NUREG/CR-5493 MEA-2376

Influence of Fluence Rate on Radiation-Induced Mechanical Property Changes in Reactor Pressure Vessel Steels

Final Report on Exploratory Experiments

Prepared by J. R. Hawthorne, A. L. Hiser

Materials Engineering Associates, Inc.

Prepared for U.S. Nuclear Regulatory Commission

> 9004100351 900331 PDR NUREC CR-5493 R PDR

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
- 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports. NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue. Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents clied in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
- 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications. It is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of inspection and Enforcement bulleting, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Rescurces Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-5493 MEA-2376

Influence of Fluence Rate on Radiation-Induced Mechanical Property Changes in Reactor Pressure Vessel Steels

Final Report on Exploratory Experiments

Manuscript Completed: January 1990 Date Published: March 1990

Prepared by J. R. Hawthorne, A. L. Hiser

Materials Engineering Associates, Inc. 9700-B Martin Luther King, Jr. Highway Lanham, MD 20706

Prepared for Division of Engineering Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN B8900

NUREG/CR-5493

INFLUENCE OF FLUENCE RATE ON RADIATION-INDUCED MECHANICAL PROPERTY CHANGES IN REACTOR PRESSURE VESSEL STEELS

٠

MARCH 1990

.

ABSTRACT

This report describes a set of experiments undertaken using a 2 MW test reactor, the UBR, to qualify the significance of fluence rate to the extent of embrittlement produced in reactor pressure vessel steels at their service temperature. The test materials included two reference plates (A 302-B, A 533-B steel) and two submerged arc weld deposits (Linde 80, Linde 0091 welding fluxes). Charpy-V (C_y), tension and 0.5T-CT compact specimens were employed for notch ductility, strength and fracture toughness (J-R curve) determinations, respectively. Target fluence rates were 8 x 10¹⁰, 6 x 10¹¹ and 9 x 10¹², n/cm^2 , E > 1 MeV.

The data describe a fluence-rate effect which may extend to power reactor surveillance as well as test reactor facilities now in use. The dependence of embrittlement sensitivity on fluence rate appears to differ for plate and weld deposit materials. Relatively good agreement in fluence-rate effects definition was observed among the three test methods.

CONTENTS

			Take
ABS	TRACT		111
LIS	T OF FIG	URES	vii
LIS	T OF TAB	LES	xi
FOR	EWORD		xiii
ACK	NOWLEDOM	ENT	xix
1.	INTROD	UCTION	1
2.	OBJECT	IVE	3
3.	MATERI	ALS AND IRRADIATION MATRIX	4
4.	MATERI	ALS IRRADIATION	7
5.	EXPERI	MENTAL RESULTS	34
	5.1 N	otch Ductility and Tensile Strength Determinations	34
	5.2 F	racture Toughness (J-R Curve) Determinations	45
	5.3 C	omparison of Transition Temperature Elevations	
	D	y K _{Jc} and Charpy-V Test Methods	60
6.	DISCUS	SION	70
7.	CONCLU	SIONS	71
REF	ERENCES		72
Арр	endix A	Neutron Dosimetry Determinations: Irradiation Assemblies UBR-38, UBR-44, UBR-45, UBR-46, UBR-65 UBR-75, UBR-76, and UBR-77	A-1
Ann	endix B	Reactor Operations History: Irradiation	
app	under D	Assemblies UBR-38, UBR-44, UBR-45, UBR-46, UBR-65 UBR-75, UBR-76, and UBR-77	B-1
App	endix C	Tabulations of Charpy-V Notch Ductility Tests	
		Results	C-1
App	endix D	Computer Curve-Fits of Charpy-V Test Results	
		(Specimen Energy Absorption vs. Temperature)	D-1
App	endix E	Fracture Toughness Determinations	E-1
App	endix F	Computer Curve-Fits of Transition Regime Fracture	
		Toughness Data	F-1

LIST OF FIGURES

rigure		age
1	Schematic illustration showing the locations of the irradiation facilities used in the UBR reactor	8
2	Placement of C, and tension test specimens in Irradiation Assembly UBR-38 (Capsule A)	9
3	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-38 (Capsule B)	10
4	Placement of C, and tension test specimens in Irradiation Assembly UBR-44 (Capsule A)	11
5	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-44 (Capsule B)	12
. 6	Placement of C, and tension test specimens in Irradiation Assembly UBR-45 (Capsule A)	13
7	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-45 (Capsule B)	14
8	Placement of C, and tension test specimens in Irradiation Assembly UBR-46 (Capsule A)	15
9	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-46 (Capsule B)	16
10	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-65 (Capsule A)	17
11	Placement of C, and tension test specimens in Irradiation Assembly UBR-65 (Capsule B)	18
12	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-75 (Capsule A)	19
13	Placement of C, and tension test specimens in Irradiation Assembly UBR-75 (Capsule B)	20
14	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-76 (Capsule A)	21
15	Placement of C, and tension test specimens in Irradiation Assembly UBR-76 (Capsule B)	22
16	Placement of C, and tension test specimens in Irradiation Assembly UBR-77 (Capsule A)	23
17	Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-77 (Capsule B)	24

LIST OF FI	CITE ES
TTT TT TT TT	C. C. L.L.C.

Figure		Page
18	Irradiation Assembly UBR-38 showing thermocouple placements	26
19	Irradiation Assembly UBR-44 showing thermocouple placements	27
20	Irradiation Assembly UBR-45 showing thermocouple placements	28
21	Irradiation Assembly UBR-46 showing thermocouple placements	29
22	Irradiation Assembly UBR-65 showing thermocouple placements	30
23	Irradiation Assembly UBR-75 showing thermocouple placements	31
24	Irradiation Assembly UBR-76 showing thermocouple placements	32
25	Irradiation Assembly UBR-77 showing thermocouple placements	33
26	C, notch ductility of the A 302-B Plate 23F after 288°C irradiation at the intermediate fluence rate	35
27	C, notch ductility of the A 302-B Plate 23F after 288°C irradiation at the high fluence rate	36
28	C, notch ductility of the A 302-B Plate 23F after 288°C irradiation at the low fluence rate	37
29	C, notch ductility of the Linde 80 Weld W8A after 288°C irradiation at the intermediate fluence rate	38
30	C, notch ductility of the Linde 80 Weld W8A after 288°C irradiation at the high fluence rate	39
31	C, notch ductility of the A 533-B Plate 23G after 288°C irradiation at the low fluence rate	40
32	C, notch ductility of the Linde 0091 Weld W9A after high fluence rate irradiation.	41
33	Comparison of C, 41-J transition temperature elevations observed for the Linde 80 Weld WSA, the A 302-B Plate	
	23F and the A 533-B Plate 23G	44

LIST OF FIGURES

TIKUTE		ake
34	Fracture toughness data from the low fluence rate irradiation of A 3C2-B Plate 23F	47
35	Fracture toughness data from the intermediate fluence rate irradiations of A 302-B Plate 23F	48
36	Fracture toughness data from the high fluence rate irradiations of A 302-B Plate 23F	49
37	Fracture toughness data from the intermediate fluence rate irradiations of Linde 80 Weld W8A	50
38	Fracture toughness data from the high fluence rate irradiations of Linde 80 Weld W8A	51
39	Fracture toughness data from the irradiations of A 533-B Plate 23G	52
40	Fracture toughness data from the irradiation of Linde 0091 Weld W9A	53
41	Transition regime data trends for the intermediate fluence rate irradiations	54
42	Transition regime dats trends for the high fluence rate irradiations	55
43	Transition temperature increase as a function of fluence for the program materials	57
44	Transition regime data for all three fluence rates	58
45	Transition regime data for the low and the high fluence rates	59
46	J-R curves for A 302-B Plate 23F	61
47	J-R curves for A 533-B Plate 23G	62
48	J-R curves for Linde 80 Weld W8A	63
49	J-R curves for Linde 0091 Weld W9A	64
50	Comparison of ΔT from C _v and ΔT from K _{Jc} for the plates	66
51	Comparison of ΔT from C_v and ΔT from K_{Jc} for the welds.	67
52	Comparison of J levels at 288°C with correlation estimates	69

LIST OF TABLES

Tables		Page
1	Chemical Compositions of the Reference Plates and Submerged Arc Weld Deposits	5
2	Terediation Matrix	6
3	Postirradiation Tensile Strengths (Ambient Temperature Tests)	42
4	Comparison of Transition Temperature Shifts (ΔT) from $C_{\rm V}$ and $K_{\rm Jc}$	65

FOREWORD

The work reported here was performed at Materials Engineering Associates (MEA) under the program, Structural Integrity of Water Reactor Pressure Boundary Components, F. J. Loss, Program Manager. The program is sponsored by the Office of Nuclear Regulatory Research of the U. S. Nuclear Regulatory Commission (NRC). The technical monitor for the NRC is Alfred Taboada.

Prior reports under the current contract are listed below:

- J. R. Hawthorne, "Significance of Nickel and Copper Content to Radiation Sensitivity and Postirradiation Heat Treatment Recovery of Reactor Vessel Steels," USNRC Report NUREG/CR-2948, Nov. 1982.
- "Structural Integrity of Water Reactor Pressure Boundary Components, Annual Report for 1982," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 1, Apr. 1983.
- J. R. Hawthorne, "Exploratory Assessment of Postirradiation Heat Treatment Variables in Notch Ductility Recovery of A 533-B Steel," USNRC Roport NUREG/CR-3229, Apr. 1983.
- W. H. Cullen, K. Torronen, and M. Kemppainen, "Effects of Temperature on Fatigue Crack Growth of A 508-2 Steel in LWR Environment," USNRC Report NUREG/CR-3230, Apr. 1983.
- *Proceedings of the International Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth, * Vols. 1 and 2, W. H. Cullen, Ed., USNRC Conference Proceeding NUREG/CP-0044, May 1983.
- J. R. Hawthorne, B. H. Menke, and A. L. Hiser, "Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program: Notch Ductility and Fracture Toughness Degradation of A 302-B and A 533-B Reference Plates from PSF Simulated Surveillance and Through-Wall Irradiation Capsules," USNRC Report NUREG/CR-3295, Vol. 1, Apr. 1984.
- J. R. Hawthorne and B. H. Menke, "Light Water Reactor Pressure Vessel Surveillance Desimetry Improvement Program: Postirradiation Notch Ductility and Tensile Strength Determinations for PSF Simulated Surveillance and Through-Wall Specimen Capsules," USNRC Report NUREG/CR-3295, Vol. 2, Apr. 1984.
- A. L. Hiser and F. J. Loss, "Alternative Procedures for J-R Curve Determination," USNRC Report NUREG/CR-3402, July 1983.

- A. L. Hiser, F. J. Loss, and B. H. Menke, "J-R Curve Characterization of Irradiated Low Upper Shelf Welds," USNRC Report NUREG/CR-3506, Apr. 1984.
- W. H. Cullen, R. E. Taylor, K. Torronen, and M. Kemppainen, "The Temperature Dependence of Fatigue Crack Growth Rates of A 351 CF8A Cast Stainless Steel in LWR Environment," USNRC Report NUREG/CR-3546, Apr. 1984.
- *Structural Integrity of Light Water Reactor Pressure Boundary Components -- Four-Year Plan 1984-1988," F. J. Loss, Ed., USNRC Report NUREG/CR-3788, Sep. 1984.
- W. H. Cullen and A. L. Hiser, "Behavior of Subcritical and Slow-Stable Crack Growth Following a Postirradiation Thermal Anneal Cycle," USNRC Report NUREG/CR-3833, Aug. 1984.
- "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1983," F. J. Loss, Ed., USMRC Report NUREG/CR-3228, Vol. 2, Sept. 1984.
- W. H. Cullen, "Fatigue Crack Growth Rates of Low-Carbon and Stainless Piping Steels in PWR Environment," USNRC Report NUREG/CR-3945, Feb. 1985.
- W. H. Cullen, M. Kemppainen, H. Hanninen, and K. Torronen, "The Effects of Sulfuc Chemistry and Flow Rate on Fatigue Crack Growth Rates in LWR Environments," USNRC Report NUREG/CR-4121, Feb. 1985.
- "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1984," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 3, June 1985.
- A. L. Hiser, "Correlation of C, and K. K. Transition Temperature Increases Due to Irradiation," USNRC Report NUREG/CR-4395, Nov. 1985.
- W. H. Cullen, G. Gabetta, and H. Hanninen, "A Review of the Models and Mechanisms For Environmentally-Assisted Crack Growth of Pressure Vessel and Piping Steels in PWR Environments," USNRC Report NUREG/CR-4422, Dec. 1985.
- "Proceedings of the Second International Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth," W. H. Cullen, Ed., USNRC Conference Proceeding NUREG/CP-0067, Vols. 1 and 2, Apr. 1986.
- J. R. Hawthorne, "Exploratory Studies of Element Interactions and Composition Dependencies in Radiation Sensitivity Development," USNRC Report NUKEG/CR-4437, Nov. 1985.

- R. B. Stonesifer and E. F. Rybicki, "Development of Models for Warm Prestressing," USNRC Report NUREG/CR-4491, Jan. 1987.
- E. F. Rybicki and R. B. Stonesifer, "Computational Model for Residual Stresses in a Clad Plate and Clad Fracture Specimens," USNRC Report NUREG/CR-4635, Oct. 1986.
- D. E. McCabe, "Plan for Experimental Characterization of Vessel Steel After Irradiation," USNRC Report NUREG/CR-4636, Oct. 1986.
- E. F. Rybicki, J. R. Shadley, and A. S. Sandhu, "Experimental Evaluation of Residual Stresses in a Weld Clad Plate and Clad Test Specimens," USNRC Report NUREG/CR-4646, Oct. 1986.
- "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1985," F. J. Loss, Ed., USNRC Report NUREC/CR-3228, Vol. 4, June 1986.
- G. Gabetta and W. H. Cullen, "Application of a Two-Mechanism Model for Environmentally-Assisted Crack Growth," USNRC Report NUREG/CR-4723, Oct. 1986.
- W. H. Cullen, "Fatigue Crack Growth Rates in Pressure Vessel and Piping Steels in LWR Environments," USNRC Report NUREG/CR-4724, Mar. 1987.
- W. H. Cullen and M. R. Jolles, "Fatigue Crack Growth of Part-Through Cracks in Pressure Vessel and Piping Steels: Air Environment Results, USNRC Report NUREG/CR-4828, Oct. 1988.
- D. E. McCabe, "Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding: Unirradiated Bend Specimen Results," USNRC Report NUREG/CR-4841, May 1987.
- H. Hanninen, M. Vulli, and W. H. Cullen, "Surface Spectroscopy of Pressure Vessel Steel Fatigue Fracture Surface Films Formed in PWR Environments," USNRC Report NUREG/CR-4863, July 1987.
- 32. A. L. Hiser and G. M. Callahan, "A User's Guide to the NRC's Piping Fracture Mechanics Data Base (PIFRAC)," USNRC Report NUREG/CR-4894, May 1987.
- 33. "Proceedings of the Second CSNI Workshop on Ductile Fracture Test Methods (Paris, France, April 17-19, 1985)," F. J. Loss, Ed., USNRC Conference Proceeding NUREG/CP-0064, Aug, 1988.
- 34. W. H. Cullen and D. Broek, "The Effects of Variable Amplitude Loading on A 533-B Steel in High-Temperature Air and Reactor Water Environments," USNRC Report NUREG/CR-4929, Apr. 1989.
- "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1986," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 5, July 1987.

- F. Ebrahimi, et al., "Development of a Mechanistic Understanding of Radiation Embrittlement in Reactor Pressure Vessel Steels: Final Report," USNRC Report NUREG/CR-5063, Jan. 1988.
- J. B. Terrell, "Fatigue Life Characterization of Smooth and Notched Piping Steel Specimens in 288°C Air Environments," USNRC Report NUREG/CR-5013, May 1988.
- 38. A. L. Hiser, "Tensile and J-R Curve Characterization of Thermally Aged Cast Stainless Steels," USNRC Report NUREG/CR-5024, Sept. 1988
- 39. J. B. Terrell, "Fatigue Strength of Smooth and Notched Specimens of ASME SA 106-B Steel in PWR Environments," USNRC Report NUREG/CR-5136, Sept. 1988.
- D. E. McCabe, "Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding: Material Property Evaluations" USNRC NUREG/CR-5207, Sept. 1988.
- J. R. Hawthorne and A. L. Hiser, "Experimental Assessments of Gundremmingen RPV Archive Material for Fluence Rate Effects Studies," USNRC Report NUREG/CR-5201, Oct. 1988.
- J. S. Terrell, "Fatigue Strength of ASME SA 106-B Welded Steel Pipes in 288°C Air Environments," USNRC Report NUREG/CR-5195, Dec. 1988.
- A. L. Hiser, "Post-Irradiation Fracture Toughness Characterization of Four Lab-Melt Plates," USNRC Report NUREG/CR-5216, Rev. 1, June 1989.
- 44. R. B. Stonesifer, E. F. Rybicki, and D. E. McCabe, "Warm Prestress Modeling: Comparison of Models and Experimental Results," USNRC Report NUREG/CR-5208, Apr. 1989.
- A. L. Hiser and J. B. Terrell, "Size Effects on J-R Curves for A 302-B Plate," USNRC Report NUREG/CR-5265, Jan. 1989.
- D. E. McCabe, "Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding," USNRC Report NUREG/CR-5326, Mar. 1989.
- 47. J. R. Hawthorne, "An Exploratory Study of Element Interactions and Composition Dependencies in Radiation Sensitivity Development: Final Report," USNRC Report NUREG/CR-5357, Apr. 1989
- J. R. Hawthorne, "Steel Impurity Element Effects on Postirradiation Properties Recovery by Annealing: Final Report," USNRC Report NUREG/CR-5388, Aug. 1989.
- J. R. Hawthorne, "Irradiation-Anneal-Reirradiation (IAR) Studies of Prototypic Reactor Vessel Weldments," USNRC Report NUREG/CR-5469, Nov. 1989.

- J. R. Hawthorne and A. L. Hiser, "Investigations of Irradiation-Anneal-Reirradiation ("AR) Properties Trends of RPV Welds: Phase 2 Final Report," USNRC Report NUREG/CR-5492, Jan. 1990.
- H. H. Hanninen and W. H. Cullen, "Slow Strain Rate Testing of a Cyclically Stabilized A-516 Gr. 70 Piping Steel in PWR Conditions," USNRC Report NUREG/CR-5327, Nov. 1989.
- A. L. Hiser, "Fracture Toughness Characterization of Nuclear Piping Steels," USNRC Report NUREG/CR-5188, Nov. 1989.

Prior reports dealing with the specific topic of this report are listed below:

J. R. Hawthorne and A. L. Hiser, "Experimental Assessments of Gundremmingen RFV Archive Material for Fluence Rate Effects S.udies," USNRC Report NUREG/CR-5201, Oct. 1988.

ACKNOWLEDGMENT

The authors express their appreciation to J. W. Rogers of EG&G Idaho, Inc. for his personal efforts in neutron dosimetry determinations for the MEA irradiation assemblies.

The authors thank W. E. Hagel, L. LaMont, B. H. Menke, C. L. Miller, K. C. Miller, D. Schaffer and G. Lohr for their individual contributions to the irradiation and postirradiation phases of the program and E. D'Ambrosio for her contributions in preirradiation material properties determinations. The assistance of T. Ramey in the reduction of the fracture toughness test data, E. Martinez for her C., data curve fittings and G. Carlson for his preparation of graphics for this report are also acknowledged with gratitude.

1. INTRODUCTION

The present investigation was undertaken with the objective of qualifying, under closely controlled experimental conditions, the influence of radiation exposure rate on embrittlement accrual in reactor pressure vessel (RPV) steels. The question of fluence-rate or dose-rate effects on radiation-induced embrittlement in nuclear service has its origins in the 1950's when accelerated irradiation exposures were first applied to study end-of-life (EOL) nuclear service effects. Materials testing reactors such as the MTR and ETR in Idaho, the LITR and ORR in Tennessee and the UBR and UCRR in New York have been vehicles for high fluence-rate exposures of reactor structural materials including RPV steels. In these reactors, radiation exposures of a few weeks or a few months in duration can equal projected EOL fluene is for commercial power result vessels or internals. Whether or not the same magnitude of "damage" would be exhibited by materials irradiated under "fast" versus "slow" fluence accumulation conditions was a recognized uncertainty by the 1960's. This uncertainty was one key reason that power reactor vessel surveillance programs were undertaken. To guide such efforts, ASTM E 185: Standard Practice for Conducting Surveillance Tests for Light-Water-Cooled Nuclear Power Reactor Vessels was drafted.

Early investigations of fluence-rate effects, using test reactor experiments, did not reveal a significant influence of this exposure variable on steel property changes. For example, Harries and Eyre (Ref. 1) compared the effects of a 100:1 difference in exposure rate at an irradiation temperature of less than 200°C and found no apparent difference in the strength elevation with increasing fluence rate. The use of a low exposure temperature precluded thermal contributions from modifying the result. The fluence was on the order of 3 - 1017 n/cm2. Nonetheless, strength changes were appreciable and i ficient for their analyses. One limitation of the data set was the short time frame of the lowest fluence-rate exposure (about 200 hours). Unlike the indication of these data, data derived from power reactor surveillance programs compared recently to test reactor data banks do provide indications of a fluence-rate effect or a time-at-temperature effect, or a combination of both. In most instances, the data bank information does not offer a 1:1 comparison for a specific material. Rather, the fluence-rate effect is inferred from comparisons of material trends depicting embrittlement tendencies for exposures in the two reactor types. In a few cases, correlationmonitor materials such as the ASTM A 302-B reference plate (Ref. 2) or plates of the Heavy Section Steel Technology Program (HSST Plates 01, 02 or 03) were included in the surveillance program and permit a bridge to other irradiation tests. Unfortunately, such data do not cover a broad fluence range. In turn, a basis for a critical test of fluence rate contributions is not provided.

A further impediment to testing for fluence-rate effects is the general tie between fluence-rate level and neutron spectrum. Decoupling these two factors experimentally is, difficult if not impossible. (Harries and Eyres solved this problem by having their reactor operated at three power levels.) Progress made in neutron metrology in recent years offers partial solutions to this problem. Calculations of actual neutron spectra conditions, for example, are now available. Their use replaces the former practice of assuming a fission spectrum neutron energy distribution. Also, the exposure unit: displacements per atom (dpa) has been developed as a measure of damage production potential and is an alternative to non-weighted measures such as fluence E > 1 MeV or fluence E > 0.1 MeV for irradiation comparisons and descriptions. To the extent possible, both measures of neutron exposure are reported here. One reason is that significant portions of data in existing banks are referenced to fluence, E > 1 MeV, only. The reporting of neutron exposure in both frameworks is consistent with ASTM recommendations (Ref. 3)

This report presents MEA findings to date from its exploratory study for validating fluence rate as an exposure variable. It is noted here that one long term (3.7 year) experiment of the original matrix is still under irradiation for the NRC; results from this experiment are expected in 1991.

2. OBJECTIVE

The general objective was to clarify and confirm the significance of fluence rate for the NRC's projection of fracture resistance changes in RFV steels by irradiation at their service temperature, nominally 288°C (550°F). The research plan was to test the influence for three fluence levels: one (herein termed "low") corresponding to early vessel life; a second (termed "low") corresponding to early vessel life; a second (termed "intermediate") corresponding approximately to the inflection of the embrittlement versus fluence curve, and the last (termed "high") corresponding to mid-vessel life measured at the inner wall surface of the vessel. (Target fluence levels were dictated in part by the fluence obtainable in a four year program.) Target fluence rates were: $8-9 \times 10^{10}$, $5-6 \times 10^{11}$ and $8-9 \times 10^{-2} n/cm^2 s^{-1}$. The lowest target value corresponds approximately to the upper end of the range for FWR vessel service; the highest target value corresponds to that level equated with in-core experiments in many materials testing reactors.

Fluence-rate effects were to be judged independen by from: (1) relative change in notch ductility determined with the Charpy-V $(C_{\rm v})$ test method, (2) the relative change in tensile strength determined with 5.74 mm gage diameter tensile specimens, and (3) relative change in fracture toughness $(K_{\rm Jc}$ and J-R curve) as defined with 12.7 mm thick (0.5T-CT) compact specimens.

The plan called for the use of reference plates and welds having a high copper content to assure a relatively-high radiation embrittlement sensitivity. High copper content materials are commonly found in older-vintage RPV's and primarily are the source of present concerns over the fracture resistance of these structures.

3. MATERIALS AND IRRADIATION MATRIX

Four materials were selected for investigation (Table 1). The A 302-B plate is the ASTM correlation-monitor material which has seen extensive use in test and power reactor irradiation programs as a reference material. The A 533-B plate represents the steel composition chosen for more recent RPV construction in the U.S.A. and abroad. Copper contents (- 0.2% Cu) are illustrative of "high copper content" plates from non-improved steelmaking production (Ref. 4). The plates were arbitrarily coded 23F and 23G, respectively, for ready identification.

The submerged arc welds were made with Linde 80 welding flux or Linde 0091 welding flux and were coded W8A and W9A, respectively. These fluxes represent the two generic types used in RPV construction in the U.S.A. Welds made with Linde 80 tend to have a low as-fabricated C, upper shelf energy (USE) level (80-120 J); welds made with Linde 0091 or Linde 124 tend to have a high as-fabricated C, USE ceater than 150 J). Both welds were made commercially, using the same lot of welding wire. Only the welding flux (6) type differed. Accordingly, a direct test of the significance of welding flux type to irradiation behavior could be accomplished. Copper contents of the weld deposits (~ 0.354 Cu, target) were derived primarily from the copper cladding of the welding wire.

Specimens were removed from the A 302-B plate and the A 533-B plate to represent the L-T (longitudinal, strong) and T-L (transverse, weak) test orientation, respectively. Those from the welds were aligned to have the plane of fracture parallel to the welding direction and perpendicular to the weldment surface. The weld sampling region was in accordance with ASTM Standard Practice E 185. Depending on specimen type, the A 533-B samples were removed in two or three layers bracketing the 1/4T thickness plane. For the A 302-B plate, the C_v and tensile specimens were taken from one layer located just above the 1/2T plane of the plate. The CT specimens were removed in one layer immediately beneath the C_v and tensile specimens. The use of the 3/8 to 5/8T location material, instead of the preferred 1/4f location material was with NRC concurrence and was directed by the current shortage of ASTM reference plate material were wide. (Note: The adjoining 1/4T and 3/4T material was consumed in the performance of the NRC's LWR-SDIP Study (Ref. 5)).

Table 2 shows the irradiation test matrix for the materials. To date, data have been developed for all experiment assemblies except UBR-49 whose irrdiation is still underway.

				Chemical Composition (Weight-Percent)							
Material	Code	c	Mn	Si .	P	s	Ni	Cr	No	Cu	Sn
A 302-B Plate	23F	0.24	1.34	0.23	0.011	0.023	0.18	0.11	0.51	0.21	0.037
A 533-B Plate	23G	0.22	1.40	0.19	0.017	0.008	0.63	0.19	0.54	0.20	*
S/A Weld (Linde 80)	W8A	0.079(min) ^b 0.096(max)	1.27	0.71 0.79	0.010 0.017	0.012 0.019	0.55	0.10 0.13	0.42 0.50	0.37 0.42	0.002
S/A Weld (Linde 0091 \$)	W9A	0.19 (min) 0.19 (max)	1.21 1.27	0.23 0.23	0.008 0.012	0.005	0.64 0.77	0.10 0.11	0.49 0.50	0.35 0.43	0.003

TABLE I Chemical Compositions of the Reference Plates and Submerged Arc Weld Deposits

^a Not analyzed

^b Range (min/max) observed, multiple test locations in 1.83-m long weld seam

5

		Neutron Fluence Rateb			
Material	Target Fluence ^a (x 10 ¹⁹)	High (9 x 10 ¹²)	Intermediate (6 x 10 ¹¹)	Low (8 x 10 ¹⁰)	
A 302-B	0.5 1.0 2.0	UBR-65 ^C UBR-75 UBR-76	UBR-44 UBR-46 UBR-45	UBR-38	
S/A Weld (Linde 80 ¢)	0.5 1.0 2.0	UBR-65 UBR-75 UBR-76	UBR-44 UBR-46 UBR-45	UBR-49 ^d	
A 533-B	0.5	UBR - 77		UBR-38	
S/A Weld (Linde 0091 ¢)	0.5	UBR-77		UBR-49 ^d	
		(In-Core)	(Core-Edge)	(Reflector)	

TABLE 2 Irradiation Matrix

* n/cm², E > 1 MeV

b n/cm²-s⁻¹, E > 1 MeV

^c Irradiation assembly number

d UBR-49 (irradiation in progress).

4. MATERIALS IRRADIATION

The reactor chosen for the irradiations was the UBR reactor at the Buffalo Materials Research Center (BMRC). The BMRC is located on the campus of the State University of New York at Buffalo. The UBR is a 2 MW pool-type test reactor having a low fuel enrichment (- 6 percent) comparable to that of power reactors. Easy access for instrumented (lead-type) experimental assemblies and a capability for irradiating several assemblies at different fluence rates simultaneously were factors in its choice. The general arrangement of the MEA experiment facilities relative to the fuel core is illustrated in Fig. 1.

The in-core facilities (B4 and C2) provide a nominal fluence rate of $8-9 \times 10^{12} n/cm^2 \cdot s^{-1}$; those at the core edge provided the intermediate fluence rate of 5.6 x $10^{11} n/cm^2 \cdot s^{-1}$. MEA experiments for the in-core and the core-edge facilities are designed to use gamma heating to attain the desired specimen irradiation temperature, in this case $288^{\circ}C$. Accordingly, sample temperatures drop automatically (to about $50^{\circ}C$) whenever the reactor is shut down. The reflector region facility (a dry standpipe) provided the lowest fluence rate. Here, the target temperature is achieved primarily by resistance heaters located external to the specimen assembly. The control instrumentation reduces specimen temperatures during reactor outages. Proper standpipe position relative to the fuel lattice for the target fluence rate was established in advance using a "dummy" assembly.

Irradiation periods to attain a fluence of 0.5×10^{-3} n/cm² are about 2, 27 and 175 weeks for the three respective exposure locations. Because of the slow fluence accumulation in the standpipe, only a target fluence of 0.5×10^{19} n/cm² was included in the irradiation matrix. Each assembly typically was rotated by 180 deg in the irradiation facility at least once during the in-reactor residence period for fluence balancing across the specimen array.

Neutron spectrum conditions in the three facilities have been calculated for MEA (NRC) by outside laboratories. Calculations by Hanford Engineering Development Laboratory (HEDL) for the in-core facilities are given in Ref. 6 and 7. Those by the Institut fur Kerntechnik und Energiewandlung eV (IKE) for the core-edge and reflector region facilities are given in Ref. 8. Fluence (E > 1 MeV) measurements employed iron and nickel wire dosimeters placed within the specimen arrays. Most assemblies also included coolt-aluminum, silver-aluminum and uranium dosimeters to supplement the results from iron and nickel. Irradiated dosimeters are analyzed routinely for MEA by EG&G Idaho, Inc. (J. W. Rogers). The levels of uncertainty it assigns to fluence rates by iron, nickel and ²⁵⁶U analyses are, respectively, ± 8 , ± 7 and ± 5 percent at the lo confidence level, exclusive of uncertainties associated with the actual spectrum averaged cross sections of the irradiation fields or burnout of the results of interest.

Figure 2 through 17 show the specimen loadings in the individual capsules of each irradiation assembly. Neutron fluences, n/cm²

(text continues on pg. 25)

.

Schematic illustration showing the locations of the irradiation facilities used for fluence-rate effects qualification experiments in the UBR reactor.

		Totol Flu	ence, h/cm* x 1018
A-CAPSULE	236235236235235	(Fe	Dosimetry)
[UBR-38]	161 56 168 168 133 23F 23F 23F 23G 23G 11 83 12 182 195	Fe	0.50
	23F 23G 23F 23F 23F 155 181 35 156 60 23F 23G 23G 23G 23G 82 200 204 208 202	Fe	0.52
	23F 23G 23G 23G 23G 23F 169 197 199 183 108 23G 23G 23G 23G 23G 23F 198 185 1A4 203 132	Fe	0.54
	130 10 107 171 194 236 23F 23F 236 23F 207 131 170 190 106 236 236 23F 236 23F		
	189205 34 196 85 23F 23G 23F 23G 23G 36 206 109 186 192	Fe	0.57
		LE	

Fig. 2 Placement of C, and tension test specimens in Irradiation Assembly UBR-38 (Capsule A; elevation view). Average neutron fluence values, based on iron dosimetry, are shown in this figure and Figure 3 to Figure 17. Determinations based on 238U dosimetry, are also shown where available. UBR-38

8

B-CAPSULE

-

Fig. 3 Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-38 (Capsule B; elevation view).

-

10

.

1

		Totol	Fluence, n/om ² x 10 ¹⁹
LIPP- AA A-CAPSULE	WEAL23FWEAL23FWEA		(Fe Dosimetry)
	29610526542271 23FW8AW8A23F23F 1358731845141	· Fe	0.76
	V&A 23F W&A 23F V&A 32714631755279 23F W&A 23F W&A 23F 181342633793 V&A V&A 23F 23F V&A	• Fe	0.78
	23F W&A W&A 23F 23F 149 299 308 - 7 184 W&A W&A 23F W&A W&A 262 326 51 302 307 23F 23F 23F W&A 23F	· Fe	0.82
	54 138 3 54 13 W6AW6A 23F W6AW8A 274 266 187 276 293 23F 23F 23F W6A 23F 195 157 90 301 100	· Fe	0.85
		ILE	

Fig. 4 Placement of C, and tension test specimens in Irradiation Assembly UBR-44 (Capsule A; elevation view).

B-CAPSULE

			Total	Fluence, n/om ² x 10 ¹⁹
				(Fe Dosimetry)
UBR-45	A-CAPSULE	W8A 23F W8A 23F W8A 303 196 283 104 275 23F W8A W8A 23F 23F 40 195 304 52 186	Fe	3.57
		W&A 23F W&A 23F W&A 26914727256291 23F W&A 23F W&A 23F 2533813933094	- Fe	3.70
	•	W8A W8A 23F 23F W8A 277 41 150 46 313 23F W8A W8A 23F 23F 162 329 343 88 4 W8A W8A 23F W8A W8A 280 314 7 288 266	- Fe	3.84
		23F 23F W&A W&A 23F 48 190 320 83 185 W&A W&A 23F 23F W&A 297 319 98 14 286 23F 23F 23F V&A 23F 43 158 91 294 136	Fe	3.99
			ENSILE	

Fig. 6 Placement of C, and tension test specimens in Irradiation Assembly UBR-45 (Capsule A; elevation view).

B-CAPSULE

		Totol	Fluence, n/om x 1019
A-CADSULE	Contract of the set of the		(Fe Dosimetry)
UBR-46	305 96 270140 315 23F W6A W6A 23F 23F 92 145 300 8 183	Fe	1.41
	V&A 23F V&A 23F V&A 29518928457289 23F V&A 23F V&A 23F 18634499326151 V&A V&A 23F 23F V&A	Fe	1.50
	287 49 95 53 267 23F W6A W8A 23F 23F 197 273 306 134 142 W8A W6A 23F W8A W8A 331 332 137 339 278	Fe	1.55
	26 47 316 3104 W6AW6A23F23FW6A 281325148 41 298 23F23F23F23FW6A23F 5 89 44 292102	Fe	1.59
		ILE	

Fig. 8 Placement of C, and tension test specimens in Irradiation Assembly UBR-46 (Capsule A; elevation view).

B-CAPSULE

UBR-65

A-CAPSULE

Fig. 10 Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-65 (Capsule A; elevation view).

17

		Total Fluence, n/cm ² x 10 ¹⁹
B-CAPSULE	WAARSEWAARSEWAA	(Fe Dosimetry)
	309 65 363 152 383 W8A 23F 23F W8A 23F 310 18 114 372 172	Fe 0.60
	23FW8A23FW8AW8A 15 392117412 33	Fe . 0.57
(²³⁸ U)	311 68 79 159 177 23F W8A W8A W8A 23F	(0.55)
	W8A 23F W8A W8A 23F	Fe 0.56
	W8A 23F W8A 23F W8A 340 62 365 167 421	Fe 0.56
	23F 23F W8A W8A 23F 9 30 221 507 78 W8A W8A 23F W8A 23F	Fe 0.54
	23F 23F W8A 23F W8A 27 65 369 164 240	Fe 0.53
	349358 67 380 198	

UBR-65

.

<u>B-</u>

Fig. 11 Placement of C, and tension test specimens in Irradiation Assembly UBR-65 (Capsule B; elevation view).

.
UBR-75

A-CAPSULE

Fig. 12 Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-75 (Capsule A: elevation view).

19

Fig. 13 Placement of C, and tension test specimens in Irradiation Assembly UBR-75 (Capsule B; elevation view).

UBR-76

.

A-CAPSULE

Fig. 14 Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-76 (Capsule A; elevation view).

21

			Total	Fluence, n/cm ² x 10 ¹⁹
	R-CADSULE	Devloative		(Fe Dosimetry)
[UBR-76]	D' C/Y OCLL	V8A 23F W8A 23F V8A 23F 23F W8A 23F 416 50 163 371 80	Fe	2.32
	376	23F W8A 23F W8A W8A 129 410 179 400 379 W8A 23F 23F 23F 23F 354 23 32 161 20	Fe	2.25
	(200 U)	23F W8A W6A W8A 23F 67 364447437 81 W8A 23F W8A W8A 23F		(2,32)
		334 111 390 351 119 W8A 23F W8A 23F W8A 382 64 589176 425	Fe	2.23
		23F 23F W6A 23F 128 126 591 17 70 W8A W8A 23F W8A 23F 336 368 116 378 166	Fe	2.19
		23F 23F W8A 23F W8A 77 29 592 17 335 W8A W8A 23F W8A 23F 357 85 88 114 143	Fe	2.14
				•
			.E	

Fig. 15 Placement of C, and tension test specimens in Irradiation Assembly UBR-76 (Capsule B; elevation view).

		Total	Fluence, n/cm ² x 10 ¹⁹
	((Fe Dosimetry)
JBR-77 . A-CAPSULE	236 W9A 236 W9A 230 202 238 V3		
	23GW9A 23GW9A 223 204 233 286	' Fe	0.41
	WANWANWAN 23G		
	23G23GW9AW9A	Fe	0.43
	240227257274 W9A23GW9A23G		
	304 209 284 235	Fe	0.43
, 238,1)	292 281 216 210		0.40
1 0/	23G 23G W9A W9A		(0.44)
	236 W9A 236 W9A		
	W9A 23G W9A 23G	Fe	0.46
	339214270220 236V9A236V9A		
	221 2952 7 289	Fe	0 47
	167225224278		
	W9AW9A23023G	-	
	236 W9A 236 U9A	re	0.48
	the state of the s		
	C _V TENSI	LE	

Fig. 16 Placement of C, and tension test specimens in Irradiation Assembly UBR-77 (Capsule A; elevation view). UBR-77

B-CAPSULE

Fig. 17 Placement of 0.5T-CT compact specimens in Irradiation Assembly UBR-77 (Capsule B; elevation view).

24

.

(E > 1 MeV), at various positions in the specimen arrays are indicated. Figures 18 through 25 illustrate the placements of thermocouples within the specimen arrays. The thermocouples were welded to the specimens in the test region. Unless indicated otherwise, measured temperatures were within $11^{\circ}C$ (20°F) of the target temperature of 288°C (550°F). Appendix A provides listings of average fluence rates obtained from the individual dosimeters: Appendix B provides detailed reactor operations history for the irradiation assemblians.

B-CAPSULE

Fig. 18

Irradiation Assembly UBR-38 showing thermocouple placements in the specimen arrays.

UBR-44

B-CAPSULE

Fig. 19 Irradiation Assembly UBR-44 showing thermocouple placements in the specimen arrays.

B-CAPSULE

Fig. 20 Irradiation Assembly UBR-45 showing thermocouple placements in the specimen arrays.

B-CAPSULE

Fig. 21

and the second

Irradiation Assembly UBR-46 showing thermocouple placements in the specimen arrays.

A-CAPSULE

A-CAPSULE

Irradiation Assembly UBR-75 showing thermocouple Fig. 23 placements in the specimen arrays.

.

4. 1

A-CAPSULE

PIECE

the rmocouple

and the

B-CAPSULE

Fig. 25 Irradiation Assembly UBR-77 showing thermocouple placements in the specimen arrays.

