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ABSTRACT

Let X],..., Xn be independent random variahles with distribut ons
depending on a possibly muitidimensional 8. Let Y be an unobserved con-
tinuously distributed rancom variable whose distribut‘on depends on 8. A
tolerance interval for Y is desired, satisfying P[Ye I(x],...,xn)] =g, A
naive interval would estimate & from the X's, and construct the interval
assuming that the estimate is exactly correct. This paper assumes stancard
regularity conditions, and uses Taylor approximations to construct correc-
tion terms of order 1/n. The resulting interval is longer than the naive
interval, because it takes into account the uncertainty in the estimate of
8. Two examples, one simple and one complex, illustrate the method.
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APPROXIMATE TOLERANCE INTERVALS, BASED ON

MAXIMUM LIKELIHOOD ESTIMATES

1. INTRODUCTION AND TERMINOLOGY
Based on observations x]....,xn, inference is to be made about an
unobserved continuously distributed random var able Y. The inference con-
sists of an interval [ = I(x],....xn), such that [ contains Y according

to some probability statement. There are two examples that will be usec
repeatedly for illustrations.

Normal Example. Here Xys.++,X  and Y are independent normal(u,oz)
rangom variables, with y and 02 unkﬁown. Based on the observable values
x],....xn, we want to predict a future value Y. by an interval I = I(X]....,
xn) that contains Y according to some probability statement.

Gamma-Poisson Example. Here A has a gamma(a,8) distribution, with a and
8 unknown. For i = 1,...,n, values A; are independently generated from
this distribution. Corresponding to each A 2 Poisson(xiti) random variaole
X; is observed, with t; known and L unknown. Based on the observed values
x],...,xn. we wish to cover most of the distribution of A by an interval I.
Equivalently, if ¥ is some future randomly generated A, we wish to construct

I = I(x],...,xn) such that [ contains Y according to some probability
statement.

A commonly used probability statement to precisely relate I and Y is

the following. The interval I is a tolerance interval with content 8 and
confidence coefficient a if

PP [Yel(Xpyuee i) | Xp0eeesX T 281 22 . (1)

In words, this says that, with probability at least a, the interval
covers at least 8 of the distribution of Y. This definition is mentioned
here only because it is so commonly used. It is usually difficult, even in



problems as simple as our normal example, to find an interval [ satisfy-
ing (1). Solutions usually involve specially computed tables. Therefore
in this paper we will restrict attention to a simpier definition. The
interval [ is a tolerance interval with expected content 8 if

E (P [YcI(X],...,Xn) |x],...,xn]; b . (2)

In words, this says that the average coverage is 8 of the distribution of
Y. Since the expectation of a conditional probability is an unconditional
probability, (2) can be rewritten as

P [Ytl(x]9'°-oxn)] il (3)

This simply says that the interval contains Y with probability 8, i.e., I
is a prediction interval for Y. In this last probability statement, both Y
and the xi's are considered ranaom.

Equations (1) and (2) are related, since an interval satisfying (2
satisfies (1) witha # 1/2. This approximation rests on the approximate
equality of the mean and the median of the procability in (2,. For a
fuller treatment of these concepts, see Guttman (1970).

Again, this paper only considers intervals satisfying (2) or,
equivalently, (3).

The method for finding an approximate tolerance interval is as
follows. Let Fe be the cumulative distribution function (c.d.f.) of Y,
determined by an unknown parameter 8. Here Y is one-dimensional, but e
may be multidimensional. Based on x1....,xn, find the maximum

likelihood estimate, 8. Then Fe estimates the distribution of Y. Now let

y be some probab:lity of interest, such as 0.05 or 0.95. Let aY(S) be
defined by

Fala (0)] = v



)T the

Such an interval ignores the uncertainty in [t incorporates the random
variability of Y, but not the random variability of the X.'s. Therefore
it is generally too short, and does not have an expected content

as claimed.

’
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To get a better interval, use the asymptotic theory for the max imum

likelihood estimator, to get a correction term of order 1/n in the equation

y * correction

content of the naive

that (y + correction)

1S the desired Jo 0:95. | this (8) is one end point of a

olerance interval with approximately the desired expected content.




