NRC Translation 2514

Language of Foreign Document: Russian

Translated Title of Document: Strength Ra

Strength Rating Standards of Nuclear Power Equipment and Piping PNAE G-7-002-86

Untranslated Title: Normy rascheta na prochnost' oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok PNAE G-7-002-86

Author(s): (not given)

Translated Name and Address of Corporate Author: USSR State Committee on Inspection of Safe Operation in Nuclear Energy (Gosatomenergo nadzor) Moscow, Energoatomizdat, 1989

 Date of Original Foreign Document:
 1989

 Foreign Document ID Number(s):
 WG-3

 Number of Pages in Translation:
 22

 Date Translated for NRC:
 March 1991

 NRC Requester/Office:
 KEITH WICHMAN, NRR

 Translated by:
 SCITRAN COMPANY

Name and 1482 East Valley Road Address Santa Barbara CA 93150 (805) 969-2413

9105010169 910331 PDR REVOP NROUSUSR

STRENGTH RATING STANDARDS OF NUCLEAR POWER EQUIPMENT AND PIPING PNAE G-7-002-86

Rules and standards in nuclear power engineering. Approved by the USSR State Committee on Use of Nuclear Power. Approved by the USSR State Committee on Inspecting Safe Operation in Nuclear Power Engineering. Mandatory for all ministries, departments, organizations and enterprises that are planning, designing, fabricating and operating nuclear power plants, heating plants, experimental and research nuclear reactors and units under the control of the USSR State Committee for Inspection of Safe Operation in Nuclear Power Engineering. Put into effect 1 July 1987 with changes.

5.7. Calculation for Continuous Cyclic Strength

5.7.1. The calculation for continuous cyclic strength is made as applied to structural components operating at temperatures causing $/\frac{93}{23}$ creep and with loaded repeated thermal or mechanical stresses.

5.7.2. The recommended method for calculating for continuous cyclic strength is presented in Appendix 7.

The calculation uses the characteristics of continuous strength and plasticity according to Tables A6.1 and A6.3.

5.7.3. The structural component calculated for continuous cyclic strength must satisfy:

1) strength conditions adopted in selecting main dimensions in the entire operating temperature interval;

2) strength conditions in the calculation for continuous static strength.

5.7.4. Other methods can be used on the condition that they have proper calculation and experimental substantiation for the materials employed, operating conditions and operating lifetime for

*Numbers in margin indicate pagination in original foreign text.

/92*

the number of cycles and duration of loading.

5.8. Calculation for Brittle Failure Strength

5.8.1. General points.

5.8.1.1. Based on the points of this section a calculation is made for brittle failure strength of nuclear power equipment and piping at the planning stage.

5.8.1.2. The points of this section do not cover calculation of fastening parts.

5.8.1.3. The calculation for brittle failure strength of equipment and piping components is made for all operating conditions, including normal operating conditions (NOC), violation of normal operating conditions (VNOC), emergency situations (ES) and hydraulic (pneumatic) tests.

5.8.1.4. The main characteristics of the material used in the calculation are the critical coefficient of stress intensity K_k , critical brittleness temperature T_k and yield strength $R^T_{p0.2}$.

Change in the properties and materials during operation is taken into consideration by adding to the calculation shift in critical brittleness temperature because of various factors in the operating process.

5.8.1.5. If the thickness of the walls of the calculated components is less than the required thicknesses for determining that the values K_k according to the points of GOST 25.506-85, critical opening of cracks δ_c or other characteristics (K_c , J_c) that can be defined according to the aforementioned GOST may be used in calculations for brittle failure strength.

The calculation techniques using the indicated characteristics /<u>94</u> must be agreed upon with the main organization for developing strength calculation standards.

5.8.1.6. Brittle failure strength is considered guaranteed if the following condition is fulfilled for the selected calculated defect in the form of a crack in the operating mode under discussion

$K_1 \leq [K_1]_i$

where $[K_1]_1$ is the permissible value of the stress intensity coefficient.

The index i indicates that the permissible values of the stress intensity coefficients vary depending on the calculated conditions: i = 1 for normal operating conditions; i = 2 for hydraulic (pneumatic) tests and violations of normal operating conditions; i = 3 for an emergency situation.

5.8.1.7. In defining $[K_1]_i$ the values of neutron migration F_n and temperature T are assumed to be equal to their values at the point corresponding to the greatest depth of the selected calculated crack.