5. EXPERIMENTAL RESULTS

5.1 Notch Ductility and Tensile Strength Determinations

5.1.1 Overview

The C., test results for the A 302-B plate (Plate 23F) are illustrated in Fig. 26, 27 and 28; those for the Linde 80 submerged arc weld (Weld W8A) are shown in Fig. 29 and 30. C, test results for the A 533-B plate (Plate 23G) and the Linde 0091 submerged arc weld (Weld W9A) are shown in Fig. 31 and 32, respectively. For the weld materials, data from the companion low fluence-rate irradiation are not yet available (UBR-49). Individual C, test values from the irradiation assemblies are provided in Appendix C Computer surve fits of the data and values of curve fitting parameters are given in Appendix D. In the text below, comparisons are based on 41-J transition temperature and upper shelf energy (USE) values from the hand-drawn curves. Determinations on strength increase with irradiation are listed in Table 3. Tensile test results for Weld W8A from other high fluence rate tests (in-core irradiations) are also listed in Table 3 to extend the data base. Expected from its higher copper and nickel content, the Weld W8A consistently showed a greater radiation embrittlement sensitivity than the Plate 23F.

Three general comments on the data for the Plate 23F and the Weld W8A are appropriate. Figure 26 shows preirradiation notch ductility properties of the plate at the 1/4T location. This thickness layer was used for the NRC's Light Water Reactor-Surveillance Dosimetry Improvement Program (LWR-SDIP) irradiations in the Pool Side Facility (PSF) of the Oak Ridge Research Reactor (Ref. 5). Comparison of the properties of this layer versus those of the present study indicates a small difference in 41-J transition temperature (about 11°C, 20°F) and a relatively large difference in C, USE (about 16 J, 12 ft-1b). The differences point up the need for check testing when more than one thickness layer of a plate is employed for specimen stock. In Fig. 29 and 30, the data for the weld depic: a very shallow ductile-to-brittle transition trend and at the higher fluences, a low C_v USE as well. These characteristics made identification of the 41-J temperature elevation by irradiation difficult. The cited characteristics are not unusual for Linde 80 welds; on the other hand, 41-J temperature identification for Linde 0091 welds generally is not hampered by eicher aspect (see Fig. 32 example). It is further noted that fairly high data scatter is present in certain regions in some Weld W8A The cause of the scatter is not known but local weld curves. inhomogeneity is suspected. In this regard, test speciment were taken randomly through the weld thickness. Lastly, the postirradiation tensile strength values list d in Table 3 are duplicate test values in most cases. Typically, values for a given irradiation condition were within 20 MPa (3 ks1).

Actual (measured) neutron fluences for the in-core experiments were close to target values in all cases; however, actual values for the core-edge experiments exceeded the target levels, especially that of Assembly CE-3. This precluded a 1:1 matching of data sets for the two

Fig. 26

C, notch ductility of the A 302-B Plate 23F after 288°C irradiation at the intermediate fluence rate (Core-Edge Assemblies Nos. 1, 2, 3). The irradiated condition trend curve of the upper graph (CE-1) is reproduced in the middle and lower graphs for ease in making comparisons. The open and half filled circle points are for 3/8T to 5/8T and 1/4T thickness locations in the original 152-mm-thick plate, respectively.

Fig. 27 C, notch ductility of the A 302-B Plate 23F after 283°C irradiation at the high fluence rate (In-Core Assemblies Nos. 1 and 3).

Fig. 28 C, notch ductility of the A 302-B Plate 23F after 288°C irradiation at the low fluence rate (Reflector Region Assembly No. 1). The dashed curve depicts the notch ductility of this material after a high fluence rate irradiation to about the same fluence.

Fig. 29 C, notch ductility of the Linde 80 Weld W8A after 288°C irradiation at the intermediate fluence rate (Core-E's) Assemblies Nos. 1, 2, 3). The irradiated condition trend curve of the upper graph (CE-1) is reproduced in the middle and lower graphs for ease in making comparisons.

Fig. 30 C, notch ductility of the Linde 80 Weld W8A after 288°C irradiation at the high fluence rate (In-Core Assemblies Nos. 1 and 3).

Fig. 31 C, notch ductility of the A 533-B Plate 23G after 288°C irradiation to ~ 0.5 x 10¹⁹ n/cm² at the low fluence rate (Reflector Region Assembly No. 1) and at the high fluence rate (In-Core Assembly No. 4). Results from a prior high fluence rate irradiation are also illustrated (see dashed curve).

Fig. 32 C, notch ductility of the Linde 0091 Weld W9A after high fluence rate irradiations to two fluence levels (In-Core Assembly No. 4 and a prior test).

Material	Itradiation Assembly	Fluence x 10 ¹⁹ n/cm ²	dpa	Yield Strength [®]		Ultimate Tensile Strength			
				MPa	ksi	AMPa	NPa	ksi	MPo
Plate 23F (A 302-B)	Unirradiated			447	64.74		589	85.35	
	IC-1 (UBR-65B) IC-2 (UBR-75B) IC-3 (UBR-76B)	0.56	0.0091 ~ 0.0198 0.0361	517 538 564	74.93 78.06 81.73	70 91 117	647 668 691	93.79 96.85 100.22	58 79 102
	CE-1 (UBR-44A) CE-2 (UBR-46A) CE-3 (UBR-46A)	0.79 1.50 3.85	0.0111 0.0212 0.0545	550 554 566	79.81 80.32 82.14	103 107 119	680 683 696	98.68 99.08 100.91	91 94 107
	IP-1 (UBR-38A)	0.54	0.0076	529	76.68	82	661	95.93	72
Plate 23G (A 533-B)	Unirradiated			431	62.47		581	\$4.33	
	IC-4 (UBR-77A)	0.45	0.0073	493	71.46	62	641	92.91	60
	IP-1 (UBR-38A)	0.54	0.0076	550	79.74	119	699	101.34	118
Weld W8A (Linde 80)	Unirradiated			481 ^b 498 ^c	69.76 72.18	:::	604 617	87.59 89.50	:::
	Thermal Aged ^d			483	70.06		604	87.56	•••
	IC-1 (UBR-65B) IC-2 (UBR-75B) IC-3 (UBR-76B)	0.56 1.04 2.23	0.0091 ~ 0.0198 0.0361	592 624 659	85.86 90.53 95.59	111 143 178	699 726 747	101.44 105.26 108.26	95 122 143
	HRR-72e,f	1.06	0.0172	625	90.62	144	721	104.62	117
	UBR-55Ce,f	3.25	0.0527	706	102.40	260	778	112.90	189
	CE-1 (UBR-44A) CE-2 (UBR-46A) CE-3 (UBR-46A)	0.79 1.50 3.85	0.0111 0.0212 0.0545	650 659 684	94.31 95.53 99.26	169 178 203	741 751 767	107.54 108.91 111.23	137 167 163
Weld W9A (Linde 0091)	Unirradiated			564 ^b 565 ^c	81.81 81.99	:::	659 617	95.55 89.54	:::
	Thermal Agedd			561	81.32		653	94.77	•••
	IC-4 (UBR-77A)	0.45	0.0073	667	96.70	103	740	107.37	81

TABLE 3 Postirradiation Tensile Strengths (Ambient Temperature Tests)

a Average of duplicate tests unless noted b Specimen set no. 1 (reference set) c Specimen set no. 2

2

d 288°C-1000 hours; corresponds to specimen set no. 1 e Prior MEA study f Single determination

42

ALC: N

* (9) ()

Di S

exposure locations. Nonetheless, sufficient overlap exists for trend definition.

5.1.2 Assessment of Fluence-Rate Effect

Figure 33 summarizes observed transition temperature elevations for the two plates and the Weld W8A to illustrate the influence of fluence rate on apparent embrittlement sensitivity. The open circle points depict results from the core-edge irradiation experiments at $5.6 \pm 10^{11} \text{ n/cm}^2 \cdot \text{s}^{-1}$; the filled circle points signify results from the in-core irradiation experiments at the high fluence rate of $8.9 \times 10^{12} \text{ n/cm}^2 \cdot \text{s}^{-1}$. The filled square points refer to the low fluence-rate irradiation of the reference plates in the reflector region. To aid the identification of embrittlement trends for the incore exposure condition, data obtained from prior in-core irradiation tests of Weld W8A have been included in Fig. 33. A reference trend band and two high fluence test points for the 1/4T thickness location of the Plate 23F are also shown for this purpose.

Referring first to the A 302-B Plate 23F, the Cy findings show no discernable effect of fluence rate on radiation sensitivity in the low target fluence regime. Furthermore, the in-core (IC) and core-edge (CE) results are in good agreement up to a fluence of about 2.0 x 10^{19} n/cm². Above this value, the data trends diverge with the intermediate fluence rate appearing to have a lesser damage-producing potential than the high fluence rate. In support of this analysis, notice the positions of the data trend for the 1/4T thickness layer of the plate versus the datum for the CE-3 Assembly. The observed fluence-rate effect for the A 533-B Plate 23G agrees well with that for the A 302-B Plate 23F in the low target fluence region. While the 41-J transition temperature elevations for the in-core and the reflector-region irradiations of this plate are not the same, the difference (17°C) can be attributed in part to the fluence difference between the two specimen sets and the observed data scatter. Considering these factors, the fluence-rate effect does not appear large for the Plate 23G - aless viewed on a percentage basis. The radiation-induced elevations in transition temperature for the two plates from the low fluence-rate experiment are essentially the same. Likewise, the transition temperature elevations from the incore experiments at - 0.5 x 10^{19} n/cm² are not markedly different. This is not the case for the high fluence irradiations condition. The high fluence datum shown for Plate 23G is from an earlier MEA study. Yield strength elevations by the low fluence-rate irradiation were also very similar. It is noted from Table 1 that the nickel contents of the plates differ (0.18% vs. 0.63%) but not their copper contents (- 0.21%). The Plate 23G has a significantly lower sulfur content (0.023% vs. 0.008%) as well.

In contrast to the apparent fluence-rate effect for the Plate 23F, the data trends for the Weld W8A indicate a fluence-rate influence in the low but not the high fluence regime. That is, the data points for core-edge and in-core tests are separated by approximately $15^{\circ}C$ ($25^{\circ}F$) at -1×10^{19} n/cm² but tend toward convergence with increasing fluence. The scatter in the 41-J transition temperature elevation

Fig. 33 Comparison of C, 41-J transition temperature elevations observed for the Linde 80 Weld W8A (Left panel), the A 302-B Plate 23F (center panel) and the A 533-B Plate 23G (Right Panel).

44

values at fluences above 2×10^{19} n/cm² precludes a clear assessment of the effect. For the weld, it can be concluded however that the embrittlement condition achieved by specimens in the CE-3 Assembly is no worse than the embrittlement condition described by specimens irradiated in-core to about the same fluence level. Secondly, the determinations for the plate versus weld permit a conclusion that the fluence-rate effect is dependent on material type (or composition). Further comparisons are planned which will provide separate tests of composition effects.

The tensile test results for the Plate 23F support the cited C_v data comparisons at fluences greater than - $1.2 \times 10^{19} n/cm^2$. Noting that the fluence of Assembly CE-2 is between those of Assembly IC-2 and IC-3, the postirradiation yield strength elevation (107 MPa) is intermediate to the elevations found for specimens in Assemblies IC-2 and IC-3 (91 MPa and 117 MPa, respectively), Extrapolation of the incore irradiation trend to $3.85 \times 10^{19} n/cm^2$ indicates a much greater strength elevation at this fluence than that shown by the Assembly CE-3 specimens. Relative to the fluence interval between 0.6 and 1.2 $\times 10^{19} n/cm^2$, the yield strength elevation for Assembly CE-1 is somewhat greater than that expected (by about 25 MPa) from the C_v trends. For the low fluence condition of Weld W8A, data for the two fluence rates show a much greater difference, that is, - 45 MPa (- 6 ksi) - and are considered significant. For this material, data from a prior in-core irradiation test at high fluence are available (see UBR-55C, Table 3) for comparison with the Assembly CE-3 data. Here, the yield strength elevations are within 22 MPa (- 3 ksi).

5.2 Fracture Toughness Determinations

5.2.1 Overview

Fracture toughness data were developed for the materials in both the transition and the upper shelf regimes. Details on the test procedures and the data analysis procedures, and a detailed description of the results (including tabulated results from individual tests) are given in Appendix E. This section summarizes the most important information.

For both the transition and the upper shelf regimes, $K_{\rm Jc}$ values were determined from each test. For the transition region, $K_{\rm Jc}$ was computed from

$$K_{\rm Jc} = J_{\rm Crit} E / (1 - \nu^2)$$
 (1)

where J_{Crit} is the critical J value at the fast fracture point (determined from the Merkle-Corten formulation, Ref. 9), E is the elastic modulus and v is Poisson's ratio (taken to be 0.3). Individual test points in the transition region were fitted to an exponential equation of the form

$$K_{Jc} = C_1 + C_2 EXP [(T-T_c)/C_3]$$
 (2)

where the coefficients C_1 , C_2 and C_3 are determined from a non-linear regression analysis, and T_0 is 0°C or 32°F, depending on the units of T. The use of confidence bounds (95%-95%) is described in Appendix E, and the curve-fit results are documented in Appendix F.

For the upper shelf region, a J resistance or J-R curve was obtained from each test. For this report, the modified form of J (J_M) per Ernst (Ref. 10) has been used for all J-R curve evaluations. For calculation of K_{J_C} , the J_{I_C} or J_O value for each test is substituted for J_{Crit} in Eq. 1. (For the purposes of this report, upper shelf K_{J_C} values are used to compare results for the different irradiation conditions only.) As described in Appendix E, the J_{I_C} or J_O value is determined from a power law analysis, whereby the power law intersection with the 0.15 mm offset exclusion line is termed J_O . This definition of J_O is similar to the ASTM E 813-87 method, where the J-R curve intersection with a 0.2 mm offset exclusion line is used. The method applied in this report is preferred to the ASTM method due to the lower, and hence more conservative values which result from this definition. The K_{J_C} values are independent of the J formulation used, since the various formulations tend to give identical values at small crack growth increments.

Plots of K_{Jc} as a function of temperature are given in Figs. 34 to 36 for the A 302-B Plate 23F, in Figs. 37 and 38 for the Linde 80 Weld W8A, in Fig. 39 for the A 533-B Plate 23G and in Fig. 40 for the Linde 0091 Weld W9A. In all cases the indicated trend lines are from computer curve-fits to the data, using Eq. 2.

In general, the K_{Jc} data for each irradiated condition data set are characterized by moderate to high amounts of scatter. This characteristic is particularly evident for the Linde 80 weld (W8A), but is true to some extent for the plates as well. Possible causes for the scatter include inherent material variability, irradiation temperature differences and to a small extent the fluence differences within the specimen set.

For the Plate 23F and for the Weld W8A, the data from the three coreedge (CE) assemblies indicate similar fracture toughness trends in the transition region for all three fluence levels, as illustrated in Fig. 41. More specifically, data for all three CE assemblies indicate about the same 100 MPa/m transition temperature, chosen as an indexing level for making comparisons. This finding was unexpected, and is generally not supported by either the Cy or the tensile strength data, for which higher fluence equates to a greater transition temperature elevation or strength increase. The differences in the strength and transition temperature increases were not great among the various CE assemblies however. In contrast, the three in-core (IC) experiments indicate a progressive increase in transition temperature with fluence (Fig. 42). As shown in Appendix E, the J-R curve trends do not necessarily agree with the fracture toughness trends in the transition regime, as higher fluence tends to result in reduced J levels in most cases.

Fig. 34 Fracture toughness data from the low fluence rate irradiation (IP-1) of A 302-B Plate 23F.

47

Fig. 36 Fracture toughness data from the high fluence rate (IC) irradiations of A 302-B Plate 23F.

•

Fig. 37 Fracture toughness data from the intermediate fluence rate (CE) irradiations of Linde 80 Weld W8A.

.

Fig. 39 Fracture toughness data from the irradiations of A 533-B Plate 23G.

Fig. 40 Fracture toughness data from the irradiation of Linde 0091 Weld W9A.

53

Fig. 41 Comparison of transition regime data trends for the intermediate fluence rate irradiations of Linde 80 Weld W8A and A 302-B Plate 23F.

Fig. 42 Comparison of transition regime data trends for the high fluence rate irradiations of Linde 80 Weld W8A and A 302-B Plate 23F.

5.2.2 Assessment of Fluence Rate Effect

Comparisons of the transition temperature increases (at 100 MPa/m) for each material are given in Fig. 43. The Linde 0091 weld (W9A) is included in this figure for completeness. It is re-emphasized that the determinations were hampered by high data scatter in many cases. For the A 302-B Plate 23F, data from the NRC's LWR DIP (Ref. 5) and an EPRI-sponsored program (Ref. 11) are also shown. The fluence rate for specimers from the LWR-SDIP Simulated Surveillance Capsules (SSC) is slightly lower than the fluence rate experienced by the in-core assemblies (-7 vs. -9 x 10^{12} n/cm²-s⁻¹); the LWR-SDIP In-Wall capsules have fluence rates which span those of the core-cdge (CE) assemblies $(2-8 \text{ vs.} 5-6 \times 10^{11} \text{ n/cm}^2 \text{-s}^{-1})$. The EPRI-sponsored irradiation was an in-core irradiation at UBR. For the two welds, additional in-core irradiation data are obtained from Ref. 12. For the A 533-B Plate 23G, data (of a limited nature) from a previous incore irradiation (Ref. 13) are given to estimate embrittlement at high fluence.

For the A 302-B plate, the data from the three in-core irradiations, the SSC irradiations and the EPRI-sponsored in-core irradiation form a single data trend as a function of fluence. In comparison, the coreedge irradiations and the LWR-SDIP in-wall irradiations indicate less embrittlement at high fluences and greater embrittlement at low fluences. However, with the core-eage irradiations, no significant difference in fracture toughness was found with the fluence levels examined. Data trends for the two fluence rates (CE and IC) appear to cross-over at a fluence of - 2×10^{19} n/cm². For the lowest fluence rate, achieved with the in-pool (IP) facility, the indicated shift is much greater than the shift by a comparable fluence in-core. However, it is also lower than that for a somewhat higher core-edge fluence exposure. This trend is more clearly seen in Fig. 44, where the individual data points and curve-fits are illustrated for each fluence (Some acknowledgement of the fluence differences among these rate. three sets is necessary.)

Many of the observations for the A 302-B Plate 23F are found to apply to the Linde 80 weld as well. Specifically, the in-core irradiations of the Linde 80 weld in this program and previous in-core irradiations indicate a distinct dependence on the total fluence, within the range of fluences from 0.5 to 2.1 x 10^{19} n/cm². As well, data for the coreedge irradiations do not indicate significant differences in spite of a large fluence difference. The data trend with fluence for the incore irradiations crosses that for the core-edge irradiations at $-2 \times$ 10^{19} n/cm². A disturbing aspect of the results for this weld is that previous in-core data (Ref. 12) indicated much less embrittlement than the present IC data for a given fluence. Since the same irradiation facility was used for all of the in-core irradiations, the difference may be due to some weld inhomogeneity along the weld seam. This is being investigated and will be the subject of a future report.

For the A 533-B Plate 23G, the IP irradiation produced greater embrittlement than the IC irradiation (Fig. 45). In this case, the fluence differences could explain some of the difference. This trend is consistent with that observed for the A 302-B Plate 23F.

Fig. 43 Transition temperature increase as a function of fluence for the program materials.

Fig. 44 For the A 302-B Plate 23F, comparison of transition regime data for all three fluence rates, at the lowest target fluence level of ~ 0.5 x 10¹⁹ n/cm².

Fig. 45 For the A 533-B Plate 23G, comparison of transition regime data for the low and the high fluence rates.

59

For the Linde 0091 Weld 0091, no comparisons of data from different fluence rates is possible. The shift resulting from the present in-core irradiation (IC-4) is similar to that from previous in-core irradiations to a much higher fluence (0.5 vs. $1.5 \times 10^{19} \text{ n/cm}^2$), paralleling the observations for the Linde 80 Weld W8A.

In terms of degradation in upper shelf properties, small decreases in J levels occur for the plates (Figs. 46 and 47), with moderate decreases for the welds (Figs. 48 and 49). For any of the fluence rates, higher total fluences tend to result in reduced J levels. For the A 302-B Plate 23F and the Linde 80 Weld W8A, the lowest curves overall are for the highest fluence irradiation overall, from CE-3 (UBR-45).

To summarize, fluence rate effects were seen for the fracture toughness data. In contrast to degradation from a high fluence rate exposure, a low fluence rate appeared more detrimental at low fluence, but the converse appears true for high fluence. A clearer picture is precluded by the scatter encountered in this data.

5.3 <u>Comparison of Transition Temperature Elevations by K_{Jc} and Charpy-V Test Methods</u>

One important consideration in the evaluation of fluence-rate effects is the relative effect on notch ductility (C_v) vs. fracture toughness correlation. Since the upper shelf fracture toughness trends are not easily quantified using a single parameter, the focus of this discussion will be on the transition temperature elevation (ΔT). Data for the transition regime are summarized in Table 4 for both the C_v and K_{Jc} data.

In Ref. 14, the ΔT from C_v data was found to underestimate somewhat the ΔT from K_{Jc} data for base metals. For weld metals, the two measures of ΔT were found to be in good overall agreement. Similar comparisons are made in Figs. 50 and 51 for the materials of the present study. Also illustrated in each case are data from previous irradiations of the same materials. For all four materials of the present study, the ΔT from C_v is found to give reasonable estimates of the ΔT from K_{Jc} . The one noteworthy exception is the somewhat large difference in ΔT 's for the low fluence rate (IP) irradiation of the A 533-B Plate 23G.

For the A 302-B Plate 23F, all three fluence rates from this program yielded a similar ΔT relationship for the two test methods. In contrast, the "Previous" data (from Ref. 5) indicate a disagreement (on average 24°C) between the ΔT from C_y and that from K_{JC}. The previous data on this plate were from the nominal 1/4T and 3/4T thickness locations, whereas specimens for the current study were taken from the plate mid-thickness (1/2T) location. On examining the data for the unirradiated condition (see Fig. 26), the C_y data for the 1/2T location shows a 41-J transition temperature which is 11°C (20°F) lower than that for the 1/4T or 3/4T location, that is -15°C vs. -4°C. In contrast, the K_{JC} data for the 1/2T location indicate a 100 MPa/m transition temperature (-44°C) that is 12°C (22°F) higher

Fig. 46 Comparison of J-R curves for A 302-B Plate 23F from the various irradiation assemblies.

..

Fig. 47 Comparison of J-R curves for A 533-B Plate 23G from the various irradiation assemblies.

Fig. 48 Comparison of J-R curves for Linde 80 Weld W8A from the various irradiation assemblies.

Fig. 49 Comparison of J-R curves for Linde 0091 Weld W9A from the various irradiation assemblies.

			Tempe	rature at	Temperat	ure Shifts at
Capsule	UBR-	Fluence	41 J (°c)	100 MPa/m (°C)	41 J	100 MPa/m (°C)
			A 302-B	Plate 23F		
Unirrad. CE-1 CE-2 CE-3 IC-1 IC-2 IC-3 IP-1	44 46 45 75 76 38	0.79/0.88 1.50/1.64 3.85/4.01 0.56/0.53 1.22/1.02 2.23/1.95 0.54/0.57	-15 43 49 63 29 46 57 38	-44 31 33 30 -13 9 40 16	58 64 78 44 61 72 53	75 77 74 31 53 84 60
			Linde 80	Weld W8A		
Unirrad. CE-1 CE-2 CE-3 IC-1 IC-2 IC-3	44 46 45 65 75 76	0.79/0.88 1.50/1.64 3.85/4.01 0.56/0.53 1.22/1.02 2.23/1.95	-23 102 107 127 82 96 104	-61 69 80 66 22 51 73	125 130 150 105 119 127	130 141 127 83 112 134
			A 533-B P	late 23G		
Unirrad. IC-4 IP-1	77 38	0.45/0.47 0.54/0.57	-34 5 21	-83 -54 7	39 55	29 90
			Linde 0091	Weld W9A		
Unirrad. IC-4	77	0.45/0.47	-62 -1	- 84 - 5	61	
Unirrad. CE-1 CE-2 CE-3 IC-1 IC-2 IC-3 Unirrad. IC-4 IP-1 Unirrad. IC-4	44 46 45 65 75 76 77 38 77	0.79/0.88 1.50/1.64 3.85/4.01 0.56/0.53 1.22/1.02 2.23/1.95 0.45/0.47 0.54/0.57	Linde 80 -23 102 107 127 82 96 104 <u>A 533-B F</u> -34 5 21 <u>Linde 0091</u> -62 -1	Weld W8A -61 69 80 66 22 51 73 Plate 23G -83 -54 7 Weld W9A -84 -5	125 130 150 105 119 127 39 55	「「「「「「「「「「「「「」」」」」

Table 4 Comparison of Transition Temperature Shifts (ΔT) from C_v and K_{Jc}

= 10^{19} n/cm^2 (E > 1MeV), with C_v/K_{Jc}.

Fig. 50 Comparison of ΔT from C_v and ΔT from K_{Jc} for the A 302-B Plate 23F and the A 533-B Plate 23G.

than that for the 1/4T or 3/4T location (-56°C). Causes for this mismatch are not known. One would expect both test methods to indicate a change in properties in the same direction. An accounting of the 23°C total offset (11°C + 12°C) in the baseline properties would bring both sets into better agreement.

In terms of upper shelf toughness, correlations have been developed relating J-R curve trends to $C_{\rm v}$ USE levels (Ref. 15). The cited correlations were developed using Linde 80 weld materials only. As illustrated in Fig. 52, data from this program correspond well with the correlations from Ref. 15, further validating the utility of the correlations.

6. DISCUSSION

The observed levels of difference in notch ductility change (or yield strength change) by an "intermediate" versus "high" fluence rate were not large. However, the differences appear to be of sufficient magnitude to warrant consideration in making judgments of material servicability or the setting of operating parameters. The influence of composition on the relative susceptibility of steels and weld metals to fluence-rate effects should be qualified. Until this variable is properly explored, the full importance of the present observations to embrittlement projection methods such as NRC Regulatory Guide 1.99 will not be known.

Additional tests of fluence-rate effects in welds should be pursued for low fluences, that is, the fluence interval of about 1 to 5 x 10^{16} n/cm², since here slow fluence accumulations (service) appear more damaging than fast fluence accumulations (test reactors). The magnitude of the fluence-rate effect seen to date is not so large as to preclude the use of accelerated (test reactor) irradiations for screening metallurgical, irradiation or postirradiation annealing variables.

The reduction of the C, USE of weld W8A to a level of 50 J (and less), while hampering the establishment of 41-J temperature, demonstrates that such levels are possible with fluences less than 4×10^{19} n/cm². The development of J-R curve data at such low fluences helps to validate correlations developed for Linde 80 welds as a function of C, USE (Ref. 15).

The study has demonstrated the value of including tensile specimens along with C_v specimens, especially if low postirradiation C_v USE levels result. Trends in yield strength with fluence may offer an acceptable alternative to 41-J temperature trend information in such cases.

One somewhat surprising result was the very low apparent sensitivity of the A 302-B Plate 23F and the Linde 80 Weld W8A to fluence levels above $\sim 0.5 \times 10^{19}$ n/cm² in the intermediate fluence rate irradiation series (CE). Such an embrittlement "plateau" was not described by the data for the materials when irradiated at the high fluence rate. Whether or not this behavior is generic to these two material types is uncertain at present.

7. CONCLUSIONS

The following observations and conclusions have been obtained from the investigations to date:

- Fluence-rate effects on the notch ductility and tensile strength properties of the ASTM A 302-B reference plate and a high copper, high nickel content Linde 80 submerged arc weld deposit were observed.
- The fluence-rate effect was apparent for the plate at high fluence but not low fluence. The converse was observed for the weld. At high fluence, the intermediate fluence rate produced less embrittlement than a high fluence rate for the A 302-B plate. At low fluence, the intermediate fluence rate produced more embrittlement than the high fluence rate for the Linde 80 weld..
- From conclusion 2, the data suggest that the fluence-rate effect is dependent on material type (plate or weld) or material composition, including copper content and nickel content.
- The apparent radiation embrittlement sensitivities of the 0.2% Cu content reference plates were about the same at 0.5 x 10¹⁹ n/cm² but differed significantly at 3 x 10¹⁹ n/cm². Their similarity at the lower fluence level was independent of fluence rate (high or low).
- Fluence-rate effect indications from the C_v test results are consistent with those found in tensile tests and K_{Jc} and J-R curve tests.
- Observed differences in property change attributable to a fluence rate of 5.6 x 1011 n/cm².s⁻¹ versus a fluence rate of 8.9 x 10¹² n/cm².s⁻¹ are not considered large but could influence data interpretations within the framework of NRC Regulatory Guide 1.99.
- An inconsistency was found in the baseline data (unirradiated condition) for the A 302-B Plate 23F; specifically, the 1/4T and 3/4T locations exhibit a higher transition temperature in C_y tests but a lower transition temperature in fracture toughness tests compared to the 1/2T location. This observation will be investigated further in the continuing MEA program for the NRC.

REFERENCES

- D. R. Harries and B. L. Eyre, "Effects of Irradiation in Iron and Steels," <u>Flow and Fracture of Metals and Alloys in Nuclear</u> <u>Environments</u>, ASTM STP 380, American Society for Testing and Materials, 1965, p. 105.
- J. R. Hawthorne, "Radiation Effects Information Generated on the ASTM Reference Correlation-Monitor Steels," DS 54, American Society for Testing and Materials, 1974.
- "Standard Practice for Characterizing Neutron Exposures in Ferritic Steels in Terms of Displacements per Atom (DPA)," ASTM E 693-79, ASTM Book of Standards, Section 12, Vol. 12.02, 1983, p. 402.
- 4. J. R. Hawthorne, J. J. Koziol and S. T. Byrne, "Evaluation of Commercial Production A 533-B Steel Flates and Weld Deposits with Extra-Low Copper Content for Radiation Resistance," <u>Effects of</u> <u>Radiation on Structural Materials</u>, ASTM STP 683, American Society for Testing and Materials, J. A. Sprague and D. Kramer, Eds., 1979, pp. 235-251.
- J. R. Hawthorne, B. H. Menke and A. L. Hiser, "Notch Ductility and Fracture Toughness Degradation of A 302-B and A 533-B Reference Plates from PSF Simulated Surveillance and Through-Wall Irradiation Capsules," USNRC Report NUREG/CR-3295, Apr 1984.
- E. P. Lippincott, "The Buffalo Light Water Reactor Calculation," Letter Communication Serial No. 7754997, Hanford Engineering Development Laboratory, Richland, WA, to J. R. Hawthorne, dated November 16, 1977.
- E. P. Lippincott, L. S. Kellogg, W. Y. Matsumoto, W. N. McElroy and C. A. Baldwin, "Evaluation of Neutron Exposure Conditions for the Buffalo Reactor," <u>Proceedings 5th International ASTM-Euratom</u> <u>Symposium on Reactor Dosimetry</u>, Geesthacht, Federal Republic of Germany, September 24-28, 1984.
- G. Prillinger, E. D. McGarry and J. R. Hawthorne, "Neutron Spectra Calculations for Ex-Core Irradiation Experiments at the Buffalo Reactor," presented at the ASTM Fourteenth International Symposium on Effects of Radiation on Material, Andover, MA, June 1988.
- G. A. Clarke and J. D. Landes, "Evaluation of J for the Compact Specimen," <u>Journal of Testing and Evaluation</u>, Vol. 7(5), Sept. 1979, pp. 264-269.
- H. A. Ernst, "Material Resistance and Instability Beyond J-Controlled Crack Growth," <u>Elastic-Plastic Fracture</u>, ASTM STP 803 Vol. 1, American Society for Testing and Materials, 1983, pp. 191-213.

- J. R. Hawthorne, et al., "Evaluation and Prediction of Neutron Embrittlement in Reactor Pressure Vessel Materials," EFRI NP-2782, The Electric Power Research Institute, Dec. 1982.
- J. R. Hawthorne and A. L. Hiser, "Investigations of Irradiation-Anneal-Reirradiation (IAR) Properties Trends of RPV Welds: Phase 2 Final Report," USNRC Report NUREG/CR-5492, Nov. 1989.
- D. E. McCabe, "Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding: Material Property Evaluations," USNRC NUREG/CR-5207, Sept. 1988.
- A. L. Hiser, "Correlation of C, and KIC/KJC Transition Temperature Increases Due to Irradiation," USNRC Report NUREG/CR-4395, Nov. 1985.
- A. L. Hiser, "Evaluation of Upper Shelf Toughness Requirements for Reactor Pressure Vessels," EPRI NP-6790M Volume 1 Summary Report, Electric Power Research Institute, March 1990.

APPENDIX A

r

Neutron Dosimetry Determinations: Irradiation Assemblies UBR-38, UBR-44, UBR-45 UBR-46, UBR-65, UBR-75, UBR-76 and UBR-77 Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-38 (Reflection Region Irradiation)

UBR-38 A-CAPSULE

23G 181	23F 58	23G 188	23F	23F 133
23F	23F	23F	23G 182	23G 195
23F 155	236	23F 35	23F	23F
23F 82	23G 200	23G 204	23G 208	23G 202
23F	23G	23G 199	23G 183	23F
23G 198	23G 185	25G 184	23G 203	23F 132
23F 130	23F	23F	23F	23G 194
23G 207	23F	23F	23G	23F
23G	23G 205	23F 34	23G	23F 85
23F 36	23G 206	23F	23G 186	23G

- Fe. Ni - AgAI. COAI - Fe. Ni - Fe. Ni

AgAI, CoAI - Fe, Ni

Fig. A-1 Irradiation Assembly UBR-38 (Capsule A) showing neutron fluence-rate monitor locations.

UBR-38

B-CAPSULE

Monitor/Segment ^a		Fiuence Rate ^{b,c} x 10 ¹⁰ (Average)	Monitor Location in Specimen Array			
A14	(Fe) (N1)	7.33 7.48	Between layers 1 and 2			
A15	(AgCo)	4.36 ^d	Between layers 2 and 3			
A16	(Fe) (N1)	- 7.61° 7.09	Between layers 3 and 4			
A17 [.]	(Fe) (N1)	7.96 - 6.75°	Between layers 6 and 7			
A18	(AgCo)	. 1	Between layers 8 and 9			
1 9	(Fe) (N1)	7.95 - 7.74•	Between layers 9 and 10			

Table A-1 Irradiation Assembly UBR-38 Capsule A Fluence-Rate Monitor Results (Ref. 1)

See Figure A-1 for monitor locii. The Fe and Ni results are based on > 1 MeV ²⁵⁵U fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.

^b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.

- ^c Values obtained from Ni segments are suspect because of very long irradiation time of this assembly (years).
- d Thermal fluence rate corrected for epithermal neutron contributions based on 100Ag and 50Co reaction rates and their cross sections.
- Approximate value based on two of three wire segments; one segment lost in hot cell operation.

f Not available.

Total time of irradiation: 17,354 hours

Monito	or/Segment ^a	Fluence Rate ^{b,c} x 10 ¹⁰ (Average)	Monitor Location in Specimen Array
B14	(Fe-1,2)(N1-1,2) (Fe-3)(N1-3)	8.09(15.8)	Specimens 23G-7 and 23F-115
	(Fe-4,5)(N1-4,5)	6.90(9.2)	Specimens 23F-105 and 23G-3
B13	(Fe-1,2)(N1-1,2) (Fe-3)(N1-3) (Fe-4,5)(N1-4,5)	9.84(20.1) 8.85(16.9) 8.39(13.0)	Specimens 23F-6 and 23G-9 Specimen 23F-15 Specimens 23G-13 and 23F-25
B17	(Fe-1,2)(N1-1,2) (Fe-3)(N1-3) (Fe-4,5)(N1-4,5)	7.90(15.5) 6.90(11.6) 6.86(9.0)	Specimens 23F-35 and 23G-1 Specimen 23F-45 Specimens 23G-12 and 23F-95
B15	(Fe-1,2)(N1-1,2) (Fe-3)(N1-3) (Fe-4,5)(N1-4,5)	9.39(19.6) 8.43(15.4) 8.11(12.3)	Specimens 23G-10 and 23F-85 Specimen 23G-6 Specimens 23F-55 and 23G-5
B12	(AgCo)	- 5.02 ^d .e	Between specimens 23G-1 and 23F-65 and between specimens 23F-75 and 23G-4
B16	(AgCo)	- 3.90 ^d	On capsule centerline immediately below bottom specimen layer

Table A-2 Irradiation Assembly UBR-38 Capsule B Fluence-Rate Monitor Results (Ref. 1)

- See Figure A-2 for monitor locii. The Fe and Ni results are based on > 1 MeV ²⁵⁰U fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.
- ^b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^C Values obtained from Ni segments are suspect because of very long irradiation time of this assembly (years).
- d Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- e Range of measured values: 3.77 to 6.88

Total time of irradiation: 17,354 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-44 (Core-Edge Irradiation)

UBR-44 A-CAPSULE

A8W	23F	WBA	23F	W8A		
23F	W8A	WBA	23F	23F		Fe, Ni
W8A	23F	W8A	23F	W8A		AgAI. COA
23F	W8A	23F	W8A	23F		Fe
W8A	W8A	23F 39	23F 97	W8A		
23F	W8A 299	W8A 308	23F 87	23F		
W8A	W8A 328	23F 51	W8A 302	W8A 307		Fe, Ni
23F 54	23F 138	23F 3	W8A	23F		
W8A	W8A	23F 187	W8A 276	W8A 293	•	AgAI. CoA
23F	23F	23F 90	W8A 301	23F	-	Fe

Fig .	A-3	Irradiation	Assembly	UBR-44	(Capsule	A)	showing	neutron
		fluence-rate	monitor loc	ations.				

UBR-44

B-CAPSULE

A-8

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹¹ (Average)	Monitor Location in Specimen Array				
A16 (Fe) (N1)		6.09 6.24	Between layers 1 and 2				
A14	(AgCo)	11.07°	Between layers 2 and 3				
A17	(Fe)	6.27	Between layers 3 and 4				
A18	(Fe) (N1)	6.57 6.57	Between layers 6 and 7				
A15	(AgCo)	13.00°	Between layers 8 and 9				
A20	(Fe)	6.82	Between layers 9 and 10				

Table A-3 Irradiation Assembly UBR-44 Capsule A Fluence-Rate Monitor Results (Ref. 2)

See Figure A-3 for monitor locii. The Fe and Ni results are based on > 1 MeV 2000 fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.

b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.

^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

Total time of irradiation: 2,775.4 hours

Monitor/Segment ^a		Fluence Rate ^{b,c} x 10 ¹¹	Monitor Location in Specimen Array		
B23	(Fe-1)	4.77	Specimens W8A-32 and 23F-2		
	(Fe-2)	5.56	Specimen 23F-43		
	(Fe-3)	6.06	Specimens W8A-51 and 23F-58		
B22	(Fe-1), (N1-1)	7.77,(7.74)d	Specimens W8A-28 and 23F-83		
	(Fe-2), (N1-2)	9.20,(8.85)d	Specimen W8A-36		
	(Fe-3), (N1-3)	10.00,(9.67)d	Specimens 23F-102 and W8A-50		
B26	(Fe-1),(N1-1)	4.77, (4.23)d	Specimens W8A-12 and 23F-39		
	(Fe-2),(N1-2)	5.56, (5.14)d	Specimen W8A-2		
	(Fe-3),(N1-3)	6.06, (5.76)d	Specimens 23F-2 and W8A-16		
B24	(Fe-1)	7.12	Specimens 23F-117 and W8A-26		
	(Fe-2)	8.47	Specimen 23F-99		
	(Fe-3)	9.42	Specimens W8A-47 and 23F-17		
B21	(AgCo)	11.57°	Between specimens W8A-22 and 23F-24 and between specimens 23F-77 and W8A-54		
827	(AgCc)	12.29 ^e	On capsule centerline immediately below bottom specimen layer		

Table A-4 Irradiation Assembly UBR-44 Capsule 5 Fluence-Rate Monitor Results (Ref. 2)

- See Figure A-4 for monitor locii. The Fe and Ni results are based on > 1 MeV ²⁵⁸U fission spectrum-averaged c .ss sections of 115.2 and 156.8 millibarns, respectively.
- b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^c Single determination value.
- " Nickel monitor value.
- Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

Total time of irradiation: 2,775.4 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-45 (Core-Edge Irradiation)

UBR-45 A-CAPSULE

W8A	23F	W8A 283	23F	W8A		
23F 40	W8A	W8A 304	23F	23F		Fe. Ni
W8A	23F	W8A	23F	W8A		AgAI. Col
23F 25	W8A 338	23F	W8A 330	23F 94	-	Fe
W8A 277	W8A	23F	23F 46	W8A 313		
23F 182	W8A 329	W8A 343	23F	23F 4		
W8A 280	W8A 314	23F	W8A 288	W8A 266		Fe, Ni
23F 48	23F 190	W8A 320	W8A	23F 185		
W8A 297	W8A 319	23F 98	23F	W8A 286		AGAI. COA
23F 43	23F	23F 91	W8A 294	23F 136		Fe

AgAI. CoAI - Fe - Fe. Ni AgAI. CoAI - Fe

Cv

TENSILE

Fig. A-5 Irradiation Assembly UBR-45 (Capsule A) showing neutron fluence-rate monitor locations.