2. RESULTS

2.1 Notation

A1l the notation needed for the statements of the results is given
here, for convenient reference. The upper case letters U, X, and Y
represent random variables.

Let % be the density or discrete probability function of Xm.

Define

Ui'm . ('/a°i) Tog gm(xm)

2
s
Uij;m (2 /aoi aej) log gm(xm)

J = the matrix having -EugU as element ij

ijim
JU = the element ij of e
The matrix J is the Fisher information. The letter J is used because I has

already been used for "interval." Let Foly) equal P‘Y < yle), the cumula-
tive distrioution function of Y. Define

a (o) = F,"(v). i.e. a (e) is such that F [a ()] =y
Fio = (a/ay) F (y)

Fao = (3%7ay%) F (y)

For = the vector having (a/20 ) F (y) as element i

F]} = the vector having (32/30, ay) Fe(y) as element i




the matrix having

1S stated otherwise, the derivatives of F are all evalu: at

A clunoarer + T 11 . -
A superscript wiil De used to denote a transpose.

Let & be a neighborhood of the

Assumptions on Kyse WX
The random variables x]....,x' are independent. The usual reqular-

1ty conditions hold so that the maximum likelihood estimator is asymptoti-

cally normal with mean 8 and nonsingular covariance matrix J'X. [See,

for axample, Cox and Hinkley (1974) or Cramer (1946).] Also, for all see

and all i, j, k and m,

(4)

A sufficient condition for (4) is: the third mixed partial derivative is

continuous almost surely, and there exists some integrable function hijkm

independent of 8, with

2.3 Assumptions on Y

The range of Y, R, is an interval, possibly infinite, which does not
depend on 6. The c.d.f. Fe\y; has continuous derivatives with respect to y
and all the components of e, up through derivatives of order 3. for g}
yeR ana 8ed8. For y in the interior of R and @ in e, {3/3y) F
strictly positive.

v ) i
g\y) 18




Statement of Results

Theorem 1. Let 8¢ be the t th component of 8. Under the assumptions

.++9kpn, the bias of & is given by

"1~m] + o(1/n)

Anderscn and Richardson (1979) obtain an expression for the bias which

uses third derivatives (U ). The expression given here, using only

ijksm
second-order derivatives, is made possible by the assumption on X1,...,Xn

given by (4).

Theorem 2. Under the assumptions on x1,..., Xn and Y, we have

F [a (s)
{ QLaY 8)

The proofs are in the appendix.

These two theorems suggest a way to estimate E{Fe[ay(é)]}. [f the

expected values in the expressions for J and E(8-9) can be written as
explicit functions of 8, estimate them by substituting & for e.
Othe.,wise, replace each expected sum by the corresponding sum of observed
values, to obtain estimates of J and E(8-8). Both estimators of n='J and

E(e-8) are consistent, but if 8 is a2 sufficient statistic, then the first

estimators are preferable because they depend only on the sufficient statistic.

Similarly, estimate Fyg, Fo1, F11, and Fg2, by evaluating them at & = o

- \

and y = a (e). Use these to estimate the quantity




This estimate equals E(F.[a,(;)]} plus op(1/n). Iterate on y until the

estimate of E{F,[a,(;)]} equals a desired probability, such as 0.95. Then

use a,(8) as one end point of the interval I.



EXAMPLE

LA
In this example, Xy,..., X. and Y are independent normal(u,sc ). Let

| n
.
8 = (use) . Then direct calculation shows that

o

J-]-.oz/'\ 1 :,ﬁ
0 1/2
:\‘;1 - 911 = U
cigi - 42) = «3¢/4n.
Let z = fayfa, - ul/a, and let ¢ denote the standard normal density,
s(z) = (26)° ¢ e'zz/:

Then more calculation shows that

The right hand side is of the form y + correction + o(1/n). Now 2
3 (y), where ¢ is the standard normal c.d.f. Therefore the correction
term is determined by y, up to o(1/n), and no estimation is needed. The

expectation E{Fg[a

o




The accuracy of this approximation can be investigated, because in

this example exact calculations are possible. These calculations are based
on the easily verified fact that

[(n = /0 + D12 (v = T)/e

has a Student's t distribution with n-1 degrees of freedom. Here o is
the maximum 1ikelihood estimator, based on the biased estimator

;2 = (xi-Y)Z/n.

