REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST

QUAD-CITIES NUCLEAR POWER STATION
UNIT ONE
NOVEMBER 14-15, 1989

0483H/0214Z

9002220285 900204 PDR ADOCK 05000254 PDC

TABLE OF CONTENTS

		PAGE
TAB	LE AND FIGURES INDEX	2
INT	RODUCTION	5
Α.	TEST PREPARATIONS	
	A.1 Type A Test Procedures	5
	A.2 Type A Test Instrumentation	5
	A.2.a. Temperature	9
	A.2.b. Pressure	9
	A.2.c. Vapor Pressure	10
	A.2.d. Flow	10
	A.3 Type A Test Measurements	10
	A.4 Type A Test Pressurization	11
В.	TEST METHOD	
	B.1 Basic Technique	13
	B.2 Supplemental Verification Test	14
	B.3 Instrument Error Analysis	14
c.	SEQUENCE OF EVENTS	
	C.1 Test Preparation Chronology	15
	C.2 Test Preparation and Stabilization Chronology	16
	C.3 Measured Leak Rate Phase Chronology	17
	C.4 Induced Leakage Phase Chronology	17
	C.5 Depressurization Phase Chronology	17

TABLE OF CONTENTS (CONTINUED)

																	PAGE
D.	TYPE	A TEST I	ATA														
	D.1 M	easured	Leak R	ate Pha	se Da	ta											18
	D.2 I	nduced l	_eakage	Phase	Data.												18
Ε.	TEST	CALCULAT	TIONS .						٠				•				33
F.	TYPE	A TEST F	RESULTS														
	F.1 M	easured	Leak R	ate Tes	t Res	ult	s.								•		34
	F.2 I	nduced l	eakage	Test R	esult	s.											35
	F.3 P	re-Opera	tional	Result	s vs.	Te	st f	Res	u1	ts							36
	F.4 T	ype A Te	st Pen	alties													36
	F.5 E	valuatio	on of I	nstrume	nt Fa	ilu	res			•							37
	F.6 A	s-Found	Type A	Test R	esult	s.											38
APP	ENDIX	A	TYPE B	AND C	TESTS					•							39
APPI	ENDIX	В	TEST CO	DRRECTI	ON FO	R SI	UMP	LE	VE	<u>L (</u>	CHA	NGI	ES				48
APPI	ENDIX	С	COMPUTA	ATIONAL	PROC	EDUI	RES										54
APPI	ENDIX	D	INSTRUM	MENT ER	ROR A	NAL'	YSIS	2		•							66
APPI	ENDIX	E	BN-TOP-	-1, REV	. 1 E	RRA	TA			•							72
APPI	ENDIX	F	TYPE A					M	AS	<u>S-I</u>	LO	I.				*	77

TABLES AND FIGURES INDEX

	PAGE
TABLE 1	Instrument Specifications 6
TABLE 2	Sensor Physical Locations
TABLE 3	Measured Leak Rate Phase Test Results
TABLE 4	Induced Leakage Phase Test Results 20
FIGURE 1	Idealized View of Drywell and Torus
FIGURE 2	Measurement System Schematic Arrangement
FIGURE 3	Measured Leak Rate Phase - Graph of Calculated 21 Leak Rate and Upper Confidence Limit
FIGURE 4	Measured Leak Rate Phase - Graph of Total
FIGURE 5	Measured Leak Rate Phase - Graph of
FIGURE 6	Measured Leak Rate Phase - Graph of Volume
FIGURE 7	Measured Leak Rate Phase - Graph of Volume
FIGURE 8	Induced Leakage Phase - Graph of Calculated 26 Leak Rate
FIGURE 9	Induced Leakage Phase - Graph of Total Time 27 Measured Leak Rate and Regression Line
FIGURE 10	Induced Leakage Phase - Graph of Volume
FIGURE 11	Induced Leakage Phase - Graph of Volume
FIGURE 12	Induced Leakage Phase - Graph of
FIGURE 13	Graph of Reactor Water Level
FIGURE 14	Graph of Torus Water Level
FIGURE F-1	Statistically Average Leak Rate and Upper 80 Confidence Limit (ANS/ANSI 56.8 Method)
FIGURE F-2	Statistically Averaged Leak-rate and Target 81
0483H/0214	Leak-rate (ANS/ANSI 56.8 Method)

INTRODUCTION

This report presents the test method and results of the Integrated Primary Containment Leak Rate Test (IPCLRT) successfully performed on November 14-15, 1989 at Quad-Cities Nuclear Power Station, Unit One. The test was performed in accordance with 10 CFR 50, Appendix J, and the Quad-Cities Unit One Technical Specifications.

For the fifth time at Quad-Cities a short duration test (less than 24 hours) was conducted using the general test method outlined in BN-TOP-1, Revision 1 (Bechtel Corporation Topical Report) dated November 1, 1972. The first short duration test was conducted on Unit One in December, 1982.

Using the above test method, the total primary containment integrated leak rate was calculated to be 0.3786 wt %/day at a test pressure greater than 48 PSIG. The calculated leak rate was within the 0.750 wt %/day acceptance criteria (75% of LA). The associated upper 95% confidence limit was 0.4480 wt %/day.

The supplemental induced leakage test result was calculated to be 1.3502 wt %/day. This value should compare with the sum of the measured leak rate phase result (0.3786 wt %/day) and the inducted leak of 8.26 SCFM (1.0123 wt %/day). The calculated leak rate of 1.3502 wt %/day lies within the allowable tolerance band of 1.3909 wt %/day \pm 0.250 wt %/day.

SECTION A - TEST PREPARATIONS

A.1 Type A Test Procedure

The IPCLRT was performed in accordance with Quad-Cities Procedure QTS 150-1 Rev. 16, including checklists QTS 150-S2 through S8, S10 through S13, S17 through S23, and subsections T2, T6, T8, T10, T11, T12, T13, T14, T15, and T16. Approved Temporary Procedures 5962, 5963, and 5964 were written in conjunction with the test. Procedure 5962 was written to revise the pretest operations checklist for the IPCLRT. Procedure 5963 was written to revise the Instrument Maintenance Department pretest checklist to correct the equipment piece number of the Reactor Water level Transmitter. Procedure 5964 was written to revise the pre-test valve line-up of valve checklist OTS 150-S5.

These procedures were written to comply with 10 CFR 50 Appendix J, ANS/ANSI N45.4-1972, and Quad-Cities Unit One Technical Specifications, and to reflect the Commission's approval of a short duration test using the BN-TOP-1, Rev. 1 Topical Report as a general test method.

A.2 Type A Test Instrumentation

Table One shows the specifications for the instrumentation utilized in the IPCLRT. Table Two lists the physical locations of the temperature and humidity sensors within the primary containment. Figure 1 is an idealized view of the drywell and suppression chamber used to calculate the primary containment free air subvolumes. Plant personnel performed instrumentation calibrations using NBS traceable standards. Quad Cities procedure QTS 150-9 was used to perform the calibration.

TABLE ONE INSTRUMENT SPECIFICATIONS

INSTRUMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	RANGE	ACCURACY	REPEATABILITY
Precision Pressure Gages (2)	Volumetrics	PPM-1000	10141-1 10141-2	0.4 - 150 PSIA	±0.015% Rdg ±0.005% F.S.	±0.001% F.S.
Thermistors (30)	Volumetrics	418905000	10602-1 to 10602-35 inclusive	50° - 135°F	0.25°F	0.01°F
Dewcells (10)	Volumetrics	Lithium Chloride	2809-1 to 2809-10 inclusive	40-100°F	1.5°F	0.003°F
Thermocouple	Pall Trinity Micro	14-T-2H		0-600°F	±2.0°F	±.1°F
Flowmeter	Fischer & Porter	10A3555S	8405A0348A1	1.15-11.10 scfm	±.111 scfm	
Level Indicator LT 1-6468	GEMAC	555111BCAA 3AAA		0-60" H ₂ 0		

TABLE TWO SENSOR PHYSICAL LOCATIONS

RTD NUMBER	SERIAL NUMBER	SUBVOLUME	ELEVATION	AZIMUTH*
1	44233	1	670'0"	180°
2 3	44210		670'0"	0°
3	44211	2	657'0"	20°
4	44212	2	657'0"	197°
5	44123	3	639'0"	70°
	44214	3	639'0"	255°
7	44215	4(Annular Ring)	643'0"	55°
8 9	44216	4	615'0"	225°
9	44217	5 5 6 6 6	620'0"	5°
10	44218	5	620'0"	100°
11	44219	5	620'0"	220°
12	44220	6	608'0"	40°
13	44221	6	608'0"	130°
14	44222	6	608'0"	220°
15	44223	6 7	608'0"	310°
16	44224	7	598'0"	70°
17	44225	7	598'0"	160°
18	44226	7	598'0"	250°
19	44227	7	598'0"	340°
20	44228	8	587'0"	10°
21	44230	8 8 8	587'0"	100°
22	44232	8	587'0"	190°
23	44233	8	587'0"	280°
24	44234	9(CRD Space)	595'0"	170°
25	44235	9(CRD Space))	580'0"	170°
26	44236	10(Torus)	578'0"	70°
27	44237	10(Torus)	578'0"	140°
28	44238	10(Torus)	578'0"	210°
29	44229	10(Torus)	578'0"	280°
30	44231	10(Torus)	578'0"	350°
Thermocouple	(inlet to clean-up HX)	11(Rx Vessel)		
DEWCELL NO.	SERIAL NUMBER	SUBVOLUME	ELEVATION	AZIMUTH
1	5835-1	1	670'0"	180°
2	5835-2	2 3 4	653'0"	90°
3	5835-3	2 3 4	653'0"	270°
4	6084-4	5	620'0"	0°
5	6084-9	6	605'0"	45°
6	5835-6	7	600'0"	220°
ž	6084-7	8 9	591'0"	0°
2 3 4 5 6 7 8 9	6084-8	2,3,4 2,3,4 5 6 7 8,9 8,9	591'0"	202°
9	5835-9	10	578'0"	90°
10	5835-10	10	578'0"	270°
Thermocouple	3033-10	10	370 0	2.70
(Saturated)		11		

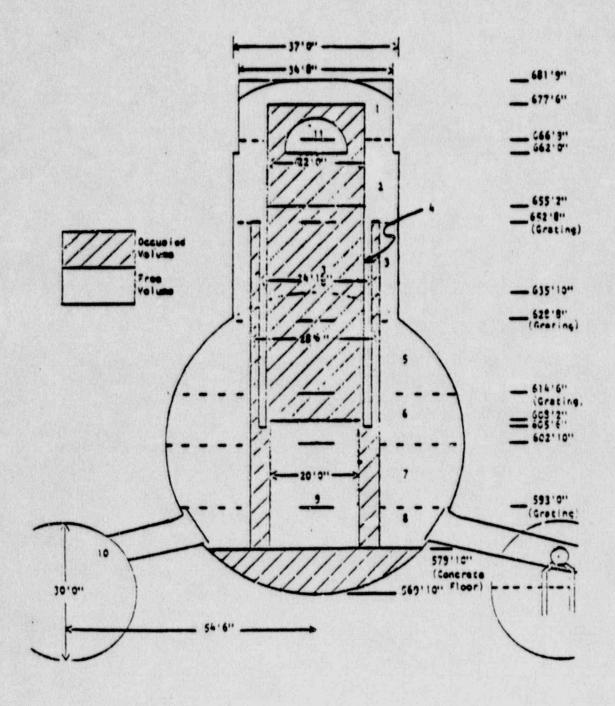


FIGURE 1

A.2.a. Temperature

The location of the 30 thermistor's was chosen to avoid conflict with local temperature variations and thermal influence from metal structures. A temperature survey of the containment was previously performed to verify that the sensor locations were representative of average subvolume conditions.

The Thermistors ae hermitcally sealed, glass encapsulated units manufactured by YSI Inc. These sensors have a recommended operating range between -110 and 390 degrees F. A stability of better than 0.018 degrees F per ten months can be expected when the units are stored at or below 212 degrees F. Interchangeable Thermistors, model 46043 were chosen. YSI certifies each sensor to follow the same Resistance verses Temperature curve within 0.1 degrees F over the range of 50 to 135 degrees F.

Each sensor is connected to a signal conditioning card. The Thermistor resistance is converted by this card to a known voltage. The voltage output from the cards is a function of the resistance in. As seen in Table 1, the Thermistor's change in resistance with temperature is very nonlinear.

Therefore, the variation of output voltage with temperature is nonlinear. In order to allow direct reading of temperature values from the DAS, two sixth order polynominal curve fits are programmed into the DAS's EPROMs. As recommended in ANS 56.8, the DAS output and display has a resolution of 0.01 degrees F.

A.2.b. Pressure

Two volumetrics PPM-1000 Precision Pressure Monitors were utilized to measure total containment pressure. Each precision pressure gauge was calibrated from 62.8-65.8 PSIA in approximately 0.5 PSI increments. Primary containment pressure was sensed by the pressure gauges in parallel through a 3/8" tygon tube connected to a special one inch pipe penetration to the containment.

Each instrument contains a pressure-sensing element that delivers an electrical frequency (in relation to the applied pressure) to a microprocessor circuit. The microprocessor corrects the signal for nonlinearity, offset, scaling, and temperature effects and displays the corrected pressure value on a 5-1/2 digit LED readout.

The sensor is the vibrating cylinder type. The cylinder is a vibrating mechanical system. A vacuum reference in maintained on the outside of the cylinder. The pressure differential across the wall creates stress on the wall varying the natural resonant frequency of vibration. The resonant frequency depends upon the physical properties of the element such as mass, stress, elasticity, dimensions and temperature. The cylinder is made from a special nickel iron alloy, and closely controlled manaufacturing techniques eliminate mass, dimension, and elasticity effects. Temperature is measured using a calibrated diode and corrected by the microprocessor.

The sensor's electronic ciruict conditions the frequency wave and send: it to the pulse rate converter board which counts the period. The period is sent in a 16-bit word to the microprocessor controlled panel meter (MPM).

The sensor's temperature sensing diode voltage is converted to a 15-bit digital signal using the analog-to-digital converter in the MPM. The pressure is calculated by the MPM and displayed in appropriate units on the 5-1/2 digit seven-segment LED display.

Each PPM-1000 was calibrated from 62.8 - 65.0 PSIA in approximately 0.5 PSI increments by volumetrics on October 12, 1989.