5.8.1.8. If it is necessary to make calculation of equipment and piping in operation, fabrication or assembly, or completed by working planning at the moment these standards are put into operation it is permitted that:

1) points of this calculation may be used;

2) for equipment and piping in operation, by agreement between the design (planning) organization, main materiology organization, enterprise that own. the equipment and piping parameters of defects may be defined that are permitted from conditions of guaranteeing strength and by monitoring to confirm the absence in the equipment

and piping of deferts whose parameters exceed those permitted by calculation; the .alculation should use actual properties of materials, while the actual calculation (including schematization of the defects detected during monitoring) must be made by techniques agreed upon with the main organization for developing strength calculation standards;

3) for equipment and piping in fabrication, assembly or finished by working planning, techniques may be used that differ from that described in this section by agreement with the main organization for developing strength calculation standards and the USSR State Committee on Inspecting Safe Operation in Nuclear Power Engineering.

5.8.1.9. Calculation for brittle failure strength may not be made for structural components that are not subject to neutron irradiation (or are subject to irradiation at temperatures $25 - 350^{\circ}$ C /<u>95</u> until migration of no more than 10^{22} neutron/m² with E \ge 0.5 MeV) in the following cases:

1) structural components are made of corrosion resistant steels of the austenite class or colored alloys;

2) material of the structural components (including welding connections) have yield point at temperature 20°C less than 300 MPa (30 kg-f/mm²), while the thickness of the structural component wall is no more than 22 mm;

3) materials of the structural components (including welded connections) have yield point at temperature 20° C less than 600 MPa (60 kg-f/mm²), while the thickness of the structural component wall is no more than 16 mm;

4) the thickness of the wall of the structural component under discussion smm, satisfies the condition

$$s \leq 8 \cdot 10^{5} \left(\frac{\left[K_{1} \right]_{1}}{R_{p_{0,2}}^{T}} \right)^{2}$$

with $[K_1]_1$ in MPa x m^{1/2} and $R^Tp0.2$ in MPa (both characteristics are adopted with the least operating temperature and critical brittleness

temperature T_k corresponding to the end of operation).

5.8.1.10. The calculated thickness of the wall of the components of equipment and pipingdoes not include the thickness of the anticorrosion coating.

5.8.2. Coefficient of stress intensity.

5.8.2.1. The coefficient of stress intensity for the selected calculated cracks is defined analytically, numerically or experimentally by techniques agreed upon with the main organizations for developing strength calculation standards.

5.8.2.2. The coefficient of stress intensity, MPa x $m^{\frac{1}{2}}$ for cylindrical, spherical, conical, elliptical, flat components loaded by internal pressure and temperature factors may be defined from the formula

$$K_{i} = \eta \left(\sigma_{\nu} M_{p} + \sigma_{q} M_{q}\right) \left(\pi \frac{a}{10^{3}}\right)^{1/2} / Q,$$

where η is the coefficient that takes into consideration the impact of stress concentrations; δ_p is the component of stretching stresses, MPa; σ_g is the component of bending stresses, MPa; $M_p = 1 + 0.12$ (1 - a/c); $M_q = 1 - 0.64 a/h$; a is the depth of the crack, mm; c is the half length of the crack, mm; h is the length of the zone in whose limits the component of bending stresses maintains positive value, mm;

 $Q = [1 + 4, 6(a/2c)^{1.65}]^{1/2}$

Figure 5.14. Steels of Grades 12Kh2MFA, 15Kh2MFA, 15Kh2MFA-A Key:

ĺ.	NOC,	(K1	11	н.	17	. 5	+	22.	5	c0.	02(T-T1)
2	VNOC	and	hy	dr	au	lic	1	pne	um	ati	(9.	tests
2	[K1];	=	23.	5 26	*	30	¢0	0.02	21	- T T-3	111	

The formula is correct with a \leq 0.25 s and a/c \leq 2/3, where s /<u>96</u> is the thickness of the item wall.

In calculating the zones where stress concentration is missing \mathcal{N} = 1 is assumed.

5.8.2.3. The stretching stress component (annular or axial) is defined from the formula

where j is the Θ or Z coordinate; \Im_j is the function of stress change over the thickness of the wall; s is the thickness of the wall in the calculated section.

5.8.2.4. The value of the bending stress component is defined from the formula

 $\sigma_{j_{ij}} = \sigma_{j_{ij}} - \sigma_{j_{ij}},$

where $\overline{\sigma}_{j\,n}$ is the value of the stress change function over the thickness of the wall at point n.

For elements without anticorrosion facing point n is located on the external or internal surface of the item in the zone of operation of the maximum stretching stresses. For components with anticorrosion facing point n is selected on the external surface of the item or on the interface of the anticorrosion coating and the base metal in the zone of operation of the stretching stresses.