For example, if the desired expected content of the tolerance interval
is to be 95%, the naive inte val would be

X + 1.9 g,

since 9(1.96) = 0.975. The approximate intervi! would be

Xtzo,
where z is such that ¢(z) = y and

y - 2¢(2)(5 + 22)/4n = 0.975.

The exact interval would be

Y& ln+ )/n-11"¢o,

where t is such that the cumulative Student's t distribution (with n-1
degrees of freedom) equals 0.975 there.




All three intervals are of the form t Co, SO they may be compared
easily. Table 1 shows the three kinds of
examp les. In these examples, it can be seen that the approximate intervals
are closer to the exact intervals than to the naive intervals, even for
quite small n. It is also evident that in these examples the approximation

never goes far enough, but always undershoots.
The Gamma-Poisson Example, with Monte Cario Data
has a ganmala,8) density

-] - . .
3=l o"M8 ; r4%r(a)].

T\X} A
Conditional on Ay X, has a Poisson(\it“ distribution, with t. known.
Therefore, the unconditional distribution of Xi is negative binomial

(a,8t;), with probability distribution function
(8t.)" (1 +
]

The expected value of Xi is aBt,. (See Johnson and Ko
|

a summary of the basic facts.

This natural parametrization turns out not to work well in practice.

The intuitive reason is that ag--essentially the mean of X--can be

estimated rather well, bui then a and 8 have a strong negative correla-
tion. In data consicere “ently at EG&G I[daho, correlations of around
-0.9 are typical. Therefore the information matrix J is poorly conditioned,
s0 any statistical error in es"imating J is greatly magnified in J-1. In
some Monte Carlo runs, descril .4 more fully below, .iie estimates were so

unstable that they were useles:. The average covarage probability of the

resulting approximate tolerance intervals was no better than that of the

naive intervals.




COMPARISON OF TOLERANCE INTERVALS FOR THE NORMAL E

Desired Expected Content = 0.9000

Naive Approximate Exact
Interval Interval Interval

227 2.611
).8568 . 9000
1.964 .027
.8906 .9001

757
.9000

677
0.9000

Desired Expected Content = 0.9500

Naive Aporoximate Exact
Interval [nterva! [nterval

1.560 2. 3.400
0.815¢ .8998 0.9500

.501

4
0.9500

. 102 . 115
.9487 .9500

2.003 2.004
.9448 .9499 0.9500

a. In each column Tabeled "Interval," the pairs of numbers have the
following meaning. The upper number is c, where the interval is of the

- -

form X £ co. The lower number is the true expected content cf the
interval.




To remedy this, parametrize the distributions in terms of a and

u *=aB. Then the information matrix J is diagonai, with

L i al + 1
- -Jtm/ ula + ut )L,

The two sums that do not involve xm can be estimated by substituting

and y for a and u. The term

X =]

) 2% £ fa s 2172

J=0
can be estimated either by

]

X =
m -
Z Y (a+i)e
j=0

or else by numerically summing the series for the expections, using the
estimated values of the parameters. In the Monte Carlo runs described

below, these two estimation methods gave almost the same estimates. The
first method is simpler.

To complete the example, the derivatives of F must be found.

Fe(y) equals

ay/u

0




it is straightforward to find both the derivatives with respect to

the mixed partial derivatives. The derivatives with respect to a are

best found numerically. For example, approximate t..e integral in a
Plausible range of 4 0y a smooth function such as a

S us

cubic spline, and
find the derivatives of the smooth function. Differentiation under the

J

integral sign with respect to a is not valid for a < 1, and only valid

1
|

once for a < 2. (Nonetheless, a

1 the assumptions on X,,....An and

Y of Sections 2.2 and 2.3 are satisfied.)

