA-226	TH-228	SR-89	SR-90
		(+/-)	(+/-)	(+/-)	(+/-)	(+/-)
1 1 1 1 1 1 1 1	94/27/93 95/25/93 96/15/93 97/09/93 98/29/93 19/23/93	-0.060 0.032 -0.034 0.034 -0.022 0.031 -0.099 0.045 0.023 0.056 -0.013 0.044 -0.020 0.030	-0.098 0.039 0.000 0.107 -0.066 0.094 0.000 0.151 -0.175 0.165 -0.036 0.137 0.087 0.093	-8.084 0.088 0.035 0.011 -0.017 0.008 0.000 0.014 0.000 0.014 -0.009 0.013 0.041 0.016	-0.008 0.007 -0.033 0.915 -0.011 0.016 -0.025 0.022 -0.001 0.007	0.020 0.003 0.107 0.011 0.131 0.012 0.158 0.011 0.092 0.009 0.015 0.003 0.068 0.808
10 10 10 10 10 10	04/27/93 05/25/93 06/15/93 07/09/93 08/24/93 09/23/93 10/20/93	8.002 0.055 -0.023 0.034 -0.045 0.029 -0.045 0.065 -0.040 0.031 -0.034 0.022 -0.047 0.033	0.000 0.151 -0.223 0.104 -0.043 0.086 -0.119 0.195 -0.271 0.095 0.066 0.073 -0.023 0.088	-0.018 0.015 -0.005 0.010 0.000 0.008 0.001 0.016 -0.042 0.008 0.085 0.012 0.085 0.012	-0.029 0.016 -0.011 0.014 -0.045 0.021 -0.013 0.020 -0.192 0.024	0.117 0.007 0.046 0.006 0.109 0.011 0.200 0.011 0.165 0.008 0.255 0.018 0.201 0.012
17 17 17 17 17	05/25/93 * 06/15/93 07/09/93 08/24/93 09/23/93 10/20/93	0.011 0.046 -0.015 0.046 -0.035 0.037 0.001 0.035 -0.032 0.038 -0.029 0.039	-0.379 0.137 -0.237 0.135 -0.420 0.113 -0.041 0.103 0.114 0.111 0.188 0.111	0.100 0.023 0.013 0.011 0.002 0.010 0.000 0.010 0.108 0.019 0.091 0.013	-0.032 0.018 -9.093 0.007 0.005 0.015 0.003 0.007	0.075 0.013 0.174 0.013 0.031 0.003 0.040 0.005 0.016 0.004 0.159 0.009

^{*} No sample was available at the Site Boundary location (17) in the month of April.
A: I-131 MOL of 0.025 was not mot due to insufficient count time.
B: The Sr-89 analysis was not performed due to a laboratory oversight.

TABLE 14 SEA WATER (PCI/L)

LOCATION	COLLECTION DATE	K-	49	CR	-51	MV-	54	co-	58	FE-	59	co-	60
			(+/-)		(+/-)		{+/-}		(+/-)		(+/-)		{+/-}
32 32 32 32	02/08/93 05/10/93 07/12/93 11/08/93	239 288 337 342	38 42 41 38	-17 -12 41 20	35 38 86 39	0.2 1.1 1.9 0.0	1.4 1.7 1.7 1.3	-1.6 -1.1 -0.1 0.3	2.9 2.2 2.7 1.9	4.4 1.7 -1.5 -5.1	5.8 6.5 9.4 5.1	-1.5 0.3 0.6 -0.5	1.8 1.6 1.3
37C 37C 37C	91/25/93 84/19/93 19/25/93 *	265 148 262	39 32 39	17 -4 -7	26 28 23	0.2 1.3 0.8	1.5 1.4 1.5	-1.8 0.5 0.3	18.1 1.6 1.7	-4.3 4.7 2.5	4.1 4.0 4.3	0.5 -1.3 0.9	1.5 1.3 1.6

LOCATION	COLLECTION DATE	ZN-	65	ZR-	95	NB-	95	RU-	103	RU-	106	I-	131
			(+/-)		(+/-)		{+/-}		(+/-)		(+/-)		(+/-)
32 32 32 32 32	02/08/93 05/10/93 07/12/93 11/08/93	-1.6 1.1 1.0 2.1	3.3 4.1 3.8 3.1	0.8 -1.1 1.6 -1.6	4.5 4.9 6.3 4.0	1.8 2.0 2.2 0.0	2.2 2.5 3.3 2.3	-2.8 -0.9 -0.2 0.2	3.2 3.4 5.8 3.2	5 3 9 -3	14 15 15 12	35 -32 -36 -48	113 83 1370 130
37C 37C 37C	01/25/93 04/19/93 10/25/93 *	-2.6 -4.1 8.4	3.6 2.9 3.3	-4.6 2.7 2.1	3.4 3.3 3.8	0.6 -5.1 0.9	1.9 1.6 1.9	-1.2 9.1 3.2	2.5 2.0 2.6	12 -4 0	15 12 3	-8 8	21 12 15

^{*} Location (37C) third quarter sample was lost in transit.

1	OCATION	COLLECTION	cs	-134	cs-	137	BA	-140	LA	-140	RA	-226	TH-	228
				(+/-)		(+/-)		(+/-)		(+/-)		(+/-)		{+/-}
	32 32 32 32	02/08/93 05/10/93 07/12/93 11/08/93	-3.1 0.4 -0.5 0.0	1.4 1.9 1.5 1.4	0.5 9.7 0.6 1.5	1.4 1.7 1.5 1.4	17 -43 29 -56	55 45 265 56	-11 8 61 -17	20 23 119 22	-77.8 0.0 -93.6 -26.5	25.7 36.8 35.0 30.1	-0.4 -3.3 -5.8 0.0	2.4 3.3 3.0 2.9
	37C 37C 37C	01/25/93 04/19/93 10/25/93 *	-0.5 -0.1 0.4	1.6 1.4 1.6	-0.7 0.6 1.5	1.6 1.4 1.7	7 0 3	19 13 16	-3 5	8 5 7	-41.8 9.2 0.6	36.8 32.6 37.0	0.0 -4.2 -0.5	3.2 2.8 3.1

LOCATION	DATE	H-3	(+/-)
32	02/08/93	270	90
32	05/10/93	811	141
32	07/12/93	436	114
32	11/98/93	65	99
37C	01/25/93	116	185
37C	04/19/93	69	118
37C	10/25/93	-72	86

^{*} Location (37C) third quarter sample was lost in transit.

MILLSTONE	MILLSTONE POINT 1993	0				BOTTON (PCI/G	ON SEDIMENT	jue en						App
LOCATION	COLLECTION	7-38	7.	K -49	0.5	CR	19	£	MN-54	85-03	58	Ÿ.	FE-59	
380	84/13/93	9.13	8.17	13.8	5.6	-0.08	0.15	9.01	6.62	0.00	0.02	0.03	9.04	
50 KG	34/13/93	9.13	0.11	17.1	1.5	-0.07	0.11	0.03	0.01	-0.01	0.01	-0.01	0.03	
32	18/21/93	98.89	9.09	10.1	3.0 0.8	-0.07	0.00	00.00	0.01	-0.01	0.01	0.00	0.03	
KO KO	16/21/93	0.85	9.89	18.1	1.9	-0.08	6.69	00.0	0.03	-0.01	0.01	0.02	0.03	
34	04/13/93	-0.00	9.09	19.5	2.0	-0.02	0.00	0.01	0.01	-0.01	0.01	-0.05	0.03	
36	94/13/93	0.13	0.10	15.8	1.6	-0.04	0.10	9.00	0.01	-0.03	0.01	0.01	0.03	
37C 37C	16/21/93	0.17	0.11	20 E	N. O.	9.03	0.12	0.00	9.01	00.00	0.01	-0.01	0.03	

w	MILLSTONE POINT 1993	266				801101 (PCL//	BOTTOM SEDIMENT (PCI/6 DRY WT.)					
COLLECTION	TION	00	09-03	ZM-65	(+/-)	28	1-/+3	9	NB-95 (+/-)	RU	RU-193 (+/-)	-B
10/2	10/29/93	0.00	0.05	0.01	8.04 9.05 9.05	0.00	9.04	0.03	0.02	0.05	9.92	-8.83 8.95
16/3	10/21/93	0.93	0 0 0 0	-0.03	0.03	0.00	0.03	9.00	0.01	-0.01	0.01	-0.02
100	10/21/93	0.00	0.01	-9.00	9.03	0.00	6.02	0.08	0.01	-0.01	0.03	-0.00
10/	16/21/93	0.00	0.63	0.90	0.03	9.09	0.02	9.00	0.01	0.00	9.93	9.01
16/	04/13/93	-6.02	0.03	-0.03	0.03	0.00	8.03	9.00	0.01	0.00-	0.01	-0.82
16/	10/21/93	0.03	0.01	8.83	0.03	0.03	0.03	0.00	0.01	-0.01	0.03	-8.68
18/	18/21/93	9.01	0.01	-6.86	0.03	0.01	0.03	9.00	0.91	-0.01	0.01	-0.01

1	k	ř	,
	ġ	į	Š
	G	,	ė

BOTTOM SEDIMENT (PCI/G DRY WT.)