UBR-45

B-CAPSULE

.

Monitor/Segment*		Fluence Rate ^b x 10 ¹¹ (Average)	Monitor Location in Specimen Array			
A7 (Fe) (N1)		7.19 7.07	Between layers 1 and 2			
A8	(AgCo)	19.00°.d	Between layers 2 and 3			
A9	(Fe)	7.44	Between layers 3 and 4			
A10	(Fe) (N1)	7.73 7.56	Between layers 6 and 7			
A11	(AgCo)	14.43°	Between layers 8 and 9			
A12	(Fe)	8.03	Between layers 9 and 10			

Table A-5 Irradiation Assembly UBR-45 Capsule A Fluence-Rate Monitor Results (Ref. 3)

See Figure A-5 for monitor locii. The Fe and Ni results are based on > 1 MeV 288U fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.

b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.

^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁰Ag and ⁵⁰Co reaction rates and their cross sections.

d Single determination value.

Total time of irradiation: 11,106 hours

Monit	or/Segment [®]	Fluence Rate ^b x 10 ¹¹ (Average)	Monitor Location in Specimen Array		
B 4	(Fe)	8.78	Specimens 23F-22 to 23F-82		
B 6	(Fe) (N1)	7.92 7.58	Specimens W8A-49 to W8A-39		
B2	(Fe) (N1) .	8.27 7.17	Specimens W8A-33 to W8A-23		
B1	(Fe)	7.30	Specimens 23F-44 to 23F-37		
B5	(AgCo)	16.96°	Between specimens W8A-27 and 23F-78 and between specimens 23F-18 and W8A-29		
B3	(AgCo)	14.78°	On capsule centerline immediately below bottom specimen layer		

Table A-6 Irradiation Assembly UBR-45 Capsule B Fluence-Rate Monitor Results (Ref. 3)

- See Figure A-6 for monitor locii. The Fe and Ni results are based on > 1 MeV ²⁵⁶U fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.
- b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

Total time of irradiation: 11,106 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-46 (Core-Edge Irradiation)
UBR-46 A-CAPSULE

W8A	23F	W8A	23F	W8A
305	96	270	140	315
23F 92	W8A	W8A 300	23F	23F 183
W8A	23F	W8A	23F	W8A
295	189	284		289
23F	W8A	23F	W8A	23F
	344	99	326	151
W8A	W8A	23F	23F	W8A
287	89	95	53	267
23F	W8A 273	W8A 306	23F	23F
W8A	W8A	23F	W8A	W8A
331	332	137	339	278
23F 26	23F 47	W8A 316	W8A	23F
W8A	W8A	23F	23F	W8A
281	325	148		298
23F	23F	23F 44	W8A 292	23F

Fe. Ni AgAI. CoA! - Fe Fe. Ni AgAI. CoAI - Fe

Fig .	A-7	Irradiation	Assembly	UB R-46	(Capsule	(A	showing	neutron
		fluence-rate	monitor lo	cations.				

UBR-46

B-CAPSULE

Monitor/Segment ⁴		Fluence Rate ^b x 10 ¹¹ (Average)	Monitor Location in Specimen Array			
A1	(Fe) (N1)	5.61 5.80	Between layers 1 and 2			
A2	(AgCo)	12.20°	Between layers 2 and 3			
A3	(Fe)	5.99	Between layers 3 and 4			
A4	(Fe) (N1)	6.18 6.16	Between layers 6 and 7			
A5	(AgCo)	10.20°	Between layers 8 and 9			
A6	(Fe)	6.35	Between layers 9 and 10			

Table A-7 Irradiation Assembly UBR-46 Capsule A Fluence-Rate Monitor Results (Ref. 4)

- See Figure A-7 for monitor locii. The Fe and Ni results are based on > 1 MeV ²⁵⁰U fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.
- b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections. Single determination value.

Total time of irradiation: 5,596.8 hours

Monitor/Segment ⁶		Fluence Rate ^b x 10 ¹¹ (Average)	Monitor Location in Specimon Array	
823	(Fe)	6.77°	Specimens 23F-4 to 23F-64	
821	(Fe) (N1)	6.22 4.89(7)	Specimens W8A-11 to W8A-52	
B20	(Fe) (N1)	7.11 7.62	Specimens W8A-35 to W8A-21	
B19	(Fe)	5.90	Specimens 23F-101 to 23F-23	
B22	(AgCo)	11.40°,d	Between specimens W8A-25 and 23F-57 and between specimens 23F-42 and W8A-9	
B24	(AgCo)	10.90 ^c ,d	On capsule centerline immediately below specimen layer.	

Table A-8 Irradiation Assembly UBR-46 Capsule B Fluence-Rate Monitor Results (Ref. 4)

- See Figure A-8 for monitor locii. The Fe and Ni results are based on > 1 MeV 238U fission spectrum-averaged cross sections of 115.2 and 156.8 millibarns, respectively.
- ^b Fission spectrum assumption; n/cm².s¹ (E > 1 MeV) unless noted.
- ^c Single determination value.
- d Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

Total time of irradiation: 5,631.4 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-65 (In-Core Irradistion)

UBR-65

A-CAPSULE

Fig. A-9

Irradiation Assembly UBR-65 (Capsule A) showing seutron fluence-rate monitor locations.

UBR-65	B-CAPSULE	WAA	23F	W8	12	3F	WBA				
		W8A	23F	231	W	52 8A	23F		Fe.	COAI.	AQA
		23F	W8A	23		72 8A	WBA				
		WBA	23F	231	2	3F 9	23F		Fe.	NI	
	····	23F	W8A	WBA	10	BA	23F				
		W8A	23F	W8/	AW	8A 74	23F		Fe		
		W8A	23F 62	W8/	12	3F 67	W8A 421		Fe.	NI	
		23F	23F	W8/	WE	BA 07	23F 78				
		W8A 386	W8A 355	23F 121	W3	8A 76	23F 73	-	Fe,	N!	
		23F 27	23F 65	W8/ 369	12:	3F 54	W8A 240		Ec	Cabi	
		W8A 349	W8A 358	23F 67	WI 38	BA	23F 198		re.	CONT	
			Cv					TENSI	LE		

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
A1	(Fe) (N1) (AgCo)	3.83 5.87 3.64 ^c	Specimens W8A-4 to W8A-10		
A2	(Fe)	6.76	Specimens W8A-20 to W8A-14		
A3	(Fe) (N1)	6.98 6.90	Specimens W8A-24 to W8A-38		
A4	(Fe) (AgCo)	7.64 5.11°	Specimens W8A-40 to W8A-428		
Vial	(238U) (Fe) (N1)	8.26 ^d 9.42 ^e 7.11	Specimens W8A-30 and W8A-38 and between specimens 23F-67 and 23F-33 (diagonally)		

Table A-9 Irradiation Assembly UBR-65 Capsule A Fluence-Rate Monitor Results (Ref. 5)

Sec Figure A-9 for monitor locii. The Fe, Ni and ²⁸⁸U results are based on > 1 MeV ²⁸⁸U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.

^b Fission spectrum assumption; $n/cm^2 - s^{-1}$ (E > 1 MeV) unless noted.

^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

d Determination from 187Cs, 108Ru, 140Bala and 95Zr results.

Calculated spectrum value.

Total time of irradiation: 154.22 hours

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
B-1	(Fe) (AgCo)	7.51 3.75 ^c	Between layers 1 and 2		
B-2	(Fe) (N1)	7.19 7.15	Between layers 3 and 4		
B-3	(Fe)	7.10	Between layers 5 and 6		
B-4	(Fe) (N1)	7.00 6.92	Between layers 6 and 7		
B-5	(Fe) (N1)	6.80 6.75	Between layers 8 and 9		
B-6	(Fe) (AgCo)	6.62 3.08°	Between layers 10 and 11		
Vial	(288U)	8.65 ^d (9.86) ^e	Between layers 4 and 5		
	(Fe) (N1)	7.02 6.97			

Table A-10 Irradiation Assembly UBR-65 Capsule B Fluence-Rate Monitor Results (Ref. 5)

- ^a See Figure A-10 for monitor locii. The Fe, Ni and ²³⁸U results are based on > 1 MeV ²³⁶U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.
- b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- d Determination from 187Cs, 108Ru, 140BaLa and 95Zr results.
- e Calculated spectrum value.

Total time of irradiation: 154.22 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-75 (In-Core Irradiation)

UBR-75

A-CAPSULE

A-27

Fig. A-12 Irradiation Assembly UBR-75 (Capsule B) showing neutron fluence-rate monitor locations.

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array
A16	(Fe) (N1)	5.73 5.45	Specimens W8A-109 to W8A-116
A17	(Fe)	5.66	Specimens 23F-68 to 23F-114
A18	(Fe)	6.29	Specimens 23F-49 to 23F-92
A19	(Fe)	6.21	Specimens W8A-119 to W8A-128
A20	(Fe) (N1)	6.62 6.28	Specimens W8A-134 to W8A-103
A21	(Fe)	6.65	Specimens 23F-27 to 23F-87
A22	(Fe)	7.05	Specimens 23F-31 to 23F-109
A23	(Fe) (AgCo)	7.07 4.86°	Specimens W8A-114 to W8A-144
Vial	(280U) (Fe) (N1)	8.13 ^d (9.27) ^e 6.58 6.48	Between specimens 23F-54 and 23F-87 and between specimens W8A-129 and W8A-103 (diagonally)

Table A-11 Irradiation Assembly UBR-75 Capsule A Fluence-Rate Monitor Results (Ref. 6)

- ^a See Figure A-11 for monitor locii. The Fe, Ni and ²³⁸U results are based on > 1 MeV ²³⁸U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.
- ^b Fission spectrum assumption; $n/cm^2 s^{-1}$ (E > 1 MeV) unless noted.
- ^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- d Determination from 137Cs, 108Ru, 140BaLa and 95Zr results.
- Calculated spectrum value.

Total time of irradiation: 308.22 hours

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
B25	(Fe) (AgCd)	6.85 3.72 ^c	Between layers 1 and 2		
B26	(Fe) (N1)	6.67 6.44	Botween layers 3 and 4		
B27	(Fe) (N1)	. 6.58 6.27	Between layers 6 and 7		
B28	(Fe) (AgCo)	6.35 3.13 ^c	Between layers 8 and 9		
B29	(Fe) (N1)	6.29 6.05	Between layers 10 and 11		
B 30	(Fe) (N1)	6.25 5.98	Below layer 12		
Vial	(238U)	8.33 ^d (9.50) ^e	Between layers 4 and 5		
	(Fe) (N1)	6.63 6.56			

Table A-12 Irradiation Assembly UBR-75 Capsule B Fluence-Rate Monitor Results (Ref. 6)

- See Figure A-12 for monitor locii. The Fe, Ni and 238U results are based on > 1 MeV 238U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.
- ^b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- d Determination from 137Cs, 108Ru, 140Bala and 95Zr results.
- e Calculated spectrum value.

Total time of irradiation: 308.22 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-76 (In-Core Irradiation)

.

A-CAPSULE

		CAF 00 C FFF 10 0AF	
		W8A 23F 23F W8A 23F 416 50 163 371 80	- Fe. CoAl. AgAl
		23FW8A23FW8AW8A 129410179400379	
	238.	W8A 23F 23F 23F 23F 23F 354 23 32 161 20	— Fe. Ni
		23F W8A W8A W8A 23F 67 364 447 437 81	
		W8A 23F W8A W8A 23F 334 111 390 351 119	
		W8A 23F W8A 23F W8A 382 64 589 176 425	Fe, NI
		23F 23F W8A W8A 23F 128 126 591 17 70	
		W8AW8A23FW8A23F 336368116378166	Fe. COAL. AGAI
		23F 23F W8A 23F W8A 77 29 592 17 335	En Ni
		W8AW8A23FW8A23F 357 85 88 114 143	FE, NI
		C _V TE	NSILE
Fig. A-14 1	rradiation As	embly UBR-76 (Capsule	B) showing neutron

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array	
A32	(Fe) (N1)	5.33 5.00	Specimens WBA-100 to WBA-107	
A33	(Fe)	. 5.21	Specimens 23F-69 to 23F-112	
A35	(Fe)	5.95	Specimens 23F-47 to 23F-93	
A36	(Fe)	5.88	Specimens W8A-110 to W8A-118	
A38	(Fe) (Ni)	6.51 6.22	Specimens W8A-125 to W8A-138	
A37	(Fe)	6.44	Specimens 23F-28 to 23F-88	
A39	(Fe) (AgCo)	7.07 4.08°	Specimens W8A-105 to W8A-135	
Vial	(238U)	8.25 ^d (9.41)*	Between specimens W8A-120 and W8A-138 and between specimens	
	(N1)	6.43	237-51 and 237-88	

Table A-13 Irradiation Assembly UBR-76 Capsule A Fluence-Rate Monitor Results (Ref. 6)

- ^a See Figure A-13 for monitor locii. The Fe, Ni and ²⁵⁸U results are based on > 1 MeV ²⁵⁸U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.
- ^b Fission spectrum assumption; $n/cm^2 s^{-1}$ (E > 1 MeV) unless noted.
- ^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- d Determination from 137Cs, 103Ru, 140BaLa and 95Zr results.
- Calculated spectrum value.

Total time of irradiation: 616.04 hours

Monitor/Segment [®]		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array
B1	(Fo) (AgCo)	7.32 4.57c.d	Between layers 1 and 2
B2	(Fe) (N1)	7.10 6.87	Between layers 3 and 4
B3	(Fe) (N1)	7.02 6.70	Between layers 6 and 7
B 4	(Fe) (AgCo)	6.92 2.86 ^c	Between layers 8 and 9
B5	(Fe) (N1)	6.75 6.57	Between layers 10 and 11
Vial	(288U)	9.20 ^e (10.45) ^f	Between layers 4 and 5
	(N1)	6.95	

Table A-14	Irradiation Assembly	UBR-76	Capsule	B	Fluence-Rate Monitor
	Results (Ref. 6)				

See Figure A-14 for monitor loci1. The Fe, Ni and ²³⁸U results are based on > 1 MeV ²³⁸U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.

^b Fission spectrum assumption; $n/cm^2 - s^{-1}$ (E > 1 MeV) unless noted.

^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

d Single determination value.

e Determination from 187Cs, 108Ru, 140BaLa and 95Zr results.

f Calculated spectrum value.

Total time of irradiation: 616.04 hours

Neutron Fluence-Rate Determinations Based on Fission Spectrum Assumption For Assembly UBR-77 (In-Core Irradiation)

B-CAPSULE

Fig. A-16 Irradiation Assembly UBR-77 (Capsule B) showing neutron fluence-rate monitor locations.

A-38

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array			
A1	(Fe) (N1)	5.75 5.66	Between layers 1 and 2			
A2	(Fe) (AgCo)	5.96 2.75°	Between layers 3 and 4			
A3	(Fe) (N1)	6.03 5.97	Between layers 5 and 6			
A4	(Fe) (N1)	6.38 6.25	Between layers 8 and 9			
A5	(Fe) (AgCo) (Cu)	6.50 2.92° 5.46	Between layers 10 and 11			
A6	(Fe) (N1)	6.71 6.59	Between layers 12 and 13			
Vial	(288U)	7.64 ^d (8.71) ^e	Between layers 6 and 7			
	(Fe) (N1)	6.33 6.26				

Table A-15 Irradiation Assembly UBR-77 Capsule A Fluence-Rate Monitor Results (Ref. 7)

- ^a See Figure A-15 for monitor locii. The Fe, Ni, Cu and ²³⁸U results are based on > 1 MeV ²³⁸U fission spectrum-averaged cross sections of 115.2, 156.8, 0.867 and 441 millibarns, respectively.
- ^b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.
- ^C Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- d Determination from 137Cs, 108Ru, 140BaLa and 95Zr results.
- Calculated spectrum value.

Total time of irradiation: 139.00 hours

Monitor/Segment ⁶		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
B8	(Fe) (N1)	6.88 6.71	Specimens W9A-71 to 23G-27		
B9	(Fe) (N1)	6.54 6.43	Specimens W9A-69 to 23G-30		
B10	(Fe) (AgCo)	6.19 2.71°	Specimens W9A-64 to 23G-32		
Vial	(280U)	7.64 ^d (8.71) ^e	Between specimens W9A-65 and W9A-75 and between specimens		
	(Fe) (N1)	6.39 6.30	23G-219 and 23G-24 (diagonally)		

Table A-16 Irradiation Assembly UBR-77 Capsule B Fluence-Rate Monitor Results (Ref. 7)

See Figure A-16 for monitor locii. The Fe, Ni and ²³⁸U results are based on > 1 MeV ²³⁸U fission spectrum-averaged cross sections of 115.2, 156.8 and 441 millibarns, respectively.

^b Fission spectrum assumption; $n/cm^2 \cdot s^{-1}$ (E > 1 MeV) unless noted.

^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.

d Determination from 187Cs, 108Ru, 140BaLa and 95Zr results.

Calculated spectrum value.

Total time of irradiation: 139.00 hours

REFERENCES

1

and the second

î Ây J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-52-87, EG&G Idaho, Inc., Idaho Falls, ID, 6 November 1987. C.

.

- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-22-85, EG&G Idaho, Inc., Idaho Falls, ID, 28 May 1985.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-16-87, EG&G Idaho, Inc., Idaho Falls, ID, 27 May 1987.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-22-86, EG&G Idaho, Inc., Idaho Falls, ID, 28 August 1986.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-14-87, EG&G Idaho, Inc., Idaho Falls, ID, 15 May 1987.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-36-88, EG&G Idaho, Inc., Idaho Falls, ID, 1 September 1988.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments," Letter Report JWR-39-87, EG&G Idaho, Inc., Idaho Falls, ID, 22 September 1987.

APPENDIX B

Reactor Operations History: Irradiation Assemblies UBR-38, UBR-44, UBR-45, UBR-46 UBR-65, UBR-75, UBR-76, AND UBR-77

EXPOSURE HISTORY :____UBR 38

- 13

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA HOURS	CORE	NOTES
2-21-83	1715	2-22-83	0919	16.07	16.07	Reflector	6" S.P.
2-22-83	1048	2-23-83	1800	31.20	47.27		
2-23-83		2-25-83	0830	37.78	85.05		
2-27-83	1720	2-28-83	0850	15.50	100.55		
2-28-83	0917	2-28-83	1827	9.17	109.72		
2-28-83	1854	3-1-83	1414	19.33	129.05		
3-1-83	1443	3-1-83	2342	8.98	138.03		
3-2-83	0010	302083	1300	12.83	150.86		
3-2-83	1345	3-4-83	1015	44.50	195.36		
3-6-83	1702	3-7-83	1040	17.63	212.99		
3-7-83	1040	3-7-83	2000	8.40	221.39		
3-7-83	2000	3-7-83	2100	0.95	222.34		
3-7-83	2100	3-7-83	2330	2.50	224.84	and the other than the second s	
3-7-83	2330	3-8-83	0100	1,35	226.19		
3-8-83	0100	3-8-83	1215	11.25	237.44		
3=8=83	1215	3-8-83	1345	1.35	238.79		
3-8-83	1345	3-11-83	0800	66.25	305.04		
3-11-83	0828	3-11-83	1123	1.46	306.50		
3-11-83	1149	3-11-83	1227	0.32	306.82		
3-13-83	1721	3-13-83	2209	4.80	311.62		
3-13-83	2313	3-14-83	1348	14.58	326.20		
3-14-83	1427	3-18-83	1052	92.42	418 62		
3-20-83	1705	3-24-83	1200	90.92	500 54		
3-27-83	1616	3-28-83	0945	17.48	527 02		
3-28-83	1106	3-28-83	1320	2.23	520 26		
3-28-83	1418	4-1-83	1200	93.70	622.95		
4-5-83	1054	4-8-83	1200	73.10	696.05		
4-10-83	1655	4-11-83	1930	26.58	722 63		
4-11-83	2017	4-15-83	0830	84.22	806 85		
4-17-83	1712	4-18-83	1300	19.80	826 65		
4-18-83	1355	4-19-83	2103	31,13	857 78		
4-19-83	2217	4-20-83	1024	12.12	869 00		
4-20-83	1054	4-22-83	1300	50,10	920.00		
4-24-83	1701	4-26-83	1630	47.48	967 48		
4-26-83	1740	4-28-83	1248	43 13	1010 44		
4-28-83	1530	4-29-83	1000	18.50	1020 11		

EXPOSURE HISTORY:

UBR 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA	CORE	NOTES
5-1-83	1707	5-2-83	0930	16.38	1045.49		
5-2-83	0954	5-6-83	1000	96.10	1141.59	•	
5-8-83	1653	5-13-83	0900	112.12	1253.71		
5-15-83	1630	5-18-83	2300	78.5	1332.21		
5-22-83	1655	5-26-83	0223	81.47	1413.68		
5-26-83	0213	5-27-83	1030	31.78	1445.46		
5-31-83	1345	6-3-83	0043	58.97	1504.43		
6-3-83	0204	6-3-83	1100	8.93	1513.36		
6-5-83	1643	6-10-83	0800	111.28	1624.64		
6-12-83	1654	6-16-83	1400	93.1	1717.74		
6-19-83	1718	6-24-83	0900	111.7	1829.44		
6-26-83	1720	7-1-83	1200	114.7	1944.14		
7-5-83	0054	7-7-83	1634	64.46	2008.60		
7-7-83	1726	7-8-83	1045	17.32	2025.92		
7-10-83	1756	7-15-83	1200	114.10	2140.02		
7-17-83	1703	7-20-83	1015	65.20	2205.22		
7-20-83	1100	7-22-83	1200	49.00	2254.22		
7-24-83	1700	7-26-83	1800	49.00	2303.22		
7-26-83	1836	7-27-03	1100	16.40	2319.62		
7-27-83	1202	7-29-83	1200	48.00	2367.62		•
7-31-83	1705	8-5-83	0800	110.92	2478.54		
8-5-83	1214	8-5-83	1240	0.43	2478.97		
8-7-83	17.14	8-11-83	0800	86.77	2565.74		
8-11-83	0937	8-12-83	1200	26.38	2592.12		
8-14-83	1700	8-19-83	1000	113.00	2709.12		
8-21-83	1700	8-25-83	1506	94,10	2803 22		
8-28-83	1743	8-31-83	1526	69.71	2891 52	South Parts	
8-31-83	1600	9-1-83	1130	19.50	2911 02	South Vert	CLOP
9-1-83	1237	9-2-83	0150	13.22	2924 24		
9-2-83	0300	9-2-83	1000	2.00	2921 24		
		180° 807	TION				
9-6-83	0050	9-9-83	0800	70 17	2010 / /		
9-11-83	1712	9-16-83	1200	114.8	3125 21		
9-18-83	1659	9-23-83	0900	112.00	1217 21		
9-25-83	1608	9-30-83	0900	111 86	3349.07		
10-2-82	1700	10-5-83	1030	63.50	2414 52		

EXPOSURE HISTORY :_

UBK 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA	CORE	NOTES
10-5-83	1159	10-7-83	1045	46.77	3461.34	and the second second	
10-9-83	1723	10-11-83	0800	110.55	3571.89	SUM HER	
10-16-83	1715	10-21-83	0830	111.25	3683.14		
10-23-83	1648	10-28-83	0800	111.20	3794.34		
10-30-83	1709	11-4-83	0900	111.85	3906.19		
11-6-83	1710	11-7-83	1200	18.83	3925.02		
11-7-83	1342	11-10-83	1400	72.30	3997.32		
11-13-83	1700	11-14-83	0845	15.75	4013.07		
11-14-83	0938	11-17-83	0250	65.20	4078.27		
11-17-83	0312	11-17-83	1600	12.80	4091.07		
11-17-83	1655	11-18-83	0900	16.08	4107.15		
11-27-83	1653	11-30-83	1630	71.62	4178.77		
12-1-83	0035	12-2-83	1000	21.42	4200.19		and Activity of
12-4-83	1710	12-6-83	1109	42.00	4242.19		
12-6-83	1544	12-7-83	1130	29.77	4271.96		
12-7-83	1200	12-9-83	0800	44.00	4315.96		
12-11-83	1900	12-16-83	1000	111.00	4426.96		
12-18-83	1713	12-20-83	0218	33.90	4460.86		
12-20-83	0307	12-23-83	0900	77.88	4538.74		
12-26-83	1623	12-29-83	2330	79.12	4617.86		
1-2-84	1604	1-4-84	2400	55.93	4673.79		
1-5-84	1013	1-5-84	1940	9.45	4683.24		
1-5-84	2043	1-6-84	1300	16.28	4699.52		
1-8-84	1651	1-9-84	1000	17.15	4716.67		
1-9-84	1035	1-13-84	1100	96.83	4813.50		
1-15-84	1653	1-16-84	0000	7.12	4820.62		
1-16-84	0000	1-19-84	1509	87.15	4907.77		
1-19-84	1600	1-20-84	1030	18.50	4926.27	Media and States	•
1-22-84	1641	1-27-84	0800	111.32	5037.59		
1-29-84	1652	1-30-84	1700	24.13	5061.72		
1-30-84	1838	2-3-84	1230	89.86	3151.59		
2-5-84	1655	2-10-84	1200	115.08	5266.67		
2-12-84	1647	2-17-84	1002	113.25	5379.92		
2-20-84	164.8	2-23-84	1450	70.03	5449.95		
2-23-84	1544	2-24-84	1030	18.76	5468.72		

B-3

EXPOSURE HISTORY:_____UBR 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA	CORE POSITION	NOTES
2-26-84	1705	2-28-84	0700	37.90	5506.62		
2-29-34	1106	2-29-84	1900	7.90	5514.52		
2-20-84	2002	3-2-84	1500	42.97	5557.49		
3-4-84	1712	3-5-84	1000	16.80	5574.29		
3-5-84	1022	3-6-84	0800	21.63	5595.92		
3-6-84	0826	3-8-84	2200	61.57	5657.49		
3-8-84	2240	3-9-84	1000	11.33	5668.82		
		ROTATED	180" 3-9-8	4			
3-11-84	1700	3-16-84	0830	111.5	5780.32		
3-13-84	1700	3-21-84	1518	70.3	5850.62		
3-21-84	1710	3-22-84	1330	20.33	5870.95		
3-22-84	1429	3-23-84	0840	18,183	5889.14		
3-25-84	1659	3-30-84	0830	111.52	6000.66		
4-1-84	1659	4-2-84	1500	22.00	6022.66		
4-2-84	1535	4-6-84	0800	88.42	6111.08		
4-8-84	1639	4-10-84	0800	39.35	6150.43		
4-10-84	0830	4-15-84	0900	72.50	6222.93		
4-15-84	1649	4-20-84	0800	111.18	6334.11		
4-22-84	1650	4-27-84	0800	111-17	6445.28		
4-29-84	1650	5-2-84	1500	70.83	6516.11		
5-2-84	1527	5-4-84	0800	40.55	6556.66	7	
5-4-84	1319	5-4-84	1410	0.85	6357.51		
5-6-84	1654	5-9-84	0000	55.10	6612.61	net an Annais	
5-9-84	0019	5-10-84	0800	31.68	6644.29		
5-10-84	1726	5-10-84	1830	1.07	6645.36		
5-11-84	1230	5-11-84	1240	0.17	6645.53		
5-13-84	1700	5-17-84	0800	87.00	6732.53		
5-18-84	1453	5-18-84	1533	0.67	6733.20		
5-20-84	1705	5-20-84	1749	0.73	6733.93	1-10.500	
5-20-84	1827	5-23-84	0230	56.05	6789.98		CTRS-415
5-23-84	0254	5-23-84	2200	19,10	6809.08		
5-29-84	1025	6-1-84	0800	69.56	6878.64		
6-3-84	1643	6-7-84	2200	101.28	6979.92		
6-10-84	1646	6-15-84	0800	111.23	7091.15		
6-17-84	1705	6-17-84	1745	0.67	7091.82		
6-17-84	1817	6-18-84	0123	7 20	7099.02		

EXPOSURE HISTORY: UBR 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA HOURS	CORE	NOTES
6-18-84	0154	6-18-84	1312	11.30	7110.32		
6-18-84	1340	6-20-84	1745	52.08	7162.40		
6-20-84	1906	6-21-84	2400	28.90	7191.30		
6-24-84	1657	6-29-84	0118	105.25	7296.55		
7-1-84	1653	7-3-84	2300	54.12	7350.67		
7-5-84	0054	7-6-84	1423	37.48	7388.15		
7-8-84	1730	7-10-84	2053	51.38	7439.53		
7-10-84	. 2150	7-13-84	1200	62.17	7501.70		
7-15-84	1706	7-19-84	2300	101.90	7503.60		
7-22-84	1654	7-27-84	1200	115.10	7718.70	Service Constraints	
7-29-84	1654	8-3-84	0900	111.90	7830.60		
8-5-84	1739	8-9-84	1900	97,35	7927.95		
8-9-84	2053	8-10-84	0815	11,37	7939.32		
8-10-84	1049	8-10-84	1219	1,50	7940.82	te scould a state	
8-12-84	1654	8-12-84	2000	3,10	7943.92		
8-12-84	2040	8-16-84	1400	89.33	8033.25		
8-16-84	1538	8-16-84	1752	2.23	8035.48	NU CONSTRUCT	Market L
8-22-84	1300	8-24-84	1515	50.25	8085.73		
8-26-84	1700	8-31-84	1223	115.38	8201.11		
9-4-84	0052	9-7-84	1400	85.13	8286.24		
9-9-84	1649	9-13-84	0020	80.15	8366.39		
9-13-84	0511	9-14-84	0900	27.82	8394.21		
9-16-84	1653	9-21-84	0800	111.12	8505.33		
9-23-84	1730	9-27-84	1230	91.00	8596.33		
9-27-84	1400	9-28-84	1141	21.68	8618.01		
9-30-84	1701	10-1-84	0930	16.50	8634.51		
10-1-84	1121	10-5-84	0800	92.65	8727.16		
10-7-84	1658	10-10-84	2130	76.53	8803.69		
10-10-84	2339	10-12-84	1500	39.35	8843.04		
10-14-84	1709	10-15-84	1300	19.85	8862 80		
10-15-84	1341	10-15-84	1400	0.32	8863 21		
10-15-84	1434	10-18-84	1300	70.43	8911 44		
10-18-84	1418	10-19-84	1400	24.30	8957 04		
10-21-84	1657	10-26-84	0800	111.03	9068.97		
10-26-84		ROTATED	180*				
10-28-84	1653	10-30-84	1900	50.12	9119.09		

EXPOSURE HISTORY:

UBR 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE HOURS	SIGMA	CORE	NOTES
10-30-84	2030	11-2-84	1115	62.75	9181.84		
11-4-84	1717	11-9-84	1130	114.22	9296.06		
11-11-84	1808	11-12-84	1339	19.52	9315.58		
11-12-84	1402	11-16-84	0800	89.97	9405.55		
11-18-84	1738	11-21-84	2300	77.37	9482.92		
11-25-84	1731	11-30-84	1200	114.48	9597.40	e george i e de la	
12-2-84	1725	12-4-84	0714	37.81	9635.21		
12-4-84	1005	12-5-84	1119	25.24	9660.45		
12-5-84	1140	12-6-84	1415	26.58	9687.03		
12-6-84	1440	12-7-84	1233	21.88	9708.91		
12-9-84	1758	12-14-84	0800	110.03	9818.94		
12-16-84	1750	12-21-84	0800	110.16	9929.10		
1-2-85	0054	1-4-85	0900	56.10	9985.20		
1-6-85	1743	1-11-85	1000	113.28	10098.48		
1-13-85	1746	1-16-85	1900	73.23	10171.71		
1-16-85	2006	1-17-85	1300	16.90	10188,61	a contration	
1-17-85	1530	1-17-85	1715	1,75	10190.36		orthug.
1-17-85	1745	1-18-85	1200	18.25	10208.61		
1-25-85	0627	1-25-85	0945	3,30	10211.91		
1-25-85	1015	1-25-85	1520	5.08	10216.99		
1-27-85	1658	1-28-85	0830	15.53	10232.52		
1-28-85	0948	2-1-85	1300	99.20	10331.72		
2-3-85	1721	2-8-85	1300	115.65	10447.37		
2-10-85	1718	2-11-85	1100	17.70	10465.07		
2-11-85	1130	2-15-85	1530	100.00	10565.07		
2-17-85	1802	2-22-85	1000	112.00	10677.07		
2-24-85	1644	2-26-85	1300	44.27	10721.34		
2-26-85	1408	2-27-85	0109	11.02	10732.36		
2-27-85	0136	2-27-85	0544	4.13	10736.49		
2-27-85	0604	2-27-85	1105	5.02	10741.51		
2-27-85	1356	2-27-85	1717	3.35	10744.86		
2-27-85	1758	2-28-85	1100	17.03	10761.89		
2-28-85	1215	3-1-85	1010	21.61	10783.50		
3-3-85	1725	3-8-85	0900	111.58	10895.08	-	
3-8-85	1110	3-8-85	1125	0.25	10895.33		

EXPOSURE HISTORY: UBR 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA	CORE	NOTES
3-8-85	1237	3-8-85	1509	2.53	10897.86		
3-10-85	1720	3-15-85	0800	110.66	11008.52		
3-17-85	1726	3-18-85	0254	15.46	11023.98		
3-18-85	1036	3-18-85	2045	10.15	11034.13		
3-18-85	2200	3-21-85	2025	71.62	11105.75		
3-21-85	2137	3-22-85	0600	8.38	11114.13		
3-22-85	14.54	3-22-85	1511	0.28	11114.41		
3-24-85	1721	3-28-85	04 57	83.60	11198.01	N.C. Participation	
3-28-85	0518	3-28-85	1045	5.45	11203.46		
3-28-85	1149	3-29-85	1100	23.18	11226.64		
3-31-85	1725	4-3-85	0700	61.58	11288.22		
4-3-85	1114	4-5-85	0900	45.77	11333.99		
4-7-85	1700	4-10-85	0815	63.25	11397.24		
4-10-85	1054	4-11-85	0900	22.10	11419.34		
4-11-85	1220	4-12-85	1100	22.67	11442 01		
4-13-85	0058	4-13-85	0133	0.58	11442 59		
4-14-85	1730	4-19-85	0913	111.72	11554.31		
4-19-85	2009	4-19-85	2021	0.20	11554.51		The second
4-21-85	1725	4-24-85	0836	63.18	11617.69		
4-24-85	0908	4-25-83	2042	35.57	11653.26		
4-25-85	2122	4-26-85	0640	9.30	11662.56		
4-28-85	1732	5-3-85	0700	109.47	11772.03		
5-3-85	1257	5-3-85	1336	0.65	11772.68		
5-5-85	1640	5-6-85	1551	23.18	11795.86		-
5-6-85	2209	5-9-85	0830	58.35	11854.21		
5-9-85	1055	5-10-85	0721	20.43	11874.64		
5-10-85	1650	5-10-85	1716	0.87	11875.51		
5-12-85	1741	5-16-85	1200	90.32	11965.83		
5-19-85	1653	5-24-85	0900	112.15	12077.98		
5-28-85	0100	5-30-85	1400	61.00	12138.98		
5-30-85	1733	5-30-85	1913	1.67	12140.65		
5-30-85	2000	5-31-85	1440	18.67	12159.32		
6-2-85	1800	6-7-85	0900	111.00	12270.32		
6-9-85	1720	6-11-85	0715	37.92	12308.24		
6-11-85	0824	6-13-85	1500	54.60	12362 84		and a set of the set of the set
6-13-85	1600	6-14-85	0830	16.50	12379.34		

EXPOSURE HISTORY: TIBE 38

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA HOURS	CORE	NOTES
6-16-85	1837	6-18-85	1000	39.38	124 15.72		ge ta entr
6-18-85	1035	6-21-85	1015	71.67	12490.39		
6-23-85	1732	6-28-85	0900	111.47	12601.86		
6-30-85	1726	7-3-85	2300	77.58	12679.44		
7-7-85	1736	7-10-85	1030	64.90	12744.34		
7-10-85	1110	7-12-85	0830	45.33	12789.67		
7-12-85	1852	7-12-85	1910	0.30	12789.57	filles chesting	
7-14-85	1657	7-18-85	1127	90.50	12880.47		
7-18-85	1210	7-19-85	1120	23.16	12903.63		
7-21-85	1709	7-21-85	2006	2.95	12906.58		
7-21-85	2039	7-24-85	1535	66.93	12973.51	BAR STREET	
7-24-85	1827	7-26-85	1430	44.05	13017.56		
7-28-85	1717	7-30-85	0438	35.35	13052.91		
7-30-85	0500	8-2-85	1200	67.00	13119.91		
8-4-85	1742	8-9-85	0800	110.30	13230.21		
8-11-85	1651	8-11-85	2020	3.48	13233.69		
8-11-85	2048	8-16-85	0930	108.70	13342.39		
		ROTATED	180*				
8-18-85	1658	8-23-85	1000	113.03	13455.42		
8-23-85		PULLED BA	K FROM CORE	(HEATER F	ILURE)		
12-22-85		BACK IN F	LUX				
12-22-85	1716	12-24-85	1130	42.20	13497.65	Section 1975	
12-26-85	0833	12-27-85	1200	27.45	13525.10		
12-27-85	1200	12-27-85	1508	1.57	13526.67		
12-29-35	1709	12-31-85	1500	45.85	13522.52		
1-5-86	1710	1-10-86	1460	116.83	13689.35		
1-12-86	1651	1-13-86	0900	16.15	13705.50		
1-19-86	1700	1-24-86	1000	113.00	13818.50		
1-26-86	1700	1-28-86	0800	39.00	13857.50		
1-28-86	0928	1-31-86	1000	72.53	13930.03		
2-2-86	1648	2-7-86	1200	115.20	14045.23		
2-9-86	1708	2-11-86	0809	39.02	14084.25		
2-11-86	0840	2-14-86	0900	72.33	14156.58		
2-17-86	1649	2-21-86	0900	88.18	14244.76		
2-23-86	1709	2-28-86	0800	110.85	14355.61		

EXPOSURE HISTORY:

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	HOURS	CORE	NOTES
3-2-86	1658	3-3-86	1030	17.53	14373.14		
3-3-86	1306	3-4-86	2224	33.30	14406.44	O REAL STREET	
3-4-86	2314	3-5-86	1906	19.87	14426.31		
3-5-86	1937	3-7-86	1241	41.07	\$4467.38		
3-9-86	1641	3-14-86	0900	112.32	14579.70		
3-16-86	1702	3-17-86	0850	15.80	14595.50		
3-17-86	1020	3-20-86	1200	73.67	14669.17		
3-23-86	1700	3-25-86	0704	38.07	14707.24		
3-25-86	0745	3-28-86	0930	73.75	14780.99		
3-30-86	1700	4-4-86	1200	115.00	14895.99		
4-6-86	1658	4-7-86	1123	18.41	14914.40	a to de trades	
4-7-86	1342	4-7-86	2217	8.58	14922.98		
4-7-86	2249	4-8-86	1400	15.18	14938.16		
4-8-86	1431	4-11-86	0900	66.48	15004.64	•	
4-13-86	1653	4-16-86	1100	66.12	15070.76		
4-16-86	1152	4-18-86	1130	47.63	15118.39		
4-20-86	1700 .	4-23-86	0000	55.00	15173.39		
4-23-86	0028	4-23-86	1545	15.28	15188.67		
4-23-86	1642	4-25-86	0945	41.05	15229.72		
4-27-86	2030	5-2-86	0900	108.50	15338.22		
5-4-86	1711	5-9-86	1300	115.82	15454.04		
5-11-86	1644	5-16-86	1450	118.10	15572.14		
5-18-86	1720	5-19-86	0830	15.16	15587.30		
5-19-86	0910	5-23-85	1300	99.67	15686.97		
5-26-86	1643	5-26-86	1650	0.12	15687.09		-
5-26-86	1710	5-30-86	2103	99.88	15786.97		
6-1-86	1700	6-2-86	1300	20.00	13806.97		
6-2-86	1314	6-4-86	1000	44.77	15851.74		
6-4-86	1050	6-5-86	1000	23.17	15874.91		
6-5-86	1141	6-6-86	0700	19.32	15894.23		
6-6-86	1359	6-6-86	1407	0.13	15894.36		
6-6-86	1436	6-6-86	1508	0.53	15894.89		
6-8-86	1726	6-8-86	2100	3.57	15898.46		
6-8-86	2158	6-12-86	0700	81.03	15979.49		
6-12-86	0742	6-13-86	1200	28.30	16007.79		
6-13-86		ROTATED	180*				

B-9

DATE 18	TIME IN	DATE OUT	TIME OUT	EXPOSURE	- SIGHA	CORE POSITION	NOTES
6-13-86	1709	6-16-86	1544	22.58	16030.37		
6-16-86	1611	6-20-86	0900	** 88.82	16119.19		
6-22-86	1707	6-27-86	1300	115.88	16235.07		
6-29-86	1722	7-3-86	0200	80.63	16315.70		
7-3-86	0225	7-3-86	2145	19.33	16335.03		
7-6-86	1602	7-7-86	0800	15.97	16351.00		
7-21-86	1104	7-25-86	0800	92.93	16443.93		
7-27-86	1730	8-1-86	1200	114.50	16558.43		
8-3-86	1710	8-5-86	1400	44.83	16603.26		
8-5-86	1435	8-8-86	1000	67.42	16670.68		
8-10-86	1654	8-11-86	2226	29.53	16700.21		
8-15-86	1550	8-15-86	2312	7.37	16707.58		-
8-17-86	1656	8-19-86	1330	44.57	16752.15		
8-19-86	1516	8-22-86	0800	64.73	16816.88		
8-24-86	1707	8-28-86	2300	101.88	16918.76		
9-2-86	0115	9-2-86	1102	9.78	16928.54		
9-2-86	1121	9-5-86	0700	67.65	16996.19		
9-7-86	1658	9-10-86	0845	63.78	17059.97		
9-10-86	1114	9-11-86	1300	25.77	17085.74		
9-11-86	1341	9-12-86	0800	18.31	17104.05		
9-14-86	1738	9-19-86	0900	111.37	17215.42		
9-21-86	1717	9-26-86	0800	110.72	17326.14		
9-28-86	1654	10-2-86	1200	91.10	17417.26		
						MISCHARGED	
						+	
			1.				
							1

9 M

Ř 5.Ř

.