Three Monte Carlo runs were performed, with

60
"n each run, t was | form=1,...,n. Except for t, which is
essentially just a scale factor, these values were chosen to be not too
different from values given by real data. In eacr run, 1000 sets of
l]....,xn were generated, using the IMSL (1980) program MONB. For some
data sets, the search for the maximum likelihood estimates did not
converge. This happens if the distribution of A appea s to degenerate to
a constant. Then that constant is u, and a is infiniLec. However, when
the maximum likelihood estimates were found, the approximate tolerance
intervals of this paper were also found, with desired expected content of
0.90.

Since the true values of the parameters are known, exact 90% intervals
for A can also be found, for comparison. Summary statistics for the
naive intervals and the approximate intervals are shown in Table 2. where

they are compared with the exact intervals.

In this table, the average upper and lower end points are printed. Of
course the intervals vary greatly from data set to data set, so these
average end points are only suggestive of the behavior of the methods for
obtaining tolerance intervals. The n tail probabilities and mean

contents are shown. Ideally, these should equal 0.05, 0.05, and 0.9G

: ]
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MONTE CARLO COMPARISON OF TOLERANCE INTERVALS FOR THE
GAMMA-POISSON EXAMPLE

Interval

Quantity \pproximate

15 (847 trials)?

Mean Interval (0.138, 3.05) (0.083, 4.98) (0.051, 3.00)
Mean Tail Probabtlities 0.116, 0.086 0.040, 0.016 0.050, 0.050

Mean Content (standard .80 (0.0062) 0.94 (0.0054) 0.90
(error)

60 (998 trials)?

Mean Interval ).089, 2.29) (0.043, 3.25) (0.051, 3.00)
Mean Tail Probabilities 0.081, 0.068 0.041, 0.047 0.050, 0.050

Mean Contert (standard 0.85 (0.0035) 0.91 (0.0017) 0.90
error)

60 (1000 trials)®

Mean Interval (2.59, 18.72) .40, 19.35) (2.45, 18.89)
Mean Tail Probabilities 0.061, 0.058 0.051, 0.051 0.050, 0.050

Mean Content (standard 0.88 (0.0016) 0.90 (0.0014) 0.90

error)

a. The number of trials listed is the number of data sets, out of a
possible 1000, for which maximum likelihood estimates could be found.




respectively. The standard error is also shown for each mean content.
They are small enough to show that the Monte Carlo mean contents probably
differ from the corresponding true expected contents by at most 0.01.

In these three examples, Table 2 shows that the naive interval is on
the average too short, while the approximcte interval is on the average too
long. Of the two methods, the approximate interval comes closer to the

target than does the naive interval, in the sernse that its expected content
is closer to 0.90.

3.3 A Gamma-Poisson Example with Real Data

Failure data on 128 diesel generaters in 58 commercial nuclear power
plants for 1976-1978 a-e presented by Atwood and Steverson (1982). The
diesel generators serve as emergency back-up power sources to the plant
equipment. They are normally not running, but are started when other power
sources are lost, and for periodic tests. Since the number of demands on
each diesel generator is unknown, the observed number of calendar hours for
the plant is used as ti for the ith diesel generator. Most of the plants
operated for the full three years (t1 = 26304 hours) although one was
observed for only 600 hours, and others had intermediate values of ti'

Assume that the number of reported failures of a diesei generator is a
Poisson(xiti) random variable, with A; an unknown failure rate associated
with the diesel generator. Because of changes in personnel, reporting
policy, rate of demands, and equipment, Aj protahly varies over time, so
the Poisson model does not perfectly correspond to reality.

Assume that the xi's come from a gamma population. The gamma family
is chose. for mathematical convenience, and lack of a better model.

Two kinds of failures are considered: "individual failures," in which
there is no mechanism synchronizing the failure of one diesel generator

with that of another, and "common cause events," when there is a shock,
external to the diesel generators, that can at least potentially cause

15



several simultaneous failures. If we ignore certain technicalities
details, the data contain reports of 350 individual failures and

cause events.