5.8.3. Permissible values of coefficients of stress intensity. /97

5.8.3.1. Permissible values of stress intensity coefficients depend on the relative temperature $(T-T_k)$ and the calculation case. The dependence of $[K_1]_i$ on $[T-T_k)$ is obtained as the envelope of two curves defined from the initial temperature relationship K_k . One of these curves is obtained by dividing the ordinates of the original curve by the coefficient of the strength margin n_k , the other is obtained by shifting the original curve along the x-axis onto the value of the temperature margin ΔT .

It is assumed:

for normal operating conditions (i = 1) $n_k = 2$, $\triangle T = 30^{\circ}C$; with disruption in normal operating conditions and hydraulic (pneumatic) tests (i = 2) $n_k = 1.5$, $\triangle T = 30^{\circ}C$;

Figure 5.15. Steels of Grades 15Kh2NMFA, 15Kh2NMFA-A Key: 1. NOC, $[K_1]_1 = 37 + 5.5 e^{3.85\times10^{-2}(T-T_1)}$ 2. VNOC and hydraulic (pneumatic) tests, $[K_1]_2 = 50 + 5.1 e^{4.1\times10^{-2}(T-T_1)}$ 3. ES, $[K_1]_3 = 74 + 11 e^{3.85\times10^{-2}(T-T_1)}$

for emergency situations (i = 3) $n_k = 1$, $\Delta T = 0$ °C.

5.8.3.2. The original temperature relationships K_k are adopted from data presented in the appropriate certification reports on materials (base metal, welded connections) or for technical decisions agreed upon with the USSR State Committee on Inspecting Safe Operation in Nuclear Power, the main materiology organization and the main organization for developing strength calculation standards.

5.8.3.3. Temperature relationships $[K_1]_1$ for steels of grades $/\underline{98}$ 12Kh2MFA, 15Kh2MFA, 15Kh2MFA-A, 15Kh2NMFA, 15Kh2NMFA-A and their welded connections are presented in Figures 5.14 - 5.16.

5.8.3.4. For steels of the perlite class and high-chrome steels and cheir welded connections with yield strength at temperature 20°C established from the instructions of point 3.7 of these standards and not exceeding 600 MPa (60 kg-f/mm²) generalized curves of permissible stress intensity coefficients presented in Figure 5.17 can be used.

5.8.4. Critical brittleness temperature.

5.8.4.1. The critical brittleness temperature of a material is defined from the formula

$T_{\star} = T_{\star 0} + \Delta T_{\tau} + \Delta T_{N} + \Delta T_{F},$

where $\mathrm{T}_{\mathrm{k}\,0}$ is critical brittleness temperature of the material in the original condition; $\Delta\mathrm{T}_{\mathrm{T}}$ is shift in critical brittleness temperature because of temperature aging; $\Delta\mathrm{T}_{\mathrm{N}}$ is shift in critical brittleness temperature because of cyclic failure; $\Delta\mathrm{T}_{\mathrm{F}}$ is shift in critical brittleness temperature because of the influence of neutron irradiation.

5.8.4.2. The values of $T_{\rm k0},\,\Lambda T_{\rm N},\,\Lambda T_{\rm T}$ and $\Lambda T_{\rm F}$ (or the coefficient of radiation embrittlement $A_{\rm F}$) are adopted from the data of appropriate certification reports on materials (base metal and welded connections), specification data for materials or based on technical solutions agreed upon with the USSR State Committee on Inspecting Safe Operation in Nuclear Power, the main materiology organization and the main organization for developing strength calculation standards.

199

The techniques for defining the value $T_{\rm k0},\, \Delta T_{\rm T},\, \Delta T_{\rm N},\, \Delta T_{\rm F}$ (or $A_{\rm F})$ are presented in Appendix 2.

5.8.4.3. Values $T_{\rm k0},\,\bigtriangleup T_{\rm T},$ and $A_{\rm F}$ presented in Table 5.11 can be used.

5.8.4.4. Values $\ensuremath{ \Delta T_N}$ can be defined from the formula

$$\Delta T_N = 20 \sum_{i=1}^{N_N} N_i / [N_i],$$

where N_i is the number of loading cycles in the i-th operating mode; $[N_i]$ is the permissible number of cycles for the i-th operating mode; m is the number of conditions.

5.8.4.5. Values $\Delta T_{\rm F}$ can be defined from the formula

$\Delta T_F = \mathcal{A}_F \left(F_* / F_0 \right)^{1/3},$

where A_F is the coefficient of radiation embrittlement, °C; F_n is neutron migration with E 2 0.5 MeV, neutron/m²; $F_0 = 10^{22}$ neutron/m².