-

EXPOSURE HISTORY :_____URR 38

and the second s

(i

10

50 88 88

31

B-10
USE da AL B

dete in	time in	dete out	time out	2MN exposure hours	2 MW signa hours	core position
4.16.85	1740	4.28.83	1245	43.13	43.13	MARCINE
4.28.85	1530	4.29.83	1000	18.50	61.63	
5.1.83	1707	5.2.83	0930	16.38	78.01	
5.2.83	0954	5.6.83	1000	96.10	174.11	
5.8.81	1653	5.13.83	0900	112.12	286.23	
5.15.83	1630	5.18.83	2300	78.50	364.73	
5.22.83	1655	5.26.83	0223	81.47	446.20	
5.26.83	0243	5.27.83	1030	31.78	477.98	
5.31.83	1345	6.3.83	0043	58.97	536.95	
6.3.83	0204	6.3.83	1100	8.93	545.88	Electronic Process
6.5.83	1643	6.10.83	0800	111.28	657.16	
6.12.83	1654	6.16.83	1400	93.10	750.26	
6.19.83	1715	6.24 .83	0900	111.70	861.96	
6.26.83	1720	7.1.83	1200	114.70	976.66	
7.5.8%	0054	7.7.85	1634	64.46	1041.12	
7.7.85	1726	7.8.81	1045	17.32	1058.44	
7.10.83	1756	7.15.83	1200	114.10	1172.54	
7.17.83	1703	7.20.83	1015	65.20	1237.74	
7.20.83	1100	7.22.83	1200	49.00	1286.74	
7.24.83	1700	7.26.83	1800	49.00	1335.74	
7.26.83	1836	7.27.83	1100	16.40	1352.14	
7.27.83	1202	7.29.83	1200	48.00	1400.14	
7.31.83	1705	8.5.83	0800	110.92	1511.06	
8.5.83	1214	8.5.83	1240	0.43	1511.49	
8.7:83	1714	8.11.83	0800	86.77	1598.24	
8.11.83	0937	8.12.83	1200	26.38	1624.64	

UBRAAAAA

date in	time	date out	time out	2 M W exposure hours	2.M.W signa hours	core position	
	fhom P				1624.64	REFLECTOR	
	REMOVED	FRom \$	B. 12 . 83, A	ARACED	12.9.85		
12 . 11.85	1900	12-16-83	1000	111.00	1735.64		
12-18-83	1715	12.20.83	0218	\$3.90	1769.54		
12.20.88	0307	12.25.83	0900	77.88	1847.42		
12.26.83	1623	12.29.85	2330	79.12	1926.54		
1.2.84	1604	1.4.84	2400	55.93	1982.47		
1.5.84	1013	1.5.84	1940	9.45	1991.92		
1.5.84	2043	1.6.64	1300	16.28	2008.20		
1.8.84	1651	1.9.84	1000	17.15	2.025.35		
1.9.84	1035	1.13.84	1100	96.83	2122.18		
1.15.84	1653	1.16.84	0000	7.12	2129.30		
1.16.84	0000	1.19.84	1509	87.15	2216.45		
1.19.84	1600	1.20.84	1030	18.50	22 34.95		
1.22.84	1641	1.27.84	0800	111.32	2346.27		
1.29.84	1652	1. 20.84	1700	24.13	2370.40		
1.30.84	1838	2.3.84	1230	89.86	2460.26		
2.5.84	1655	2.10.84	1200	115.08	2575.34		
2.12.84	1647	2.17.84	1002	113.25	2688.59		
2.20.84	1648	2.23.84	1450	70.05	2758.62		
2.23.84	1544	2.24.84	1030	18.76	2777.38		
44 44	B Disc	ARAD					
			1.	Number of the State			

1 . A.

UBR 45 A.B

N.

and the second se

5

. .

Ŵ

date .	time in	data	time .	expesure hours	eigna hours	core position	
4-10-83	1655	4-11-83	1930	26.58	26.58	3.4	
4-11-83	2017	4-15-83	0830	84.22	110.80		
4-17-83	1712	4-18-83	1300	19.80	130.60		
4-18-83	1355	4-19-83	2103	31.13	161.73		
4-19-83	2217	4-20-83	1024 *	12.12	173.85		
4-20-83	1054	4-22-83	1300	50.10	223.95		
4-24-83	1701	4-26-83	1630	47.48	271.43		
4-26-83	1740	4-28-83	1248	63.13	314.56		
4-28-83	1530	4-29-83	1000	18.50	333.06		
5-1-83	1707	5-2-83	0930	16.38	349.44		
5-2-83	2954	5-6-83	1000	96.10	445.94		
5-8-83	1653	5-13-83	0900	1112.12	557.66		
5-15-83	1630	5-18-83	2300	78.5	636.16		
5-22-83	1655	5-26-83	0223	\$1.47	717.63		
5-26-83	0243	5-27-83	1030	\$1.78	749.41		
5-31-83	1345	6-3-83	0043	58.97	808.38		
6-3-83	0204	6-3-83	1100	8.93	817.31		
6-5-83	1643	6-10-83	0800	111.28	928.59		
6-12-83	1654	6-16-83	1400	93.1	1021.69		
6-19-83	1718	6-24-83	0900	.111.7	1133.39		
6-26-83	1720	7-1-83	1200	114.7	1248.09		
7-5-83	0054	7-7-83	1634	64.46	1312.55		
7-7-83	1726	7-8-83	1045.	17.32	1329.87		
7-10-83	1756	7-15-83	1200	114.10	1443.97		
7-17-83	1703	7-20-83	1015	65.20	1509.17		
7-20-83	1100	7-22-83	1200	49.00	1558.17		
		Real Print P					

Page 1

×.

B-13

I

.

1

é

2

ž

 r_{2}

.

UBR 45 A,B

exposure dete time date time signa hours hours position in In out out 49.00 1607.17 7-24-83 1700 7-26-83 1800 . 1836 7-27-83 1:00 16.40 1623.57 7-26-83 7-27-83 1202 7-29-83 1200 48.00 1671.57 1705 8-5-83 0800 110.92 1782.49 7-31-83 8-5-83 12/4 8-5-83 1240 0.43 1782.92 1714 8-11-83 0800 86.77 1869.69 8-7-83 1200 26.38 1896 07 out of flux B-11-83 0937 8-12-83 CAPSULE LCADED INTO REFLECTOR 1896.07 12-9-83 1000 111.00 2007.07 1900 12-16-83 12-11-83 0218 33.90 2040.97 12-18-83 1713 12-20-83 0900 77.88 0307 2118.85 12-20-83 12-23-83 2330 79.12 2197.97 12-29-83 12-26-83 1623 2400 55.93 2253.90 1-2-84 1604 1-4-84 1-5-84 1013 1-5-84 1940 9.45 2263.35 1-5-84 2043 1-6-84 1300 16.28 2279.63 1000 17.13 2296.78 1-8-84 1651 1-9-84 1100 96.83 2393.61 1-9-84 1035 1-13-84 0000 2400.73 1-15-84 7.12 1653 1-16-84 1509 87.15 0000 1-19-84 2487.88 1-16-84 1030 1600 1-20-84 18.50 2506.38 1-19-84 1641 1-27-84 0800 111.32 2617.70 1-22-84 1700 1-29-84 1652 1-30-84 24.13 2641.83 1-30-84 1838 2-3-84 1230 89.86 2731.70 2-5-84 1655 1200 2-10-84 115.08 2846.78 1002 2-12-84 1647 2-17-84 113.25 2960.03 2-20-84 1648 2-23-84 1450 70.03 3030.06

Page 2

UBR 45 A.B.

data .	time	date out	time	exposure hours	eigna hours	core position	
2-23-84	1544	2-24-84	1030	18.76	3048.83		
2-26-84	1705	2-28-84	0700	37.90	3086.73		
2-29-84	1106	2-29-84	1900	. 7.90	3094.63		
2-29-84	2002	3-2-84	1500	42.97	3137.60		
3-4-84	17.12	3-5-64	1000	16.80	3154.40		
3-5-84	1022	3-6-84	00800	21.63	3176.03		
3-6-84	0826	3-8-84	2200	61.57	3237.6		
3-8-84	2240	3-9-84	1700	11.33	3248.93		
3-11-84	1700	3-16-84	0830	ius	3360.43		
3-18-84	1700	3-21-84	1518	70.3	3430.73		
3-21-84	1710	3-22-84	1330	: 20.33	3451.06		
3-22-84	1429	3-23-84	0840	18.183	3469.243	-	
7-22-84	1654	7-27-84	1200	1115.10	3584.343		
7-29-84	1654	8-3-84	0900	111.90	3696.243		-
8-5-84	1739	8-9-84	. 1900	97.35	3793.59		
8-9-84	2053	8-10-84	0815	11.37	3804.96		
8-10-84	1049	8-10-84	1219	1.50	3805.46		
8-12-84	1654	8-12-84	2000	3.10	3809.56	· · · ·	

(Continues)

Page 3

.

EXPOSURE ELETORY

UBR 45 A.B

4010	e tana	date out	time	expendente bours	eigne -	core position	
\$112/54	2040	8/16/94	1400	17.13	3191.89		S Second
1/16] 14.	1511	9/16/84	1752	2.23	3901.12		
11=2/14	1500	424/84	1515	50.25	39 51.37		
1/26/14	1700	8/31/84	1223	115.38	4046.75		1
914184	2052	9/7/44	1400	\$5.13	4151.48	-	
9/4/44	1649	9/13/54	0010	50.15	4232.03		
4/13/14	0511	9/14/54	0900	17,82	4159.85	1	
9/16/84	1653	9/21/89	0400	111.12	4370.97		**
4/23/84	1730	9/27/84	1230	91.00	4461.97		
9/27/84	1400	9/28/84	1141	21.64	4483.66		
9/30/84	1701	10/1189	0430	16.50	4500.15		
10/1134	1/2/	10/5/54	0100	12.65	4592.80		
0/7/84	1658	10/10/84	2130	76.53	4469.33	1	
0/10/84	2339	10/12/144	1500	39.35	4708.68		
1/14/84	1709	10/15/84	1300	19.85	4728.53		
115/84	1341	10/15/84	1400	0.32	4724. 85		
2/15/84	1434	10/18/04	1300	70:43	4799.28		
0/18/04	1418	10/19/84	1400	24.30	4923.58		
1/1/14	1657	10/56/84	0800	111.03	4434.61		
0/28/44	1653	10/30/54	1900	50.12	4454.73		
0/30/84	2030	11/2/14	1115	61.75	5047.48		
1/4/54	רורו	11/9/84	1130	114.22	5161.70		
1/11/84	1800	11/12/84	1339	19.52	5181.22		
1/12/87	1402	11/16/84	0800	\$9.97	5271.19		
1/18/89	1735	11/2/154	1300	77.37	5348.50		
1/25/94	1731	11/30/14	1200	114.48	5463.04	1	
2/2/94	1725	12/4/54	10714	37.81	5500.85	-	
2/4/24.	1005	12/5/44	1119	25.24	5516.09		

EXPOSURE ELETORY

UBR 45 A,B

date La	tine is	data out	time out	arpoours bours	aligna hours	COTS position	•
12/5/04.	1140	12/5/04	1415	26.54	5552.67		
12/6/84	1440	12/7/94	12 33.	21.15	5574.55		
12/9/84	1758	12/14/24	0400	110.03	5684.54		
12/10/44.	1750	12/11/4	0400	110,16	5794.74		
1/2/15	0054	1/4/85	0900	\$6.10	7 9 70 . 14		
1/6/55.	1743	1/1/15	1000	113.28	7464.12		
1/13/85	1746	1/14/15	1900	7323	60 37.35		
1/16/85	2006	1117/15	1300	16.90	6054.25		
1/17/15	1530	1/17/15	1715	1.75	6056.00		
1/17/15	1745	1/18/85	1200	18.25	6074.25		des a
115/85	0627	1/15/85	0945	3.30	6077.55	-	
125/85	1015	1/25/85	1520	5.04	692.63		
127/15	1658	1/28/15	0430	15.53	6098.16		
128/85	0948	1/21/05	1520	77.53	6175.69		
131/45	1520	2/1/85	1300	21.66	6197.35		+
1/3/85	1721	2/4/45	1300	115.65	6313.00	+	- <u></u>
2/10/55	1714	2/11/15	lice	17,70	6330.70		+
2/11/15	1130	2/12/15	N452	:21.27:	6352.07		
2/12/95	0852	2/15/85	1530	78.63	6430.70		
2/17/05	1802	2/17/85	1100	4.00	6434.70		ļ
2/17/85	2200	2/22/95	1000	108.00	6542.70		
2/24/25	1644	2/36/15	1300	44.17	6546.97		
2/26/45	1404	2/17/155	0109	11.02	6547.14	1	
THE	0136	1/17/85	0544.	4.13	1602.12		-
417/55	0604	3/37/05	0923	3.32	1405.44		

UBR 45 A,B

444.1	etan La	date out	time out	experiere bours	signa .	cote position	
2/27/45	0123	12/27/05	1105	1.70	6607.14		,
	1356	2/17/15	1717	3.35	6610. 49		1
2/27/25	1754	2/28/86	1100	17.03	6627.52		
2/38/85	1215	3/1155	1010	\$1.61	6649.13	1.0	<u> </u>
3/3/95	1725	3/8/85	0900	111.58	6760.71		
3/8/85	1110	3/11/15	1125	0.15	6760.46		4
3/4/05	1137	3/ 4/45	1509	2.53	6763.49	1.1.2	

(Continues)

.

Page 6

EXPOSURE ELETORY

UBR 45 A.B

date La	time	data	time out	azposute Lours	'signs hours	COTO POPILLOS	
3/10/ 85	1720	3/15/45	0400	110.66	6874.15		
3/17/85	1726	3/18/05	0854	15.46	6489.61		
3/18/95	1036	3/10/55	2045	10.15	6444.76		
3/18/85	2200	3/31/85	2025	71.62	6971.38	1.	
1/21/155	2137	3/22/05	0000	8.35	6179.76		
3/22/45	1454	3/22/25	1511	0.28	6979.49	Henned	
3/24/05	1721	3/29/05	0457	\$3.60	7063.04		
3/24/45	0578	3/20/05	1045	5.45	7064.53		
3/29/45	11 49	3/29/35	1100	23.14	7091.71		
131/45	1715	1/3/85	0700	61.54	7153.24		
413/45 .	1114	415/85	1910	45.77	7199.06		
417/45	1700	4/10/45	0315	63.25	7262.31		
4/10/15	1054	4/11/45	09.00	12.10	72 44 41		
4/11/15	1220	4/12/45	1100	\$2.67	7307.05		
1/13/95	0054	4/13/85	0133	0.58	7307.66		
4/14/85	1730	4/14/45	0913	111.72	7414.38		
4/19/15	2009	4/19/15	2021	0.20	7414.58		
111/15	1715	4/24/05	0436	63.14	7442.76		
4124/05	0908	4125195	2042	35.57	7578.33		1. 6
1/25/85	2122	4/24/15	0640	1.30	751- 13		
1/28/15	1732	5/3/95	0700	109.47	7637.10	Anticestation and a second	
13/15	1257	5/3/85	1336	0.65	7432.25		
5/5/45	1640	5/6/45	1551	23.18	7460.93		-
5/4/85	2209	5/9/95	0130	58.35	7710.24		
EL11.25_	19.55	5/10/15	2721	20.43	7739.71		

Page 7

EXPOSURE ELSTORY

UBR 45 A,B

date in	time in	data out	time out	asposure boure	algas bours		
FILLIS	1650	5/idos	1716	0.87	7740.54		
5/12/15	1741	5/14/85	1200	40.32	7830.40		
Flieles	1653	5/24/25	0900	112.15	7943.05		
5/28/85	0100	5/30/15	1400	61.00	8004.05		
5/30/35	1733	5/30/15	1913	1.67	1105.72		
5/30/95	1000	5/31/85	1440	18.67	\$014.39		
6/1/15	1800	6/7/85	0900	111.00	\$135.39		
6/11:5	1720	6/11/15	0715	37.42	\$173.31		
6/11/85	0424	6/13/05	1500	54.60	8227.91		
6/13/85	1600	6/14/15	0830	16.50	8244.41		
\$116/85	1837	6/19/15	1000	34.34	\$2 \$3.74		the states
6/18/35	1035	6/21185	1015	71.67	4355.46		
6/23/85	1732	6/28/85	0900	111.47	8466. 93	1.1.1.1	1
6/30/85	1716	7/3/85	1300	27.58	4 544.51		-
2/2/85	1736	7/10/15	1030	64.90	\$609.41		
2110/85	1110	7/12/85	0430	45.33	\$654.74		Sile Constant Co
2/12/85	1852	2/12/25	1910	0.30	4655.04		
2/14/15	1657	7/18/85	1127	40.50	8745.54		
7/11/15	1210	7/19/85	1120	23.16	\$768.70		
7/51/55	1709	7/21/85	2006	2.95	4771.65	-	
7/21/15	2039	7/14/15	1535	66.13	\$434.54	-	
7/241.45	1827	7/26/85	1430	44.05	4882.63	20.50	
7/28/45	רוכו_	7/30/45	0434	35.35	\$917.98		
7/30/45	0500	4/1/ 85	1283	43.88	\$961.96		
¥11195.	12.53.	1 \$/2/15	1200.	33.12	\$19.4.99		

· Page 8

EXPOSURE ELETORY

UBR 45 A,B

date la	دنده د	dete out	time out	esposure bours	signs .	COTO POSÍCION	
8/4/45	1742	4/0/15	0500	110.30	4045.28		1
8/11/85	1651	\$/11/45	1020	3.44	9093.76		-
8/11/55	2044	\$116/55	0930	109.70	9207.46		
8/14/95	1658	\$123/85	1000	113.03	4320.49		
8/25/85	1716	1/30/85	1300	115.73	4436.22		1 · -
9/3/05	0100	4/5/85	0400	\$1.00	4457.22		
9/5/15	1138	4/6/85	1315	35.62	4522.84		
9/11/25	1734	9/13/15	1200	114.43	9637.27		
9/15/55	1653	9/20/55	0100	111.11	4748.38		
120105	0800	4/20/85	1100	150	4749.88		+ @ 1 M.
9/11/85	1654	9/15/45	1520	70.44	4820.32		
9/29/25	1728	10/1185	1307	53.65	4873.97		
12/45	0113	10/4/15	1300	59.74	4133.75		
10/6/15	1652	ioliolis	13/2	42.33	10026.08		
10/10/15	1336	10/10/15	1700	3.40	10019.44	1	1
10/10/45	2012	10/11/15	1010	13,96	10043.44		+
10/13/45	1704	10/14/25	0200	110. 27	10154.31		
10/30/35	1700	10/25/85	0433	112.55	10266.86		
10/27/05	7171	11/1/85	0900	111.72	10378.58		
1113/85	1655	11/7/65	1313	41.30	10470.89	1	
11/7/85	1335	11/5/85	1100	21.42	10492.30	,	
1110185	5171	11/15/95	0600	109.78	10601.00	-	
11115185	1130	11/15/15	1406	2.60	10603.6	1	•
ILLOISS.	1215	11/2/185	1620_	15.05	10698.76		

B-21

I

ł

I

I

· Page 9

UBR 45 A,B

..

data La	tine in	data out	tine	ampoours bours	bours .	
11/21/25	1714	11/22/15	0900	15.77	10714.53	
1/24/25	1637	11/25/05	0912	(LTY	10731.11	
125/85	0912	11/25/65	1739	32.45	10 50 8.49	 +
126/25	1731	11/27/15	2200	18.35	10836.84	1
2/1/25	1707	12/3/15	1429	45.36	10882.20	
12/3/35	1429	12/1/15	1000	67.50	10979.70	+
12/4/155	1713	12/10/15	1500	45.78	10945.44	
12/10/95	1544	12/12/05	1312	45.47	11040.45	*
12/12/45	1354	12/13/155	1100	21.10	11062.05	
12/15/85	1709	12/18/15	1052	65.72	11127.77	
12/18/85	1132	12/20/85	0900	45.47	11173.24	1
12/20/95	0900	12/20/85	1207	1.56	11174.80	
	450	+D OUT	OF MER	No. of Street	END	T.c.

MEA UBB 46 A

date in	time	date	time out	axposure hours	2 M W eigna hours	core position	
4-8-83	LOADED	46 4				LERECTOR	
4-10-83	1655	4-11-83	1930'	26.58	26.58		•
4-11-83	. 2017 .	4-15-83	0830	B4.22	110.80		
100				A. Sat			
4-17-83	1712	4-18-83	1300	19.80	130.60		
4-18-83	1355	4-19-83	2103	31.13	161.73		
4-19-83	2217	4-20-83	1024	. 12. 12	173.85	1	
4-20-83	1054	4-22-83	1300	50:10	223.95		
			1 2 4	A Start			* (
4-24-83	1701	4-26-83	1630	47.68	271.63	1.000	
4-26-83	1740	4-28-83	1248	45.15	314:56		the second second
4-28-83	1530	4-29-83	1000	18.50	333.06		
5-1-83	1707 .	5-2-83	0930	16.38	349.44		
5-2-83	0954	5-6-83	1000		445.54		
5-8-83	1653	5-13-83	0900	112.12	557.66	1	
5-15-83	1630	5-18-83	2300	78:5	636.16		
5-22-83	1655	5-26-83	0223	81.47	717.63		
5-26-83	0243	5-27-83	1030	31.78	749.41		
5-31-83	1345	6-3-83	0043	58.97	808.38		
6-3-83	0204	6-3-83	1100	8.93	817:31		
6-5-83	1643	6-10-83	0800	111.28	\$28.59		
6-12-83	1654	6-16-83	1400	93.1	1021:69		
6-19-83		6-24-83	0000	1. 11.7	1133.39	4	
-26-83	1720	7-1-83	1200	116.7	1248.09		
	1		1	1			

B-23

I

Page 2

The second			A LOUGH A LOUGH AND A DOCUMENT
or send house has not	Name in case of Female Address of Street of Street, or	on the local division of the	A REAL PROPERTY AND A REAL PROPERTY OF THE

eate in	time .	date out	time out	axposure bours	alfent hours	core position	
7-5-83	0054	7-7-83	1634	64.46	1312.55	percecton	
7-7-83	1726	7-8-63	1045	17.32	1329.87		
7-10-83	1756	7-15-83	1200	114.10	1443.97		
7-17-83	1703 .*	7-20-83	1015	65.20	1509.17		
7-20-83	1100	7-22-83	1200	49.00	1558.17		
7-24-83	1700	7-26-83	1800	49.00	1607.17		
7-26-83	1836	7-27-83	1100	16.40	1623.57		
7-27-83	1202	7-29-83	1200	.48.00	1671.57		
7-31-83	1705	8-5-83	0800	110.92	1782.49		
8-5-83	1214	8-3-83	1240	0.43	1782.92		
8-7-83	1714	8-11-83	0800	86.77	1869.69		
8-11-83	0937	8-12-83 -	1200	26.38	1896.07		
12-9-83	LOADED 46	BACK INTO	REFLECTOR	1 1 1	1897.02		
12-11-83	1900	12-26-83	1000	111.00	2007.07		
12-18-63	1713	12-20-83	0218	33.90	2040.97		
12-20-83	0307	12-23-83	0900	77.88	2118.85		
12-26-83	1623	12-29-83	2330	79.12	2197.97		
1-2-84	1604	1-4-84	24.00	55.93	2253.90		
1-5-84	1013	1-5-84	1960	9.45	2263.35		
1-5-84	2043	1-6-84	1300	16.28	2279.63		
1-8-84	1651	1-2-84	1000	17.15	2296.78		
1-9-84	1035	1-13-84	1100	96.83	2393.61		
1-15-84	1653	1-16-84	0000	7.12	2400.73		
1-16-84	0000	1-19-84	1509:	87.15	2487.88		
				1 to the second			
							44.2 1

B-24

MT-A		14	
THEAT	UDR		A

date in	time	date out	time	exposure hours	Signa hours	core . position	
1-19-84	1600	1-20-84	1030	18.50	2306.38	REFLECTOR	
1-22-84	1641	1-27-84	0800	111.32	2617.70		•
1-29-84	1652	1-30-84	1700	24.13	2641.83		
1-30-84	1838	2-3-84	1230	. 89.86	2731.70		
2-5-84	1655	2-10-84	1200	115.08	2846.78		
2-12-84	1647	2-17-84	1002	113.25	2960.03		
2-20-84	1648	2-23-84	1450	70.03	3030.06		
2-23-84	1544	2-24-84	1030	18.76	3048.83		
2-26-84	1705	2-28-84	0700	. 37.90	3086.73		1
2-29-84	1106	2-29-84	1900	7.90	3096.63		
2-29-84	2002	3-2-84	1500	42.97	3137.60	-	1.1.1.1.1.1.
3-4-84	1712	3-5-84	1000	16.80	3154.40		
3-5-84	1022	3-6-84	0800	21.63	3176.03		
3-6-84	0826	3-8-84	2200	61.57	3237.6		
3-8-84	2240	3-9-84	1000	11.33	3248.93		1
3-11-84	1700	3-16-84	0830	1. in.s	3360.43		
3-18-84	1700	3-21-84	1: 1518	1 70.3	3430.73		
3-21-84	1710	3-22-84	1330	20.33	3451.06	1.	
3-22-84	1429	3-23-84	0840	18.183	3469.243		
		· † · · · · ·	× 21				
7-22-84	1654	7-27-84	1200	115.10	3584,343		
7-29-84	1654	8-3-84	0900	111.90	3696.243		
8-3-84	1739	8-9-84	1900	97.35	3793.59		
8-9-84	2053	8-10-84	0815	11.37	3804.96		
	1	1					
	1						

UBR 46 4 MEA

date in	time	date out	time out	exposure hours	algna hours	core position	
8-10-84	1049	8-10-84	1219	1.50	3806.46	PATLELTOR	
8-12-84	1654 .	8-12-84	2000	3.10	3809.56		
8-12-84	UBR 46 A	OUT -	1	1. NY 11.	•		
	1			44 4 - 145			
1-31-85	UBR 46 A	ETURNED TO	LUX		3809.56		
1-31-85	1520	2-1-85	1300	121.66	3831.22		
2-3-85	1721	2-8-85	1300	113.65	3946.87		
2-8-85	UBR 46 A	OUT					
2-12-85	UBR 46 A	IN		and the second			
2-12-85	0852	2-15-85	1530	78.63	4025.50		
2-17-85	1802	2-17-85	2200	4.00	4029.50		
2-17-85	UBR 46 A	OUT		1 1 1 1 1			
2-27-85	UBR 46 A	IN	1 44 1 11				
2-27-85	0923	2-27-85	1105	1.70	4031.20		
2-27-85	1356	2-27-85	1717	3.35	4034.55	Philippine Philippine	
2-27-85	1758	2-28-85	:1100	17.03	4051.58		
2-28-85	1215	3-1-85	1010	21,61	4073.19		
3-3-85	172	3-8-85	0900	111.58	4 184 . 77		
3-8-85	1110	3-8-85	1125	. 0.25	4185.02		
3-8-85	1237	3-8-85	1509	2.53	4 187.55		
3-10-85	1720	3-15-85	0800	110:66	4298.21		
3-17-85	1726	3= 18-85	0854	15:46	4313.67		
3-18-85	1036	1-10-05	2065	10.15	4323.82		
3-18-85	2200	3-21-85	2025	71.62	4395.44		
3-21-85	2137	3-22-85	0600	8.38	4403.82		
		1.		1		44.475.4 4 6.285	- C -

B-26

2

Page 4

MEA UBR 46 Å

date In	time	date	time	axposure hours	Area w	core position	
3-22-85	14 54	3-22-85	1511	. 0.28	4404.10	rerunda	
3-24-85	1721	2-28-85	04 57	83.60	4487.70		•
3-28-85	0518	3-28-85	1045	5.45	4493.15		
3-28-85	1149	3-29-85	i 100	23.18	4516.33		
	UBR 46 A	OUT					
8-1-85	UBR 46 A		P OF 36 B				
8-1-85	1253	8-2-85	1200	23.12	4539.45	12200	
8-4-85	1742	8-9-85	0800	110.30	4649.75		
8-11-85	1651	8-11-85	2020	. 3.48	4653.23		
8-11-85	2048	8-16-85	0930	108.70	4761.93		
8-18-85	1658	8-23-85	1000	113.03	4874.96		1.00
8-25-85	1716	8-30-85	1300	115.73	4990.69		
9-3-85	0100	9-5-85	0400	\$1.00	5041.69		
9-5-85	1138	9-6-85	2315	35.62	5077.31	No.	
9-8-85	1734	9-13-85	1200	114.43	\$191.74		
9-15-85	1653	9-20-85	0800	mi.u	5302.85		
9-20-85	0800	9-20-85	1100	1.50	5304.35 0	1 . 10	
9-22-85	1654	9-25-85	1520	20.44	5374.79		
9-29-85	1728	-10-1-85	2307	153.65	5629.66		
10-2-85	0113	10-4-85	1300	59.78	5488.22		
10-6-85	1652	10-10-85	1312	92.33	5580.55		
10-10-25	1336	10-10-85	1700	2:40	5583.95		
10-10-85	2012	10-11-85	1010	13.96	\$597.91	1	
	1			1			
	UBR 46'A	OUT			END	a the second second	
. 40				1	Contraction of the		1

Page 5

.....

I

	1000	_		
		•		
			e es.	
_				_

dete 10	t ine in	date out	time .	exposure hours	signs hours	core position	
4-10-83	1655	4-11-83	1930	26.58	26.58		
4-11-83	2017	4-15-83	0830	. 84.22	110.80		
4-17-83	1712	4-18-83	1300	19.80	130.60		
4-18-83	1355	4-19-83	2103	31,13	161.73		
4-19-83	2217	4-20-83	1024 *	12.12	173.85		
4-20-83	1054	4-22-83	1300	\$0.10	223.95		
4-24-83	1701	4-26-83	1630	47.48	271.43		
4-26-83	1740	4-28-83	1248	42.12	314.56		
4-28-83	1530	4-29-83	1000	18.50	333.06		
5-1-83	1707	5-2-83	0930	16.38	349.44		
5-2-83	0954	5-6-83	1000	96.10	445.54		
5-8-83	1653	5-13-83	0900	112.12	557.66		
5-15-83	1630	5-18-83	2300	78.5	636.16		
5-22-83	1655	5-26-83	0223	81.47	717.63		
5-26-83	0243	5-27-83	1030'	31.78	749.41		
5-31-83	1365	6-3-83	0043	58.97	808.38		
6-3-83	0204	6-3-83	1100	8.93	817.31		
6-5-83	1643	6-10-83	0800	111.28	928.59		
6-12-83	1654	6-16-83	14.00	93.1	1021.69		
6-19-83	1718	6-24-83	0900		1133.39		
5-26-83	1720	7-1-83	1200	114.7	1248.09		
-5-83	00.54	7-7-83	1634	64.46.	1312.55		
-7-83	1726	7-8-83	1045.	* 17.32	1329.87		1942.5.17
-10-83	1756	7-15-83	1200	114.10	1443.97		
-17-83	1703	7-20-83	1015	65.20	1509.17		1
-20-83	1100	7-22-83	1200	49.00	1558.17	1	1
1-20-03	1100	1-22-63	1200	49.00	1558.17		

1

8 8

_ ¥	10.01	

date .	time In	date	. time out	exposure hours	eigne hours	core position	
7-24-83	1700	7-26-83	1800	49.00	1607.17		
7-26-83	1836	7-27-83	1100	16.40	1623.57		
7-27-83	1202	7-29-83	1200	48.00	1671.57		
7-31-83	1705	8-5-83	0800	110.92	1782.49		
8-5-83	1214	8-5-83	1240 *	0.43	1782.92		
8-7-83	1714	8-11-83	0800	86,77	1869.69		
8-11-83	0932	A-12-83	1200	26.38	1896.07	out of flux	
12-9-83		CAPSULE LO	ADED INTO	REFLECTOR	1896.07		
12-11-83	1900	12-16-83	1000	111.00	2007.07		
12-18-83	17.13	12-20-83	0218	33.90	2040.97		
12-20-83	0307	12-23-83	0900	77.88	2118.85		
12-26-83	1623	12-29-83	2330	79.12	2197.97		
1-2-84	1604	1-4-84	2400	55.93	2253.90		
1-5-84	1013	1-5-84	1940	9.45	2263.35		
1-5-84	2043	1-6-84	1300	. 16.28	2279.63		
1-8-84	1651	1-9-84	1000	17.15	2296.78		
1-9-84	1035	1-13-84	1100	96.83	2393.61		
1-15-84	1653	1-16-84	0000	7.12	2400.73		
1-16-84	0000	1-19-84.	1509	87.15	2487.88		
1-19-84	1600	1-20-34	. 1030	. 18.50	2506.38		
1-22-84	1641	1-27-84	0800	111.32	2617.70		
1-29-84	1652	1-30-84	1700	24.13	2641.83		
1-30-84	1838	2-3-84	1230	89.86	2731.70		
2-5-84	1655	2-10-84	1200	, 115:08	2846.78		
2-12-84	1647	2-17-84	1002	113.25	2960.03		1.1
2-20-84	1648	2-23-84	1450	70.03	3030.06	-	
				1	See Stranger		3. 1. 1

B-29

I

1. -

			1 m.
 	_	_	
			1000

12

dete .	time	data out	time out	axposure bours	signs hours	core position	
2-23-84	1544	2-24-84	1030	18.76	3048.83	-	
2-26-84	1705	2-28-84	0700	37.90	3086.73		
2-29-84	1106	2-29-84	1900	. 7.90	3094.63		
2-29-84	2002	3-2-84	1500	42.97	3137.60		
3-4-84	17.12	3-5-84	1000	16.80	3154.60		
3-5-84	1022	3-6-84	0800	21.63	3176.03		
3-6-84	0826	3-8-84	2200	61.57	3237.6		
3-8-84	2240	3-9-84	1000	11.33	3248.93		
3-11-84	1700	3=16=84	0830	111.5	3360.43		
3-18-84	1700	3-21-84	1518	70.3	3430.73		
3-21-84	1710	3-22-84	1330	26.33	3451.06		_
3-22-84	1429	3-23-84	0840	18.183	3469.243		
7-22-84	1654	7-27-84	1200	115.10	3584.343		
7-29-84	1654	8-3-84	0900	111.90	3696.243		
8-5-84	1739	8-9-84	1900	97.35	3793.59		
8-9-84	2053	8-10-84	0815	11.37	3804.96		
8-10-84	1049	8-10-84	1219	1.50	3806.46		
B-12-84	1654 CAPSULE	REMOVED	2000	3,10	3809.56		_
1-31-85	CAPSULE	RETURNED TO	FLUK	_			
1-31-85	1520	2-1-65	1300	21.66	3831.22		
2-2-85	1721	2-8-85	1300	115.65	3946.87		
2-12-85	0852	2-15-85	1530	78.63	4025.50		
2-17-85	1802	2-17-85	2200	4.00	4029.50		
2-27-85	0923	2-27-85	1105	1.70	4031.20	-	
2-27-85	1356	2-27-85	1717	3.35	4034.55		
and the state of t		and the second s				1 .	

.

1. . . .

I

	 	and the second second	
	 	 	_
_			
			the second second

03 4051.58 51 4073.19 58 4184.77 25 4185.02
51 4073.19 58 4184.77 25 4185.02
58 4184.77 25 4185.02
25 4185.02
4107.33
6 4298.21
6 4313.67
5 4323.82
4395.44
4403.82
18 4404.10
.0 4487.70
5 4493.15
8 4516.33
5 4548.78
0: 4616.28
8 4662.06
7 4707.53
0 4728.63
2 4794.35
7 4839.82
6 4841.38
0 4883.58
5 4911.03
7 4912.60

L

1.40

		ж.		•	
- 10			•		
	 	-			_

date in	time	date out	time	exposure hours	aigna hours	core	Τ
12-29-85	1709	12-31-85	1500	45.85	4958.45		1
1-5-86	1710	1-10-86	1400	116.83	5075.28		· · ·
1-12-86	1651	1-13-86	0900	16.15	5091.43		
1-19-86	1700	1-24-86	1000	113.00	5204.43		
1-26-86	1700	1-28-86	0800	39.00	5243.43		
1-28-86	0928	1-31-86	1000	72.53	1315.96	1	1
2-2-86	1648 .	2-7-86	1200	115.20	5431.16	in the second	
2-9-86	1708	2-11-86	0809	39.02	5470,18		STREET
2-11-86	0840	2-16-86	0900	22.33	5542.51		
2-17-86	1649	2-21-86	0900 .	88.18	5630.69		
			1				
		CAPSULE	DISCHARGED				
			. *				
	A		1				
		•					
		1. S. C. A.					
			· · · ·				
			1. A.				
			$\lambda = 1, \lambda \in \mathbb{C}$	1.1.1.1.1		J	
	54. 						
	*		\mathcal{I} , \mathcal{I}	19			
	1.1			1. A.			

