NEDO-30159 83NED053 CLASS I JULY 1983

.

LASALLE COUNTY STATION UNIT 2 NSSS NEW LOADS DESIGN ADEQUACY EVALUATION FINAL SUMMARY REPORT

N. F. LATTIN G. L. HAYES

8308150070 830805 PDR ADDCK 05000374 PDR

NEDO-30159 83NED053 Class I July 1983 ERM BMB-1354

LASALLE COUNTY STATION UNIT 2 NSSS NEW LOADS DESIGN ADEQUACY EVALUATION FINAL SUMMARY REPORT

Prepared By:

ton

N. F. Lattin, Manager New Loads

Approved By:

G. L. Hayes, Sr. Program Manager New Loads

Approved By:

thilay D. L. Murray, Manager Plant Mechanical Design and Analysis

NUCLEAR ENGINEERING DIVISION • GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125

DISCLAIMER OF RESPONSIBILITY

This document was prepared by or for the General Electric Company. Neither the General Electric Company nor any of the contributors to this document:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information disclosed in this document may not infringe privately owned rights; or
- B. Assumes any responsibility for liability or damage of any kind which may result from the use of any information disclosed in this document.

đ.

CONTENTS

Page

	SUMM	ARY		xv
1.	INTRO	DUCTION		1-1
	1.1	Equipmen	nt Evaluated	1-1
	1.2	Evaluati	ion Methodology	1-2
	1.3	Loading	Combinations and Acceptance Criteria	1-5
	1.4	Evaluati	ion Results	1-6
	1.5	Scope, 1	Interface and Evaluation Highlights	1-7
2.	REAC	TOR PRESS	SURE VESSEL SYSTEM EVALUATION	2-1
	2.1	Equipmen	nt Evaluated	2-1
	2.2	Load Con	nbinations and Analysis Method	2-1
	2.3	Evaluati	ion Results	2-4
		2.3.1	Reactor Pressure Vessel (RPV)	2-4
		2.3.2	RPV Internal Components	2-14
		2.3.3	RPV Support Components	2-34
3.	NSSS	PIPING S	SYSTEMS EVALUATION	3-1
	3.1	Overview	4	3-1
		3.1.1	Equipment Evaluated	3-1
		3.1.2	Load Combinations and Summation Methods	3-1
		3.1.3	Evaluation Methodology	3-2
	3.2	Main Ste	eam Piping System Evaluation Results	3-3
		3.2.1	Main Steam Piping	3-3
		3.2.2	Main Steam Snubbers	3-4
		3.2.3	Main Steam Safety/Relief (SRV) and Isolation	
			Valves (MSIV)	3-4
	3.3	Recircul	lation Piping System Evaluation Results	3-58
		3.3.1	Recirculation Piping	3-58
		3.3.2	Recirculation Snubbers	3-58
		3.3.3	Recirculation Suction Gate Valves, Discharge	
			Gate Valves and Flow Control Valves	3-59
		3.3.4	Recirculation Pumps and Motors	3-59
		3.3.5	Recirculation Pipe Break Analysis	3-60

APPENDICES

Α.	REFERENCES					A-1
Β.	GENERIC ANALYSES	EVALUATED	EQUIPMENT	AND	COMPONENTS	B-1

1 m

1247

TABLES

264

Table	Title	Page
1-1	NSSS Piping and Equipment Evaluation	1-11
1-2	Load Combinations and Acceptance Criteria for NSSS Piping and Equipment	1-12
2-1	Reactor System Detailed Load Combinations	2-2
2-2	Stress Categories	2-5
2-3	Total Number of SRV Actuations (40 Years)	2-5
2-4	RPV Shroud Support Stress Comparison (psi)	2-8
2-5	RPV Support Skirt Load Comparison Maximum Load vs Designs Loads	2-8
2-6	RPV Support Skirt Effective Vertical Load (kip)	2-9
2-7	RPV Support Skirt Stress Comparison (psi)	2-9
2-8	CRD Penetration Stress Comparison at CRD Housing (psi)	2-11
2-9	CRD Penetration Stress Comparison at Stub Tube (psi)	2-11
2-10	Steam Dryer Bracket Load Comparison (kip)	2-12
2-11	Steam Dryer Bracket Stress Comparison (ksi)	2-12
2-12	RPV Stabilizer Bracket Load Comparison (kip/bracket)	2-14
2-13	Core Spray Sparger Stress Comparison (ksi)	2-16
2-14	Core Spray Line Stress Comparison (ksi)	2-16
2-15	Steam Dryer Load Comparison (kip)	2-17
2-16	Shroud Stress Comparison (ksi)	2-17
2-17	Shroud Head Bolt Stress Comparison (ksi)	2-18
2-18	Core Support Plate Stress Comparison (ksi)	2-19
2-19	Core Support Plate Beam Buckling Load Comparison (kip)	2-19
2-20	Top Guide Beam Stress Comparison (psi)	2-20

٧

.

Table	Title	Page
2-21	Control Rod Drive Piston Tube Stress Comparison (ksi)	2-22
2-22	Control Rod Drive Outer Tube Stress Comparison (ksi)	2-22
2-23	Control Rod Drive Cylinder Stress Comparison (ksi)	2-23
2-24	Control Rod Drive Index Tube Stress Comparison (ksi)	2-23
2-25	Control Rod Drive Indicator Tube Stress Comparison (ksi)	2-24
2-26	Control Rod Drive Housing Stress Comparison (psi)	2-24
2-27	Control Rod Guide Tube Flange Stress Comparison (psi)	2-25
2-28	Control Rod Guide Tube Body Stress Comparison (psi)	2-25
2-29	Control Rod Guide Tube Stability Criteria Comparison	2-26
2-30	Jet Pump Stress Comparison (psi)	2-27
2-31	Jet Pump Riser Brace Stress Comparison (psi)	2-27
2-32	Core Differential Pressure and Liquid Control Line Stress Comparison (psi)	2-28
2-33	Fuel Assembly Peak Acceleration Comparison (g)	2-30
2-34	LPCI Coupling Stress Comparison (psi)	2-31
2-35	Orificed Fuel Support Comparison	2-32
2-36	Vessel Stabilizer Stress Comparison (psi)	2-33
2-37	CRD Housing Restraint Beam Load Comparison (kip)	2-34
3-1	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam - SRSS - Piping	3-5
3-2	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam - ABS - Piping	3-6
3-3	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam - SRSS - Snubbers	3-7
3-4	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam - ABS - Snubbers	3-8

TABLES (Continued)

Table	Title	Page
3-5	Load Combination and Acceptance Criteria for NSSS Fiping and Pipe-Mounted Equipment Main Steam - SRSS - Safety/ Relief Valves	3-9
3-6	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam ~ ABS - Safety/ Relief Valves	3-10
3-7	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam - SRSS - Safety/ Relief Valve Flange Moments	3-11
3-8	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Main Steam - ABS - Safety/ Relief Valve Flange Moments	3-12
3-9	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment - Nomenclature of Loads	3-13
3-10	Highest Stress Summary - SRSS Main Steam Line A	3-15
3-11	Highest Stress Summary - ABS Main Steam Line A	3-16
3-12	Snubber Loads - Main Steam Line A Highest Loading Summary - SRSS	3-17
3-13	Snubber Loads - Main Steam Line A Highest Loading Summary - ABS	3-18
3-14	SRV Accelerations - Main Steam Line A Highest Accelerations Summary - SRSS	3-19
3-15	SRV Accelerations - Main Steam Line A Highest Accelerations Summary - ABS	3-20
3-16A	MSIV Loads - Main Steam Line A Highest Loading Summary - SRSS - MSIV Inlet/Outlet	3-21
3-16B	MSIV Loads - Main Steam Line A Highest Loading Summary - SRSS - MSIV Bonnet	3-22
3-17A	MSIV Loads - Main Steam Line A Highest Loading Summary - ABS - MSIV Inlet/Outlet	3-23
3-17B	MSIV Loads - Main Steam Line A Highest Loading Summary - ABS - MSIV Bonnet	3-24
3-18	Highest Stress Summary - SRSS Main Steam Line B	3-26

TABLES (Continued)

Table	Title	Page
3~19	Highest Stress Summary - ARS Main Steam Line B	3-27
3-20	Snubber Loads - Main Steam Line B Highest Loading Summary - SRSS	3-28
3-21	Snubber Loads - Main Steam Line B Highest Loading Summary - ABS	3-29
3-22	SRV Accelerations - Main Steam Line B Highest Accelerations Summary - SRSS	3-30
3-23	SRV Accelerations - Main Steam Line B Highest Accelerations Summary - ABS	3-31
3-24A	MSIV Loads - Main Steam Line B Highest Loading Summary - SRSS - MSIV Inlet/Outlet	3-32
3-24B	MSIV Loads - Main Steam Line B Highest Loading Summary - SRSS - MSIV Bonnet	3-33
3 - 25A	MSIV Loads - Main Steam Line B Highest Loading Summary - ABS - MSIV Inlet/Outlet	3-34
3 - 25B	MSIV Loads - Main Steam Line B Highest Loading Summary - ABS - MSIV Bonnet	3-35
3-26	Highest Stress Summary - Stress Main Steam Line C	3-37
3-27	Highest Stress Summary - ABS Main Steam Line C	3-38
3-28	Snubbers Loads - Main Steam Line C Highest Loading Summary SRSS	- 3-39
3-29	Snubbers Loads - Main Steam Line C Highest Loading Summary ABS	- 3-40
3-30	SRV Accelerations - Main Steam Line C Highest Accelerations Summary - SRSS	3-41
3-31	SRV Accelerations - Main Steam Line C Highest Accelerations Summary - ABS	3-42
3-32A	MSIV Loads - Main Steam Line C Highest Loading Summary - SRSS - MSIV Inlet/Outlet	3-43
3-32B	MSIV Loads - Main Steam Line C Highest Loading Summary - SRSS - MSIV Bonnet	3-44

.

Table	Title	Page
3-33A	MSIV Loads - Main Steam Line C Highest Loading Summary - ABS - MSIV Inlet/Outlet	3-45
3-33B	MSIV Loads - Main Steam Line C Highest Loading Summary - ABS - MSIV Bonnet	3-46
3-34	Highest Stress Summary - SRSS Main Steam Line D	3-48
3-35	Highest Stress Summary - ABS Main Steam Line D	3-49
3-36	Snubber Loads - Main Steam Line D Highest Loading Summary - SRSS	3-50
3-37	Snubber Loads - Main Steam Line D Highest Loading Summary - ABS	3-51
3-38	SRV Accelerations - Main Steam Line D Highest Accelerations Summary - SRSS	3-52
3-39	SRV Accelerations - Main Steam Line D Highest Accelerations Summary - ABS	3-53
3-40A	MSIV Loads - Main Steam Line D Highest Loading Summary - SRSS - MSIV Inlet/Outlet	3-54
3-40B	MSIV Loads - Main Steam Line D Highest Loading Summary - SRSS - MSIV Bonnet	3-55
3-41A	MSIV Loads - Main Steam Line D Highest Loading Summary - ABS - MSIV Inlet/Outlet	3-56
3-41B	MSIV Loads - Main Steam Line D Highest Loading Summary - ABS - MSIV Bonnet	3-57
3-42	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - SRSS - Piping	3-61
3-43	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - ABS - Piping	3-62
3-44	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - SRSS - Snubbers	3-63
3-45	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - ABS - Snubbers	3-64
3-46	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - SRSS - Struts	3-65

.

Table	Title	Page
3-47	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - ABS - Struts	3-66
3-48	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - SRSS - Valves, Pumps and Motors	3-67
3-49	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - ABS - Valves, Pumps and Motors	3-68
3-50	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - SRSS - Flange Moments	3-69
3-51	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment Recirculation - ABS - Flange Moments	3-70
3-52	Load Combination and Acceptance Criteria for NSSS Piping and Pipe-Mounted Equipment - Nomenclature of Loads	3-71
3-53	Highest Stress Summary - SRSS Recirculation Loop A	3-73
3-54	Highest Stress Summary - ABS Recirculation Loop A	3-74
3-55	Snubber Loads - Recirculation Loop A Highest Loading Summary - SRSS	3-75
3-56	Snubber Loads - Recirculati'n Loop A Highest Loading Summary - ABS	3-76
3-57	Suction Gate Valve Loads - Recirculation Loop A Highest Loading Summary - SRSS	3-77
3-58	Suction Gate Valve Loads - Recirculation Loop A Highest Loading Summary - ABS	3-78
3-59	Discharge Gate Valve Loads - Recirculation Loop A Highest Loads Summary - SRSS	3-79
3-60	Discharge Gate Valve Loads - Recirculation Loop A Highest Loading Summary - ABS	3-80
3-61	Flow Control Valve Loads - Recirculation Loop A Highest Loading Summary - SRSS	3-81

Table	Title	Page
3-62	Flow Control Valve Loads - Recirculation Loop A Highest Loading Summary - ABS	3-82
3-63	Recirculation Pump Loads - Recirculation Loop A Highest Loading Summary - SRSS	3-83
3-64	Recirculation Pump Loads - Recirculation Loop A Highest Loading Summary - ABS	3-84
3-65	Recirculation Pump Motor Loads - Recirculation Loop A Highest Loading Summary - SRSS	3-85
3-66	Recirculation Pump Motor Loads - Recirculation Loop A Highest Loading Summary - ABS	3-86
3-67	Highest Stress Summary - SRSS Recirculation Loop B	3-88
3-68	Highest Stress Summary - ABS Recirculation Loop B	3-89
3-69	Snubber Loads - Recirculation Loop B Highest Loading Summary - SRSS	3-90
3-70	Snubber Loads - Recirculation Loop B Highest Loading Summary - ABS	3-91
3-71	Suction Gate Valve Loads - Recirculation Loop B Highest Loading Summary - SRSS	3-92
3-72	Suction Gate Valve Loads - Recirculation Loop B Highest Loading Summary - ABS	3-93
3-73	Discharge Gate Valve Loads - Recirculation Loop B Highest Loading Summary - SRSS	3-94
3-74	Discharge Gate Valve Loads - Recirculation Loop B Highest Loading Summary - ABS	3-95
3-75	Flow Control Valve Loads - Recirculation Loop B Highest Loading Summary - SRSS	3-96
3-76	Flow Control Valve Loads - Recirculation Loop B Highest Loading Summary - ABS	3-97
3-77	Recirculation Pump Loads - Recirculation Loop B Highest Loading Summary - SRSS	3-98
3-78	Recirculation Pump Loads - Recirculation Loop B Highest Loading Summary - ABS	3-99

Table	Title	Page
3-79	Recirculation Pump Motor Loads - Recirculation Loop B Highest Loading Summary - SRSS	3-100
3-80	Recirculation Pump Motor Loads - Recirculation Loop B Highest Loading Summary - ABS	3-101

ILLUSTRATIONS

Figure	Title	Page
1-1 S	RV and LOCA Horizontal (Beam) Model	1-3
1-2 S	RV and LOCA Vertical (Beam) Model	1-4
3-1 L	aSalle Main Steamline A Node Diagram	3-14
3-2 L	aSalle Main Steam Line B Node Diagram	3-25
3-3 L	aSalle Main Steam Line C Node Diagram	3-36
3-4 L	aSalle Main Steam Line D Node Diagram	3-47
3-5 L	aSalle Recirculation Loop A Node Diagram	3-72
3-6 L	aSalle Recirculation Loop B Node Diagram	3-87

SUMMARY

This report presents a summary of the results of the NSSS New Loads Design Adequacy Evaluation performed for the Commonwealth Edison Company on LaSalle County Station Unit 2 by the General Electric Company. The evaluation was performed to demonstrate that the GE supplied NSSS safety-related equipment design capability retained positive margins when subjected to combinations of seismic and additional hydrodynamic loadings from site unique reactor building structural responses.

The results of the NSSS New Loads Design Adequacy Evaluation for LaSalle Unit 2 have demonstrated equipment adequacy for all evaluation basis new load combinations. The major scope of the NSSS equipment evaluated includes the Reactor Pressure Vessel (RPV), RPV internals and supports, in-vessel safety-related instrumentation, and the Main Steam and Recirculation piping systems.

Contained in this report are brief explanations of the scope, methods and results of the evaluations performed. Comparisons of tested or calculated values versus the allowable load or stress values, for the limiting load combinations at the limiting stress points, are shown for each component or piping system.

1. INTRODUCTION

An NSSS New Loads Design Adequacy Evaluation (NLDAE) was performed for the LaSalle project. The evaluation was conducted to assess the design adequacy of essential NSSS equipment when subjected to various dynamic loads and load combinations. These dynamic loads result from seismic events and/or hydrodynamic-related phenomena (new loads). Combinations of loads from various events were evaluated against the appropriate acceptance criteria conditions (e.g., normal, upset, emergency, faulted) based upon the expected occurrence frequency for the particular event combination.

Throughout this summary report, comparisons are made between the calculated "New Loads" and the "Design Basis" loads in order to demonstrate the equipment design adequacy. In order to clarify the usage of these terms, the following amplification is provided.

The design basis loads include the seismic, pressure, thermal, dead weight and other normal/abnormal loads to which the GE-supplied Nuclear Steam Supply System (NSSS) equipment was originally designed to function. In addition, the design basis loads include a bounding load margin which encompasses other site-unique load requirements to facilitate multiplant equipment usage.

For the New Loads Adequacy Evaluation, the loads calculated include not only the design basis loads, but also the LaSalle site-unique suppression pool hydrodynamic and annulus pressurization structural system response loads. These loads were initially compared to the Design Basis in order to demonstrate the new loads design adequacy.

1.1 EQUIPMENT EVALUATED

Major equipment groups evaluated include the reactor pressure vessel, RPV internals and supports, in-vessel safety-related instrumentation, and the main steam and recirculation piping systems. The scope of the evaluation extends only to that GE-supplied NSSS safety-related equipment within the reactor building. An itemized list of the equipment evaluated appears in Table 1-1. The scope of the evaluation performed did not include GE-supplied floorsupported plant equipment nor equipment connected to and supported by piping

supplied by others. The responsibility for the evaluation of this hardware lies within Commonwealth Edison Company or their agent.

1.2 EVALUATION METHODOLOGY

General Electric, in cooperation with Sargent & Lundy Engineers, evaluated the nuclear steam supply system (NSSS) equipment design adequacy for the original design basis loads in combination with the suppression pool hydrodynamic and annulus pressurization structural system response loads. The load combinations and acceptance criteria used for this evaluation are described in Section 1.3 of this summary report.

The structural system responses for the suppression pool hydrodynamic phenomena were generated by Sargent & Lundy Engineers (S&L). These structural system responses were transmitted to General Electric in the form of (1) response spectra and (2) acceleration time-histories at the pedestal to diaphragm floor intersection and shield wall at the stabilizer elevation.

The response spectra for piping attachment points on the reactor pressure vessel, shield wall, and pedestal complex (above the pool area) were generated by General Electric based on the acceleration time-histories supplied by S&L using a detailed lumped mass beam model for the reactor pressure vessel and internals, to include a representation of the structure (see Figures 1-1 and 1-2 for SRV and LOCA examples). For the evaluation of the NSSS primary piping systems (main steam and recirculation), a combination of the General Electric response spectra and S&L developed response spectra (on the containment wall) was used to obtain the input responses for all attachment points of each piping system.

The acceleration time-histories, with the detailed reactor pressure vessel and structure lumped mass beam model, were used to generate the forces, moments and response spectra acting on the reactor pressure vessel (RPV). These forces, moments and response spectra were used by General Electric for the adequacy evaluation of the RPV, RPV supports and RPV internal components. The forces and moments were compared with the design values as the initial step in the adequacy evaluation.

NOTE: ALL ELEVATIONS SHOWN IN THIS FIGURE ARE THE DISTANCES FROM THE BASE-MAT (EL. 673'-4")

Figure 1-1. Horizontal SRV Model

.

NOTE: ALL ELEVATIONS SHOWN IN THIS FIGURE APE THE DISTANCES FROM THE BASE-MAT (EL. 673'-4")

Figure 1-2. Vertical SRV Model

The structural system responses for the Loss of Coolant Accident (LOCA), annulus pressurization (AP) transient asymmetric pressure buildup in the annular region between the biological shield wall and the reactor pressure vessel, were based on pressure time-histories supplied by S&L. These pressure time-histories were combined with jet reaction, jet impingement and pipe whip restraint loads for the evaluation. A time-history analysis output produced accelerations, forces and moment time-histories as well as response spectra at the piping attachment points on the reactor pressure vessel, shield wall, pedestal, pressure vessel supports and external components.

1.3 LOADING COMBINATIONS AND ACCEPTANCE CRITERIA

All significant loads were considered, including the original design basis loads, the structural response loads due to suppression pool related phenomena and the dynamic effects on an instantaneous pipe break at the RPV safe end (AP). The load combinations considered as the evaluation basis are listed in Table 1-2. As an evaluation basis, all dynamic loads were combined using the Square Root of the Sum of the Squares (SRSS) method with the results added to the static loads. In addition to the design basis load combinations, more conservative load combinations were considered in the evaluation basis. Specifically, the "OBE + SRV" loads were evaluated against upset criteria (as opposed to emergency criteria, which form the design basis for this load combination). Also, some evaluations were performed combining loads by the absolute sum (ABS) method.

As a supplement to ASME code faulted limits, the NRC has imposed additional criteria to assure the functional capability of piping systems to perform their intended safety function under the stress criteria of limited plastic deformation. Functional capability has been defined by the NRC as the ability of a piping system to deliver rated flow for continued shutdown cooling and heat removal.

The General Electric approach for demonstrating essential reactor component functional capability was to use ASME Service Level D stress criteria and a supplemental evaluation per the deformation and buckling limits of the General Electric Design Safety Standards. The Service Level D stress criteria were

1-5

used to assure adequate strength and tensile load capability with adequate margin to failure through rupture or collapse. For components where deformation or buckling could have been of concern, special evaluations were performed to assure that adequate margin exists for: (1) the buckling collapse loads defined consistent with ASME Code criteria, and (2) the deformation limits which analysis or tests demonstrate would not result in loss of function. Similar to ASME Code criteria, different safety criteria were applied for upset, emergency and faulted deformation evaluations. The only NSSS pipe-like components that require functional capability are the core spray lines, spargers and the LPCI couplings.

