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ABSTRACT

Let X),..., X be independent random variables with distribut'ons
n

depending on a possibly multidimensional e. Let Y be an unobserved con-
tinuously distributed rancom variable whose distribution depends on e. A

tolerance interval for Y is desired, satisfying P[Yc I(X ,...,X )] = s. Aj n
naive interval would estimate e from the X's, and construct the interval
assuming that the estimate is exactly correct. This paper assumes standard
regularity conditions, and uses Taylor approximations to construct correc-

' tion terms of order lin. The resulting interval is longer than the naive
interval, because it takes into account the uncertainty in the estimate of

,

e. Two examples, one simple and one complex, illustrate the method.
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APPROXIMATE TOLERANCE INTERVALS, BASED ON

MAXIMUM LIKELIHOOD ESTIMATES

1. INTRODUCTION AND TERMIN0 LOGY

Based on observations X ,...,X , inference is to be made about anj n
unobserved continuously distributed random var'able Y. The inference con-
sists of an interval I = I(X ,...,X ), such that I contains Y accordingj n
to some pr'obability statement. There are two examples that will be useo
repeatedly for illustrations.

Normal Example. Here X),...,X and Y are independent normal (u,a )
n

2random variables, with u and a unknown. Based on the observable values
X ,...,X , we want to predict a future value Y. by an interval I = I(X ,...,j n j
X ) that contains Y according to some probability statement.

n

Gamma-Poisson Example. Here A has a gama(a,s) distribution, with a and
a unknown. For i = ~ 1, ...,n, values A are independently generated fromj
this distribution. Corresponding to each A j, a Poisson (A t ) random variable9j
X is observed, with t known and A j unknown. Based on the observed valuesj j
X ,...,X . We wish to cover most of the distribution of A by an interval I.j n

Equivalently, if Y is some future randomly generated A, we wish to construct

I = I(Xj,...,X ) such that I contains Y according to some probabilityn
statement.

A commonly used probability statement to precisely relate I and Y is
the following. The interval I is a tolerance interval with content s and
confidence. coefficient a if

:

'P (P [YeI(X ,...,X ) | X ,.~,X ] 1 s} 1 a (1)j n j n
.

f In words, this says that, with probability at least a, the-interval

| covers at least a of the distribution of Y. This _ definition is mentioned
here only because it is so commonly used. It is usually difficult, even in
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problems as simple as our normal example, to find an interval I satisfy-
,

| ing (1). Solutions usually involve specially computed tables. Therefore

| in this paper we will restrict attention to a simpler definition. The

interval I is a tolerance interval with expected content 8 if

E {P [YeI(X),...,X ) l'"*'# N "8 (}*
n n

In words, this says that the average coverage is s of the distribution of
; Y. Since the expectation of a conditional probability is an unconditional

probability, (2) can be rewritten as.

P [YeI(X),...,X )] = a (3)

L

This sirmly says that the interval contains Y with probability 8, i.e., I
'

is a prediction interval for Y. In this last probability statement, both Y
! and the X 's are considered random.g

Equations (1) and (2) are related, since an interval satisfying (2-

satisfies (1) with a = 1/2. This approximation rests on the approximate
equality of the mean and the median of the probability in (2). For a
fuller treatment of these concepts, see Guttman (1970).

!
Again, this paper only considers intervals satisfying (2) or,

equivalently,(3).

The method for finding an approximate tolerance interval is as

follows. Let F, be ne cumdame dsWWon hncdon (c.d.f.) of Y,
determined by an unknown parameter e. Here Y is one-dimensional, but e
may be multidimensional. Based on X ....,X , find the maximumj n

. likelihood estimate, e. Then F^ estimates the distribution of Y. Now let

y be some probability of interest, such as 0.05 or 0.95. Let a (e) bey
defined by

.

F"[a (e)] = y .
e

2
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A naive interval would use a (e) as one end point of the interval I.y

Such an interval ignores the uncertainty in e'. It incorporates the random
variability of Y, but not the random variability of the X 's. Therefore$

it is generally too short, and does not have an expected content as large
as claimed.

To get a better interval, use the asymptotic theory for the maximum
likelihood estimator, to.get a correction term of order 1/n in the equation

|

E {P[Y < a (e) e]} = E {F,[a (e)]} = y + correction .

This gives an approximation to the true expected content of the naive
interval. Iteration on y yields an interval so that (y + correction)

is the desired size, e.g. 0.95. For this y, a (e) is one end point of ay

tolerance interval with approximately the desired expected content.

$
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2. RESULTS

.

2.1 Notation

All the notation needed for the statements of the results is given
here, for convenient reference. The upper case letters U, X, and Y
represent randon variables.