A.2.c. Vapor Pressure

Ten lithium chloride dewcells were used to determine the partial pressure due to water vapor in the containment. The dewcells were calibrated by volumetrics on October 11, 1989.

A.2.d. Flow

A rotameter flowmeter, Fischer-Porter serial number 8405A0348A1, was used for the flow measurement during the induced leakage phase of the IPCLRT. The flowmeter was calibrated by Fischer-Porter on October 16, 1989, to within $\pm 1\%$ of full scale (0.9 - 1).4 SCFM) using NBS traceable standards, to standard atmospheric conditions.

Plant personnel continuously monitored the flow during the induced leakage phase and corrected any minor deviations from the induced flow rate of 8.26 SCFM by adjusting a 3/8" needle valve on the flowmeter inlet. The flow meter outlet was unrestricted and vented to the atmosphere.

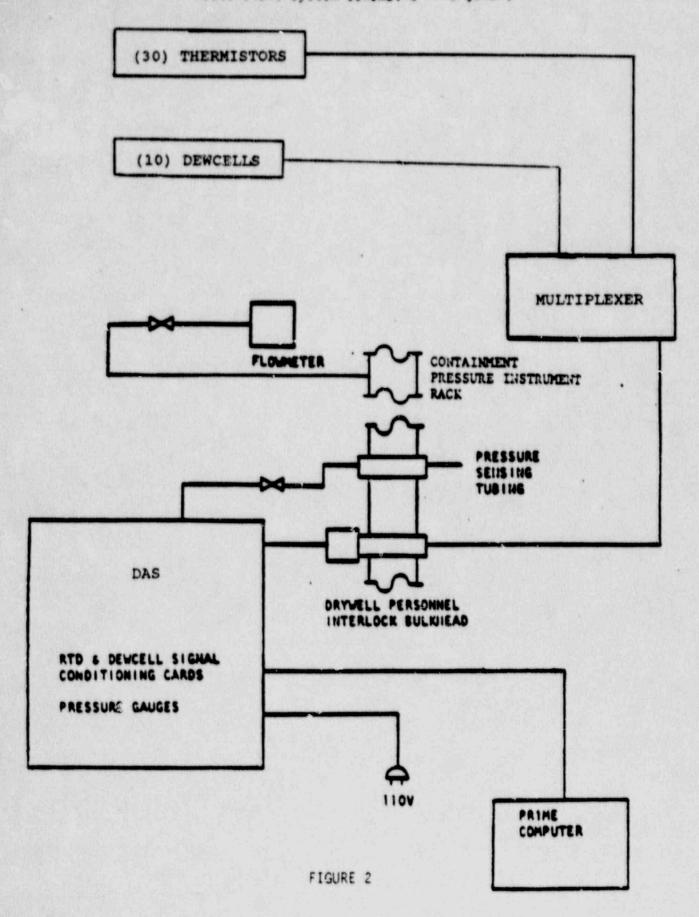
A.3 Type A Test Measurement

The IPCLRT was performed utilizing a direct interface with the station prime computer. This system consists of a Data Acquisition System (DAS) and a multiplexer in containment.

Upon initiation of data acquisition cycle, the DAS reads the selected OPERATE mode of single, continuous, or interval, and either block or sequential scan. Once the system has determined which channels to scan (user-defined), it addresses the analog scanner to select the first channel for sampling. This address information (three BCD digits from the Printer/Scanner Interface Card) is transmitted at RS-232C voltage levels.

The scanner selects the channel and routes the analog signal to the Analog to Digital Converter (ADC) housed in the DAS. After a relay stabilizing time of approximately ten milliseconds, the Central Processing Card (CPU) initiates the ADC. Although the ADC is capable of 20 conversions per second, the actual scan rate is 10 per second because the CPU has numerous other functions to perform.

Upon conversion request, the ADC resets and selects a 0.1V or 1.0V full scale conversion factor as designated by the CPU. The CPU is then interrupted by the ADC to read the converted data and the ADC status word. The status work indicates the polarity of the input voltage and if it was an overrange. The data is stored in a buffer in RAM. The CPU addresses the scanner for data from the next channel, and the acquisition process continues until all the data from the channels programmed to be scanned is stored in the buffer.


Numerica! calculation of the raw data may now begin. The CPU selects the most recent data entry from the buffer and divides it by 65536, the full scale count value of the ADC, to obtain the voltage value. The CPU checks the channel's format byte to determine the channel's assigned engineering unit (0-15). That unit's associated slope and intercept values (m and b) are user-accessible in CMOS RAM>. The slope (m) is multiplied by the voltage value (x), then added to the intercept (b) to obtain the final data value (y).

The final data value is printed out on all enabled outputs. The printout includes the channel number, the final data, the assigned engineering unit, and the channel header. Digital input data, headers, date, and time are also printed out.

The PRIME computer was used to compute and print the leak rate data using either the ANSI/ANS mass plot method (ANSI/ANS 56.8), a total time method based on ANSI/ANS n45.4, or the BN-TOP-1 method. Key parameters, such as total time measure leak rate, volume weighted dry air pressure and temperature, and absolute pressure were monitored using a Tektronix 4208 terminal and a Tektronix plotter. Plant personnel also plotted a large number of other parameters, including reactor water level and temperature, dry air mass, volume weighted partial pressures and temperature, total time leak rate, statistically averaged leak rate and UCL, and all sensor outputs in engineering units. In all cases, data was plotted hourly and computer symmaries were obtained at 10 minute time intervals. The plotting of data and the computer printed summaries of data allowed rapid identification of any problems as they might develop. Figure 2 shows a schematic of the data acquisition system.

A.4 Type A Test Pressurization

1500 and 1200 SCFM diesel driven oil-free air compressors were used to pressurize the primary containment. The compressors were physically located outside the Reactor Building. The compressed air was piped using flexible metal hose to the Reactor Building, through an existing four inch fire header penetration, and piped to a temporary spool piece that, when installed, allowed the pressurization of the drywell through the "A" containment spray header. The inboard, containment spray isolation valve, MO-1-1001-26A was open during pressurization. Once the containment was pressurized, the MO-1-1001-26A valve was closed and the spool piece was removed and replaced with a blind flange.

SECTION B - TEST METHOD

B.1 Basic Technique

The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws to calculate the measured leak rate, as defined in ANSI N45.4-1972. The inputs to the measured leak rate calculation include subvolume weighted containment temperature, subvolume weighted vapor pressure, and total absolute air pressure.

As required by the Commission in order to perform a short duration test (measured leak rate phase of less then 24 hours), the measured leak rate was statistically analyzed using the principles outlined in BN-TOP-1, Rev. 1. A least squares regression line for the measured total time leak rate versus time since the start of the test is calculated after each new data set is scanned. The calculated leak rate at a point in time, t_1 , is the leak rate on the regression line at the time t_1 .

The use of a regression line in the BN-TOP-1, Rev. 1 report is different from the way it is used in the ANSI/ANS 56.8 standard. The latter standard uses the slope of the regression line for dry air mass as a function of time to derive a statistically averaged leak rate. In contrast, BN-TOP-1, Rev. 1 calculates a regression line for the measured leak late, which is a function of the change in dry air mass. For the ANSI/ANS calculations one would expect to always see a negative slope for the regression line, because the dry air mass is decreasing over time due to leakage from the containment. For the regression line computed in the BN-TOP-1, Rev.1 method the ideal slope is zero, since you presume that the leakage from the containment is constant over time. Since it is impossible to instantaneously and perfectly measure the containment leakage, the slope of the regression line will be positive or negative depending on the scatter in the measured leak rate values obtained early in the test. Since the measured leak rate is a total time calculation, the values computed early in the test will scatter much more than the values computed after a few hours of testing.

The computer printouts titled "Leak Rate Based on Total Time Calculations" attached to the BN-TOP-1, Rev. 1 topical report are misleading in that the column titled "Calculated Leak Rate" actually has printed out the regression line values (based on all the measured leak rate data computed from the data sets received up until the last time listed on the printout). The calculated leak rate as a function of time (ti) can only be calculated from data available up until that point in time, ti. This is significant in that the calculated leak rate may be decreasing over time, despite a substantial positive slope in the last computed regression line. Extrapolation of the regression line is not required by the BN-TOP-1, Rev. 1 criteria to terminate a short duration test. What is required is that the calculated leak rate be decreasing over time or that an increasing calculated leak rate be extrapolated to 24 hours. The distinction between the regression line values and the calculated leak rate as a function of time is made in Section 6.4 of BN-TOP-1, Rev. 1. Calculated leak rates, as a function of time, are correctly printed out in the "Trends Based on Total Time Calculations" computer printouts in Appendix B of BN-TOP-1, Rev. 1.

Associated with each calculated leak rate is a statistically derived upper confidence limit. Just as the calculated leak rate in BN-TOP-1, Rev. 1 and the statistically averaged leak rate in the ANSI/ANS standards are not the same (and do not necessarily yield nearly equal values), the upper confidence limit calculations are greatly different. In the BN-TOP-1, Rev. 1 topical report the upper confidence limit is defined as the calculated leak rate plus the product of the two sided 97.5% T-distribution value (as opposed to the one-sided 95% T-distribution used in the ANS/ANSI standard) and the standard deviation of the measured leak rate data about the computed regression line (which has no relationship to the value computed in the ANSI/ANS standards).

There are two important conclusions that can be derived from data analyzed using the BN-TOP-1, Rev. 1 method: 1) the upper confidence limit for the same measured leak rate data can be substantially greater than the value calculated using the ANSI/ANS method, and 2) the upper confidence limit does not converge to the calculated leak rate nearly as quickly as usually observed in the latter method as the number of data sets becomes large. With this in mind, the upper confidence limit can become the critical parameter for concluding a short duration test, even when the measured leak rate seems to be well under the maximum allowable leak rate. A graphical comparison of the two methods can be made by referring to Figure 3 for the BN-TOP-1, Rev. 1 calculated leak rate and upper confidence limit and to Figure F-1 in Appendix F for the statistically averaged leak rate and upper confidence limit based on ANSI/ANS 56.8-1981. This data supports the contention of many that BN-TOP-1, while it may not give the best estimate of containment leakage, is a conservative method of testing. The ANSI/ANS 56.8 data contained in Appendix F is provided for information only. The reported test results are based on BN-TOP-1, only.

B.2 <u>Supplemental Verification Test</u>

The supplemental verification test superimposes a known leak of approximately the same magnitude as LA (8.16 SCFM or 1.0 wt %/day as defined in Technical Specifications). The degree of detectability of the combined leak rate (containment calculated leak rate plus the superimposed, induced leak rate) provides a basis for resolving any uncertainty associated with measured leak rate phase of the test. The allowed error band is \pm 25% of LA.

There are no references to the use of upper confidence limits to evaluate the acceptability of the induced leakage phase of the IPCLRT in the ANS/ANSI standards or in BN-TOP-1, Rev. 1.

B.3 Instrument Error Analysis

An instrument error analysis was performed prior to the test in accordance with BN-TOP-1, Rev. 1 Section 4.5. The instrument system error was calculated in two parts. The first was to determine the system accuracy uncertainty. The second and more important calculation (since the leak rate is impacted most by changes in the containment parameters) was performed to determine the system repeatability uncertainty. The results were 0.1447 wt %/day and 0.0191 wt %/day for a 6-hour test, respectively. These values are inversely proportional to the test duration.

The instrumentation uncertainty is used only to illustrate the system's ability to measure the required parameters to calculate the primary containment leak rate. The mathematical derivation of the above values can be found in Appendix D. The method of calculating the equipment uncertainty is in conformance with the method outlined in BN-TOP-1.

It is extremely important during a short duration test to quickly identify a failed sensor and in real time back the spurious data out of the calculated volume weighted containment temperature and vapor pressure. Failure to do so can cause the upper confidence limit value to place a short duration test in jeopardy. It has been the stations experience that sensor failures should be removed from all data collected, not just subsequent to the apparent failure, in order to minimize the discontinuity in computed values that are related to the sensor failure (not any real change in containment conditions). For this test, no instrument failures were encountered before or after the start of the test.

SECTION C - SEQUENCE OF EVENTS

C.1 Test Preparation Chronology

The pretest preparation phase and containment inspection was completed on November 14, 1989 with no apparent structural deterioration being observed. Major preliminary steps included:

- Blocking open three pairs of drywell to suppression chamber vacuum breakers.
- 2) Installation of all IPCLRT test equipment in the suppression chamber.
- Completion of all repairs and installations in the drywell affecting primary containment.
- 4) Venting of the reactor vessel to the drywell by opening the manual head vent line to the drywell equipment drain sump.
- 5) Installation of the IPCLRT data acquisition system including computer programs, instrument console, locating instruments in the drywell, and associated wiring.
- 6) Completion of the pre-test valve line-up.

This test was conducted at the end of the refuel outage to test the containment in an "As Left" condition with repairs and adjustments. The Station has an exemtpion to 10CFR50, Appendix J requirements to allow performing the test at the end of the refuel outage.

C.2 Test Pressurization and Stabilization Chronology

DATE	TIME	EVENT
11-14-89	1304	Began pressurizing containment.
	1530	Snooped all accessible penetrations in Reactor Building. No leaks observed.
	1530	Snooped top of torus. No major leaks observed.
	1700	Snopped personnel interlock and CR bank. No leakage.
	1800	Torus water level leakage is approximately 0.1 in/hr.
	1848	Containment pressurized to 65 PSIA.
	1903	Containment fully pressurized and the compressor is isolated. Beginning containment stabilization phase.
	2200	Operating tightened the 1402-34B valve torus leakage appears to have stopped.

C.3 Measured Leak Rate Phase Chronology

DATE	TIME	EVENT
11-15-89	0035	Containment temperature stable below 0.5°F/hr. for the last 4.0 hr. Rx water level stable below 1.25 in/hr for the last 1 hour. Rx water temperature stable below 2°F/hr for the last 1 hour.
	0035	Began measured phase base data set #56 of buffile
	0300	Rx level from process computer failed. Configuration file will no longer compensate for changes in Rx Vessel Level.
	0645	Terminated measured leak rate phase at 6 hour 10 min. point, base data set #93 of buffile. Calculated leak rate was 0.3786 wt%/day and decreasing over time. The average measured leak rate over the last five hours was 0.3836 wt%/day. The upper confidence limit was 0.4480 wt%/day all other BN-TOP-1.