DATE	TDE	DATE OUT	TIME	EXPOSURE HOURS	SIGMA BOURS	CORE POSITION	NOTES
1-31-86	65- 4 6	into B - 4				3-4	6 3/8"
2-2-86	164.8	2-7-86	1200	115.20	115.20		Spacer
2-9-86	1708	-2-1-86	0809	39.02	154.22		
	65 . 4	OUT OF CO	ke '				
							-
	· ·						
	1						
							1
	1.1.1.	· .					
	1						
	1		•				
	1			·			
		۰.					
				1. N.		Alt sales	
			• •				

EXPOSURE BISTORY :____

MEA 75 A & B

7-25-86 75 A 4 8 1 into C-2 C-2 7-27-86 1720 8-1-86 1200 114.5 114.5 8-3-86 1710 8-5-86 1400 44.83 159.33 8-3-86 1600 67.42 226.75 226.75 8-10-86 1654 8-11-86 2226 29.53 256.28 8-15-85 1550 8-15-86 2312 7.37 263.65 8-17-85 1656 8-19-56 1330 44.57 308.22 FND OF DEPOSURE Interview Interview <tr< th=""><th>DATE IN</th><th>TIME IN</th><th>DATE OUT</th><th>TIME OUT</th><th>EXPOSURE</th><th>SIGMA</th><th>CORE</th><th>NOTES</th></tr<>	DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA	CORE	NOTES
7-27-86 1730 8-1-25 1200 114.3 114.5 8-3-86 1710 8-5-86 1400 44.83 155.33 807ATED 180°	7-25-86	75 A 6 B	into C-2				C-2	
B-3-86 1710 B-5-86 1400 44.83 159.33 B-3-86 1433 B-6-86 10000 67.42 226.75 B-10-86 1835 B-6-86 10000 67.42 226.75 B-10-86 1850 B-117-86 2312 7.37 263.65 B-17-86 1550 B-19-86 1320 44.57 308.22 B-17-86 1654 B-19-86 1320 44.57 308.22 B-17-86 1656 B-19-86 1320 44.57 308.22 END OF DECOURE Intervention Intervention Intervention END OF DECOURE Intervention Intervention Intervention Intervention Intervention Interven	7-27-86	1730	8-1-26	1200	114.5	114.5	A STATISTICS	
ROTATED 180° 6 1000 67.42 226.75 8-10-86 1654 8-11-86 2226 29.53 236.28 8-15-85 1550 8-15-86 2312 7.37 263.65 8-17-86 1656 8-19-86 1330 44.57 308.22 FND OF EXPOSUEE	8-3-86	1710	8-5-86	1400	44.83	159.33		
B-5-86 1433 B-8-86 1000 67.42 226.73 B-10-86 1654 B-11-86 2226 29.53 256.28 B-15-86 1550 B-15-86 2312 7.37 263.65 B-17-85 1656 B-19-86 1320 44.57 308.22 FND OF DXPOSURE Image: Control of the second s		ROTATED	180*					
8-10-86 1654 8-11-86 2226 29.53 256.28 8-15-86 1550 8-15-86 2312 7.37 263.65 8-17-86 1656 8-19-86 1330 44.57 308.22 FND.OF. DEPOSURE	8-5-86	1435	8-8-86	1000	67.42	226.75		
B-15-86 1550 8-15-86 2312 7.37 263.65 B-17-86 1656 8-19-86 1320 44.57 308.22 FND OF EXPOSURE	8-10-86	1654	8-11-86	2226	29.53	256.28		
B-17-85 1655 B-19-86 1330 44.57 308.22 END OF EXPOSURE Image: Contract of the second	8-15-86	1550	8-15-86	2312	7.37	263.65		
	8-17-86	1656	8-19-86	1330	44.57	308.22		
		END OF E	KPOSURE					
						+		
								-
			·					
					-			
								4
								-

B-34

EXPOSURE HISTORY: US276A, B

DATE IN	TIME IN	DATE OUT	TIME OUT	EXPOSURE	SIGMA HOURS	CORE	NOTES
7/25/86	76A, 8	INTO 8-	4				
						8-4	
7/27/86	1730	8/1/86	1200	114.5	114.5		
8/3/86	1710	8/5/86	1400	44.83	159.33		
8/5/86	1435	8/8/86	1000	67.42	226.75		
8/10/86	1654	8/11/86	2226	29.53	256.28		
8/15/86	1550	8/15/86	2312	7.37	263.65		
6/17/86	1656	8/19/86	1330	44.57	308.22		
	NEST MARKEN	180° R	TATION				
3/19/86	1516	8/22/84	0800	64.73	372.95		
3/2+/86	1707	8/28/86	2300	101.88	474.83		
9/2/86	0115	9/2/86	1102	9.78	484.61		
9/2/86	1121	915/86	0700	67.65	552.26		
9/7/86	1658	9/10/06	0845	63.78	616.04		
		E.0 04	EXPER	MENT			
	Non-Konstantes						
							Contrast of the Assess of the
			Sect-Abox		*		

Contractions of					the state of the s		

		-	1. A.	-
		-		•
	_	_		_

DATE IN	TIME	DATE JUT	TIME	EXPOSURE	SIG:2A BOURS	CORE POSITION	NOTES
5-31-87	1702	6-3-87	1400	68,97	68.97	B-4	Botated 180
6-3-87 6-7-87	1506	6-5-87 6-8-87	2130	42.02	110.99	<u> </u>	Discharged
		-					
		1					
							•

APPENDIX C

Tabulations of Charpy-V Notch Ductility Test Results

Charpy-V Data from Unirradiated Condition Tests

No.	Specimen	Layer	Capsule	Test	Temp.	E	nergy	Lat	. Exp.	Shear
	Number			(.00)	(°F)	(1)	(ft-16)	(mm)	(mils)	(%)
1	145	1		-29	-20	29.8	22.0	0.56	22	<100
2	38	1		-23	-10	32.5	24.0	0.71	28	<100
3	174	1		-7	20	55.6	41.0	0.89	35	<100
4	1	1		-1	30	51.5	38.8	0.89	35	<100
5	191	1		16	60	81.3	60.0	1.32	52	<100
6	. 2	1		38	100	113.9	84.0	1.83	72	<100
7	173	1		93	200	127.4	94.0	1.88	74	100
8	37	1		284	400	124.7	92.0	1.96	77	100
9	192	1		204	400	124.7	92.0	1.83	72	100

A 302-B Plate 23F (Unirradiated Condition; L-T Orientation)

(ID) - Not Determined (NT) - Not Tested

No.	Specimen	Layer	Capsule	Test Temp.		E	Energy		Lat. Exp.		
	Number			(00)	(°F)	(1)	(ft-1b)	(mm)	(miis)	(%)	
1	TA-6	1.		-62	-80	10.8	8.0	0.13	5	<100	
2	TA-15	1		-62	-80	6.8	5.0	0.10	4	<100	
3	TA-5	1		-40	-40	38.0	28.0	0.53	21	<100	
4	TA-19	1		-40	-40	33.9	25.0	0.64	25	<100	
5	TA-4	1		-18	0	66.4	49.0	0.99	39	<100	
6	TA-17	1		-18	0	48.8	36.0	0.76	30	<100	
7	TA-7	1		-1	30	92.2	68.0	1.37	54	<100	
8	TA-14	1		-1	30	75.9	56.0	1.14	45	<100	
9	TA-3	1		27	88	132.9	98.0	1.65	65	<100	
10	TA-18	1		27	88	141.0	184.0	1.75	69	<100	
11	TA-61	1		71	163	131.5	97.0	1.83	72	100	
12	TA-80	1		71	160	158.6	117.0	1.91	75	100	
13	TA-1	1		93	200	143.7	106.0	1.78	70	100	
14	TA-16	1		93	200	158.6	117.0	1.85	73	100	
15	TA-8	1		121	250	158.5	111.0	1.91	75	100	
16	TA-2	1		160	320	127.4	94.0	1.75	69	100	
17	TA-13	1		160	320	153.2	113.0	1.88	74	100	
18	TA-20	1		160	320	166.8	123.0	2.01	79	100	
19	TA4-8	3		-40	-40	14.9	11.0	0.28	11	<100	
20	TA4-1	25		-18	0	61.0	45.0	0.94	37	<100	
21	TA4-5	2		27	80	109.8	81.0	1.55	61	<100	
22	TA4-4	30		204	400	134.2	99.0	1.63	64	100	
23	TA4-9	2		204	400	151.9	112.0	1.85	73	100	

A 533-B Plate 23G (Unirradiated Condition; T-L Orientation) +

٠

Also MEA Code TA.
a - One layer above 1/4 T plane.
b - One layer above 3/4 T plane.
c - One layer below 3/4 T plane.

No.	Specimen	Layer	Capsule	Test	Temp.	E	nergy	Lat	. Exp.	Shear
_	Number			(00)	(°F)	(1)	(11-10)	(mm)	(mils)	(%)
1	4	4		-48	-40	19.0	14.0	0.33	13	5
2	11	11		-40	-48	24.4	18.0	0.43	17	5
3	30	6		-23	-10	35.3	26.0	(ND)	(ND)	
4	98	9		-23	-10	43.4	22.0	(ND)	(ND)	
5	5	5		-18	0	48.8	36.0	0.94	37	
6	12	12		-18	0	43.4	32.0	0.79	31	20
7	18	6		4	48	52.9	39.0	(ND)	(ND)	
8	3	3		27	80	56.9	42.0	1.09	43	45
9	10	10		27	80	48.7	30.0	0.74	29	35
10	6	6		49	120	70.5	52.0	1.27	50	80
11	1	1		49	120	63.7	47.0	1.19	47	60
12	2	2		93	200	81.3	60.0	1.55	E1	100
13	9	9		93	200	75.9	56.0	1.47	58	100
14	15	3		204	400	78.6	58.0	1.68	66	100
15	22	10		284	400	78.6	58.0	1.52	60	100

Code WSA (Unirradiated Condition)

No.	Specimer: Number	Layer	Capsule	Test Temp.		Energy		Lat. Exp.		Shear
				(.0)	(°F)	(1)	(ft-1b)	(mm)	(mils)	(%)
1	5	5		-62	-80	39.3	29.0	0.71	28	28
2	15	3		-62	-80	38.0	28.0	0.64	25	10
3	3	3		-46	-50	71.9	53.0	1.09	43	50
4	19	7		-46	-50	67.8	50.0	1.07	42	20
5	18	7		24	75	130.2	96.0	1.85	73	95
6	27	3		24	75	149.1	110.0	1.96	77	99
7	6	6		71	160	154.6	114.0	2.18	86	100
8	16	4		204	400	169.5	125.0	2.21	87	100
9	29	5		284	400	169.5	125.0	2.21	87	100
10	35	11		204	400	168.1	124.0	2.16	85	100

Code W9R (Unirradiated Condition)

Charpy-V Data from Irradiation Assembly UBR-38

(Reflector Region Irradiation)

No.	Specimen Number	Layer	Capsule	Test Temp.		Energy		Lat. Exp.		Shear
				(00)	(°F)	(1)	(ft-1b)	(mm)	(mils)	(%)
1	169		38-A	4	40	20.3	15.0	0.46	18	<100
2	168		38-A	21	78	19.0	14.0	0.36	14	<100
3	58		38-A	29	85	36.6	27.0	0.69	27	<100
4	106		38-A	32	98	38.0	28.0	8.64	25	<100
5	155		38-A	38	100	36.6	27.0	0.71	28	<100
6	130		38-A	46	115	62.4	46.0	0.91	36	<100
7	108		38-A	54	130	63.7	47.8	1.02	40	<100
8	109		38-A	60	140	63.7	47.0	1.19	47	<100
9	11		38-A	66	150	58.3	43.0	1.02	40	<100
10	171		38-A	74	165	120.7	89.0	1.55	61	100
11	133		38-A	82	180	97.6	72.0	1.55	61	<100
12	12		38-A	93	200	112.5	83.0	1.68	66	<100
13	36		38-A	138	280	118.0	87.0	2.01	79	<100
14	170		38-A	182	360	111.2	82.0	1.98	78	100
15	131		38-A	204	400	115.2	85.0	1.65	55 .	100

A 302-B (UBR-38, Capsule A, As-Irradiated) [IP-1]

(ND) - Not Determined (NT) - Not Tested

No.	Specimen Number	Capsule	Test Temp.		Energy		Lat. Exp.		Shear
			(°C)	(°F)	(J)	(ft-1b)	(mm)	(mils)	(%)
1	195	38-A	-18	0	10.8	8.0	(ND)	(ND)	<100
2	196	38-A	4	40	32.5	24.0	0.46	18	<100
3	182	38-A	10	50	27.1	20.0	0.41	16	<100
4	183	38-A	16	60	35.3	26.0	0.61	24	<100
5	282	38-A	21	70	32.5	24.0	0.61	24	<100
6	198	38-A	24	75	54.2	40.0	0.76	30	<100
7	181	38-A	32	90	56.9	42.0	0.86	34	<100
8	186	38-A	38	100	50.2	37.0	0.81	32	100
9	206	38-A	52	125	77.3	57.0	1.12	44	<100
10	188	38-A	66	150	81.3	60.0	1.12	44	<100
11	189	38-A	71	160	69.1	51.0	1.04	41	<100
12	200	38-A	88	190	97.8	72.1	1.75	69	<100
13	192	38-A	149	300	142.4	105.0	1.60	63	100
14	204	38-A	177	350	135.6	100.0	2.36	93	100
15	194	38-A	284	400	139.6	103.0	2.03	80 .	100

A 533-B Plate 23 G (UBR-38, Capsule A, As-Irradiated) [IP-1]

(ND) - Not Determined (NT) - Not Tested Charpy-V Data from Irradiation Assembly UBR-44

٠

(Core-Edge Irradiation)
No.	Specimen	ecimen Layer Cap		Test	Temp.	Energy		Lat	Shear	
	Number			(.0)	(*F)	(1)	(ft-1b)	(mm)	(mils)	(%)
1	+149		44-A	(NT)	(NT)					
2	• 13		44-A	(NT)	(NT)					
3	195		44-A	-7	20	5.4	4.0	0.03	1	<100
4	42		44-A	4	48	13.6	10.0	0.23	9	<100
5	141		44-A	21	78	31.2	23.0	0.66	26	<100
. 6	100		44-A	27	80	21.7	16.0	0.43	17	<100
7	93		44-A	43	110	40.7	30.0	0.69	27	<100
8	54		44-A	49	120	50.2	37.0	0.81	32	<100
9	135		44-A	66	150	56.9	42.0	1.04	41	<100
10	3		44-A	88	190	75.9	56.0	1.24	49	<100
11	181		44-A	93	200	99.0	73.0	1.50	59	<100
12	39		44-A	121	250	105.8	78.0	1.70	67	<100
13	*184		44-A	× 27 -		(NT)	(NT)	(ND)	(ND)	<100
14	105		44-A	182	368	100.3	74.0	1.96	77	100
15	90		44-A	204	400	113.9	84.0	2.21	87 .	100

A 302-B (UBR-44, Capsule A, As-Irradiated) [CE-1]

* Reserved for postirradiation anneal. (ND) - Not Determined (NT) - Not Tested

.

No.	Specimen	Layer	Capsule	Test	Temp.	E	nergy	Lat	. Exp.	Shear
	Number			(•C)	(°F)	(3)	(ft-1b)	(mm)	(mils)	(%)
1	+279	3	44-A	(NT)	(NT)					
2	+298	2	44-A	(NT)	(NT)					
3	+307	7	44-A	(NT)	(NT)					
4	+274	10	44-A	(NT)	(NT)					
5	+301	1	44-A	(NT)	(NT)					
6	265	1	44-A	49	120	10.8	8.0	0.15	6	<100
7	317	5	44-A	66	150	19.0	14.0	0.30	12	<100
8	327	3	44-A	88	190	24.4	18.0	0.43	17	<100
9	299	11	44-A	88	190	32.5	24.8	0.51	20	<100
10	271	7	44-A	104	220	48.8	36.0	0.86	34	<100
11	268	4	44-A	104	220	46.1	34.8	0.71	28	<100
12	282	6	44-A	110	230	35.3	26.0	0.58	23	<100
13	285	9	44-A	121	250	52.9	39.0	0.94	37	<100
14	296	8	44-A	204	400	54.4	40.1	1.02	40	100
15	293	5	44-A	204	400	50.3	37.1	0.79	31 .	98

Weld WER (UBR-44, Capsule A, As-Irradiated) [CE-1]

Reserved for postirradiation anneal.
(ND) - Not Determined
(NT) - Not Tested

(Core-Edge Irradiation)

No.	Specimen	Capsule	Test Temp.		E	nergy	Lat	. Exp.	Shear
	Number		(.00)	(°F)	(3)	(ft-1b)	(mm)	(mils)	(%)
1	48	45-A	16	60	9.5	7.0	0.18	7	<100
2	185	45-A	21	70	28.5	21.0	0.56	22	<100
3	94	45-A	38	100	24.4	18.0	0.51	20	<100
4	43	45-A	49	120	32.5	24.0	0.58	23	<100
5	150	45-A	60	140	33.9	25.0	0.74	29	<100
6	4	45-A	60	140	38.0	28.0	0.74	29	<100
7	14	45-A	71	160	58.3	43.0	0.99	39	<100
8	182	45-A	77	170	84.1	62.0	1.40	55	<100
9	48	45-A	82	180	56.9	42.0	0.99	39	<100
10	188	45-A	85	185	92.2	68.0	1.45	57	<100
11	25	45-A	93	200	77.3	57.0	1.30	51	<100
12	196	45-A	121	250	89.5	66.0	1.52	60	<100
13	136	45-A	177	350	101.7	75.0	1.65	65	<100
14	101	45-A	204	400	97.6	72.0	1.63	64	100
15	91	45-A	260	500	97.6	72.0	1.78	70 .	100

A 302-B Plate 23 F (UBR-45, Capsule A, As-Irradiated)[CE-3]

(ND) - Not Determined (NT) - Not Tested

No.	Specimen	Layer	Capsule	Test	Temp.	Er	heray	Lat	. Exp.	Shear
	Number			(•0)	(*F)	(3)	(ft-1b)	(mm)	(mils)	(%)
1	•303	3	45-A	(NT)	(NT)	A. Salaria				
2	+269	5	45-A	(NT)	(NT)					
3	+319	7	45-A	(NT)	(NT)					
4	266	2	45-A	71	160	14.9	11.0	0.28	11	<100
5	291	3	45-A	88	190	12.2	9.0	0.23	9	<100
6	297	9	45-A	93	200	32.5	24.0	0.51	20	<100
7	277	1	45-A	184	220	23.0	17.0	0.38	15	<100
8	280	4	45-A	107	225	28.5	21.0	0.61	24	<100
9	12	8	45-A	121	250	43.4	32.0	0.79	31	<100
10	286	10	45-A	121	250	34.0	25.1	0.53	21	. <100
11	329	5	45-A	138	280	40.7	30.0	0.66	26	<100
12	275	11	45-A	160	320	46.1	34.0	0.84	33	<100
13	283	7	45-A	204	400	48.7	30.0	0.79	31	<100
14	294	6	45-A	204	400	43.4	32.0	0.69	27	100
15	313	1	45-A	288	550	46.1	34.0	0.87	34	100

Weld WBA (UBR-45, Capsule A, As-Irradiated) [CE-3]

Reserved for postirradiation anneal.
(ND) - Not Determined
(NT) - Not Tested

(Core-Edge Irradiation)

No.	Specimen	Capsule	Test Temp.		Er	nergy	Lat	. Exp.	Shear
	Number		(.00)	(°F)	(1)	(ft-1b)	(mm)	(mils)	(%)
1	96	46-A	10	50	8.1	6.0	0.20	8	<100
2	95	46-A	21	78	20.3	15.0	0.38	15	<100
3	140	46-A	27	80	24.4	18.0	0.41	16	<100
4	184	46-A	32	90	38.0	28.0	0.64	25	<100
5	151	46-A	38	100	32.5	24.0	0.69	27	<100
6	41	46-A	54	130	46.1	34.0	0.76	30	<100
7	142	46-A	60	140	46.1	34.0	0.79	31	<100
8	186	46-A	71	160	69.1	51.0	1.09	43	<100
9	26	46-A	82	180	56.9	42.0	0.99	39	<100
10	92	46-A	88	190	82.7	61.0	1.37	54	<100
11	5	46-A	104	220	105.8	78.0	1.63	64	97
12	197	46-A	138	280	184.4	77.0	1.55	61	97
13	102	46-A	177	350	97.6	72.0	1.57	62	98
14	44	46-A	260	500	111.2	82.0	1.55	61	100
15	183	46-A	260	500	105.8	78.0	1.88	71 .	98

A 382-B Plate 23 F (UBR-46, Capsule A, As-Irradiated) [CE-2]

(ND) - Not Detersined (NT) - Not Tested

No.	Specimen	pecimen Layer Capsu		Test	Temp.	Energy		Lat. Exp.		Shear
	Number			(°C)	(°F)	(]>	(ft-lp)	(mm)	(mils)	(%)
1	+315	3	46-A			(NT)	(NT)	1. 1. 1. 1. 1.		
2	+331	7	46-A			(NT)	(NT)			
3	305	5	46-A	43	110	6.8	5.0	0.15	6	<100
4	298	10	46-A	60	140	19.0	14.0	0.38	15	<100
5	278	2	46-A	82	180	24.4	18.0	8.48	19	<100
6	289	1	46-A	88	198	28.5	21.0	0.46	18	<100
7	281	5	46-A	93	200	24.4	18.0	0.38	15	<100
8	267	3	46-A	104	220	33.9	25.0	0.58	23	<100
9	287	11	46-A	184	220	43.4	32.0	0.69	27	<100
10	325	1	46-A	110	230	38.0	28.0	0.64	25	<100
11	284	8	46-A	121	250	48.8	36.0	0.99	39	98
12	273	9	46-A	121	250	48.8	36.0	0.97	38	98
13	292	4	46-A	204	400	50.2	37.0	0.89	35	100
14	270	6	46-A	204	400	48.8	36.0	0.94	37	100
15	295	7	46-A	288	550	44.7	33.0	1.42	56 '	100

Weld W3A (UBR-46, Capsule A, As-Irradiated) [CE-2]

Reserved for postirradiation anneal.
(ND) - Not Determined
(NT) - Not Tested

(In-Core Irradiation)

No.	Specimen	Capsule	Test Temp.		E	nergy	Lat	. Exp.	Shear
	Number		(.0)	(°F)	(3)	(ft-1b)	(mm)	(mils)	(%)
1	121	65-B	-4	25	20.3	15.0	0.43	17	<100
2	152	65-B	4	40	16.3	12.0	0.36	14	<100
3	68	65-B	16	60	32.5	24.0	0.71	28	<100
4	72	65-B	27	80	28.5	21.0	0.56	22	<100
5	21	65-B	27	88	43.4	32.0	0.84	33	<100
6	67	65-B	32	98	39.3	29.0	0.86	34	<100
7	78	65-B	38	100	56.9	42.0	1.02	40	<100
8	15	65-B	43	110	48.8	36.0	8.94	37	<100
9	198	65-B	49	120	61.0	45.0	1.07	42	<100
10	164	65-B	49	120	71.9	53.0	1.17	46	(100
11	9	65-B	71	160	89.5	66.0	1.42	56	<100
12	65	65-B	71	160	97.6	72.0	1.83	72	<100
13	65	65-B	71	160	93.6	69.0	1.50	59	<100
14	124	65-B	138	280	108.5	80.0	1.65	65	100
15	114	65-B	177	350	100.3	74.0	1.70	67	100
16	172	65-B	284	400	115.2	85.0	1.91	75	100
17	27	65-B	268	500	109.8	81.0	2.01	79	100

A 302-B Plate 23 F (UBR-65, Capsule B, As-Irradiated) [10-1]

(ND) - Not Determined (NT) - Not Tested

Nø.	Specimen Number	Layer	Capsule	Test (°C)	(°F)	(J) (re-16)	(mm)	Exp. (mils)	Shear (%)
1	+376	4	65-3	(NT)	(NT)					
2	363	3	65-B	16	68	10.8	8.0	0.25	10	<100
3	340	4	65-B	27	80	8.1	6.0	0.36	14	<100
4	380	8	65-B	41	105	38.0	28.0	0.71	28	<100
5	369	9	65-B	49	120	38.0	28.0	0.71	28	<100
6	309	9	65-B	68	140	38.0	28.0	0.69	27	<100
7	311	11	65-B	66	150	29.8	22.0	0.53	21	<100
8	374	2	65-B	71	160	33.9	25.0	0.66	26	<100
9	355	7	65-B	82	180	48.8	36.0	1.02	40	<100
10	352	4	65-B	93	200	42.0	31.0	0.79	31	<100
11	365	5	65-B	93	200	40.7	30.0	0.86	34	<100
12	372	12	65-B	104	220	55.6	41.0	1.04	41	<100
13	33	9	65-B	121	250	55.6	41.0	1.04	41	99
14	358	10	65-B	121	250	56.9	42.0	1.17	46	97
15	349	1	65-B	204	400	59.7	44.0	1.12	44	100
16	383	11	65-B	204	400	61.0	45.0	1.12	44	98
17	240	12	65-B	288	550	61.0	45.0	1.32	52	100

Weld WBA (UBR-65, Capsule B, As-Irradiated) [IC-1]

* Reserved for postirradiation anneal (ND) - Not Determined (NT) - Not Tested

(In-Core Irradiation)

No.	Specimen	Capsule	Test Temp.		Energy		Lat. Exp.		Shear
	Number		()	(*F)	(3)	(ft-16)	(mm)	(mils)	(%)
1	74	75-B	-1	30	13.6	10.0	0.23	9	<100
2	162	75-B	4	40	19.0	14.8	0.38	15	<100
3	22	75-B	27	80	24.4	18.0	0.46	18	<100
4	127	75-B	32	90	35.3	26.0	0.69	27	<100
5	120	75-B	49	120	43.4	32.0	0.79	31	<100
6	110	75-B	49	120	48.7	30.0	0.76	. 30	<100
7	69	75-B	63	145	66.4	49.0	1.17	46	<100
8	65	75-B	71	160	58.3	43.0	1.02	40	<100
9	16	75-B	79	175	90.8	67.0	1.40	55	<100
10	28	75-B	82	180	96.3	71.0	1.63	64	<100
11	24	75-B	93	200	85.4	63.0	1.57	62	<100
12	115	75-B	121	250	105.8	78.0	1.78	70	100
13	199	75-B	138	280	100.3	74.0	1.63	64	100
14	90	75-B	204	400	115.2	85.0	2.26	89	<100
15	144	75-B	204	400	103.0	76.0	1.85	73	100
16	122	75-B	288	550	105.8	78.0	1.75	69	100
17	92	75-B	288	550	118.0	87.0	1.63	64	100

A 302-B Plate 23 F (UBR-75, Capsule B, As-Irradiated) [IC-2]

(ND) - Not Devermined (NT) - Not Tested

No.	Specimen	Layer Capsu		e Test Temp.		E	nergy	Lat	. Exp.	Shear
10.00	Number			(•0)	(*F)	(1)	(ft-1b)	(mm)	(mils)	(%)
1	341	5	75-B	24	75	8.1	6.0	0.10	4	<100
2	381	9	75-B	32	98	25.8	19.0	0.49	19	<100
3	375	3	75-B	49	120	21.7	16.0	0.41	16	<100
4	594	10	75-B	60	140	29.8	22.0	0.53	21	<100
5	359	11	75-B	71	160	29.8	22.0	0.53	21	<100
6	377	5	75-B	82	180	27.1	20.0	0.53	21	<100
7	590	2	75-B	82	180	32.5	24.0	(ND)	(ND)	<100
8	367	7	75-B	88	190	44.7	33.0	0.84	33	<100
9	370	10	75-B	99	210	40.7	30.0	8.74	29	<100
10	350	2	75-B	104	220	46.1	34.0	0.76	30	<100
11	366	6	75-B	110	230	40.7	30.0	0.71	28	<100
12	361	1	75-B	127	260	44.7	33.0	0.91	36	<100
13	214	10	75-B	138	280	55.6	41.0	0.91	36	<100
14	321	4	75-B	149	300	52.9	39.0	0.91	36	100
15	356	8	75-B	204	400	56.9	42.0	1.07	42	100
16	353	5	75-B	204	400	54.2	40.0	1.02	40	100
17	384	12	75-B	288	550	52.9	39.0	1.12	44	100

Weld WSR (UBR-75, Capsule B, As-Irradiated) [IC-2]

(ND) - Not Determined (NT) - Not Tested

(In-Core Irradiation)

No.	Specimen .	Capsule	Test	Temp.	E	rengy	Lat	. Exp.	Shear
	number			1.4.4	(37	(11-10)	((1115)	(4)
1	29	76-B	4	40	6.8	5.0	0.15	6	<100
2	77	76-B	4	40	6.8	5.0	0.15	6	<100
3	163	76-B	27	80	23.0	17.0	0.46	18	<100
4	143	76-B	32	90	19.0	14.0	8.38	15	<100
5	128	76-B	49	120	33.9	25.0	0.64	25	<100
6	23	76-B	49	120	35.3	26.0	0.71	28	<100
7	67	76-B	57	135	42.0	31.0	0.74	29	<100
8	70	76-B	60	143	52.9	39.0	8.94	127	<100
9	129	76-B	74	165	55.6	41.0	8.94	11	<100
10	111	76-B	82	130	73.2	54.0	1.27	50	<100
11	91	76-B	88	190	70.5	52.0	1.37	54	<100
12	17	76-B	184	220	105.8	78.0	1.70	67	<100
13	81	76-B	121	250	110.0	81.1	1.63	64	100
14	80	76-B	149	300	105.8	78.0	1.83	72	100
15	77	76-B	204	400	96.3	71.0	1.78	70	100
16	200	76-B	288	550	94.9	70.0	2.03	80	100
17	88	76-B	288	550	93.6	69.0	2.13	84	100

A 302-B Plate 23F (UBR-16, Capsule B, As-Irradiated) [10-3]

(ND) - Not Determined (NT) - Not Tested

.

No.	Specimen	Layer	Capsule	Test	Temp.	E	nergy (finite)	Lat	. Exp.	Shear
-	HUMD'						(11-10)	v mm z		147
1	+114	6	76-B	(NT)	(NT)			41		
2	+368	12	76-B	(NT)	(NT)	a state of a				
3	354	6	76-B	49	120	13.6	18.8	(ND)	(ND)	<108
4	357	9	76-B	60	140	28.5	21.0	0.54	21	<100
5	351	3	76-B	66	150	20.3	15.0	0.36	14	<100
6	85	1	76-B	68	155	24.4	18.0	0.43	17	<100
7	589	1	76-B	82	180	27.1	20.0	0.61	24	<100
8	362	2	76-B	98	208	27.1	20.0	0.74	29	<100
9	378	6	76-B	99	210	35.3	26.0	0.58	23	<100
10	364	4	76-B	110	230	47.5	35.0	0.84	33	<100
11	371	11	76-B	110	230	43.4	32.0	0.79	31	<100
12	382	10	76-B	121	250	40.7	30.0	0.79	31	<100
13	379	7	76-B	127	260	46.1	34.0	0.84	33	100
14	368	8	76-B	149	300	52.9	39.0	0.97	38	<100
15	333	9	76-B	284	400	55.6	41.0	(ND)	(ND)	100
16	592	4	76-B	294	488	48.8	36.0	0.94	37	100
17	335	11	76-B	288	550	51.5	38.0	0.97	38	100

Weld WSA (UBR-76, Capsule B, As-Irradiated) [IC-3]

Reserved for postirradiation anneal.
(ND) - Not Determined
(NT) - Not Tested

.

(In-Core Irradiation)

No.	Specimen Number	Layer	Capsule	Te t Temp.		Energy		Lat. Exp.		Shear
				(•0)	(*F)	(3)	(ft-1b)	(mm)	(mils)	(%)
1	220		77-A	-29	-20	32.5	24.0	0.61	24	<100
2	238		77-A	-7	20	36.6	27.9	0.74	29	<100
3	221		77-A	-1	30	44.7	33.0	0.74	29	<100
4	236		77-A	2	35	9.5	7.0	0.15	6	(100
5	212		77-A	4	40	46.1	34.0	8.74	29	<100
6	227		77-A	21	78	40.7	30.0	0.76	30	<100
7	232		77-A	21	78	51.5	38.0	0.84	33	<100
8	224		77-A	27	80	75.9	56.0	1.27	50	<100
9	214		77-A	38	100	100.3	74.0	1.83	72	<100
10	233		77-A	49	120	105.8	78.0	1.57	62	<100
11	230		77-A	66	150	113.9	84.0	1.75	69	<100
12	228		77-A	149	300	131.5	97.0	1.91	75	100
13	234		77-A	284	400	141.0	164.0	2.26	89	100
14	240		77-A	204	400	126.1	93.0	2.31	91	100

State 1

14

A 533-B Plate 23G (UBR-77, "ansule A, As-Irradiated) [IC-4]

(ND) - Not Determined (NT) - Not Tested

.

No.	Specimen Number	Layer	Capsule	-Test	Temp. (*F)				Exp.	Shear (%)
1	274	10	77-A	-32	-25	24.4	18.0	0.33	13	<100
2	272	8	77-A	(NT)	(NT)					
3	276	12	77-A	-12	10	29.8	22.0	0.53	21	<100
	292	4	77-A	-7	20	32.5	24.8	8.56	22	<100
9	167	11	77-A	4	48	48.8	36.0	0.69	27	<100
6	295	7	77-A	10	50	58.3	43.0	0.89	35	<100
7	289	1	77-A	16	60	51.5	38.0	0.84	33	<100
	339	3	77-A	16	60	36.6	27.0	0.99	39	<189
9	202	10	77-A	27	80	66.4	49.0	1.04	41	<100
10	¥3	Vee	77-A	43	110	88.1	65.0	1 35	53	<100
11	317	5	77-A	49	120	85.4	63.0	1.30	51	<100
12	266	2	77-A	66	150	100.3	74.0	1.52	60	<100
13	297		77-A	93	200	132.9	98.0	2.24	88	100
14	299	11	77-B	149	388	123.4	91.0	1.83	72	100
15	270	6	77-A	284	400	122.0	90.0	2.01	79	100
16	284	12	77-2	284	400	113.9	84.8	1.78	78	<100

Wold W9A (UBR-77, Capsule A, As-Irradiated) [IC-4]

戁

(ND) - Not Determined (NT) - Not Tested

95 e³

1

100

a l

(C) Derror

.

*

APPENDIX D

Computer Curve-Fits of Charpy-V Test Results (Specimen Energy Absorption vs. Temperature)

OVERVIEW

The data curve fitting procedure employed the hyperbolic tangent (Tanh) curve fitting method as given by:

$$C_v = A + B \tanh \frac{T + T_o}{C}$$

Farameters A, B, C and T, are determined from non-linear regression analysis.

The quality of the fit to each data set generally depends upon the number of specimens tested and the availability of data defining the upper shelf and lower shelf for the data set. For many of the present data sets, both requirements are satisfied and an acceptable curve fit results. In other cases, either few tests were conducted or the data did not adequately define the lower shelf for the data set. For such cases, the lower shelf from a standard Tanh fit gives a lower shelf which is either above 27 J (20 ft-1b) or negative. Since such results are not satisfactory from either engineering or aesthetic standpoints, two modified curve fits can be applied. One (Case A) is illustrated for certain data sets of the plate Code 68B, 5C and 6A materials.

Case A is the result obtained when four fictitious data points with 7 J (5 ft-lb) of energy absorption are added at a temperature that is $28^{\circ}C$ ($50^{\circ}F$) below the intercept with the abscissa, of a line representing a linearized transition region. The line in this case is an eyeball fit to the data; the choice of a larger temperature shift (up to $56^{\circ}C$ or $100^{\circ}F$) was found not to infuence the result appreciably. Case B represents use of a fixed lower shelf of 7 J (5 ft-lb); this lower shelf is attained at a temperature of - ∞ .

The use of the modified curve fits serve to force the curves to a reasonably low, positive value in the lower shelf region. This device is particularly useful for those cases where data are lacking in the lower shelf region for guiding the computer in its setting of bounding conditions. It should be noted that the American Society for Testing and Materials has not issued a standard method or a standard guide for curve-fitting C_v data for the irradiated condition.

Within this appendix, the curvefit sheet immediately following the data table represents a standard evaluation using the Tanh equation. The second curvefit sheet if present, gives the Case A results. For Case A, the fictitious data points are denoted by "O" on the graph and "*" in the data tabulation on the curvefit sheet. Table D-1 compares the 41-J temperatures indicated by the hand-drawn curves. (See main text.)

Irradiation Assembly	Material	Hand-Drawn Curve (a)	Computer.Fit Curve (b)	Difference (a-b)					
(Unirrad.)	23F 23G W8A W9A	- 15 - 34 - 23 - 62	- 13.9 - 28.9 - 17.0 - 61.3	- 1.1 - 5.1 - 6.0 - 0.7					
UBR-38	23F 23G	38 21	38.2 20.7	- 0.2 0.3					
UBR-44	23F WBA	43 102	43.1 101.3	0.1 0.7					
UBR-45	23F W8A	63 127	59.5 131.7	3.5					
UBR-46	23F W8A	49 107	48.7 109.3	0.3					
UBR-65	23F W8A	29 82	31.0 71.3	• 2.0 10.7					
UBR-75	237 W8A	46 96	45.2 97.7	0.8					
UBR - 76	23F W8A	57 104	55.4 110.1	1.6					
UBR-77	23G 194	- 1	11.4 3.1	: 7.4 : 4.1					

Table D-1 Comparison of Charpy-V Transition Temperature Indications From Two Data Curve Fitting Methods

C. 41-J Transition Temperature (°C)

D-2

Computer Curve Fittings of Unirradiated Condition Data

D-4

Computer Curve Fittings of Data from Irradiation Assembly UBR-38

Computer Curve Fittings of Data from Irradiation Assembly UBR-44

D-13

Computer Curve Fittings of Data from Irradiation Assembly UBR-45

D-17

1000

5

, °, •

100

*,**;

×,

Ũ

°. , , , ,

í.

19

r 💰

i.

197

(")

5.00

5

5

1

-

â â

1

R.

æs #

2 2

APPENDIX E

14

2

And and a second se

Constant of

Descent of

ì

il al

n ng

x

 \sim

1.1

»ر. ر

Fracture Toughness Determinations

.

Appendix E

FRACTURE TOUCHNESS DETERMINATIONS

1. SPECIMEN DESIGN

The fracture toughness determinations were made using 0.5T-CT specimens with a thickness of 12.7 mm (Fig. E-1). This design is similar to the specimen recommended in ASTM E 813-81 (Ref. E-1) where load-line displacement is measured on the specimen. This specimen size was considered acceptable based upon results from a size effect study, as discussed in Section 7.4 of Ref. E-2. As illustrated in Fig. E-2 for a Linde 0091 weld (code E24), the 0.5T-CT specimen design gives similar J_M -R curves to 1T-CT specimens, but lower J_D levels at large crack growth levels (i.e., $\Delta a > 1$ mm).

Precracking was performed in the preirradiation condition for all tests, with K_{max} below 22 MPa/m for the last 1 mm (0.04 in.). Side grooves were applied only to those specimens for which ductile failure (i.e., J-R curve development) was anticipated. (All specimens of capsule UBR-38 were side-grooved by 20% prior to irradiation.) The side grooving was targeted to a total depth of 2.54 mm, 1.27 mm per side, or 20% of the gross specimen thickness. Side grooving of the irradiated specimens was generally performed prior to irradiation. Razor blades were spot welded to the flats located on the load line, to allow accurate measurement of the load-line displacement.

2. TEST PROCEDURES

Although definition of upper shelf (ductile, J-R curve) and transition (cleavage, K_{IC} or K_{J}) behavior was desired in this program, the testing procedures for both types of tests were identical. Specifically, a 50-kN (110-kip) servohydraulic test frame was used, with either a strain-gaged clip gage or a capacitance-type clip gage used for displacement measurements. In all cases, a computerized data acquisition system was used, with digital load-displacement pairs stored on magnetic media for later retrieval or analysis. In addition, an analog load-displacement trace was recorded for each test. The K for these tests was - 44 MPa/m/min, with monotonic loading of the specimen until the ASTM E 399 (Ref. E-3) 5% secant line was intersected, at which time the single specimen compliance (SSC) technique was utilized to track the crack length during the remainder of the test (Refs. E-4 to E-6). Successive crack length determinations were made at intervals sufficient to accurately characterize the J-R curve behavior of the specimen.

After completion of the J-R curve tests, the specimens were heat tinted at $\sim 300^{\circ}$ C to mark the end of the stable growth, cooled to liquid nitrogen temperature, and then fractured. This procedure allows for an undistorted characterization of the fracture surface, as it was upon test termination. For the unirradiated tests, the resultant crack lengths (initial and final) were measured using a microscope and an X-Y table (accurate to 0.025 mm). The irradiated

18

Fig. E-2 The 0.5T-CT specimens give similar J_D and J_M levels to those from 1T-CT specimens at low Δa levels ($\Delta a < 0.5$ mm).

fracture surfaces were photographed, with the crack lengths then digitized using an X-Y digitizer. The latter technique has been found accurate to within 0.05 mm, based on optical and photographic measurements of unirradiated fracture surfaces.

3. DATA ANALYSIS PROCEDURES

3.1 Cleavage/No Stable Crack Growth

For those tests resulting in cleavage failure with no stable crack growth, an ASTM E 399 (Ref. E-3) analysis was performed to determine K_0 , and to assess if $K_0 = K_{Ic}$.