228	(-/4)	0.10	0.20	31 0.03 23 0.02	8.03 8.03	0.03	0.03	0.02
TH.		1.19	1.21	0.31	0.25	0.17	0.31	0.27
526	(+/+)	6.38	0.25	0.20	0.33	0.20	0.20	0.27
RA		0.0	800	0.00	0.57	0.00	0.05	0,23
137	(+/+)	8.39 8.65 8 8.28 8.83 1	0.01	0.01	0.01	0.01	0.01	0.01
			0.00		0.60	0.00		0.00
CS-134	(-/+)	0.02	0.01	6.01	0.01	0.03	0.01	0.02
	1	00	9.00	0.00	0.00	0.00	00.00	0.00
51	(+/-)	0.05	9.93	0.03	0.03	9.93	0.03	4.04
		00	0.03	0.03	0.03	9.00	0.02	0.03
AG-110M	(+/+)	9.92	9.01	6.01	0.01	0.03	0.01	9.92
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.00	0.05	0.03	0.00	-0.63	-0.01	9.92
COLLECTION		10/20/93	10/21/93	10/21/93	16/21/93	16/21/93	10/21/93	04/13/93
CATION	# # B # B # B # B # B	300	31	W W C) (c)	10 10 10 10	34	346	375

(+/+) 0.009

0.607

9.009

0.031

Ø.				
	28	99	94	90
	1 +	9.005	0.984	0.006
	TH-228			
	TH-228	9.996	010	0.000
		00	0	0.0
	(+/-)	192	247	100
	4 1 5	8.86.	0.056	0.061
	8A-226			
		154	119	0.016
		1.1	1.10	0
	. 17	500	03	50
	-137	9.094	0.003	9.884
	CS-137			
		0.800	0.863	0.003
AQUATIC FLORA-FUCUS (PCI/G WET WT.)		0 1	00	00
6 - FU	1.65			
ET TE	134	0.004	9.003	9.994
45 CD	CS-134	00	00	00
TIC	CS-1	000	00	100
AN (PI		0.000	0.000	0.001
~				
	17		00 mi	
	31	9.011	0.008	0.010
	1-131		00	
	1-131	9,865	0.001	0.002
		00	00	0 1
	AG-110H	90	22	22
	0 +	9.006	9.00%	. 004
	9			0.0
	*	825	002	. 984
10	- 1	00	00	
100				
	TOM	PO 10	0.0	50
jan .	ATE	13/	13/	13/
OIN	COLLECTION	10/21/93	04/13/93	04/13/93
d.				-
MILLSTONE POINT 1993	TON:	**		*
LLS	OCATION	323	33X	36 K
MI	0			

1.

df.	差	jax
the	4DE	20
177	z	
	2	ğes.
Mil	0	抽
***	FLOA	25
183	Me	-
-55	-	SB
Jan.	3	
	10	H
	77	μ
	M-	He.
		have

-59	(+/+)	0.014 0.015 0.026 0.013	6.616 9.018 9.018	RU-186	0.653 0.050 0.078	0.645
la.		6.012 020 025 019	6.067	80	9.084 9.049 113	0.850
58	(+/+)	0.096 0.096 0.099 0.096	90.00	RU-183	9.007 9.008 6.011 9.008	0.005
		007	0.007	28	6.007 6.003 6.003	0.002
54	(+/-)	9.006 0.007 0.010 0.065	0.008	995	0.096 6.007 6.016 6.006	0.008
PM-54	-	-, 095 -, 003 0, 000 0, 004	000.0000.000000000000000000000000000000	26-8N	0.005 0.006 0.006	0.001
51		0.055 0.074 0.085	960.0	95	0.013 0.015 0.020	0.010
CR		0.021 0.018 0.030 0.053	0.003	ZR-95	0.010 0.012 0.005	0.000
0	-/+)	0000	000 600	-65	0.013 6.014 0.022	0.010 0.018 0.015
8 - 4 B		NUMM	en de la Prima	ZN-65	- 000	9.007
1		8.858 8.896 8.655	8.843 8.877 9.673	1-/+)	8.006 9.006 9.009 9.009	0.005
ELA ELA ELA ELA ELA ELA ELA ELA ELA ELA		6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.005	69-63	0.007 011 003	9.884
COLLECTION		03/23/93 04/21/93 07/12/93 10/05/93	84/21/93 # 87/13/93 18/85/93	COLLECTION	03/23/93 04/21/93 07/12/93 10/05/93	04/21/93 * 07/13/93 * 10/05/93
LOCATION		NUMM	50 50 50 50 50 50	LOCATION	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35.55

No sample was available at Niantic Bay location (35) in the first quarter.

-	AL.
м	137
28	ĸ.
Ŋ	
-8	ĸ
-79	
*	м
37	
N	w
т	
-3	o
3	м
	гd
3	2
	3
ã	~
- 60	ы
.17	
64	м
м	v
-14	,
-	ы
,	κ,
36	v
46	ш
70	
Ü	n
39	3
-	-3
17	3
-	a
27	3
*	×
8	и
-3	ĸ.

	1-228	609 0.011 637 0.014 612 0.018	0.008 0.015 0.014
			1.7
	.226	061 6.111 0 168 0.146 369 6.200 036 9.199	0.094
	1	1010	1. 4. 5
	137	05 0.807 21 0.012 00 0.005	0.005
200.		0000	000
FISH-FLOUNDER (PCI/6 WET WT.)	134	662 6.067 680 6.687 689 6.616 662 6.616	0.005
FISH- (PCI/6	8	0.002	
	I-131	0.023 0.024 0.066	0.098
	1-1	004 009 0 .000	008
	110#	0.008 0.008 0.011	9.036
2	A6-1	0.0000	003 9.010 0.001
200	COLLECTION	03/23/93 04/21/93 07/12/93 10/05/93	04/21/93 M 07/13/93 10/05/93
TALLS TOTAL CULTI	LOCATION	32252	33.33.33

No sample was available at Niantic Bay location (35) in the first quarter.

MILLSTONE POINT		1993			FISH- (PCI/6	LE 17B -OTHER WET WT.)						•	PAGE 3-4
LOCATION	COLLECTION	TYPE		ac		80	51	PN-54		93	53		0
1 1 1 2 2 1 1			(-/*)		(+/-)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(+/+)	1 1 1	(+/+)	2 1 1 5 8 8	(+/+)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(+/+)
2000	63/23/43 64/87/43 87/12/43 18/85/43	SKATE SKATE SKATE SKATE	-0.004 -0.005 -0	20.00	8.20 8.21 6.23	0.05 -0.11 -0.15	0.06 0.08 0.06	0.004	9.005	9.003 -0.004 -0.002	900000	-0.001 0.005 -0.019	9.912 9.915 9.913 9.023
10 10 10 10 10 10 10 10	83/23/93 84/87/93 87/13/93 18/85/93	SARAR	-0.04 -0.04 -0.05 -0.05 -0.08	2.28	0.32	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.05	0.000 0.000 0.000	0.005 0.005 0.007 0.007	-0.0052	9.005 9.007 9.008	0.000	000000000000000000000000000000000000000
XXXX 0000 7777	81/97/93 84/29/93 A 87/14/93 18/86/93	BLACKFISH MIXTURE BASS BASS	000000000000000000000000000000000000000	2000 NO 400 NO 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.00	00000	9.003	0.005	0.088 -0.001 6.002 -0.013	00.000	0.003	9.013 9.014 9.029
LOCATION	COLLECTION	TYPE	1	ZN		ZR	95	MB-		RU-1	FG 1	RU-196	
			(-/+)		(+/+)		(+/+)		(+/+)		(+/+)		(+/+)
33333	63/23/93 64/87/93 67/12/93 10/65/93	SKATE SKATE SKATE SKATE	-0.605 0.005 0.000 0.005 0.002 0.007 0.002 0.005	0.667	0.012 0.014 0.015	9.015 9.013 9.006	0.014	1.880	9.006 6.907 9.006 9.016	-8.001	0.007 0.007 0.007	0.008 0.049 0.007	0.058 0.058 0.058
10 10 10 10 10 10 10 10	03/23/93 04/07/93 07/13/93 10/05/93	SKATE	8,083 6,085 8,002 6,000 6,002 6,000	0.001 -0.031 0.011	0.011 0.012 0.017 0.013	6.869 -0.868 -0.811	0.011 0.014 0.017 0.017	0.002 0.009 0.009	8.095 9.007 8.009	0.003	0.885 0.368 0.610 0.009	0.006 -0.014 6.870 6.912	9.050 0.055 0.077
XXXX 0000 7777	81/87/93 84/29/93 87/14/93 18/86/93	BLACKFISH MIXTURE BASS BASS	9.028 9.618 9.001 6.607 -9.002 9.007 6.606 0.067	8 - 8 - 8 - 8 - 7 - 8 - 8 - 8 - 8 - 7 - 8 - 8	0.014 0.015 0.016	-0.002 -0.001 0.006 0.008	0.012 0.011 0.015	0.098 0.007 0.900 -0.061	9 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.001 0.000 -0.015 -0.002	0.007	-0.639 0.621 -0.626 -0.003	8.849 8.854 9.965

A: Skate and Bass.

PAGE 3-5	TH-228	013 013 013	0.009 0.011 0.016 0.009	009
PAGE	1-228	0000		
	F	0.000	0.016 0.008 0.005 0.001	.010
	1	3000	1 1 1	0000
	(+/-)	0.132 0.140 0.131 0.129	6.100 6.104 9.188 6.096	103 099 204 131
	RA-22			0000
	XX.	-0.389 -0.225 -0.2883 -0.143	-0.239 -0.303 -0.315	0.042 -0.040 -0.357 0.095
		7777	TTTT	- 7 7 -
	CS-137 (+/-)	0.006	9000.	012
	S-13			3000
	0	9000.00	0.007	6.025 6.006 9.009 9.033
	134	.006	9.995 9.905 9.905 9.905	. 696 . 696 . 997
,		0000		
FISH-OTHER	3	0.000	-0.007 -0.006 -0.016	-0.00 -0.00 -0.00 -0.00
BLE H-01				
FIS	10 (-/-)	0.038	9.012 9.033 9.022 0.962	0.019
	1-131			
		-0.024 0.009 -0.012 0.014	-0.003 -0.020 -0.008	-0.003 -0.003 -0.014
	HO (-/-)	0000	9.997 6.995 9.998	9000
	AG-110M		000 020 020 002	
	W	0000	0000	0000
	,			
	1	шшшш	mmmm	I SHE
	TYPE	SKATE SKATE SKATE SKATE	SKATE SKATE SKATE SKATE	LACKFISH MIXTURE BASS BASS
1993				an .
	F	8 8 8 8 8 8 8 8 8 8	0000 0000	W W W W W
DINT	DATE	83/23/9 84/87/9 87/12/9 10/85/9	03/23/93 04/07/93 07/13/93 10/05/93	81/07/93 04/29/93 07/14/93 10/06/93
WE PI	7	0001	000	000
HILLSTONE POINT	DCATION	00000 0000	NO 101 101 101 NO 101 101 101	XXXX 6090 5555
HIL	700			

A: Skate and Bass.