C.4 Induced Leakage Phase Chronology

DATE TIME

DATE	Not interest	EVENT
11-15-89	0715	Valved in flowmeter at 8.26 SCFM (75.7% scale reading) began induced stabilization base data set #96 of buffile.
	0725	Radiation Protection is collecting a sample
	0825	Began induced phase of the test base data set #103 of buffile the 1-hour stabilization required by BN-TOP-1 was complete.
	1145	Terminated induced phase. Base data set #123 of buffile

EVENT

C.5 Depressurization Phase Chronology

DATE	TIME	EVENT				
11-15-89	1215	Began depressurization using procedure for venting through the standby gas treatment system.				
	1630	Containment depressurized.				

DATE	TIME	EVENT
11-15-89	89 1700	Technical Staff personnel entered drywell. No apparent structural damage and instruments are still in place. Checked sump levels in Drywell. Sumps were not pumped during the test. Over the duration of the test, Drywell Floor Drain Sump level increased from 17.0" to 20.0". The Drywell Equipment Drain Sump increased from 7.0" to 19.0".
	1700	Made initial entry to suppression chamber. No apparent damage and all instruments still in place.

SECTION D - TYPE A TEST DATA

D.1 Measured Leak Rate Frase Data

A summary of the computed data using the BN-TOP-1, Rev. 1 test method for a short duration test can be found in Table 3. Graphic results of the test are found in Figures 3-7. For comparison purposes only, the statistically averaged leak rate and upper confidence limit using the ANS/ANSI 56.8-1981 standard are graphed in Figure F-1. A summary of the computed data using the ANS/ANSI standard is found in Appendix F.

D.2 Induced Leakage Phase Data

A summary of the computed data for the Induced Leakage Phase of the IPCLRT is found in Table 4. The calculated leak rate and upper confidence limit using the BN-TOP-1, Rev. 1 method are shown in Figure 8. The measured leak rate and last computed regression line are shown in Figure 9. Containment conditions during the Induced Leakage Phase are presented graphically in Figures 10-12.

Measured Leak Rate Test Results TABLE 3

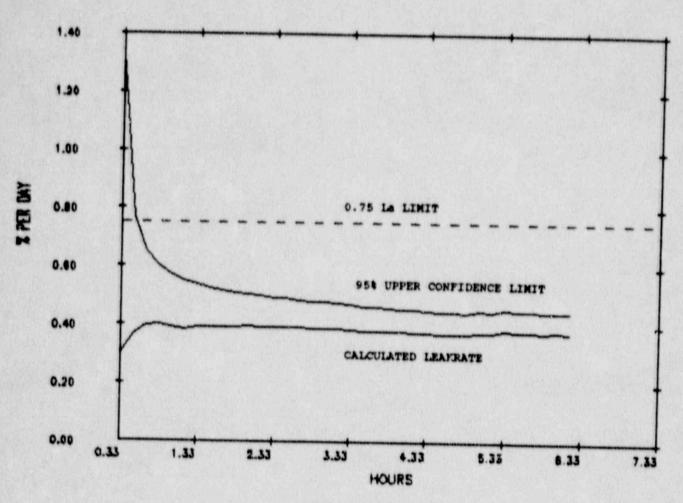
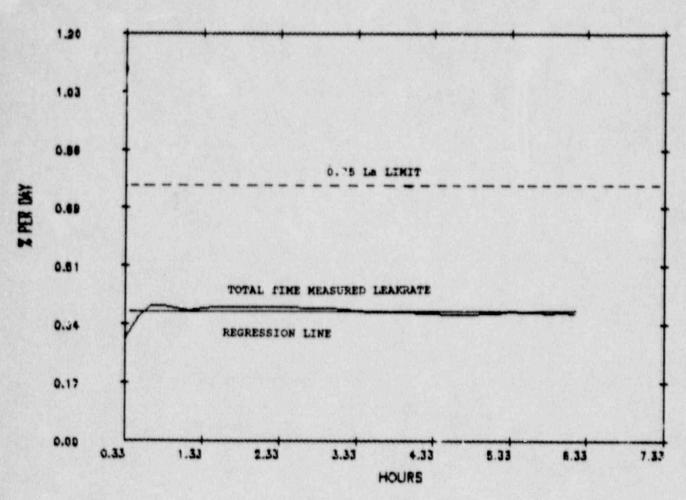
DATA SET	TIME	TEST DURATION	AVE. TEMP.	DRY AIR PRESS.	MEAS. LEAK RATE	CALC. LEAK RATE	UPPER CONF. LIMIT
56	00:35:48	0.000	93.6	64.2778			
57	00:45:48	0.167	93.6	64.2738	0.2299		
58	00:55:48	0.333	93.6	64.2697	0.3740		
59	01:05:48	0.500	93.6	64.2659	0.2585	0.3017	1.3293
60	01:15:48	0.667	93.5	64.2606	0.3876	0.3661	0.7677
61	01:25:48	0.833	93.5	64.2567	0.3953	0.3979	0.6510
62	01:35:48	1.000	93.5	64.2534	0.3681	0.3987	0.6034
63	01:45:48	1.167	93.5	64.2494	0.3520	0.3906	0.5731
64	01:55:48	1.333	93.5	64.2456	0.3488	0.3834	0.5488
65	02:05:48	1.500	93.4	64.2412	0.3816	0.3906	0.5374
66	02:15:48	1.667	93.4	64.2379	0.3764	0.3933	0.5272
67	02:25:48	1.833	93.4	64.2340	0.3723	0.3936	0.5183
68	02:35:48	2.000	93.4	64.2308	0.3707	0.3931	0.5106
69	02:45:48	2.167	93.4	64.2268	0.3811	0.3953	0.5058
70	02:55:48	2.333	93.4 93.3	64.2232 64.2199	0.3677	0.3933	0.4939
71	03:05:48	2.500	93.3	64.2169	0.3079	0.3925	0.4939
72 73	03:15:48	2.833	93.3	64.2136	0.3701	0.3923	0.4903
74	03:25:48	3.000	93.3	64.2103	0.3644	0.3893	0.4813
75	03:45:48	3.167	93.3	64.2071	0.3730	0.3891	0.4782
76	03:55:48	3.333	93.3	64.2043	0.3658	0.3875	0.4743
77	04:05:48	3.500	93.3	64.2010	0.3556	0.3843	0.4698
78	04:15:48	3.667	93.2	64.1986	0.3507	0.3807	0.4652
79	04:25:48	3.833	93.2	64.1949	0.3617	0.3793	0.4618
80	04:35:48	4.000	93.2	64.1919	0.3678	0.3791	0.4595
81	04:45:48	4.167	93.2	64.1889	0.3609	0.3778	0.4565
82	04:55:48	4.333	93.2	64.1857	0.3548	0.3758	0.4531
83	05:05:48	4.500	93.2	64.1833	0.3616	0.3750	0.4507
84	05:15:48	4.667	93.2	64.1803	0.3561	0.3735	0.4479
85	05:25:48	4.833	93.2	64.1764	0.3657	0.3734	0.4462
86	05:35:48	5.000	93.1	64.1747	0.3511	0.3714	0.4432
87	05:45:48	5.167	93.2	64.1686	0.4127	0.3773	0.4492
88	05:55:48	5.333	93.1	64.1692	0.3557	0.3757	0.4467
89	06:05:48	5.500	93.2	64.1617	0.4242	0.3822	0.4539
90	06:15:48	5.667	93.1	64.1643	0.3594	0.3807	0.4517
91	06:25:48	5.833	93.1	64.1619	0.3476	0.3780	0.4488
92	06:35:48	6.000	93.1	64.1595	0.3495	0.3758	0.4461
93	06:45:48	6.167	93.1	64.1518	0.3954	0.3786	0.4480

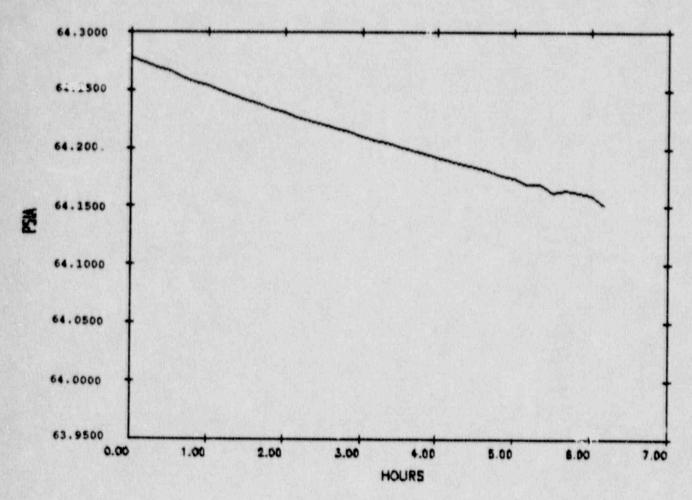
Induced Leakage Phase Test Results TABLE 4

DATA SET	TIME	TEST DURATION	AVE. TEMP.	DRY AIR PRESS.	MEAS. LEAK RATE	CALC. LEAK RATE	UPPER CONF. LIMIT
103	08:25:48	0.000	93.0	64.0966			
104	08:35:48	0.167	93.0	64.0900	1.2358		
105	08:45:48	0.334	93.0	64.0833	1.2154		
106	08:55:48	0.500	93.0	64.0772	1.2699	1.2573	1.5541
107	09:05:48	0.667	93.0	64.0707	1.2786	1.2773	1.3865
108	09:15:48	0.834	93.0	64.0641	1.2675	1.2788	1.3583
109	09:25:48	1.000	92.9	64.0571	1.2882	1.2897	1.3497
110	09:35:48	1.167	92.9	64.0516	1.2452	1.2756	1.3510
111	09:45:48	1.334	92.9	64.0436	1.2886	1.2846	1.3495
112	09:55:48	1.500	92.9	64.0379	1.2533	1.2769	1.3423
113	10:05:48	1.667	92.9	64.0314	1.2752	1.2791	1.3382
114	10:15:48	1.834	92.9	64.0252	1.2655	1.2774	1.3330
115	10:25:48	2.000	92.9	64.0192	1.2632	1.2753	1.3282
116	10:35:48	2.167	92.9	64.0127	1.2550	1.2715	1.3229
117	10:45:48	2.334	92.9	64.0066	1.2621	1.2703	1.3192
118	10:55:48	2.500	92.9	63.9967	1.3850	1.2990	1.3796
119	11:05:48	2.667	92.9	63.9902	1.3834	1.3215	1.4102
120	11:15:48	2.834	92.9	63.9842	1.3700	1.3366	1.4244
121	11:25:48	3.000	92.9	63.9783	1.3461	1.3439	1.4281
122	11:35:48	3.167	92.9	63.9729	1.3405	1.3487	1.4299
123	11:45:48	3.334	92.9	63.9662	1.3272	1.3502	1.4296

MEASURED LEAK RATE PHASE GRAPH OF CALCULATED LEAK RATE AND UPPER CONFIDENCE LIMIT

BN-TOP-1 LEAKRATES VS TIME


FIGURE 3

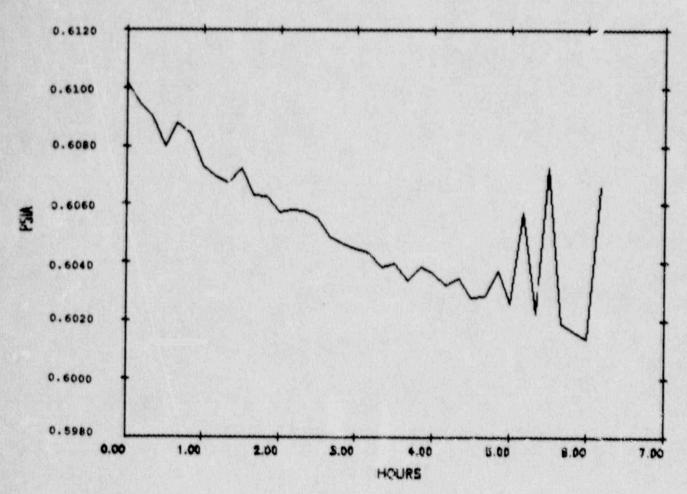
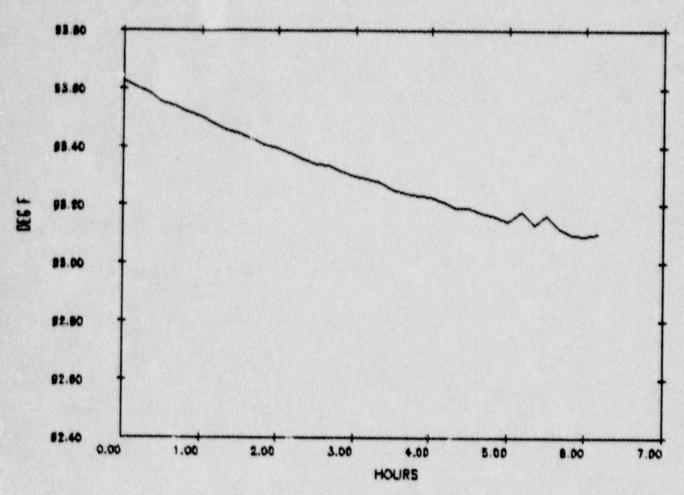
MEASURED LEAK RATE PHAST GRAPH OF TOTAL TIME MEASURED LEAK RATE AND REGRESSION LINE

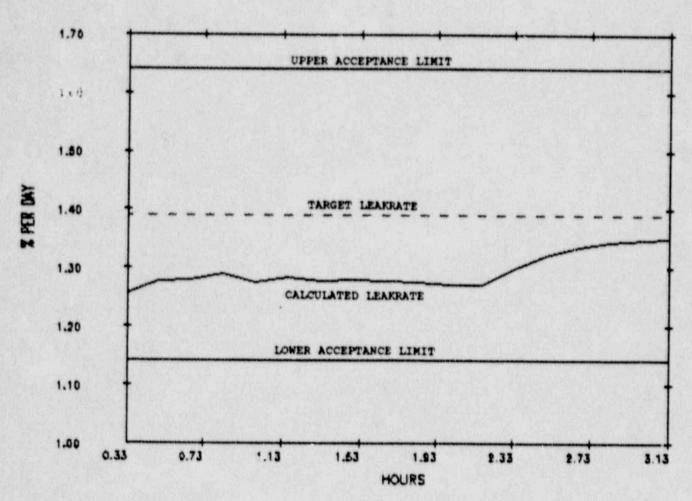
TOTAL TIME LEAKRATES VS TIME

CONTAINMENT DRY AIR PRESSURE VS TIME

MEASURED LEAK RATE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT VAPOR PRESSURE