RPV internal pipe-like components are confined by the reactor vessel and shroud, and their displacement is limited to the displacement of the shroud relative to the vessel. These motions are accommodated by the free travel of the ball joints in the LPCI Coupling and the flexing of the core spray lines. No core spray line collapse is possible as a result of these small displacements. Additionally, an analysis of the reactor internal piping components remaining functional during the worst faulted event loads was made to the Rodebaugh criteria. This analysis was performed to provide confirmation within General Electric that the methodology was indeed adequate to demonstrate functional capability. Although they are not required for shutdown cooling and heat removal, the Main Steam and Recirculation piping external to the vessel was also evaluated to assure functional capability, per NEDO-21985, Piping Functional Capability Criteria.

1.4 EVALUATION RESULTS

New Loads Design Adequacy Evaluations were performed for all loading combinations for the RPV, RPV internals and associated equipment, in-vessel safetyrelated instrumentation and the Main Steam and Recirculation piping and pipemounted equipment. The NLDAE also included the more conservative evaluation basis combinations and acceptance criteria.

In some cases, the initial analysis did not prove equipment adequacy. For these components, more detailed analyses were performed. In most cases these reanalyses succeeeded in demonstrating the equipment adequacy. The reanalysis, including the required modification, demonstrated the equipment adequacy under all applied loading conditions. In some cases, modifications were made to original designs to ensure that adequate margins were available; yet, these modifications were not directly required as a result of the LaSalle 2 New Loads evaluations performed.

1.5 SCOPE, INTERFACE AND EVALUATION HIGHLIGHTS

Information concerning the general evaluation scope, specific analyses performed and interface items of significance are provided below:

o Overview

The LaSalle Unit 1 NSSS New Loads Design Adequacy Evaluation evolved through numerous phases due to past uncertainties in defining the loads resulting from specific hydrodynamic events. The results summarized in the LaSalle 1 report (NEDO-22133) follow this evolutionary load definition process by representing a compilation of design adequacy evaluations performed in the late 1970's and focusing mainly in 1980, 1981 and 1982. See NEDO-22133 for further history summaries. In total, the summary of the NSSS piping and equipment evaluations contained in this report reflect the incorporation of the progression of input loads as transmitted to General Electric and the analytical techniques improvement.

CRD System Insert and Withdrawal Piping Loads on CRD Housings Due to the loads applied by the clamping of the Control Rod Drive insert and withdrawal lines onto GE-supplied CRD Housings, an additional analysis effort was required. The analysis on the CRD Housings was performed with the S&L transmitted loads in conjunction with the static and dynamic loads considered for the LaSalle 2 new loads analysis. The adequacy of the CRD housings was analytically demonstrated when considering all the loads applied.

1-7

General Analyses of Other Safety-Related NSSS Equipment and Components The equipment and component analyses summarized in this report represent a specific scope of evaluation effort as required due to the magnitude of the LaSalle site-unique loads and/or the design margins available in the equipment procured. Due to the multiplant applicability of a specific amount of GE-supplied equipment and components, generic analyses were performed to verify the design adequacy of other passive and active safety-related items not described in this summary report. These generic analyses demonstrated the equipment or component design adequacy by either:

(1) evaluating for conservative bounding input loads;

- (2) determining that the equipment was not subjected to non-seismic dynamic loads when performing its essential function; or
- (3) by demonstrating that capability is proven to far exceed load requirements.

Appendix B lists that equipment and those components applicable to the LaSalle project for which generic analyses demonstrated design adequacy.

o Fuel Lift Analysis

0

At the request of Commonwealth Edison Company, a summary of the Fuel Lift Analysis model, methodology and generic results was included in NEDO-21175-3-P. For this evaluation, the fuel assemblies evaluation, as well as other reactor pressure vessel component evaluations, used the Plant unique fuel lift analysis output load results along with other dynami loads as input loadings to demonstrate the component's design adequacy.

.

Table 1-1

NSSS PIPING AND EQUIPMENT EVALUATION

o Reactor Pressure Vessel System

 RPV Support Skirt RPV Shroud Support CRD Penetrations In-Core Housing Penetrations Steam Dryer Brackets RPV Stabilizer Brackets RPV Nozzles B13-D005 Steam Dryer B13-D007 Jet Pumps B13-D008 Control Ped Drives 	
 RPV Shroud Support CRD Penetrations In-Core Housing Penetrations Steam Dryer Brackets RPV Stabilizer Brackets RPV Nozzles B13-D005 Steam Dryer B13-D007 Jet Pumps B13-D008 Control Ped Drives 	
 CRD Penetrations In-Core Housing Penetrations Steam Dryer Brackets RPV Stabilizer Brackets RPV Nozzles B13-D005 Steam Dryer B13-D006 Jet Pumps B13-D008 Control Ped Driver 	
 In-Core Housing Penetrations Steam Dryer Brackets RPV Stabilizer Brackets RPV Nozzles B13-D005 Steam Dryer B13-D006 Jet Pumps B13-D008 Control Ped Driver 	
 Steam Dryer Brackets RPV Stabilizer Brackets RPV Nozzles B13-D005 Steam Dryer B13-D006 Jet Pumps B13-D007 Jet Pumps B13-D008 Control Ped Drives 	
- RPV Stabilizer Brackets - RPV Nozzles B13-D005 Steam Dryer B13-D006 Jet Pumps B13-D007 Jet Pumps B13-D008 Control Pod Drives	
- RPV Nozzles B13-D005 Steam Dryer B13-D006 Jet Pumps B13-D007 Jet Pumps B13-D008 Control Red Driver	
B13-D005Steam DryerB13-D006Jet PumpsB13-D007Jet PumpsB13-D008Control Red Drives	
B13-D006Jet PumpsB13-D007Jet PumpsB13-D008Control Red Drives	
B13-D007 Jet Pumps B13-D008 Control Red Driver	
B13-D008 Control Pod Driver	
Concrot Kod Drives	
B13-D010 Control Rod Guide Tubes	
B13-D012 Control Rod Drive Housings	
B13-D013 Control Rod Drive Housing	
B13-D014 Control Rod Drive Housing	
B13-D015 Control Rod Drive Housing	
B13-D016 In-Core Housings	
B13-D017 In-Core Guide Tubes	
B13-D018 Shroud Head Bolts	
B13-D021 Differential Pressure and Liquid Con	trol Line
B13-D022 LPCI Couplings	
B13-D023 Core Spray Line	
B13-D024 Core Spray Line	
B13-D026 Jet Pump Riser Braces	
B13-D027 Jet Pump Adapters	
B13-D030 Orificed Fuel Supports	
B13-D031 Orificed Fuel Supports	
B13-D032 Orificed Fuel Supports	
B13-D033 Orificed Fuel Supports	
B13-D034 Orificed Fuel Supports	
B13-D035 Orificed Fuel Supports	
B13-D036 Orificed Fuel Supports	

		Table 1-1 (Continued)
	B13-D037	Orificed Fuel Supports
	B13-D038	Orificed Fuel Supports
	B13-D041	Clamps
	B13-D053	Hexagon Head Bolts
	B13-D068	Core Support Bolts
	B13-D071	Core Support
	B13-D074	Top Guide
	B13-D118	Core Spray Sparger
	B13-D189	Flanges
	B13-D191	Dry Tubes
	B13-D193	Power Range Detectors
	B13-D212	Seismic Pins
	B13-D237	Core Spray Line Bracket
	B13-D277	Holddown Clamps
	B13-U001	Reactor Vessel Supports
	B13-U002	RPV STabilizers
	B13-U007	CRD Housing Restraint Beam
	J11-D001	Fuel Bundles
	J11-D002	Fuel Bundles
	J11-D003	Channels
	J11-D004	Channel Fasteners
	J11-D005	Fuel Bundles
NSSS	Piping Systems	
	B21-G001	Main Steam Piping
	B21-G002	Main Steam Pipe Suspension
	B21-G006	Main Steam Pipe Suspension
	B21-F013	Main Steam Safety/Relief Valves (SRV)
	B21-F022	Main Steam Isolation Valves (MSIV)
	B21-F028	Main Steam Isolation Valves (MSIV)
	B33-G001	Recirculation Loop Piping
	B33-G002	Recirculation Loop Suspension
	B33-G003	Recirculation Loop Piping Restraints
	B33-G006	Recirculation Loop Suspension
	B33-F023	Recirculation Gate Valves

0

\$

	Table 1-1 (Continued)
B33-F060	Recirculation Flow Control Valves
B33-F067	Recirculation Gate Vilves
E33-C001	Recirculation Pumps and Motors

2

LOAD	COMB	INATIONS	AND ACCEPTA	NCE CR	ITERI	A FOR NSSS	PIPING	AND EQUIPMENT
Load		SRVX				SBA/IBA	DBA	Acceptance
Case ⁽¹⁾	N	<u>(4)</u>	SRVADS	OBE	SSE	(3)	(6,7)	Criteria
1	х	Х						Upset B
2	X	Х		Х				Upset B (5)
3	Х	Х			Х			Faulted D (2)
4	Х		Х			Х		Emergency C (2)
5	Х		х	Х		Х		Faulted D (2)
6	Х		Х		Х	Х		Faulted D (2)
7	Х				Х		Х	Faulted D (2)
8	Х							Normal A
9	Х			Х				Upset B
Notes:								

100	5. 7	1 C C	4 15
1.3	h l	0	1 . /
+ 4	U 1	L C.	1 64

(1) See legend at the end of table for definition of terms.

- (2) (a) For essential piping systems, faulted allowables are acceptable if functional capability is demonstrated. Essential systems are systems required to mitigate the consequences of the postulated events which cause the loading conditions.
 - (b) For the reactor vessel and internals, faulted allowables will be used; however, deformation and buckling will be evaluated.
- (3) SBA or IBA, whichever is greater.
- (4) SRV_1 , SRV_2 , SRV_{LSPA} , SRV_{ALL} (whichever is controlling) will be used.

(5) Not considered in the fatigue evaluation.

- (6) DBA includes LOCA, through LOCA7.
- (7) From rated power initial conditions.

LOAD DEFINITION LEGEND

Normal (N)	-	Normal and/or abnormal loads depending on acceptance criteria
OBE	-	Operational basis earthquake loads.
SSE	-	Safe Shutdown earthquake loads.
SRV ₁	-	Safety/relief valve discharge induced loads from a single valve, second actuation.

1.4

Table 1-2 (Continued)

SRV2	•	Safety/relief valve discharge induced loads from two adjacent valves. SRV asymmetric loads.				
SRV _{ALL}	-	The loads induced by actuation of all safety/relief valves which activate within milliseconds of each other (e.g., turbine trip operational transient). Envelope of SRV Symmetric and Asymmetric loads.				
SRV _{ADS}	-	The loads induced by the actuation of safety/relief valves associated with Automatic Depressurization System which actuate within milliseconds of each other during the postulated small or intermediate size pipe rupture. Envelope of SRV Symmetric and Asymmetric loads.				
SRV _{LSPA}	-	Safety/relief valve discharge induced loads from Low Setpoint Actuation.				
LOCA	•	The loss-of-coolant accident associated with the postulated pipe rupture of large pipes (e.g., main steam, feedwater, recirculation piping).				
LOCA1	•	Pool swell drag/fallout loads on piping and components located between the main vent discharge outlet and the suppression pool water upper surface.				
LOCA2	•	Pool swell impact loads on piping and components located above the suppression pool water upper surface.				
LOCA3	-	Oscillating pressure-induced loads on submerged piping and components during condensation oscillations.				
LOCA4	-	Building motion induced loads from chugging.				
LOCA5	-	Building motion induced loads from main vent air clearing.				
LOCA6	-	Vertical and horizontal loads on main vent piping.				
LOCA7	-	Annulus pressurization loads.				
SBA	-	The abnormal transients associated with a Small Break Accident.				
IBA	-	The abnormal transients associated with an Intermediate Break Accident.				

ĥ.

2. REACTOR PRESSURE VESSEL SYSTEM EVALUATION

2.1 EQUIPMENT EVALUATED

A design adequacy evaluation was performed for the LaSalle Unit 2 reactor pressure vessel system. The following components were evaluated:

Reactor Pressure Vessel RPV Internal Components RPV Support Components

2.2 LOAD COMBINATIONS AND ANALYSIS METHOD

The dynamic loads used to perform the evaluation were selected from the load combinations listed in Table 2-1. These combinations were derived from the load combinations described in Section 1.3 and Table 1-2 to more clearly describe the normal and abnormal pressure differences that coincide with the postulated events. Conservative methods were frequently used in the evaluation in order to simplify or reduce the required analysis effort. For example, in some cases the absolute sum value of the highest load case was compared to the original design load. This highly conservative procedure was used as a means of eliminating the need to assess SRSS loads and nongoverning load combinations and should not be construed as a requirement.

The suppression pool dynamic loads, annulus pressurization, and seismic events impart loads on the containment structures and accelerations on the reactor building equipment. The accelerations on the equipment were based on structural system response data developed using a composite soil-structure interaction model with a representation of the reactor pressure vessel. The resulting acceleration time-histories were used for a local system analysis.

The local system analysis was based on a composite lumped mass model of the pedestal, shield wall and a detailed representation of the reactor pressure vessel complex. The excitation inputs for the local system analysis were based on acceleration time-histories for the suppression pool hydrodynamic

2-1

Table 2-1

REACTOR SYSTEM DETAILED LOAD COMBINA. TONS

REQUIRED LOAD COMBINATIONS:

Faulted

Condition	Loads
Upset	NL + (N-DELTA P) + OBE
Upset	NL + (U-DELTA P) + SRV (ALL)
Upset	NL + (U-DELTA P) + OBE + SRV (ALL)
Emergency	NL + (U-DELTA P) + CHG + SRV (ADS)
Faulted	NL + (A-DELTA P) + JR + VC + SSE
Faulted	NL + (A-DELTA P) + JR + AP + SSE
Faulted	NL + (A-DELTA P) + CHG + SRV (ADS) + SSE
Faulted	$NL + (A-DELTA F) + CO_1 + SRV LSPA) + SSE$
Faulted	$NL + (A-DELTA P) + CO_2 + SRV (ADS) + SEE$
Faulted	NL + (U-DELTA P) + AC + SSE
Faulted	NL + (A-DELTA P) + JR + SCRAM + SSE
Faulted	NL + (U-DELTA P) + SRV (ALL) + SSE
Faulted	NL + (I-DELTA P) + JR + AP
Faulted	NL + (I-DELTA P) + JR + VC
STEAM DRYER LOAD COMBINATIONS:	
Condition	Loads
Faulted	NL + (A-DELTA P) + SSE

NL + (I-DELTA P)

Table 2-1

REACTOR SYSTEM DETAILED LOAD COMBINATIONS (Continued)

DEFINITIONS:

- NL Metal + Water Weight
- OBE Operating Basis Earthquake
- SSE Safe Shutdown Earthquake
- CHG Chugging Loads
- SRV (ALL) Safety/Relief Valve Discharge Caused Loads Induced by the Actuation of All Safety Relief Valves. Envelope of Symmetric and Asymmetric loads.
- SRV (ADS) Safety/Relief Valve Loads Associated with the Automatic Depressurization System. Envelope of Symmetric and Asymmetric loads.
- N-DELTA P Normal Delta Pressure Force
- A-DELTA P Accident LOCA Delta Pressure Force
- U-LELTA P Upset Delta Pressure Force
- I-DELTA P Interlock Delta Pressure Force
 - CO1 High Mass Flux Condensation Oscillation Loads
 - $\rm CO_2$ Low Mass Flux Condensation Oscillation Loads
- SRV (LSPA) Actuation of Lowest Setpoint Group of Valves. Factor of Symmetric, Single SRV loads.
 - JR Jet Reaction
 - AP Annulus Pressurization Loads
 - AC Acoustic Pressure Loads
 - VC Vent Clearing Loads
 - SCRAM Loads Produced by the Sudden Shutdown of a Nuclear Reactor as a Result of the Rapid Insertion of the Control Rods

forcing functions, seismic vibratory motions, and pressure time-histories from annulus pressurization due to postulated pipe breaks.

The acceleration time-histories with the detailed reactor pressure vessel and pedestal shield wall structural lumped mass model were used to generate the forces and moments acting on the reactor pressure vessel, supports, and internal components. The calculated forces and moments were used to perform the adequacy evaluation of the reactor pressure vessel and associated equipment. As a first step in the evaluation, these forces and moments were compared with the design values. In cases where the newly calculated load was found to be less than the original design basis load, the equipment design adequacy for primary stresses was assured and further stress evaluation was unnecessary. If the calculated loads exceeded the design basis loads, a stress analysis was performed. The resulting stresses were then compared with the stress allowables to determine design adequacy. Stress categories are listed in Table 2-2.

A fatigue evaluation of the RPV, RPV internals and supports was also conducted for SRV cyclic duty loads. The equipment requiring fatigue evaluations was analyzed for the fatigue usage due to SRV load cycles based upon the loading during SRV events. The fatigue usage factor is the ratio of the number of SRV load cycles to the number of allowable cycles, and the total cumulative usage factor is the sum of all usages calculated for all upset events. The duty cycle basis for this evaluation is described in Table 2-3. Conservatively, seven stress cycles per SRV actuation were considered for the reactor pressure vessel evaluation.

2.3 EVALUATION RESULTS

2.3.1 Reactor Pressure Vessel (RPV)

The RPV components discussed in this section are those which are attached to the pressure vessel. They are:

RPV Shroud Support RPV Support Skirt

Table 2-2 STRESS CATEGORIES

P = Primary Q = Secondary $P_{M} = Primary membrane$ $P_{B} = Primary bending$ $P_{L} = Primary local$ $Q_{M} = Secondary membrane$ $Q_{B} = Secondary bending$

Table 2-3 TOTAL NUMBER OF SRV ACTUATIONS ^(a) (40 YEARS)

umber of SRVs Lifting	Total Number of SRV		
Simultaneously	Actuations		
1	2550		
2			
many	<u>253</u> (220) (b)		
Total	2803 (2770) ^(b)		

(a) Seven load cycles per actuation.

(b) For vessel and piping.

NI

CRD Penetrations In-Core Housing Penetrations Steam Dryer Brackets RPV Stabilizer Brackets RPV Nozzles

The new loads evaluation of the RPV components was performed by first comparing the calculated new loads to the design basis loads. If the new loads exceeded the design loads, a stress analysis was then performed, to include a primary stress evaluation and a fatigue evaluation. Table 2-2 lists the stress categories used in these evaluations.

The results of the evaluations of the RPV components are presented in the following subsections.

2.3.1.1 RPV Shroud Support

For the evaluation of the RPV Shroud Support, the calculated loads exceeded the design basis loads in the upset, emergency and faulted loading conditions. A stress analysis was performed which demonstrated that the calculated stresses were within the allowable limits when using the SRSS method of summation (Table 2-4).

The maximum cumulative fatigue usage factor was calculated to be 0.89 at the vessel bottom head, which is less than the 1.0 allowable.

2.3.1.2 RPV Support Skirt

For the evaluation of the RPV support skirt in the upset and emergency loading conditions, the calculated vertical loads exceeded the design basis loads for the ABS method of summation. In the faulted condition, the calculated vertical and horizontal loadings exceeded the design basis loads for the ABS method of summation (Table 2-5). When the loads were combined, however, the effective vertical loads were less than the design basis loads for the ABS method of summation (Table 2-6). A stress analysis was performed for the faulted loading condition cases which demonstrated that the calculated stresses were within the allowable limits (Table 2-7).

4

Table 2-4

RPV SHROUD SUPPORT STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Stress (SRSS)	Allowable Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	PM	17,350	23,300
NL + $(U-\Delta P)$ + OBE + SRV	Upset	P _M + P _B	31,283	34,950
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	PM	21,893	28,125
$NL + (U-\Delta P) + CHG + SRV (ADS)$	Emergency	P _M + P _B	37,790	42,187
$NL + (A-\Delta P) + CHG$ + SRV (ADS) + SSE	Faulted	P _M	21,893	28,125*
$NL + (A-\Delta P) + CHG$ + SRV (ADS) + SSE	Faulted	$P_{M} + P_{B}$	37,790	42,187

Maximum Cumulative Fatigue Usage Factor: 0.089

*Faulted stresses are conservatively compared to emergency condition allowable.

Table 2-5

RPV SUPPORT SKIRT LOAD COMPARISON

MAXIMUM LOAD VS DESIGN LOADS (ABS)

	V(kip)		H(kip)		(inkip x 1000)	
Loading Condition	Calculated Load	Allowable Load	Calculated Load	Allowable Load	Calculated Load	Allowable Load
Upset	6,831.53	6,817	642.5	1,560	116.77	840
Emergency	8,606.03	7830	642.5	3,120	116.77	1,660
Faulted	10,985.36	7830	4,942.9	3,632	311.04	1790.3

Table 2-6

RPV SUPPORT SKIRT EFFECTIVE VERTICAL LOAD* (KIP) (ABS)

Loading Condition	Calculated Load (ABS)	Allowable Load	
Upset	8,692.44	20,203.45	
Emergency	10,466.94	34,284.18	
Faulted	15,941.92	36,360.68	

 $\frac{1}{2}$ eff = V + 2M/R

Table 2-7

RPV SUPPORT SKIRT STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (SRSS)	Allowable Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	PM	15,477	19,150
$NL + (U-\Delta P) + OBE + SRV$	Upset	P _M + P _B	21,942	28,725
$NL + (U-\Delta P) + CHG + SRV (ADS)$	Emergency	PM	24,252	29,425
$NL + (U-\Delta P) + CHG + SRV (ADS)$	Emergency	P _M + P _B	34,996	44,150
NL + $(U-\Delta P)$ + JR + AP + SSE	Faulted	P _M	24,252	29,425
NL + $(U-\Delta P)$ + JR + AP + SSE	Faulted	P _M + P _B	34,996	44,150
Maximum Cumulative Fatigue	Usage Factor:	0.23 at skirt juncture.	knuckle to	bottom head

*Faulted stresses are conservatively compared to emergency condition allowables.
The maximum cumulative fatigue usage factor was calculated to be 0.23 at the skirt to base junction, which is less than the 1.0 allowable.