Let g, be the density or discrete probability function of X,.

Define

= ( a/se ) log g,(X,)U j

U = ( a /ae se ) log g,(X,)$3 j 3

J the matrix having E EU$j.,as element ij=
m

Jid the element ij of J-I=
.

The matrix J is the Fisher information. The letter J is used because I has
already been used for " interval." Let F,(y) equal P'Y < yle), the cumula-
tive distrioution function of Y. Define

,

F, I(y), i.e. a (e) is such that F,[a (e)] = y
-

a(e) =

F = -(a/ay) F,(y)10

2 2
20 (a /ay ) p (y)F =

e

F the vector having (a/ae ) F (y) as element i=
01 j e

2
F) the vector having (a /ae. sy) F,(y) as element i=j

'

4
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F
02 the matrix having (a /ue 3e ) F,(y) as element ij=

4 3

Unless it is stated otherwise, the derivatives of F are all evaluated at
y = a (e). A superscript T will be used to denote a transpose.

ILet e be a neighborhood of the true e.
j

2.2 Assumptions on X , .. . ,Xj n

The random variables X),...,X are independent. The usual regular-r
ity conditions hold so that the maximum likelihood estimator is asymptoti-
cally normal with mean e and nonsingular covari'ance matrix J-l [See,.

for example, Cox and Hinkley (1974) or Cramer (1946).] Also, for all ece
and all 1, j, k and m,

E [(a /ae as as ) 9 (*m) / 9 ( m)] = 0. (O4 3 k m m

A sufficient condition for (4) is: the third mixed partial derivative is
continuous almost surely, and there exists some integrable function h gg,
independent of e, with

3
|(a /8'i 8'j 8'k) 9 (x)| ijkm(x) fcr all x<h .m

.

2.3 Assumptions on Y

The range of Y, R, is an interval, possibly infinite, which does not
depend on e. The c.d.f. F,(y) has continuous derivatives with respect to y
and all the components of e, up through derivatives of order 3, for all

ycR ano ece. For y in the interior of R and e in e, (a/ay) F,(y) 1.s
strictly positive.
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2.4 Statement of Results

Theorem 1. Leti be the t th component of 5. Under the assumptionst

on X ,...,X , the bias of et is given by1 n

N (Ujk;m + U ; ,U ;m) E J b ;,] + o(1/n)E(t ~ ' t) * E [E J .

3 k i gm k

_

'

Anderson and Richardson (1979) obtain an expression for the bias which

uses third derivatives (Uijk;m). The expression given here, using only
second-order derivatives, is made possible by the assumption on X),...,X n
given by (4).

. Theorem 2. Under the assumptions on X), .. ., X and Y, we haven

p tr F J~I + F J F))/F10 + 0(II")
~I

E {F,[a (e)]I = y-E(e-e)T 01 - 02 01
*

The proofs are in the appendix.

ThesetwotheoremssuggestawaytoestimateE{Fe[a(i)]}. If they

expected values in the expressions for J and E(e-e) can be written as

explicit functions of e, estimate them by substituting e for e.
Othe. wise, replace each expected sum by the corresponding sum of observed

values, to obtain estimates of J and E(e-e). Both estimators of n-lJ and
^

E(e-e) are censistent, but if e is a sufficient statistic, then the first

estimators are preferable because they depend only on the sufficient statistic.

Similarly, estimate F o, F01, F11, and F02, by evaluating them at i = el
^

and y = a (e). Use these to estimate the quantityy

y - E(e-e) F01 - 02 01 F))/F10tr F +

~

6
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This estimate equals E{Fe[a (e)]) plus o (1/n). Iterate on y until they p

estimate of E{F [a (e)]) equals a desired probability, such as 0.95. Thene y

use a (e) as one. end point of the interval I. !y

:

.

,

!

,

i

i

.

I

h

i-

t

i

!
:
.

!

t

i

i

'

i

t
*

.

6

9

7 -

'

.

N. O



_ _ _ _ _ _ _ _ _ _ _ _ _ _

.. .

3. EXAMPLES

3.1 The Normal Example

In this example, X ,..., X and Y are independent normal (u.o ). Let -

j n
-

e = (u,s)T Then direct calculation shows that.

- . .

T = (o /n) ,0 1/2,

A

E(ej-e))=0

E(e2 - '2) = -3a/4n.

Let z = [a (e) u]/o, and let & denote the standard normal density,

-z /2+(z) = (2w)- e ,

.

Then more calculation shows that
.

'
2

E {F,[a (s)]} = y - z+(z)(5 + z )/4n + o(1/n) .

.