90		3
***	57	ĝes:
43	SE	34
4.8	32	r/B
1	뿘	3
		EUR
		100

(-/+)	689 015 017	010	1-/+)	057	. 056 035 035
FE-5	0.004 6. 0.012 0. 011 0.	0.000 009 0.013 0.033 0.033	RU-196	0.696 0.632 0.043 0.026	011 0 045 0 050 -
(+/-)	0.80% 0.007 9.008 0.008	0.004 0.005 0.007 0.007	RU-163	9.685 0.888 0.010	0.005 0.005 0.005
03	001 004 0.002 0.005	0.001 0.001 9.000 0.000	RU	0.007	0.000 0.001 0.009 0.001
(+/-)	0.004	0.005 0.005 0.005 0.005 0.005	NB-95	0.004 0.007 0.008 0.008	0.004
PR-54	500.0 500.0 100.0	8.969 9.692 9.692	WB	6.090 0.003 8.986 0.086	900.000.000.000.000.000.000.000.000.000
(+/-)	0.038 0.061 0.087	8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 .	96	0.889 0.015 0.017 0.016	9.008 6.013 6.013
CR-51	0.001 0.051 0.003	0.0005	2.8	9.969 9.919 9.012	0.005
(+/-)	2000 2000 2000	@ @ @ @ *********************************	(-/+)	9.699 0.014 9.017	0.0000
K-40	winna winni	NE OF	NZ	0.064	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1+7-3	8,839 0,065 6,084 6,084	96.45	09-03	66.00 66.00	0.005
98 9.	0.0448	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8	000000000000000000000000000000000000000	6.000 6.000 6.000 6.000 6.000
COLLECTION	02/25/93 05/26/93 13/16/93	02/25/93 05/20/93 08/26/93 11/16/93	COLLECTION	82/25/93 85/29/93 88/25/93	85/25/93 85/28/93 88/26/93
LOCATION	20000	en en en en	LOCATION	#0 #0 #0 #0 #0 #0 #0 #0	EEEEE

Section.	
M.	
ZD.	
ESA.	
40	
pel	
77	
ben.	
See	
æ.	
/seed	
See	
-	
POI	
500	
164.0	
2	
æ	
200	
345	
jan-	
486	
400	
and.	
m	
prof	
an.	
· Be	

45 D.			
	- 17	0.007 0.011 0.019 6.089	999
	55	0000	0000
	Ė.	0.000	9.000
	1-7	14 0.080 03 0.128 05 0.222	9899
	++	0000	0000
	R.A.	514 203 405 0.000	206
	(46		
	CS-137	0.005 0.007 0.008 0.008	0.006
. 2			
TABLE 18 MUSSELS (PCI/G WET WT.)	134	9.004 8.007 8.008 0.005	400000000000000000000000000000000000000
	CS-134	0.003	
	(4/-)	9.008 0.013 0.024 0.012	0.009
	I-131	0.000	
			5000
	1104	9.005 9.008 0.016 0.000	000000000000000000000000000000000000000
m	AG	8.003 9.004 6.601	
1993			
POINT	COLLECTION	62/25/93 05/20/93 08/26/93 11/16/93	92/25/93 95/20/93 98/26/93
MILLSTONE POINT	LOCATION	228888888888888888888888888888888888888	ESSE

FE-59	(+/+)	0.014	0.011	6.834	6.00.0	8.615	0.012	0.015	0.020	- 16		1 4	0.010		0.669	- 19	1 10	0.010	0.025	0.017	0.024	0.023
		0.911	- 4		0.007		1 19	0.012	017	- 4	. 4		900.0	- 3	0.002	- 3	9.999	669	78		0 300	. 833
85-03	(-/+)		0.005		9.000	- 4			0.018		-	9.006	900.0		9.00.0	- 1	0.005	0.005	0.019	0.011	0.026	9.025
		-, 664	0.001	0.660	0.965				9.154	0.003	0.001	003	0.002	-	003	9.903	882	0.003	5.0	0.0	6.227	00
MM-54	(+/+)	966.0	A	- 4	-0.	6.967	6.886	0.007	6.010	0.005	900.0	0.096	6.994	0.005	6.00.0	9.005	0.005	0 ~005	0.80		0.012	- 10
		003	0.000	9.000	0.000	TV A	- 40	- 4	0.611	- 1		9.005	0.000	007	9.980		- 4	0.004	-46		0.012	
CR-51	(+/+)	0.058	8.053	6.062	0.037		- 4	9.674	0.092	- 4	-	0.959	- 1	6.961	0.041		0.057	6.049	- 4	-	0.124	- 4
		829	816	077	0.854	065	600.	0.061	908	- 90		0.013	. 9	629	0.020	833	963	0.005			0.034	4.
-40	(+/+)	9.2	9,13	0.2	6.1	- 1	- 1		6.2	0.1	8.2	0.3	6.2		0.1	. 4	0.2	0.1	- 10		0.2	
*		1.7	1.9	1.3	13.	9	1.6	9.2	W. 14	1.0	1.7	6.0	1.8	1.6	1.1	1.1	2.0	1.4	7.1	2.0	1.2	3.5
	(+/+)	0.069	6.053	8.858	9.038	8.883	9.857	0.074	0.107	0.053	9.844	0.059	0.042	9.856	0.041	0.851	0.057	0.050	0.133	0.095	9.146	9.136
BE		005	- 9.	887	9.018	013	6.827	054	12%	0.038	9.016	844	698	620	8.081	996	0.016	6.990	150	6.061	6.119	9.644
COLLECTION		02/12/93	05/18/93	68/18/93	11/11/93	82/12/93	05/18/93	68/18/93	11.17/93	02/12/93	05/18/93	08/18/93	11/11/193	08/26/93 B	11/16/93	02/12/93		11/17/93 A	82/12/93	04/29/93	08/39/93	11/19/93
LOCATION		31	H)	31	31	32	32	32	32	34X	34X	34X	34X	36	36	37C	376	325	40×	XOS	×0.5	X05

A: No sample was available at Giant's Neck location (37C) in the third quarter. B: No sample was available at Black Point location (36) in the first and second quarters.

90		(+/+)	1.056	1.648	6.96.0	3.837	0	0	0	961.0		1.6		6.041	.00	0.041		- 18	0.043		0.179	. 4	2
RU-106			. 043	868		000	.013	. 829	.000	0.000	600	. 035	.039	0.042 6	600	0.023	.011	609	908	.007	6.060 0	. 000	. 699
33		(+/+)	700	986	7967	905	010	780	686	013	900	065	7007	500	203	500			995	016	011	817	017
RU-103				684	9.00.0	903	198	. 992	003 0.	.003	. 801	000	. 661	0.003 0.	. 962	6.601 6.	010	900	.0088 0.	100	012 6.	012	992
un		(+/+)	- 4	0	0	0	.010	- 14		- 10	900	11.0	- 4		0	.005	- 4	0	0	910	619	. 021	. 922
NB-95			.002	. 663	012 0	.001	000	. 999	0.000.0	.000	. 013	. 991	- 1	0.962 6	000	0 000.0		699.	9.00.0	000	8.008 8	000	000
100		(+/+)	0.014	N	0.012	1	0	. 0 1	0.015	. 82	0.1	. 0.1	193	600.0	. 01	600.0	0.612	. 01	0.010	7.8	0.021		167
ZR-95			-	0	0	0.008		- 4	005	684		- 10	- 4	004	0	- , 693	936	0	80	0	0.000	0	4
ZH-65	*****	(+/+)		- 4	9.013	0.916	- 6	- 4	9.130	0.220	14		0	0.810		0.015	0.013	. 0.1	4	.94	6.526	. 9	-9.
ZH	-		0.0		624	- 14		- 4	- 8	2.160	9.895	- 8	- 18	900'0	0	0.777	001.0	3.0	9001.0	.38	5.186	88	ACT and
. 69		(+/+)	990.0	6.006	0.007	9.00.0	0.614	18	0.012	PAN (C)	6.805	8.005	0.506	9.684	6.00.0	0.004	0.005	6.865	9.965	0.021	9.616	0.021	0.011
03			6.694	- 3	0.000	- 10	- 3	二級	6.047	- 16	0.000		001	003	9.887	8.662	9.983	. 08	00.	mi mi	9.063	. 05	9.934
COLLECTION			2/12/9	100	08/18/93	11/17/93	02/12/93	85/18/93	08/18/93	11/11/03	02/12/93	05/18/93	08/18/93	11/11/03	68/26/93 8	11/16/93	62/12/93	9	11/11/03 A	62/12/93	84/53/43	68/16/63	11/19/93
LOCATION			31	31	31	31	32	32	32	32	34×	34X	34×	34K	36	36	37C	376	375	40×	×05	49X	X05

A: No sample was available at Giant's Neck location (37C) in the third quarter. B: No sample was available at Black Point location (36) in the first and second quarters.