2.3.1.3 CRD Penetrations

The loads on the CRD penetrations are a result of the loads from the upper and lower CRD housings. A stress analysis was performed which demonstrated that the calculated stresses for the penetrations at the CRD housings and stub tubes were within the allowable limits (Tables 2-8 and 2-9).

The maximum cumulative fatigue usage factor was calculated to be 0.268 at the CRD Housing Penetrations.

2.3.1.4 In-Core Housing Penetrations

A load comparison was performed on the in-core housing penetrations, which demonstrated that the combined LaSalle 2 loads were less than the combined loads contained in a previously performed generic analysis. Therefore, the design adequacy of the in-core housing penetrations were verified, using the SRSS method of summation.

2.3.1.5 Steam Dryer Brackets

For the evaluation of the steam dryer brackets in the loading conditions, the calculated vertical and horizontal loads did not exceed the design basis loads for the SRSS method of summation. However, in the faulted loading condition, the horizontal loads exceeded the design basis loads for the ABS method of summation. The load comparison is shown in Table 2-10. A stress analysis was also performed for the loading condition cases which demonstrated that the calculated stresses were within the allowable limits (Table 2-11).

For fatigue, since the calculated loads in the upset condition were less than the design basis loads and the alternating stresses due to the SRV loads did

CRD PENETRATION STRESS COMPARISON AT CRD HOUSING (PSI)

	Limiting Combina	g Load ation	Loading Condition	Stress Category	Stress (SRSS)	Allowable Stress
NL +	(U-ΔP) -	+ OBE + SRV	Upset	PM	11,840	16,660
NL +	(U-ΔP) ·	+ OBE + SRV	Urset	$P_{M} + P_{B}$	11,480	24,990
NL + + SR	(U-ΔP) · V (ADS)	+ CHG	Emergency	PM	13,550	19,992
NL + + SR	(U-ΔP) · V (ADS)	+ CHG	Emergency	P _M + P _B	13,200	29,988
NL + + SS	(U-ΔP) E	+ JR + SCRAM	Faulted	P _M	13,550	39,984
NL + + SS	(U-ΔP) ·	+ JR + SCRAM	Faulted	P _M + P _B	13,200	59,976

Maximum Cumulative Fatigue Usage Factor: 0.268 at housing.

Table 2-9

CRD PENETRATION STRESS COMPARISON AT STUB TUBE (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (SRSS)	Allowable Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	P _M	7,970	20,000
$NL + (U-\Delta P) + OBE + SRV$	Upset	P _M + P _B	27,700	30,000
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	Р _М	8,990	24,100
NL + $(U-\Delta P)$ + CHG + SRV (ADS)	Emergency	P _M + P _B	29,640	36,150
NL + $(U-\Delta P)$ + JR + SCRAM + SSE	Faulted	Р _М	8,990	48,000
NL + $(U-\Delta P)$ + JR + SCRAM + SSE	Faulted	P _M + P _B	29,640	72,000

Maximum Cumulative Fatigue Usage Factor: 0.183 at stub tube.

STEAM DRYER BRACKET LOAD COMPARISON (KIP)

	SRSS				ABS				
	V()	kip)	H(k	H(kip)		V(kip)		H(kip)	
	Calcu- lated	Design	Calcu- lated	Design	Calcu- lated	Design	Calcu- lated	Design	
Condition	Load	Load	Load	Load	Load	Load	Load	Load	
Upset	45.5	93.0	17.9	47.0	49.3	93.0	21.7	47.0	
Emergency	56.5	93.0	4.9	47.0	67.2	93.0	6.9	47.0	
Faulted	0.0	93.0	46.0	47.0	0.0	93.0	64.3	47.0	

Table 2-11

STEAM DRYER BRACKET STRESS COMPARISON (KSI)

			Stress Ca	itegories			
	Maximum Shear		Primary M	lembrane	Primary Local Plus Bending		
Loading Condition	Calculated Stress (ABS)	Allowable Stress	Calculated Stress (ABS)	Allowable Stress	Calculated Stress (ABS)	Allowable Stress	
Upset	15.48	18.64	0.94	23.3	32.55	34.95	
Emergency	15.48	18.64	0.94	23.3	32.55	34.95	
Faulted	15.48	18.64	1.29	23.3	32.55	34.95	

Maximum Cumulative Fatigue Usage Factor: 0.050

not exceed the fatigue endurance limit, the maximum fatigue usage factor remains less than the 1.0 allowable as documented in the vessel stress report.

2.3.1.6 RPV Stabilizer Brackets

The calculated loads on the stabilizer brackets were less than the design basis loads for all loading conditions using the SRSS and ABS method of summation. Therefore, no further evaluation was required (Table 2-12).

For fatigue, since the calculated loads were less than the design basis loads, the maximum fatigue usage factor at the bracket to vessel attachment remains as documented in the vessel stress report.

2.3.1.7 RPV Nozzles

For the RPV nozzles, to include thermal sleeves, where GE-supplied piping and vessel internal components applied dynamic loadings, load comparisons, and in some cases stress analyses, were performed to demonstrate the nozzles' adequacy. Specifically, design adequacy was demonstrated for the following RPV nozzles and thermal sleeves:

Main Steam Nozzles Recirc Inlet Nozzle LPCI Nozzle Recirc Nozzle Thermal Sleeves Feedwater Nozzle Thermal Sleeve Core Spray Nozzle Thermal Sleeve Differential Pressure and Liquid Control Line Thermal Sleeve

For the RPV nozzles where S&L supplied piping reaction loadings, if the nozzle allowables, as provided on the vessel loading diagram, were not exceeded, then the adequacy of the nozzles was verified by the vessel stress report.

RPV STABILIZER BRACKET LOAD COMPARISON (KIP/BRACKET)

Toadina	Calcul			
Condition	SRSS	ABS	Load	
Upset	267.7	365.0	480	
Emergency	233.2	247.8	≥480	
Faulted	560.0	703.9	1,324	

In specific cases, the S&L piping reaction loads on the RPV nozzles exceeded the vessel loading diagram allowables. For these cases, General Electric conducted analyses using the actual nozzle loads. The design adequacy of the nozzles was analytically demonstrated for the applied loads.

2.3.2 RPV Internal Components

The RPV internal components discussed in this section are:

Core Spray Sparger Core Spray Line (In-Vessel) Piping Steam Dryer Shroud Shroud Head Assembly Core Support Plate Top Guide Control Rod Drives Control Rod Drive Housings Control Rod Guide Tubes In-Core Housings and Guide Tubes Jet Pumps and Jet Pump Riser Braces Core Differential Pressure and Liquid Control Line Fuel Assemblies SRM and IRM Dry Tubes LPRM Detectors LPCI Couplings Orificed Fuel Supports

The new loads evaluation of the RPV internal components was performed by first comparing the calculated new loads to the design basis loads. If the new loads exceeded the design loads, a stress analysis of the equipment was then performed, to include a primary stress evaluation and a fatigue evaluation. Table 2-2 lists the stress categories used in these evaluations.

The results of the evaluations on the RPV internal components are presented in the following subsections.

2.3.2.1 Core Spray Sparger

The stress analysis performed on the core spray sparger compared the total static and dynamic stresses to the allowable stresses (Table 2-13). The loads were combined by both SRSS and ABS methods of summation and found to be within the allowable limits for all cases. The governing load case for all loading conditions was the upset condition NL + $(U-\Delta P)$ + OBE + SRV.

The maximum cumulative fatigue usage factor was calculated to be 0.20 at the tee junction, which is less than the 1.0 allowable.

2.3.2.2 Core Spray Line (In-Vessel) Piping

The stress analysis performed on the core spray line piping, to include the clamp and hex head bolt, demonstrated that the calculated stresses were within the allowable limits when using the SRSS and ABS methods of summmation (Table 2-14). The governing load case for all loading conditions was the upset condition NL + $(U-\Delta P)$ + OBE + SRV.

The maximum cumulative fatigue usage factor was calculated to be 0.969 at the elbow, which is less than the 1.0 allowable.

Table 2-13

CORE SPRAY SPARGER STRESS COMPARISON (KSI)

			Calcu	lated	
Limiting Load	Loading	Stress	Stress		Allowable
Combination	Condition	Category	SRSS	ABS	Stress
NL + $(U-\Delta P)$ + OBE + SRV	Upset	P _M + P _B	6.00	6.56	21.45

Table 2-14

CORE SPRAY LINE STRESS COMPARISON (KSI)

Limiting Load	Loading	Stress	Calculated Stress		Allowable
Combination	Condition	Category	SRSS	ABS	Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	PM	16.7	20.0	21.45

2.3.2.3 Steam Dryer

The acceleration comparison performed on the steam dryer demonstrated that the calculated acceleration for the worst case faulted load combinations were acceptable thereby assuring the steam dryer adequacy. The results of the load comparison are seen in Table 2-15.

2.3.2.4 Shroud

The stress analysis of the shroud demonstrated that the calculated stresses were less than the allowable limits using the ABS method of summation. The most highly stressed location was calculated to be at the top guide wedge to shroud junction (Table 2-16).

Table 2-15

STEAM DRYER ACCELERATION COMPARISON

Loading Condition	Calculated Acceleration	Acceleration Acceptable
Faulted	0.821	1.50
Faulted	0.169	0.40
	Loading <u>Condition</u> Faulted Faulted	Loading ConditionCalculated AccelerationFaulted0.821Faulted0.169

Table 2-16

SHROUD STRESS COMPARISON (KSI)

(At Top Guide Wedges)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)	Allowable Stress
NL + $(U-\Delta P)$ + OBE + SRV	Upset	P _M + P _B	19.79	21.45
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	P _M + P _B	0.72	32.17
$ \begin{array}{l} \text{NL} + (A - \Delta P) + \text{CHG} \\ + \text{SRV} \\ (\text{ADS}) \end{array} + \begin{array}{l} \text{SSE} \end{array} $	Faulted	P _M + P _B	18.24	42.90

Maximum Cumulative Fatigue Usage Factor: 0.70 at shroud cylinder core plate ledge.

The maximum cumulative fatigue usage factor was calculated to be 0.70 at the shroud cylinder near the core plate ledge, which is less than the 1.0 allowable.

2.3.2.5 Shroud Head Assembly

The stress analysis performed on the shroud head demonstrated that the calculated stresses were within the allowable limits when using both SRSS and ABS methods of summation (Table 2-17). The most highly stressed location was calculated to be at the shroud head bolts.

The maximum cumulative fatigue usage factor was calculated to be 0.273 at the shroud head bolt, which is less than the 1.0 allowable.

2.3.2.6 Core Support Plate

The stress analysis performed on the core support plate, to include the core support bolt, demonstrated that the calculated stresses were within the allowable limits as shown in Table 2-18. Additionally, a beam buckling analysis was performed which demonstrated that the core support plate met the required buckling criteria (Table 2-19).

The maximum cumulative fatigue usage factor was calculated to be 0.745 at the core plate stud which is less than the 1.0 allowable.

Table 2-17

SHROUD HEAD BOLT STRESS COMPARISON (KSI)

Limiting Load	Loading	Stress	Calcul Stre	ated	Allowable
Combination	Condition	Category	SRSS	ABS	Stress
NL + $(U-\Delta P)$ + OBE + SRV	Upset	P _M	9.601	10.89	23.3
$NL + (U-\Delta P) + CHG + SRV (ADS)$	Emergency	PM	5.29	6.07	34.95
NL + $(A-\Delta P)$ + CHUG + SRV (ADS) + SSE	Faulted	Р _М	17.28	19.71	55.92

Maximum Cumulative Fatigue Usage Factor: 0.273

CORE SUPPORT PLATE LIGAMENT STRESS COMPARISON (KSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress	Allowable Stress	
NL + $(U-\Delta P)$ + OBE + SRV	Upset	P _M + P _B	18.22	25.35	
NL + $(U-\Delta P)$ + CHG + SRV (ADS)	Emergency	P _M + P _B	11.61	38.03	
$NL + (A-\Delta P) + CHG$ + SRV (ADS) + SSE	Faulted	P _M + P _B	23.20	50.70	

Maximum Cumulative Fatigue Usage Factor: 0.745 at core plate stud.

Table 2-19

CORE SUFPORT PLATE BEAM BUCKLING LOAD COMPARISON (1b/Bundle)

Limiting Load Combination	ting Load Loading bination Condition		Allowable Load	
$NL + (U-\Delta P) + OBE + SRV$	Upset	359	366	
$NL + (U-\Delta P) + CHG + SRV$ (A	DS) Emergency	321	500	
$NL + (A-\Delta P) + CHG + SRV$ (A	DS) Faulted	620	683	

2.3.2.7 Top Guide

The stress analysis performed on the top guide demonstrated that the calculated stresses were within the allowable limits. The most highly stressed beam results are provided in Table 2-20.

The maximum cumulative fatigue usage factor was calculated to be 0.23 at the beam slot, which is less than the 1.0 allowable.

TOP GUIDE BEAM STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress	Allowable Stress	
NL + $(U-\Delta P)$ + OBE + SRV	Upset	PM	1,566	16,900	
NL + $(U-\Delta P)$ + OBE + SRV	Upset	P _M + P _B	25,272	25,350	
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	P _M	57	25,350	
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	$P_M + P_B$	14,152	38,025	
$ \begin{array}{l} \text{NL} + (A - \Delta P) + \text{CHG} \\ + \text{SSE} \\ (\text{ADS}) + \text{SRV} \end{array} $	Faulted	P _M	1,443	40,560	
$ \begin{array}{l} \text{NL} + (U-\Delta P) + \text{CHG} \\ + \text{SRV} \\ (\text{ADS}) \end{array} + \text{SSE} \end{array} $	Faulted	P _M + P _B	46,445	50,700	

Maximum Cumulative Fatigue Usage Factor: 0.23 at beam slot.

2.3.2.8 Control Rod Drives

The analysis performed on the control rod drives demonstrated the design adequacy for all loading combinations using the SRSS and ABS methods of summation. A previously performed generic analysis for BWR/4 and 5 control rod drives was used to form the basis for the LaSalle 2 analysis.

The maximum combined loads calculated in the LaSalle 2 analysis were less than those calculated in the generic analysis for all components and all load cases. Therefore, all component stresses for the CRD were less than those calculated in the generic analysis.

As part of the basis for the generic CRD analysis, the CRD was statically and dynamically tested for seismic loads of various amplitudes. Static tests consisted of fuel channel deflections and core support displacements. The CRD housing lower flange was also oscillated up to a 2-inch peak to peak

2å

displacement with minimal effect on scram time. During a more recent test, the drive of similar configuration was subjected to a number of biaxial excitations. The dynamic test was followed by a hot functional test, with no apparent damage to the CRD. All drive functions remained normal.

Tables 2-21 through 2-25 summarize the points of highest stress of the CRD components. For all components, the emergency condition stresses were not as severe as the upset condition stresses. In all cases, the maximum cumulative fatigue usage factors were less than the 1.0 allowable.

2.3.2.9 Control Rod Drive Housings

The stress analysis performed on the CRD housings demonstrated that the calculated stresses were within the allowable limits when using the SRSS and ABS methods of summation (Table 2-26).

The maximum cumulative fatigue usage factor was calculated to be 0.27 at the lower housing, which is less than 1.0 allowable.

2.3.2.10 Control Rod Guide Tubes

The stress analysis performed on the control rod guide tubes demonstrated that the calculated stresses were within the allowable limits when using the ABS method of summation (Tables 2-27 through 2-28). The control rod guide tube stability criterion, which is the ratio of the applied vertical load over the collapse load, was also evaluated and the criteria satisfied (Table 2-29).

CONTROL ROD DRIVE PISTON TUBE STRESS COMPARISON (KSI)

Limiting Load Combination		Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
NL + (U-∆P) + OBE + + SCRAM	SRV	Upset	$P_{M} + P_{B}$	17.4	43.0**
NL + (U- ΔP) + OBE + + SCRAM	SRV	Upset	$P_{M} + P_{B} + Q$	80.2	87.7
NL + $(A-\Delta P)$ + CHG + + SSE + SCRAM	SRV	Faulted	P _M + P _B	18.5	70.2**

Maximum Cumulative Fatigue Usage Factor: 0.253

*SRSS values are less than the ABS values for the corresponding load combination. **Primary membrane criteria.

Table 2-22

CONTROL ROD DRIVE OUTER TUBE STRESS COMPARISON (KSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress	
NL + (U-ΔP) + OBE + SRV + SCRAM	Upset	$P_{M} + P_{B}$	32.9	37.3	
NL + (U-ΔP) + OBE + SRV + SCRAM	Upset	P _M	19.9	25.0	
NL + $(U-\Delta P)$ + OBE + SRV + SCRAM.	Upset	P _M + P _B	24.7	26.1	
NL + $(A-\Delta P)$ + CHG + SRV + SSE + SCRAM	Faulted	P _M	-20.7	54.0	
NL + $(A-\Delta P)$ + CHG+ SRV + SSE + SCRAM	Faulted	P _M + P _B	38.5	54.0	

Maximum Cumulative Fatigue Usage Factor: 0.41

*SRSS values are less than the ABS values for the corresponding load combination.

**Primary membrane criteria.

CONTROL ROD DRIVE CYLINDER STRESS COMPARISON (KSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
NL + (U-AP) + OBE + SRV + SCRAM	Upset	P _M + P _B	17.5	40.8
NL + (U-AP) + OBE + SRV + SCRAM	Upset	P _M	15.3	27.4
NL + $(A-\Delta P)$ + CHG + SRV + SSE + SCRAM	Faulted	P _M + P _B	19.2	58.4**

Maximum Cumulative Fatigue Usage Factor: 0.08

*SRSS values are less than the ABS values for the corresponding load combination. **Primary membrane criteria.

Table 2-24

CONTROL ROD DRIVE INDEX TUBE STRESS COMPARISON (KSI)

Limiting Load Combination	Loading Stress Condition Category		Calculated Stress (ABS)*	Allowable Stress	
NL + $(U-\Delta P)$ + OBE + SRV + SCRAM	Upset	P _M + P _B	32.7	42.5	
NL + $(U-\Delta P)$ + OBE + SRV + SCRAM	Upset	Р _М	18.7	28.5	
NL + $(U-\Delta P)$ + OBE + SRV + SCRAM	Upset	$P_{M} + P_{B} + Q$	48.4	76.95	
NL + $(A-\Delta P)$ + CHG + SRV + SSE + SCRAM	Faulted	P _M + P _B	29.4	61.56	
NL + $(A-\Delta P)$ + CHG + SRV + SSE + SCRAM + JR	Faulted	$P_{M} + P_{B}$	29.4	56.5**	

Maximum Cumulative Fatigue Usage Factor: ~0

*SRSS values are less than the ABS values for the corresponding load combination. **Primary membrane criteria.

Table 2-25

CONTROL ROD DRIVE INDICATOR TUBE STRESS COMPARISON (KSI)

$NL + (U-\Delta P) + OBE$ + SRV + SCRAM	Upset	$P_{M} + P_{B} + Q$	47.1	51.7
$NL + (U-\Delta P) + OBE$ + SRV + SCRAM	Upset	P _M + P _B	24.7	25.9
$NL + (A-\Delta P) + CHG + SRV$ + SSE + SCRAM	Faulted	P _M	37.6	40.0

Maximum Cumulative Fatigue Usage Factor: 0.093

*SRSS values are less than the ABS values for the corresponding load combination.

Table 2-26

CONTROL ROD DRIVE HOUSING STRESS COMPARISON (PSI)

Loading Condition*	Stress Category	Calculated Stress (ABS)**	Allowable Stress
Upset	P _M	15,600	16,660
Faulted	PM	18,980	39,840

Maximum Cumulative Fatigue Usage Factor: 0.27

*Emergency stresses are less than or equal to upset stresses.

**SRSS values are less than the ABS values for the corresponding load combination.

Table 2-27

CONTROL ROD GUIDE TUBE FLANGE STRESS COMPARISON (PSI)

		Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
N	+	$(U-\Delta P) + SRV$	Upset	P _M + P _B	6,343	24,000
N	+	$(U-\Delta P)$ + OBE + SRV	Emergency	P _M + P _B	7,206	36,000
N	+	$(A-\Delta P)$ + SSE + JR + AP	Faulted	$P_{M} + P_{B}$	11,166	38,400

*SRSS values are less than the ABS values for the corresponding load combination.

Table 2-28

CONTROL ROD GUIDE TUBE BODY STRESS COMPARISON (PSI)

	Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
N ·	+ (U-ΔP) + SRV	Upset	$P_{M} + P_{B}$	5,704	16,000
N ·	+ (U-ΔP) + OBE + SRV	Emergency	P _M + P _B	5,795	16,000
N	+ $(A-\Delta P)$ + SSE + JR + AP	Faulted	$P_{M} + P_{B}$	9,867	16,000

*SRSS values are less than the ABS values for the corresponding load combination.

**Conservatively compared to primary membrane stress limits for upset service Level B allowable.

CONTROL ROD GUIDE TUBE STABILITY CRITERIA COMPARISON

Limiting Load Combination					ad n		Loading Condition	Calculated Ratio	Allowable Ratio
N	+	(U-ΔP)	+	SRV			Upset	0.41	0.45
N	+	(U-ΔP)	+	OBE	+	SRV	Emergency	0.42	0.67
N	+	$(A-\Delta P)$	+	SSE	+	JR + AP	Faulted	0.65	0.90

The LaSalle 2 guide tubes are exempt from fatigue analysis per ASME B&PV Code, Section III, Para NG-3222.4d.