The formula is correct with

-

٠

 $10^{22} \leq F_* \leq 3 \cdot 10^{24}$ neutron/m²

The values AF are adopted from documented data f-om point

5.8.4.2 or Table 5.11.

5.8.4.6. In calculating structural components made from steels of grades 12 Kh2MFA, 15Kh2MFA, 15Kh2MFA-A, 15Kh2NMFA, 15Kh2NMFA-A and their welded connections subject to neutron irradiation with $/\frac{107}{F_{\rm n}}$ 2 10^{22} neutron/m² (E $_2$ 0.5 MeV) at temperatures 250 - 350°C $\Delta T_{\rm T}$ = 0 may be assumed.

5.8.5. Calculation under normal operating conditions.

5.8.5.1. Brittle failure strength should be considered guaranteed if the following condition is fulfilled

$K_1 \leq [K_1]_1$

5.8.5.2. In defining K_1 a superficial semielliptical crack of depth a = 0.25 s with correlation a/c = 2/3 is acopted as the calculated defect.

5.8.5.3. Dimension h can be adopted as equal to 0.5 s.

5.8.5.4. With regard for the instructions in points 5.8.5.2 and 5.8.5.3 we obtain

$K_{i} = \eta (0, 7\sigma_{p} + 0.45\sigma_{q})(s/10^{3})^{1/2}$

where σ_p and σ_q are in MPa; s is in mm; K₁ is in MPa x m¹/₂.

5.8.5.5. The coefficient η for transition zones of hardness (connection of flanges with the cylindrical part of a vessel, fillets, etc.) is defined from the formulas: with 0 < s/R_2 \leq 5

$$\eta = 1 + (K_* - 1)^{0.7} \cdot 1.8/(s/R_*);$$

Grade of Base Materia	Type of Welding, Grade of Welded Material	Standard or Specifications	™ _{k0} , °C	AT _T , °C (see note 1)	Irradiation Temperature, °C	A _F , C (see note 2)
15Kh2MFA		TU 5.961- 11060-77, Ed. 6-90-3315	0	0	250 270 290	22 18
15Kh2MFA-A		TU 108.131-75, Ed. 479	0	0	270 290	12
15Kh2NMFA		TU 108.765-78, Ed. 4-83	0	0	290±15	109
15Kh2NMFA-A	÷	TU 108.765-78, Ed. 4-83	-25	0	290±15	23
15Kh3NMFA		TU 24-3-15-223- 75, Ed. 480, TU 5.961-11021-79, Ed. 6-90-3305	-10	0		
lOKhNlM		TU 14-1-2587-78	10	10	-	-
22K		TU 108-11-543-80	40	30		and the second
10GN2MFA		TU 108.766-78	15	10	-	÷
15Kh2NMFA	EShS, wire Sv-16Kh2NMFT Flux OF-6	TU 14-1-3633-83 A	20	0	÷	-
	RDS, electro RT-45A, RT-4 PT-45B	des OST 108,948. 5AA, 01-80	0	0	-	-
15Kh2NMFA-A	ADS, wire Sv 12Kh2N2MAA (including V VD)	- TU 14-1-2502- 78 I,	- 0	0	290±15	20
	Flux FTs-16A	TU 108.949-80			and the second second	and the second s
	Wire Sv-09Kh GNMTA-VI	TU 14-1-3675-83	0	0	290±15	20
	Flux KF-30 RDS, elec- trodes RT-45 AA, RT 45B	TU 5.965-11090-80 OST 108.948.01-80	0 0	0	290±15	20

TABLE 5.11. VALUES OF FAILURE STRENGTH CHARACTERISTICS

TABLE 5.11. Continued:

15Kh3NMFA-A	ADS, wire Sv-09KhGNMTA-VI	TU 14-1-3675-83	0	0		
	Flux KF-30	10 3.303-11030-00	- 11	0	-	
	RDS, electrodes RT-458 EShS, wire Sv-16Kh2NMFTA	TU 14-1-3633-83	20	Ű		-
	Flux OF-6					
15Kh2MFA	ADS (see note 3), wire Sy-10KhMFT, Sy-10KhMFTU	GOST 2246-70	40	0	250 270	see note .
	Fluxos AN-42 AN-42M					
	VE 30	TU 5.965-1190-80				
15Kh2MFA-A	ADS (see note 3), Sv-10Kh	TU 14-1-3034-80	20	0	270	15
	METU ADD AN ADM	TH 5 965-11090-80			290	12
	FIUX KF-30, AN-42M	701 5 965-4057-73	20	0	270	15
	RDS (see note 2), elec-	10 5.905 4052 -5			290	12
	trodes N-3, N-6	mit 14 1 2502 79	0	0	and the second	
15Kh2NMFA	ADS (see note 3), wire Sv-12Kh2NMFA, Sv-12Kh2	10 14-1-2502-70				
	NMFA-A (including VI, VD)		0	0		
	Flux FTs-16, FTs-16A	TU 108.949-00	- 0	0		
	Wire Sv-09KhGNMTA	TU 14-1-36/5-83	0	0		
	Flux KF-30	TU 5.965-11090-80	-		and a second second second	
15Kh RNMFA-A	ADS, wire Sv-09KhGNMTA-VI	TU 14-1-3675-83	0			
3 JULI JULI II II	Flux KE-30	TU 5.965-11090-78				
	RDS, electrodes RT-45B		0	0		in the second
	EShS, wire Sv-16Kh2NMFTA	TU 14-130-168-75	20	0	S 2 -	
	Flux OF-6	200m 2342 70	10	0		
10KhN1M	ADS, wire Sv-10NMA	GUS1 2240-70	- 10			
	Flux AN-42, AN-42M					
	Flux KF-31		- 10	0	305 S 200	
	Wire Sv-08KhNM	GOST 2246-70	10			
	Flux KF-31		-		and the second second	
	RDS, electrodes UONII-	같은 많이 많이 많이?	20	20		
	13/45A, UUNII-15/55	· · · · · · · · · · · · · · · · · · ·	0	0	-	-
LOKENIM	ADS, wire Sv-10NMA	GOST 2246-70	0	0		
(VK-1A)						

(Table continued next page)

14

TABLE 5.11. Continued:

	Flux AN-42, AN-42M	-				
	Flux KF-31 Wire Sv-08KhNM	GOST 2246-70	0	0	-	
	Flux KF-31 PDS_electrodes_N-25		0	0	-	-
22K	ADS, wire Sv-06A	TU 14-1-1569-75	0	0		-
	Wire Sv-08GSMT, Sv-10GSMT	GOST 2246-70	40	20		-
	Flux AN-42 Wire Sv-08GS	GOST 2246-70	15	30		1
	Wire Sv-08GSMT, Sv-08GS	GOST 2246-70 TU 5.965-11090-78	0	0	25.6	
	RDS, electrodes UONII- 13/45, UONII-13/45A, UONII-13/55		20	20		
22K	EShS, wire Sv-10G2	GOST 2246-70 GOST 9087-81	40	20		<u>.</u>
10GN2MFA	ADS, wire Sv-10GNMA Sv-10GN1MA Flux AN-17M	TU 14-1-2860-79 TU 14-1-2860-79 GOST 9087-81 TU 108 949-80	15	10	-	
	FTs-16 RDS, electrodes PT-30 ĒShS, wire Sv-10GN2MFA	GOST 108.948.01-80 TU 14-1-2860-79	15 15	10 10		-

Flux OF-6

- 1. Values T_t are presented for temperatures up to 350°C. 2. Values A_F are defined from correlations A_F = 800 (P + 0.07 Cu) with irradiation temperature 270°C, $A_F = 800 (P + 0.07 Cu) + 8$ with irradiation temperature 250°C, where P and Cu are the content of phosphorus and copper, %.
- 3. ADS--automatic flux arc welding; RDS--arc welding; EShS--electroslag welding.

in

wich s/R2 > 5

$\eta = 1 + (K_e - 1)^{0.7} \cdot 9/(s/R_1)^2.$

with $\gamma > \kappa_{5} \gamma = \kappa_{5}$ is assumed.

The quantity η can be defined by the graphs in Figure 5.18.

In the formulas R_2 is the radius of the curvature of concentrator in the calculated cross-section; K_6 is the theoretical concentration coefficient (it is permitted to assume that it is equal to the value K_6 during stretching).

5.8.5.6. The coefficient η for zones of holes (connections of sleeves, pipe unions, pipes) is defined by the formulas: with s/R \leq 0.8

$$n = [1 + 5(K_n - 1)exp(-0.86s/R_1)]^{1/2};$$

with s/R > 0.8

$$\eta = [1 + 2(K_{e} - 1)/(s/R_{1})]^{1/2},$$

where R₁ is the radius of the hole.

The quantity m can be defined by graphs in Figure 5.19.