In addition, the J integral was used to calculate toughness for these tests. The form of the J integral used was the ASTM E 813-81 (Ref. E-1) form developed by Merkle and Corten (Ref. E-7), as simplified in Ref. E-8:

$$J = \frac{A}{B_{\rm N}b_{\rm o}} f(a_{\rm o}/W)$$
(E-1)

with

a

A

 $f(a_0/W) = 2(1 + \alpha) / (1 + \alpha^2)$

 $= [(2a_0/b_0)^2 + 2 (2a_0/b_0) + 2]^{1/2} \cdot (2a_0/b_0 + 1)$

- total area under the load-load line displacement curve

B_N - net specimen thickness

a = initial (precrack) crack length

b . W . a

Specifically, the J value at the cleavage point was termed $J_{\mbox{Crit}},$ and a $K_{\rm Jc}$ value was calculated from

$$K_{\rm Jc} = \sqrt{E J_{\rm Crit} / (1 - \nu^2)}$$
 (E-2)

where E is the modulus of elasticity and ν is Poisson's ratio, taken to be 0.3 in all cases. (In the data tables, the J_{Crit} values are listed under J_{Ic}.)

Since the specimens used here were small and precluded the determination of valid $K_{\rm Ic}$ values above 60 MPa/m, the $K_{\rm Jc}$ values were adjusted using the Irwin $\beta_{\rm Ic}$ procedure (Ref. E-9). As recommended by Merkle (Ref. E-10), these tests were conducted in displacement control, cleavage was the failure mode in every case, and conditions at the cleavage point were used to calculate the unadjusted fracture toughness values. The adjusted fracture toughness values, termed $K_{\beta c}$ and thought to provide a better approximation to $K_{\rm Ic}$, were calculated from:

$$\beta_{\rm c} = \beta_{\rm lc} + 1.4 \beta_{\rm lc}^{3}$$
 (E-3)

where

$$\theta_{c} = \frac{1}{B} \left(\frac{K_{c}}{\sigma_{y}}\right)^{2}$$
$$\theta_{1c} = \frac{1}{B} \left(\frac{K_{\beta c}}{\sigma_{y}}\right)^{2}$$

and

 $\sigma_y = 0.2$ offset yield strength at temperature K_c = "non-plane strain fracture toughness" = K_{Jc}

KAc - to be solved for

Rearranged, Eq. E-3 gives:

$$\beta_{\rm 1c}^{3} + (5/7) \beta_{\rm 1c} - (5/7) \beta_{\rm c} = 0$$
 (E-4)

Several parameters can be defined

$$m = (5/14) \beta_{c}$$

$$A_{1} = \sqrt{m^{2} + \frac{(5/7)^{3}}{27}} + m$$

$$A_{2} = A_{1} - 2m$$

 $\beta_{\rm Ic}$ can be calculated from

$$\beta_{1c} = A_1^{1/3} \cdot A_2^{1/3}$$

and finally $K_{\beta c} = \sigma_y \sqrt{B \beta_{lc}}$.

Since the magnitude of the β_{IC} adjustment is inversely proportional to the yield strength, unirradiated data are adjusted significantly more than irradiated data, due to strengthening typically associated with irradiation embrittlement. This in turn results in irradiationinduced transition temperature increases ($\Delta T's$) which should be lower (by definition) than $\Delta T's$ from K_{JC} data. While the β_{IC} data are reported in the data tables, no other use of the data are made in this report.

3.2 Ductile/Stable Crack Growth

The J integral resistance curve (J-R curve) was used for upper shelf characterizations. The test procedure used was in general conformance with ASTM Standard E 1152-87 (Ref. E-11) and the J_{Ic} test procedure, ASTM E 813-81 (Ref. E-1).

As noted previously, the unloading compliance technique was used for crack length (and crack growth) determinations. For J-integral calculations, the modified J integral, J_M , was used (Ref. E-12):

$$J_{M} = J_{D} - \int_{a_{O}}^{a} \frac{\partial (J_{D} - G)}{\partial a} \delta_{p1} da$$
 (E-5)

with

J_n - deformation theory J

- G = Griffith linear elastic energy release rate
- a ... a the initial and current crack lengths, respectively
- δ_{p1} the plastic part of the displacement

Reference E-6 gives a detailed listing of the computations required to calculate J_M . Additionally, Refs. E-6 and E-12 provide justification for the use of this non-path independent integral whereby small specimen data using J_M are seen to give better corresondence with large specimen data (using path independent J_D or J_M) than do small specimen data using J_D . Since one intent of this study is to develop data relevant to structural integrity applications, J_M is considered the appropriate formulation of the J integral.

The format for the presentation and analysis of these J-R curves is illustrated in Fig. E-3. The left most J_{IC} value is determined using ASTM E 813-81 procedures (Ref. E-1), whereby selected data are fit to a linear equation, which is then extrapolated back to the blunting line (as given by $J = 2 \sigma_f \Delta a$, with σ_f the flow strength, the average of the yield and ultimate strengths). The intersection of the linear equation and the blunting line is defined as J_Q , which becomes J_{IC} if various validity criteria are satisfied.

In a similar fashion, the power-law definition of J_{Ic} used in this report is the intersection of the 0.15-mm exclusion line with a power-law fit to the test data. The power law is given by

$$J = C \Delta a^{n}$$
(E-6)

with C and n determined through regression analysis. This power-law method is considered preferable to the ASTM linear method in that the actual J-R curve behavior is modeled better using the power law than using a linear equation, and power-law intersection represents a true intersection and not an extrapolated intersection. In addition, the cited power law method gives J_{IC} values which are generally within 10% of the E 813-81 values, instead of the larger differences found with the power law method given in E 813-87, which uses a 0.2 mm offset to define J_{IC} .

Another parameter used to define J-R curves is the tearing modulus (T), as given by (Ref. E-13):

Fig. E-3 The format used for analysis of the J-R curve data.

E-7

$$T = \frac{E}{\sigma_f^2} \frac{dJ}{da}$$
(E-7)

where dJ/da is the slope of the J-R slope. While T changes continuously with crack growth, an average value of T between the 0.15- and 1.5-mm exclusion lines, $T_{\rm avg}$, has been defined (in Appendix H of Ref. E-6) for use in referencing fracture toughness differences.

4. FRACTURE TOUGHNESS RESULTS

The fracture toughness data will be treated on a material-by-material basis, with comparison of the transition region and upper shelf data made. Each of the irradiation capsules contains specimens from two materials. In all cases the specimens are randomized within the capsule such that there is no fluence bias for one material vis a vis the other.

As a note, validity of fracture toughness data and evaluation of J_{1c} and T_{avg} require the use of tensile properties, specifically the yield strength (σ_v) and the flow strength (σ_f) . For the unirradiated condition, full curves of strength as a function of temperature were made. In contrast, limited testing was possible for the irradiated conditions. To provide strength data at each test temperature, the strength results for the unirradiated condition were fit to a quadratic equation. For the irradiated conditions, the same overall curvature of the strength vs. temperature curve was used (i.e., the same quadratic equation), with the constant (either A_3 or B_3) adjusted to account for differences in strengths between the unirradiated condition and each irradiated condition. The following equations were used for yield (σ_v) and ultimate (σ_{ii}) strength:

$$\sigma_y = A_1 \times T^2 + A_2 \times T + A_3$$
 MPa
 $\sigma_u = B_1 \times T^2 + B_2 \times T + B_3$ MPa

where T is the test temperature in ${}^{\circ}C$ and the resultant strengths are in MPa. The constants A_1 , A_2 , A_3 , B_1 , B_2 and B_3 are given for each material and each irradiation capsule in Table E-1.

The transition region fracture toughness data have been curve-fit to an exponential equation of the form:

$$K = D_1 + D_2 EXP [(T - T_0)/D_3]$$
 (E-8)

with D_1 , D_2 and D_3 constants for each data set as determined through a non-linear regression analysis, and T_0 is 0°C or 32°F. Data sheets from this curve-fitting are given in Appendix F for each data set, with the overall results summarized in Table E-2. Included on each sheet are tabulations of the data points used for each fit, along with upper and lower bounds (95%-95% confidence bounds). Although the ideal situation would involve using only those data points exhibiting

-		Yie	ld Strength	h	Ulti	mate Stren	gth				
		$(\sigma_y - A_1 x)$	$T^2 + A_2 x$	T + A3)	$(o_u - B_1 \times T^2 + B_2 \times T + B_3)$						
Capsule	UBR-	A1	A2	A3	B ₁	B ₂	B3				
		(MPa/°C ²)	(MPa/°C)	(MFa)	(MPa/°C ²)	(MPa/°C)	(MPa)				
			<u>A 302</u>	-B Plate (2	<u>3F)</u>						
Unirrad.		0.002651	-0.9574	468.50	0.003063	-0.9838	619.90				
CE-1	44	0.002651	-0.9574	529.86	0.003063	-0.9838	697.06				
CE-2	46	0.002651	-0.9574	533.89	0.003063	-0.9838	699.83				
CE-3	45	0.002651	-0.9574	547.11	0.003063	-0.9838	707.67				
10-1	65	0.002651	-0.9574	502.57	0.003063	-0.9838	663.34				
10-2	75	0.002651	-0.9574	520.37	0.003063	-0.9838	681.90				
IC-3	76	0.002651	-0.9574	540.78	0.003063	-0.9838	699.36				
IP-1	38	0.002651	-0.9574	508.69	0.003063	-0.9838	669.32				
			Linde	80 Weld (W	18A)						
Unirrad.		0.001987	-0.8086	500.70	0.002431	-0.8158	627.20				
CE-1	44	0.001987	-0.8086	646.39	0.002431	-0.8158	743.94				
CE-2	46	0.001987	-0.8086	652.82	0.002431	-0.8158	754.18				
CE-3	45	0.001987	-0.8086	682.49	0.002431	-0.8158	768.46				
IC-1	65	0.001987	-0.8086	606.07	0.002431	-0.8158	707.88				
IC-2	75	0.001987	-0.8086	633.48	0.002431	-0.8158	729.95				
IC-3	76	0.001987	-0.8086	662.54	0.002431	-0.8158	750.17				
			A 533	-B Plate (2	(3G)						
Unirrad.		0.001381	-0.5984	449.40	0.002822	-0.9007	608.00				
IP-1	38	0.001381	-0.5984	549.65	0.002822	-0.9007	698.67				
10-4	77	0.001381	-0.5984	501.38	0.002822	-0.9007	655.56				
			Linde	0091 Weld ((W9A)						
Unirrad.		0.002542	-1.1200	589.40	0.002214	-0.8457	672.50				

Table E-1 Strength Results for Program Materials

		K = D ₀ +	D1 EXP[(T-	T _o)/D ₂] ^a	Temperation M	Shift at 100 MPa/m		
Capsule	Fluence (b)	D _O (MPa√m)	D ₁ (MPa√m)	D ₂ (°C)	Mean Curve (°C)	Lower Bound (°C)	(°c)	
			<u>A 30</u>	2-B Plate ((23F)			
Intread		34 31	211 21	37 31	-44	- 37		
TP.1	0.57	64 71	16 64	21 25	16	21	60	
CF-1	0.88	62 37	5.06	15 66	31	37	75	
CE-2	1.64	4 90	70 51	109 48	33	40	77	
CE-3	4.01	-21 45	94.06	118.56	30	46	74	
10-1	0.53	-94.80	209.40	175.56	-13	2	31	
10-2	1.02	-41 11	129.66	103.43	9	21	53	
IC-3	1.95	37.03	26.47	46.09	40		84	
			Lind	te 80 Weld ((W8A)			
Unirrad.		-30.21	188.13	164.52	-61	-41		
CE-1	0.88	45.32	10.88	42.56	69	75	130	
CE-2	1.64	44.49	12.18	52.99	80		141	
CE-3	4.01	51.10	7.49	34.95	66		127	
IC-1	0.53	25.58	48.46	50.23	22	40	83	
10-2	1.02	44.93	13.89	36.91	51	61	112	
IC-3	1.95	-49.78	93.48	154.78	73	97	134	
			<u>A 53</u>	3-B Plate	(236)			
Unirrad.		29,21	276.59	60.83	- 83	.75		
IP-1	0.57	41.25	51.03	50.92	7	26	90	
IC-4	0.47	30.60	131.34	84.53	- 54	- 38	29	
			Linde	0091 Weld	(W9A)			
Unirrad.		22.40	519.22	44.24	- 84	-77		
10-4	0.47	13.69	91.27	94.29	-5	-1	79	

Table E-2 Transition Temperature Curve-Fit Results

a To is 0°C or 32°F

b 10^{19} n/cm^2 (E > 1 MeV)

c Lower bound does not reach this level

cleavage fracture with no ductile crack growth in this curve-fitting, in some cases one or more of the tests exhibiting ductile crack growth are also used to provide an improved fit. In all cases, the trend curves illustrated with the K_{JC} data are from curve-fitting to Eq. E-8.

4.1 A 302-B Plate (23F)

This plate was tested in all three fluence rate levels, with one IP, three CE, and three IC conditions. Detailed data for all of these irradiation conditions and the unirradiated condition are given in Table E-3.

Comparison of the J-R curves for the unirradiated condition of this plate are illustrated in Fig. E-4. As expected, increasing the test temperature tends to result in reduced J levels, although two curves at 288°C exhibit moderate differences and bound the curve at 200°C.

In addition to the post-irradiation data included in this report, several other sets of irradiated data for this plate are reported in Refs. E-14 and E-15. From Ref. E-14 (the NRC's LWR-SDIP), Simulated Surveillance Capsules (SSC) were irradiated at a fluence rate of -7×10^{-2} n/cm²·s⁻¹, slightly lower than the fluence rate of -9×10^{12} n/cm²·s⁻¹ for the IC irradiations. The In-Wall capsules were irradiated at a fluence rate of 2.8 x 10^{11} n/cm²·s⁻¹, bounding the 5.6 x 10^{11} n/cm²·s⁻¹ for the CE irradiations. The irradiated data from Ref. E-15 for this plate is also from an in-core irradiation at UBR. These previous irradiation data were from the plate 1/4T and 3/4Tthickness locations, in contrast to the 1/2T location used for these fluence rate assessments.

4.1.1 High Fluence Rate (IC)

Comparisons of the K_{Jc} data for the IC conditions and the unirradiated condition are illustrated in Fig. E-5. As expected, increasing the fluence results in a higher transition temperature shift, as illustrated in Fig. E-6. In contrast, the upper shelf K_{Jc} data do not demonstrate similar ordering.

The J-R curves for each irradiation condition are compared in Figs. E-7 to E-9. Tests at temperatures below 200° C were made with planesided specimens, resulting in somewhat of an artificial elevation of those curves in comparison to those from side-grooved specimens. In each case, higher test temperature tends to result in reduced J levels, with tests at 200° C and 288° C generally yielding similar trends. Comparisons of the J-R curves for all three irradiation conditions at 200° C and 288° (Figs. E-10 and E-11) indicate no consistent trends, as all three conditions yield similar J levels to those for the unirradiated condition (all conditions give curves which appear to be from a common scatter band).

							le		^t Jc					
Specimen Number	Test Temp	(a/W) a	m.b	mpc	Mp-M	P.L.	ASTM	P.L. (MPa/a)	ASTM	K _{Sc}	Twee T	Tavg	°f (MPa)	°y
	(°C)		(🛥)	(99)	(m)	(kJ/m ²)	(kJ/m ²)		(MPa.fa)	(MPa./6)	(12.5)			(MPa)
						IERADL	and 02-1 (WR-64)						
238-2	-75	0.542				12.7		54.3	55.5	47.5	55.5	-	702.3	616.6
235-83	-20	0.506				19.7		67.1	49.4	51.8	63.5	-	634.0	550-1
235-19	10	0.511				34.9		89.0	49.7	58.1	77.5	-	604.0	520.6
238-77	20	0.512				20.4		68.0	52.8	50.4	64.4		595.2	511.8
235-102	29	0.538				39.2		94.1	57.4	58.6	81.4	-	587.7	504.3
235-62	31	0.518	8		8	143.7		180.1				-	586-1	502.7
235-43	44	0.518		8	8	165.9		193.2				-	576-3	492.9
235-117	45	0.504				103.7		152.8	57.9	70.6	91.0	-	575.6	492-1
235-74	60	0.496	2.96	2.80	-0.16	151.0	131.5	183.9	171.6			114	565.5	482.0
235-99d	80	0.517	6.66	6.17	-0.49	136.3	151.8 ^r	174.2	183.9			55	554+1	470.Z
235-:7d	288	0.574	6.60	6.23	-0.37	82.2	87.0 ¹	131.3	135-1			32	570.9	474.0
23F-58 ^d	288	0.515	5.91	5.72	-0.19	58.4	53.8 ¹	110.6	106-2	-		42	570.9	474.0
						TRADL	100 CE-2 (062-46)						
775-10	-100	0.507				3.9		30.4	29.48	29.8	29.4	-	742.5	656.1
237-19	-40	0.515		_		15.3		59.4	52.0	49.2	55.4		660.3	576-4
235-66	0	0.533				28.2		80.2	53.8	56.0	76.4		616.9	539.9
235-42	20	0.492				27.8		79.4	46.9	54.8	69.2	-	598.6	515.8
235-110	28	0.513				37.9		92.6	42.3	58.5	82.7		591.9	509-2
235-38	45	0.527				59.7		115.9	51.2	63.5	88.2		579.0	496.2
237-50	47	0.519				58.3		114.5	48.7	63.1	87.6	-	577.5	494.7
735-101	50	0.533	5.69	4.83	-0.86	145.5	104.2	180.8	153.0			152	575.5	492.6
235-86	70	0.518	4.98	4.82	-0.16	91.0	61.4	142.6	117.0			131	562.9	479.9
235-23d	90	0.526	6.90	6.13	-0.77	147.5	145.8 ^f	181.0	179.9			54	552.6	469.2
235-57d	788	0.531	6.90	6.42	-0.48	87.1	87.6 ¹	135.2	135.5			31	574.3	478.0
235-79ª	288	0.529	7.37	6.91	-0.46	87.2	87.1 ^f	135.2	135.1			37	574.3	478.0

Table E-3 Fracture Toughness Date for A 302-8 Flate (23F) (continued)

E-13

a Pre-test a/W.
 b Optically-measured crack growth.
 c Crack growth predicted by compliance.

g Cleavage failure precluded determination of this quantity.

.

1

Specimen	Test	(a/₩) ₀ ⁶	~ *	M.C	m-m	P.L.	ASTM	P.L.	ASTM	K _{BC}	-	Tavg	q	°y
NUMBET	(°C)		(m)	~p (m)	(389)	(kJ/s ²)	(kJ/m ²)	(MPa.5)	(MPa.fb)	(MPa/a)	(MPa./a)		(MPa)	(MPa)
								,						
									22 T	31.6	32.3	_	705.5	638.1
23F-1	-129	0.522				4.5		52.4	46.8	46.6	51.3	-	662.3	596.6
23F-104	-96	0.506				12.3	Section and	76.5	47.6	55.7	67.4	-	635.0	570.3
23F-84	-73	0.531			() 	23.9		02.9	44.4	61.5	74.6	-	617.4	553.2
23F-66	-57	0.525				38-1	Contraction Pro-	93.7	45.2	58.6	71.6	-	603.0	539.1
23F-16	-43	0.517				32.9		0/-1	35.6	61.1	75-1	-	597.0	533.3
23F-60	-37	0.521				40.6		116 1	43.0	66.1	79.7	-	594.1	530.5
23F-34	-34	0.508				58.6		110-1	45.0	73.5	81.7	-	586.6	523-1
23F-100	-26	0.519				103.4		134.0	44.1	13.5		_	579.3	515.9
23F-30	-18	0.515				238.7	and the second	233-1	A State of the	Section 1		-	564.8	501.5
23F-5d	-1	0.512	8			191.2	1	208.7	161.0	and the second		89	507.5	442.7
23F-80d	93	0.526	6.18	5.27	-0.5	115.6	118.1	160-2	101.9		1.1.1	67	490.2	418.4
23F-94d	204	0.535	6.79	6.12	-0.6.	90.6	91.9	139-5	120.9			54	513.3	432.6
23F-46d	288	0.526	6.68	6.15	-0.53	92.4	91.8	139-2	130.0	in the second	And Street	51	513.3	432.6
23F-110 ^d	288	0.528	6.38	6.20	-0.18	86.5	84-2-	134.0	132.9					
						TERAD	IATED IP-1 ((188-38)						
								72.2	52.1	51.6	65.4	-	664.7	\$63.2
23F-115ª	-50	0.507				14.5	and the second second	61.4	49.8	46.3	57.3	-	615.1	534.3
23F-55ª	-25	0.515				10.3	Section 2	77.6	52.0	50.7	68.0	-	589.0	508.7
23F-35	G	0.510			and the second	20.3	1	101.4	51.8	\$6.5	81-2	-	579.6	499.4
23F-25ª	10	0.509				40.5		105.8	52.2	56.9	83.8	-	570.7	490.6
23F-15ª	20	0.514				49.4		133.3	52.8	61.7	91.3	-	561.7	481.6
23F-105ª	31	0.504				18.1		121 6	53.6	58.9	86.7	-	553.3	473.2
23F-85	42	0-507				0.00	149.0	126.0	194.8			94	547.6	467.4
23F-45	50	0.522			-1.05	155.6	109.00	177 0	174.5			87	544.6	464.4
23F-75d	55	0.502	6.54	5.99	-0.55	141.1	102.6	160 4	148.6	1.1		48	509.2	423-2
23F-6 ^d	200 288	0.514 0.521	7.29	6.19 5.76	-1.10 -0.29	88.0	84.3 ^f	135.8	132.9			42	546.4	452.8

Pre-test a/W.
 Dptically measured crack growth.
 Crack growth predicted by compliance.

d Side grooved. e Valid K_{IC} per ASTM E 399. f Valid J_{IC} per ASTM E 813-81.

8 Cleavage failure precluded determination of this quantity.

· Crack growth predicted by compliance.

f Valid Ale per ASIM E 399. Valid J_{Le} per ASIM E 813-81.

water age satisfe precluded determination of this quantity.

							Ic	•	'Je					
Number	Temp	(a/W).*	M.b	sep ^c	10-10 m	P.L.	ASTM	P.L.	ASTM	K _{BC}		Tavg	q	•,
	(°C)		(mm)	(1991)	(m)	(kJ/m ²)	(kJ/m ²)	(MPa.6)	(MPa.Ja)	(MPa./m)	(MPa.5)		(MPa)	(MPa)
						INRADI	11110 CE-3 (UMR-45)						
23F-37	-40	0.530				9.7		47.3	48.0	42.6	48.0	-	670.8	589.6
23F-118	-20	0.530				9.7		47.2	47.3	42.0	47.3	_	647.9	\$67.3
23F-82	0	0.531				33.5		87.4	40.8	59.1	74.4		627.4	547.1
23F-59	25	0.524				31.9		85.0	49.4	57.1	76.2		604.9	524.8
23F-103	40	0.524				91.4		143.5	51.4	70.7	93.2		593.1	513.1
23F-18	45	0.508				45.2		100.9	47.4	60.8	81.7		589.5	509.4
23F-3	50	0.513				42.7		98.0	47.4	59.8	81.3	-	586.0	505.9
23F-97	65	0.524	6.35	5.22	-1.13	102.3	67.5	151.3	122.9			133	576.4	496.1
23F-44	70	0.513	7.09	5.77	-1.32	108.2	56.5	155.4	112.3			120	573.4	493.1
23F-22	80	0.533	5.58	5.32	-0.26	132.0	72.7	171.4	127.2			103	568.0	487.5
23F-63d	204	0.520	6.17	5.80	-0.37	85.8	89.4 ¹	135.8	138.5			45	548.3	462.1
23F-78 ^d	288	0.527	7.04	6.17	-0.87	61.0	56.4 ^f	113.1	108.7		-	24	584.8	491.3
						IRRADI	ATED IC-1 (UNR-65)						
23F-12	-80	0.492				6.8	-	39.7	37.7	37.3	37.7	_	678.9	596.1
23F-33	-45	0.492				17.4		63.4	52.2	50-2	57.5	-	632.4	551.0
23F-52	-20	0.505				40.1		95.9	48.2	60.3	79.2	-	603.5	522.8
23F-29	-5	0.498				42.7		98.7	47.6	60.7	77.0	-	587.9	507.4
23F-89	5	0.503				87.5		141.1	50.7	68.9	89.2	-	578.2	497.8
23F-48	10	0.509				45.5		101.7	48.0	59.9	82.7		573.5	493.3
23F-108	20	0.495	B		8	132.3		173.1	8				564.7	484.5
23F-7	26	0.504				72.2		127.8	51.0	64.8	85.7		560.5	480.3
23F-72	50	0.505	5.08	3.89	-1.19	148.6	90.9	182.7	142.9			186	541.6	461.7
23F-91ª	204	0.504	6.57	6.25	-0.32	92.7	84.31	141.1	134.6			60	503.8	417.6
23F-67ª	288	0.521	6.49	6.12	-0.37	78.3	95.8 ^r	128-1	141.7			35	540.4	446.7
23F-113 ^d	288	0.511	6.97	6.31	-0.66	87.8	91.0 ¹	135.7	138-1			44	540.4	446.7

Table E-3 Fracture Toughness Data for A 302-B Plate (23F) (continued)

a Pre-test a/W.
 b Optically-meas red crack growth.
 c Crack growth predicted by compliance.

^d Side grooved. ^e Valid K_{Ic} per ASIM E 399. ^f Valid J_{Ic} per ASIM E 813-81.

g Cleavage failure precluded determination of this quantity.

Constant							Ic	,	K _{Jc}					
Number	Temp	(a/W)°a	M. b	Mpc	100-100	P.L. (kJ/m ²)	ASTM	P.L.	ASTM	K _{Bc}	Kmex	Tavg	°f (MPa)	°y
	(°C)		(im)	(111)	(1993)		(kJ/m ²)	(MPa.m)	(MPa.5)	(MPa.m)	(MPa.fa)			(MPa)
						IRRADI	ATED IC-2 (URR-75)						
23F-8	-50	0.498				4.0		30.6	30.3 ^e	29.7	30.3	_	654.8	574.9
23F-73	-20	0.505				20.4		68.3	49.9	51.9	63.1		621.7	560.6
23F-49	-18	0.504				34.1		88.4	53.0	59.0	73.8		619.5	538.5
23F-31	5	0.506				46.6		103.0	53.9	61.7	82.7	_	596.4	515.6
23F-13	12	0.489				18.2		64.2	50.9	48.8	58.6		589.9	509.3
23F-87 ^d	21	0.500				73.6		129.1	43.0	62.5	90.1		582.0	501.4
23F-68	32	0.487				78.4		133.1	56.0	66.9	89.3		573.0	497.4
23F-54	45	0.493	9.81	6.50	-3.31	149.2	126.7	183.1	168.8			140	\$63.2	487.7
23F-92	50	0.511	8			105.3	8	153.8	8				559.7	479.1
23F-114	55	0.500	8.08	6.64	-1.44	167.4	122.6	193.8	165.8			163	556.4	475.7
23F-109ª	200	0.507	6.68	6.08	-0.60	101-2	99.8 ^f	147.6	146.5			53	521.3	434.9
23F-27 ^d	288	0.512	6.58	5.67	-0.91	84.2	86.2 ^f	132.8	134.4			37	558.5	464.5
						IRADL	ATED IC-3 (UNR-76)						
23F-9	-25	0.505	-			12.2		52.9	50.8	45.4	52.1	_	646-1	566.4
23F-28	0	0.503				19.7		66.9	48.9	51.3	60.9		620.1	540.8
23F-93	25	0.497				30.1		82.5	52.0	55.9	72.5		597.6	518.5
23F-69	32	0.495				25.1		75.2	49.1	53.2	69.8	-	591.9	512.9
23F-107	41	0.498				37.9		92.4	48.5	58.2	80.3		585.1	506.0
23F-74	50	0.489	7.86	6.01	-1.85	126.2	83.8	168.4	137.2			139	578.7	499.5
23F-112	55	0.505				37.1		91.3	52.4	57.3	80.3	-	575.3	496.1
23F-51	65	0.497	7.44	5.76	-1.68	140.9	107.9	177.5	155.3			140	569.1	489.7
23F-47	65	0.499	7.52	6.30	-1.22	150.3	123.4	183.3	166.1			134	569.1	489.7
23F-14	75	0.508	7.45	6.25	-1.20	146.8	111.7	180.9	157.6			155	563.3	425.9
23F-68	200	0.510	6.05	5.86	-0.19	106.4	95.7 ¹	151.3	143.5			36	540.2	455.3
23F-32	288	0.527	6.11	6.07	-0.04	123.5	120.8 ^r	160.9	159.1			36	577.5	484.9

Table E-3 Fracture Toughness Data for A 302-B Plate (23F) (continued)

d Side grooved.
 e Valid K_{Ic} per ASTM E 399.
 f Valid J_{Ic} per ASTM E 813-81.

8 Cleavage failure precluded determination of this quantity.

a Pre-test a/W.
 b Optically-measured crack growth.
 c Crack growth predicted by compliance.

Fig. E-4 J-R curves for the unirradiated condition of A 302-B Plate 23F.

E-16

Fig. E-5 Comparisons of K_{Jc} data for the unirradiated condition and the high fluence rate (IC) irradiated conditions of the A 302-B Plate 23F.

E-17

2

Fig. E-6 Comparison of the curve-fit results for the three high fluence rate (IC) irradiated conditions.

Fig. E-7 J-R curves for the IC-1 (UBR-65) irradiated condition of A 302-B Plate 23F.

Fig. E-10 Comparison of J-R curves at 200 °C from the unirradiated condition and the high fluence rate (IC) irradiated conditions of the A 302-B Plate 23F.

Fig. E-11 Comparison of J-R curves at 288 °C from the unirradiated condition and the high fluence rate (IC) irradiated conditions of the A 302-B Plate 23F.

4.1.2 Intermediate Fluence Rate (CE)

In contrast to the generally consistent results evident for the high fluence rate (IC) data, data for the intermediate fluence rate (CE) are not as well-behaved. Comparisons of the K_{JC} data for each of the CE conditions and the unirradiated condition are illustrated in Fig. E-12, with all of the irradiated conditions compared in Fig. E-13. All three of the CE data sets demonstrate similar trends within the transition region (indicative of an embrittlement-saturation "plateau" phenomenon), surprising given the large fluence differences among the three capsules (a factor of 4 between CE-1 and CE-3). Data scatter is not too severe, even for CE-1 (UER-44) where the fluence varies by a factor of ~ 2 for the extremes in the capsule (this capsule was not rotated at mid-exposure as the others were).

The indicated saturation of embrittlement for this plate is not expected, given previous results with similar or higher fluence rates at higher fluences (Ref. E-14). One consequence of the CE-1 data is a very rapid initial embrittlement for this plate, with minimal additional embrittlement after subsequent irradiation time. The irradiations themselves appear to have been performed in a satisfactory fashion, except for CE-1, UER-44, which has a large fluence gradient. Additional irradiations at this fluence rate to low and high total fluences similar to those of CE-1 and CE-3 would help to confirm the trend fully.

The J-R curve trends for the CE conditions (Figs. E-14 to E-16) are similar to those for the IC conditions, where higher test temperatures result in reduced J levels. Comparison of data for the three CE conditions (Figs. E-17 to E-19) is likewise generally consistent with the observations for the IC conditions, where data for the irradiated conditions are similar to those for the irradiated conditions. One difference is at 288°C (Fig. E-19), where data from CE-3 has the lowest overall J levels. However, data for CE-1 and CE-2 exhibit only minor differences with the unirradiated data.

4.1.3 Low Fluence Rate (IP)

 K_{JC} data for IP-1 are illustrated in Fig. E-20. As with the other irradiation conditions, data scatter is not too severe for the K_{JC} data. On the upper shelf, increasing the test temperature results in generally lower J levels (Fig. E-21). Toughness reductions due to irradiation are minimal for the IP-1 condition (Figs. E-22 and E-23).

4.1.4 Comparisons of Different Fluence Rates

Since comparisons of data from different fluence rates cannot be made in all cases on a 1:1 basis due to fluence differences, transition temperature comparisons will be made by looking at overall trends as a function of fluence. As illustrated in Fig. E-24, the highest fluence rates (IC from this program, SSC-1 and SSC-2 from Ref. E-14, and UBR-31 from Ref. E-15) tend to give the lowest embrittlement at low fluence levels and the highest embrittlement at high fluence levels. In contrast, the intermediate fluence rates (CE in this program and

(text continues on pg. E-38)

Fig. E-12 Comparisons of K_{JC} data for the unirradiated condition and the intermediate fluence rate (CE) irradiated conditions of the A 302-B Plate 23F.

Fig. E-13 Comparison of the curve-fit results for the three intermediate fluence rate (CE) irradiated conditions.

Î

and the second

<u>ه</u> ا

Fig. E-15 J-R curves for the CE-2 (UBR-46) irradiated condition of A 302-B Plate 23F.

in sets of the memory of the

Fig. E-17 Comparison of J-R curves at 80⁻³C to 93⁻⁰C from the unirradiated condition and the intermediate fluence rate (CE) irradiated conditions of the A 302-B Plate 23F.

Fig. E-18 Comparison of J-R curves at 200°C from the unirradiated condition and the intermediate fluence rate (CE) irradiated conditions of the A 302-B Plate 23F.

....

Fig. E-19 Comparison of J-R curves at 288°C from the unirradiated condition and the intermediate fluence rate (CE) irradiated conditions of the A 302-B Plate 23F.

Fig. E-20 Comparison of K_{Jc} data for the unirradiated condition and the low fluence rate (IP) irradiated condition of A 302-B Plate 23F.

.

×.

and a

Fig. E-21 J-R curves for the IP-1 (UBR-38) irradiated condition of A 302-B Plate 23F.

Þ

E=34

Fig. E-22 Comparison of J-R curves at 200 °C from the unirradiated condition and the low fluence rate (IP) irradiated condition of the A 302-B Plate 23F.

Fig. E-23 Comparison of J-R curves at 288 °C from the unirradiated condition and the low fluence rate (IP) irradiated condition of the A 302-B Plate 23F.

Fig. E-24 Transition temperature shifts as a function of fluence for the A 3G2-B Plate 23F.

the In-Wall Capsules 1, 2, and 3 in Ref. E-14) give the highest embrittlement at low fluence levels and lower embrittlement at high fluence levels. Trends for the high and the intermediate fluence rates cross at a fluence of -2×10^{19} n/cm². At the lowest fluence rate (IP from this program), the single data point at a very low fluence is located midway between the trends for the CE and the IC fluence rates.

J-R curves for this plate at 288° C are illustrated in Fig. E-25. At low Δa levels (< 3 mm), the curve for IC-3 is higher than most of the curves and the curve for CE-3 is much lower than most of the curves. In other respects, the remaining curves are quite similar to one another.

4.2 Linde 80 Weld (W8A)

This weld was tested at three fluences each of the intermediate (CE) and the high (IC) fluence rates. Detailed data for these irradiation conditions and the unirradiated condition are given in Table E-4. Data for the unirradiated condition have been treated previously in Ref. E-2.

Comparison of the J-R curves for the unirradiated condition are illustrated in Fig. E-26. As expected, increasing the test temperature results in lower J levels, with a large drop evident from 200°C to 288°C. The latter is in contrast to the A 302-B plate (Fig. E-4), where two curves at 288°C bounded a curve at 200°C.

Besides the data reported here, two additional sets of postirradiation data from in-core irradiations are used for comparison purposes (Ref. E-2).

4.2.1 High Fluence Rate (IC)

Comparison of the K_{JC} data for the IC conditions and the unirradiated condition are given in Fig. E-27. As expected, increasing the fluence results in greater transition temperature shifts for the IC irradiations (Fig. E-28). For this weld, data scatter in the transition region appears to be greater than that for the A 302-B plate (23F). At least a partial cause of this appearance is the lower upper shelf toughness for this weld and an apparent magnification effect of the scatter resulting from the reduced toughness range exhibited by this weld. A second cause is undoubtably the somewhat large scatter inherent to the weld metal, as indicated by data for the unirradiated condition.

In terms of upper shelf toughness, comparisons of the J-R curves for each of the irradiation conditions are illustrated in Figs. E-29 to E-31. Tests at temperature below 200° C are somewhat elevated in comparison to those at higher temperatures due to the use of planesided specimens for the low temperature tests. Comparisons of the curves for all three irradiation conditions at 200° C and 288° C (Figs. E-32 and E-33) indicate fairly large reductions in J levels after

> (text continues on pg. E-52) E-38

Fig. E-25 Comparison of J-R curves at 288°C for the A 302-B Plate 23F.