2.3.2.11 In-Core Housings and Guide Tubes

The new loads for LaSalle 2 were less than the new loads used to perform a generic stress analysis of the in-core housings and guide tubes. The generic calculated stresses were within the allowable limits and since LaSalle 2 loads were less and the geometry is the same, it is not necessary to perform a detailed analysis for LaSalle 2.

2.3.2.12 Jet Pumps and Jet Pump Riser Braces

The stress analysis performed on the jet pumps and jet pump riser braces demonstrated that the calculated stresses were within the allowable limits when using the ABS method of summation (Table 2-30 and 2-31).

The maximum cumulative fatigue usage factor was calculated to be ≤ 0.76 , which is less than the 1.0 allowable.

JET PUMP STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	$P_{M} + P_{B} + Q$	8,846	23,350
$NL + (A-\Delta P) + OBE + SRV$	Emergency	$P_{M} + P_{B}$	8,846	38.025
$NL + (A-\Delta P) + JR + AP$ + SRV + SSE	Faulted	$P_M + P_B$	29,563	60.840

Maximum Cumulative Fature Usage Factor: <0.76

*SRSS values is less than ABS value for the corresponding load combination.

Table 2-31

JET PUMP RISER BRACE STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress	
NL + $(U-\Delta P)$ + OBE + SRV	Upset	$P_{M} + P_{B} + Q$	18,641	50,700	
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	P _M + P _B	11,508	38,025	
$NL + (A-\Delta P) + JR + AP$ + SSE	Faulted	P _M + P _B	42,501	60,840	

Maximum Cumulative Fatigue Usage Factor: <0.76

*SRSS values is less than AES value for the corresponding load combination.

2.3.2.13 Core Differential Pressure and Liquid Control Line

The analysis was performed using a dynamic analysis program with the response spectrum input from the dynamic new loads. The limiting load cases for each code condition were selected for evaluation. Hardware was evaluated per ASME Code Section III, NB, piping analysis and fatigue evaluation per the ASME code. The ABS method was used as the limiting method for combining the loads for each load case (Table 2-32).

The maximum cumulative fatigue usage factor was calculated to be 0.02, which is less than the 1.0 allowable.

Table 2-32

CORE DIFFERENTIAL PRESSURE AND LIQUID CONTROL STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
$NL + (U-\Delta P) + SRV$	Upset	P + Q	46,319	54,120
$NL + (U-\Delta P) + OBE + SRV$	Emergency	$P_{M} + P_{B}$	13,569	36.900
$NL + (A-\Delta P) + JR + AP$ + SSE	Faulted	$P_M + P_B$	35,750	59,040

Maximum calculated fatigue usage factor: 0.02

*SRSS values are less than ABS values for the corresponding load combinations.

2.3.2.14 Fuel Assemblies

The LaSalle 2 fuel assemblies were evaluated for functional adequacy considering the seismic, SRV, and LOCA loadings to include annulus pressurization. Loading combination criteria were used to determine the maximum combined fuel acceleration profiles for normal, upset and faulted events. The fuel assembly fatigue analysis was performed for SRV and OBE+SRV load combinations. Both the SRSS and ABS methods of summation were used for the functional adequacy and fatigue evaluation.

The method used to demonstrate the adequacy of the LaSalle 2 fuel assemblies was to demonstrate that the LaSalle 2 fuel loadings were less than the verified capability of BWR/2-5 plants.

Normal/Upset Event Results

The limiting combination of horizontal accelerations for the normal and upset events was NL+OBE+SRV. The resulting SRSS and ABS combined horizontal acceleration profiles were compared to the BWR/2-5 upset design basis profile. The combined accelerations were shown to be less than the design basis accelerations over the full length of the fuel. The combination of horizontal and vertical fuel lift accelerations exceeded the design basis accelerations for concurrent horizontal and vertical loading, but were within the verified capability of BWR/2-5 fuel. Based on the above results, all design criteria were met for Normal and Upset events.

Emergency/Faulted Event Results

The limiting faulted load combination of horizontal accelerations was NL+SRV+LOCA+OBE. The LaSalle 2 combined horizontal accelerations exceeded the design basis acceleration profile locally at the bottom of the fuel assembly. Since resultant loadings are an integral effect of the acceleration distribution, it was acceptable to allow the resultant acceleration distribution to locally exceed the design basis profile. In this case, the

actual component part loadings were compared to the design basis loads. The horizontal component loadings were shown to be less than the corresponding design basis loads.

The limiting faulted load combination of vertical accelerations was NL+SRV+LOCA+SSE. The combined horizontal and vertical accelerations exceeded the BWR/2-5 design basis accelerations; however, the combined vertical plus horizontal accelerations were shown to be within the verified capability of the fuel.

Based upon the above results, all design criteria were met for the faulted event.

Fatigue Analysis Results

The fuel fatigue analysis was performed for the limiting SRV case and the OBE+SRV load combination. Fuel assembly component loads were determined using an analytical model. The OBE and SRV component loads were combined by both the SRSS and ABS methods. Fatigue capability of the fuel components was determined by exchanging the previously evaluated capability of at least 10 to 150 cycles of peak SSE loading for a larger quantity of cycles of the lower OBE or SRV loads as allowed by the material fatigue curves.

The fuel component loadings determined from the LaSalle 2 horizontal and vertical OBE and SRV loads were small enough such that less than 20% cumulative damage fatigue is predicted to occur over the lifetime of the fuel assembly. Based upon the fatigue analysis, the fuel assembly has adequate fatigue capability to withstand the loadings resulting from multiple SRV actuations and the OBE+SRV event.

The LaSalle 2 fuel assembly horizontal loadings were shown to be less than the BWR/2-5 design basis loads for the limiting normal/upset and faulted events. Fuel lift vertical accelerations in combination with the appropriate horizontal accelerations were shown to be less than the verified capability of BWR/2-5 fuel for normal/upset and faulted events. Therefore, all normal,

2-30

upset, emergency and faulted design criteria were met for the LaSalle 2 fuel assemblies (Table 2-33).

Each component of the LaSalle 2 fuel assembly was demonstrated to have adequate fatigue capability to withstand the loadings resulting from multiple SRV actuations over the lifetime of the fuel.

Table 2-33

FUEL ASSEMBLY PEAK ACCELERATION COMPARISON (g)

Acceptance Criteria	Loading	Primary Load Type	Calculated Peak Acceleration	Evaluation Basis(1) Acceleration
Acceleration Envelope	 Horizontal Direction: Peak Pressure Operational Basis Earthquake Safety Relief Valve Chugging 	Horizontal Acceleration Profile	1.3 G	3.6 G
	Vertical Direction:	Vertical	4.2 G	12.0 G
	 Peak Pressure Safety Shutdown Earthquake Safety Relief Valve Condensation 			

Oscillation

NOTES:

No.

- Evaluation Basis Accelerations and Evaluations are contained in NEDE-21175-3-P. The evaluation basis acceleration envelope is defined by a coincident 8G vertical acceleration with the 3.6G horizontal acceleration. The 3.6G horizontal value is reduced linearly to zero as the corresponding vertical acceleration increased from 8 to 12 G's.
- (2) The calculated maximum fuel assembly gap opening for the most limiting load combination is 0.12 inch. This is less than the gap (0.52 inch) required to start the disengagement of the lower tie plate from the fuel support casting.
- (3) The fatigue analysis indicates that the fuel assembly has adequate fatigue capability to withstand the loadings resulting from multiple SRV actuations and the OBE+SRV event.

2.3.2.15 SRM and IRM Dry Tubes

The analyses performed on the Source Range Monitor (SRM) and Intermediate Range Monitor (IRM) dry tubes demonstrated that the combined loads were less than the load values contained in a previously performed BWR/4 and 5 generic analysis. The combined loads did not result in stresses which exceeded the ASMR Code allowables and therefore the design adequacy was demonstrated.

The maximum cumulative fatigue usage factor was calculated to be less than the 1.0 allowable.

2.3.2.16 LPRM Detectors

The analysis performed on the Low Power Range Monitor (LPRM) detector assemblies demonstrated that the combined loads were less than the load values calculated in a previously performed BWR/4 and 5 generic analysis. The generic BWR/4 and 5 analysis used a combination of test and analysis to qualify the LPRM detectors for loading conditions which exceeded the LaSalle 2 unique combined loads. Therefore, the design adequacy was demonstrated.

The maximum cumulative fatigue usage factor for the LPRM assembly was calculated to be less than the 1.0 allowable.

2.3.2.17 LPCI Couplings

The stress analysis performed on the LPCI couplings demonstrated that the calculated stresses were within the allowable limits using the ABS method of summation. The maximum stress location was at the LPCI ring (Table 2-34). The maximum cumulative fatigue usage factor was calculated to be less than 1.0.

LPCI COUPLING STRESS COMPARISON (PSI)

Limiting Load Combination	Loading Condition	Stress Category	Calculated Stress (ABS)*	Allowable Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	P _M + P _B	8,112	25,350
$NL + (U-\Delta P) + CHG + SRV$ (ADS)	Emergency	$P_{M} + P_{B}$	18,869	38,025
$NL + (A-\Delta P) + JR + AP$ + SSE	Faulted	P _M + P _B	27,127	60,840

Maximum calculated fatigue usage factor: <1.0

2.3.2.18 Orificed Fuel Supports

The stress analysis performed on the orificed fuel supports demonstrated that the calculated stresses were within the allowable limits using the ABS method of summation (Table 2-35).

The maximum cumulative fatigue usage factor was calculated to be 0.25, which is less than the 1.0 allowable.

Table 2-35

ORIFICED FUEL SUPPORT COMPARISON

Limiting Load Combination	Condition	Calculated (ABS)*	Allowable	
NL + (U-AP) + OBE + SRV	Upset	1,625**	1,638***	
NL + $(A-\Delta P) + JR + AP + SSE$	Faulted	38,603 psi	43,200 psi	

Maximum cumulative fatigue usage factor: 0.25

- *SRSS values are less than ABS values for the corresponding load combinations.
- **Horizontal load 1bs.

***Values are 44% of load capability as determined by test.

2.3.3 RPV Support Components

The RPV support components discussed in this section are:

Vessel Stabilizer CRD Housing Restraint Beam RPV Support

Design adequacy of these components was demonstrated by comparing the total dynamic and static loads to the loads for which the equipment was originally designed. By this comparison, it was determined that for the LaSalle 2 vessel stabilizer, CRD housing restraint beam and RPV support (girder assembly) the static and dynamic loads, when combined, were less than the design basis loads for all required load combinations listed in Table 2-1.

The results of the fatigue analyses conducted demonstrated all components adequate for cyclic fatigue loading.

2.3.3.1 Vessel Stabilizer

The stress analysis performed on the vessel stabilizer demonstrated that the calculated stresses at the yoke were less than the allowable stresses using the SRSS method of summation (Table 2-36).

The fatigue analysis performed demonstrated the adequacy of the vessel stabilizer for cyclic fatigue loading per AISC criteria.

Table 2-36

VESSEL STABILIZER STRESS COMPARISON (PSI)

Limiting Load Combination	Condition	Calculated Stress (SRSS)	Allowable Stress
$NL + (U-\Delta P) + OBE + SRV$	Upset	34,200	36,100
$NL + (A-\Delta P) + JR + AP + SSE$	Faulted	50,300	54,100

2.3.3.2 CRD Housing Restraint Beam

The analysis performed on the CRD housing restraint beam demonstrated that the calculated static and dynamic loads were less than the design basis loads using the ABS method of summation (Table 2-37).

The fatigue analysis performed demonstrated the adequacy of the CRD housing restraint beam for cyclic fatigue loading per AISC criteria.

2.3.3.3 RPV Support

The RPV support ring girder loads for LaSalle 2 were less than the loads for LaSalle 1. It was demonstrated that the calculated static and dynamic loads were less than the design basis loads using both the SRSS and ABS methods for LaSalle 1. Therefore, the lower LaSalle 2 loads are adequate.

The fatigue analysis performed demonstrated the adequacy of the RPV support for cyclic fatigue loading per AISC criteria.

Table 2-37

CRD HOUSING RESTRAINT BEAM LOAD COMPARISON (KIP)

Limiting Load Combination	Loading Condition**	Calculated Load (KIPS) (ABS)*	Allowable Load (kips)		
$NL + (U-\Delta P) + OBE + SRV$	Upset	73.49	135		
$NL + (A-\Delta P) + JR + AP + SSE$	Faulted	96	182		

*SRSS values are less than ABS values for the corresponding load combination. **Emergency stress is equal to or less than the upset stress allowable.

3. NSSS PIPING SYSTEMS EVALUATION

3.1 OVERVIEW

A design adequacy evaluation for the LaSalle Unit 2 NSSS main steam and recirculation piping and pipe mounted equipment was performed. The Unit 2 "as-built" piping and suspension system configurations were verified by Sargent & Lundy engineers and subsequently submitted to GE as input for the stress and analyses performed. ASME Code Certified Piping Stress Reports were prepared and issued March 1983 (References 24 through 29, Appendix A).

3.1.1 Equipment Evaluated

The adequacy evaluation performed included the following NSSS main steam and recirculation piping and pipe mounted equipment.

- Main Steam Piping System
 Piping
 Snubbers
 Safety/Relief Valves (SRV)
 Main Steam Isolation Valves (MSIV)
- Recirculation Piping System
 Piping
 Snubbers
 Suction Gate Valves
 Discharge Gate Valves
 Flow Control Valves
 Recirculation Pumps and Motors

3.1.2 Load Combinations and Summation Methods

As a design basis, all dynamic loads were combined using the square root of the sume of squares (SRSS) method. In addition, the absolute sum (ABS) combination method was used. The evaluation was performed using the load combinations listed in Tables 3-1 through 3-8 for the main steam system and

Tables 3-42 through 3-51 for the recirculation system. These load combinations were derived from the more general load combinations listed in Table 1-2 in order to more adequately evaluate the induced loads from specific operating transients and postulated plant events.

3.1.3 Evaluation and Methodology

the NSSS piping stress analyses were conducted to consider the secondary dynamic responses from: (1) the original design-basis loads including seismic vibratory motions; (2) the structural system feedback loads from the suppression pool hydrodynamic events; and (3) the structural system loads from the LOCA induced annulus pressurization from postulated feedwater, recirculation and main steam pipe breaks.

The response spectra for piping attachment points on the reactor pressure vessel, shield wall and pedestal complex (above the pool area) were generated by General Electric, based upon the acceleration time-histories supplied by Sargent & Lundy Engineers. Containment response spectra were supplied directly by S&L. This combination of General Electric and S&L developed response spectra was used as input responses for all attachment points at each piping system.

Lumped mass models were developed by General Electric for the NSSS primary piping systems, main steam and recirculation. These lumped mass models include the snubbers, hangers, struts and pipe-mounted valves, and represent the major balance-of-plant branch piping connected to the main steam and recirculation systems. Amplied response spectra for all attachment points within the piping system were applied (i.e., distinct acceleration excitations were specified at each piping support and anchor point). The detailed models were analyzed independently to determine the piping system resulting loads (shears and moments). Additionally, the end reaction forces and/or accelerations for the pipe-mounted/connected equipment (valves and nozzles) were simultaneously calculated.

The piping stresses from the resulting loads (shears and moments) for each load event were determined and combined in accordance with the load combina-

3-2

tions delineated in Table 1-2. These stresses were calculated at geometrical discontinuities and compared to ASME code allowable determined stresses (ASME Boiler and Pressure Vessel Code, Sec. III-NB-3650) for the appropriate loading condition in order to assure design adequacy.

The reaction forces and/or accelerations acting on the pipe-mounted/connected equipment, when combined using the appropriate load combinations, were compared to the equipment allowables to assure design adequacy.

3.2 MAIN STEAM PIPING SYSTEM EVALUATION RESULTS

3.2.1 Main Steam Piping

The stress analysis for main steam piping lines A, B, C and D was performed using the verified "as-built" configuration as submitted to GE. The load combinations listed in Tables 3-1 and 3-2 were used as the basis for the evaluation. Stresses were combined using both the SRSS and ABS methods of summation.

Tables 3-10, 3-11, 3-18, 3-19, 3-26, 3-27, 3-34 and 3-35 provide highest stress summaries for the Design Condition and Service Levels B, C and D loading conditions using both the SRSS and ABS methods of summation. The highest calculated stresses were below the ASME Code allowable limits. The stress analysis performed demonstrated that the main steam piping was designed and supported to withstand and applied loads as given in the applicable design specifications. ASME Code certified stress reports were prepared and issued reflecting the results of the analysis performed (References 24 through 27, Appendix A).

The main steam piping system, which is required to function for safe shutdown under the postulated events, was evaluated and proven adequate in meeting the functional capability requirements per NEDO-21985, Piping Functional Capability Criteria. Node diagrams for Main Steam Lines A, B, C and D are provided for reference in Figures 3-1, 3-2, 3-3 and 3-4, respectively.

3.2.2 Main Steam Snubbers

The analysis performed demonstrated that the calculated loads on the main steam snubbers were below the allowable limits, verifying their capability to meet the design criteria. The load combinations listed in Tables 3-3 and 3-4 were used as the basis for the evaluation. Loads were combined using both SRSS and ABS methods of summation.

Tables 3-12, 3-13, 3-20, 3-21, 3-28, 3-29, 3-36 and 3-37 provide the highest loading summaries for Service Levels B, C and D loading conditions using both SRSS and ABS methods of summation. Initially, where snubber loads exceeded nominal ratings provided on the suspension purchase part drawings, subsequent snubber acceptability was demonstrated using actual manufacturer ratings based upon test results.

3.2.3 Main Steam Safety/Relief (SRV) and Isolation Valves (MSIV)

The analyses performed demonstrated that the calculated stresses, forces, moments and accelerations on the main steam safety relief and isolation valves were below the allowable limits. The load combinations listed in Tables 3-5 through 3-8 were used as the basis for the evaluation. Loads were combined using both SRSS and ABS methods of summation.

Tables 3-14 through 3-17, 3-22 through 3-25, 3-30 through 3-33 and 3-38 through 3-41 provide the highest loading summaries for the service level loading conditions evaluated using both SRSS and ABS methods of summation.

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - SRSS

PIPING

DESIGN	1	PD + WT1	+	OBEI								
LEVEL B	1	PP + WT1	+	SQRT((OBEI)**2	+ (TSV)**2)			
LEVEL B	2	PP + WT1	+	SQRT ((OBEI)**2	+ ((RV1)**2)			
LEVEL B	3	PP + WT1	+	SORT ((OBE I)**2	+ (RV2I)**2)			
LEVEL C	1	PP + WT1	+	SORT ((CHUGI)**2	+ (RV1)**2)			
LEVEL C	2	PP + WT1	+	SORT (CHUGI)**2	+ (RV2I)**2)			
LEVEL C	3	PP + WT1	+	RV1								
LEVEL C	4	PP + WT1	+	RV2I								
LEVEL D	1	PP + WT1	+	SORT ((SSEI)**2	+ (RV2I)**2)			
LEVEL D	2	PP + WT1	+	SORT ((SSEI)**2	+ (TSV)**2)			
IEVEL D	3	PP + WT1	+	SORT ((SSEI)**2	+ (CHUGI)**2	+ (RV2I)**2)
LEVEL D	4	PP + WT1	+	COND I +	SORT((SSEI)**2	+ (RV2I)**2)	
LEVEL D	5	PP + WT1	+	COND I +	SORT(SSEI)**2	+ (RV1)**2)	
LEVEL D	6	PP + WT1	+	SORT ((SSEI)**2	+ (CHUGI)**2	+ (RV1)**2)
LEVEL D	7	PP + WT1	+	SQRT ((SSEI)**2	+ (API)**2)			

NEDO-30159

3-5

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - ABS

PIPING

DESIGN	1	1	PD	+	WT1	+	OBEI				
LEVEL	В	1	PP	+	WT1	+	OBEI	+	TSV		
LEVEL	B	2	PP	+	WT1	+	OBEI	+	RV1		
LEVEL	B	3	PP	+	WT1	+	OBEI	+	RV2I		
LEVEL	С	1	PP	+	WT1	+	CHUGI	+	RV1		
LEVEL	C	2	PP	+	WT1	+	CHUGI	+	RV2I		
LEVEL	С	3	PP	+	WT1	+	RV1				
LEVEL	C	4	PP	+	WT1	+	RV2I				
LEVEL	D	1	PP	+	WT1	+	SSEI	+	RV2I		
LEVEL	D	2	PP	+	WT1	+	SSEI	+	TSV		
LEVEL	D	3	PP	+	WT1	+	SSEI	+	CHUGI	+	RV2I
LEVEL	D	4	PP	+	WT1	+	COND 1	+	SSEI	+	RV21
LEVEL	D	5	PP	+	WT1	+	COND 1	+	SSEI	+	RV1
LEVEL	D	6	PP	+	WT1	+	SSEI	+	CHUGI	+	RV1
LEVEL	D	7	PP	+	WT1	+	SSEI	+	API		