5.8.5.7. A calculation needs to be made only to the relative temperature $[T - T_k]^*$ whose greatest value on the graph $[K_1]_1 = f$ $[T-T_k]$ corresponds to the value $[K_1]^*_1$ defined by the formula

$$[K_1]_1 = 0.35 R_{P0,2}^T (s/10^3)^{1/2}$$

where $R^{T}_{p0.2}$ is in MPa; s is in mm, $[K_1]_{1}^{*}$ is in MPa x $m^{\frac{1}{2}}$.

/108

Figure 5.18. Dependence of Coefficient η on Ratio s/R_2 for Transition Zone of Hardness Key: a. $2 \leq s/R_2 \leq 5$ b. $s/R_2 \geq 5$

5.8.6. Determination of minimum permissible construction temperature during hydraulic (pneumatic) tests.

ŝ

5.8.6.1. Hydraulic (pneumatic) tests must be conducted under such conditions that the minimum construction temperature during the hydraulic (pneumatic) tests T_k is greater than or equal to the minimum permissible construction temperature $[T_k]$ defined from a calculation of brittle failure strength.

5.8.6.2. Temperature $[T_h]$ is defined using the condition

 $K^{\dagger} \leq [K_1]_2$

where K_1^h is the coefficient of stress intensity and the cross-sections of the structure under discussion during hydraulic (pneumatic) tests.

Figure 5.19. Dependence of Coefficient γ on Ratio s/R_1 for Zones Where There are Holes Key: a. $s/R_1 \leq 1$ b. $s/R_1 > 1$

5.8.6.3. Values K_1^h are defined according to the instructions in points 5.8.2, 5.8.5.2 and 5.8.5.3.

5.8.6.4. The value $[K_1]_2$ is adopted equal to the value K_1^h defined from point 5.8.6.3 and using relationship $[K_1]_2 = f(T-T_k]$ we find the value $[[T_h] - T_k]$ and then, by knowing the value T_k we establish the value $[T_h]$.

5.8.6.5. Condition 5.8.6.2 must be fulfilled during the pressure delay during hydraulic (pneumatic) tests, during delay for inspection of equipment and piping and during heating to the testing temperature.

5.8.6.6. It is permitted that a complete calculation to determine temperature $[T_h]$ not be made and it is assumed it equals 5°C in any of the following cases:

conditions of point 5.8.1.9 are fulfilled (except point 4);
 the following condition is fulfilled for the element under discussion

$s \leq 4.5 \cdot 10^3 \left(\frac{[K_1]_2}{R_{p0.2}^7} \right)^2$

with s in mm; $[K_1]_2$ in MPa x $m^{\frac{1}{2}}$; $R^{\mathrm{T}}_{\mathrm{p}0,2}$ in MPa; value $[K_1]_2$ is defined with relative temperature (5 - T_k), where T_k corresponds to the moment of conducting hydraulic tests, while the value $R_{\mathrm{p}0,2}$ is adopted at temperature 20°C.

5.8.7. Calculation in VNOS and ES modes.

5.8.7.1. Brittle failure strength is considered guaranteed if the following conditions are fulfilled

 $K_1 \leq [K_1]_2$ for VNOC; $K_1 < [K_1]_3$ for ES.

5.8.7.2. The calculation is made in the following sequence: /<u>110</u> 1) for different moments in the occurrence of VNOC and ES modes the temperature fields and stresses defined in the calculated crosssections and for the components exposed to neutron irradiation the distribution of neutron migration through the wall thickness is also defined;

2) according to the instructions in point 5.8.2 for each of the

stress fields 5p, 6g and h are defined;

3) zone h is divided into intervals whose boundaries are designated by coordinates 0, x_1 , x_2 ..., x_n ; the length of one interval of division must be no more than 1 mm on sections where the stress gradient is over 70 MPa/mm, and no more than 2 mm in sections where the stress gradient is over 30 MPa/mm;

4) in limits of zone h values K_1 are defined assuming that the depth of the crack equals in value x_1, x_2, \ldots, x_n , while the correlation of semiaxes a/c = 2/3; the value x_n must not exceed 0.25 s; 5) the sequence of moments in time t_1, t_2, \ldots, t_n are selected so that the values K_1 calculated for one depth x_1 of two subsequent moments in time differ from each other by no more than 10%; 6) at the points corresponding to the end of each interval $x_1, x_2,$ \ldots, x_n the values of the temperatures T_1, T_2, \ldots, T_n are established and (for structures subject to irradiation) values of neutron migration F_1, F_2, \ldots, F_n ;

7) for temperature values found T_1 , T_2 , ..., T_n with regard for values of critical brittleness temperature T_k relative temperatures are defined $(T_1 - T_k)$, $(T_2 - T_k)$, ..., $(T_n - T_k)$ and from the temperature ture relationship