Table 5-4 Fracture Toughness Data for Linde 90 Weld (MEM)

Mo (mode) (mode) (mode) (mode) Mo (mode)	46) (ma.6) (ma.6) (ma.6) 46) </th <th>Ter</th> <th>JR JR K</th> <th>J_R J_R K_R</th> <th>J_R J_R K_R</th> <th>J_R E_Se</th> <th>J_R E_k</th> <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th></th> <th>.*</th> <th>11</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Ter	JR JR K	J _R J _R K _R	J _R J _R K _R	J _R E _S e	J _R E _k	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.*	11					
40.3° 38.5 40.3 - 734.5 70.3 53.2 46.4 53.2 - 697.2 645.5 53.3 66.4 71.5 - 697.2 645.5 53.4 66.5 71.5 - 697.2 645.5 53.4 64.5 71.5 - 697.2 645.5 53.4 64.5 71.5 - 697.2 645.5 53.4 64.5 77.1 - 697.2 645.5 53.4 64.5 77.1 - 697.2 645.5 53.4 64.5 77.1 - 691.4 570 53.4 64.5 77.1 - 646.5 534 53.4 64.5 77.1 - 534.4 579 53.4 64.5 77.1 - 534.4 579 53.4 10.6 77.1 - 534.4 575.9 53.4 131.0 - 534.4 575.9 545 131.0 - - 534.4 535.4 545 131.0 - - 547.7 541 131.0 - - 547.7 541 131.0	40.3° 39.5 40.3 71.5 71.5 71.5 71.5 53.1 60.7 71.5 71.5 71.5 66.9 59.2 53.3 66.4 33.2 71.5 71.5 66.9 59.2 53.4 66.4 71.5 71.5 66.9 59.2 66.5 53.4 66.4 71.5 1 66.9 59.4 53.4 64.5 78.3 71.5 1 691.2 53.4 64.5 78.3 72.1 1 691.4 53.4 64.5 72.1 1 691.4 590.2 53.4 64.5 77.1 1 599.2 595.3 53.4 64.5 77.1 1 599.2 595.3 53.4 64.5 77.1 1 599.2 595.3 53.4 54.7 1 7 599.2 595.3 53.4 10.5 7 7 599.2 595.3 53.4 1 86.7 1 7 599.2 53.4 10.5 7 7 599.2 595.3 10.6 1 1 599.2 599.2 10.6 1 59	Ten (a.M) ⁶ M ⁶ M ⁶ M ⁶ M ⁶ M ⁶ M ¹	(a.e.) (*	(a)	(m) (m) (13/m ²) (13/m ²) (13/m ²) (100m ⁶)	(m) (12/10 ²) (12/10 ²) (12/10 ²)	1.1. NIN 1.1. (1.1.2) (1.1.0 ²) (10.04)	ASTM 7.1. (LJ/a ²) (Maafi)	(9*4)		(9***	* (9 **	18	1,	- Î	. 8
60.3° 39.5 60.3 - 794.5 30.1 51.2 60.4 71.5 - 697.2 605.1 51.3 60.4 71.5 - 697.2 605.1 51.4 60.4 71.5 - 697.2 605.1 51.4 60.4 71.5 - 697.2 605.1 51.4 60.4 71.5 - 697.2 605.1 53.4 61.0 70.1 - 697.2 605.1 53.4 64.5 78.3 - 697.2 605.3 53.4 64.5 78.3 - 646.9 570.4 53.4 64.5 78.3 - 646.9 570.4 53.4 64.5 78.3 - 576.4 570.4 53.4 64.5 78.3 - 576.4 570.4 53.4 64.5 77.1 - 576.4 570.4 53.4 64.5 77.1 - 576.4 570.4 53.4 64.5 77.1 571.4 57	60.7 39.5 60.3 - 79.4.5 39.5 59.2 66.4 39.2 - 79.4.5 69.2 59.3 66.4 71.5 - 697.2 697.2 59.4 66.4 71.5 - 697.2 697.2 59.4 66.4 71.5 - 697.2 697.2 59.4 64.9 71.5 - 697.2 697.2 59.4 64.5 78.3 - 697.2 697.2 59.4 64.5 78.3 - 697.2 697.2 59.4 64.5 78.3 - 697.2 697.2 59.4 64.5 78.3 - 697.2 697.2 59.4 64.5 78.3 - 698.4 590.4 59.4 64.5 78.4 - 698.4 590.4 59.4 64.5 78.4 - 598.4 590.4 59.4 64.5 78.4 - 598.4 590.4 59.4 19.4 517.4 511.4 5															
31.2 46.4 33.2 - 697.2 665. 57.1 60.7 71.5 - 697.2 665. 57.3 60.7 71.5 - 697.2 665. 57.3 60.7 71.5 - 697.2 665. 57.4 60.7 71.5 - 697.2 655. 57.4 61.0 74.2 - 697.2 655. 57.4 64.5 78.3 - 697.2 652. 57.4 64.5 78.3 - 697.2 652. 57.4 64.5 78.3 - 696.7 594. 57.4 86.7 - 698.7 594. 594. 57.4 86.7 - 698.7 594. 594. 57.4 86.7 - 698.7 594. 594. 57.4 194.1 - 594.6 594. 594. 194.2 - - 594.7 - 594.8 194.1 - - 594.6 594. 194.1 - 17 994.7 594. 194.1 - 594.6 594.7 594. 194.1 -	31.2 46.4 31.2 - 697.2 66.5 37.1 60.7 71.5 - 697.2 66.5 35.3 64.9 71.1 - 697.2 66.5 35.3 64.9 71.1 - 697.2 66.5 35.4 71.3 71.3 - 697.2 665. 53.4 64.5 76.3 77.3 - 697.2 665. 53.4 64.5 78.3 - 697.2 665. 53.4 77.1 77.3 996.4 570. 53.4 77.1 77.1 594.4 570. 53.5 78.3 77.1 - 698.7 594.4 53.4 77.1 86.7 - 698.7 594.4 53.4 77.1 71.1 594.4 570.4 53.4 77.1 71.1 594.4 570.4 53.4 77.1 71.1 71.1 594.4 570.4 53.4 77.1 71.1 71.1 594.4 594.1 53.4 110.4 11.1 71.1 594.4 594.1 110.5 111.1 71.1 71.1 595.2 611.1	-130 0.511 6.7 6.0	0.511 6.7 40.0		6.7 - 60.0	- 6.3 69.0	6.7 - 60.0	0.04	0.04		40°3°	38.5	6.04	1	734.5	703.6
57.1 60.7 71.5 - 697.2 655.3 55.3 64.9 80.1 - 665.9 652.4 55.4 64.5 76.1 - 665.9 652.4 53.4 64.5 76.1 - 666.9 591.2 53.4 64.5 78.3 - 666.9 591.4 53.4 64.5 78.1 - 666.9 591.4 53.4 64.5 78.1 - 666.9 591.4 53.5 72.1 86.7 - 666.7 591.4 53.5 72.1 86.7 - 666.7 591.4 53.5 72.1 86.7 - 698.7 591.4 53.5 17.1 - 591.4 591.4 53.5 17.1 - 591.4 591.4 53.5 - - 591.4 591.1 13.0 - - 172 591.2 13.0 - - 591.4 591.1 13.0 - - 591.2 591.1 13.0 - - 591.2 591.1 13.0 - - 991.7 591.1 <	57.1 60.7 71.5 - 697.2 665. 55.3 64.9 70.1 - 665.9 651.2 665. 55.3 64.9 76.1 - 665.9 651.0 574.2 55.3 64.5 76.3 76.3 - 665.9 651.0 55.3 54.4 77.1 76.3 - 666.9 570. 55.3 54.4 77.1 76.3 - 666.7 570. 55.3 78.4 77.1 71.1 - 666.7 570. 55.4 77.1 86.7 - 666.7 570. 55.4 77.1 86.7 - 666.7 570. 55.4 77.1 86.7 - 666.7 570. 55.4 77.1 86.7 - 570.4 570. 55.4 77.1 77 579.9 570.0 570.0 55.4 110.5 - 77 575.9 570.0 110.6 - - 77 575.9 570.0 110.8 - - 77 575.9 570.0 110.8 - - 575.9 570.0 650.7	-110 0.519 12.1 34.6	0.519 12.7 - 34.6		121 - 346	- 12.7 - 34.6	12.7 34.6	***	8.4		53-2	1.84	23-2	1	697.2	645.5
53.3 64.9 60.1 - 663.9 652. 69.4 61.0 74.2 - 669.9 652. 53.4 64.5 78.3 - 666.9 594. 53.4 64.5 78.3 - 666.9 594. 53.4 64.5 78.3 - 666.9 594. 53.5 78.3 72.1 - 666.4 594. 53.5 78.3 72.1 - 666.4 594. 53.5 78.3 72.1 - 636.4 594. 93.6 77.1 86.7 - 636.4 594. 93.5 78.3 72.1 - 636.4 594. 93.6 78.1 86.7 7 594.4 594. 93.6 186.7 7 7 594.4 594. 194.1 - - 594.6 594. 594. 193.4 - - 594.7 594.1 594. 194.8 - - 594.7 594.1 594.1 194.8 - - 594.7 594.1 594.1 194.8 - - 594.1 594.1 104.9	33.3 64.9 80.1 - 663.9 631. 69.4 61.0 74.2 - 669.9 631. 53.4 64.5 78.3 - 664.9 394. 53.4 64.5 78.3 - 664.9 394. 53.4 64.5 78.3 - 664.4 394. 53.4 77.1 86.7 - 664.4 394. 53.5 77.1 86.7 - 664.4 394. 53.4 77.1 86.7 - 668.7 394. 53.4 77.1 86.7 - 668.7 394. 53.4 77.1 86.7 - 668.7 394. 53.4 77.1 86.7 - 668.7 394. 53.4 86.7 - 7 394.8 394.7 53.4 110.4 - 11 394.9 697.7 110.8 - - 57 697.7 611.1 110.8 - - 57 611.1 110.8 - - 57 611.1	-110 0.503 78.6	0.303		34.3 78.6	26.3 78.6	26.3 78.6	9782	78-6		57.4	60.7	71.5	1	2-198	645.5
69.6 61.0 74.2 - 646.9 39.4 53.4 64.5 78.3 - 646.9 39.4 53.4 64.5 78.3 - 63.4 570.4 53.5 39.4 72.1 - 63.4 570.4 53.5 72.1 86.7 - 638.4 570.4 53.5 72.1 86.7 - 638.4 570.4 53.6 77.1 86.7 - 638.4 570.4 53.6 77.1 86.7 - 538.4 570.4 53.6 77.1 86.7 - 538.4 570.4 53.6 77.1 77.1 571.4 574.4 134.0 - 77.2 575.9 574.4 134.0 - 77.2 77.2 574.4 134.0 - 17.7 574.9 574.4 134.0 - - 574.4 574.4 135.4 -	69.4 61.0 74.2 - 646.9 394. 53.4 64.5 78.3 - 646.9 394. 53.4 64.5 78.3 - 646.4 570. 53.4 64.5 78.3 - 624.4 570. 53.5 78.4 77.1 - 624.4 570. 53.5 77.1 86.7 - 626.4 570. 63.5 77.1 86.7 - 626.4 570. 53.6 78.3 84.7 - 626.4 570. 53.6 78.5 84.7 - 626.4 594. 53.6 66.6 83.5 - 77 575.9 594. 53.6 133.0 - - 77 575.9 594. 133.0 - - 77 575.9 534. 133.0 - - 77 575.9 534. 133.0 - - 77 575.9 534. 133.0 - - 77 575.9 534. 134.0 - - 77 575.9 534. 135.1 - 77 78 575.2 <t< td=""><td>-100 0.309 35.4 90.9</td><td>0.39 35.4 - 90.9</td><td></td><td> 35.4 - 90.9</td><td> 35.4 90.9</td><td>35.4 90.9</td><td>6.06</td><td>6-06</td><td></td><td>55-3</td><td>67.99</td><td>80.1</td><td>1</td><td>6.63.9</td><td>632.0</td></t<>	-100 0.309 35.4 90.9	0.39 35.4 - 90.9		35.4 - 90.9	35.4 90.9	35.4 90.9	6.06	6-06		55-3	67.99	80.1	1	6.63.9	632.0
S3.4 64.5 78.3 - 636.4 570.1 55.9 58.4 77.1 - 636.4 570.1 46.2 77.1 86.7 - 636.4 570.1 46.2 77.1 86.7 - 636.4 570.1 46.2 77.1 86.7 - 636.4 570.1 33.6 78.5 86.7 - 638.4 570.1 33.8 96.4 83.5 - 538.4 570.1 134.0 - - 536.5 534.1 534.1 134.0 - - 535.5 - 539.2 134.0 - - - 536.1 534.1 134.0 - - - 536.4 534.1 134.0 - - - 536.1 534.1 134.0 - - - 537.9 534.1 135.4 - - - 536.1	53.4 64.5 78.3 - 628.4 570. 55.9 58.4 72.1 - 628.4 570. 46.2 72.1 86.7 - 628.4 570. 46.2 72.1 86.7 - 628.4 570. 46.2 72.1 86.7 - 628.4 570. 46.1 78.5 84.7 - 628.4 570. 53.6 66.6 83.5 - 599.2 594.2 154.1 - - 77 599.2 594.2 154.1 - - 77 575.9 594.2 154.1 - - 77 575.9 594.2 154.1 - - 77 575.9 594.2 154.1 - - 77 575.9 594.2 131.0 - - - 77 575.9 554.1 138.4 - - - 77 575.9 574.1 138.4 - - - 77 575.9 574.1 138.4 - - - 77 575.2 641.1 138.4 - - -	-70 0.513 31.5 85.5	0.513 31.5 85.5	31.5 85.5		31.5 85.5	31.5 85.5	85.5	85.55		4.9.6	61.0	74.2	1	6.66.9	9.96
55.9 35.4 72.1 - 6.24.4 570.4 46.2 72.1 86.7 - 6.24.4 570.4 43.6 75.1 86.7 - 6.24.4 570.4 53.8 76.6 83.5 - 576.4 570.4 53.8 66.6 83.5 - 576.4 570.4 134.0 - 75.5 84.7 - 576.4 154.1 - 77 575.9 554.1 154.2 - - 77 575.9 154.1 - - 77 575.9 154.2 - - 77 575.9 154.1 - - 17 575.9 154.1 - - 576.0 66.1 131.0 - - 57 671.1 110.6 - - 57 571.1	55.9 35.4 72.1 - 624.4 570. 46.2 72.1 86.7 - 626.4 570. 46.2 72.1 86.7 - 666.7 554. 53.6 76.5 84.7 - 596.2 554. 53.6 76.5 84.7 - 596.2 554. 53.6 76.5 84.7 - 596.2 594. 53.6 66.6 83.5 - 77 599.2 134.0 - - 73 599.2 594. 134.0 - - 73 599.2 594. 134.0 - - 73 594.2 594.2 134.0 - - 73 594.2 594.2 134.0 - - 73 594.2 641.4 135.1 - 74 74 74 135.2 - 74 74 641.4 136.8 - - 74 74 136.8 - - 74 74 136.8 - - 74 74 136.8 - - 74 74	-20 0-309 00.5 100.2	0.309 10.5 - 100.2	012 100.2	0.5 - 100.2	43.5 100.2	43.5 100.2	100-2	100-2		¥*65	64.5	78.3	1	624.4	570.8
46.2 72.4 86.7 - 606.7 554. 43.6 75.5 84.7 - 506.6 554. 53.8 66.6 83.5 - 596.8 544. 53.8 66.6 83.5 - 596.8 544. 154.2 766.4 83.5 - 596.8 544. 154.2 575.9 596.1 394.1 154.1 595.4 640.1 540.1 154.2 594.0 640.1 641.1 131.0 594.0 640.1 641.1 110.5 992.1 641.1 641.1	46.2 72.4 86.7 - 606.7 554. 43.6 75.5 64.7 - 906.4 554. 43.6 75.5 64.7 - 906.4 554. 53.46 65.4 83.5 - 996.2 594. 154.2 - - 77 599.2 594. 154.1 - - 77 599.2 594. 154.1 - - 77 599.2 594. 154.1 - - 77 599.2 594. 131.0 - - 77 595.0 594. 131.0 - - 77 594.0 697.7 138.8 - - 79 692.7 641. 110.5 - - 79 592.2 641.	-30 0.516 28.7 81.5	0.516 26.7 81.5		28.7 81.5	28.7 81.5	28.7 81.5	- 81.5	81.5		53-9	78.4	72.3		624.4	570.8
93.6 73.5 84.7 - 296.6 94.7 53.8 96.6 83.5 - 299.2 394. 134.2 - - 77 299.2 394. 154.2 - - - 299.2 394. 154.1 - - - 299.2 394. 154.2 - - - 299.2 394. 154.1 - - - 299.2 394. 154.2 - - - 299.2 394. 131.0 - - - 999.2 394. 131.0 - - - 99.4 992.7 421. 110.5 - - - 99.2 912.2 431.	93.6 78.5 84.7 - 298.8 34.6 53.4 96.6 83.5 - 299.2 39.4 154.2 - - 72 299.2 39.4 154.1 - - 73 99.2 39.4 154.2 - - 72 299.2 39.4 154.1 - - 73 999.2 39.4 131.0 - - 74 99.2 40.1 131.0 - - 74 99.2 40.1 131.0 - - 74 99.2 40.1 138.8 - - 74 99.2 40.1 131.0 - - 74 99.2 40.1 133.4 - - 74 99.2 40.1						78.7 134.5	1	134.5		18-2	12-1	8.7	1	608.7	いまい
33-6 96-6 83-5 - 396-2 40-2	33.6 84.6 83.5 1 396.1 396.1 134.2 11 11 11 11 395.9 396.1 131.0 11 11 11 11 395.9 396.1 131.0 11 11 11 11 395.9 493.7 491.7 110.8 11 11 14 14 592.7 491.7					- 121	12:1 12:1	1/2.4	172-4		43.6	78-5	1.46	1	3.98.8	
154.2 72 575.9 520. 165.1 81 254.0 463.1 421.1 421.1 131.0 57 92.1 421.1 421.1 421.1 138.8 57 92.1 421.1 421.1 421.1 199.8 54 92.1 421.1 421.1 110.6 54 512.2 431.1	154.2	-0.02 117.2					60.0		117-2		23.8	9798	83.5		2.68%	334.2
165.1 81 326.0 653.1 131.0 57 692.7 621.7 621.1 136.8 54 57 621.7 621.7 621.1 130.8 54 542.7 621.7 621.7 621.7 130.8 54 542.7 621.7 621.7	H5.1	0 0.518 5.02 5.98 -0.04 102.9 204.4 153.1	0.518 6.02 5.98 -0.04 102.9 204.4 153.1	6-02 5-98 -0.04 102-9 204-4 153-1	5.98 -0.06 102.9 204.4 153.1	-0.06 102.9 204.4 153.1	102.9 204.4 153.1	204-4 153-1	153-1		15.2	1	1	12	575.9	520.1
131.0 - 57 492.7 421. 138.8 - 51 54 492.7 421. 110.8 - 512.2 431.	131.0 57 492.7 421. 138.8 54 492.7 421. 110.8 54 532.7 421.	75 0.516 6.41 6.39 -0.02 94.2 94.4 144.9	0.516 6.41 5.39 -0.02 94.2 94.4 144.9	6.41 6.39 -0.02 94.2 94.4 144.9	6-30 -0.02 94.2 94.6 144.9	-0.02 94.2 94.4 144.9	94.2 94.6 144.9	94.45 144.9	144.9		145.1	1	1	16	524.0	463.6
136.8 54 692.7 421. 110.8 54 512.2 431.	138.8 34 492.7 421. 110.8 34 512.2 431.	200 0.522 5.87 5.70 -0.17 80.2 79.7 131.4	0.522 5.87 5.70 -0.17 80.2 79.7 131.4	5.87 5.70 -0.17 80.2 79.7 131.4	5.70 -0.17 80.2 79.7° 131.4	-0-17 80.2 79.7 131.4	80.2 79.7 131.4	79.7 131.4	131.4		131.0	1	1	25	492.7	421.5
110.6 ¥ 512.2 4H	110.8 ¥ 512.2 431.	200 0.504 6.11 5.91 -0.20 89.1 89.6 138.1	0.504 6.11 5.91 -0.20 89.1 89.6 139.1	6.11 5.91 -0.20 89.1 89.6 139.	5-91 -0.20 89-1 89-6 138-	-0-20 89-1 89-6 138-3	86-1 89-6 138-3	80.6 138.	13.		138.8	1	1	*	1-268	421.5
		288 0-521 5-83 5-92 +0.09 54-2 58-6 106-	0-521 5-63 5-92 +0.09 54-2 58-6 106-	5.83 5.92 +0.09 54.2 58.6 106.	5.92 +0.09 54.2 58.6 106.	+0.09 \$4.2 \$8.6 106.	34.2 38.6" 106.	38-6" 106-	108-	•	110-8	1	1	*	512.2	0" HE *
		-20 0.509 7.8 42.4	0.309 7.8 42.4	42.4		1.8 - 42.4	7.8 42.4	4.24	42.4		\$2.8	1.04	42.8	1	712.3	663.
42.5 40.1 42.8 - 712.3 663.	42.8 40.1 42.8 - 712.3 663.	15 0.38 20.4 - 65.0	0.39 - 4.02 89.0		20.4 66.0	20.4 66.0	20-4 66-0		68.0		59.3	55.4	8.3	1	663.5	634.7
42.8° 40.1 42.8 - 712.3 663. 39.3 35.4 66.3 - 683.5 636.	42.5° 40.1 42.8 - 712.3 663. 39.3 35.4 66.3 - 663.5 634.	2 0.514 20.5 - 81.	0.514 29.5 81.	25.5 - 81.	20.5 - 81.	- 29.5 - 81.	29.5 - 81.	-18	81.	-	60.4	0.18	76.6	1	673.4	524.6
42.4° 40.1 42.8 - 712.3 663. 59.3 55.4 66.3 - 683.5 636. 60.4 61.0 76.6 - 673.4 6264	42.8° 40.1 42.8 - 712.3 663. 39.3 35.4 66.3 - 683.5 634. 60.4 61.0 76.6 - 673.4 624.	x 0.55 5.5 - 7	0.55 5.5 - 7	53 - 7	355 - 75	- 3.5 - 7	25.5 - 75	1	75		38.8	51.9	74.6	1	660.1	610.9
42.4° 40.1 42.8 - 712.3 663. 59.3 55.4 66.3 - 663.5 658. 60.4 61.0 76.6 - 673.4 526. 36.8 57.9 74.6 - 660.1 610.	42.4 ⁶ 40.1 42.8 - 712.3 663. 39.3 35.4 66.3 - 683.5 634. 60.4 61.0 76.6 - 673.4 624. 36.8 57.9 74.6 - 660.1 610.	8 - 0.62 · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·		· · · · · ·	29.00	1	*	97	53.7	59.7	1.1	1	654.4	605-0
42.4° 40.1 42.8 - 712.3 663. 99.3 55.4 66.3 - 663.5 654. 60.4 61.0 76.6 - 673.4 624. 39.7 97.9 74.6 - 669.4 669.1 610.	42.4 ⁶ 40.1 42.8 - 712.3 663. 39.3 35.4 66.3 - 683.5 634. 60.4 61.0 76.6 - 673.4 620. 39.7 7.1 - 659.4 605.	6 0.21 3.1 - 3	0.521 38.1 - 3			- 1% -	38.1 9	-		2.4	8-85	63.8		1	651.7	602.2
42.4° 40.1 42.8 - 712.3 663. 99.3 55.4 66.3 - 663.5 654. 60.4 61.0 76.6 - 663.5 654. 35.7 93.7 7.1 - 663.4 664. 35.7 93.7 7.1 - 654.4 665.	42.4 ⁶ 40.1 42.8 - 712.3 663. 39.3 35.4 66.3 - 663.5 634. 60.4 61.0 76.6 - 663.5 634. 33.7 35.9 76.6 - 663.4 626. 33.7 35.9 77.1 - 654.4 665. 33.7 55.8 65 651.7 605.	72 0.512 49.5 - NO	0.512 0.5 - 10	n	0.5 - 10	69.5 10	10.5 10	1	10	5.2	4.42	67.7	\$0.5	1	648.1	1. Mar.
42.4° 40.1 42.8 - 712.3 66. 99.3 55.4 64.3 - 712.3 66. 99.3 55.4 64.3 - 69.5 69. 90.4 61.0 76.6 - 69.5 69. 91.7 1 - 69.5 69. 91.7 7.1 - 69.5 69. 91.7 99.7 7.1 - 661.1 600. 94.8 69.8 65 661.7 602.	42.4 ⁶ 40.1 42.8 - 712.3 663. 39.3 35.6 66.3 - 663.5 626. 60.4 61.0 76.6 - 663.5 626. 33.7 39.7 7.1 - 663.1 610. 33.7 39.7 7.1 - 651.4 605. 34.6 65 651.4 605. 34.6 65 651.4 605.	85 0.500 4.36 2.99 -1.36 75.3 59.7 125	0.500 4.36 2.98 -1.36 75.3 59.7 125	4.36 2.99 -1.35 75.3 59.7 125	2.98 -1.36 75.3 39.7 129	-1.36 75.3 59.7 125	75.3 59.7 129	39.7 125	129	5	115.2	1	1	3	642.1	392.0
Q.4 Q.1 Q.4 Q.1 Q.4 Q.4 Q.4 Q.4 Q.4 Q.4 Q.4 Q.4 Q.4 Q.4 Y.4 P Q.4 Q.4 Q.4 Q.4 P P Q.4 Q.4 Q.4 P P P P Q.4 Q.4 P P P P P Q.4 P P P P P Q.4 P P P P P Q.4 P P P P Q.4 <td< td=""><td>42.4⁶ 40.1 42.8 - 712.3 663. 93.3 35.6 66.3 - 663.5 636. 60.4 61.0 76.6 - 663.5 636. 33.7 35.9 76.6 - 663.5 636. 33.7 35.9 76.6 - 663.1 610. 33.7 35.9 75.1 - 651.7 662. 34.8 65.8 65 661.1 610. 35.8 65.9 - 661.1 905. 115.2 - 662.1 392.</td><td>93 0.522 6.91 6.23 -0.68 55.6 -8 11</td><td>0.522 6.91 6.23 -0.68 55.8 -8 11</td><td>6.91 6.23 -0.68 55.6 -E 11</td><td>6.23 -0.68 55.8 -6 11</td><td>-0.68 53.8 -0.</td><td>55.8 LE 11</td><td>1</td><td>11</td><td>3.3</td><td>٦</td><td>1</td><td>1</td><td>1</td><td>638.7</td><td>5.88.3</td></td<>	42.4 ⁶ 40.1 42.8 - 712.3 663. 93.3 35.6 66.3 - 663.5 636. 60.4 61.0 76.6 - 663.5 636. 33.7 35.9 76.6 - 663.5 636. 33.7 35.9 76.6 - 663.1 610. 33.7 35.9 75.1 - 651.7 662. 34.8 65.8 65 661.1 610. 35.8 65.9 - 661.1 905. 115.2 - 662.1 392.	93 0.522 6.91 6.23 -0.68 55.6 -8 11	0.522 6.91 6.23 -0.68 55.8 -8 11	6.91 6.23 -0.68 55.6 -E 11	6.23 -0.68 55.8 -6 11	-0.68 53.8 -0.	55.8 LE 11	1	11	3.3	٦	1	1	1	638.7	5.88.3
22.6 50.1 52.6 32.7 32.4 52.6 52.6 32.7 32.6 52.6 52.6 32.7 32.7 72.6 1 32.7 32.7 72.6 1 32.7 32.7 72.6 1 32.7 32.7 72.6 1 32.7 32.7 72.6 1 32.7 52.6 52.6 50.1 32.7 52.7 50.1 50.1 32.7 52.7 50.1 50.1 32.7 52.7 50.1 50.1 33.7 52.7 50.1 50.1 34.8 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 35.7 52.7 50.1 50.1 <td>42.4° 40.1 42.8 1 93.3 53.4 46.3 1 63.5 93.4 53.4 64.3 1 63.5 93.4 53.4 64.3 1 63.5 93.7 53.4 64.3 1 63.5 93.7 53.4 64.3 1 63.5 93.7 53.4 73.4 1 63.5 93.7 53.4 73.4 1 63.5 93.7 53.4 63.4 63.5 93.7 53.4 1 1 93.7 53.4 1 1 93.7 53.4 1 1 93.7 53.4 1 1 93.7 53.4 1 1 93.7 50.5 1 1 93.8 1 1 1 93.7 50.5 1 1 93.8 1 1 1 93.7 50.5 1 1 93.8 1 1 1 93.7 50.5 1 1 93.8 1 1 1 93.8 1 1 1 93.9 1</td> <td>100 0.509 4.03 2.60 -1.43 79.2 80.1 1</td> <td>0.509 4.03 2.60 -1.43 79.2 80.1 1</td> <td>4-03 2-60 -1-43 79-2 80-1 13</td> <td>2.60 -1.43 79.2 80.1 1</td> <td>-1.43 79.2 80.1 1</td> <td>79.2 80.1 13</td> <td>80.1 11</td> <td></td> <td>9.21</td> <td>133-2</td> <td>1</td> <td>1</td> <td>8</td> <td>636.0</td> <td>4"SEK</td>	42.4° 40.1 42.8 1 93.3 53.4 46.3 1 63.5 93.4 53.4 64.3 1 63.5 93.4 53.4 64.3 1 63.5 93.7 53.4 64.3 1 63.5 93.7 53.4 64.3 1 63.5 93.7 53.4 73.4 1 63.5 93.7 53.4 73.4 1 63.5 93.7 53.4 63.4 63.5 93.7 53.4 1 1 93.7 53.4 1 1 93.7 53.4 1 1 93.7 53.4 1 1 93.7 53.4 1 1 93.7 50.5 1 1 93.8 1 1 1 93.7 50.5 1 1 93.8 1 1 1 93.7 50.5 1 1 93.8 1 1 1 93.7 50.5 1 1 93.8 1 1 1 93.8 1 1 1 93.9 1	100 0.509 4.03 2.60 -1.43 79.2 80.1 1	0.509 4.03 2.60 -1.43 79.2 80.1 1	4-03 2-60 -1-43 79-2 80-1 13	2.60 -1.43 79.2 80.1 1	-1.43 79.2 80.1 1	79.2 80.1 13	80.1 11		9.21	133-2	1	1	8	636.0	4"SEK
9.2 9.1 9.2 9.3 9.4 9.1 9.2 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 7.4 1 9.4 9.6 9.4 9.4 9.4 9.7 7.4 1 9.4 9.6 9.4 9.4 9.4 9.7 7.4 1 9.4 9.7 9.4 9.4 9.4 9.7 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4 9.4 9.4 111.1 9.4	2.3 ⁶ 40.1 42.8 712.3 60.4 39.3 35.4 64.3 1 712.3 69.4 59.4 61.6 76.6 1 69.5 69.4 39.7 39.7 77.4 1 69.5 69.4 39.7 39.7 77.4 1 69.5 69.4 39.7 39.7 77.4 1 69.4 69.4 39.7 39.7 77.4 1 69.4 69.4 39.7 39.5 77.4 1 69.4 69.4 39.7 39.5 90.5 1 69.4 69.4 115.2 1 1 1 69.4 69.1 113.2 1 1 1 69.4 69.1 113.2 1 1 1 69.4 69.1 113.2 1 1 1 69.4 99.5	204 0.516 7.38 6.09 -1.29 49.7 34.3 H	0.516 7.38 6.09 -1.29 69.7 34.3 H	7.38 6.09 -1.29 69.7 34.3 H	6.09 -1.29 49.7 34.3 H	-1.29 69.7 34.3 H	49.7 34.3, 10	34.3 10		3.4	85.9	1	1	8	\$21.4	1.1
82.6 60.1 62.6 60.1 93.3 53.4 62.6 63.5 93.4 53.4 62.6 63.5 93.7 53.4 63.5 63.5 93.7 53.4 63.5 63.5 93.7 53.4 63.5 63.4 93.7 53.4 63.5 63.4 93.7 53.4 63.5 63.4 93.7 73.4 1 63.5 63.4 93.7 73.4 1 63.4 63.4 93.7 73.4 1 63.4 63.4 93.7 73.4 1 63.4 63.4 93.7 93.5 74.6 1 1 93.7 94.5 1 1 1 1 93.7 94.6 1 1 1 1 1 93.7 94.6 1 1 1 1 1 1 93.4 94.6 1 1 1 1 1 1 1 111.1 1 <t< td=""><td>2.3⁶ 40.1 42.8 93.3 33.4 44.3 1 93.4 61.0 74.6 1 93.7 33.7 39.4 74.6 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 90.5 1 93.8 90.5 1 69.4 93.7 90.5 1 69.4 93.8 90.5 1 69.4 93.7 90.5 1 69.4 93.8 90.5 1 69.4 93.8 90.5 1 69.4 93.8 90.5 1 90.4 93.8 90.5 1 90.4 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 <!--</td--><td>288 0.518 6.36 6.28 -0.08 50.5 47.8 10</td><td>0.518 6.36 6.28 -0.08 50.5 47.8" 10</td><td>6.36 6.28 -0.08 50.5 47.8 10</td><td>6.28 -0.08 50.5 47.8 10</td><td>-0.08 50.5 47.8" 10</td><td>30.5 47.8" 10</td><td>47.8" 30</td><td>300</td><td>6.3</td><td>100.1</td><td>1</td><td> </td><td>14</td><td>544.4</td><td>578.3</td></td></t<>	2.3 ⁶ 40.1 42.8 93.3 33.4 44.3 1 93.4 61.0 74.6 1 93.7 33.7 39.4 74.6 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 74.6 1 93.7 39.4 90.5 1 93.8 90.5 1 69.4 93.7 90.5 1 69.4 93.8 90.5 1 69.4 93.7 90.5 1 69.4 93.8 90.5 1 69.4 93.8 90.5 1 69.4 93.8 90.5 1 90.4 93.8 90.5 1 90.4 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 93.8 1 1 1 </td <td>288 0.518 6.36 6.28 -0.08 50.5 47.8 10</td> <td>0.518 6.36 6.28 -0.08 50.5 47.8" 10</td> <td>6.36 6.28 -0.08 50.5 47.8 10</td> <td>6.28 -0.08 50.5 47.8 10</td> <td>-0.08 50.5 47.8" 10</td> <td>30.5 47.8" 10</td> <td>47.8" 30</td> <td>300</td> <td>6.3</td> <td>100.1</td> <td>1</td> <td> </td> <td>14</td> <td>544.4</td> <td>578.3</td>	288 0.518 6.36 6.28 -0.08 50.5 47.8 10	0.518 6.36 6.28 -0.08 50.5 47.8" 10	6.36 6.28 -0.08 50.5 47.8 10	6.28 -0.08 50.5 47.8 10	-0.08 50.5 47.8" 10	30.5 47.8" 10	47.8" 30	300	6.3	100.1	1		14	544.4	578.3

...

Pre-test a/w. Optically-measured crack growth. Crack growth predicted by compilance.

U

...

Side groowd. Valid K_{1c} per ASTM E 399. "alid J_{1c} per ASTM E 813-81.

⁶ Cleavage failure precluded determination of this quantity.

Table E-4 Fracture Toughness Data for Linds 80 Maid (45A) (continued

-	ł					4	2		ž					
1	3 1	°(a/*)	? Î	ĩ Î	11	7.J.	((r)(a)	1 9	(9*8)	*	11	1	- Ĵ	• ĝ
						VIONEI	0 2-2 (1						
25-48m	9	0.515	1	۱	1	6-11	1	52.3	575	2.13	2755	1		
W84-15	R-	0.503	1	1	1	15-2	1	0.62	34.6	51.6	24.4	1	720.4	3.010
11-49M	2	0.525	1	1		6.11	1	51.8	55-2	6.3	55.2	1	683.2	632.4
184-35	9	0.511	1	1	1	34.5	ľ	57.4	55.8	49.3	55.8	1	674.5	623.7
19-192	69	0.501	1	٦	٦	65.1	٦	120.6	٦	1		1	660.0	608.7
HEA-46	*	0.516	1	1	1	28.1	1	79.3	79.5	59.3	79.5	1	659.5	1.909
1E-48m	8	0.517	1	1	1	44.2	1	1.66	60.2	65.7	87.9	1	648.3	1.4
184-23	8	0.512	4.23	2.69	3.1-	1.07	43.3	124.7	6-16	1		75	645.1	742.7
-1-W8M	120	0.532	6.30	6.32	+0.02	60.5	70.1	115.4	124.3	1	1	11	8.17.8	1110
WEA-5	120	0.509	8.98	6.81	-2.17	61.7	47.6	116.6	102.4	1	1	9	637.8	544.4
12-Wan	204	0.512	5.89	60.09	+0.20	42.7	45.4	95.7	8-86	1	1	*	6.79.7	270.4
-6-Ven	288	0.520	69-9	6.47	-0.22	45.4	43.51	97.16	95.5	1	1	12	652.8	7.985
						VIGNER	1) C-3 (II	(5-						
#84-29	9	0.509	1	1	1	11.6	1	54.7	\$105	47.5	20.02	1	741.4	718.0
61-W8m	0	0.514	1	1	1	15.7	1	59.8	57.4	52.4	2.25	1	775.5	5.534
12-W81	9	0.522	1	1	1	502	1	0-61	29.00	61.2	74.8	1	600°2	653.3
11-Man	8	0.504	1	1	1	21.3	1	69.2	29.42	5.8	0799	1	\$*069	647.0
	8	0.512	5-78	5.83	50-0+	63.6	٦	4-611	٦	1	1	1	684.7	641.1
69-99M	21	0.518	1	1	1	29.5	1	81.1	5.3	1	1	1	679.4	635.6
ET-YSH	8	0.522	8.85	5.14	-3.71	1.61	53.9	133.2	109-6	1	1	33	674.6	630.5
-190 M	110	0.515	1.64	6.42	-1.22	39.2	1.	93.1	٦	1	1	\$	695.9	617.6
	8	0.50	1.31	6.30	10-1-	6.93	43.3	104.7	97.5	1	1	8	657.2	611.0
2-12	288	0.518	6.09	61.9	+0-10	35.9	¥.1.	8.48	87.40	1	1	11	674.8	614.4
-12-48	588	0.524	2-12	6.02	06.0+	38.7	39-87	1-06	9-16	1	1	12	674.5	6.4.6
														1
Pre-tes	t a/u.				d Si	ie grooved.					Clearage f	silure p	recluded	
c Cred	Ty wasur	ed crack gro	Meh.		1	lid KIc per	ASTM E 399	. 1			determin	ation of	this que	stity.
- man	and mana	at the second	-achierida			Ind ole DEI	ASIN E 613	-81-						

Table E-4 Fracture Toughness Date for Linds 20 Weld (MEA) (continued)