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - SRSS

SNUBBERS

LEVEL	B	1	SQRT((OBEI	+	OBED)**2	+ (TSV)**2)							
LEVEL	B	2	SQRT((OBEI	+	OBED)**2	+ (RV1)**2)							
LEVEL	В	3	SQRT((OBEI	+	OBED)**2	+ (RV2I	+	RV2D)**2)					
LEVEL	С	1	SQRT((CHUGI	+	CHUGD)**2	+ (RV1)**2)							
LEVEL	С	2	SQRT((CHUGI	+	CHUGD)**2	+ (RV2I	+	RV2D)**2)					
LEVEL	D	1	SQRT((SSEI	+	SSED)**2	+ (TSV)**2								
LEVEL	D	2	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+	CHUGD)**2	+	(RV2I	+	RV2D)**2)
LEVEL	D	3	COND I +	COND D) +	SQRT	((SSEI	+	SSED)**2	+ (RV2I	+	RV2D)**2)	
LEVEL	D	4	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+	CHUGD)**2	+	(RV1)**2)		
LEVEL	D	5	COND I +	COND D) +	SQRT	((SSEI	+	SSED)**2	+ (RV1)**2)			
LEVEL	D	6	SQRT((SSEI	+	SSED)**2	+ (API	+	APD)**2)					
LEVEL	D	7	SQRT((SSEI	+	SSED)**2	+ (RV2I	+	RV2D)**2)					
	LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL	LEVEL B LEVEL B LEVEL C LEVEL C LEVEL D LEVEL D LEVEL D LEVEL D LEVEL D LEVEL D LEVEL D	LEVEL B 1 LEVEL B 2 LEVEL B 3 LEVEL C 1 LEVEL C 2 LEVEL D 1 LEVEL D 2 LEVEL D 3 LEVEL D 4 LEVEL D 5 LEVEL D 6 LEVEL D 7	LEVEL B 1 SQRT((OBEI LEVEL B 2 SQRT((OBEI LEVEL B 3 SQRT((OBEI LEVEL C 1 SQRT((OBEI LEVEL C 1 SQRT((CHUGI LEVEL C 2 SQRT((CHUGI LEVEL D 1 SQRT((SSEI LEVEL D 2 SQRT((SSEI LEVEL D 3 COND I + LEVEL D 4 SQRT((SSEI LEVEL D 5 COND I + LEVEL D 6 SQRT((SSEI LEVEL D 7 SQRT((SSEI	LEVEL B 1 SQRT((OBEI + LEVEL B 2 SQRT((OBEI + LEVEL B 3 SQRT((OBEI + LEVEL C 1 SQRT((CHUGI + LEVEL C 2 SQRT((CHUGI + LEVEL D 1 SQRT((SSEI + LEVEL D 2 SQRT((SSEI + LEVEL D 3 COND I + COND I LEVEL D 4 SQRT((SSEI + LEVEL D 5 COND I + COND I LEVEL D 6 SQRT((SSEI + LEVEL D 7 SQRT((SSEI +	LEVEL B1SQRT((OBEI+OBEDLEVEL B2SQRT((OBEI+OBEDLEVEL B3SQRT((OBEI+OBEDLEVEL C1SQRT((CHUGI+CHUGDLEVEL C2SQRT((CHUGI+CHUGDLEVEL D1SQRT((SSEI+SSEDLEVEL D2SQRT((SSEI+SSEDLEVEL D3COND I+COND D+LEVEL D5COND I+SSEDLEVEL D6SQRT((SSEI+SSEDLEVEL D7SQRT((SSEI+SSED	LEVEL B1SQRT((OBEI+OBED)**2LEVEL B2SQRT((OBEI+OBED)**2LEVEL B3SQRT((OBEI+OBED)**2LEVEL C1SQRT((CHUGI+CHUGD)**2LEVEL C2SQRT((CHUGI+CHUGD)**2LEVEL D1SQRT((SSEI+SSED)**2LEVEL D2SQRT((SSEI+SSED)**2LEVEL D3COND I+COND D+LEVEL D4SQRT((SSEI+SSED)**2LEVEL D5COND I+COND D+LEVEL D6SQRT((SSEI+SSED)**2LEVEL D7SQRT((SSEI+SSED)**2	LEVEL B 1 SQRT((OBEI + OBED) $\star 2$ + (LEVEL B 2 SQRT((OBEI + OBED) $\star 2$ + (LEVEL B 3 SQRT((OBEI + OBED) $\star 2$ + (LEVEL C 1 SQRT((CHUGI + OBED) $\star 2$ + (LEVEL C 1 SQRT((CHUGI + CHUGD) $\star 2$ + (LEVEL C 2 SQRT((CHUGI + CHUGD) $\star 2$ + (LEVEL D 1 SQRT((SSEI + SSED) $\star 2$ + (LEVEL D 2 SQRT((SSEI + SSED) $\star 2$ + (LEVEL D 3 COND I + COND D + SQRT((SSEI LEVEL D 4 SQRT((SSEI + SSED) $\star 2$ + (LEVEL D 5 COND I + COND D + SQRT((SSEI LEVEL D 6 SQRT((SSEI + SSED) $\star 2$ + (LEVEL D 7 SQRT((SSEI + SSED) $\star 2$ + (LEVEL B 1 SQRT((OBEI + OBED) ± 2 + (TSV LEVEL B 2 SQRT((OBEI + OBED) ± 2 + (RV1 LEVEL B 3 SQRT((OBEI + OBED) ± 2 + (RV2I LEVEL C 1 SQRT((CHUGI + CHUGD) ± 2 + (RV1 LEVEL C 2 SQRT((CHUGI + CHUGD) ± 2 + (RV1 LEVEL C 2 SQRT((CHUGI + CHUGD) ± 2 + (RV2I LEVEL D 1 SQRT((SSEI + SSED) ± 2 + (RV2I LEVEL D 2 SQRT((SSEI + SSED) ± 2 + (CHUGI LEVEL D 3 COND I + COND D + SQRT((SSEI + LEVEL D 4 SQRT((SSEI + SSED) ± 2 + (CHUGI LEVEL D 5 COND I + COND D + SQRT((SSEI + LEVEL D 5 COND I + COND D + SQRT((SSEI + LEVEL D 6 SQRT((SSEI + SSED) ± 2 + (API LEVEL D 7 SQRT((SSEI + SSED) ± 2 + (RV2I	LEVEL B1SQRT((OBEI+OBED)**2+(TSV)**2LEVEL B2SQRT((OBEI+OBED)**2+(RV1)**2LEVEL B3SQRT((OBEI+OBED)**2+(RV2I+LEVEL C1SQRT((CHUGI+CHUGD)**2+(RV1)**2LEVEL C2SQRT((CHUGI+CHUGD)**2+(RV2I+LEVEL C2SQRT((SSEI+SSED)**2+(RV2I+LEVEL D1SQRT((SSEI+SSED)**2+(CHUGI+LEVEL D2SQRT((SSEI+SSED)**2+(CHUGI+LEVEL D3COND I+COND D+SQRT((SSEI+SSEDLEVEL D4SQRT((SSEI+SSED)**2+(CHUGI+LEVEL D5COND I+COND D+SQRT((SSEI+SSEDLEVEL D6SQRT((SSEI+SSED)**2+(API+LEVEL D7SQRT((SSEI+SSED)**2+(RV2I+	LEVEL B 1 SQRT((OBEI + OBED)**2 + (TSV)**2) LEVEL B 2 SQRT((OBEI + OBED)**2 + (RV1)**2) LEVEL B 3 SQRT((OBEI + OBED)**2 + (RV1)**2) LEVEL C 1 SQRT((CHUGI + OHOD)**2 + (RV1)**2) LEVEL C 2 SQRT((CHUGI + CHUGD)**2 + (RV1)**2) LEVEL C 2 SQRT((CHUGI + CHUGD)**2 + (RV2I + RV2D LEVEL D 1 SQRT((SSEI + SSED)**2 + (TSV)**2 LEVEL D 2 SQRT((SSEI + SSED)**2 + (CHUGI + CHUGD LEVEL D 3 COND I + COND D + SQRT((SSEI + SSED)**2 LEVEL D 4 SQRT((SSEI + SSED)**2 + (CHUGI + CHUGD LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED)**2 LEVEL D 6 SQRT((SSEI + SSED)**2 + (API + APD LEVEL D 7 SQRT((SSEI + SSED)**2 + (RV2I + RV2D	LEVEL B 1 SQRT((OBEI + OBED) \Rightarrow 2 + (TSV) \Rightarrow 2) LEVEL B 2 SQRT((OBEI + OBED) \Rightarrow 2 + (RV1) \Rightarrow 2) LEVEL B 3 SQRT((OBEI + OBED) \Rightarrow 2 + (RV2I + RV2D) \Rightarrow 2 LEVEL C 1 SQRT((CHUGI + CHUGD) \Rightarrow 2 + (RV1) \Rightarrow 2) LEVEL C 2 SQRT((CHUGI + CHUGD) \Rightarrow 2 + (RV2I + RV2D) \Rightarrow 2 LEVEL C 2 SQRT((CHUGI + CHUGD) \Rightarrow 2 + (RV2I + RV2D) \Rightarrow 2 LEVEL D 1 SQRT((SSEI + SSED) \Rightarrow 2 + (TSV) \Rightarrow 2 LEVEL D 2 SQRT((SSEI + SSED) \Rightarrow 2 + (CHUGI + CHUGD) \Rightarrow 2 LEVEL D 3 COND I + COND D + SQRT((SSEI + SSED) \Rightarrow 2 + (LEVEL D 4 SQRT((SSEI + SSED) \Rightarrow 2 + (CHUGI + CHUGD) \Rightarrow 2 LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED) \Rightarrow 2 + (LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED) \Rightarrow 2 + (LEVEL D 6 SQRT((SSEI + SSED) \Rightarrow 2 + (API + APD) \Rightarrow 2 LEVEL D 7 SQRT((SSEI + SSED) \Rightarrow 2 + (RV2I + RV2D) \Rightarrow 2	LEVEL B 1 SQRT((OBEI + OBED) $\Rightarrow 2$ + (TSV) $\Rightarrow 2$) LEVEL B 2 SQRT((OBEI + OBED) $\Rightarrow 2$ + (RV1) $\Rightarrow 2$) LEVEL B 3 SQRT((OBEI + OBED) $\Rightarrow 2$ + (RV1) $\Rightarrow 2$) LEVEL C 1 SQRT((CHUGI + CHUGD) $\Rightarrow 2$ + (RV1) $\Rightarrow 2$) LEVEL C 1 SQRT((CHUGI + CHUGD) $\Rightarrow 2$ + (RV1) $\Rightarrow 2$) LEVEL C 2 SQRT((CHUGI + CHUGD) $\Rightarrow 2$ + (RV2I + RV2D) $\Rightarrow 2$) LEVEL D 1 SQRT((SSEI + SSED) $\Rightarrow 2$ + (TSV) $\Rightarrow 2$) LEVEL D 2 SQRT((SSEI + SSED) $\Rightarrow 2$ + (CHUGI + CHUGD) $\Rightarrow 2$ + (RV2I LEVEL D 3 COND I + COND D + SQRT((SSEI + SSED)) $\Rightarrow 2$ + (RV2I LEVEL D 4 SQRT((SSEI + SSED) $\Rightarrow 2$ + (CHUGI + CHUGD) $\Rightarrow 2$ + (RV2I LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED)) $\Rightarrow 2$ + (RV1 LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED)) $\Rightarrow 2$ + (RV1 LEVEL D 6 SQRT((SSEI + SSED)) $\Rightarrow 2$ + (RV1 + APD) $\Rightarrow 2$) LEVEL D 7 SQRT((SSEI + SSED)) $\Rightarrow 2$ + (RV2I + RV2D) $\Rightarrow 2$)	LEVEL B 1 SQRT((OBEI + OBED) $\uparrow \uparrow \uparrow 2$ + (TSV) $\uparrow \uparrow \uparrow 2$) LEVEL B 2 SQRT((OBEI + OBED) $\uparrow \uparrow \uparrow 2$ + (RV1) $\uparrow \uparrow \uparrow 2$) LEVEL B 3 SQRT((OBEI + OBED) $\uparrow \uparrow \uparrow 2$ + (RV2I + RV2D) $\uparrow \uparrow \uparrow 2$) LEVEL C 1 SQRT((CHUGI + CHUGD) $\uparrow \uparrow \uparrow 2$ + (RV1) $\uparrow \uparrow \uparrow 2$) LEVEL C 2 SQRT((CHUGI + CHUGD) $\uparrow \uparrow \uparrow 2$ + (RV2I + RV2D) $\uparrow \uparrow \uparrow 2$) LEVEL D 1 SQRT((SSEI + SSED) $\uparrow \uparrow \uparrow 2$ + (TSV) $\uparrow \uparrow \uparrow 2$) LEVEL D 2 SQRT((SSEI + SSED) $\uparrow \uparrow \uparrow 2$ + (CHUGI + CHUGD) $\uparrow \uparrow \uparrow 2$ + (RV2I LEVEL D 3 COND I + COND D + SQRT((SSEI + SSED)) $\uparrow \uparrow \uparrow 2$ + (RV2I + LEVEL D 4 SQRT((SSEI + SSED)) $\uparrow \uparrow \uparrow 2$ + (CHUGI + CHUGD) $\uparrow \uparrow \uparrow 2$ + (RV1 LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED)) $\uparrow \uparrow \uparrow 2$ + (RV1) LEVEL D 6 SQRT((SSEI + SSED)) $\uparrow \uparrow \uparrow 2$ + (RV1) $\uparrow \uparrow \uparrow 2$ LEVEL D 7 SQRT((SSEI + SSED)) $\uparrow \uparrow 2$ + (RV2I + RV2D) $\uparrow \uparrow \uparrow 2$)	LEVEL B 1 SQRT((OBEI + OBED) $\frac{1}{2}$ + (TSV) $\frac{1}{2}$) LEVEL B 2 SQRT((OBEI + OBED) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$) LEVEL B 3 SQRT((OBEI + OBED) $\frac{1}{2}$ + (RV2I + RV2D) $\frac{1}{2}$) LEVEL C 1 SQRT((CHUGI + CHUGD) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$) LEVEL C 2 SQRT((CHUGI + CHUGD) $\frac{1}{2}$ + (RV2I + RV2D) $\frac{1}{2}$) LEVEL C 2 SQRT((CHUGI + CHUGD) $\frac{1}{2}$ + (TSV) $\frac{1}{2}$) LEVEL D 1 SQRT((SSEI + SSED) $\frac{1}{2}$ + (TSV) $\frac{1}{2}$) LEVEL D 2 SQRT((SSEI + SSED) $\frac{1}{2}$ + (CHUGI + CHUGD) $\frac{1}{2}$ + (RV2I + RV2D) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$ + (RV2D) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$ + (RV2D) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$ + (RV1) $\frac{1}{2}$ + (RV2D) + (RV2) + (RV1) $\frac{1}{2}$ + (RV2) + (RV1) + RV2D + (RV2) + (RV1) + RV2D + (RV2) + (RV1) + RV2D + (RV2) + (RV2) + (RV1) + (RV2) + (R	LEVEL B 1 SQRT((OBEI + OBED)**2 + (TSV)**2) LEVEL B 2 SQRT((OBEI + OBED)**2 + (RV1)**2) LEVEL B 3 SQRT((OBEI + OBED)**2 + (RV2I + RV2D)**2) LEVEL C 1 SQRT((CHUGI + CHUGD)**2 + (RV1)**2) LEVEL C 2 SQRT((CHUGI + CHUGD)**2 + (RV2I + RV2D)**2) LEVEL D 1 SQRT((SSEI + SSED)**2 + (TSV)**2 LEVEL D 2 SQRT((SSEI + SSED)**2 + (CHUGI + CHUGD)**2 + (RV2I + RV2D)**2 LEVEL D 3 COND I + COND D + SQRT((SSEI + SSED)**2 + (RV2I + RV2D)**2) LEVEL D 4 SQRT((SSEI + SSED)**2 + (CHUGI + CHUGD)**2 + (RV1)**2) LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED)**2 + (RV1)**2) LEVEL D 5 COND I + SQRT((SSEI + SSED)**2 + (RV1)**2) LEVEL D 6 SQRT((SSEI + SSED)**2 + (API + APD)**2) LEVEL D 7 SQRT((SSEI + SSED)**2 + (RV2I + RV2D)**2)	LEVEL B 1 SQRT((OBEI + OBED) $\frac{1}{5}$ + (TSV) $\frac{1}{5}$ + (TSV) $\frac{1}{5}$ + 2) LEVEL B 2 SQRT((OBEI + OBED) $\frac{1}{5}$ + (RV1) $\frac{1}{5}$ + 2) LEVEL B 3 SQRT((OBEI + OBED) $\frac{1}{5}$ + (RV2I + RV2D) $\frac{1}{5}$ + (RV2I + RV2D) + + 2) LEVEL C 1 SQRT((CHUGI + CHUGD) $\frac{1}{5}$ + (RV1) $\frac{1}{5}$ + (RV2D) + + 2) LEVEL C 2 SQRT((CHUGI + CHUGD) $\frac{1}{5}$ + (RV2I + RV2D) + + 2) LEVEL D 1 SQRT((SSEI + SSED) + + 2 + (TSV) + + 2) LEVEL D 2 SQRT((SSEI + SSED) + + 2 + (CHUGI + CHUGD) + + 2 + (RV2I + RV2D) + + 2) LEVEL D 3 COND I + COND D + SQRT((SSEI + SSED) + + 2 + (RV2I + RV2D) + + 2) LEVEL D 4 SQRT((SSEI + SSED) + + 2 + (CHUGI + CHUGD) + + 2 + (RV1) + + 2) LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED) + + 2 + (RV1) + + 2) LEVEL D 5 COND I + COND D + SQRT((SSEI + SSED) + + 2 + (RV1) + + 2) LEVEL D 6 SQRT((SSEI + SSED) + + 2 + (RV2I + RV2D) + + 2) LEVEL D 7 SQRT((SSEI + SSED) + + 2 + (RV2I + RV2D) + + 2) LEVEL D 7 SQRT((SSEI + SSED) + + 2 + (RV2I + RV2D) + + 2) LEVEL D 7 SQRT((SSEI + SSED) + + 2 + (RV2I + RV2D) + + 2) LEVEL D 7 SQRT((SSEI + SSED) + + 2 + (RV2I + RV2D) + + 2)

9

3-7

NEDO-30159

٠

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - ABS

SNUBBERS

LEVEL B	1	OBEI	+	OBED	+	TSV						
LEVEL B	2	OBEI	+	OBED	+	RV1						
LEVEL B	3	OBEI	+	OBED	+	RV2I	+	RV2D				
LEVEL C	1	CHUGI	+	CHUGD	+	RV1						
LEVEL C	2	CHUGI	+	CHUGD	+	RV2I	+	RV2D				
LEVEL D	1	SSEI	+	SSED	+	TSV						
LEVEL D	2	SSEI	+	SSED	+	CHUGI	+	CHUGD	+	RV21	+	RV2D
LEVEL D	3	COND I	+	COND D	+	SSEI	+	SSED	+	RV2I	+	RV2D
LEVEL D	4	SSEI	+	SSED	+	CHUGI	+	CHUGD	+	RV1		at t and
LEVEL D	5	COND I	+	COND D	+	SSEI	+	SSED	+	RV1		
LEVEL D	6	SSEI	+	SSED	+	API	+	APD				
LEVEL D	7	SSEI	+	SSED	+	RV2I						

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - SRSS

SAFETY/RELIEF VALVES

LEVEL	В	1	SORT ((OBEI)**2	F.	(TSV)**2)			
LEVEL	B	2	SORT ((OBEI)**2 -	ŧ.	(RV1)**2)			
LEVEL	B	3	SORT ((OBEI)**2 .	ŧ.	(RV2I)**2)			
LEVEL	C	1	SORT ((CHUGI)**2 .	ł.	C	RV2I)**2)			
LEVEL	С	2	SORT ((CHUGI)**2 -	F.	(RV1)**2)			
LEVEL	D	1	SORT ((SSEI)**2 -	F.	(TSV)**2)			
LEVEL	D	2	SORT ((SSEI)**2 -	F.	(CHUGI)**2	+ (RV2I)**2)
LEVEL	D	3	COND I +	SQRT ((SSE)	[)**2	+ (RV1)**2)	
LEVEL	D	4	SORT ((SSEI)**2 -	۲.	(CHUGI)**2	+ (RV1)**2)
LEVEL	D	5	COND I +	SQRT ((SSE)	[)**2	+ (RV2I)**2)	
LEVEL	D	6	SORT ((SSEI)**2 +	ŧ	(API)**2)			
LEVEL	D	7	SORT ((SSEI)**2 +	F.	(RV2I)**2)			

NEDO-30159

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - ABS

SAFETY/RELIEF VALVES

LEVEL	B	1	OBEI	+	TSV		
LEVEL	B	2	OBEI	+	RV1		
LEVEL 1	B	3	OBEI	+	RV2I		
LEVEL (С	1	CHUGI	+	RV2I		
LEVEL (С	2	CHUGI	+	RV1		
LEVEL 1	D	1	SSEI	+	TSV		
LEVEL I	D	2	SSEI	+	CHUGI	+	RV2I
LEVEL I	D	3	COND I	+	SSEI	+	RV1
LEVEL I	D	4	SSEI	+	CHUGI	+	RV1
LEVEL I	D	5	COND I	+	SSEI	+	RV2I
LEVEL I	D	6	SSEI	+	API		
LEVEL I	D	7	SSEI	+	RV2I		
LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - SRSS

SAFETY/RELIEF VALVE FLANGE MOMENTS

DESIGN	1	WT1	+	TE										
LEVEL B	1	WT1	+	TE	+	SQRT((OBEI	+	OBED)**2	+ (TSV)**2)		
LEVEL B	2	WT1	+	TE	+	SQRT((OBEI	+	OBED)**2	+ (RV1)**2)	1	
LEVEL B	3	WT1	+	TE	+	SQRT((OBEI	+	OBED)**2	+ (RV21	+ RV2D)**2)
LEVEL C	1	WT1	+	TE	+	SQRT((CHUGI	+	CHUGD)**2	+ (RV1)**2)		
LEVEL C	2	WT1	+	TE	+	SQRT ((CHUGI	+	CHUGD)**2	+ (RV2I	+ RV2D)**2)
LEVEL D	1	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (TSV)**2)		
LEVEL D	2	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+ CHUGD)**2	$+ (RV21 + RV2D) \approx 2)$
LEVEL D	3	WT1	+	TE	+	COND I +	COND	D +	SQRT	r((ss	EI +	SSED) *	*2 +	(RV2I + RV2D)**2)
LEVEL D	4	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+ CHUGD)**2	+ (RV1)**2)
LEVEL D	5	WT1	+	TE	+	COND I +	COND	D +	SQRT	f((SS	EI +	SSED) *	*2 +	(RV1)**2)
LEVEL D	6	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (API	+ APD)**2)
LEVEL D	7	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (RV2I	+ RV2D)**2)