 $[K_1]_2 = f[T - T_k] \text{ or } [K_1]_3 = f[T - T_k]$

for each of the points x_1, x_2, \ldots, x_n values $[K_1]_2$ or $[K_1]_3$ are established;

8) at each point x_1 , x_2 , ..., x_n a comparison is made of the values K_1 defined from point 4, and values $[K_1]_2$ or $[K_1]_3$ defined from point 7 and fulfillment of the condition of point 5.8.7.1 is verified; 9) the calculation should be made in limits to relative temperature whose greatest value corresponds from the graph $[K_1]_2 = f[T-T_k]$ to the value $[K_1]_2 = 1R^T p_{0.2}(s/10^3)^{\frac{1}{2}}$ or on the graph $[K_1]_3 = f[T-T_k]$ to the value $[K_1]_3 = 2R^T p_{0.2}(s/10^3)^{\frac{1}{2}}$, where $[K_1]_2$ or $[K_1]_3$ is in MPa x m¹/₂; $R^T p_{0.2}$ is in MPa, s is in mm, while the values β_1 and β_2 are defined from Table 5.12.

TABLE 5.12. VALUES OF COEFFICIENTS \$1 AND \$2

ø/s	0.05	0,10	0,15	0.20	0,25
β,	0,267	0,360	0,405	0,445	0,465
β1	0.40	0,54	0.61	0,67	0,70

5.9. Calculation for Continuous Static Strength

5.9.1. In the verification calculation for continuous strength all operating modes should be examined which occur at temperatures exceeding T_1 , including violations of normal operating conditions. The conditions of strength of the structural components are presented in Table 5.13 and are clarified in the following points.

5.9.2. A structural component calculated for continuous static strength must satisfy:
1) conditions of strength adopted in selecting the main dimensions in the entire interval of operating temperatures;
2) conditions adopted in calculation for static strength in the entire interval of operating temperatures.

5.9.3. Relative stresses of categories $(5)_2$ and $(5)_{RV}$, $(5)_{RK}$ in calculating for continuous static strength of shells and piping must satisfy the following conditions:

 $(\sigma)_2 \leq K_i[\sigma] \leq (\sigma)_{RV}, \ (\sigma)_{RK} \leq K_i[\sigma].$

where [6] is the nominal permissible stress,

$$[\sigma] = R_{me}^T / n_{met};$$

 $n_{\rm mt}$ is the safety margin adopted according to section 3.4; $K_{\rm t}$ is the coefficient of reduction of stresses (G)_2 to membrane defined in the zones of membrane or low membrane stresses by the formula

/111

$K_{i} = 1.25 - 0.25(\sigma)_{m}/[\sigma]$ or $K_{i} = 1.25 - 0.25(\sigma)_{mL}/[\sigma]$;

 $K^{\prime}t$ is the coefficient of reduction of stresses $(\mho)_{\rm RV}$ and $(\mho)_{\rm RK}$ to membrane defined in the zones of membrane or local membrane stresses by the formulas

$K_i = 1.75 - 0.25(\sigma)_m / [\sigma]$ or $K_i = 1.75 - 0.25(\sigma)_m L / [\sigma]$.

Ultimate continuous strength R^{T}_{mt} in defining [6] is selected for the total duration of loading by stresses under discussion at the calculated temperature.

If the operating lifetime of the shell includes two or more loading modes that differ in relative stress or calculated temperature, then a condition must be fulfilled for accumulated continuous static damage

 $\sum_{i=1}^{k} \frac{t_i}{[i]_i} \leq 1.$

HC FORM 335 185. ACM 1102 201 3202	BIBLIOGRAPHIC DATA SHEET	MMISSION 1 REPORT NUMBER (Assepted by NRC, Add Vel, Base, Per, and Addendum Number, II any.)
TITLE AND SUBTITLE	P COMPANY OF THE REPORT OF THE R	WRC 2514
STRENGTH R	ATING STANDARDS OF NUCLEAR POWER	3. DATE REPORT PUBLISHED
		MARCH 1991 4. FIN OR GRANT NUMBER
AUTHORISI		6 TYPE OF REPORT TRANSLATION
(NOT GIVEN	2. PERIOD COVERED IInclusive Dates	
SCITRAN 1482 EAS SANTA BA (805) 96	COMPANY ST VALLEY ROAD ARBARA, CALIFORNIA 93150 59-2413	10 Disuma Ollan at Research U.S. Numer Resultan Communiti
B SPONSORING ORGAN THE MANINE SECTION OF THE USSR State (Gosatomen Moscow, En	NIZATION - NAME AND ADDRESS ("NAC. NON Some in converter, provide An Committee on Inspection of Safe Operat hergo nadzor) hergoatomizdat, 1989	ion in Nuclear Energy
10. SUPPLEMENTARY	NOTES	
Continuous nents oper for calcul continuous of materia brittlenes component conditions operating strength.	s cyclic strength is calculated, as applicating at temperatures causing creep. I lating continuous cyclic strength using s strength and plasticity. It is noted al used are the critical coefficient of ss temperature and yield strength. It designed for continuous static strengt s adopted in selecting the main dimension temperature range, and conditions adop	lied to structural compo- A method is recommended the characteristics of the main characteristics stress intensity, critical is found that a structural h must satisfy strength ons in the entire ted in calculating static
12. KEY WORDS/DES	SCHIPTORS (Liss words or primers in an will assist researching in sociating the report i	13 AVAILABILITY STATEMENT
		TA BECURITY CLASSIFICATION
		15. NUMBER OF PAGES
		16 PRICE