The right hand side is of the form y + correction + o(1/n). Now z =
-I(y), w ere e is the standard normal c.d.f. Therefore the correctione,

term is determined by y, up to o(1/n), and no estimation is needed. The

expectation E{F [a (e)]} ise y

y - z +(z)(5 + z )/4n

up to o(1/n).
.

|
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The accuracy of this approximation can be investigated, because in

this example exact calculations are possible. These calculations are based
on the easily verified fact that

[(n - 1)/(n + 1)]l/2 (y ,7)f,

has a Student's t distribution with n-1 degrees of freedom. Here o is
the maximum likelihood estimator, based on the biased est.imator

,

-2
(X -X)2/n.a =

4

For example, if the desired expected content of the tolerance interval
is to be 95%, the naive interval would be

A

I 1.96 o,.

since *(1.96) = 0'.975. The approximate interv41 would'be

Ii z o,

where z is such that 6(z) = y and

y - ze(z)(5 + z )/4n = 0.975.

The exact interval would be

Y [(n + 1)/(n - 1)]l 2 t o,
^

.

where t is such that the cumulative Student's t distribution (with n-1
degrees of freedom) equals 0.975 there.

,

.

'
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All three intervals are of the form i ce, so they may be compared

easily. Table 1 shows the three kinds of intervals for a number of
examples. In these examples, it can be seen that the approximate intervals
are closer to the exact intervals than to the naive intervals, even for

quite small n. It is also evident that in these examples the approximation
never goes f ar enough, but always undershoots.

3.2 The Gamma-Poisson Example, with Monte Carlo Data

Here A has a gamma (a,s) density

f(A) = A*~I ~AI8
e / [s*r(a)].

has a Poisson (A t ) distribution, with t known.Conditional on A j, Xj 9j j
Therefore, the unconditional distribution of X is negative binomialj
(a,st ), with probability distribution functionj

P[X = k] = [a ... (a + k - 1)/k!] (st )k (1 A st )-*' .j j j

The expected value of X is ast . (See Johnson and Kotz (1969) forj j
a summary of the basic facts.)

This natural parametrization turns out not to work well in practice.

The intuitive reason is that as--essentially the mean of X--can be

estimated rather well, but then a and a have a strong negative correla-
tion. In data considered y ently at EG&G Idaho, correlations of around
-0.9 are typical. Therefore the information matrix J is poorly conditioned,.
so any statistical error in es'imating J is greatly magnified in J-I In.

some Monte Carlo runs, descril.d more fully below, .ne estimates were so

unstable that they were useless. The average coverage probability of the
resulting approximate tolerance 1ntervals was no better than that of the

,

naive intervals. ' *

.

.

|
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TABLE 1. COMPARISON OF TOLERANCE INTERVALS FOR THE NORMAL EXAMPLEa

Desired Expected Content = 0.9000

Naive Approximate Exactn Interval Interval Interval
5 1.645 2.227 2.611

0.7496 0.8568 0.9000

10 1.645 1.964 2.027
0.8291 0.8906 0.9001

30 1.645 1.752 1.757
0.8776 0.8991 0.9000

100 1.645 1.677 1.677
0.8934 0.9000 0.9000

Desired Expected Content = 0.9500

Naive Approximate Exact
n Interval Interval Interval

5 1.960 2.609 3.400
0.8152 0.8998 0.9500

10 1.960 2.350 2.501
0.8900 0.9375 0.9500

30 1.960 2.102 2.115
0.9320 0.9487 0.9500

100 1.960 2.003 2.004
0.9448 0.9499. 0.9500

a. In each column labeled " Interval," the pairs of numbers have the
following meaning. The upper number is c, where the interval is of the

f orm X t ca . 'The lower number is the true expected content of the
interval.

.

e
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To remedy this, parametrize the distributions in terms of a and
u = as. Then the information matrix J is diagonal, with

X ,-l

J)) =E ,E E (a + j)-2 _ { mutg[a(a + ut )3mj=o

J12 = J21 = 0

.J22 * Z atg[u(a + ut,)].m

The two sums that do not involve X, can be estimated by substituting
^ ^

and u for a and u. The term

X -1

E (a + [m j=0 .

can be estimated either by

E,j,-l
x

,

E (a + j)-2
=0

,,

or else by numerically summing the series for the'expections, using the
estimated values of the parameters. In the Monte Carlo runs described
below, these two estimation methods gave almost the same estimates. The
first method is simpler.

To complete the example, the derivatives of F must be found. Since

F,(y) equals

my/u
x"-l e * dx/r(s),-

'

.

t

.