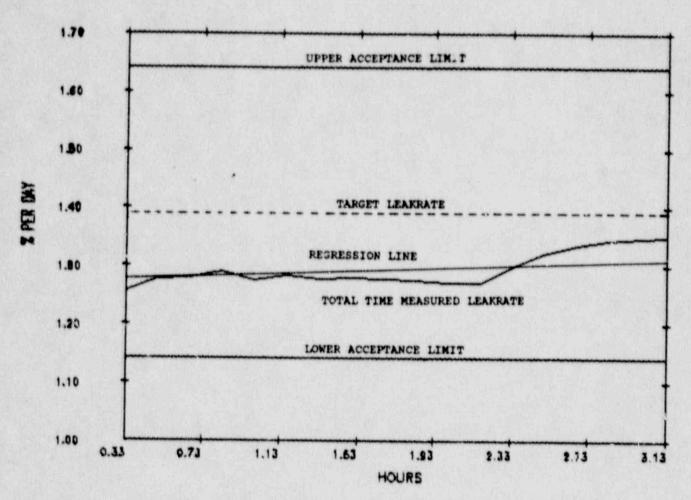
CONTAINMENT VAPOR PRESSURE VS TIME

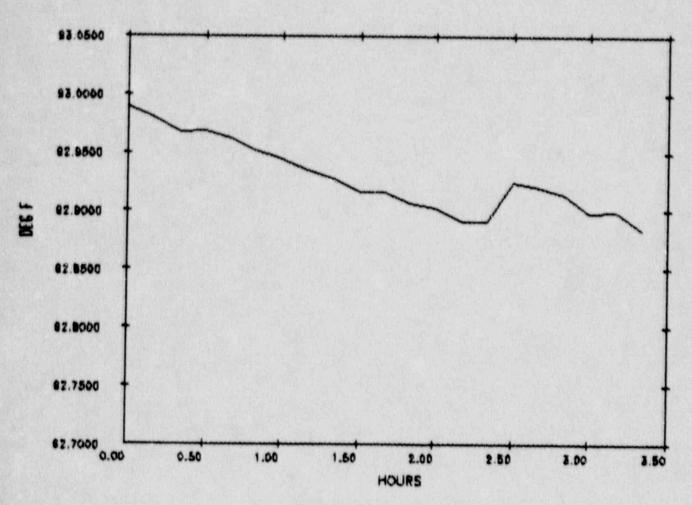

FIGURE 6

MEASURED LEAF RATE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT TEMPERATURE

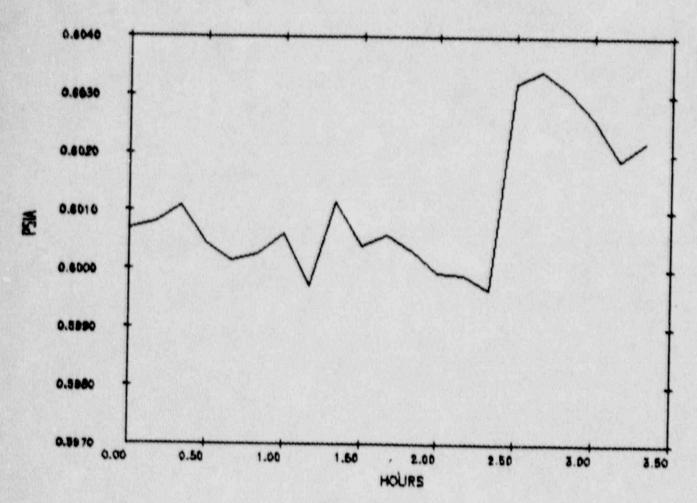
CONTAINMENT AIR TEMPERATURE VS TIME



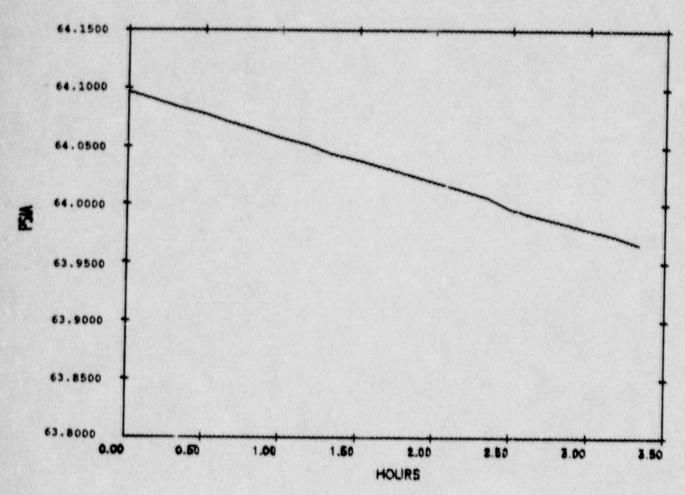
BN-TOP-1 LEAKRATES VS TIME


INDUCED LEAKAGE PHASE GRAPH OF TOTAL TIME MEASURED LEAK RATE AND REGRESSION LINE

TOTAL TIME LEAKRATES VS TIME


INDUCED LEAKAGE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT TEMPERATURE

CONTAINMENT AIR TEMPERATURE VS TIME


INDUCED LEAKAGE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT VAPOR PRESSURE

CONTAINMENT VAPOR PRESSURE VS TIME

INDUCED LEAKAGE PHASE GRAPH OF DRY AIR PRESSURE

CONTAINMENT DRY AIR PRESSURE VS TIME

GRAPH OF REACTOR WATER LEVEL THROUGH TESTING PERIOD

RX VESSEL LEVEL VS TIME

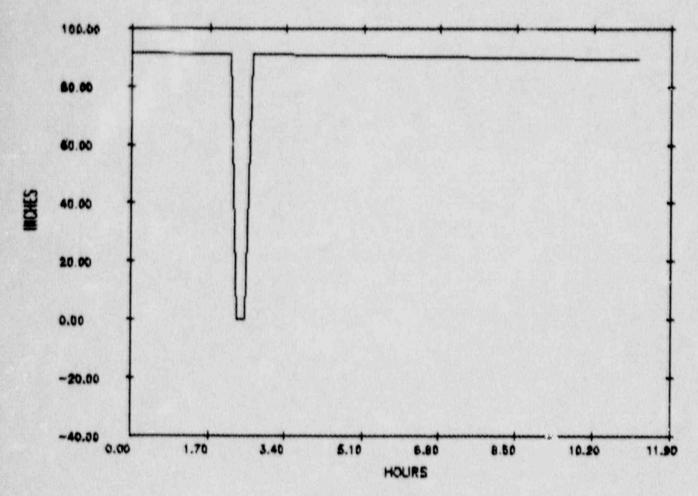


FIGURE 13

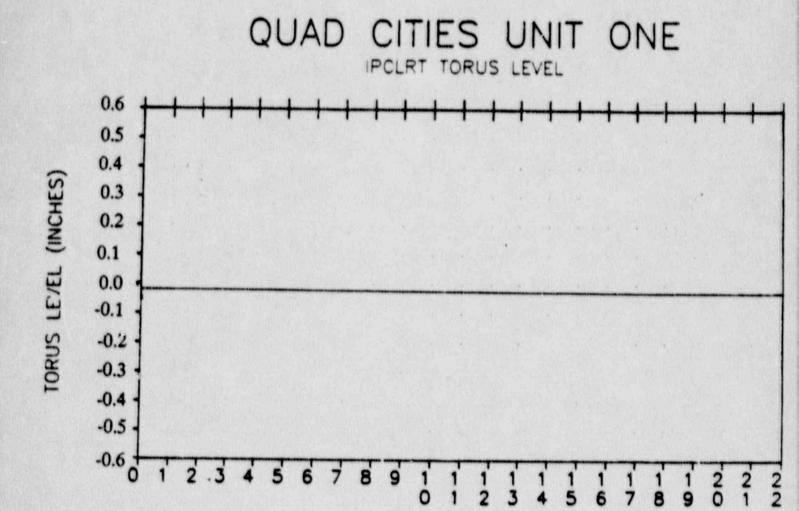


FIGURE 14

TIME (HOURS)

SECTION E - TEST CALCULATIONS

Calculations for the IPCLRT are based on the BN-TOP-1, Rev. 1 test method and are found in the functional requirements specification CECo Generic ILRT computer code Software ID No. GN1405-0.0, Document ID No. ILRT-FRS-0.0. A reproduction of the BN-TOP-1, Rev. 1 test method can be found in Appendix C. In preparing for the first Quad Cities short duration test using BN-TOP-1, Rev. 1 a number of editorial errors and ambiguous statements in the topical report were identified. These errors are presented in Appendix E and are editorial in nature only. The Station has made no attempt to improve or deviate from the methodology outlined in the topical report.

Section 2.3 of BN-TOP-1, Rev. 1 gives the test duration criteria for a short duration test. By station procedure some of these duration criteria have been made more conservative and in some cases these changes may be required by regulations.

A. "Containment Atmosphere Stabilization"

Once the containment is at test pressure the containment atmosphere shall be allowed to stabilize for about four hours (4 hours required by Quad Cities procedure and actual stabilization: 5 hrs, 32 min) The atmosphere is considered stabilized when:

 The rate of change of average temperature is less than 1.0°F/hour averaged over the last two hours.

DATA SET*	AVE. CONTAINMENT TEMP.	<u>ΔΤ</u>
55	93.649	
49	93.801	0.152
43	93.971	0.170
	average:	0.0161°F/hour

* Approximate time interval between data sets is 10 minutes.

or

 "The rate of change of temperature changes less than 0.5°F/hour/hour averaged over the last two hours."

(Not required if A.1 satisfied)

- B. Data Recording and Analysis
 - "The Trend Report based on Total Time calculations shall indicate that the magnitude of the calculated leak rate is tending to stabilize at a value less than the maximum allowable leak rate (L_A)..."

By Quad Cities procedure the calculated leak rate must be less than 0.75 Lg. The actual value was 0.3786 Lg, stable, and decreasing (no extrapolation required).

and

 "The end of the test upper 95% confidence limit for the calculated leak rate based on total time calculations shall be less than the maximum allowable leak rate."

By Quad Cities procedure the upper confidence limit must be less than 0.75 $L_{\rm A}$. The actual value was 0.4480 $L_{\rm A}$.

and

3. "The mean of the measured leak rates based on Total Time calculations over the last five hours of the test or last 20 data points, whichever provides the most data, shall be less than the maximum allowable leak rate."

By Quad Cities procedure this average must be less than 0.75 L_A . The actual value was 0.3678 L_A for the last 5 hours.

and

4. "Data shall be recorded at approximately equal intervals and in no case at intervals greater than one hour."

At Quad Cities data scans are automatically performed on 10 minute intervals. No data sets were missed or lost during the 6 hour test period. No computer failures were encountered.

and

"At least twenty (20) data point shall be provided for proper statistical analysis."

There were 38 data sets taken for this test.

and

In no case shall the minimum test duration be less than six (6) hours."

Quad Cities' procedure limits a short duration test to a minimum of six (6) hours. The data taken during this test supports the argument that a shorter duration test can be conducted. All of the above termination criteria were satisfied in six (6) hours.

SECTION F - TYPE A TEST RESULTS

F.1 Measured Leak Rate Test Results

Based upon the data obtained during the short duration test, the following results were determined: $(L_A = 1.0 \text{ wt } \%/\text{day})$

 Calculated leak rate at 6 hours equals 0.3786 wt %/day and declining steadily over time (<0.7500 wt %/day).

- Upper confidence limit equals 0.4480 wt %/day and declining (<0.750 wt %/day).
- 3) Mean of the measured leak rates for the last 5 hours (31 data sets) equals 0.3836 wt %/day (<0.750 wt %/day).</p>
- 4) Data sets were accumulated at approximately 10 minute time intervals and no intervals exceeded ! hours.
- 5) There were 38 data sets accumulated in 6 hours measured phase.
- 6) The minimum test duration (by procedure) of 6 hours was successfully accomplished (> 6 hours).

F.2 Induced Leakage Test Results

A leak rate of 8.26 scfm (1.0123 wt %/day) was induced on the primary containment for this phase of the test. The leak rates during this phase of the test were as follows.

BN-TOP-1 Calculated Leak Rate (Measured Leak Rate Phase)	0.3786	0.2786
Induced Leak (8.26 scfm)	1.0123	1.0123
Allowed Error Band	+0.2500 1.6409	-0.2500 1.1409
BN-TOP-1 Calculated Leak Rate (Induced Leak Rate Phase)	1.3502 wt %/day	

The induced phase of the test has a duration criteria given in Section 2.3.C of BN-TOP-1. The test duration requirements are listed below and were satisfied by the test procedure and the data analysis:

- Containment atmospheric conditions shall be allowed to stabilize for about one hour after superimposing the known leak. (actual: 1 hour, 10 minutes).
- The verification test duration shall be approximately equal to half the integrated leak rate test duration. (actual: 3 hours, 20 minutes for a 6 hour test)
- Results of this verification test shall be acceptable provided the correlation between the verification test data and the integrated leak rate test data demonstrate an agreement within plus or minus 25 percent. (actual: see results above)

F.3 Pre-Operational Results vs Test Results

Past IPCLRT reports have compared the results of each test with the pre-operational IPCLRT, performed April 20-21, 1971. Over the last 15 years, different test equipment, sensor locations and number of sensors, test methods, and test duration have been used. This test yielded results that compare favorably with recent tests and demonstrate that there has been no substantial deterioration in containment integrity.

TEST DATA	TEST DURATION (HOURS)	CALCULATED LEAK RATE (BN-TOP-1)	STATISTICALLY AVE. LEAK RATE (ANSI/ANS)
April, 1971	24	Not Avail.	0.111
February, 1979	24	Not Avail.	0.3175
December, 1982	12	0.4532	0.3796
July, 1984	24	0.4281	0.2297
March, 1986	12	0.2286	0.2286
December, 1987	6	0.3194	0.3162
November, 1986	6	0.3786	0.3714

F.4 TYPE A TEST PENALTIES

During the type A test, there were a number of systems that were not drained and vented outside the containment. The isolation valves for these systems or penetrations were not "challenged" by the type A test. Even though these systems would not be drained and vented during a DBA event, historically, penalties for these systems have been added to the type A test results.