NEDO-30159

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT MAIN STEAM - ABS

SAFETY/RELIEF VALVE FLANGE MOMENTS

DESIGN	1	WI1	+	TE													
LEVEL B	1	WT1	+	TE	+	OBEI	+	OBED	+	TSV							
LEVEL B	2	WT1	+	TE	+	OBEI	+	OBED	+	RV1							
LEVEL B	3	WT1	+	TE	+	OBEI	+	OBED	+	RV2I	+	RV2D					
LEVEL C	1	WT1	+	TE	+	CHUGI	+	CHUGD	+	RV1							
LEVEL C	2	WT1	+	TE	+	CHUGI	+	CHUGD	+	RV2I	+	RV2D					
LEVEL D	1	WT1	+	TE	+	SSEI	+	SSED	+	TSV							
LEVEL D	2	WT1	+	TE	+	SSEI	+	SSED	+	CHUGI	+	CHUGD	+	RV2I	+	RV2D	5
LEVEL D	3	WT1	+	TE	+	COND I	+	COND D	+	SSEI	+	SSED	+	RV21	+	RV2D	10
LEVE! D	4	WT1	+	TE	+	SSEI	+	SSED	+	CHUGI	+	CHUDG	+	RV1			0
LEVEL D	5	WT1	+	TE	+	COND I	+	COND D	+	SSEI	+	SSED	+	RV1			4
LEVEL D	6	WT1	+	TE	+	SSEI	+	SSED	+	API	+	APD					*
LEVEL D	7	WT1	+	TE	+	SSEI	+	SSED	+	RV2I	+	RV2D					1

3-12

mmor more

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT

NOMENCLATURE OF LOADS

API	Ξ	Annulus Pressurization Loads (Inertial Effect)					
APD	=	Annulus Pressurization Loads (Anchor Displacement Loads)					
CHUGI	=	Chugging Load (Inertia Effect)					
CHUGD	=	Chugging Load (Anchor Displacement Loads)					
COND I	=	Condensation Oscillation (Inertia Effect)					
COND D	=	Condensation Oscillation (Anchor Displacement Effects)					
OBEI	=	Operating Basis Earthquake (Inertia Effect)					
OBED	=	Operating Basis Earthquake (Anchor Displacement Load)					
PO	=	Operating Pressure					
PD	=	Design Pressure					
PP	=	Peak pressure					
PPATWS	=	Peak Pressure Due Automatic Transient Without Scram Event					
RV1	=	Safety Relief Valve Opening Loads (Acoustic Wave)					
RV2I	=	afety Relief Valve Basemat Acceleration Loads (Inertia Effect)					
RV2D	=	Safety Relief Valve Basemat Accelerations Loads (Anchor Displacement					
		Loads)					
RV2ADI	=	Safety/Relief Valve Basemat Acceleration Due to Automatic					
		Depressurization System Valves					
RV2ADD	=	Safety/Relief Valve Basemat Acceleration Due to Automatic					
		Depressurization System Valves (Anchor Displacement Loads)					
SSEI	=	Safe Shutdown Earthquake (Inertia Effect)					
SSED	=	Safe Shutdown Earthquake (Anchor Displacement Loads)					
TE	=	Thermal Expansion					
TSV	=	Turbine Stop Valve Closure Loads					
VLCI	=	Vent Line Clearing Loads (Inertia Effect)					
VLCD	=	Vent Line Clearing Loads (Anchor Displacement Loads)					
WT1	Ξ	Dead Weight					
RV2SVI	=	Safety/Relief Valve Basemat Acceleration Loads Due to a Single Valve					
		Opening (Inertia Effect)					
RV2SVD	=	Safety/Relief Valve Basemat Acceleration Loads Due to a Single Valve					
		Opening (Anchor Displacement Loads)					

NODE DIAGRAM FOR LASALLE-2 MAIN STEAM LINE A FIGURE 3-1

.

HIGHEST STRESS SUMMARY - SRSS MAIN STEAM LINE A

Item Evaluated*	Highest Calculated Stress psi	Allowable Limits psi	Actual/ Allowed	Location of Highest Stress Points		
Primary Stress Eq. 9 ≤ 1.5S Design Condition	24,041	28,725	0.84	Hanger Lug (024)		
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B	24,789	34,470	0.72	Hanger Lug (024)		
Primary Stress Eq. $9 \le 2.25S \& 1.8S$ Service Level ^m C y	24,758	43,088	0.57	Hanger Lug (024)		
Primary Stress Eq. 9 ≤ 3.0S Service Level D	26,578	54,600	0.49	Sweepolet (040)		
Primary plus Secondary Eq. 10 \leq 3.05 m	50,184	54,600	0.92	Sweepolet (070)		
Secondary Stresses Eq. 12 \leq 3.05 m	18,772	53,100	0.35	Elbow (626)		
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.0S_m$	38,468	54,600	0.70	Sweepolet (040)		
Cumulative Usage Factor U < 1.0	0.15	1.0	0.15	Sweepolet (070)		

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

HIGHEST STRESS SUMMARY - ABS MAIN STEAM LINE A

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 < 1.55 Design Condition	24,041	28,725	0.84	Hanger Lug (024)
Primary Stress Eq. 9 = 1.85 & 1.55 Service Level B	25,253	34,470	0.73	Hanger Lug (024)
Primary Stress Eq. $9 \le 2.25S \& 1.8S$ Service Level ^m C	26,049	40,950	0.64	Sweepolet (040)
Primary Stress Eq. $9 \le 3.0S_{\rm m}$ Service Level D	30,760	54,600	0.56	Sweepolet (040)
Primary plus Secondary Eq. $10 \le 3.0S_m$	52,456	54,600	0.96	Sweepolet (070)
Secondary Stresses Eq. 12 ≤ 3.05 _m	18,772	53,100	0.35	Elbow (626)
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.0S_m$	38,468	54,600	0.70	Sweepolet (040)
Cumulative Usage Factor $U < 1.0$	0.16	1.0	0.16	Sweepolet (070)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

100

SNUBBER LOADS - MAIN STEAM LINE A HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load (1b)	Allowable Limits (1b)	Ratio	Identification of Equipment with Highest Loads
Level B Level C	22,730 16,995	50,000 66,500 75,000	0.455 0.256 0.408	SA9 SA2 SA1

.

SNUBBER LOADS - MAIN STEAM LINE A HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load (1b)	Allowable Limits (1b)	Ratio	Identification of Equipment with Highest Loads
Level B	32,145	50,000	0.643	SA9
Level C	23,396	66,500	0.352	SA2
Level D	37,982	75,000	0.506	SA9

SRV ACCELERATIONS - MAIN STEAM LINE A HIGHEST ACCELERATIONS SUMMARY - SRSS

Item Evaluated	Highest Calculated Load (1b)	Allowable Limits (lb)	Ratio	Identification of Location of Highest Loads		
Horizontal Acceleration						
Level B Level C Level D	1.6917 g 2.0776 g 2.1779 g	5.0 g 5.0 g 5.0 g	0.338 0.416 0.436	SRV SRV SRV	Inlet Inlet Inlet	(063) (043) (043)
Vertical Acceleration						
Level B Level C Level D	0.7456 g 1.1556 g 1.4151 g	4.2 g 4.2 g 4.2 g	0.178 0.275 0.337	SRV SRV SRV	Inlet Inlet Inlet	(053) (043) (073)

SRV ACCELERATIONS - MAIN STEAM LINE A HIGHEST ACCELERATIONS SUMMARY - ABS

Item Evaluated		Highest Calculated Load	Allowable _Limits	Ratio	Identification of Location of Highest Loads
Horizontal	Acceleration				
Level	В	2.2264 g	5.0 g	0.445	SRV Inlet (063)
Level	C	2.8659 g	5.0 g	0.573	SRV Inlet (043)
Level	D	3.4738 g	5.0 g	0.695	SRV Inlet (043)
Vertical A	cceleration				
Level	В	0.9518 g	4.2 g	0.227	SRV Inlet (053)
Level	C	1.5761 g	4.2 g	0.375	SRV Inlet (043)
Level	D	1.8272 g	4.2 g	0.435	SRV Inlet (043)

Table 3-16A

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE A - MSIV INLET/OUTLET

Item Evalu	ated	Highest Calculated Load (psi)	Allowable Limits (psi)	Ratio	Identification of Equipment with Highest Loads
Stress Due	to Axial Force				
Level	A	7,684	15,375	0.500	MSIV Inlet (029)
Level	B	7,849	41,000	0.191	MSIV Outlet (033)
Level	c	7,830	41,000	0.191	MSIV Outlet (033)
Level	D	7,936	41,000	0.194	MSIV Outlet (033)
Stress Due Moment	to Torsional				
Level	Α	635	15,375	0.041	MSIV Outlet (029)
Level	В	981	41,000	0.024	MSIV Inlet (029)
Level	C	959	41,000	0.023	MSIV Inlet (029)
Level	D	1,190	41,000	0.029	MSIV Inlet (029)
Stress Due Moment	to Bending				
Level	A	3,101	15,375	0.202	MSIV Inlet (029)
Level	В	3,936	41,000	0.096	MSIV Inlet (029)
Level	C	4,264	41,000	0.104	MSIV Inlet (029)
Level	D	4,854	41,000	0.118	MSIV Inlet (029)

Table 3-16B

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE A - MSIV BONNET

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification o Equipment with Highest Loads		
			Macro	Inghese Loads		
Axial Force (1b)						
Level A	1,503	38,713	0.039	MSIV Bonnet (031)		
Level B	2,377	38,713	0.061	MSIV Bonnet (031)		
Level C	3,162	38,713	0.082	MSIV Bonnet (031)		
Level D	3,713	38,713	0.096	MSIV Bonnet (031)		
Bending Moment (in-1bs))					
Level A	67,985	2,021,373	0.034	MSIV Bonnet (031)		
Level B	362,413	2,021,373	0.179	MSIV Bonnet (031)		
Level C	599,584	2,021,373	0.297	MSIV Bonnet (031)		
Level D	787,737	2,021,373	0.390	MSIV Bonnet (031)		

Table 3-17A

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE A - MSIV INLET/OUTLET

Iton Fralm		Highest Calculated	Allowable	Patio	Identification of Equipment with Hisport Loads		
item avaiuateu		Load (ps1)	Limits (psi)	Katio	nignest Loads		
Stress Due	to Axial Force						
Level	A	7,684	15,375	0.500	MSIV Inlet (029)		
Level	В	7,917	41,000	0.193	MSIV Outlet (033)		
Level	С	7,885	41,000	0.192	MSIV Outlet (033)		
Level	D	8,015	41,000	0.195	MSIV Outlet (033)		
Stress Due Moment	to Torsional						
Level	Α	635	15,375	0.041	MSIV Inlet (029)		
Level	В	1,106	41,000	0.027	MSIV Inlet (029)		
Level	C	1,081	41,000	0.026	MSIV Inlet (029)		
Level	D	1,382	41,000	0.034	MSIV Inlet (029)		
Stress Due Moment	to Bending						
Level	A	3,101	15,375	0.202	MSIV Inlet (029)		
Level	B	4,295	41,000	0.105	MSIV Inlet (029)		
Level	C	4,699	41,000	0.115	MSIV Inlet (029)		
Level	D	5,388	41,000	0.131	MSIV Inlet (029)		

\$

Table 3-17B

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE A - MSIV BONNET

Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
1,503	28,713	0.039	MSIV Bonnet (031)
2,638	38,713	0.068	MSIV Bonnet (031)
3,762	38,713	0.097	MSIV Bonnet (031)
4,085	38,713	0.106	MSIV Bonnet (031)
67.985	2,021,373	0.034	MSIV Bonnet (031)
469,798	2,021,373	0.232	MSIV Bonnet (031)
793,442	2,021,373	0.393	MSIV Bonnet (031)
944,195	2,021,373	0.467	MSIV Bonnet (031)
	Highest Calculated Load 1,503 2,638 3,762 4,085 67,985 469,798 793,442 944,195	Highest Calculated Load Allowable Limits 1,503 28,713 2,638 38,713 3,762 38,713 4,085 38,713 4,085 38,713 469,798 2,021,373 793,442 2,021,373 944,195 2,021,373	Highest Calculated Load Allowable Limits Ratio 1,503 28,713 0.039 2,638 38,713 0.068 3,762 38,713 0.097 4,085 38,713 0.106 67,985 2,021,373 0.034 469,798 2,021,373 0.232 793,442 2,021,373 0.393 944,195 2,021,373 0.467

s.

NODE DIAGRAM FOR LASALLE-2 MAIN STEAM LINE B FIGURE 3-2

HIGHEST STRESS SUMMARY - SRSS MAIN STEAM LINE B

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 ≤ 1.5S Design Condition	20,810	28,725	0.72	Hanger Lug (026)
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B y	21,546	34,470	0.63	Hanger Lug (026)
Primary Stress Eq. $9 \le 2.25S \& 1.8S$ Service Level ^m C	22,079	40,950	0.54	Sweepolet (060)
Primary Stress Eq. $9 \le 3.0S_m$ Service Level D	28,324	54,600	0.52	Sweepolet (060)
Primary plus Secondary Eq. $10 \le 3.0S_{m}$	45,342	54,600	0.83	Sweepolet (060)
Secondary Stresses Eq. 12 \leq 3.05 m	20,745	53,100	0.39	Elbow (020N)
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.05$	42,546	54,600	0.78	Sweepolet (060)
Cumulative Usage Factor U \leq 1.0	0.08	1.0	0.08	Sweepolet (055)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

HIGHEST STRESS SUMMARY - ABS MAIN STEAM LINE B

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. $9 \le 1.5S_m$ Design Condition	20,810	28,725	0.72	Hanger Lug (026)
Primary Stress Eq. 9 = 1.85 & 1.55 Service Level B	21,839	32,760	0.67	Sweepolet (060)
Primary Stress Eq. $9 \le 1.85S \& 1.5S_y$ Service Level ^m C	26,672	40,950	0.65	Sweepolet (060)
Primary Stress Eq. $9 \le 3.0S$ Service Level D	33,100	54,600	0.61	Sweepolet (060)
Primary plus Secondary Eq. 10 \leq 3.0S m	52,453	54,600	0.96	Sweepolet (060)
Secondary Stresses Eq. 12 \leq 3.0S _m	20,745	53,100	0.39	Elbow, lower riser (020N)
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.0S_m$	42,546	54,600	0.78	Sweepolet (060)
Cumulative Usage Factor $U \leq 1.0$	0.08	1.0	0.08	Sweepolet (055)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

SNUBBER LOADS - MAIN STEAM LINE B HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
Level B	16,830 lb	50,000 15	0.337	SB11
Level C	19,809 lb	66,500 lb	0.298	SB9
Level D	33,831 lb	75,000 lb	0.451	SB11

SNUBBER LOADS - MAIN STEAM LINE B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
Level B Level C	23,514 lb 26,797 lb 44 575 lb	50,000 lb 66,500 lb 75,000 lb	0.470 0.403 0.594	SB11 SB9 SB11

SRV ACCELERATIONS - MAIN STEAM LINE B HIGHEST ACCELERATIONS SUMMARY - SRSS

Item Evalu	ated	Highe: Calcula Load	at ted	Allowab Limits	ele Ratio	Ider H	ntifica Location ighest	ation of on of Loads
Horizontal								
Level	В	2.5585	g	5.0 g	0.512	SRV	Inlet	(063)
Level	С	2.9271	g	5.0 g	0.585	SRV	Inlet	(063)
Level	D	3.0938	g	5.0 g	0.619	SRV	Inlet	(063)
Vertical								
Level	В	1.4531	g	4.2 8	0.346	SRV	Inlet	(058)
Level	С	1.9789	g	4.2 8	0.471	SRV	Inlet	(058)
Level	D	2.3215	8	4.2 g	0.553	SRV	Inlet	(058)

SRV ACCELERATIONS - MAIN STEAM LINE B HIGHEST ACCELERATIONS SUMMARY - ABS

Item Evalua	ated	Highes Calcula Load	st ted	Allowabl Limits	e <u>Ratio</u>	Ider H	ntific Locati ighest	ation of on of Loads
Horizontal								
Level	B	3.2439	g	5.0 g	0.649	SRV	Inlet	(063)
Level	D	4.8391	g	5.0 g	0.968	SRV	Inlet	(063)
Vertical								
Level	В	2.0405	g	4.2 g	0.486	SRV	Inlet	(058)
Level Level	C D	2.6616 3.8038	g g	4.2 g 4.2 g	0.634 0.906	SRV SRV	Inlet Inlet	(058) (058)

Table 3-24A

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE B - MSIV INLET/OUTLET

Item Evalu	ated	Highest Calculated Load (psi)	Allowable Limits (psi)	<u>Ratio</u>	Identification of Equipment with Highest Loads
Stress Due	to Axial For	ce			
Level	A	7,688	15,375	0.500	MSIV Outlet (031)
Level	В	7,794	41,000	0.190	MSIV Outlet (031)
Level	C	7,806	41,000	0.190	MSIV Outlet (031)
Level	D	7,872	41,000	0.192	MSIV Outlet (031)
Stress Due Moment	to Torsional				
Level	Α	149	15,375	0.010	MSIV Inlet (029)
Level	В	375	41,000	0.009	MSIV Inlet (029)
Level	C	414	41,000	0.010	MSIV Inlet (029)
Level	D	573	41,000	0.014	MSIV Inlet (029)
Stress Due Moment	to Bending				
Level	A	4,306	15,375	0.280	MSIV Inlet (029)
Level	В	5,383	41,000	0.131	MSIV Inlet (029)
Level	С	5,557	41,000	0.136	MSIV Inlet (029)
Level	D	6,376	41,000	0.156	MSIV Inlet (029)

Table 3-24B

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE B - MSIV BONNET

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
Axial Force (1b)				
Level A	1,435	38,713	0.037	MSIV Bonnet (032)
Level B	2,619	38,713	0.068	MSIV Bonnet (032)
Level C	3,506	38,713	0.091	MSIV Bonnet (032)
Level D	4,300	38,713	0.111	MSIV Bonnet (032)
Bending Moment (in-1bs)				
Level A	68,086	2,021,373	0.034	MSIV Bonnet (032)
Level B	312,267	2,021,373	0.154	MSIV Bonnet (032)
Level C	506,541	2,021,373	0.251	MSIV Bonnet (032)
Level D	683,164	2,021,373	0.338	MSIV Bonnet (032)

4

NEDO-30159

ġ

Table 3-25A

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE B - MSIV INLET/OUTLET

Item Evalu	ated	Highest Calculated Load (psi)	Allowable Limits (psi)	Ratio	Identification of Equipment with Highest Loads
Stress Due	to Axial Force				
Level	A	7,688	15,375	0.500	MSIV Outlet (031)
Level	В	7,838	41,000	0.191	MSIV Outlet (031)
Level	С	7,849	41,000	0.191	MSIV Outlet (031)
Level	D	7,920	41,000	0.193	MSIV Outlet (031)
Stress Due Moment	to Torsional				
Level	A	149	15,375	0.010	MSIV inlet (029)
Level	В	465	41,000	0.011	MSIV Inlet (029)
Level	C	512	41,000	0.012	MSIV Inlet (029)
Level	D	694	41,000	0.017	MSIV Inlet (029)
Stress Due Moment	to Bending				
Level	A	4,306	15,375	0.280	MSIV Inlet (029)
Level	B	5,802	41,000	0.141	MSIV Inlet (029)
Level	C	6,054	41,000	0.148	MSIV Inlet (029)
Level	D	6,848	41,000	0.167	MSIV Inlet (029)

Table 3-25B

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE B - MSIV BONNET

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
Axial Force (1b)				
Level A	1,435	38,713	0.03/	MSIV Bonnet (032)
Level B	2,883	38,713	0.074	MSIV Bonnet (032)
Level C	4.305	38,713	0.111	MSIV Bonnet (032)
Level D	4,608	38,713	0.119	MSIV Bonnet (032)
Bending Moment (in-1bs)				
Level A	68,086	2,021,373	0.034	MSIV Bonnet (032)
Level B	410,617	2,021,373	0.203	MSIV Bonnet (032)
Level C	667,874	2,021,373	0.330	MSIV Bonnet (032)
Level D	807,969	2,021,373	0.400	MSIV Bonnet (032)

NEDO-30159

NODE DIAGRAM FOR LASALLE-2 MAIN STEAM LINE C FIGURE 3-3

HIGHEST STRESS SUMMARY - SRSS MAIN STEAM LINE C

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 < 1.55 Design Condition	20,772	28,725	0.72	Hanger Lug (026)
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B	21,536	34,470	0.62	Hanger Lug (026)
Primary Stress Eq. $9 \leq 2.25S \& 1.8S$ Service Level ^m C y	22,336	40,950	0.55	Sweepolet (040)
Primary Stress Eq. 9 < 3.05 Service Level D	26,835	54,600	0.49	Sweepolet (040)
Primary plus Secondary Eq. 10 \leq 3.0S _m	54,842	54,600	1.004**	Sweepolet (040)
Secondary Stresses Eq. 12 \leq 3.0S m	22,769	54,600	0.42	Sweepolet (040)
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \leq 3.0S_m$	38,584	54,600	0.71	Sweepolet (040)
Cumulative Usage Factor $U < 1.0$	0.17	1.0	0.17	Sweepolet (040)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650. **Per NB-3653.6 Eq. 10 need not be satisfied for all load sets.