'
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it is straightforward to find both the derivatives with respect to u, and
the mixed partial derivatives. The derivatives with respect to a are

,

best found numerically. For example, approximate t.';e integral in a
plausible range of a by a smooth function such as a cubic spline, and
find the derivatives of the smooth function. Differentiation under the
integral sign with respect to a is not valid for a < 1, and only valid
once for a < 2. (Nonetheless, all the assumptions on X),...,X and

n

Y of Sections 2.2 and 2.3 are satisfied.)

Three Monte Carlo runs were performed, with

| a = 1, u=1, n = 15
a= 1, u=1, n = 60
m = 3, u=9, n = 60

In each run, t, was 1 for m = 1,...,n. Except for t, which is

essentially just a scale f actor, these values were chosen to be not too
| different from values given by real data. In each run, 1000 sets of

.

X),...,X were generated, using the IMSL (1980) program MDNB. For somen
data sets, the search for the maximum likelihood estimates did not
converge. This happens if the distribution of A appeass to degenerate to
a constant. Then that constant is u, and a is infinit.d. However, when j
the maximum likelihood estimates were found, the approximate tolerance
intervals'of this paper were also found, with desired expected content of
0.90.

Since the true values of the parameters are known, exact 90% intervals.

for A can also be found, for comparison. Summary statistics for the
naive intervals and the approximate intervals are shown in Table 2, where
they are compared with the exact intervals.

In this table, the average upper and lower end points are printed. Of
course the intervals vary greatly from data set to data set, so these
average end points are only suggestive of the behavior of the methods for

, obtaining tolerance intervals. The an tail probabilities and mean

contents are shown. Ideally, these should equal 0.05, 0.05, and 0.90,

13

.
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TABLE 2. MONTE CARLO COMPARISON OF TOLERANCE INTERVALS FOR THE
GAMMA-POISSON EXAMPLE

Interval

Quantity Naive Approximate Exact

a = 1, u = 1, n = 15 (847 trials)a

Mean Interval (0.138. 3.05) (0.083, 4.98) (0.051, 3.00)

Mean Tail Probabilities 0.116, 0.086 0.040, 0.016 0.050, 0.050

Mean Content (standard 0.80 (0.0062) 0.94 (0.0054) 0.90
(error)

1, u = 1, n = 60 (998 trials)aa=

Mean Interval (0.089, 2.29) (0.043, 3.25) (0.051, 3.00)

Mean Tail Probabilities 0.081, 0.068 0.041, 0.047 0.050, 0.050

Mean Content (standard 0.85 (0.0035) 0.91 (0.0017) 0.90
error)

a = 3, u = 9, n = 60 (1000- trials)a

Mean Interval (2.59,18.72) (2.40,19.35) (2.45, 18.89)

Mean Tail Probabilities 0.061, 0.058 0.051, 0.051 0.050, 0.050

Mean Content (standard 0.88 (0.0016) 0.90(0.0014) 0.90
error)

a. The number of trials listed is the number of data sets, out of a
possible 1000, for which maximum likelihood estimates could be found.

.

6
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respectively. The standard error is also shown for each mean content.

They are small enough to show that the Monte Carlo mean contents probably
differ from the corresponding true expected contents by at most 0.01.

In these three examples, Table 2 shows that the naive interval is on
the average too short, while the approximate interval is on the average too
long. Of the two methods, the approximate interval comes closer to the
target than does the naive interval, in the sense that its expected content
is closer to 0.90. i

|

3.3 A Gamma-Poisson Example with Real Data !

Failure data on 128 diesel generators in 58 comercial nuclear power
plants for 1976-1978 are presented by Atwood and Steverson (1982). The
diesel generators serve as emergency back-up power sources to the plant
equipment. They are normally not running, but are started when other power
sources are lost, and for periodic tests. Since the number of demands on
each diesel generator is unknown, the observed number of calendar hours for .

the plant is used as t for the ith diesel generator. Most of the plantsj
operated for the full three years (tj = 26304 hours) although one was ,

observed for only 600 hours, and others had intermediate values of t . j

Assume that the number of reported failures of a diese) generator is a
Poisson ( A t ) random variable, with A j an unknown f ailure rate associated$j

with the diesel generator. Because of changes in personnel, reporting
,

policy, rate of demands, and equipment, A $ probably varies over time, so
the Poisson model does not perfectly correspond to reality.

Assume that the Aj's come from a gamma population. The gamma f amily '

is chose.i for mathematical convenience, and lack of a better model.

Two kinds of, failures are considered: " individual failures," in which
there is no mechanism synchronizing the failure of one diesel generator
with that of another, and " common cause events," when there is a shock,
external to the diesel generators, that can at least potentially cause '

.