	AS LEFT MINIMUM PA	THWAY LEAKAGE
	SCFH	WT%/DAY
Primary Sample Valves	0.035	0.00007
ACAD	1.5	0.00306
RHR A	3.02	0.00616
RHR B	7.72	0.01576
Feedwater	6.72	0.01372
DWFDS	0.0	0.0
DWEDS	0.0	0.0
RCIC Steam Ex.	4.22	0.00861
RCIC Drain	5.0	0.01021
HPCI Steam Ex.	1.61	0.00329
HPCI Drain	0.5	0.00102
All Electrical Penetrations	4.83	0.00986
Oxygen Analyzer	0.0	0.0
Tip Purge Check Valves	9.0	0.01837
CAM-Isolation Valves & Panels	0.0	0.0
1-262-2-3A, B & 4A, B	0.0	0.0
	44.155	0.09012

This penalty increases the type A test result to 0.4687 wt%/day with an upper confidence limit of 0.5381 wt%/day.

F.5 EVALUATION OF INSTRUMENT FAILURES

Prior to the start of the test and during the test no instrument failures were encountered.

F.6 AS FOUND TYPE A TEST RESULTS

The following table summarizes the results of all type B and C testing, as well as the IPCLRT results to arrive at an "As Found" type A test result. Since the total is more than the 0.750 wt %/day, the present schedule of performing a type A test every refuel outage must be maintained.

SUMMARY OF ALL CONTAINMENT LEAK RATE TESTING DURING UNIT TWO REFUEL OUTAGE SPRING, 1988

	AS FOUND (SCFH) MINIMUM PATHWAY LEAKAGE	AS LEFT (SCFH) MINIMUM PATHWAY LEAKAGE
(1) MSIV's @ 25 PSIG	20.74	10.96
(2) MSIV's converted to 48 PSIG*	32.77	17.32
(3) All Type C Tests (Except MSIV's)	2419.03	65.49
(4) All Type B Tests	40.13	24.43
TOTAL (2 + 3 + 4)	2491.93	107.24
(1) Type A Test Integrated Leak Rate Test)	= 0.3786 wt %/day	
(2) Upper Confidence Limit of Type A Test Result	= 0.4480 wt %/day	
(3) Correction for Unvented Volumes During Type A Test	= 0.0901 wt %/day	
(4) Correction for Repairs Prior to Type A Test (As Found - As Left)	= 4.8708 wt %/day	(<u>2491.93 - 107.24</u>) 489.59
(5) Correction for Change Sump Levels	= 0.003 wt %/day	1 n
TOTAL (2 + 3 + 4 + 5)	5.412 wt %/day (A	s Found ILRT Result)

^{*} Leak Rate at 25 PSIG converts to Leak Rate at 48 PSIG using conversion ratio of 1.58. REFERENCE ORNL - NISC - 5, Oak Ridge National Laboratory, Aug. 1965, page 10.55.

TYPE B AND C TESTS

Presented herin are the results of local leak rate tests conducted on all penetrations, double-gasketed seals, and isolation valves since the previous IPCLRT in December, 1987. Total leakage for double gasketed seals and total leakage for all penetrations and isolation valves following repairs satisfied the Technical Specification limits.

RESEL OU AGE LOCAL LEAR HATE YEST SLAMARY OTS 100-S1 Revision 7 May 1987

APPROVED

SEP 09 1967

			Q.C.O.S.R.									
			AS FOUND (S		1	AS I	LEFT (SCFH))	1			
/ ESCRIPTION	VALVE(S)/ PENETRATION	DATE TOTA	L PATHWAY	PATHEAY	DATE	TOTAL	PATHOA	PATHWAY				
14 MSIV	1 AO 203-1A,2A	19-10-89 35.7/	18.05	127.65	10 31 54	500	13:46	18.4	1004			
'A' MSIV	I AO 203-18,28	19:10:37 6.9/	1 3.46	16.9/	17-10-27	6.21	1 3.46	169				
101 M214	1 AO 200 1C,2C	19-11-891 6.71	1 3.46	16.91	19-10-17	6.91	1 3.46	16.21	1			
10' MSIP	A0 203-10,20	19-10-19 29.9	5 5.76	124.19	VI-2-89 1	1.15	1 0.58	11.15	1			
		TOTAL	79.48		TO	TAL	10.96					
		TOTAL CORRECTED .	125.56	. 1014	L CORREC	TED .	17.32					

PAGE TOTAL (EXCEL MSIV'S)	I M UD	548.65	uo	NA	91.32	25.89	84.6	1 800
the same or a second se	Comment of the second s	THE PERSON NAMED IN COLUMN	of the latest designation of the latest desi	The second second		LATE	16.01	1
MO 1001-34,36,378	Vo-17:29 2.81	141	1291	Inn: 19	129/	1 /4/	12.81	1
1 MO 1001-20	Ve-17:29 15.44	7.72	115.44	110-17-17	15.44	17.72	1 15.44	1
1 10 101-238,268	Vo-17-89 5.58	2.79	15.58	Vo-17-19	5.52	1 2.79	15.58	1
W 1001-34,36,374	19-14-891 4.54	2.27	14.54	17-4-89	14-54	12.72	14.54	1
MO 1001-29A	19-16-19 3.02	3.02	13.03	19.6:17	13.02	13.02	13.02	1
1 MO 1001-23A, 26A	19-19-11 2.24	1./2	12.24	213-74	3.550	1.12	131-44 Dan	111-248
1 MO 1001-20,21	19-11-11 1 5.2	0.0	15.2	19-11-89	1 5.2	1 0.0	15.2	1
1 CV 220-588,628	Land UD	522.76	1 40	1//-/381	10.48	1 0.0	10.448	i
CV 220-58A,62A	110-5-99 31.18	6.72	124.46	1/0-581	131-18	6.72	1 24.46	1
AO 220-44,45	10-31-89 0.07	0.035	10.07			10035		1
MO 220-1,2	19-10-8911.59	0.80	1 1.59	12-10-89	1.59	10.80	1659	1
	A0 220-44,45 CV 220-58A,62A CV 220-58B,62B M0 1001-20,21 M0 1001-23A,26A M0 1001-29A M0 1001-34,36,37A M0 1001-23B,26B M0 1001-25	A0 220-44,45	A0 220-44,45	A0 220-44,45	A0 220-44,45	MO 220-44,45	A0 220-44,45	A0 220-44,45

10/0168s

40 : undetermined

-1-

REFUEL OUTAGE LOCAL LEAK RATE TEST SLAMARY

OTS 100-S1 Revision 7

4 "				45	FOUND (SC	EN!				
DESCRIPTION		VALVE(S)/ PENETRATION	DATE	TOTAL	PATHWAY	PATHWAY	DATE	TOTAL	MINIMUM	MAXIMA
SHUTDOWN COOL ING	10	0 1001-47,50	19-28-87	-	1 1-56	1 3./2			LASS	PATHWAY
HEAD SPRAY	1 4	0 1001-60,63	*		-	+	1	1-2-16	17.22	12.12
CLEAN UP SUCTION		0 1201-2,5	19-14-89	1860 0	1 430.0	1 3600	VI-8-89	15 54	12.77	1554
RCIC STEAM SUPPLY	1	0 1301-16,17	19-10-99		1 0.05	10.1	19-10-59	PORTUGUIS AND IN		15.54
RCIC STEAM EXHAUST		V 1301-41	19-10-59	According to the last of the l	1 4.22	14.22	19:/-:27	REPRESENTATION AND PROPERTY.	10.05	10.10
RCIC VAC. PLMP EX.	10	V 1301-40	19-10-19	THE PERSON NAMED IN	15.0	15:0		MICHEL STREET	14.22	14.22
DE/TORUS PURGE SUPPLY	THE REAL PROPERTY.	0 1601-21,22,55,	The same of the same of	-	100	10.0	19-10-11		15:00	15.00
DW/TORUS PURGE EX		0 1601-23,24,60,	127	V.V	261.00	10.0	17-10-29	0.00	1000	10.00
	i	61,62,63	4-10-89	5.20	23.4.2	522.0	1H381	18.0	9.0	18.0
'A' TORUS VENT	1 4	0 1601-20A,	1 2		0.312		1		1	-
-	10	V 1601-31A	19-10-451	0.625	2525	0625	17-10-19	0.625	0.3/2	0.625
'B' TORUS VENT	1 4	1601-208,	1 20 1		0.02		1	120,652	1	-
	10	1601-318	19-10-85	0.00	057 -102	0.03	19-10-89	0.03	0.02	10.03
DII/TORUS PURGE	LA	1601-57,58,59	111-10-87	3.5	1.75	3.5	11-10-19	Control of the last of the las	1 4.75	13.5
DU FLOOR DRAIN SUMP	LA	2001-3,4	19-76371	0.0	0.0		19-2-67	-	1 0.0	
DW EQ. DR. SAP	LAC	2001-15, 16	19-8371	0.0	00	Δ.	19-26-87	-	0.0	0.0
HPCI STEAM SUPPLY	1 10	2301-4,5	190591		2.305	17/7	19-1081	4.61	2.31	-
HPCI STEAM EX.	1 CV	2301-45	19-10891	185.061	1175.06	1150	10-19-89	1.61	1 1.61	1 4.61
HPCI DRAIN POT EX.	1 CV	2301-34	1970 591		0.5		9-10-87	-		1.6/
DU FNEUMATIC	1 40	4720, 4721	1978-891		0.0	0.4	CONTRACTOR OF THE PARTY OF THE		0.5	0.5
APPROV	ED		1 1		U U	W. I	98.87	0.4	0.0	10.4
SEP 09 1		PAGE TOTAL	I NA	2539.17	1841.78	2539.17	NA I	47.26	29.10	47.26

Q.C.C S.R.

Line is apply on LH sides.

10/01684

my One				ATE TEST				OTS 100-S1 Revision 7						
J. 14			1	AS	FH)	AS LEFT (SCFH)								
DESCRIPTI	ON	PENETRATION	DATE	TOTAL	PATHEAY	PATHMAY	DATE	TOTAL	PATHWAY	PATHWAY				
O-AMALYZER		AO 8801A, 8802A	Vo-10-17	10.0	100	1 3.0	11040-67	0.0	1 0.0	0.0				
O-AMALYZER	Line Verille	J AO 88018, 88028	114-16 87	3.8	0	1 3.8	10-001	3.8	1 0.0	1 3.8				
O-AMALYZER		AU 8801C, 8802C	110 40 -31	10.7	10	1.0.7	10-10-87	0.7	0.0	1 0. 7				
DAMAL YZER		1 AO 88010, 88020	164.01	8.01	1 0	1.0.8	10-067	0.8	0.0	1 0.8				
D-ANALYZER		L AO 8803, 8804	110-1081	LUD	12.0	1 00	111-11-89	0.5	1 0.0	0.5				
TIP BALL VA	LVE	1 733-1	19-10-19	0.0	0.0	100	111-10-89	COLUMN TO SERVICE SERVICES	1 0.0	1 0.0				
TIP BALL VA	LVE	1 733-2	19-18-89	4.5	1 4.5	14.5	111-10-11		100	1 0.0				
TIP BALL VA	LVE	1 733-3	19-18-19	10.2	10,2	10.2	1 00	00	0.0	1 0.0				
TIP BALL VA	LVE	733-4	19.18.84	0.3	10.3	10,3	111-10-89		0.0	1 0,0				
TIP BALL VA	LYE	1 733-5	19-11-19	0.0	0.0	10.0	111-10-27		1 0.0	10.0				
TIP PURGE O	€CX	700-743	19-11-19	9.0	9.0	190	19-13-69	9.0	9.0	1 9.0				
CAN		SO 2499-14,2A	14-14-49	0,0	0.0	10.0	19-1-1		0.0	10.0				
CAE		SO 2499-18,28	19-14-49	0.0	0.0	0.0	19-14-87		0.0	0.0				
CAN		SO 2499-3A,4A	14744	0.0	0.0	16.0	19-1-21	0.0	0.0	0.0				
CAN		SO 2439-38,48	19-14-44	0.0	0.0	0,0	19-4-89	0,0	0.0	1 0.0				
ACAD		1- AO 2599-24,23A	19-19-49	4.0	0.0	4.0	19-25-89	THE RESERVOIS CO.	0.9	4.1				
ACAD		AO 2599-28,238	19-19-4	73.26	0.4	172.86	19-25-89	0.0	0.0	10.0				
ACAO		AO 2599-34,24A	19-19-49	0.7	0.0	0.7	19-25-89	0.4	0.0	10.4				
ACAO		AO 2599-38,248	14-19-19	0.4	0.0	0.4	192589	the state of the s	0.0	0.9				
ACAD		AO 2599-44,5A	19-14-99	4,5	0.6	3.9	19-4.89		0.6	3.9				
ACAD		AO 2590-48,CB	19-14-87	0.41	0.0	0.4	19-1-1	0.4	0.0	0.4				
	APPROVED SEP 09 1987	PAGE TOTAL	M	UD	17.0	UD	NA	27.5	10.5	26.0				
10/01684	0.C.O.S.R			-3-										

UNIT				SLAMARY			OTS 100-S1 Resision 7					
DESCRIPTION	VALVE(S)/ PENETRATION	DATE	TOTAL	FOUND (SC	MAXIMAM PATHEAY	DATE	TOTAL	MINIMAN PATHWAY	MAX IMAM PA (HWAY			
EQUIPMENT HATCH	X-1	19-10-891		1 0.0	1 0.0	4 13 81		1 0.0	0.0			
DW ACCESS HATCH	j x-4	111-10-87	1.0	1 0.5	1 1.0 9	11:0:01	1.0	1 0.5	1.0			
CRO HATCH	X-6	1/0-489	0.0	10.0	1 0.0	HE THE A	0.0	1 0.0	0.0			
TIP PENETRATION	1 X-35A	19.22-891	THE REAL PROPERTY.	1 0.0	1 0.0	19-22-81	0.0	10.0	0.0			
TIP PENETRATION	X-358	19-77 81	0.0	1 6.0	1 0.0	192-87	-	10.0	00			
TIP PENETRATION	1 X-35C	17771	0.0	100	100	19-22-87		1 0.0	0,0			
TIP PENETRATION	1 X-350	17-22-31	0.0	10.0	100	19-22-87	-	1 0,0	0.0			
TIP PENETPATION	X-35€	19-22-891	0,0	1 0.0	10.0	19-22-67		0.6	0.0			
TIP PENETRATION	1 X-35F	19.77 511	00	0.0	10,0	19-22- MI	-	0.0	0.0			
TIP PENETRATION	1 X-35G	19-27-871	0.0	10.0	10.0	19-22-87		0.0	6.0			
TORUS HATCH	X-200A	19-10-89	0.0	1 0.0	10.0	MARKET IN	00	0.0				
TURUS HATCH	X-2008	19-10-491	0.0	1.0.0	1 0.0	はは	0.0	0.0	0.0			
DRYWELL HEAD		19-10-891	12.0	1206.0	112.0	Vi-10-89 1		0.0	0.0			
SHEAR LUG INSP. HATCH	SL-1	10-25 811	-	0.0	1 0.0	19.15-89		0.0	0.0			
SHEER LUG INSP. HATCH	SL-2	10-2581	0.0	0.0	0.0	10.7547		0.0	0,0			
SHEAR LUG INSP. HATCH	SL-3	10.1567	0.0	0.0	1 0.0	10-25-87	0,0	0.0	0.0			
SHEER LUG INSP. HATCH	SL-4	110 4587	0.0	100	0.0	10-25-87	0.0	0.0	0.0			
SHEAR LUG INSP. HATCH	1 SL-5	40-25-17	0,0	0.0	100	110258	0.0	0.0	0.0			
SHEER LUG INSP. HATCH	1 St-6	10-25-07 1	0.0	0.0.	0.0	110-25-67	0.0	0.0	0.0			
SHEAR LUG INSP. HATCH	1 SL-7	10.26-61	0.0	0.0	0.0	10-201	0.0	0.0	0.0			
SHEER LUG INSP. HATCH	L SL-8	yo-2681	0.0	0.0	0.0	10-2531	0.0	0.0	0.0			
APPROVE SEP 09 19	- PAGE TOTAL	NA	130	6.5	13.0	I NA I	10	0.5	10			
10/0168s Q.C.O.S.	R		-4-									