80	4/-3	010	mi &	5 144	610	14. yes	100	668	prof.	CD:	012	999	600	per l	0	818	013	017
CV 1	No.	00	*	4 4	00	4 4		0	1.6	4	63	1.0	0	-			*	0 0
TH		0.006	00	0 0	. 023	2 60	0	0.690	98.	0.0	0.995	. 00	008	83	0.	. 00	. 90	015
A-226	7597	0.108	ME	.15	0.110	0.0	10	8.898	1.0	1.0	0.131	93	660.0	peri	400	red	prof. S	0.198
RA		- 239	860.	F. 15	- 014	2 70	prof.	121	. 67	23	6.039	-	039	83	. 05	60	. 00	9.072
						alau e					į.							
137	>	0.007	000	. 88	9.687	2 60	88	8.005	. 80	. 08	9.009	88	0.006	00.	00	. 0.1	. 8	0.015
CS-13)		9.003	0.001	9 6	0.000	9 69	. 9.0	6.003	. 60	. 90	.015	0.00.0	9.00.0	. 66	00.	. 99	88	0.000
								Ī										
-134	160	00	999.9	99	9.000	9 60	00	0.005	. 90	. 66	9.99.9	. 99	900.0	0	. 66	. 63	. B.	0.013
-SO		2 3	9.00.0		001	000	0		œ.	0	8.803	0	002	40:	00	. 91	. 68	0.000
53	-/+3	0.015	622	. 82	0.012	. 02	. 61	0.610	. 02	(C)	6.818	0	9.913	. 93	. 01	.03	. 61	0.051
1-13			0.010	698	W1 6	616	. 992	996	. 615	580	010	2	.863	. 882	63	010	011	038
grad 1	(+/+)	000	6.887	9 6	0.032	6.258	0.087	9.69.6	0.098	CI:	8.038	65	0.007	40	0	50	0.200	0.180
AG-		F 3	9.88	4	0.322	2.470	700.	900	. 868	196	9.888	0.7	100'-	0	900.0	rg.	00 1	1.798
×											60				*			
COLLECTION		82/12/93	08/18/93	2/12/9	5/18/	11/11/93	02/12/93	05/18/93	8/3	11/11/93	08/26/93	11/16/93	2/122/9	5/18	9	62/12/93	94/29/93	11/19/93
z		100	1 pm p 1 (74) 8	32	23.23	32	34×	34K	34K	34X	36	36	375	37C	375	X05	Xeb	X O S
-																		

A: No sample was available at Giant's Meck location (37C) in the third quarter. B: No sample was available at Black Point location (36) in the first and second quarters.

r.	l.	
iai mi	AMS	WE T
TAB	CE	3/
		13
		Dia res

FE-59	(+/+)	0.006 0.013 0.018	000000000000000000000000000000000000000	RU-106	0.027 0.059 0.059 0.034	0.038 0.038 0.079 0.037	0.041 0.057 0.055	
		0.011 0.007 0.007		0.011 6.005 0.011	28	022 004 010		086 081 026 6.059
CO-58	·(±)	0.000 0.000 0.000 0.000	0.005 0.005 0.009 0.009	0 .005 0 .005 0 .008 0 .006	RU-163	0.004 0.006 0.009 0.009	9.886 9.985 9.985	0.995 0.987 0.009 0.006
		0.069	00.000000000000000000000000000000000000	0.003 0.001 0.007 0.000	RU	001 009 001	0.001 0.000 - 006 0.001	006
MN-54	1	9.893 6.806 9.867 0.964	0.005	0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000	(+/+)	6.003 0.005 0.005 0.005	900 0 900 0	0.005 0.007 0.006
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	014 003 0.667	0.000	26-8N	9.888 0.861 0.865	0.000 0.004 0.005 0.005	0.003 0.000 0.001 0.906
CR-51	-/+	6.631 6.056 0.082	0.057	0.056 0.056 0.083	(+/+)	6.087 6.013 6.017	9.011 9.008 9.009	0.010
		0.023 0.041 0.041	6.653 028 0.627	0.016 0.051 0.033	28-95	0.83 0.00 0.00 0.00 0.00 0.00	0.004	0.010
95-X		0000	0000	**************************************	(+/-)	0.007	00.0000	6.016 6.016 6.016
		M P M M M	0000 0000	きできる	ZN-65	- 6662 6662 6666 6666	0.000	\$ 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. 1 A A A A A A A A A A A A A A A A A A	+	0.031 0.054 0.077	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.643 6.651 6.653 6.658	(-/+)	0.605 0.007 0.009 0.009	60 00 00 00 00 00 00 00 00 00 00 00 00 0	9.003 9.013 6.009
		0.035 0.033 0.003	0.652 686 632 0.017	0.012 0.012 0.000 0.000	89-03	0.000.000.0000.00000.00000.00000.00000.0000	0.880 0.003 0.009	8.847 6.051 9.098 6.025
DATE		02/25/93 05/20/93 08/26/93 11/16/93	02/25/93 05/28/93 88/26/93	02/25/93 05/20/93 08/26/93 13/16/93	COLLECTION	02/25/93 05/20/93 08/26/93 11/16/93	02/25/93 05/20/93 08/26/93 11/16/93	82/25/93 85/28/93 88/26/93 11/16/93
946		556	88888	**** **** ****	LOCATION	550.65	80 80 80 80 10 10 10 10	######################################

PAG				
	TH-228	0.000 0.011 0.015 0.000	0.011 0.008 0.014 0.008	0.010 0.010 0.015
	T.	0.000	0.012 004 034	002
	-226	0.073 0.115 0.156	6.122 6.093 6.083	0.082 0.105 0.172 0.186
	RA	126	0.074	123 648 491 363
	CS-137 (+/-),	0.003 0.007 0.012 0.664	0.005 0.005 0.005 0.006	8.005 0.007 0.008
	CS-	6.005 6.004 023 053	0.003 0.002 0.000 0.000	0.000
TABLE 20 CLAMS PCI/G WET WT.)	(+/-)	8.887 6.889 6.889	0.000 0.000 0.000 0.000	0.005 0.007 0.007 0.005
TAI CI (PCI/6	CS-134 (+/+)	0.000 0.000 0.003 003	0.000	086
	I-131 (+/-)	0.007 0.010 0.025 0.009	015	0.012 0.012 9.022
		9.003 0.003 0.003	6.003 6.013 6.011 004	002
	(-/+)	6.004 6.004 6.010	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.007 0.010 0.011
e0	A6-1	9.000	900000000000000000000000000000000000000	9.928 9.934 9.943
POINT 1993	COLLECTION	02/25/93 05/26/93 08/26/93 11/16/93	62/25/93 05/26/93 11/16/93	05/26/93 05/26/93 11/16/93
MILLSTONE POINT	LOCATION	22.22	数数数数 5000000000000000000000000000000000	****

		-
K-1		32
PÚ.	Or:	
77	EEL	bas
ш	jan.	144
_	W	至
m	āó	~
砈	25	1.0
ļies.	1	5
		Seed
		40
		0.
		Ser

NO :	6.009	0.019 6.089 0.626 0.646	93.00	9.030 9.016 9.028 9.024		(+/+)	0.075 0.048 0.104	0.103 0.043 0.073	0.126 9.073 9.185
134 i		001	0000	6.013 6.008 6.008 9.013		1	027 038 0.101 0.091	0.053	0.038
CO-58	(+/+)	0.009 0.005 0.011	0.004	0.014	163	4	0.008 0.005 0.914 0.627	6.012 0.064 6.069 8.015	9.915 9.908 9.914
03		0.007	6.000 0.000 001	0.006 005 005 0.005	RU-1		900000000000000000000000000000000000000	0.013	0.007
1	(+/+)	0.008	0.001	0.614 0.007 0.012	-95	-/+	9.698 6.005 9.023	0.011 0.064 0.689 0.013	6.015 6.667 0.013
菱		0.005	6.011 0.000 0.002 0.000	0.012	W		9000 0000 0000 0000 0000	0.000 0.000 0.000 0.010	0.000
		0.184 0.027 0.084 0.133	0.119	9.00	-/+	0.017 0.016 0.023 0.048	0.021 0.097 0.016 0.025	0.029	
85		1010 0100 1001 0010 0100 0000 00000 00000 00000 0000 00000 00000 00000 0000 00000 0000			6.813 6.685 6.683	0.007 911 601 6.006	0.005		
-	.00	0000 4556	0000 NWGW	**************************************	65	+1-	0.020 0.020 0.023	0.024 0.011 0.018 8.026	0.031
*		N K M M	8.27.28 8.7.28	4887	A		0.014	9.016 0.009 0.038	0.639
1	(+/+)	0.007 0.046 0.109	8.186 8.833 8.875	0.124	0.9	(+/-)	00.00.00.00.00.00.00.00.00.00.00.00.00.	6.011 0.005 0.007 0.012	0.034
BE	940	9.00.0	9.848 8.889 847 9.623		9-03		0.012 0.004 003 0.025	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	0.000
DATE		03/25/93 06/08/93 09/16/93 12/10/93	03/25/93 96/08/93 09/16/93 12/10/93	83/25/93 86/08/93 89/16/93 12/18/93	COLLECTION		03/25/93 06/08/93 09/16/93 12/10/93	03/25/93 06/08/93 09/16/93 12/10/93	63/25/93 06/08/93 09/36/93
LOCATION		2222	NO NO NO NO NO NO NO NO NO	37C 37C 37C	LOCATION		2222	N N N N N	37C 37C 37C

TH-228	6.012 6.011 6.020 9.640	0.021 0.007 0.017 0.024	0.023 0.013 0.020 0.017
1	1000	0.612	014 005 003
226	87 0.142 72 0.127 85 0.231 47 0.406	0.246 0.982 0.388 0.288	0.257 0.219 0.219
RA	9.072	0.057	650 218 8.056
CS-137 (+/-)	6.000 6.000 6.011 6.024	0.011 8.005 8.067 9.014	0.015 0.007 0.013
\$3	0.000 0.000 012 0.008		6.600 620 0.007
CS-134 (+/-)	0.009 0.006 0.012 0.024	6.612 6.985 9.988	9.015 0.008 0.013 9.011
S	9.000	6.0011	8 . 9
I-131	8.814 6.663 6.656	6.621 6.623 9.624 6.635	8.826 8.835 8.836
I-1	9.003 9.000 9.022 9.017	8.802 8.802 096	0.000
110H	0.013 0.009 0.015	9.934 9.034 9.036 9.036	9.817 9.010 9.015
A6-11	6.660 6.636 9.917 6.860	0.007	9.984 9.984 9.994
COLLECTION	83/25/43 86/88/93 89/16/93 12/18/93	63/25/93 86/88/93 89/16/93 12/10/93	03/25/93 06/88/93 09/16/93 12/10/93
LUCATION	2222	10 10 10 10 10 10 10 10	3775

4.0 DISCUSSION OF RESULTS

This section summarizes the results of the analyses of environmental media sampled. NUSCO has carefully examined the data throughout the year and has presented in this section all cases where plant related radioactivity could be detected and compared the results with previous environmental surveillance data. Few impacts of the plant operation on the environment were observed. Sub-sections contain a description of each particular media or potential exposure pathway.