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• ••••	•	ų 1			1	- :	الع					
Industry	Imatoring lifed (marks) Imatoring lifed (marks) 71 11	·(i î	f î	;]	(1.1/m ²)	NSTN (LJ/w ²)	(****	(***)	° *	Jî	ľ	- Î	• ĝ
11 11 <td< td=""><td>1 1 1 1 40.5 36.5 36.5 36.1 1 1 1 1 1 1 1 40.5 36.5 36.1 36.1 1 66.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td></td><td></td><td></td><td>TIONE</td><td>1-01 0</td><td>(5)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1 1 1 1 40.5 36.5 36.5 36.1 1 1 1 1 1 1 1 40.5 36.5 36.1 36.1 1 66.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						TIONE	1-01 0	(5)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>0.501</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1.1</td> <td>۱</td> <td>5.04</td> <td>2.5</td> <td>7.82</td> <td></td> <td>1</td> <td>111.4</td> <td></td>	0.501		1	1	1	1.1	۱	5.04	2.5	7.82		1	111.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 <td>0.513</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>7.3</td> <td>1</td> <td>41.1</td> <td>40.1</td> <td>6.8</td> <td>1.04</td> <td>1</td> <td>0.108</td> <td>A41.6</td>	0.513		1	1	1	7.3	1	41.1	40.1	6.8	1.04	1	0.108	A41.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - - 61.3 - 97.1 94.0 65.6 65.1 - 697.0 96.1 1 - - 10.3 - 95.3 95.3 95.1 95.4 65.6 - 697.0 95.4 1 - 10.3 - 10.3 - 10.3 10.5 95.1 95.4 65.6 - 691.0 95.4 5.30 5.30 + 6.31 - 10.3 10.3 10.3 95.0 70.9 56.1 - 691.0 991.3 5.40 5.60 + - 10.3 10.3 10.3 10.3 90.0 90.1 <td>0.503</td> <td></td> <td>1</td> <td>1</td> <td> </td> <td>17.2</td> <td>1</td> <td>62.7</td> <td>55.8</td> <td>52.3</td> <td>1.92</td> <td>1</td> <td>672.0</td> <td>121.3</td>	0.503		1	1		17.2	1	62.7	55.8	52.3	1.92	1	672.0	121.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 20.3 1 66.0 57.7 54.1 65.6 1 65.6 1 65.6 1 65.6 1 65.6 1 65.6 1 65.6 1 65.6 1 65.6 1 55.6 55.1 <t< td=""><td>9.548</td><td></td><td>1</td><td>1</td><td> </td><td>6.14</td><td>1</td><td>1.12</td><td>0.85</td><td>65.8</td><td>85.1</td><td>1</td><td>657.0</td><td>1.199</td></t<>	9.548		1	1		6.14	1	1.12	0.85	65.8	85.1	1	657.0	1.199
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Section of the section of t	0.524		1	1	1	20.3	1	0.88	57.7	1.12	65.6	1	1.038	2.005
1 1 1 13.1 3.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 3.1 13.1 13.1 3.1 13.1 <	Image: Section of the section of t	0.505		1	1	1	19-5	1	9999	55.1	53.4	61.5	1	540.1	50K.7
1 1	Line Constrained Zn.3 T.3 T.3 <tht.3< th=""> T.3 T.3 <tht.3< th=""> <t< td=""><td>0.515</td><td></td><td>1</td><td>1</td><td> </td><td>80.7</td><td>1</td><td>135-3</td><td>54.3</td><td>75.0</td><td>1.4</td><td>1</td><td>4.148</td><td>1.005</td></t<></tht.3<></tht.3<>	0.515		1	1		80.7	1	135-3	54.3	75.0	1.4	1	4.148	1.005
4.4 6.22 -1.38 94.1 73.3 165.5 190.2 - - 66.1 39.4 33.4 5.40 5.80 -0.40 65.5 -0.41 183.2 190.2 - - 66.1 39.3 39.0 5.40 5.80 -0.40 65.5 -0.41 183.2 190.2 - - 66.1 39.3 39.0 6.53 6.11 -0.40 6.54 -0.41 183.2 190.2 102.2 33.5 94.0 - - 66.1 39.3 39.0 - - 66.1 39.3 39.0 - - 66.1 39.2 33.6 104.3 33.6 104.3 - - 66.1 39.3 39.0 - - 66.1 39.3 39.0 - - 66.1 39.3 39.0 - - 66.1 39.3 39.0 - - 66.1 39.3 39.0 - - 66.1 39.3 39.0 - - 66.1 66.3 39.3 59.0 - 69	4.46 6.22 -1.58 94.1 75.3 165.3 195.3 195.3 195.3 195.3 195.4 195.3 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.3 195.3 195.3 195.3 195.3 195.3 195.3 195.3 195.3 195.3 195.4 195.3	0-505		1	1	1	27.3	1	78-6	52.3	0.85	70.9	1	616.0	145.0
5.4 6.4 6.4 10.2 10.2 5.4 10.2 5.4 5.2 6.31 0.06 64.4 103.2 103.2 103.4 33.6 6.23 6.31 0.06 41.7 6.4 93.5 94.0 11 21 64.1 33.6 6.31 0.06 41.7 6.4 93.5 94.0 11 21 64.2 33.6 100.0 11.1 6.1 63.2 110.2 102.6 11 21 64.2 33.6 100.0 11.1	5.40 5.40 5.40 6.54 4.57 118.2 1	0.517		4.64	6.22	*1.58	94.1	75.3	145.5	130.2	1	1	2	8.36.8	STS.A.
5.40 5.80 40.40 69.4 103.2 10	5.40 5.80 40.40 49.5 49.2 102.9 102.9 102.9 102.9 102.9 102.1 102.9	0.521		٦	٦	٦	62.4	٦	118.2	٦	1	1	: 1	5.414	1 11
6.25 6.31 0.06 41.7 6.45 93.5 94.0 1 21 66.3 33.6 1 0.06 41.7 6.45 93.5 94.0 1 1 66.3 33.6 1 1 1 1 64.5 93.5 94.0 1 1 66.3 1 1 1 66.3 1	6-25 6-31 40.06 41.7 66.5 93.5 99.0 - 23 66.3 538.0 Interference ited 73.5 99.0 - 23 66.3 538.0 Interference ited 73.5 99.0 - 241.8 741.5 144.8	0.514		5-40	5.80	07.0+	5-67	10.25	103.2	102.9	1		22	281.2	101.6
Tableto IC-2 (m-73) Tableto IC-2 (m-73) <thtableto (m-73)<="" ic-2="" th=""> <thtableto i<="" td=""><td>Insurations (C-2 (ma-75)) Nature (C-2 (ma-75)) Image: C-2 (ma-75) 7.8 7.8 7.8 9.7 41.6 6.91.8 60.0 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8</td><td>0.509</td><td></td><td>6.23</td><td>6-31</td><td>90-0+</td><td>1.13</td><td>8.64</td><td>93.5</td><td>0.62</td><td>1</td><td>1</td><td>1 53</td><td>608-3</td><td>538.0</td></thtableto></thtableto>	Insurations (C-2 (ma-75)) Nature (C-2 (ma-75)) Image: C-2 (ma-75) 7.8 7.8 7.8 9.7 41.6 6.91.8 60.0 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Image: C-2 (ma-75) 1.8	0.509		6.23	6-31	90-0+	1.13	8.64	93.5	0.62	1	1	1 53	608-3	538.0
1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>None in</td> <td>0 IC-2 (</td> <td>(51-11)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						None in	0 IC-2 ((51-11)						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>967-0</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>7.8</td> <td>1</td> <td>42.2</td> <td>41.8</td> <td>1.01</td> <td>*17</td> <td>1</td> <td>- 107</td> <td></td>	967-0		1	1	1	7.8	1	42.2	41.8	1.01	*17	1	- 107	
	1 1 80.9 10.5 60.9 61.6 74.3 10.3 60.4 1 1 24.0 17.9 17.9 17.9 17.9 17.9 17.9 17.9 1 1 17.9 17.9 17.9 17.9 17.9 17.9 17.9 1 1 17.9 17.9 17.9 17.9 17.9 17.9 10.4 1 1 17.9 1 17.9 10.4 13.5 53.3 52.2 54.9 10.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 61.3 52.1 54.0 600.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	0.483		1	1	1	18.1	1	5. au	512	54.5	0.04	1	1 107	
	1 1 24.0 13.5 53.9 57.0 64.8 1 69.6 1 1 17.9 17.9 17.9 13.5 53.9 57.0 64.8 1 69.6 1 1 17.9 1 17.9 1 63.5 53.5 52.1 54.9 1 69.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 53.5 53.1 106.7 56.4 60.5 59.3 56.1 60.5 5.3 6.13 6.13 64.3 55.4 106.7 56.4 60.5 59.3 59.3 59.3 6.13 6.16 106.3 101.5 111.6 1 1 639.3 59.3 6.18 6.05 -0.13 107.5 101.5 54.4 1 53.3 59.3 6.18 6.05 -0.13 107.5 101.5 54.4 1 639.3 59.3 6.18 6.05 100.5 105.5 105.5 1 1 639.3 59.1 6.19 6.10 100.5 105.5 1 1 <td>0.509</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>30.9</td> <td>1</td> <td>83.7</td> <td>64.9</td> <td>61.8</td> <td>2.42</td> <td>1</td> <td>1.100</td> <td>1 767</td>	0.509		1	1	1	30.9	1	83.7	64.9	61.8	2.42	1	1.100	1 767
17.9 63.6 53.5 32.2 38.9 63.4 90.6 106.7 61.3 63.2 52.2 38.9 649.0 60.5 90.6 106.7 61.3 63.2 52.2 53.9 649.0 60.5 108.7 61.3 58.2 89.4 649.0 600.5 8.25 6.46 -1.45 64.3 55.4 106.4 38.4 72.8 59.3 649.0 600.5 6.93 6.15 -0.18 53.4 119.4 114.6 11 649.3 59.3 59.3 6.93 6.15 -0.18 53.4 107.4 107.5 14 11 649.3 59.4 6.13 6.05 -0.13 53.4 107.4 107.5 18 51.2 59.4 59.4 6.43 53.4 107.4 107.5 18 610.5 59.4 6.43 53.4 107.4 107.5 18 611.0 591.4 6.43 5		0.492	-	1	1	1	24.0	1	73.5	53.9	0715		1	0.974	1 000
90.5 106.7 61.3 66.2 89.5 69.0 66.9 106.7 61.3 66.3 89.5 69.0 66.9 106.7 84.3 67.3 89.5 649.0 600.5 8.29 6.44 -1.45 11.8 126.7 36.4 72.8 99.3 649.0 600.5 6.93 6.45 53.4 119.6 114.6 135.3 59.3 6.93 6.45 53.4 119.6 114.6 11 639.2 59.3 6.43 53.4 107.4 107.5 106.5 105.5 16 631.0 551.2 6.43 6.05 -0.23 68.2 32.9 106.5 105.5 16 631.0 551.2	30.6 106.7 61.3 66.2 89.6 649.0 600.5 66.9 106.7 56.3 67.3 89.3 649.0 600.5 8.29 6.46 -1.45 71.8 106.7 56.3 67.3 89.3 649.0 600.5 8.29 6.46 71.6 119.8 111.6 72.8 92.9 649.3 560.5 6.28 6.05 -0.18 53.4 107.5 111.6 71 639.2 561.0 6.28 6.05 -0.23 48.2 52.9 100.5 105.5 16 531.2 6.28 6.05 -0.23 48.2 52.9 100.5 105.5 16 631.0 553.4 6.28 6.05 -0.23 100.5 105.5 16 631.0 553.4 6.28 6.05 -0.23 100.5 105.5 16 631.0 553.4 6.28 6.05 6.05.5 100.5 105.5 16 631.0 <t< td=""><td>0.491</td><td></td><td>1</td><td>1</td><td>1</td><td>17.9</td><td>1</td><td>63.6</td><td>53.5</td><td>27.25</td><td>0.05</td><td>1</td><td>0.02</td><td></td></t<>	0.491		1	1	1	17.9	1	63.6	53.5	27.25	0.05	1	0.02	
		0.470		1	1		30.6	1	106.7	5.14	1.84	80.6	1	0.000	2 100
71.8 126.7 %.4 72.8 %2.9 - 6.82.3 \$89.3 8.25 6.44 -1.45 64.3 55.8 119.8 111.6 71 633.2 \$89.3 6.93 6.75 -0.18 53.4 119.8 111.6 71 633.2 \$89.3 6.28 6.75 -0.18 53.4 107.4 107.5 71 633.2 \$89.3 6.28 6.05 -0.23 46.2 53.4 107.5 71 633.2 \$89.3 6.28 -0.23 46.2 52.9 100.5 105.5 16 631.0 \$53.4	6-28 6-44 -1-85 71.6 -126.7 56.4 72.8 52.9 - 638.3 589.3 6-28 6-35 -0.18 53.4 119.6 111.6 - 71 633.2 586.3 6-28 6-35 -0.18 53.4 119.6 111.6 - 71 633.2 586.3 6-28 6-35 53.7 107.5 101.5 - 71 633.2 586.3 6-28 6-0.23 46.2 52.9 100.5 105.5 - 71 633.2 586.3 6-28 6-0.23 46.2 52.9 106.5 105.5 - - 71 633.2 586.4 6-28 6-0.23 46.2 52.9 106.5 105.5 - - 16 631.0 553.4 6-28 23.4 106.5 105.5 - - - 16 631.0 553.4	0.505		1	1	1	48.9	1	104.7	2.3	67.3	89.1	1	1.542	0.500
8.29 6.46 -1.45 64.3 35.8 119.8 111.6 71 639.2 364.0 6.99 6.75 -0.18 33.6 33.7 107.4 107.5 ¹ 71 639.2 364.0 6.28 6.05 -0.29 48.2 52.9 100.5 105.3 ¹ 16 631.0 365.4	8-29 6-46 -1-65 64.3 55-8 119-8 111.6 71 639.2 584.0 6-29 6-75 -0.18 53.6 53.7 107.4 107.5 ⁶ 71 639.2 584.0 6-28 6-05 -0.23 48.2 52.9 100.5 105.5 ⁶ 16 631.0 553.2 6.28 6-05 -0.23 48.2 52.9 100.5 105.5 ⁶ 16 631.0 553.4 6.28 6-05 -0.23 48.2 52.9 100.5 105.5 ⁶ 16 631.0 553.4 6.28 6-05 -0.23 48.2 52.9 100.5 105.5 ⁶ 16 631.0 555.4	0.48]		1	1	1	71.8	1	126-7	39.45	72.8	0.10	1	1.913	1.000
6-93 6-75 -0-18 53-5 53-7 107.4 107.5 ¹ 76 607.6 531.2 6-28 6-05 -0-23 48-2 52-9 100-5 105.3 ¹ 16 631.0 553.4	6-29 6-75 -0-18 53.4 53.7 107.4 107.5 ⁶ 26 607.6 531.2 6-28 6-05 -0.23 48.2 52.9 100.5 105.3 ⁶ 16 631.0 555.4 6-28 6-05 -0.23 48.2 52.9 100.5 105.5 ⁶ 16 631.0 555.4	0.49	-	\$7.8°	6.44	-1-85	64.3	55.8	8-611	111-6		1	11	5.m.2	0.442
6-28 6-05 -0-23 48-2 52-9 100-5 105-3 ⁶ 16 631-0 365.4	6-28 6-05 -0-23 48-2 52.9 106.5 105.5 ⁴ 16 631.0 365.4 ^d Side grooned. ⁶ Side grooned. ⁶ Cleanage failure precluded	0.503		6.93	6.75	-0.18	33.6	33.1	107.4	107.51	1	1		407.6	2112
	d Side grooved.	0.512		6.28	6.05	-0-23	48.2	52.9	100.5	105.31	1	!	8	631.0	365.4

Table E-4 Fracture Toughness Data for Linde 20 Weld (WEA) (continued)

	* ĝ		672.5	654.6	5.44.3	6W.?	679.5	624.1	618.4	413.1	410.4	1.m.	10.3	344.5
	- Î		736.4	608.4	1.885	678.7	673.7	1.94	640.0	67.259	455.5	540.1	632.3	655.7
	J		1	1	•	1	•	1	1	3	1	8	16	11
	Jî		8.04	36.4	21.17	5.3	65.5	87.5	81.7		27.0		1	1
	· · ·		33.4	53.6	47.8	51.0	36.2	67.3	62.5	1	62.3		1	1
k			94.0	57.5	51.7	36.3	57.0	67.7	59.2	95.6	36.5	110.6	113.7	0-101
	(: • • •)	(94-	34.3	63.3	53.7	3.9.6	70.1	5.00	86.3	131.2	84.8	121.1	115-2	100.4
•	ASTR (Lu/u ²)	1) E-31 (1	1	1	1	1	1	1	1	8.04	1	55.2	60.1	19-61
I.	P.L. (12/10 ²)		5.1	17.6	12.8	T	21.8	8.54	33.3	77.2	33.8	66.2	61.7	0-89
	: 1		1	1	1		1	1	1	-1.12	1	-1.26	+0-13	-0-18
	°~ j		1	1	1	1	1	1	1	6-26	1	5.59	6.76	3.72
	* ĵ		1	1	1	1	1	1	1	7.35	1	6-85	6.63	2-90
	°(n/*)		161.0	0.495	969.0	669.0	0.506	867-0	0.502	0.509	169.0	669.0	167.0	0.509
Į	9 1		-12	10	32	*	\$	22	65	73	8	8	200	8
Spectam	1		SII-115	101-101	124-100	WBA-118	184-110	UBA-120	184-138	184-140	184-135	124-105	184-125ª	

Pre-test a/W. b Optically-measured crack growth. C rack growth predicted by compliance.

d Side groomed. • Valid K_{1c} per ASTM E 399. f Valid J_{1c} per ASTM E 813-81.

E Clearage failure precluded determination of this quadiity.

Fig. E-26 J-R curves for the unirradiated condition of the Linde 80 Weld W8A.

¥

Fig. E-28 Comparison of the curve-fit results for the three high fluence rate (IC) irradiated conditions.

Fig. E-29 J-R curves for the IC-1 (UBR-65) irradiated condition of Linde 80 Weld W8A.

Fig. E-30 J-R curves for the IC-2 (UBR-75) irradiated condition of Linde 80 Weld W8A.

Fig. E-31 J-R curves for the IC-3 (UBR-76) irradiated condition of Linde 80 Weld W8A.

Fig. E-32 Comparison of J-R curves at 200 °C from the unirradiated condition and the high fluence rate (IC) irradiated conditions of the Linde 80 Weld W8A.

Fig. E-33 Comparison of J-R curves at 288 °C from the unirradiated condition and the high fluence rate (IC) irradiated conditions of the Linde 80 Weld W8A.

irradiation. At 200° C (Fig. E-32), all three IC conditions exhibit similar J levels, whereas at 288° C the curve for IC-3 is lower than the other IC conditions.

Comparisons of these IC data with previous in-core irradiaton data are illustrated in Fig. E-34 at 200°C and 288°C. In general higher fluence tends to results in lower J-R curve levels, with the lowest curves from UBR-48 in Ref. E-2.

4.2.2 Intermediate Fluence Rate (CE)

 $K_{\rm JC}$ data for the CE conditions of the Linde 80 weld are illustrated in Figs. E-35. In contrast to the well-behaved nature of the IC data, the CE data do not indicate a consistent trend with fluence (Fig. E-36). Specifically, all three CE conditions indicate similar data in the transition temperature region. This trend is remarkably consistent with that exhibited by the A 302-B plate. The same discussion given in Section 4.1.2 on possible saturation of embrittlement for the A 302-B plate is also pertinent here.

Upper shelf (J-R curve) data for this weld are illustrated in Figs. E-37 to E-39. An example of the effect of side-grooves on J-R curves for this weld can be found in Fig. E-38 for CE-2. Of the two tests at 120°C, the higher curve is from a plane-sided specimen, whereas the lower curve is from a side-grooved specimen. In this case, the effect of side-grooving (ignoring all other variables such as fluence and irradiation temperature) is quite striking. In contrast, two side-grooved specimens from CE-3 tested at 288°C exhibit nearly identical J-R curves (Fig. E-39).

Comparisons of the curves for all three CE conditions at 288°C (Fig. E-40) are similar to those for the IC conditions. Specifically, large reductions in toughness are evident for the post-irradiation conditions, with the highest fluence yielding the lowest J levels overall.

4.2.3 Comparisons of Different Fluence Rates

Transition temperature increases as a function of fluence are compared in Fig. E-41 for all of the irradiation conditions. Data for the highest fluence rates include the IC conditions and two other in-core irradiations reported in Ref. E-2. For reasons yet unknown, fracture toughness data for the IC conditions and that from Ref. E-2 indicate somewhat different trends.

The data for the CE conditions within themselves do not indicate a consistent trend. Whereas CE-1 and CE-2 give an expected trend of increasing ΔT with increasing fluence, CE-3, which had the highest overall fluence of the CE irradiations, indicates the lowest overall ΔT of the three CE conditions. A satisfactory cause of this discrepancy is not readily identified; specimens for all three CE irradiations were from the same portion of the weld. One rationale is that the inherent scatter in the toughness data, in combination with fluence and irradiation temperature differences, may be masking a trend towards an embrittlement plateau.

(text continues on pg. E-61) E-52

Fig. E-34 Comparison of J-R curves at 200°C and 288°C from the IC irradiations with those from previous in-core irradiations.

14

Fig. E-35 Comparisons of K_{Jc} data for the unirradiated condition and the intermediate fluence rate (CE) irradiated conditions of the Linde 80 Weld W8A.

Fig. E-36 Comparison of the curve-fit results for the three intermediate fluence rate (CE) irradiated conditions.

Fig. E-37 J-R curves for the CE-1 (UBR-44) irradiated condition of Linde 80 Weld W8A.

DELTH & (mm)

4.0

5.0

6.0

8

0

1.8

2.0

3.0

0

4+*.

7.0

Fig. E-39 J-R curves for the CE-3 (UBR-45) irradiated condition of Linde 80 Weld W8A.

Fig. E-40 Comparison of J-R curves at 288°C from the CE irradiations.

Fig. E-41 Transition temperature shifts as a function of fluence for the Linde 80 Weld W8A.

Overall, data for the IC conditions exhibit lower embrittlement than the CE conditions at low fluence. A cross-over in embrittlement for the two fluence rates occurs near 2 x 10^{19} n/cm², similar to the trend found for the A 302-B plate.

In terms of the upper shelf (J-R curve) trends, data for the irradiated conditions only are illustrated in Fig. E-42 for 200°C and 288°C. The comparisons at 200°C are only useful from the standpoint of CE-2 and the IC conditions, since no data is available for CE-3 and the specimen tested from CE-1 was plane-sided, resulting in a large elevation in the J levels. At 288°C, the highest curves are from IC-1 and IC-3, whereas the lowest curves are from CE-3. Comparison of the curves from IC-3 and CE-2 at 288°C indicates close agreement, which is also indicated by the fluences. Therefore, the upper shelf data are consistent with the transition region data, in that the IC condition, but at a fluence of - 2 x 10¹⁹ the two fluence rates give similar J-R curve trends.

4.3 A 533-B Plate (23G)

This plate was tested in one IC condition (IC-4) and one IP condition (IP-1). Detailed data for all of these conditions are given in Table E-5.

Comparisons of the J-R curves for the unirradiated condition are illustrated in Fig. E-43. Tests at 200°C and 288°C indicate excellent agreement at those temperatures.

4.3.1 High Fluence Rate (IC)

 $K_{\rm Jc}$ data for the IC condition are compared to data for the unirradiated condition in Fig. E-44. Near the arbitrary index of 100 MPa/m, data for the irradiated condition indicate only a small shift (29°C) from that for the unirradiated condition. There is some variability in the data for the irradiated condition near 100 MPa/m, although the indicated mean curve bisects the data at that fracture toughness level.

J-R curve data for the IC condition are illustrated in Fig. E-45. As with the unirradiated condition, data at 200° C and 288° C are coincident. Comparisons of the J-R curves for the IC condition with those for the unirradiated condition (Figs. E-46 and E-47) at 200° C and 288° C indicate no loss in upper shelf toughness due to the irradiation exposure.

4.3.2 Low Fluence Rate (IP)

 K_{JC} data for the IP condition are compared to those for the unirradiated condition in Fig. E-48. In contrast to the IC data in Fig. E-44 and IP data for the A 302-B plate (23F) in Fig. E-20, considerable scatter is obvious in the data for the IP condition of the A 533-B plate. No simple explanation for the scatter in the IP data is at hand. The transition temperature shift is also much larger for the A 533-B plate than for the A 302-B Plate 23F.

Fig. E-42 Comparison of J-R curves at 200°C and 288°C from the irradiation conditions of the Linde 80 Weld W8A.

Smerium	Tant					J	Ic		K _{Je}					
Number	Temp	(a/W) *	**	*°	°>° %	P.L.	ASTM	P.L.	ASTM	K c	K.mex	Tavg	f	,
	(°C)		(=)	(=)	(m)	(kJ/m ²)	(kJ/m ²)	(MPa m)	(MPa m)	(MPa ā)	(MPa ā)		(MPa)	(MPa)
							NIRRADIATE	D						
236-28	-171	0.519				6.4		39.0	39.3 ^e	36.7	39.3		718.3	592.1
TA4-14	-140	0.555				14.2		58.0	56.1	47.9	56.1		674.8	560.2
23G-16	-110	0.508				31.3		85.7	46.7	57.7	75.3	-	636.6	531.9
TA4-16	-95	0.509				32.5		87-2	47.1	57.4	76.6		618.9	518.7
23G-31	-80	0.539				39.5		96.0	35.0	59.2	81.8		602.1	506.1
TA4-15	-65	0.534				82.8		138.5	45.1	68.1	80-1		586.3	494.4
23G-29	-50	0.518				86.2		141.1	46.9	67.1	84.8		571.4	482.
TA4-17	-35	0.515				132.3		174.4	41.9	72.4	80.1	-	557.5	470
23G-15	-20	0.511				263.5		236-2	54.2	79.8	89.0		544.5	61.9
23G-8ª	24	0.516	5.63	5.29	-0.34	267.3	195.1	245.8	210.0			200	511.5	435.8
TA4-13ª	200	0.514	6.14	5.96	-0.18	164.5	157.3 ^f	188.0	183.9			122	462.8	385.0
TA4-18°	288	0.516	6.86	6.69	-0.17	195.4	188.6 ^f	202.4	198.8			91	487.1	391.6
23G-14 ^d	288	0.517	6.29	6.11	-0.18	153.1	146.0 ^f	179.2	174.9	-		114	487.1	391.6
						IRRADIA	TED IP-1 (UMR-38)						
23G-13 ^d	-90	0.524		_		15.7		60.5	52.3	48.8	55.8		708.6	614.7
23G-7ª	-55	0.519				10.7		49.7	47.3	42.4	47.3		671.7	586.7
23G-5ª	-30	0.508				30.3		83.4	51.9	55.7	73.2		648.5	568.8
23G-11ª	-10	0.515				11.1		50.3	47.0	61.9	47.0		631.9	555.8
23G-10 ^d	15	0.507				32.5		85.9	50.2	54.9	74.1		613.4	541.0
23G-2ª	22	0.508	-			130.6		171.9	51.4	72.8	98.6		608.7	537.1
23G-3ª	28	0.520				73.0		128.4	55.5	64.8	95.7	_	604.8	536.0
23G-12ª	50	0.518				125.6		168.0	53.7	71.0	97.9		591.9	523.2
236-94	70	0.510	8	B	8	258.7	265.1	240-3	243.3			-	582.0	514.5
23G-4ª	100	0.520	6.60	6.29	-0.31	237.9	264.1	229.5	232.5		and the second second	97	570.2	503.6
23G-6ª	200	0.533	6.48	6.32	-0.16	196.4	183.7 ^f	205-6	198.8			102	558.3	485.2
23G-1ª	288	0.517	7.11	5.80	-1.31	150.9	147.4	177.9	175.8			62	582.6	491.9

Table E-5 Fracture Toughness Data for A 533-B Plate (23G)

E Cleanage failure precluded determination of this quantity.

a Pre-test a/W.
b Optically seasured crack growth.
c Crack growth predicted by compliance.

Specimen	Test						'Ie		'Jc					
Number	Temp	(a/V).*	*	°,°	5- 5	P.L.	ASTM	P.L.	ASTM	K.c	-	Tavg	f	,
1.15	(°C)		()	(==)	(=)	(kJ/m ²)	(kJ 's ²)	(MPa =)	(MPa =)	(MPa ā)	(MPs =)		(MPa)	(MPa)
						TREADU	ATED 10-4 (UR-77)						
236-21	-130	0.513							34.0 ^e		34.0	-	711.4	602.1
23G-19	-100	0.515				11.3		51.5	41.5	44.8	49.5	-	676.4	575.0
23G-24	-75	0.514			a state of the	41.4		98.1	52.4	62.8	83.8	-	646.5	556.0
23G-17	-60	0.509				53.2		110.9	51.4	65.6	87.3	-	631.0	\$42.1
23G-22	-35	0.508			1	45-1		101.9	49.9	62.0	83.0	-	607.3	524.4
236-30	-22	0.513				87.9		141.2	49.6	70.4	92.5	-	596.0	515.2
230-27	-10	0.517				103.8		153.9	48.8	72.2	89.7	-	586.2	507.5
23G-18	10	0.510				147.4		182.8	47.0	76.0	92.0	-	571.2	495.1
236-25	30	0.515				156.9		188.2	48.3	75.7	90.9	-	\$57.9	484.1
23G-23.	50	0.525	8	8	8	356.7	B	283.0	8			_	\$46.2	674.9
23G-32	200	0.524	6.78	6.09	-0.69	173.0	175.8 ^f	192.9	194.5			87	512.6	436.9
23G-20ª	258	0.529	6.59	6.13	-0.46	163.3	144.3 ^f	185.0	174.0			86	536.9	443.4

Table E-5 Fracture Toughness Data for A 533-B Plate (23G) (continued)

E-64

8

b

Pre-test a/W. Optically-measured crack growth. Crack growth predicted by compliance. с

d Side grooved. e Valid K_{IC} per ASTM E 399. f Valid J_{IC} per ASTM E 813-81.

8 Cleavage failure precluded determination of this quantity.

Fig. E-43 J-R curves for the unirradiated condition of the A 533-B Plate 23G.

Fig. E-44 Comparisons of K_{JC} data for the unirradiated condition and the high fluence rate (IC) irradiated condition of the A 533-B Plate 23G.

Fig. E-45 J-R curves for the IC-4 (UBR-77) irradiated condition of A 533-B Plate 23G.

Fig. E-46 Comparison of J-R curves at 200 °C from the unirradiated condition and the high fluence rate (IC) irradiated condition of the A 533-B Plate 23G.

Fig. E-47 Comparison of J-R curves at 288 °C from the unirradiated condition and the high fluence rate (IC) irradiated condition of the A 533-B Plate 23G.

Fig. E-48 Comparison of K_{JC} data for the unirradiated condition and the low fluence rate (IP) irradiated condition of the A 533-B Plate 23G.

J-E curves for the IP condition are also somewhat unusual for this plate, as the test at 200°C yields much higher J levels than the test at 288°C (Fig. E-49). As expected, data for the IP condition at 200°C indicate no loss in toughness due to irradiation (Fig. E-50). However, data for the IP condition at 288°C indicate slightly higher toughness than the unirradiated condition (Fig. E-51).

4.3.3 Comparisons of Different Fluence Rates

Since the fluences of the IC and the IP conditions are relatively close (within ± 10 %), K_{JC} data for these two conditions can be directly compared. As illustrated in Fig. E-52, data for the IP condition indicate a much larger shift than do the data for the IC condition. While this trend is consistent with that found with the A 302-B plate (23F), the magnitude of the differences is much greater than that found with the A 302-B plate. Although data scatter does tend to magnify the apparent differences, even the upper bound data for the IP condition are only close to but not within the data scatter for the IC condition.

In terms of the upper shelf trends (Fig. E-53), data for both irradiated conditions indicate similar toughness to the unirradiated condition at 288° C, whereas the IP condition exhibits somewhat higher toughness at 200° C.

4.4 Linde 0091 Weld (W9A)

At this point, irradiated data for this weld are available for an IC condition (IC-4) only. (Data for an IP condition, IP-2, will be developed in follow-on work.) Previous data from in-core irradiations are also available (Ref. E-2).

Detailed data for this weld in the unirradiated condition and the IC condition (IC-4) are given in Table E-6. K_{Jc} data for these onditions are compared in Fig. E-54. Data scatter is remarkably low for this weld. The transition temperature shift at 100 MPa/m (79°C) is similar to that for the Linde 80 Weld W8A for the IC-1 condition (81°C), with similar fluences.

For each condition, J-R curves are illustrated in Figs. E-55 and E-56. In each case, increased test temperature results in lower J levels, and tests at 288°C give only slightly lower J levels than those at 200°C. Comparing data for these two conditions with that from previous in-core irradiations (Ref. E-2), a consistent trend emerges whereby higher fluence results in lower J levels (Figs. E-57) to E-59). This trend is most pronounced at 75°C (Fig. E-57) and 288°C (Fig. E-59).

Transition temperature shifts (ΔT) from K_{JC} data as a function of fluence are illustrated in Fig. E-60. The previous data from in-core irradiations illustrate somewhat less embrittlement with fluence than does the data from IC-4.

.

Fig. E-50 Comparison of J-R curves at 200 °C from the unirradiated condition and the low fluence rate (IP) irradiated condition of the A 533-B Plate 23G.

10

Fig. E-51 Comparison of J-R curves at 288 °C from the unirradiated condition and the low fluence rate (IP) irradiated conditions of the A 533-B Plate 23G.

Fig. E-52 Comparison of transition regime data from low fluence rate (IP) and high fluence rate (IC) irradiations of the A 533-B Plate 23G.

*

Fig. E-53 Comparison of J-R curves at 200°C and 288°C for the A 533-B Plate 23G.

Date for Linde 905; Weld (#94) i Table E-6 Fracture Tony

Spectam	Į					5	r.		ž					
j	1	°(n/*)	••	~~~	\$.4	72	KIS	-1-4	NUS	R c	J	,!	•	•
	(2.)		Ĵ	Ĵ	Ï	(kJ/m²)	(17/17)	(= ===)	((: ••••)	(***)		(101	ê
							and the second							1
29-925	9.1-	0.505		1	-								-	
34-46A	-110	0.510	1	1		27.5		2.17	2.42		39.2	1	830.8	813.2
6E-96A	8	0.513	1	1		80.8		2.16		6 16		1		
15-16A	-13	0.509	۱	1	1	1.2		106.4	62.0	1.11	5-00	11	1.4.4	100.0
69-46A	Ŷ	0.503	1	1	1	73.0	1	130-1	51.5	1.01	100.6	1	0. COT	
1. 151	Ŧ	0.306	1	1	1	123.8	1	169.3	5.8	8.2	1.4.1	1	1.101	
LIAN-44	9	0.506	٦	٦	٦	397.5	207.4	302.4	218.5			1	671.9	27.129
194-45a	•	0.517	5-21	4.95	-0-23	267.4	255-01	246.7	241.0	1	1	173	678.6	200.5
16-16m	2	0.514	5.26	5.10	-0-16	230.4	195.9	226-6	208-0	1	1	170	5.88.2	519-0
29-464	200	0.512	5.39	5-21	-0.18	161.7	147.91	186.5	178.4	1	1	130	528.0	2666.2
104-52ª	2882	0.510	6.31	2.97	* 9	111.4	6.26	152.8	139-6	1		120	545.1	\$77.8
-07-465	288	0.518	6-65	6.45	-0-20	131.6	116.01	166.1	136.0	1	1	16	1.245.1	871.8
						-	1-11	(11-						
17-A6W	۴	0.503	1	1	1	0-11	1	30.6	18.3	48.2	6.94	1	878.9	819.6
11-46M	7	0.518	1	1	1	28.7	1	65.7	29.9	57.7	62.1	1	280.3	753.8
194-69	8-	0.512	1	1		34.1	1	88.4	65.0	68-0	81.6	1	751.8	1.1.4
01-46A	•	0.516	1	1		30.8		107.5	65.4	74.1	4-26	1	731.2	600.2
19-465	9	0.504	1	1	1	61.3	1	118-0	61.0	76.8	38.4	1	721.6	687.3
51-V6A	9	0-526	1	1	1	6.3	1	123.1	63.0	1.17	103-9	1	712.5	676.8
	21	0-517	1	1	1	130-0	1	171.4	1	1	1	1	708.1	672.8
	R 1	104-0	4.53	3-88	-0-65	165.9	126.91	193.4	1.931	1	1	120	6.728	639.3
81-46m	R	875-0	19	2.4	-1-63	146.8	3-61	181-6	133.9	1	1	125	0.889	648.6
	21	0.517	10.9	2-66	-0-35	176.1	168.61	198.2	193.9	1		11	610.9	628.5
109-46M	and i	0.529	9-20	10-9	9.13	133-7	117.1 c	169.6	158.8	1		*	87979	575.9
-	200	0-5-1	94-9	9-16	9.30	116.3	113.4	136-2	154.2	1	1	3	645.4	5.98
Pre-te	t a/t.				4 Si	de grooved.					Come 1	allure o	Technical	
C Creat	IT THEN	ed crack gro	the second			lid KIC per	NSTA E 34				determin	ation of	this qu	mtity.
- man	and unsold	alloted of the	DITENCE			ild J _{Ic} per	Note 2 11	-81.						

Fig. E-54 Comparison of K_{Jc} data for the unirradiated condition and the IC-4 (UBP-77) irradiated condition of the Linde 0091 Weld W9A.

Fig. E-55 J-R curves for the unirradiated condition of the Linde 0091 Weld W9A.

Fig. E-56 J-R curves for the IC-4 (UBR-77) irradiated condition of the Linde 0091 Weld W9A.

14

Fig. E-57 Comparison of J-R curves at 75°C from high fluence rate (IC) irradiations of the Linde 0091 Weld W9A.

Fig. E-58 Comparison of J-R curves at 200 °C from high fluence rate (IC) irradiations of the Linde 0091 Weld W9A.

Fig. E-59 Comparison of J-R curves at 288°C from high fluence rate (IC) irradiations of the Linde 0091 Weld W9A.

8.10

Fig. E-60 Transition temperature shifts as a function of fluence for the Linde 0091 Weld W9A. All data are from in-core irradiations at UBR.

5. SUMMARY

Overall the trends from these data are reasonably consistent. Specifically, the A 302-B Plate 23F and the Linde 80 Weld W8A indicate similar trends for the same fluences and fluence rates, indicative of the success from randomizing the specimens within each capsule. Such cases are for the intermediate (CE) fluence rate experiments where each material indicates an embrittlement plateau, and the high (IC) fluence rate experiments where each material illustrates increased embritclement with increased fluence.

Comparison of trends for the plates and the welds are consistent for each product form. Specifically, the A 533-B Plate 23G and the Linde 0091 Weld W9A exhibit similar transition temperature shifts as the A 302-B Plate 23F and the Linde 80 Weld W8A, respectively, for the same low fluence ($-0.5 \times 10^{19} \text{ n/cm}^2$) at the high fluence rate (IC). In addition, the plates consistently demonstrate limited or no loss of upper shelf toughness with irradiation, whereas the welds demonstrate considerable loss of upper shelf toughness after irradiation.

The one inconsistent result is the high transition temperature shift found for the A 533-B Plate 23G with the low fluence rate (IP) exposure at low fluence. This high shift is much greater (90° C vs. 29° C) than that for a similar fluence at a high fluence rate (IC), and also much greater than that (60° C) found for the A 302-B Plate 23F in the IP condition.

REFERENCES

- E.1. ASTM E 813-81, "Standard Test for Jic. A Measure of Fracture Toughness," ASTM Book of Standards, Pert 10, 1981, pp. 810-828.
- E-2. J. R. Hawthorne and A. L. Hiser, "Investigations of Irradiation-Anneal-Reirradiation (IAR) Properties Trends of RPV Welds: Phase 2 Final Report," USNRC Report NUREG/CR-5492, Dec. 1989.
- E-3. ASTM E 399-81, "Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials," <u>ASTM Book of Standards</u>, Part 10, 1981, p. 589.
- E-4. F. J. Loss, B. H. Menke and R. A. Gray, "Development of J-R Curve Procedures," in The NRL-EPRI Research Program (RP886-2), Evaluation and Prediction of Neutron Embrittlement in Reactor Pressure Vessel Materials Annual Report for CY 1978, Naval Research Laboratory, Report 8327, Aug. 30, 1979, pp. 30-57.
- E-5. F. J. Loss, et al., "J-R Curve Characterization of Irradiated and Annealed Weld Deposits," in Structural Integrity of Water Reactor Pressure Boundary Components, Annual Report, FY 1979, USNRC Report NUREG/CR-1128, Dec. 31, 1979, pp. 4-36.
- E-6. A. L. Hiser, F. J. Loss and B. H. Menke, "J-R Curve Characterization of Irradiated Low Upper Shelf Welds," USNRC Report NUREG/CR-3506, April 1984.
- E-7. J. G. Merkle and H. T. Corten, "A J Integral Analysis for the Compact Specimen, Considering Axial Force as Well as Bending Effects," <u>Trans. ASME, Journal of Pressure Vessel Technology</u>, Nov. 1974, pp. 286-292.
- E-8. G. A. Clarke and J. D. Landes, "Evaluation of J for the Compact Specimen," <u>Journal of Testing and Evaluation</u>, Vol. 7(5), Sept. 1979, pp. 264-269.
- E-9. G. R. Irwin, "Fracture Mode Transition for a Crack Traversing a Plate," J. of Basic Eng., ASME, Vol. 82(2), 1960, pp. 417-425.
- E-10. J. G. Merkle, "An Examination of the Size Effect and Data Scatter Observed in Small-Specimen Cleavage Fracture Toughness Testing," ORNL/TM-9800, USNRC Report NUREG/CR-3672, April 1984.
- E-11. ASTM E 1152-87, "Standard Test Method for Determining J-R Curves," <u>Annual Book of ASTM Standards</u>, Volume 03.01, 1989, pp. 814-824.
- E-12. H. A. Ernst, "Material Resistance and Instability Beyond J-Controlled Crack Growth," <u>Elastic-Plastic Fracture</u>, ASTM STP 803 Vol. 1, Phila., Pa., 1983, pp. 191-213.

- E-13. P. C. Paris, H. Tada, A. Zahoor, and H. Ernst, "The Theory of Instability of the Tearing Mode of Elastic-Plastic Crack Growth," <u>Elastic-Plastic Fracture</u>, ASTM STP 668, March 1979, pp. 5-36.
- E-14. J. R. Hawthorne, B. H. Menke and A. L. Hiser, "Notch Ductility and Fracture Toughness Degradation of A 302-B and A 533-B Reference Plates from PSF Simulated Surveillance and Through-Wall Irradiation Capsules," USNRC Report NUREG/CR-3295 Vol. 1, Apr. 1984.
- E-15. J. R. Hawthorne, et al., "Evaluation and Prediction of Neutron Embrittlement in Reactor Pressure Vessel Materials," EPRI NP-2782, Electric Power Research Institute, Dec. 1982.

APPENDIX F

Computer Curve-Fits of Transition Regime Fracture Toughness Data

F+1

100

F=3

fares .

187.

r

r

F=10

50 St. F.

grande

* = Upper Shelf Data Point

* = Upper Shelf Data Point

.

1

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION DESI: NRCM 1102 See instructions on the reverse)	Addinged by NRC And Vol. Supp., Rev., and Addinger Numbers, If any.) NUREG/CR-5493 MEA-2376
Influence of Fluence Rate on Radiaticn-Induced Mechanical Property Changes in Reactor Pressure Vessel Steels Final Report on Exploratory Experiments	3. DATE REPORT PUBLISHED MONTH VEAR March 1990 4. FIN OR GRANT NUMBER BB900
5 AUTHOR(5) J. R. Hawthorne, A. L. Hiser	6. TYPE OF REPORT Technical 7. PERIOD COVERED Unclosure Dates:
B. PERFORMING ORGANIZATION - NAME AND ADDRESS (IN NYC. provide Division. Office or Region. U.S. Nuclear Regulatory Co name and mailing address.) Materials Engineering Associates, Inc. 9700-B Martin Luther King, Jr. Highway Lanham, Maryland 20706-1837	invituon, and mailing address, if contractor, provide
9 SPONSORING ORGANIZATION - NAME AND ADDRESS III NRC. IVDE "Same a about": If contractor, provide NRC Division, Dr. Division of Engineering Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission Washington, D.C. 20555	lice or Region, U.S. Nuclear Regulatory Commission.
10. SUPPLEMENTARY NOTES	
This report describes a set of experiments undertaken using a UBR, to qualify the significance of fluence rate to the extent of in reactor pressure vessel steels at their service temperaturn included two reference plates (A 302-B, A 533-B steel) and the deposits (Linde 80, Linde 0091 welding fluxes). Charpy-V (C _v compact specimens were employed for notch ductility, strength (J-R curve) determinations, respectively. Target fluence rates and 9 x 10 ¹² n/cm ² -s ⁻¹ . Specimen fluences ranged from 0.5 E > 1 MeV.	2 MW test reactor, the f embrittlement produced e. The test materials two submerged arc weld), tension and $0.5T-CT$ and fracture toughness were 8×10^{10} , 6×10^{11} 5 to 3.8×10^{19} n/cm ² ,
The data describe a fluence-rate effect which may extend to pow as well as test reactor facilities now in use. The deper sensitivity on fluence rate appears to differ for plate and Relatively good agreement in fluence-rate effects definition three test methods.	ver reactor surveillance idence of embrittlement weld deposit materials. was observed among the
12.KEY WORDS/DESCRIPTORS (Lin mondi or private that will authin researchern in locating the report.) A 302-B steel, A 533-B steel, submerged arc welds, radiation effort radiation embrittlement sensitivity, neutron fluence rate, dose effects, notch ductility, Charpy-V test, tension test, new irradiation, nuclear reactors, fracture toughness, J-R cur correlations	ects, rate utron rves, Unlimited Unlimited Unclassified (Thin Report) Unclassified 15. NUMBER OF PAGES 16. PRICE

NRC FORM 335 (2-89)