0483H/0214Z

unit On	2			EL OUTAG			TS 100-S		MAXIMEM MAXIMEM Y PATHWAY				
		I VALVE(S)/	-	AS	FOUND (SC		1	AS L	EFT (SCFH)				
DESCRIPTI	ON	PENETRATION	DATE	TOTAL	PATHWAY	PATHWAY	DATE	TOTAL	PATHWAY				
MECH. PENET	RATION	1 X-7A	19-20-87	10.5	1 0-25	1 0.5	19-70-61	1 0.5	1 0.25	Secretario de la constitución de			
MECH. PENET	RATION	1 x-73	19.70 89	11.1	1 0,55	1 1.1	19-20-87	1 1.1	0.55				
MECH. PENET	RATION	1 X-7C	1430	10	10	10	19891	0.0	1 0.0	-			
MECH. PENET	RAYION	1 X-70	142057	10.6	10.3	10.6	19-20-61	CONTRACTOR OF THE PARTY OF	0.3				
MECH. PENET	RATION	1 X-0	19-20-191	10.6	10.3	10.6	19-20-87	-	0.3	0.6			
MECH. PENET	RATION	1 X-9A	19-7087	1.0.2	0.1	1 0.2	19-249		0.1	5.0			
M. CH. PENET	RATION	X-98	19-7039	10	10	10	14-20-87	0.0	0.0	0.0			
MECH. PENET	RATION	X-10	14-2081	10	10	10	19-10-37	0.0	0.0	0.0			
MECH. PENET	RATION	1 X-11	147051	0	10	10	14-00-07	0,0	0.0	0.0			
WECH. PENET	RATION	X-12	19-11-49	111.0	5.5	1 110	19-11-15	11.0	5.5	111.0			
WECH PENET	RATION	L X-13A	19-20-89	10-4	020	10.4	19-20-81	THE PERSONNELSE	D.2	0.4			
WECH. PENETI	RATION	J X-138	14.50-61	0	0	10	19.20-61	00	0.0	0.0			
MECH. PENETI	RATION	X-14	19-11-49	6.6	0,3	10.6	dist.	8.0	8.0	0.0			
WECH PENET	RATION	X-23	19-20-871	3.7	1.85	1 3.7	14-05- FT	3.7	1.85	3.7			
ECH. PENETI	RATION	1 X-24	14.5.41	0	0		F-20-87		0.0	0.0			
WECH, PENETI	RATION	1 X-25	19-20-81	3.5	1.75	35000			1.75	3.5			
ECH. PENETI	Street & supplied or supplied or Street, Stree	X-26	19.2.87	0.20	0.1	THE R. LEWIS CO., LANSING, SANSAN, P.	17-2-61	THE RESIDENCE OF THE PARTY NAMED IN	0.1	0.2			
WEGI. PENETI	MOITAS	1 X-36	1970811	0.2	0.1	1 0.2	9.20-19	0.2	0.1	5.0			
MECH. PENETI	MOITA	X-4;	14.70 81	0	0	10	9-201	0.0	00	0.0			
WECH. PENETI	MITION	X-17	39-201	0	0	10	7-20-81	0.0	0.0	0,0			
MECH. PENETE	MATION	X-16A	19-20-891	0.2	0.1	0.2	7-20-87	07	0.1	0.7			
	APPROVED	PAGE TOTAL		22.8	11.4	24.6	NA I	27,2	11.1	22.8			
10/0 168s	SEP 09 1987			-5-		10-23-87							

REFUEL OUTAGE LOCAL LEAK RATE TEST SLAMARY

OTS 100-S1 Revision 7

unit One		LEAK R	ATE TEST	SUMMARY		R	evision	7	
		1	AS	FOUND (SC		1	AS L	EFT (SCFH)	
DESCRIPTION	PENETRATION	DATE	TOTAL	PATHEAY	PATHEAY	DATE	TOTAL	PATHWAY	PATHWAY
MECH. PENETRATION	X-168	19-1189	117.0	1 8.5	117.0	193	1	1	
ELECTRICAL PENETRATION	X-100A	19-22-4	10.4	10.2	10.4	194747	10.4	1 02	1 0.4
ELECTRICAL PENETRATION	X-1008	19-23-81	10.4	10.2	104	19-12-19	10.4	1 0.2	1 0.4
ELECTRICAL PENETRATION	X-100C	19-21-87	0.2	10.1	1 0.2	19-22-57		10.1	1 0.2
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X-1000	9-22-69	0.0	0.0	0.0	19.00	0.0	0.0	10.0
ELECTRICAL PENETRATION	X-100E	19-21-09	10.0	0.0	10.0	19:47	1 0.0	1 0.0	0.0
ELECTRICAL PENETRATION	X-100F	H-22-81	0.0	0.0	1 0.0	19-20-11	-	1 0.0	0.0
ELECTRICAL PENETRATION	X-100G	14.22.69	0.0	0.0	0.0	19-22-11	-	1 0.0	0.0
ELECTRICAL PENETRATION	X-101A	19-2187	3.75	11.88	1 3.75	192187	-		1 3.75
ELECTRICAL PENETRATION	X-1018	19-2187	0.0	0.0 .	1 0,0	19-22-09	-	0.0	0.0
EI ECTRICAL PENETRATION	X-101D	19-2137	0.0	0.0	10.0	19-249	-	1 0.0	1 0,0
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X-102A	4-21-89	0-9	0.45	0.9	9-2-49	0.9	0.45	0.9
(UNIT TWO COLY)	X-1029	4			·		1.	l	1
	X-103	19-2181	0.0	40.0	0.0	19-21-87	0.0	1 0.0	0.0
ELECTRICAL PENETRATION	X-104A	1					No.		
(UNIT TWO ONLY)			ENGEN				Testes III		
ELECTRICAL PENETRATION	X-104B	19-17 17	0.0	0.0	0.0	19.22-87	0.0	0.0	0.0
ELECTRICAL PENETRATION	X-104C	19-21-89	0.0	0,0	0.0	921-87	THE RESERVE OF THE PERSON NAMED IN	0.0	0.0
APPROVED SEP 09 1987	PAGE TOTAL #1 Appendix Jul		2265	11.33	22.65	NA I	5.65	2.83	5.65

REFIEL OUTAGE LOCAL LEAK RATE TEST SUMMAY OTS 100-S1 Revision 7

unit Dre			AS	FOUND (SC	FH)	1	AS L	EFT (SCFH)	
DESCRIPTION	PENETRATION	DATE	TOTAL	PATHWAY	PATHEAY	DATE	TOTAL	PATHEAY	HAX IMA
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X-1040 	-							e sour cost of branch
ELECTRICAL PENETRATION	1 X-104F	19-22-87	0.0	10.0	10.0	19:481	0.0	0.0	0.0
CUNIT ONE ONLY)	i x-105A	9-22.87	00	0.0	0.0	7-22-81	0.0	0.0	0.0
ELECTROCAL PENETRATION (UNIT ONE GREY)	X-1058	19-2281	0.4	0.2	0.4	9-22-89	24	0.2	0.4
ELECTRICAL PENETRATION	1 X-105C	14.53.64	3.6	1 1-8	3.6	F- 249 1	3.6	1.8	3.6
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X-1050 	9-71-89	0.0	0.0	0.0	9-21	0.0	0.0	0.0
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X-106A	1-							
ELECTRICAL PENETRATION (UNIT YWO ONLY)	X-106B	1-							
ELECTRICAL PENETRATION	X-107A	19-21-87	0.0	0.0	0.0	19-21-87	0.0	0.0	0.0
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X-107B	1-						0,0	
TORUS PENETRATION	X-227A	10-12-01	0.0	0.0	0.0	10-17-87	0.0	0.0	0.0
TORUS PENETRATION	X-2278	110.12.81	00	0.0	0.0	1/0-12-27	0.0	0.0	0.0
'A' TORUS LEVEL FLANGES	1	110-1489	0.0	0.0	STATE OF THE OWNER, WHEN	10-H-11	0.0	0.0	0.0
APPROVE	D PAGE TOTAL	 NA	4.0	2.0	4.0	NA	4.0	7.0	4.0

SEP 09 1987

10/0168s

0.C.O.S.R.

-7-

REFUEL OUTAGE LOCAL LEAK RATE TEST SLAMARY

OTS 100-S1 Revision 7

UNIT									
		1	A!	S FOUND (SC	1	AS LEFT (SCFH)			
DESCRIPTION	YALVE(S)/ PENETRATION	DATE	TOTAL	PATHWAY	PATHWAY	DATE	TOTAL	PATHWAY	MAXIMUM PATHWAY
'8' TOPUS LEVEL FLANCES		110-1489	1 0.0	1 0.0	0.0	1/0-11	-	1 0.0	1 0.0
SRM/IRM PURGE _(UNIT TWO ONLY)	ļ	1-	-	!-	1-	!-	-	-	! —
PERSONNEL INTERLOCK X-2	1 X-2	19-19-37	113.7	1 6.7	1 13.7	111-23-81	113.7	1 6.9	113.7
H2/C2 MONITORING SYSTEM	·	10-548	2.0	1 7.0	120	11-17-35		1 1.1	1.1
	PAGE TOTAL	NA	15.7	8.9	1 15.7	I NA	14.8	8.0	14.8
	TEST TOTAL +	I NA	UD	2456.46	UO	I NA	73.73	89.92	139551
			*	+2459.16			9 11 24.87		15.805*

"To determine the corrected leakage of the MSIV's (as if they had been tested at 48 PSIG), multiply by 1.58.

+The test total is the sum of all page totals in the checklist (exclude MSIV's from all test totals).

Reference: OTS 150-8, "Determination of Total Containment Leak Rate."

APPROVED

Were used to council the totals. (final)

APPROVED

SEP 09 1987

O.C.O.S.R.

10/0168s

-8-

^{**} When the maximum pathway leakage exceeds 0.6 La (293.75 SCFH), write an LER immediately.

APPENDIX B TEST CORRECTION FOR SUMP LEVEL CHANGES

The total time measured leak rate, given by the functional requirements specification CECo Generic ILRT Computer Code, Document ID No. GN01405-0.0, Document ID No. ILRT-FRS-0.0 (see Appendix C), assumes that the containment free air space is 280,327.5 ft³ at a water level in the reactor of 35", torus water level is zero, and that any change in reactor water level is due to a water leakage from the containment changing the free air volume. If the water leakage is from the containment and due to the operation of the shutdown cooling mode of RHR to maintain reactor water temperature, this leakage would not be representative of accident conditions when shutdown cooling would be isolated.

During the stabilization phase of the test considerable effort went into reducing the rate of level decline to approximately 0.14 inches/hour (3.5 ft³/hr or 0.47 GPM) that was experienced during the test. Since the leakage could not be reduced further and level indication for the suppression pool indicated that most of the water leaving the reactor was not entering the suppression pool, but leaving containment, the computer program option for including the vessel level in the leak rate calculation was selected.

The test verification during the induced phase of the test demonstrates the accuracy of this model and the change was completely explained to the NRC inspector witnessing the test.

A hand calculation, using a complete water balance, is included in this Appendix to show that the leak rate reported is not significantly affected by a more detailed analysis, including changing subvolume free air space due to water leaking from the reactor vessel to the drywell sumps and suppression pool.

To perform a leak rate calculation with a changing containment free air space, the dry air mass for each containment subvolume is calculated using the following equation:

$$W_1 = 2.6995 \times P_1 \times V_1$$

$$\frac{(T_1 + 459.69)}{(T_2 + 459.69)}$$

where Pi = dry air pressure in ith subvolume.

 V_1 = free air space in the ith subvolume, and

T = average temperature in the ith subvolume.

The total containment dry air mass is given by the sum of the dry air masses for all of the subvolumes.

$$W^{t} = \sum_{i=1}^{11} W_{i}$$

The computed leak rate will be the total time leak rate and is given by:

where W° = dry air mass of the containment at the start of the test,

Wt = dry air mass of the containment at time t,

H = duration of the test from start to time t in hours, and

Lt = total time leak rate at time t.

There are 3 subvolumes to consider in evaluating the effects of water leakage from the vessel: the vessel itself (subvolume 11), the suppression pool (subvolume 10), and the subvolume for the drywell equipment drain sump (DWEDS) and the drywell floor drain sump (DWFDS) (subvolume 9). Any water leaking from the vessel in excess of that added to the sumps and suppression pool will be assumed to have leaked from the containment through the shutdown cooling mode of RHR.

DATE TIME	DWFDS*	DWEDS*
11/14/89 1300 11/15/89 1630		7.0 19.0
Rate of level change (in/hr)	0.1824	0.7164
Rate of free air vol change (ft ³ /hr);	0.6970	2.736

*The sumps are assumed to have filled at a constant rate during the period when the containment was fully pressurized. Each sump holds 1200 gallons and is 42" deep.