Based on the individual failures for 128 diesel generators, a and u are
estimated to be 1.387 and 8.904E-3, so the naive 90% interval for the indi-
vidual failure rate is {1.265E-5, 3.302E-4). One of the diesel generators
had enough recurrent failures so that it is a borderline outlier. Hcwever
the upper end point of the interval only changes by 10% if that diesel
generator is not counted, so it is left in.

The method of this paper, as detailed in Section 3.2, gives an approxi-
mate 90% interval of (1.148E-5, 3.440tE-4). Compared to the width of the
interval, the effect of the correction is very small.

Based on the 22 common cause events at 58 plants, a and u are esti-
mated to be 0.5830 and 2.944E-5. Because the estimate of a is less than
1.0, the estimated gamma density approaches infinity at » = 0. Therefore
the left end point of the naive interval is very small. The naive 90%
interval for the common cause event rate is (1.423F-7, 6.241E-5). The cor-
rection of this paper produces an approximate 90% interval of (2.073E-8,
6.5765-5). The change in the lower end point is large compared to the lower
end point, but small compared tc the length of the interval. The change in
the upper end point is small by either standard.

Atwood and Steverson simply present the naive intervals. Their reasons
are the following. The data are not of high quality, since there is prob-
ably not a completely consistent reporting policy from plant to plant, and
since at least a few events probably have not been reported. There is also
some evidence of lack of fit to the model: occasional strings of recurrent
failures are reported; one diesel generator may be an outlier; and fitting a
gamma distribution to the rate of common cause events makes the most likely

race exactly zero. Because of these considerations, it does not seem worth-

while to go to the trouble of using the method of this paper, in order to

change the length of the interval by a few percent. The value of the method
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Proof of Theorem 1 Following Cox and Hinkley (1974), pp. 309-310,

Anderson and Richardson (1979) show that the asymptotic bias of the maximum
likelihood estimator is given by

m

(2E U, U +EU

J'mdik:m iJk'm} * o(1/n). (3)

(Anderson and Richardson do not make essential use of their assumption that

K].--..Xr are identically distributed.) For compactness, denote am(Xﬁ)

by G, denote 3/38.)g (X ) by G, let G, 5.4 imilar)
y G, ote 5/361,qm\ o 2Y Bs and let %43 and JWJK bDe S arly
defined. Then the expression in curly brackets in (5) can be rewritten as

¢ fo & RHy sl _ o
: LGjujk/G GkGiJ/b uisjk’ i jk

The expection of ngk/G is 0, by the assumption on Xysenes Xq given
by (4). Moreover, by the symmetry of the informaticn metrix J, the first

two terms cancel in

Therefore (5) can be written

- . g it
E(og = 0¢) = 3% %45,k Y

3% E0(6.,/6)(6,,/6)] + of1/n).
This can then be rewritten as in Theorem 1. »!

Proof o1 Iheuvrem 2 Let ¢ = a_(9) - a_(9).




Here and below, F,n, F,y, Fyy, and Fyq are always evaluated at ay(s).

The first term on the right hand side of (6) is v. To evaluate the other
terms, an expression for § is required. Such an expression is given by
Taylor's theorem:

- - - -~ -

. ] T . 4 P
§ = (0 -9) a'(e) + > (0 - 9) a"(e)(e - 8) +c(le - sl )
Y Y

Here a'(s) is the vector with element i equal to (a/aei)aY(e), and a:&e) is
Y Y

the matrix with element 1j equal to (a‘/aei aej)ay(e). To evaluate a;(e)
ard a"(e), differentiate the identity
Y

This yields the expressions

-(1/F 1 0)F

-~

, , ‘ 2 |
* (1/Fyo) ; 8 o1 For -

20/F10)

Substitute the exp.essions for &, a;(e;, and a:(e) into (6). After simpli-

fication, this yields

i (]/F]O) FO]‘ (9'9) (9‘9)T F]| + of S-G‘C)

Take expectations on both sides, to obtain the conclusion of the theorem. 0O
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