15 |
|
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several simultaneous failures. If we ignore certain technicalities and
details, the data contain reports of 350 individual f ailures and 22 common-
cause events.

Based on the individual f ailures for 128 diesel generators, a and u are
estimated to.be 1.387 and 8.904E-3, so the naive 90% interval for the indi-
vidual f ailure rate is (1.265E-5, 3.302E-4). One of the diesel generators
had enough recurrent failures so that it is a borderline outlier. Mcwever
the uppet end point of the interval only changes by 10% if that diesel
generator is not counted, so it is left in.

The method of this paper, as detailed in Section 3.2, gives an approxi-
mate 90% interval of (1.148E-5, 3.440E-4) . Compared to the width of the
interval, the effect of the correction is very small.

Based on the 22 common cause events at 58 plants, a and u are esti-

mated to be 0.5830 and 2.944E-5. Because the estimate of a is less than
1.0, the estimated gamma density approaches infinity at A = 0. Therefore

the left end point of the naive interval is very small. The naive 90%
interval for the common cause event rate is (1.423E-7, 6.241E-5). The cor-
rection of this paper produces an approximate 90% interval of (2.073E-8,
6.576E-5). The change in the lower end point is large compared to the lower
end point, but small compared to the length of the interval. The change in
the upper end point is small by either standard.

Atwood and Steverson simply present the naive intervals. Their reasons
are the following. The data are not of'high quality, since there is prob-
ably not a completely consistent reporting policy from plant to plant, and
since at least a few events probably have not been reported. There is also
some evidence of lack of fit to the model: occasional strings of recurrent
failures are reported; one diesel generator may be an outlier; and fitting a
gamma distribution to the rate of common cause' events makes the~most likely

rate exactly zero. Because of these considerations, it does not seem worth-
while to go to the trouble of using the method of this paper, in order to

,

change the length of the interval by a few percent. The value of the method

.

16
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of this paper, with the diesel generator data, is to confirm that the naive
interval is good enough, that the uncertainty due to lack of failure data is
small compared to the inherent variability in A.

.

d

'
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4. PR0OFS

Proof of Theorem 1 Following Cox and Hinkley (1974), pp. 309-310,
Anderson and Richardson-(1979) show that the asymptotic bias of the maximum
likelihood estimator is'given by

ijk;m} + o(1/n . (5)E(e ~ ' t) * m 1,j,k 2 E,U); ,Uik;m + U
t

(Anderson and Richardsori do not make essential use of their assumption that

X),...,X are identically distributed.) For compactness, denote g,(X,)n

by G, denote (a/ae )g,(X,) by G , and let G ) and Gijk be similarly
g $ j

defined. Then the expression in curly brackets in (5) can be rewritten as

/G -GG /G -GG /G2+G /G].2

E [G)G ik k $3 4 jk ijk

ijk/G is 0, by the assumption on X),..., X 9 ""The expection of G n

by (4). Moreover, by the symmetry of the information matrix J, the first
two terms cancel in

- G G )/d - G G /Gh.
I J E [G)Gik/G kj g jkjk,

Therefore (5) can be written

N N [(G /G)(G /G)] + o(1/n).E(et - 't) " J J Em i,j,k j jk
,

This can then be rewritten as in Theorem 1. O

Proof of theorem 2 Let a = a (e) - a (e). Then, by Taylor's theorem,y y

2
F,[a (e)] = F,[a,(e)] + 6 F 10 + 6F20 + o(6 ) . (6)y

s

18
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Here and below, F10, F20, F01, and Fjj are always evaluated at ay(e).
The first term on the right hand side of (6) is y. To evaluate the other
terms, an expression for 6 is required. Such an expression is given by
Taylor's theorem:

6 = (e - e) a'(e)+h-(e-e) a"(e)(e - e) + c(|0 - el )

Here a'(e) is the vector with element i equal to (a/ae )a (e), and a"(e) isj
the matrix with element ij equal to (a /ae j ae))a (e). To evaluate a'(e)
ar.d a"(e), differentiate the identity

Y

F,[a (e)] = y.

This yields the expressions

a'(e) = -(1/F10)F01 -

TF10 a"(e) = -F02+(1/F10) [Fjj 01 01 j j ) , (720F +F F /fl0 ) F01 01 *F

Substitute the expressions for 6, a'(e), and a"(e) into (6). After simpli-
fication, this yields

. -

F,[a (e)] = y - (e-e)T F
01 -

.

- f tr F02(e-e)h-e)T

I (e-e) (e-e)I F jj+o(|e-e|2)+ (l/F10) F0l,
,

Take expectations on both sides, to obtain the conclusion of the theorem. D
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