Naturally occurring nuclides such as Be-7, K-40, Ra-226 and Th-228 were detected in numerous samples. Be-7, which is produced by cosmic processes, was observed predominantly in airborne and vegetation samples. Ra-226 and Th-228 results were variable and are generally at levels higher than plant related radionuclides.

Cs-137 and Sr-90 were observed at levels similar to those of past years. In general, the detectable levels of Cs-137 and Sr-90 were the result of atmospheric nuclear weapons testing of years past.

Gamma Exposure Rate (Table 1)

The gamma exposure rate is determined from the integrated exposure measured over a time period of approximately one month using CaF2 (Mn) thermoluminescent dosimeters. These glass bulb dosimeters are subject to inherent self-irradiation which has been experimentally measured for each dosimeter. Consequently, the results, shown in Table 1 have been adjusted for self-irradiation effects. The range of this correction is $0.4~\mu\text{R/hr}$ to $2.0~\mu\text{R/hr}$, with a mean of approximately $1~\mu\text{R/hr}$.

The exposure rate measurements exhibit the same trends as those of past years. These measurements demonstrate the general variations in natural background radiation between the various on-site and off-site locations and include gamma exposure from all sources including cosmic, terrestrial, and artificial radioactivity. For example, the Weather Shack (location 02) and Environmental Laboratory (location 08) experience higher exposure rates due to their proximity to granite beds while the Ledyard location (location 14C) experiences relatively higher background exposure rates than the other control locations at Mystic, Norwich, and Old Lyme (locations 13C, 15C, and 16C).

During Unit 1 operation, a small increase in exposure rates is caused by the direct exposure pathway of "skyshine" (i.e., scattered radiation from nitrogen-16 decay in the turbine; this pathway is unique to boiling water reactors). Skyshine decreases rapidly with distance from the turbine building, to levels that are virtually undetectable at the off-site locations. Special surveys performed in 1980, 1984 and 1987 with a high pressure ion chamber support this premise. During any Unit 1 shutdown, a small decrease in exposure levels is normally observed at on-site locations (Weather Shack (2), MP3 Discharge (5), Quarry Discharge (6), Env. Lab Dock (7), Millstone

Environmental Laboratory (8), and Bay Point Beach (9)). However, Unit 1 operated at a capacity factor of 92.8% in 1993. The only apparent decrease in exposure can be seen in October at the MP3 Discharge (5) and Bay Point Beach (9), the most sensitive skyshine indicator locations. Unit 1 was shutdown twice in October for a total of 8 days making the decrease very slight. Comparison of the data with historical background levels during periods of Unit 1 shutdown reveal exposure rates due to skyshine anywhere from 0.5 μ R/hr to 5 μ R/hr. The maximum off-site direct exposure due to Unit 1 was determined to be 0.1 μ R/hr. The dose consequence attributable to this direct dose is discussed in Section 5.0.

Further evaluation of the data reveals a decrease in background at all locations (indicators and controls) during the period of January - April. This decrease is most likely caused by the amount of snow cover that was experienced during this period. This same effect was seen around the Haddam Neck Station. As shown in previous years, snow tends to provide a shielding effect.

With the installation of the augmented off-gas treatment system in May of 1978, the plant gaseous effluents decreased significantly to levels that are essentially undetectable by TLD's, even at the on-site monitoring stations. The only appreciable effect, aside from that of skyshine, seen in the TLD data is that attributable to the variation in the background radiation which has been noted as being consistent with previous years.

Air Particulates and Iodine (Table 2, 3, 4 A-D and 5)

Air is continuously sampled at seven inner ring and two outer ring locations by passing it through glass fiber particulate filters. These are collected weekly and analyzed for gross beta radioactivity. Results are shown on Figure 4-1 and Table 2. Gross beta activity remained at levels similar to that seen over the last ten years. Inner and outer ring monitoring locations showed no significant variation in measured activities. This indicates that any plant contribution is not measurable.

Charcoal cartridges are included at all of the Radiological Effluent Monitoring Manual (REMM) required air particulate stations for the collection of atmospheric iodine. These cartridges are analyzed on a weekly basis for I-131. No detectable levels of I-131 were seen in the 1993 charcoal samples. This is confirmed by the absence of I-131 in any of the milk samples. Milk from cows and goats is a much more sensitive indicator of I-131 presence in the environment.

The air particulate samples that are utilized for the weekly gross beta analyses are composited and analyzed quarterly for gamma emitting isotopes. The results, as shown in Tables 4A-4D, indicate the presence of naturally occurring Be-7, which is produced by cosmic processes. No other positive results were seen. These analyses indicate the lack of plant effects.

Table 5 in past years was used to report the measurement of Sr-89 and Sr-90 in quarterly composited air particulate filters. These measurements are not required by the Radiological Effluent Monitoring Manual (REMM) and have been discontinued. Previous data has shown the lack of detectable station activity in this media. This fact, and the fact that milk samples are a much more sensitive indicator of fission product existence in the environment, prompted the decision for discontinuation. In the event of widespread plant contamination or special event such as the Chernobyl incident, these measurements may be made.

Soil (Table 6)

Soil samples are special samples not required by the REMM. Previous data has shown the lack of detectable station activity in this media resulting in the discontinuation of these samples. In the event of widespread plant contamination or special studies, these sample would be collected.

Cow Milk (Table 7)

The most sensitive indicator of fission product existence in the terrestrial environment is usually milk samples. This, in combination with the fact that milk is a widely consumed food, results in this pathway being the most critical. This pathway also shows significant amounts of weapons testing fallout. Therefore, this media should be carefully evaluated when trying to determine what are the actual plant effects.

Routine levels of Sr-90 and Cs-137 similar to those from past years were observed. The range of results were 1.0 to 3.4 pCi/l and 0 to 8.9 pCi/l for Sr-90 and Cs-137, respectively. Detailed analysis of this data has concluded that these levels are from weapons testing fallout and are not plant related (see Section 6.0 for details to this argument).

All samples showed a lack of I-131 detectable above the MDL of 0.5 pCi/l. These results are consistent with previous years' results. The only occasions when this nuclide has been detected are those immediately following atmospheric testing of nuclear weapons and the Chernobyl accident.

A number of small local dairy farms have gone out of business over the last few years. As a result, as shown in Appendix A, only one milking dairy farm exists within 10 miles of Millstone. However, five goat farms exist within this same area. Starting May 1, 1993, the REMM was revised to eliminate the sampling inconsistencies and provide a more representative sampling population to monitor radioactivity in milk from the environment surrounding Millstone. The program was changed from the requirement to sample 4 cow milk and 2 goat milk locations per month to 2 cow milk nd 4 goat milk locations per month. Table 2-1 lists the changes to the sample locations and types.

Goat Milk (Table 8)

Goat milk samples can be a more sensitive indicator of fission products in the terrestrial environment than cow milk samples. This is dependent on a number of parameters, including: metabolism of these animals, feeding habits, and feed type. Samples taken during weapons testing periods have demonstrated higher uptake of fresh fallout nuclides (Sr-89 and I-131) at the indicator goat location (23). This trend helps to explain the usual, higher than normal Sr-90 and Cs-137 concentrations at the indicator location (23) as compared to the control location (24c). One sample from location (23) indicates a Cs-137 level in excess of the Reporting Level of 70 pci/l as specified in the REMM. However, positive indications of Sr-89 and Cs-134 were not observed. Therefore, as with cow milk, detailed analysis of the data has concluded that the Sr-90 and Cs-137 levels are from weapons testing fallout (see Section 6.0 for more details) and thus a Special Report is not required.

No plant related I-131 was seen in this media. For the last seven years, no detectable levels of I-131 have been seen in goat milk samples except for the period immediately following the Chernobyl accident.

Pasture Grass (Table 9)

When the routine milk samples are unavailable, samples of pasture grass are required as a replacement. These samples may also be taken to further investigate the levels of radioactivity in milk. From February - April, these samples were not available as a replacement at goat locations (23) and (24c). Pasture grass was again unavailable November through December, as a substitute for unavailable goat milk at all locations. May through October, pasture grass was sampled at locations (21) and (22) because of goat milk unavailability. No plant effects are seen in this media.

Well Water (Table 10)

Well water samples are not required by the REMM. Data from 1973-1985 has shown the lack of detectable station activity in this media. Therefore, the sampling of well water has been discontinued. In the event of widespread plant contamination, these samples may be collected.

Reservoir Water (Table 11)

Reservoir water samples are special samples not required by the REMM. Previous data has shown the lack of detectable station activity in this media. This fact and the extremely unlikely possibility of observing routine plant effluents in this media has resulted in discontinuing these samples. In the event of widespread plant contamination, these samples may be collected.

Fruits and Vegetables (Table 12)

Consistent with past years, this media did not show any plant effects. Concentrations of Sr-90 in these samples existed at levels comparable to those observed for the past sixteen years. Naturally occurring K-40 was detected in all samples. Since there was no fresh fallout, no other nuclides were detected.

Broad Leaf Vegetation (Table 13)

Consistent with past years, this media did not show any plant effects. Concentrations of Sr-90 and Cs-137 in these samples are at levels comparable to past years and are due to fallout.

