except that substitution of Zircaloy-4 or stainless steel filler rods or open water channels for, fuel rols may be made in fuel assemblies if justified by cycle-specific roland analyses asing an NAC-approved methodology, should more than 30 rods in the care, or 10 rols in any assembly, be replaced per refueling, a special report describing the number of rols replaced shall be submitted to the Commission pursuent to Specfication 6, 8, 2 within 30days

5.3 REACTOR CORE

FUEL ASSEMBLIES

5.3.1 The core shall contain 193 fuel assemblies with each fuel assembly nominally containing 264 fuel rods clad with Zircaloy-4. Each fuel rod shall have a nominal active fuel length of 144 inches. The initial core loading shall have a maximum enrichment not to exceed 3.2 weight percent U-235. Reload fuel shall be similar in physical design to the initial core loading and shall have a maximum enrichment not to exceed 4.55 weight percent U-235.

CONTROL ROD ASSEMBLIES

5.3.2 The core shall contain 53 full-length control rod assemblies. The control rod assemblies shall contain a nominal 142 inches of absorber material. The nominal absorber composition shall as 95.5% natural halfnium and 4.5% natural zirconium. All control rods shall be clad with stainless steel.

5.4 REACTOR COOLANT SYSTEM

DESIGN PRESSURE AND TEMPERATURE

- 5.4.1 The Reactor Coolant System is designed and shall be maintained:
 - a. In accordance with the Code requirements specified in Section 5.2 of the FSAR, with allowance for normal degradation pursuant to the applicable Surveillance Requirements,
 - b. For a pressure of 2485 psig, and
 - c. For a temperature of 650°F, except for the pressurizer which is 680°F.

VOLUME

5.4.2 The total water and steam volume of the Reactor Coolant System is 12,240 \pm 100 cubic feet at a nominal T_{avg} of 588.5°F.

5.5 METEOROLOGICAL TOWER LOCATION

5.5.1 The meteorological tower shall be located as shown on Figure 5.1-1 and 5.1-2.

9003290206 900322 PDR ADOCK 05000424 PDC PDC

5.3 REACTOR CORE

FUEL ASSEMBLIES

5.3.1 The core shall contain 193 fuel assemblies with each fuel assembly nominally containing 264 fuel rods clad with Zircaloy-4, except that substitution of Zircaloy-4 or stainless steel filler rods or open water channels for fuel rods may be made in fuel assemblies if justified by cycle-specific reload analyses using an NRC-approved methodology. Should more than 30 rods in the core, or 10 rods in any assembly, be replaced per refueling, a special report describing the number of rods replaced shall be submitted to the Commission pursuant to Specification 6.8.2 within 30 days after cycle startup. Each fuel rod shall have a nominal active fuel length of 144 inches. The initial core loading shall have a maximum enrichment not to exceed 3.2 weight percent U-235. Reload fuel shall be similar in physical design to the initial core loading and shall have a maximum enrichment not to exceed 4.55 weight percent U-235.

CONTROL ROD ASSEMBLIES

5.3.2 The core shall contain 53 full-length control rod assemblies. The control rod assemblies shall contain a nominal 142 inches of absorber material. The nominal absorber composition shall be 95.5% natural halfnium and 4.5% natural zirconium. All control rods shall be clad with stainless steel.

5.4 REACTOR COOLANT SYSTEM

DESIGN PRESSURE AND TEMPERATURE

- 5.4.1 The Reactor Coolant System is designed and shall be maintained:
 - a. In accordance with the Code requirements specified in Section 5.2 of the FSAR, with allowance for normal degradation pursuant to the applicable Surveillance Requirements.
 - b. For a pressure of 2485 psig, and
 - c. For a temperature of 650°F, except for the pressurizer which is 680°F.

VOLUME

5.4.2 The total water and steam volume of the Reactor Coolant System is 12,240 \pm 100 cubic feet at a nominal T_{avg} of 588.5°F.

5.5 METEOROLOGICAL TOWER LOCATION

5.5.1 The meteorological tower shall be located as shown on Figure 5.1-1 and 5.1-2.