2

DISTRIBUTION SHEET Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Between the U.S. and the USSR

nent By:	and the second			For Information	
schment For	NUI	000	5		
	Check box for each	h recipier	nt		
mmittee Members: JTaylor, EDO TSpeis, RES (WG-6)			R-I	JCLinville	
EJordan, AEOD FMiraglia, NRR			SRI	PPNarbut	
MSchulman, ER-70, USDOE	(WG-7)	Ξ	USDOE	DGiessing, NE-14 (WG-11) HJaffe, IE-12	
JSniezek JWechselberger			State	GdelaTorre, IE-12	
PA HDenton		E	orare	JBosken, OES/NTS CEberhard, OES/NTS	
JShea AKenneke EShomaker GFowler AMHaycraft LWhitney RHauber			Americ	RSenseney, OES/NEC CCampbell, OES/SCT an Embassy - Moscow	
ALSIIvious		A	PDR (Re PDR (Re	V GP NRG USUSSR-General)	
LShao (WG-3) BSheron RBosnak (WG-12)			Not for I OF1-4-1- OF1-4-1-	PDR JCCCNRS General JCCCNRS Working Group	
DRoss (WG-5) TNovak (WG-8) KRaglin (WG-9)			Other(s	s):	
MCullingford EButcher (WG-1) JRichardson (WG-10) CMcCracken (WG-4) PMadden AThadani (WG-2)					
	mmittee Members: JTaylor, EDO TSpeis, RES (WG-6) EJordan, AEOD FMiraglia, NRR SRosen, NE-14, USDOE MSchulman, ER-70, USDOE JSniezek JWechselberger HDenton JShea AKenneke EShomaker GFowler AMHaycraft LWhitney RHauber ALSilvious LShao (WG-3) BSheron RBosnak (WG-12) DRoss (WG-5) TNovak (WG-8) KRaglin (WG-9) MCullingford EButcher (WG-1) JRichardson (WG-10) CMcCracken (WG-4) PMadden AThadani (WG-2)	Check box for eac Check box for	Check box for each recipier Check box for each recipier mmittee Members: JTaylor, EDO TSpeis, RES (WG-6) EJordan, AEOD FMiraglia, NRR SRosen, NE-14, USDOE MSchulman, ER-70, USDOE (WG-7) JSniezek JWechselberger HDenton JShea AKenneke EShomaker GFowler ALSilvious LShao (WG-3) BSheron RBosnak (WG-12) DRoss (WG-5) TNovak (WG-8) KRaglin (WG-9) MCullingford EButcher (WG-1) JRichardson (WG-10) CMcCracken (WG-4) PMadden AThadani (WG-2)	Check box for each recipient Check box for each recipient Check box for each recipient Immittee Members: JTaylor, EDO TSpeis, RES (WG-6) EJordan, AEOD R-IV FMiraglia, NRR SRI SRosen, NE-14, USDOE SRI MSchulman, ER-70, USDOE (WG-7) USDOE JSniezek JWechselberger JShea Atkenneke EShomaker GFowler AKenneke Americ Shea PDR (Re AKenneke PDR (Re Shoraker GFowler ALSilvious PDR (Re LShao (WG-3) PDR (Re BSheron Check (WG-12) DRoss (WG-5) Other(structure) TNovak (WG-8) Cher(structure) KRaglin (WG-9) MCullingford EButcher (WG-1) PMadden AThadani (WG-2) PMadden	

* Note: No Proprietary, Personnel Sensitive, Copyrighted, or Untranslated foreign documents go to NUDOCS or the PDR. These data go directly to Central Files for official retention.