In the past, this media has shown early indication of I-131 release from the plant from both unplanned releases and normal operations. Therefore, to enhance program monitoring effectiveness, samples of broadleaf vegetation are collected monthly during the growing season, May - October, even though requirements are to collect twice a year.

Seawater (Table 14)

These samples are quarterly composites. Samples from the vicinity of discharge (32) are continuous samples; samples from Giants Neck (37C) are composites of weekly grab samples. The third quarter control sample was lost in transit. Three indicator samples show tritium (H-3) concentrations above the background level seen at the control location. These elevated levels are attributable to plant operation and are similar to those of past years. Due to the decay characteristics of H-3, the dose consequence of the observed H-3 concentrations is negligible (see Section 5.0 for a discussion of the maximum dose consequences). Because sea water is not a direct source of consumption, other media are utilized in the determination of dose consequences (e.g. see Shellfish & Fish results).

Bottom Sediment (Table 15)

Plant related Co-60 was detected in one indicator sample. The level is comparable to that measured in other media. Cs-137 was detected in the samples from Golden Spur (30C), one of the control locations. Levels at this location are higher than those in the samples from the vicinity of the discharge. This is consistent with previous data. The absence of detectable Cs-134 in the Golden Spur samples and the relative distance and direction indicate that this Cs-137 is not plant related. This area is a fresh water area and the levels of Cs-137 at this location are comparable to those observed in river water sediments (see Connecticut Yankee Annual Radiological Environmental Operating Report).

Aquatic Flora (Table 16)

Indications of plant effluents were observed. Detectable levels of Co-58, Co-60, and Ag-110m were apparent. The detection of these nuclides throughout the year, as witnessed by positives detected in other aquatic media, corresponds to routine effluents and to the increased curies released due to multiple shutdowns and outages by Millstone Units 2 and 3.

Sampling of this media provides useful information because it is very sensitive to plant discharges. However, since seaweed is not consumed, other media are utilized in the determination of dose consequences (e.g., see Shellfish and Fish results).

Fish Flounder (Table 17A)

The activity in Flounder is the same as that seen for the past decade. Cs-137 was observed in one vicinity of discharge sample. Even though Cs-134 was not observed, a portion of the Cs-137 in this sample could be due to plant operation. No other activity was observed except for the naturally occurring radionuclides.

Fish - Other (Table 17B)

As in previous years, plant related activity was detected in some 1993 quarry samples (location 40X). Positive values of Cs-137 and Co-60 were observed.

The quarry location is not accessible to members of the general public and with the dilution of the Long Island Sound, the levels of radioactivity generally become undetectable in fish samples outside of the quarry. Using the concentrations measured in the quarry and diluting them by the near field dilution factor of 3 determined for quarry discharges into the Sound, doses to the maximum individual can be calculated. See Section 5.0 for these results.

Mussels (Table 18)

The plant effects for this sampling media are insignificant at all locations.

Oysters (Table 19)

Native oysters are sampled at the quarry discharge (location 40X) which is an extra location. The remaining locations utilize stocked oysters; trays are kept at these sampling areas to guarantee samples and facilitate sample collection.

Plant related activity was observed at all but one location. Samples from within the plant discharge area (locations 32 and 40X) show the highest levels. Although location 32 is labelled as vicinity of the discharge, it is actually at the end of the quarry. This activity included Co-58, Co-60, Zn-65, and Ag-110m. All nuclides detected were seen at levels similar to last year. Plant related Zn-65 and Ag-110m were also observed in samples from beyond the plant discharge area.

The 1993 Zn-65 levels are comparable to those measured for the past four years. The reason Zn-65 is unique to Unit 1 is because since 1987 zinc has been injected into the reactor coolant to reduce the plateout of Co-60 on piping walls and hence radiation worker exposure is reduced.

Zn-65 was not detected in other aquatic media. The high levels in oysters is caused by their distinct capacity to accumulate zinc. Studies have shown that oysters can accumulate as much as 50 times or more the amount of zinc compared to most other seafoods (Wolfe, 1979). As Figure 4.2 shows, Zn-65 concentration in quarry oysters has closely followed the amount of curies of Zn-65 discharged in Unit 1 liquid effluents.

Plant related Co-60, Zn-65, and Ag-110m were also observed in samples from beyond the plant discharge area. The levels are comparable to those observed last year.

Since the two locations near the quarry are on-site and not available for public use, the actual concentration of radionuclides in oysters available for public consumption is much less. The dose consequence of the plant related radioactivity via this pathway is discussed in Section 5.0.

Clams (Table 20)

GeLi analyses indicated the presence of plant related Co-60, and Ag-110m. These levels correspond to the elevated levels seen in other aquatic samples for the same period. The dose consequence of radioactivity via this pathway is discussed in Section 5.0.

Scallops (Table 21)

Scallops are not required by the REMM. However, this media is sampled to confirm plant effects because scallops are available for public consumption. Unfortunately, scallops were unavailable all year for taking samples.

Lobsters (and Crabs) (Table 22)

Plant related Ag-110m is shown in one lobster sample from the discharge area location (location 32). The dose consequence from levels observed in these samples is lower than those from the oyster samples. The level is similar to that seen over the past few years. See Section 5.0 for a discussion of the dose consequences.

MP AIR PARTICULATE

Gross Beta Radioactivity

5.0 OFFSITE DOSE EQUIVALENT COMMITMENTS

The off-site dose consequences (dose equivalent commitments) of the stations' radioactive liquid and airborne effluents have been evaluated using two methods.

The first method utilizes the stations' measured radioactive discharges as input parameters into conservative models to simulate the transport mechanism through the environment to man. This results in the calculation of the maximum dose consequences to individuals and the 0 to 50 mile population dose commitment. The results of these computions have been submitted to the NRC in the Annual Radioactive Effluent Report written in accordance with the Radiological Effluent Monitoring Manual, Section F.2. This method, which is usually conservative (i.e., computes higher doses than that which actually occur) has the advantage of approximating an upper bound to the dose consequences. This is important in those cases where the actual dose consequence cannot be measured because they are so small as to be well below the capabilities of conventional monitoring techniques.

The second method utilizes the actual measurements of the concentrations of radioactivity in various environmental media (e.g., milk, fish) and then computes the dose consequences resulting from the consumption of these foods.

The results of both methods are compared in Table 5.1 for those pathways where a potential dose consequence exists and a comparison is possible. The doses presented in this table are the maximum doses to an individual. That is, the dose is calculated at the location of maximum effect from the plant effluents for that pathway and for the critical age group. For example, the external gamma doze from gaseous effluents is calculated for the site boundary location which is not only the nearest but also has the greatest directional wind frequency and fish and shellfish doses are calculated assuming they are from an area within 500 feet of the station discharge.

As indicated by Table 5.1, there is also a direct gamma dose attributable to the operation of Unit I. This direct dose is inherent to BWR's (Boiling Water Reactors). It is due to direct and scattered radiation (sk/shine) of the high energy gamma rays from Nitrogen-16 in the radioactive steam which circulates through the turbine. It should be noted that the indicated dose due to direct radiation is to the maximum individual and is corrected for periods when Unit I is not operating (i.e., there is no direct dose when steam is not generated). Summarizing the data in Table 5.1, the maximum total doses to an individual are: 3.4 mrem whole body to an adult, 0.22 mrem to a child's thyroid, and 0.6 mrem to an adult's GI(LLI).

Since the maximum dose consequence to an individual is at the location of highest dose consequence, doses will be less for all other locations. The average dose to an individual within 50 miles from the site cannot be calculated using the second method. However, the first method yields the following results for the period January-December 1993 for the average individual:

ANNUAL AVERAGE WHOLE BODY DOSE :

DUE TO AIRBORNE EFFLUENTS = 0.000079 mrem

DUE TO LIQUID EFFLUENTS = 0.00017 mrem

Thus, it can be seen that the average whole body dose to an individual is much less than the maximum whole body dose to an individual as shown in Table 5.1.

In order to provide perspective on the doses in Table 5.1, the standards for 1993 on the allowable maximum dose to an individual of the general public are given in 40CFR190 as 25 mrem whole body, 75 mrem thyroid, and 25 mrem any other organ. These standards are a fraction of the normal background radiation dose of 280 mrem per year and are designed to be inconsequential in regard to public health and safety. Since plant related doses are even a smaller fraction of natural background, they have insignificant public health consequences. In fact, the plant related doses to the maximum individual are less than 10% of the variation in natural background in Connecticut.

COMPARISON OF DOSE CALCULATION METHODS

MILLSTONE NUCLEAR POWER STATION

JANUARY - DECEMBER 1993

			ANNUAL DOSE (MILLII METHOD 1 ⁽¹⁾			METHOD 2(1)
PATHWAY	ORGAN	Unit 1 (BWR)	Unit 2 (PWR)	Unit 3 (PWR)	Station Total	
AIRBORNE EFFLUENTS						
External Gamma Dose	(2) Max. IndWhole Body	0.0037	0.0019	0.011	0.017	0.021(5)
2. a, Inhalation	Max. Ind Thyroid	0.00013	0.010	0.0043	0.014	ND ⁽³⁾ , < 0.6
b. Vegetables	Max. Ind Thyroid	0.00017	0.037	0.012	0.050	ND
c. Goat's Milk	Max. Ind Thyroid	0.0023	0.062	0.10	0.16	ND, < 1.8
LIQUID EFFLUENTS						
1. Fish	Adult - Whole Body	0.0011	0.0024	0.0025	0.0060	0.0073
	Adult - GI(LLI) ⁽⁴⁾	0.0019	0.039	0.13	0.171	0.024
	Teen - Liver	0.0022	0.0050	0.0048	0.012	0.0084
2. Shellfish	Child - Whole Body	0.12	0.0023	0.017	0.139	0.059(8)
	Adult - GI(LLI)	0.15	0.12	0.13	0.40	0.29(8)
	Teen - Liver	0.23	0.0050	0.032	0.267	0.12(8)
DIRECT DOSE - Skyshine						
1. Nearest Residence	Max. IndWhole Body	1.6(7)	N/A ⁽⁶⁾	N/A	1.6	0.81(9)
2. Critical Fisherman	Max. IndWhole Body	N/A	N/A	N/A	N/A	3.3(9)