3-37

NEDO-30159

HIGHEST STRESS SUMMARY - ABS MAIN STEAM LINE C

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 < 1.55 Design Condition	20,772	28,725	0.72	Hanger Lug (026)
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B y	22,017	34,470	0.64	Hanger Lug (026)
Primary Stress Eq. $9 \le 2.25S$ & 1.8S Service Level ^m C y	26,937	40,950	0.66	Sweepolet (040)
Primary Stress Eq. $9 \le 3.0S$ Service Level D	31,808	54,600	0.58	Sweepolet (040)
Primary plus Secondary Eq. 10 \leq 3.0S m	54,842	54,600	1.004**	Sweepolet (040)
Secondary Stresses Eq. 12 \leq 3.05 m	22,769	54,600	0.42	Sweepolet (040)
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.0S_m$	38,584	54,600	0.71	Sweepolet (040)
Cumulative Usage Factor $U < 1.0$	0.17	1.0	0.17	Sweepolet (040)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650. **Per NB-3653.6 Eq. 10 need not be satisfied for all load sets.

SNUBBER LOADS - MAIN STEAM LINE C HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load (lb)	Allowable Limits (lb)	Ratio	Identification of Equipment with Highest Loads
Level B	20,212	50,000	0.404	SC11
Level C	15,427	66,500	0.232	SC9
Level D	34,027	75,000	0.454	SC11

SNUBBER LOADS - MAIN STEAM LINE C HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load (lb)	Allowable Limits (1b)	Ratio	Identification of Equipment with Highest Loads
Level B	28,401	50,000	0.568	SC11
Level C	21,059	66,500	0.317	SC9
Level D	44,199	75,000	0.589	SC11

SRV ACCELERATIONS - MAIN STEAM LINE C HIGHEST ACCELERATIONS SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads		
Horizontal Acceleration						
Level B Level C Level D	1.6791 g 1.9057 g 2.0392 g	5.0 g 5.0 g 5.0 g	0.336 0.381 0.408	SRV Inlet (048) SRV Inlet (048) SRV Inlet (048)		
Vertical Acceleration						
Level B Level C Level D	0.7089 g 1.4549 g 1.4792 g	4.2 g 4.2 g 4.2 g	0.169 0.346 0.352	SRV Inlet (058) SRV Inlet (058) SRV Inlet (058)		

SRV ACCELERATIONS - MAIN STEAM LINE C HIGHEST ACCELERATIONS SUMMARY - ABS

Item Evaluated		Highest Calculated Load	Allowable Limits	Ratio	Ider H	itifica Locatic ighest	ntion o on of Loads	f
Horizontal	Acceleration							
Level	В	2.1325 g	5.0 g	0.427	SRV	Inlet	(048)	
Level	C	2.6536 g	5.0 g	0.531	SRV	Inlet	(063)	
Level	D	3.1933 g	5.0 g	0.639	SRV	Inlet	(063)	
Vertical A	cceleration							
Level	В	0.9239 g	4.2 g	0.220	SRV	Inlet	(058)	
Level	C	1.9548 g	4.2 g	0.465	SRV	Inlet	(058)	
Level	D	2.2222 g	4.2 g	0.529	SRV	Inlet	(058)	

Table 3-32A

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE C - MSIV INLET/OUTLET

Item Evalua	ate	1	Highest Calculated Load (psi)	Allowable Limits (psi)	Ratio	Identification of Equipment with Highest Loads
Stress Due	t.o	Axial Force				
Level	A		7,679	15,375	0.499	MSIV Outlet (031)
Level	B		7,769	41,000	0.189	MSIV Outlet (031)
Level	С		7,782	41,000	0.190	MSIV Outlet (031)
Level	D		7,867	41,000	0.192	MSIV Outlet (031)
Stress Due Moment	to	Torsional				
Level	A		191	15,375	0.012	MSIV Outlet (031)
Level	B		442	41,000	0.011	MSIV Inlet (029)
Level	С		503	41,000	0.012	MSIV Inlet (029)
Level	D		655	41,000	0.016	MSIV Inlet (029)
Stress Due Moment	to	Bending				
Level	A		3,984	15,375	0.259	MSIV Inlet (029)
Level	B		5,318	41,000	0.130	MSIV Inlet (029)
Level	С		5,205	41,000	0.127	MSIV Inlet (029)
Level	D		6,229	41,000	0.152	MSIV Inlet (029)

Table 3-32B

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE C - MSIV BONNET

Å

Item Evaluated		Highest Calculated Load	Allowable Limits	Ratio	Ident Equi Hig	ificat: pment w hest Lo	ion of with bads
Axial Force	(1b)						
Level A		1,435	38,713	0.037	MSIV	Bonnet	(032)
Level H		2,272	38,713	0.059	MSIV	Bonnet	(032)
Level (2,895	38,713	0.075	MSIV	Bonnet	(032)
Level I		3,470	38,713	0.090	MSIV	Bonnet	(032)
Bending Moment (i	n-1bs)						
ω Level A		68,086	2,021,373	0.034	MSIV	Bonnet	(032)
E Level H		303,498	2,021,373	0.150	MSIV	Bonnet	(032)
Level (449,418	2,021,373	0.222	MSIV	Bonnet	(032)
Level I		613,945	2,021,373	0.304	MSIV	Bonnet	(032)

NEDO-30159

Table 3-33A

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE C - MSIV INLET/OUTLET

Item Evalua	ated	Highest Calculated Load (psi)	Allowable Limits (psi)	Ratio	Identification of Equipment with Highest Loads
Item Evalue	iccu	Loud (par)	inites (por)		
Stress Due	to Axial Force				
Level	A	7,679	15,375	0.499	MSIV Outlet (031)
Level	В	7,805	41,000	0.190	MSIV Outlet (031)
Level	С	7,820	41,000	0.191	MSIV Outlet (031)
Level	D	7,925	41,000	0.193	MSIV Outlet (031)
Stress Due Moment	to Torsional				
Level	A	191	15,375	0.012	MSIV Outlet (031)
Level	В	542	41,000	0.013	MSIV Inlet (029)
Level	C	613	41,000	0.015	MSIV Inlet (029)
Level	D	822	41,000	0.020	MSIV Inlet (029)
Stress Due Moment	to Bending				
Level	A	3,984	15,375	0.259	MSIV Inlet (029)
Level	В	5,849	41,000	0.143	MSIV Inlet (029)
Level	C	5,691	41,000	0.139	MSIV Inlet (029)
Level	D	6,961	41,000	0.170	MSIV Inlet (029)

Table 3-33B

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE C - MSIV BONNET

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads		
Axial Force (1b)						
Level A	1,435	38,713	0.037	MSIV Bonnet (032)		
Level B	2,554	38,713	0.066	MSIV Bonnet (032)		
Level C	3,439	38,713	0.080	MSIV Bonnec (032)		
Level D	3,806	38,713	0.098	MSIV Bonnet (032)		
Bending Moment (in-1bs)						
Level A	68,086	2,021,373	0.034	MSIV Bonnet (032)		
Level B	404,895	2,021,373	0.200	MSIV Bonnet (032)		
Level C	588,271	2,021,373	0.291	MSIV Bonnet (032)		
Level D	752,252	2,021,373	0.372	MSIV Bonnet (032)		

NEDO-30159

define 1

in the

HIGHEST STRESS SUMMARY - SRSS MAIN STEAM LINE D

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points			
Primary Stress Eq. 9 ≤ 1.5S Design Condition	24,060	28,725	0.84	Hanger Lug (024)			
Primary Stress Eq. 9 = 1.85 & 1.55 Service Level B	25,501	34,470	0.74	Hanger Lug (024)			
Primary Stress Eq. $9 \le 2.25S \& 1.8S_y$ Service Level ^m C	24,906	43,088	0.58	Hanger Lug (024)			
Primary Stress Eq. 9 ≤ 3.0S Service Level D	26,768	57,450	0.47	Hanger Lug (024)			
Primary plus Secondary Eq. $10 \le 3.0S_m$	46,306	54,600	0.85	Sweepolet (060)			
Secondary Stresses Eq. $12 \leq 3.0S_{m}$	18,947	53,100	0.36	Elbow (093)			
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.0S_m$	34,678 .	54,600	0.64	Sweepolet (050)			
Cumulative Usage Factor $U \leq 1.0$	0.04	1.0	0.04	Sweepolet (040)			

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

3-48

HIGHEST STRESS SUMMARY - ABS MAIN STEAM LINE D

Item Evaluated*	Highest Calculated Stress (psi)/ Usage Factor	Allowable Limits (psi)	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points		
Primary Stress Eq. 9 < 1.55 Design Condition	24,060	28,725	0.84	Hanger Lug (024)		
Primary Stress Eq. 9 = 1.85 & 1.55 Service Level B	26,205	34,470	0.76	Hanger Lug (024)		
Primary Stress Eq. 9 \leq 2.25S & 1.8S Service Level ^m C y	25,444	43,088	0.59	Hanger Lug (024)		
Primary Stress Eq. 9 < 3.05 Service Level D	27,338	57,450	0.48	Hanger Lug (024)		
Primary plus Secondary Eq. $10 \le 3.0S_m$	46,306	54,600	0.85	Sweepolet (060)		
Secondary Stresses Eq. 12 \leq 3.05 m	18,947	53,100	0.36	Elbow (093)		
Primary plus Secondary Stress without Thermal Expansion, Eq. $13 \le 3.0S_{m}$	34,678	54,600	0.64	Sweepolet (050)		
Cumulative Usage Factor U < 1.0	0.04	1.0	0.04	Sweepolet (040)		

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

3-49

SNUBBER LOADS - MAIN STEAM LINE D HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load (1b)	Allowable Limits (lb)	Ratio	Identification of Equipment with Highest Loads
Level B	25,371	50,000	0.507	SD1
Level C	20,047	66,500	0.301	SD1
Level D	48,568	75,000	0.648	SD1

SNUBBER LOADS - MAIN STEAM LINE D HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load (1b)	Allowable Limits (lb)	Ratio	Identification of Equipment with Highest Loads
Level B	35,575	50,000	0.711	SD1
Level C	28,313	66,500	0.426	SD1
Level D	57,720	75,000	0.770	SD1

NEDO-30159

SRV ACCELERATIONS - MAIN STEAM LINE D HIGHEST ACCELERATIONS SUMMARY - SRSS

Item Evaluated		Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads				
Horizontal									
Level	В	1.9088 g	5.0 g	0.382	SRV	Inlet	(073)		
Level	С	2.0477 g	5.0 g	0.410	SRV	Inlet	(073)		
Level	D	2.2683 g	5.0 g	0.454	SRV	Inlet	(073)		
Vertical									
Level	В	0.6110 g	4.2 g	0.145	SRV	Inlet	(073)		
Level	С	1.0403 g	4.2 g	0.248	SRV	Inlet	(043)		
Level	D	1.1554 g	4.2 g	0.275	SRV	Inlet	(043)		

.

SRV ACCELERATIONS - MAIN STEAM LINE D HIGHEST ACCELERATIONS SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads			
Horizontal Acceleration							
Level B Level C Level D	2.5803 g 2.8595 g 3.7962 g	5.0 g 5.0 g 5.0 g	0.516 0.572 0.759	SRV Inlet (073) SRV Inlet (073) SRV Inlet (073)			
Vertical Acceleration							
Level B Level C Level D	0.8429 g 1.4195 g 1.7160 g	4.2 g 4.2 g 4.2 g	0.201 0.338 0.409	SRV Inlet (073) SRV Inlet (043) SRV Inlet (073)			

Table 3-40A

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE D - INLET/OUTLET

Item Evaluated		Highest Calculated Load (psi)	Ailowable Limits (psi)	Ratio	Identification of Equipment with Highest Loads		
Stress Due	to Axial Force						
Level	A	7,686	15,375	0.500	MSIV Inlet (029)		
Level	В	7,954	41,000	0.194	MSIV Outlet (033)		
Level	С	7,824	41,000	0.191	MSIV Outlet (033)		
Level	D	7,953	41,000	0.194	MSIV Outlet (033)		
Stress Due Moment	to Torsional						
Level	A	607	15,375	0.039	MSIV Inlet (029)		
Level	В	1,080	41,000	0.026	MSIV Outlet (033)		
Level	С	882	41,000	0.022	MSIV Outlet (033)		
Level	D	1,359	41,000	0.033	MSIV Outlet (033)		
Stress Due Movement	to Bending						
Level	A	3,118	15,375	0.203			
Level	В	4,188	41,000	0.102	MSIV Inlet (029)		
Level	С	4,087	41,000	0.100	MSIV Inlet (029)		
Level	D	4,981	41,000	0.121	MSIV Inlet (029)		

3-54

1. 1. 2.4

Table 3-40B

HIGHEST LOADING SUMMARY - SRSS MAIN STEAM LINE D - MSIV BONNET

Itom Evaluated	Highest Calculated Load	Allowable	Ratio	Identification of Equipment with Highest Loads			
Item Evaluated	Load						
Axial Force (1b)							
Level A	1,503	38,713	0.039	MSIV Bonnet (031)			
Level B	2,507	38,713	0.065	MSIV Bonnet (031)			
Level C	3,407	38,713	0.088	MSIV Bonnet (031)			
Level D	4,009	38,713	0.104	MSIV Bonnet (031)			
Bending Moment (in-lbs)							
Level A	67,985	2,021,373	0.034	MSIV Bonnet (031)			
Level B	338,065	2,021,373	0.167	MSIV Bonnet (031)			
Level C	524,764	2,021,373	0.260	MSIV Bonnet (031)			
Level D	715,004	2,021,373	0.354	MSIV Bonnet (031)			

Table 3-41A

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE D - INLET/OUTLET

Item Evalu	ated	Highest Calculated Load (psi)	Allowable Limits (psi)	Ratio	Identification of Equipment with Highest Loads
Stress Due to Axial Force			<u>_</u>		
Level	Α	7,686	15,375	0.500	MSIV Inlet (029)
Level	В	8,009	41,000	0.195	MSIV Outlet (033)
Level	С	7,875	41,000	0.192	MSIV Outlet (033)
Level	D	8,005	41,000	0.195	MSIV Outlet (033)
Stress Due Moment	to Torsional				
Level	A	607	15,375	0.039	MSIV Inlet (029)
Level	В	1.255	41,000	0.031	MSIV Outlet (033)
Level	C	996	41,000	0.024	MSIV Outlet (033)
Level	D	1,495	41,000	0.036	MSIV Outlet (033)
Stress Due Moment	to Bending				
Level	A	3,118	15,375	0.203	MSIV Inlet (029)
Level	Р	4,627	41,000	0.113	MSIV Inlet (029)
Level	С	4,490	41,000	0.110	MSIV Inlet (029)
Level	D	5,376	41,000	0.131	MSIV Inlet (029)

NEDO-30159

3-56

Table 3-41B

HIGHEST LOADING SUMMARY - ABS MAIN STEAM LINE D - MSIV BONNET

Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads		
1,503	38,713	0.039	MSIV Bonnet (031)		
2,813	38,713	0.073	MSIV Bonnet (031)		
4.094	38,713	0.106	MSIV Bonnet (031)		
4,474	38,713	0.116	MSIV Bonnet (031)		
67.985	2,021,373	0.034	MSIV Bonnet (031)		
448,797	2,021,373	0.222	MSIV Bonnet (031)		
694,967	2,021,373	0.343	MSIV Bonnet (031)		
857,850	2,021,373	0.424	MSIV Bonnet (031)		
	Highest Calculated Load 1,503 2,813 4,094 4,474 67,985 448,797 694,967 857,850	Highest Calculated Load Allowable Limits 1,503 38,713 2,813 38,713 4,094 38,713 4,474 38,713 67,985 2,021,373 448,797 2,021,373 694,967 2,021,373 857,850 2,021,373	Highest Calculated Load Allowable Limits Ratio 1,503 38,713 0.039 2,813 38,713 0.073 4,094 38,713 0.106 4,474 38,713 0.116 67,985 2,021,373 0.034 694,967 2,021,373 0.343 857,850 2,021,373 0.424		

NEDO-30159

3.3 RECIRCULATION PIPING SYSTEM EVALUATION RESULTS

3.3.1 Recirculation Piping

The stress analysis for recirculation piping loops A and B was performed using the verified "as-built" configuration as submitted to GE. The load combinations listed in Tables 3-42 and 3-43 were used as the basis for the evaluation. Stresses were combined using both the SRSS and ABS methods of summation.

Tables 3-53, 3-54, 3-67 and 3-68 provide highest stress summaries for the Design Condition and Service Levels B, C and D loading conditions using both SRSS and ABS methods of summation. The highest calculated stresses were below the ASME Code allowable limits. The stress analysis performed demonstrated that the recirculation piping was designed and supported to withstand the applied loads as given in the applicable design specifications. ASME Code certified stress reports were prepared and issued reflecting the results of the analysis performed (References 28 and 29, Appendix A).

The recirculation piping system, which is required to function for safe shutdown under the postulated events, has been evaluated and proven adequate in meeting the functional capability requirements per NEDO-21985, Piping Functional Capability Criteria.

Node diagrams for Recirculation Loops A and B are provided for reference in Figures 3-5 and 3-6, respectively.

3.3.2 Recirculation Snubbers

The analysis performed demonstrated that the calculated loads on the recirculation snubbers were below the allowable limits, verifying their capability to meet the design criteria. The load combinations listed in Tables 3-44 and 3-45 were used as the basis for the evaluation. Loads were combining using both SRSS and ABS methods of summation.

NEDO-30159

Tables 3-55, 3-56, 3-69 and 3-70 provide the highest loading summaries for Service Levels B, C and D loading conditions using both SRSS and ABS methods of summation. Initially, where snubber loads exceeded nominal ratings provided on the suspension purchase part drawings, subsequent snubber acceptability was demonstrated using actual manufacturer ratings based upon test results.

3.3.3 Recirculation Suction Gate Valves, Discharge Gate Valves and Flow Control Valves

The analyses performed demonstrated that the calculated accelerations on the suction gate valves, discharge gate valves and flow control valves were in all cases below the allowable SRSS limits. The load combinations listed in Tables 3-48 through 3-51 were used as the basis for the evaluation. Accelerations were combined using both SRSS and ABS methods of summation.

Tables 3-57 through 3-62 and 3-71 through 3-76 provide the highest acceleration loading summaries for the loading conditions evaluated using both SRSS and ABS methods of summation.

3.3.4 Recirculation Pumps and Motors

The analysis performed demonstrated that the calculated accelerations, attachment loads and cyclic loads on the recirculation pumps and motors were below the allowable limits. The load combinations listed in Tables 3-48 and 3-49 were used as the basis for the evaluation. Loads were combined using both SRSS and ABS methods of summation.

Tables 3-63 through 3-66 and 3-77 through 3-80 provide the highest acceleration loading summaries for the service level loading conditions evaluated using both SRSS and ABS methods of summation.

As a result of the recirculation pump and motor analysis performed, one pump motor hardware modification was required. The analysis identified the need to upgrade the load carrying capability of the outer motor lugs on both Loops A and B pump motors by the addition of gussets. A Field Disposition Instruction

NEDO-30159

(FDI) was issued to implement the design modification. The recirculation pump and motor analysis incorporated the pump motor lug modification. The analysis verified the pump and motor's capability to withstand the applied loads for the loading combinations evaluated.

3.3.5 Recirculation Pipe Break Analysis

A pipe break analysis was performed on the recirculation loop pipe whip restraints. As a result of the analysis pipe whip restraints, R3, R4 and R5 were classified as inactive. A summary of the analysis is contained in the issued Pipe Whip Restraint Design Report and the interface control drawing (MPL B33-G003).