The following table gives the extrapolated values of the subvolume free air spaces using the above data:

CHENOLINE	6 HOU	R TEST	INDUCED TEST	
SUBVOLUME NO. (i)	Vi t=0	V _i t=6	v ₁ t=0	ν _i t=3
1	10,550	10,550	10,550	10,550
3 4	9,596 10,990 3,783	9,596 10,990 3,783	10,990	10,990
5	24,125 32,265	24,125 32,265	24,125 32,265	24,125 32,265
8 9*	27,618 26,071 8,790	27,618 26,071 8,769	27,618 26,071 8,764	27,618 26,071 8,752
10* 11*	119,252 5,158	119,252 5,187	119,252 5,187	119,252 5,211

*
$$V_9 = 8,901 - \frac{DWFDS}{42} \times 1200 \times .13368 - \frac{DWEDS}{42} \times 1200 \times .13368$$

 $V_{10} = 119,268 - 863.75 (\frac{ft^3}{in}) \times Torus level (in)$
 $V_{11} = 6571.0 - 25(Level -35)$

Using the subvolume vapor pressure, subvolume temperature, and the subvolume free air space, the dry air mass for each subvolume can now be calculated. The following table gives the necessary data for the start of the test as 00:35:48 on 11/14/89(Data Set No. 56).

SUBVOLUME NO.	VAPOR PRESSURE (PSI)	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE °F	DRY AIR MASS (1bs. mass)
1	.671	64.217	103.0	3250.25
2	.609	64.279	111.835	2913.45
3 4	. 609	64.279	107.315	3363.28
4	.609	64.279	105.230	1161.99
5 6 7	. 568	64.320	104.093	7429.93
6	. 552	64.336	100.612	10001.08
7	. 566	64.322	96.182	8627.01
8 9	.486	64.402	88.132	8273.72
9	.486	64.402	89.205	2784.08
10	.571	64.317	84.748	38030.08
11	2.697	62.191	137.340	1450.43
			$W^{\circ} = \sum_{i=1}^{11} W_{i} = 87$,285.2/

The following table gives the necessary data for the end of the 6 hour test at 06:45:48 on 11/14/89 (Data Set No. 93).

SUBVOLUME NO.	VAPOR PRESSURE (PSI)	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE F	DRY AIR MASS (1bs. mass)
1	.681	64.077	102.290	321.26
2	.623	64.135	111.850	2906.85
3	.623	64.135	107.820	3352.76
4	.623	64.135	105.820	1158.17
5	.591	64.167	104.597	7405.64
6	.572	64.186	101.457	9962.74
7	.583	64.175	96.440	8603.30
8	.489	64.269	87.465	8266.7
8	.489	64.269	88.870	2773.39
10	.547	64.211	83.402	38061.42
11	2.635	62.123	136.44	1459.19
			W6 ≠	87,197.42

The leak rate for the 6 hour test is:

c6hr = 0.3915 wt % / day (compared to 0.3954 compared ignoring sump level changes)

The following table gives the necessary data for the start of the induced phase of the test at 08:25:48 on 11/14/89 (Data Set No. 103).

SUBVOLUME NO.	VAPOR PRESSURE (PSI)	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE F	DRY AIR MASS (1bs. mass)
1	.674	64.023	102.045	3245.94
2	.619	64.078	111.780	2904.62
2 3	.619	64.078	107.925	3349.16
4	.619	64.078	106.085	1156.60
4 5 6	. 588	64.109	104.857	7395.53
6	. 573	64.124	101.525	9951.91
7	. 582	64.115	96.550	8594.02
8	.486	64.211	87.305	8261.66
8 9	. 486	64.211	88.730	2770.01
10	. 538	64.159	83.130	38049.66
11	2.609	62.088	136.060	1459.30
			start	
			W =	87,138.41
			induced	

The following table gives the necessary data for the end of the induced phase of the test at 11:45:48 on 11/14/89 (Data Set No. 123).

SUBVOLUME_NO.	VAPOR PRESSURE (PSI)	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE °F	DRY AIR MASS (1bs. mass)
1	.679	63.889	101.585	3241.80
2	.626	63.942	111.585	2899.44
3	.626	63.942	108.110	3340.96
4	.626	63.942	106.345	1153.62
5	. 598	63.970	105.143	7375.76
6	. 582	63.986	101.755	9926.42
7	. 590	63.978	87.095	8574.08
8	.489	64.079	88.645	8247.84
8 9	.489	64.079	88.645	2760.96
10	.535	64.033	82.868	37993.27
11	2.564	62.004	135.390 end	1465.71
			W ≈ induced	86,979.86

The leak rate for the induced phase is

L (induced) =
$$-\frac{2400}{3.333}$$
 X $\frac{(86979.86 - 87138.41)}{87138.41}$

= 1.3114 wt % / day (compared to 1.3272 computed assuming constant reactor water level and ignoring sump level changes)

The above calculations show that the leakage from the reactor vessel did not significantly affect the reported leak rate. The difference between the leak rates computed using a complete correction for free air volume changes due to water leakage and the values computed ignoring the changes is less than 2%.

APPENDIX C COMPUTATIONAL PROCEDURE

D. INPUT PROCESSING

Calculations perfomed by the software are outlined below:

D.1 Average temperature of subvolume #1 (T₁)

- The average of all RTD temps in subvolume #1

$$T_1 = \frac{1}{N} = \frac{N}{2} T_{1.3}$$

where N . The number of RTDs in subvolume #i

D.2 Average dew temperature of subvolume #1 (D;)

- The average of all dew cell dew temps in subvolume #1

where N - The number of RTDs in subvolume #1

- U.3 Total corrected pressure #1, (P1)
 - C1 First correction factor for raw pressure #1, (from program initialization data set).
 - My Second correction factor for raw pressure #1, (from program initialization data set).

Pri Raw pressure #1, from BUFFILE.

P1 = C1 + M1 Pr1/1000, for 5 digit pressure transmitters

P1 = C1 + M1 Pr1/10000, for 6 digit produce transmitters

- D.4 Total corrected pressure #2. (P2)
 - C2 First correction factor for raw pressure #2. (from program initialization data set.
 - M2 Second correction factor for raw pressure #2, (from program initialization data set.

Pr2 Rew pressure #2, from BUFFILE.

P2 - C2 + M2 Pr2/1000, for 5 digit pressure transmitters

P2 - C2 + M2 Pr2/10000, for & digit pressure transmitters

Exact Method
$$T_c = \frac{1}{N - \frac{f_i}{f_i}}$$

fi- The volume fraction of the ith subvolume where: N . The total # of subvolumes in containment

Average Vapor Pressure of Subvolume i, (Curve fit of ASME steam 0.6

0.7 Whole Containment Average Vapor Pressure, (Pvc)

N - The total of subvolumes in containment fi= Volume fraction of the ith subvolume

Whole Containment Average Dew Temperature, (Dc) 0.8

Approximate
$$D_C = \Sigma f_1 D_1$$

Exact Methor The whole containment average vapor pressure, (Pvc) calculated with the exact method is used to find Dc. An initial value of Dc is guessed and used with the equation in D.6 to calculate Pv_{C} . This value is then compared to the known value from D.7. A new value of D_c is guessed and the process is repeated until a value of D_c is found that results in a calculated value of Pv_c that is

within .0001 psia of the value from D.7.

D.9 Average total containment pressure.(P)

Average total containment dry air pressure. (Pd)
Pd = P - Pvc

D.10 Total Containment dry air mass. (M)

Type 1:
$$M = \frac{Pd V_C}{R T_C}$$

where: R = Perfect gas constant, V_C = Total containment free volume.

Type 2: Type 2 dry air mass accounts for changes in Reactor Vessel level.

For uncorrected dry air mass, (Type 1) the below definitions apply.

$$V_C = \sum_{i=1}^{N} V_i$$
 and $f_i = V_i/V_C$

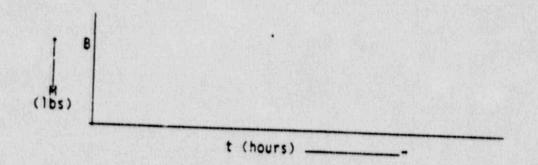
where V_i is the user entered free volume in subvolume i.

For corrected dry air mass. (Type 2) the same definitions for V_C and f_i apply, except that one of the V_i s is corrected for changes subvolume then:

a is the number of cubic feet of free volume per inch of vessel level.

b is the base level of the reactor vessel, in inches.

C is the actual water level in the reactor vessel, in inches.


Vko is the volume of the subvolume k when C equals b.

The volume fractions (f_i) are then calculated with the corrected volume, and all other calculations are subsequently performed as previously specified for Type 1 dry air mass.

D.11 Leakrate Calculations using Mass-Plot Method:

This method assumes that the leakage rate is constant during the testing period, a plot of the measured contained dry air mass versus time would ideally yield a straight line with a negative slope.

Based on the least squares fit to the data obtained, the calculated containment leakage rate is obtained from the equation:

The values of the constants A and B such that the line is linear least squares best fitted to the leak rate data are:

$$A = \frac{NE(t_1)(M_1) - (Et_1) (E M_1)}{NE(t_1)^2 - (Et_1)^2}$$

By definition. leakage out of the containment is considered positive leakage. Therefore, the statistically averaged least squares containment leakage rate in weight percent per day is given by:

In order to calculate the 95% confidence limit of the least squares averaged leak rate, the standard deviation of the least squares slope and the student's T-Distribution function are used as

$$\sigma = \frac{1}{(N-2)} \frac{NE(M_1)^2 - (EM_1)^2}{NE(t_1)^2 - (Et_1)^2} - A^2 = \frac{1}{2} \frac{(2400)}{B} \text{ (weight 2 per day)}$$

UCL . L . 0 (T)

where
$$T = \frac{1.6449(N-2) + 3.5283 + 0.85602/(N-2)}{(N-2) + 1.2209 - 1.5162/(N-2)}$$

· Number of data sets

- test duration at the ith data set - standard deviation of least squares slope (hours)

. Value of the single-sided T-Distribution (weight 1/day)

function with 2 degrees of freedom - calculated leak rate in weight 1/day

UCL - 95% upper confidence limit - calculated containment dry air mass at time t=0 (1bs.) (%/day)

Point to Point Calculations 0.12

This method calculates the rate of change with respect to time of dry air mass using the Point to Point Method.

for every data set, the rate of change of dry air mass between the most recent. (t_i) and the previous time (t_{i-1}) is calculated using the two point method shown below:

$$\dot{H}_1 = \frac{2400}{(t_i - t_{i-1})} (1 - M_i/M_{i-1})$$

Then the least square fit of the point to point leakrates is calculated as described for dry air masses in section D.11

D.13 Total Time Calculations

This method calculates the rate of change with respect to time of dry air mass using the Total Time Method

Initially, a reference time (t_r) is chosen. For every data set the rate of change of dry air mass between t_r and the most recent time, t_1 is calculated using the two point method shown below.

Then the least squares fit and 95% UCL of the Total Time leakrates are calculated as shown below:

$$B = \frac{I \dot{H}_1 I(t_1)^2 - I t_1 I \dot{H}_1 t_1}{N I (t_1)^2 - (I t_1)^2}$$

$$A = \frac{(N \Sigma t_1 \dot{M}_1 - \Sigma t_1 \Sigma \dot{M}_1)}{N \Sigma (t_1)^2 - (\Sigma t_1)^2}$$

L . B . At

Note: N is the number of data sets minus one.

$$F = \frac{1}{N} \cdot \frac{(t_p - E(t_1) / N)2}{E(t_1)^2 - (Et_1)^2 / N}$$

$$O = \frac{1}{N} \cdot \frac{\frac{1}{N}}{N} \cdot \frac{\frac{1}{N}}{N}$$

Note: This equation is calculated for information only from the start of the test up to 24 hours, then it becomes the official leakrates for future times.

D. 14 BN-TOP-1

This method calculates the rate of change with respect to the time of dry air mass using the Total Time Method.

Initially, a reference time (t_r) is chosen. For every data set the rate of change of the data item between t_r and the most recent time, (t_1) is calculated using the two point method shown below:

$$\dot{M}_1 = \frac{2400}{(t_1 - t_r)} (1 - M_1/M_r)$$

Then the least squares fit of the Total Time leakrates and the BN-TOP-1 95% UCLs are calculated as shown below.

$$B = \frac{(I \dot{H}_{1} I(t_{1})^{2} - I t_{1} I \dot{H}_{1} t_{1})}{N I (t_{1})^{2} - (I t_{1})^{2}}$$

Note: N is the number of data sets minus one.

$$A = \frac{(N \text{ E } t_1 \text{ M}_1 - \text{ E } t_1 \text{ E M}_1)}{N \text{ E } (t_1)^2 - (\text{E } t_1)^2}$$

$$L = B + At$$

$$T = 1.95996 + \frac{2.37226}{(N-2)} + \frac{2.8225}{(N-2)^2}$$

$$F = 1 + \frac{1}{N} + \frac{(t_p - \text{E } (t_1) / N)^2}{\text{E } (t_1)^2 - (\text{E } t_1)^2 / N}$$

$$\frac{1}{N} = \frac{(t_1)^2 - (\text{E } t_1)^2 / N}{N}$$

$$\frac{1}{N} = \frac{(M_1)^2 - B \text{ E M}_1 - A \text{ E M}_2 \text{ t}_1}{N}$$

$$UCL = L + T\sigma$$

Note: This equation is calculated for information only from the start of the test up to 24 hours, then it becomes the official leakrates for future times.

- D.15 Temperature stabilization checking per ANSI 56.8-1981
 - Ti Weighted average containment air temperature at hour i.
 - Ti.n Rate of change of weighted average containment air temperature over an n hour period at hour i, using a two point backwards

2; is the ANSI 56.8-1981 Temperature stabilization criteria at hour i.

21 - | T1.4 - T1.1 | 1 must be 2 4.

Per ANSI 56.8-1981, Z must be less than or equal to 0.5 OF/hr

NOTE: If the data sampling interval is less than one hour, then:

Option #1 Use data collected at hourly intervals

Option #2 Use average of data collected in previous hour for that hour's data.

D.16 Calculation of Instrument Selection Guide, (ISG)

where: t is the test time, in hours

p is test pressure, psia

T is the volume weighed average containment temperature, OR

Np is the number of pressure transmitters

Nr is the number of RTDs

Nd is the number of dew cells

ep is the combined pressure transmitters' error, psia

er is the combined RTDs' error, OR ed is the combined dew cells' error, OR

where: Sp is the sensitivity of a pressure transmitter RPp is the repeatability of a pressure transmitter RSp is the resolution of pressure transmitter

where: Sr is the sensitivity of an RTD RPr is the repeatability an RTD RSp is the resolution of an RTD

where: So is the sensitivity of a dew cell
RPd is the repeatability of a dew cell
RSd is the resolution of a dew cell

The above ratio is from ASME steam tables and evaluated at the containment's saturation temperature at that time.