- (1) Method 1 uses measured station discharges and meteorological data as input parameters to conservative transport to man models. Method 2 uses actual measured concentrations in environmental media.
- (2) Maximum individual The maximum individual dose is the dose to the most critical age group (teen for inhalation, infant for milk, and child for vegetables), at the location of maximum concentration of plant related activity. The dose to the average individual is much less than the maximum individual dose. The doses for inhalation and vegetable consumption assume that the individual resides at the point of maximum quarterly dose. Therefore, his residence is subject to variation for conservatism.
- (3) ND Not Detectable No plant related activity could be detected above natural background or above the minimum detectable level (MDL). The value reported is the dose corresponding to the MDL.
- (4) GI (LLI) Gastrointestinal Tract Lower Large Intestine.
- (5) Based upon high pressure ion chamber data for 1993 (neglecting building shielding and occupancy factors). TLD's cannot detect levels which are such a small fraction of natural background. Effluent calculations at actual high pressure ion chamber location result in 0.013 mrem.
- (6) Not applicable.
- (7) Based on calculations performed utilizing the computer code, SKYSHINE, developed by Oak Ridge National Laboratories.
- (8) Based on measured levels in oysters.
- (9) Based on prior measurements performed with a high pressure ion chamber and ratioed to the actual operating power.

6.0 DISCUSSION

The evaluation of the effects of station operation on the environment requires the careful consideration of many factors. Those factors depend upon the media being effected. They include station release rates, effluent dispersion, occurrence of nuclear weapons tests, seasonal variability of fallout, local environment, and locational variability of fallout. Additional factors affecting the uptake of radionuclides in milk include soil conditions (mineral content, pH, etc.), quality of fertilization, quality of land management (e.g., irrigation), pasturing habits of animals, and type of pasturage. Any of these factors could cause significant variations in the measured radioactivity. A failure to consider these factors could cause erroneous conclusions.

Consider, for example, the problem of deciphering the effect of station releases on the radioactivity measured in milk samples. This is an important problem because this product is widely consumed and fission products readily concentrate in this media. Some of these fission products, such as I-131 and Sr-89 are relatively short-lived. Therefore they result from either plant effluents, recent nuclear weapons tests or recent nuclear incidents (e.g. Chernobyl). Sr-89's lifetime is longer than I-131's, therefore it must be remembered that it will remain around for much longer periods of time. Problems are caused by the long-lived fission products, Sr-90 and Cs-137. These isotopes are still remaining from the high weapons testing era of the 1960's. This results in significant amounts of Sr-90 and Cs-137 appearing in milk samples. Distinguishing between this "background" of fallout activity and plant effects is a difficult problem.

In reviewing the Sr-90 and Cs-137 measured in cow and goat milk in the areas around the Millstone and Haddam Neck stations, a casual observer could notice that in some cases the levels of these isotopes are higher at farms closer to the station than at those further away from the stations. The stations effluents might at first appear to be responsible. However, the investigation of the following facts prove this conclusion wrong.

- The stations accurately measure many fission products, including Sr-90 and Cs-137 in their releases. Based on these measurements and proven models developed by the Nuclear Regulatory Commission, concentrations in the environment can be calculated. These calculations (generally conservative, see Section 5.0) show that insufficient quantities of Sr-90 and Cs-137 have been released from the stations to yield the measured concentrations in milk.
- Over the many years of plant operation, Sr-89 has often been released in comparable quantity to Sr-90. Since they are chemically similar, comparable levels should have been detected in milk in the Sr-90 was plant related. No plant related Sr-89 has ever been detected in milk samples.

- 3. Similar to Sr-89, Cs-134 can be used as an indication of plant related Cs-137. Although not as conclusive as Sr-89, the lack of any measurable Cs-134 in any of the milk samples suggests that the Cs-137 is not plant related. This is further confirmed by the evaluation of the air particulate data. The only occurrences of detectable Cs-134 in milk resulted from the Chernobyl incident.
- 4. Since dairy milk sampling began in the 1960's, years prior to plant operation, the immediate station areas have always shown higher levels of weapons fallout related Sr-90 and Cs-137 (see Figures 6-1 and 6-2). The ratio of activity between the locations has not changed with plant operation. All areas show the same significant decrease in radioactivity since the 1964 Nuclear Test Ban Treaty.
- 5. Local variability of Sr-90 and Cs-137 in milk is common throughout the United States. Due to the variability in soil conditions, pasturing methods, rainfall, etc., it is the rule rather than the exception. Therefore, it is not surprising that certain farms have higher levels of radioactivity than other farms. In fact, there are some cases where the farms further from the station have higher Sr-90 and Cs-137 values than the farms that are closer to the station (e.g., see pre-1984 Haddam Neck Goat Milk data.)
- 6. The Millstone goat farm with the highest levels of Sr-90 and Cs-137 has also experienced the highest levels of short-lived activity from the 1976 and 1977 Chinese Tests and the 1986 Chernobyl accident. This indicates that for some unknown reason this farm has the ability for higher reconcentration. Special studies performed at this and other farms failed to find any link to the plant.

Based on these facts, the observation that the station effluents are responsible is obviously false. The cause must be one or more of the other variables.

Northeast Utilities has carefully examined the data throughout the year and has presented in this report all cases where plant related radioactivity can be detected. An analysis of the potential exposure to the population from any plant related activity has been performed and shows that in all cases the exposure is insignificant.

Throughout the year, the Connecticut Department of environmental Protection performs a parallel environmental program under contract with the Nuclear Regulatory Commission. On a regular basis, the results of their analyses are compared to the results from this program's analyses. The comparisons are tracked and used as a cross-reference to verify measured plant activity. During 1993, both programs showed similar results.

As in previous years, this data is being submitted to, and will be reviewed by the appropriate regulatory bodies such as the Nuclear Regulatory Commission, Environmental Protection Agency and Connecticut Department of Environmental Protection.

Strontium-90 in Milk

CESIUM-137 IN MILK

APPENDIX A

COW AND GOAT CENSUS FOR 1993

Dairy Cows Within 15 Miles of Millstone Point

As of December 1993

Direction	Distance	Name and Address	# of Cows
N	6 M	S. Douglas Morgan 16 Douglas Lane Waterford, CT 06385 443-0691	0
N	7 M	Waterford Country School 78 Hunts Brook Road Quaker Hill, CT 06375 - Waterford -	1
N	14 M	Wauwecus Farm Diary RFD #2, Wauwecus Hill Road Norwich, CT 06360 - Bozrah -	35
N	15 M	Joseph Lebejko RFD 2 Norwich, CT 06360	40
NE	13.5 M	Richard H. Morgan RFD #7, Box 1114 Ledyard, CT 06339	60
ENE	13 M	Charles Perkins RFD #1 Stonington, CT 06378	32
WNW	9.5 M	J. Ely Harding Ashlawn Farm Old Lyme, CT 06371 - Lyme -	50
WNW	11 M	Tiffany Farms Sterling City Road Old Lyme, CT 06371 - Lyme -	80
NNW	11.5 M	Salem Valley Farms Dairy Eugene Wilczewski Darling Road Salem, CT 06415	35

Dairy Cows Within 15 Miles of Millstone Point

As of December 1993

Direction	Distance	Name and Address	# of Cows
NNW	13 M	Stuart Gadbois Route 82 Salem, CT 06415	200
NNW	13 M	Garry Vaill Forsythe Road Salem, CT 06415 (call next year 859-1965)	0
NNW	14 M	Robert Avery Rathburn Hill Rd. Colchester, CT 06415 -Salem-	27

DAIRY GOATS WITHIN 20 MILES OF MILLSTONE POINT AS OF DECEMBER 1993

DIRECTION	DISTANCE	NAME AND ADDRESS	NO. OF GOATS
N	2 M	Mrs. John Mingo 69 Spithead Road Waterford, CT 06385	7
N/NNE	5.2 M	Allen Moran 122 Dayton Road Waterford, CT 06385	12
NE	13 M	Alan J. Starke Rt. 12 Norwich, CT 06360 Near Mohegan Pequot Bridge	2
NE	14 M	Robert Ruest 15 Mathewson Mill Road Ledy ard, CT 06339	0
ENE	2 M	Bertram Smith 9 Braman Road Waterford, CT 06385	3
W	16.5 M	Victor Trudeau 174 Horse Hill Road Westbrook, CT 06498	5
WNW	7 M	Roger Kinderman 217 Boston Post Rd. Old Lyme, CT 06371	3
WNW	13.4 M	Laura Parker 95 Plains Road Essex, CT 06426	5

DAIRY GOATS WITHIN 20 MILES OF MILLSTONE POINT AS OF DECEMBER 1993

DIRECTION	DISTANCE	NAME AND ADDRESS	NO. OF GOATS
WNW	10 M	Dave & Pam Richards 285 Grassy Hill Road Lyme, CT 06371	
NW	5 M	George Scacciaferro 338 Boston Post Road East Lyme, CT 06333	3
NNW	14 M	Anne B. Henrici Round Hill Road Salem, CT 06415	4

" UNABLE TO CONTACT AS OF THIS TIME.

TOTAL NUMBER OF GOATS ARE LISTED FOR THIS CENSUS.

APPENDIX B

NORTHEAST UTILITIES QA PROGRAM

Northeast Utilities Service Company (NUSCO), acting as the agent for both the Northeast Nuclear Energy Company (NNECO) and the Connecticut Yankee Atomic Power Company (CYAPCO), maintains a quality assurance (QA) program as part of the radiological environmental monitoring program (REMP). The QA program consists of contractor appraisals and quality control samples.