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - SRSS

PIPING

DESIGN	1	PD	+	WT1	+	OBEI									
LEVEL B	1	PP	+	WT1	+	SQRT((OBEI)**2	+	(RV2I)**2)			
LEVEL B	2	PP	+	WT1	+	SQRT((OBEI)**2	+	(RV21)**2)			
LEVEL C	1	PP	+	WT1	+	SQRT((CHUGI)**2	+	(RV21)**2)			
LEVEL C	2	PP	+	WT1	+	RV2I									
LEVEL D	1	PP	+	WT1	+	SQRT((SSEI)**2	+	(RV2I)**2)			
LEVEL D	2	PP	+	WT1	+	SQRT((SSEI)**2	+	(CHUGI)**2	+	(RV2I)**2)
LEVEL D	3	PP	+	WT1	+	COND I +	SQRT((S	SEI	1)**2	+ (RV2I)**2)	
LEVEL D	4	PP	+	WT1	+	SORT ((SSEI)**2	+	(API)**2)			

3-61

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - ABS

PIPING

RV2I
RV2I

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - SRSS

SNUBBERS

LEVEL B	1	SQRT((OBE1	+	OBED)**2	+ (RV2I		RV2D)**2)				
LEVEL C	1	SQRT((CHUGI	+	CHUGD)**2	+ (RV2I		RV2D)**2)				
LEVEL D	1	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+	CHUGD)**2	+	(RV2I	+	RV2D)**2)
LEVEL D	2	COND I +	COND D	+	SQRT ((SSEI	+	SSED)**2	+ (RV21	+	RV2D)**2)
LEVEL D	2	COPT ((SCFT		CCED) tubo	+ (ADT	+	ADD	1:00)				
Aski T Laks Ld	3	adur((aact		SPED	1002	1 (NL I		ALD	12	,				

e a contraction

LOAD COMBINATION AND ACCEPTANCE CRITENIA FOR NSSS FIFING AND FIFE-MOUNTED EQUIPMENT RECIRCULATION - ABS

SNUBBERS

LEVEL	B	1	OEI	+	OBED	+	RV2I	+	RV2D				
LEVEL	С	1	CHUGI	+	CHUGD	+	RV2I	+	RV2D				
LEVEL	D	1	SSEI	+	SSED	+	CHUGI	+	CHUGD	+	RV2I	+	RV2D
LEVEL	D	2	COND I	+	COND D	+	SSEI	+	SSED	+	RV2I	+	RV2D
LEVEL	D	3	SSEI	+	SSED	+	API	+	APD				
LEVEL	D	4	SSEI	+	SSED	+	RV2I	+	RV2D				

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - SRSS

STRUTS

LEVEL B	1	WT1	+	TE	+	SQRT((OBEI	+	OBED)**2	+ (RC2I	+	RV2D)**2) + WT2
LEVEL C	1	WT1	+	TE	+	SQRT((CHUGI	+	CHUGD)**2	+ (RV21	+	RV2D)**2)
LEVEL D	1	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+	CHUGD)**2	+ (RV2I + RV2D)**2)
LEVEL D	2	WT1	+	TE	+	COND I +	COND	D +	SQRT	((SSEI +	SSE	D) **:	2 + (RV2I + RV2D)**2)
LEVEL D	3	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (API	+	APD)**2)
LEVEL D	4	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (RV2I	+	RV2D)**2)

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - ABS

STRUTS

LEVEL	В	1	WT1	+	TE	+	OBEI	+	OBED	+	RV2I	+	RV2D	+	WT2		
LEVEL	С	1	WT1	+	TE	+	CHUGI	+	CHUGD	+	RV2I	+	RV2D	+	TSV		
LEVEL	D	1	WT1	+	TE	+	SSEI	+	SSED	+	CHUGI	+	CHUGD		RV2I	+	RV2D
LEVEL	D	2	WT1	+	TE	+	COND I	+	COND D	+	SSEI	+	SSED	+	RV2I	+	RV2D
LEVEL	D	3	WT1	+	TE	+	SSEI	+	SSED	+	API	+	APD	+			
LEVEL	D	4	WT1	+	TE	+	SSEI	+	SSED	+	RV2I	+	RV2D				

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - SRSS

VALVES, PUMPS AND MOTORS

LEVEL	B	1	SQRT((OBEI)**2	+	(RV2I)**2)			
LEVEL	С	1	SQRT((CHUGI)**2	+	(RV2I)**2)			
LEVEL	D	1	SQRT((SSEI)**2	+	(CHUGI)**2	+ (RV2I)**2)
LEVEL	D	2	COND I +	SQRT((SSE	I)**2	+ (RV2I)**2)	
LEVEL	D	3	SQRT((SSEI)**2	+	(API)**2)			
LEVEL	D	4	SQRT((SSEI)**2	+	(RV2I)**2)			

5

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - ABS

00

(C)

VALVES, PUMPS AND MOTORS

		RV21	RV2I		
		+	+		
RV2I	RV21	CHUGI	SSEI	API	RV2I
+	+	+	+	+	+
OBEI	CHUGI	SSEI	COND I	SSEI	SSEI
1	1	1	2	e	4
В	0	D	D	D	D
LEVEL	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL

>

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - SRSS

FLANGE MOMENTS

DESIGN	1	WT1	+	TE	+							
LEVEL B	1	WT1	+	TE	+	SQRT((OBEI	+	OBED)**2	+ (RV2I	+ RV2D)**2)
LEVEL C	1	WT1	+	TE	+	SQRT((CHUGI	+	CHUGD)**2	+ (RV2I	+ RV2D)**2)
LEVEL D	1	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (CHUGI	+ CHUGD)**2	+ (RV2I + RV2D)**2)
LEVEL D	2	WT1	+	TE	+	COND I +	COND	D +	SQRT	((SSEI +	SSED) **2 +	(RV2I + RV2D)**2)
LEVEL D	3	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (API	+ APD)**2)
LEVEL D	4	WT1	+	TE	+	SQRT((SSEI	+	SSED)**2	+ (RV21	+ RV2D)**2)

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT RECIRCULATION - ABS

FLANGE MOMENTS

DESIGN	1	WT1	+	TE												
LEVEL B	1	WT1	+	TE	+	OBEI	+	OBED	+	RV2I	+	RV2D				
LEVEL C	1	WT1	+	TE	+	CHUGI	+	CHUGD	+	RV2I	+	RV2D				
LEVEL D	1	WT1	+	TE	+	SSEI	+	SSED	+	CHUGI	+	CHUGD	+	RV21	+	RV2D
LEVEL D	2	WT1	+	TE	+	COND I	+	COND D	+	SSEI	+	SSED	+	RV2I	+	RV2D
LEVEL D	3	WT1	+	TE	+	SSEI	+	SSED	+	API	+	APD				
LEVEL D	4	WT1	+	TE	+	SSEI	+	SSED	+	RV2I	+	RV2D				

LOAD COMBINATION AND ACCEPTANCE CRITERIA FOR NSSS PIPING AND PIPE-MOUNTED EQUIPMENT

NOMENCLATURE OF LOADS

API	=	Annulus Pressurization Loads (Inertial Effect)
APD	=	Annulus Pressurization Loads (Anchor Displacement Loads)
CHUGI	=	Chugging Load (Inertia Effect)
CHUGD	=	Chugging Load (Anchor Displacement Loads)
COND I	=	Condensation Oscillation (Inertia Effect)
COND D	=	Condensation Oscillation (Anchor Displacement Effects)
OBEI	=	Operating Basis Earthquake (Inertia Effect)
OBED	=	Operating Basis Earthquake (Anchor Displacement Load)
PO	=	Operating Pressure
PD	=	Design Pressure
PP	=	Peak pressure
PPATWS	=	Peak Pressure Due Automatic Transient Without Scram Event
RV1	=	Safety Relief Valve Opening Loads (Acoustic Wave)
RV2I	=	Safety Relief Valve Basemat Acceleration Loads (Inertia Effect)
RV2D	=	Safety Relief Valve Basemat Accelerations Loads (Anchor Displacement
		Loads)
RV2ADI	=	Safety/Relief Valve Basemat Acceleration Due to Automatic
		Depressurization System Valves
RV2ADD	=	Safety/Relief Valve Basemat Acceleration Due to Automatic
		Depressurization System Valves (Anchor Displacement Loads)
SSEI	=	Safe Shutdown Earthquake (Inertia Effect)
SSED	=	Safe Shutdown Earthquake (Anchor Displacement Loads)
TE	=	Thermal Expansion
TSV	=	Turbine Stop Valve Closure Loads
VLCI	=	Vent Line Clearing Loads (Inertia Effect)
VLCD	=	Vent Line Clearing Loads (Anchor Displacement Loads)
WT1	=	Dead Weight
RV2SVI	=	Safety/Relief Valve Basemat Acceleration Loads Due to a Single Valve
		Opening (Inertia Effect)
RV2SVD	=	Safety/Relief Valve Basemat Acceleration Loads Due to a Single Valve
		Opening (Anchor Displacement Loads)

C

Figure 3-5. LaSalle Recirculation Loop A Node Diagram

HIGHEST STRESS SUMMARY - SRSS RECIRCULATION LOOP A

Item Evaluated*	Highest Calculated Stress/ Usage Factor	Allowable Limits	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 < 1.55 Design Condition	16,813 nsi	25,005 psi	0.65	Reducer (242)
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B y	19,055 psi	28,596 psi	0.67	Snubber Lug (090)
Primary Stress Eq. $9 \le 2.25S$ & $1.8S$ Service Level ^m C ^y	20,367 psi	34,315 psi	0.59	Snubber Lug (090)
Primary Stress Eq. 9 ≤ 3.0S Service Level D	26,415 psi	50,010 psi	0.53	Snubber Lug (090)
Secondary Stresses Eq. 12 \leq 3.0S _m	30,743 psi	50,010 psi	0.61	Sweepolet (410)
Primary plus Secondary Stress without Thermal Expansion Eq. $13 \leq 3.0S_{m}$	42,025 psi	50,010 psi	0.84	Sweepolet (310)
Cumulative Usage Factor U ≤ 1.0	0.28	1.0	0.28	Sweepolet (410)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

3-73

HIGHEST STRESS SUMMARY - ABS RECIRCULATION LOOP A

Item Evaluated*	Highest Calculated Stress/ Usage Factor	Allowable Limits	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 < 1.55 Design Condition	16,831 psi	25,005 psi	0.67	Reducer (242)
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B	23,341 psi	28,596 psi	0.82	Snubber Lug (090)
Primary Stress Eq. $9 \le 2.25S \& 1.8S$ Service Level ^m C y	24,952 psi	34,315 psi	0.73	Snubber Lug (090)
Primary Stress Eq. 9 < 3.0S Service Level D	33,393 psi	50,010 psi	0.67	Snubber Lug (090)
Secondary Stresses Eq. 12 \leq 3.05 m	30,743 psi	50,010 psi	0.61	Sweepolet (410)
Primary plus Secondary Stress without Thermal Expansion Eq. 13 < 3.05 m	42,025 psi	50,010 psi	0.84	Sweepolet (310)
Cumulative Usage Factor U ≤ 1.0	0.30	1.0	0.30	Sweepolet (410)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

3-74

NEDO-30159

SNUBBER LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - SRSS

Item	Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
	Level B	31,772 lb	50,000 lb	0.635	SA65
	Level C	41,026 lb	66,500 lb	0.617	SA65
	Level D	54,003 lb	75,000 lb	0.72	SA65

.

SNUBBER LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
Level B	44,687 lb	50,000 lb	0.894	SA65
Level C	55,171 lb	66,500 lb	0.830	SA65
Level D	75,929 lb	75,000 lb Nom		SA65
		-91,000 lb Test	0.834	

SUCTION GATE VALVE LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	5.45 g 1.11 g	10.6 g 4.0 g	0.514 0.277	Operator Operator

-

19915

SUCTION GATF VALVE LOADS - RECIRCULATION LOOP A H. GHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	6.80 g 1.36 g	10.6 g 4.0 g	0.642 0.340	Operator Operator

DISCHARGE GATE VALVE LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - SRSS

-

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	5.77 g 0.77 g	7.7 g 4.0 g	0.749 0.192	Operator Operator

DISCHARGE GATE VALVE LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	9.46 g 1.25 g	7.7 g 4.0 g	1.23* 0.311	Operator Operator

*This is a passive valve and is not required to meet ABS limits (see Table 3-59).

NEDO-30159

FLOW CONTROL VALVE LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	2.16 g 1.91 g	9.0 g 6.0 g	0.240 0.319	Body Body

FLOW CONTROL VALVE LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	3.62 g 3.26 g	9.0 g 6.0 g	0.402 0.544	Body Body
RECIRCULATION PUMP LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	0.65 g 1.18 g	4.5 g 3.5 g	0.144 0.338	Pump CG Pump CG

RECIRCULATION PUMP LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	1.08 g 2.02 g	4.5 g 3.5 g	0.240 0.578	Pump CG Pump CG

ø

.

RECIRCULATION PUMP MOTOR LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	1.31 g 1.21 g	4.5 g 3.5 g	0.291 0.346	Motor CG Motor CG

4

.

-

RECIRCULATION PUMP MOTOR LOADS - RECIRCULATION LOOP A HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	2.21 g 2.07 g	4.5 g 3.5 g	0.492 0.591	Motor CG Motor CG

1

.

.

.

5

1.11 8

Figure 3-6. LaSalle Recirculation Loop B Node Diagram

HIGHEST STRESS SUMMARY - SRSS RECIRCULATION LOOP B

Item Evaluated*	Highest Calculated Stress/ Usage Factor	Allowable Limits	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
Primary Stress Eq. 9 ≤ 1.5S Design Condition	17,616 psi	25,005 psi	0.70	Snubber Lug (S7)
Primary Stress Eq. 9 = 1.8S & 1.5S Service Level B y	19,722 psi	28,596 psi	0.69	Snubber Lug (87)
Primery Stress Eq. 9 < 2.255 & 1.85 Service Level ^m C	19,257 psi	34,315 psi	0.56	Reducer (242)
Primary Stress Eq. 9 ≤ 3.0S Service Level D	29,637 psi	50,010 psi	0.59	Snubber Lug (87)
Secondary Stresses Eq. 12 \leq 3.05 m	31,310 psi	50,010 psi	0.63	Sweepolet (410)
Primary plus Secondary Stress without Thermal Expansion Eq. $13 \leq 3.0S_{m}$	41,845 psi	50,010 psi	0.84	Sweepolet (310)
Cumulative Usage Factor U ≤ 1.0	0.30	1.0	0.30	Sweepolet (410)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

3-88

2

HIGHEST STRESS SUMMARY - ABS RECIRCULATION LOOP B

Item Evaluated*	Highest Calculated Stress/ Usage Factor	Allowable Limits	Ratio Actual/ Allowed	Identification of Location of Highest Stress Points
?rimary Stress Eq. 9 < 1.55 Design Condition	17,616 psi	25,005 psi	0.70	Saubber Lug (87)
Primary Stress £q. 9 = 1.85 & 1.55 Service Level B y	23,833 psi	28,596 psi	0.83	Snubber Lug (87)
Primary Stress Eq. $9 \le 2.25S$ & $1.8S$ Service Level ^m C y	20,250 psi	34,315 psi	0.59	Reducar (242)
Primary Stress Eq. $9 \le 3.0S$ Service Level D	33,747 psi	50,010 psi	0.67	Snubber Lug (87)
Secondary Stresses Eq. $12 \le 3.0S_m$	31,310 psi	50,010 psi	0.63	Sweepolet (410)
Primary plus Secondary Stress without Thermal Expansion Eq. $13 \le 3.0S_{m}$	41,845 psi	50,010 psi	0.84	Sweepolet (310)
Cumulative Usage Factor $U \leq 1.0$	0.32	1.0	0.32	Sweepolet (410)

*All equations used are from ASME B&PV Code, Sec. III - NB-3650.

3-89

NEDO-30159

SNUBBER LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - SRSS

Item Evaluated .	Highest Calculated Load	Allowable Limits	Ratio	Identification of Equipment with Highest Loads
Level B Level C	27,647 lb 30,740 lb	50,000 lb 66,500 lb	0.553 0.463	SB29 SB29 SB29

SNUBBER LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification o Equipment with Highest Loads
Level B	38,254 1b	50,000 lb	0.765	SB29
Level C	41,364 lb	66,500 lb	0.622	SB29
Level D	61,516 lb	75,000 Ib	0.820	SB29

*

.

14

1.1

1. 1 00

SUCTION GATE VALVE LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Borizontal Vertical	6.01 g 1.06 g	10.6 g 4.0 g	0.567 0.266	Operator Operator

SUCTION GATE VALVE LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	9.50 g 1.70 g	10.6 g 4.0 g	0.896 0.425	Operator Body

5

DISCHARGE GATE VALVE LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - SRSS

Highest Allowable Calculated Allowable Ratio Highest Loads		5.31 g 7.7 g 0.690 Operator 1.03 g 4.0 g 0.259 Operator
Ites Fvaluated	Acceleration	Horizontal Vertical

.....

DISCHARGE GATE VALVE LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads
Acceleration				
Norizontal Vertical	8.51 g 1.75 g	7.7 g 4.0 g	1.11* 0.438	Operator Operator

*This is a passive valve and is not required to meet ABS limits.

FLOW CONTROL VALVE LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads	
Acceleration					
Horizontal Vertical	1.20 g 2.09 g	9.0 g 6.0 g	0.133 0.349	Body Body	

FLOW CONTROL VALVE LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Allowable Load Limits Rat		Ratio	Identification of Location of Highest Loads
Acceleration				
Horizontal Vertical	1.98 g 3.55 g	9.0 g 6.0 g	0.220 0.592	Body Body

RECIRCULATION PUMP LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - SRSS

Item Evaluated	Highest Calculated Load		Ratio	Identification of Location of Highest Loads
Acceleration				
Eorizontal Vertical	0.82 g 1.05 g	4.5 g 3.5 g	0.182 0.300	Pump CG Pump CG

RECIRCULATION PUMP LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest Calculated Load	Allowable Limits	Ratio	Identification of Location of Highest Loads	
Acceleration					
Horizontal Vertical	1.36 g 1.79 g	4.5 g 3.5 g	0.302 0.511	Pump CG Pump CG	

-p. 1

1

RECIRCULATION PUMP MOTOR LOADS - RECIRCULATION LOOP 8 HIGHEST LOADING SUMMARY - SRSS

Identification of Location of Highest Loads		Motor CG Motor CG
Ratio		0.362 0.306
Allowable Limits		4.5 8 3.5 8
Highest Calculated Load		1.63 g 1.07 g
Item Evaluated	Acceleration	Horizontal Vertical

ai.

ę

RECIRCULATION PUMP MOTOR LOADS - RECIRCULATION LOOP B HIGHEST LOADING SUMMARY - ABS

Item Evaluated	Highest	Highest		Identification of	
	Calculated	alculated Allowable		Location of	
	Load	Load Limits		Highest Loads	
Acceleration					
Horizontal	2.71 g	4.5 g	0.602	Motor CG	
Vertical	1.83 g	3.5 g	0.523	Motor CG	

NEDO-30159

NEDO-30159

APPENDIX A REFERENCES

This appendix contains the major Sargent & Lundy Engineers transmitted structural response inputs which constitute the data base for the LaSalle 2 NSSS New Loads Design Adequacy Evaluation. In addition, S&L transmitted interface loads used in the performance of specific analyses are referenced. The major General Electric references provided in this appendix consist of the dynamic loads reports used as inputs to perform the NSSS piping and equipment adequacy evaluations, in addition to the NSSS Piping and Pipe Mounted Equipment design reports resulting from the analyses of the Main Steam and Recirculation Piping Systems. References to specific input data, reference documents, test reports, detailed calculations, methods and results of the analyses and evaluations performed are contained in the Design Record Files maintained by the General Electric Company.

A.1 SARGENT & LUNDY SEISMIC DATA

- OBE and SEE Building Response Spectra, Horizontal 3/11/82 (N-S, E-W). Including Soil Structure Interactions (SSI).
- OBE and SSE Building Response Spectra, Vertical. 8/8/73 Including Soil Structure Interaction.
- OBE and SSE Horizontal Seismic Analysis. Reactor, 11/17/75 Auxiliary and Turbine Building Model. SSI Time-History at Base Slab. (Ref. Only)
- OBE and SSE Vertical Seismic Analysis. Pedestal 11/25/75 Sacrificial Shield Model, SSI Time-History at Base Slab.
- Seismic Analysis for Unit 2 (Horizontal Excitation). 3/11/82 Response Spectra and Vessel/Vessel Internal Forces.

NEDO-30159

A.2

-

6.	Horizontal Seismic Analysis. Acceleration Time- History. Peak Accelerations. Response Spectra Assessment Results. Horizontal.	3/19/82
7.	Horizontal Seismic Analysi . Response to GE 2/25/82 request.	3/31/82
SARG	GENT & LUNDY POOL HYDRODYNAMIC DATA	
8.	Transmittal of Revised Calculated Pressures on the RPV and Sacrificial Shield Due to Postulated Pipe Break Within the S.S. Annulus.	5/9/77
9.	Chugging Response Spectra +20/-4 psi, 20-30 Hz. Retransmitted on 4/29/80.	4/20/78
10.	SRV/Chugging Time-Histories. KWU SRV Asymmetric, Single and Symmetric/ADS and Symmetric Chugging Acceleration Time-Histories. Tapes retransmitted on 3/4/80.	2/26/80
11.	CO Vertical Unwidened Response Spectra.	2/28/80
12.	Chugging Horizontal Acceleration Time-Histories.	4/11/80
13.	KWU SRV Asymmetric and Single Valve Horizontal Acceleration Time-History.	4/18/80
14.	Clarifications to SRV/LOCA Hydrodynamic Input (reply to GE 5/1/80 letter).	5/20/80
15.	4TCO Symmetric Chugging Acceleration Time-History.	2/27/81
15.	4TCO Symmetric Chugging Response Spectra on Contairment Wall (6 locations).	6/11/81

NEDO-30159

1	7.	(Deleted)			

18. Loads on CRD Piping.

A.3 SARGENT & LUNDY TRANSMITTED INTERFACE LOADS

2/26/82

A.4 GE DYNAMIC LOADS EVALUATION REPORTS

19.	Dynamic	Loads	Report - Seismic	23A1312,	REV.	0
20.	Dynamic	Loads	Report, Safety Relief Valve	23A1313,	REV.	0
21.	Dynamic	Loads	Report - Loss-of-Coolant Accident	23A1314,	REV.	0
22.	Dynamic	Loads	Report - Annulus Pressurization	23A1315,	REV.	0
23.	Dynamic Load	Loads	Report - Fuel Support Vertical	23A1316,	REV.	0

A.5 GE NSSS PIPING SYSTEM DESIGN REPORTS

- 24. Main Steam Piping and Equipment Loads Design 23A1451, REV. 0 Report - Line A
- 25. Main Steam Piping and Equipment Loads Design 23A1452, REV. 0 Report - Line B

26. Main Steam Piping and Equipment Loads Design 23A1453, REV. 0 Report - Line C

- 27. Main Steam Piping and Equipment Loads Design 23A1454, REV. 0 Report - Line D
- Piping, Recirculation Piping and Equipment 23A1449, REV. 0 Loads Design Report

29. Piping, Recirculation Piping and Equipment 23A1450, REV. 0 Loads Design Report

st.

APPENDIX B

GENERIC ANALYSES EVALUATED EQUIPMENT AND COMPONENTS

The following active and passive safety-related equipment and components were generically analyzed to demonstrate design adequacy:

B13-D009	Control Rod				
B13-D020	Head Cooling Spray Nozzle				
B13-D040	Access Hole Cover				
B13-D055	Cap Screw				
B13-D056	Cap Screw				
B13-D058	Consumable Insert				
B13-D060	Consumable Insert				
B13-D061	Shroud Backing Ring				
B13-D065	Keeper				
B13-D066	Bolt				
B13-D067	Top Guide Wedge				
B13-D069	CRD Housing Lateral Restraint				
B13-D085	Consumable Insert				
B13-D091	Peripheral Fuel Support				
B13-D093	Access Hole Cover				
B13-D094	Adapter Ring				
B13-D096	Jet Pump Instrumentation Penetration Seal				
B13-D098	Consumable Insert				
B13-D182	Plug				
B13-U004	CRD Housing Support				