Appraisals are conducted of the primary (Teledyne Isotopes) and secondary (Yankee Atomic) radioanalysis contractors, of the Production Operations Support Laboratory (POSL), and of the NUSCO Radiological Engineering Section (RES). A REMP evaluation form is completed for each appraisal and discrepancies are tracked on a separate form until corrective action is taken. Each contractor, POSL, and RES are also audited by other organizations including other customers of the contractors and Northeast Utilities Quality Assessment Services of POSL and RES.

There are three types of quality control samples. They are:

- Duplicate analyses of actual surveillance samples and TLDs. For samples this type of quality control allows an evaluation of the contractor's precision or reproducibility of results. Duplicate TLD measurements at eight locations with TLDs of different design are made and readout at the NUSCO Personal Dosimetry Laboratory to verify the reliability of POSL's environmental TLD readings.
- Cross-check analyses of actual surveillance samples with more than one laboratory;
 e.g., Yankee Atomic Environmental Laboratory. This intercomparison allows the determination of what agreement the primary contractor has with another laboratory.
- Analyses of "spiked" samples and TLDs. This type of quality control allows a check on the accuracy of results for contractor's sample radioanalyses and for POSL's TLD readings.

The number and type of quality control samples are given in Table 1. In general, the objective was to obtain between 10 and 20 percent of the samples as quality control samples. The results should satisfy acceptance criteria as defined in NUSCO Radiological Assessment Branch Procedure RAB 3-1, "Quality Control of the Environmental TLD Monitoring Program," and in Procedure RAB 3-2, "Quality Control of Radiological Environmental Monitoring Program." An investigation is conducted of any result or trend which does not satisfy acceptance criteria.

The NUSCO QA Program is not the only QA Program which monitors the primary contractor sample radioanalyses performance. Other programs include:

- Teledyne Isotopes' internal QA program.
- 2. Teledyne Isotopes' participation in EPA's Environmental Radioactivity Laboratory Intercomparison Studies Program.
- 3. Nuclear Regulatory Commission-State of Connecticut Independent Verification Program.

Primary contractor participation in the EPA Intercomparison Studies Program is required by plant technical specifications and the results of this program are contained in Appendix C.

The NUSCO QA Program indicated that, in general, the Teledyne Isotopes' environmental radiological analysis program was adequate. Of the fourteen (14) investigations opened in 1993 for analyses which did not satisfy criteria, eight (8) were closed before the end of the year. Because Teledyne Isotope has not been retained as the environmental radioanalysis contractor beyond 1993, the remaining open investigations have been closed. The new contractor, Yankee Atomic, had one quality control sample which failed criteria in 1993. The investigation of this quality control sample result has been closed.

The NUSCO QA Program indicated that the environmental TLD results were reliable. For twelve months of measurements the duplicate TLDs averaged 4.0 percent higher than the environmental TLDs with a range of 14.6 percent to -1.8 percent. For ten months (August and December excluded) the spiked TLDs averaged 2.5 percent below the spiked value with a range of -9.4 percent to 0.6 percent. August and December spike results exceeded the acceptance criteria. Investigation of the August test revealed that the TLD reader required a recalibration. Reader calibration was performed shortly after the spike test and it was determined that the normal environmental TLD readout was not affected by the reader malfunction. The reason for the December spike test failure has not yet been determined. Preliminary investigation indicates that there may be an error with the spiking of the TLDs and not with the POSL readout.

TABLE 1

NUMBER OF QUALITY CONTROL* SAMPLES
1993

SAMPLE	ETYPE	NUMBER OF QC SAMPLES	NUMBER OF ROUTINE SAMPLES®
Milk - Strontium		136	526
Milk - lodine		43	117
Milk - Gamma		11	117
Water - Gamma		25	117
Water - Tritium		12	22
Fish/Invertebrate		12	22
		6	108
Vegetation/Aquatic Flora/Bi		4	84
- Iodii - Gan		12 9 8	830 780 60

^{*}An additional program is performed by the contractor.

a - Total for both Millstone and Connecticut Yankee

APPENDIX C

SUMMARY OF EPA INTERLABORATORY COMPARISONS

U.S. INTERLABORATORY COMPARISON PROGRAM 1993 (ENVIRONMENTAL)

DATE	MEDIA	NUCLIPE	<u>EPA</u> (a)	TELEDYNE(b)	YANKEE ATOMIC(b)
1/15/93	Water	Sr-89 Sr-90	15.0 ± 2.9 10.0 ± 2.9	12.7 ± 1.2 8.3 ± 1.2	12.0 ± 1.7 12.3 ± 0.6
1/29/93	Water	Beta	44.0 ± 2.9	52.0 ± 1.0(c)	No Result
2/5/93	Water	I-131	100.0 ± 5.8	106.7 ± 5.8	109.3 ± 5.5
3/5/93	Water	Ra-226 Ra-228	9.8 ± 0.9 18.5 ± 2.7	$7.7 \pm 0.1 \text{ (d)}$ 19.3 ± 2.3	No Result
4/20/93	Water	Beta Sr-89 Sr-90 Co-60 Cs-134 Cs-137 Ra-226 Ra-228	177 ± 15.6 41.0 ± 2.9 29.0 ± 2.9 39.0 ± 2.9 27.0 ± 2.9 32.0 ± 2.9 24.9 ± 2.1 19.0 ± 2.8	150.0 ± 0.0 35.3 ± 1.5 27.3 ± 0.6 40.7 ± 3.5 23.7 ± 1.5 34.3 ± 2.1 $19.0 \pm 1.0 \text{ (d)}$ 18.3 ± 0.6	No Result No Result No Result No Result No Result
6/11/93	Water	Co-60 Zn-65 Ru-106 Cs-134 Cs-137 Ba-133	15.0 ± 2.9 103.0 ± 5.8 119.0 ± 6.9 5.0 ± 2.9 5.0 ± 2.9 99.0 ± 5.8	16.3 ± 1.5 $121.3 \pm 2.1(e)$ 106.3 ± 15.9 5.7 ± 0.6 6.7 ± 0.6 104.3 ± 9.3	No Result No Result No Result No Result No Result No Result
6/4/93	Water	H-3	9844 ± 568	9367 ± 153	10603 ± 452
7/16/93	Water	Sr-89 Sr-90	34.0 ± 2.9 25.0 ± 2.9	31.7 ± 2.5 24.0 ± 0.0	No Result
7/23/93	Water	Beta	43.0 ± 2.9	42.7 ± 2.5	42.7 ± 2.9
8/27/93	Air Filter	Beta Cs-137	47.0 ± 2.9 9.0 ± 0.6	49.0 ± 1.7 9.7 ±0.6	46.0 ± 0.0 9.0 ± 1.0
9/17/93	Water	Ra-226 Ra-228	14.9 ± 1.3 20.4 ± 2.9	15.3 ± 0.6 20.7 ± 1.2	No Result
9/24/93	Milk	Sr-89 Sr-90 I-131 Cs-137 K	30.0 ± 2.9 25.0 ± 2.9 120.0 ± 6.9 49.0 ± 2.9 1679 ± 48	35.7 ± 3.5 24.0 ± 7.0 127.0 ± 6.0 50.7 ± 1.2 1620 ± 17	28.0 ± 1.7 22.7 ± 1.7 119.7 ± 2.1 48.7 ± 0.6 1692 ± 2.9
10/8/93	Water	I-131	117.0 ± 6.9	103.3 ± 5.8	118.7 ± 14.1

U.S. INTERLABORATORY COMPARISON PROGRAM 1993 (ENVIRONMENTAL)

DATE	MEDIA	NUCLIPE	EPA(a)	TELEDYNE(b)	YANKEE ATOMIC(b)
10/19/93	Water	Beta Sr-89 Sr-90 Co-60 Cs-134 Cs-137	58.0 ± 5.8 15.0 ± 2.9 10.0 ± 2.9 10.0 ± 2.9 12.0 ± 2.9 10.0 ± 2.9	51.3 ± 3.2 15.0 ± 1.0 10.0 ± 0.0 12.0 ± 1.0 9.0 ± 1.0 12.7 ± 2.5	No Result 12.7 ± 0.6 8.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6 10.6 ± 0.6
10/29/93	Water	Beta	15.0 ± 2.9	15.7 ± 2.1	17.3 ± 1.5
11/5/93	Water	H-3	7398 ± 427	6900 ± 100	7164 ± 387
11/12/93	Water	Co-60 Zn-65 Ru-106 Cs-134 Cs-137 Ba-133	30.0 ± 2.9 150.0 ± 8.7 201.0 ± 11.5 59.0 ± 2.9 40.0 ± 2.9 79.0 ± 4.6	28.7 ± 2.9 152.0 ± 9.2 177.3 ± 5.5 53.3 ± 4.9 41.3 ± 3.1 69.3 ± 3.1	30.0 ± 1.7 152.3 ± 1.2 165.7 ± 4.5 57.3 ± 0.6 42.0 ± 0.0 80.0 ± 1.7

FOOTNOTES

Units are pCi/liter for water and milk, except K is in mg/liter. Air particulate filters are in units of total pCi.

- (a) EP known value ± standard error of the mean (1 sigma).
- (b) Average of three analyses ± one standard deviation of the three analytical results. If the average value is not within the EPA value ± three times EPA standard deviations it is outside of EPA control limits.
- (c) By oversight, the special self-absorption curve which had been previously derived using EPA water and Cs-137 standard was not used.
- (d) The counting data and backgrounds were verified. Possibly some efficiencies used were erroneously high, causing low values. A less likely cause is an error in dilution. New Ra-226 standards will be prepared. Closer monitoring of out of control efficiencies will be done and extra care in preparation of the sample will be maintained.
- (e) The calculations were checked and found to be correct. The results of six gamma emitting isotopes were reported to the EPA. The results of four were within one (1) normalized deviation; a fifth, within two (2) normalized deviations. Only the Zn-65 average was outside the control limits. There is no reason why one isotope should be outside the control limits, while five other isotopes were within control limits.