- D.17 BN-TOP-1 Temperature Stabilization Criteria Calculation
 - A. The rate of change of temperature is less than 1 °F/Hr averaged over the last two hours.

 $K_1 = |T_1 - T_1 - T_1$

The rate of change of temperature changes less than 0.5
 F/hour/hour averaged over the last two hours.

$$K_2 = (T_1 - T_{1-1})/(t_1 - t_{1-1})$$
 $K_2 = (T_{1-1} - T_{1-2})/(t_{1-1} - t_{1-2})$
 $Z = |(K_1 - K_2)/(t_1 - t_{1-1})|$

2 must be less than 0.5 to meet the criteria listed in 8.

D.18 Reactor Vessel Free Volume Mass Calculation

As shown in section D.10, the free volume of the Reactor Vessel subvolume κ is given by the below equation.

The dry air mass in subvolume a can then be written as:

Me . 144 (P-Pve) Ve/RTe

Where: Mr is the dry air mass in subvolume r. (1bm)

R is the gas constant of air

 $\overline{T_{\kappa}}$ is the average temperature of subvolume κ . (OR)

 P_{VR} is the average vapor pressure of subvolume α , (pisa)

P is the average containment pressure, (psia)

 V_{κ} is the free air volume in subvolume κ . (ft3)

D.19 Torus Free Volume Calculation

free volume calculations of the Torus rely upon narrow range Torus water level inputs. These values range between plus and minus five inches. It is assumed that the Torus subvolume free air volume is that subvolume's volume when the Torus level equals zero. The user may enter three constants to musel the variation of Torus air volume with water level.

The equations for Torus free volume in subvolume t are given:

 V_t = V_{t0} - $(aL + bL + cL^3)$ when L_2 0 V_t = V_{t0} + $(-aL + bL^2 - cL^3)$ when L_3 0

The dry air mass in subvolume t can then be written as:

Mt - 144 (P-Pvt) Vt/RTt

Where: Mt is the dry air mass in subvolume τ . (1bm)

P is the average containment pressure, (psia)

Pvt is the average vapor pressure of subvolume t (pisa)

Vt is the free volume i. subvolume t. (ft3)

R is the gas constant of air

It is the average temperature in subvolume t (OR)

L is the Torus level, (inches)

a,b,c are Torus level constants

Vto is the free volume in subvolume T when L equals zero, taken from standard free volume inputs, (ft^3)

E. OUTPUTS

0483H/0214Z

E.1 OUTPUT DEVICE TYPES: The below output devices shall be supported. There are no special constraints on output device locations.

PRINTERS: PRIME High Speed Line Printer

OKIDATA 2410 OKIDATA 93

PLOTTERS: LA120

Hewlet Packard 7475A 8.5" X 11" Hewlet Packard 7585A 8.5" X 11"

CRTs: Hewlet Packard

Hewlet Packard 7585A 11" X 17" Wyse Wy75 View Point 60

4014

GRAPHICS TERMINALS:

Ampex Dialogue 80 & 81
PRIME PT200

PRIME PT200
RamTech 6200
RamTech 6211
Tektronix 4107

Tektronix

RamTech 6211 Tektronix 4107 -65- Tektronix 4208 APPENDIX D
INSTRUMENT ERROR ANALYSIS

IPCLRT SAMPLE ERROR ANALYSIS FOR SHORT DURATION TEST

A. ACCURACY ERROR ANALYSIS

Per Topical Report BN-TOP-1 the measured total time leak rate (M) in weight percent per day is computed using the Absolute Method by the formula:

$$M (\% / DAY) = \frac{2400}{H} + 1 - \frac{T_1 \overline{P}_N}{T_N \overline{P}_N}$$
 (1)

where: \overline{P}_1 = total (volume weighted) containment dry air pressure (PSIA) at the start of the test;

P_N = total (volume weighted) containment dry air pressure (PSIA) at data point N after the start of the test;

H = test duration from the start of the test to data point N in hours;

T₁ = containment volume weighted temperature in °R at the start of the test;

T_N = containment volume weighted temperature in °R at the data point N.

The following assumptions are made:

 $\overline{P}_1 = \overline{P}_N = P$ where P is the average dry air pressure of the containment (PSIA) during the test;

 $T_1 = T_N = T$ where T is the average volume weighted primary containment air temperature (°R) during the test;

 $P_1 = P_N$ where P is the total containment atmospheric pressure (PSIA);

PV1 = PVN Where Pv is the partial pressure of water vapor in the primary containment.

Taking the partial derivative in terms of pressure and temperature of (1) equation and substituting in the above assumptions yields the following equation found in Section 4.5 of BN-TOP-1 Rev. 1:

$$e_{M} = \pm \frac{2400}{H} * \left| \frac{e}{2} \left(\frac{p}{\Lambda} \right)^{2} + 2^{e} \left(\frac{t}{\Lambda} \right)^{2} \right|^{\frac{1}{4}}$$

where ep = the error in the total pressure measurement system,

$$e_p = \pm [(e_{p_T})^2 + (e_{p_V})^2]^{1/2};$$

ep_T = (instrument accuracy error) / √ no. of inst. in measuring total containment pressure;

em = the error in the measured leak rate;

H = duration of the test.

NOTE

Subvolume #11, the free air space above the water in the reactor vessel, is treated separately from the rest of the containment volume. The reason for the separate treatment is that neither the air temperature or the partial pressure of water vapor is measured directly. The temperature of the air space is assumed to be the temperature of the reactor water, as measured in the shutdown cooling or clean-up demineralizer piping before the heat exchangers. The partial pressure of water vapor is computed assuming saturation conditions at the temperature of the water. Volume weighting the errors for the two volumes (Subvolume #11 and Subvolumes #1-10) is the method used.

B. EQUIPMENT SPECIFICATIONS

INSTRUMENT	RTD (°F)	PPG (PSIA)	DEWCELL (°F)	FLOWMETER (SCFM)	THERMOCOUPLE (°F)
Range	50-135	0.4-150	40 - 100	0.90-11.40	0 - 600
Accuracy	±0.25	±0.015%	<u>+</u> 1.5	±1.0% Max Flow	±2.0
Repeat- ability	±0.01	±0.001%	±0.003	±0.02	±.10

C. COMPUTATION OF INSTRUMENT ACCURACY UNCERTAINTY

1. Computing " er "

Volume Fraction for Volume #11 = .02344 Volume Fraction for Volumes #1-10 = .97656

$$e_T = \pm (0.97656 * \frac{0.25}{30} + .02344 * \frac{2.0}{1})$$

 $e_T = \pm 0.0914$ °R

2. Computing " ept "

$$e_{p_{T}} = \pm \frac{0.015}{\sqrt{2}}$$

epT = ± 0.0106 PSIA

3. Computing " epy "

At a dewpoint of 65°F (assumed), an accuracy of \pm 1°F corresponds to \pm .011 PSIA. For subvolume #11 at an average temperature of 140°F, an accuracy of \pm 2°F corresponds to \pm .150 PSI.

$$e_{pV} = \pm (0.97656 * \frac{0.011}{10} + 0.02344 * \frac{0.150}{1})$$

 $e_{pV} = \pm 0.0069 PSIA$

4. Computing " ep "

$$e_D = + [(0.0106)^2 + (0.0069)^2]^{1/2}$$

 $e_p = \pm 0.0126 PSIA$

5. Computing total instrument accuracy uncertainty " em "

$$e_{M}^{A} = \pm \frac{2400}{H} + \left[2 + \left(\frac{0.0126}{63.0} \right)^{2} + 2 + \left(\frac{0.0914}{544.7} \right)^{2} \right]^{\frac{1}{2}}$$

assuming
$$\stackrel{\Lambda}{P}$$
 = 63.0 PSIA $\stackrel{\Lambda}{T}$ = 544.7°R

Therefore, for a 6 hour test (H),

D. COMPUTATION OF INSTRUMENT REPEATABILITY UNCERTAINTY

1. Computing " e_T "

$$e_T = \pm \frac{0.01}{\sqrt{30}}$$

2. Computing " epT "

$$e_{p_T} = \pm \frac{0.001}{\sqrt{2}}$$

3. Computing " epy "

$$e_{PV} = \pm (.97656 * .006 + .02344 * .008)$$

4. Computing " ep "

$$e_D = [(7.071X10^{-4})^2 + (0.0020)^2]^{1/2}$$

$$e_p = \pm 0.00212 PSIA$$

5. Computing the total instrument repeatability uncertainty " em"

$$e_{M}^{R} = \frac{2400}{H} * \left[2 \left(\frac{0.00212}{63.0} \right)^{2} + 2 \left(\frac{0.0018}{544.7} \right)^{2} \right]^{\frac{1}{4}}$$

Therefore, for a 6 hour test,

E. COMPUTING TOTAL INSTRUMENT UNCERTAINTY

 $e_M = \pm 0.0191$ weight % / DAY for a 6 hour test.

APPENDIX E
BN-TOP-1, REV. 1 ERRATA

APPENDIX E

BN-TOP-1, REV. 1 ERRATA

The Commission has approved short duration testing for the IPCLRT provided the Station uses the general test method outlined in the BN-TOP-1, Rev. 1 topical report. The primary difference between that method and the ones previously used is in the statistical analysis of the measured leak rate data.

Without making any judgments concerning the validity of this test method, certain errors in the editing of the mathematical expressions were discovered. The intent here is not to change the test method, but rather to clarify the method in a mathematically precise manner that allows its implementation. The errors are listed below.

EQUATION 3A, SECTION 6.2

Reads: L = A + B t

Should Read: L = A + B t

Reason: The calculated leak rate (L_i) at time t_i is computed using the regression line constants A_i, B_i (computed using equations 6 and 7). The summation signs in equation 6 are

defined as $\Sigma = \Sigma$, where n is the number of data sets up until

new data set is received. The calculated leak rate is not a linear function of time.

PARAGRAPH FOLLOWING EQ. 3A, SECTION 6.2

Reads: The deviation of the measured leak rate (M) from the calculated leak rate (L) is shown graphically on Figure A.1 in Appendix A

and is expressed as:

Deviation = M - L

Should Read: The deviation of the measured leak rate (M_i) from the regression line (N_i) is shown graphically on Figure A:1 in Appendix A and is expressed as:

Deviation = M - Ni

where N = Ap + Bp " ti.

Ap, Bp = Regression line constants computed from all data sets available from the start of the test to the last data set at time tp,

t = time from the start of the test to the ith data set.

Reason:

The calculated leak rate as a function of time during the test is based on a regression line. The regression line constants, A, and B, are changing as each additional data set is received. Equation 3A is used later in the test to compute the upper confidence limit as a function of time. For the purpose of this calculation, it is the deviation from the last computed regression line at time t, that is important.

EQUATION 4, SECTION 6.2

Reads:

Should Read:

Reason:

Same As Above

EQUATION 5, SECTION 6.2

Reads:

Should Read:

Resson:

Same As Above

EQUATION ABOVE EQUATION 6, SECTION 6.2

Reads:

$$B = \frac{(t_i - \overline{t})(M_i' - \overline{H})}{\Sigma(t_i - t)^2}$$

Should Read:

$$B_i = \frac{\Sigma[(t_i - \overline{t})(H_i - \overline{H})]}{\Sigma(t_i - \overline{t})^2}$$

Reason:

Regression line constant B, changes over time (as a function of t) as each additional data set is received. Bar of "t" left out of denominator. Summation signs omitted.

EQUATION 6, SECTION 6.2

Reads:

$$B = \frac{\alpha \sum t_i M_i - (\sum t_i) (\sum M_i)}{\alpha \sum t_i^2 - (\sum t_i)^2}$$

Should Read:

$$B_i = \frac{a \sum t_i M_i - (\sum t_i) (\sum M_i)}{a \sum t_i^2 - (\sum t_i)^2}$$

Reason:

Same As Above

EQUATION 7, SECTION 6.2

EQUATION 10, SECTION 6 2

Reads:
$$A = \frac{(\Sigma H_i) (\Sigma t_i^2) - (\Sigma t_i) (\Sigma t_i H_i)}{\alpha \Sigma t_i^2 - (\Sigma t_i)^2}$$

Should Read:
$$A_i = \frac{(\Sigma H_i) (\Sigma t_i^2) - (\Sigma t_i) (\Sigma t_i M_i)}{\alpha \Sigma t_i^2 - (\Sigma t_i)^2}$$

EQUATION 13, SECTION 6.3

Reads:
$$\sigma^2 = s^2 \left[1 + \frac{1}{\alpha} + \frac{(t_p - t)^2}{(t_i - t)^2}\right]$$

Should Read:
$$\sigma^2 = s^2 \left[1 + \frac{1}{\alpha} + \frac{(t_p - \bar{t})^2}{2(t_i - \bar{t})^2}\right]$$

where t = time from the start of the test of the last data set for which the standard deviation of the measured leak rates (M_i) from the regression line (N_i) is being computed;

t = time from the start of the test of the ith data set;

a = number of data sets to time tp;

$$\Sigma = \sum_{i=1}^{n}$$
; and

Reason: Appears to be error in editing of the report.
Report does a poor job of defining variables.

EQUATION 14, SECTION 6.3

$$\sigma = \left[1 + \frac{1}{a} + \frac{(t_p - t_j)^2}{(t_i - t_j)^2}\right]$$

$$s \left[1 + \frac{1}{a} + \frac{(t_p - \overline{t})^2}{\Sigma (t_i - \overline{t})^2} \right]$$

Reason:

Same As Above

EQUATION 15, SECTION 6.3

Reads:

Confidence Limit = L ± T

Should Read:

Confidence Limits = L 2 T x o

where L = calculated leak rate at time to,

T = T distribution value based on n, the number of data sets received up until time t;

σ = standard deviation of measured leak rate values (M_i) about the regression line based on data from the start of the test until time t_p.

Resson:

Same As Above .

EQUATION 16, SECTION 6.3

Reads:

UCL = L + T

Should Read:

UCL = L + T # 0

Reason:

Same As Above

EQUATION 17, SECTION 6.3

Reads:

LCL = L - T

Should Read:

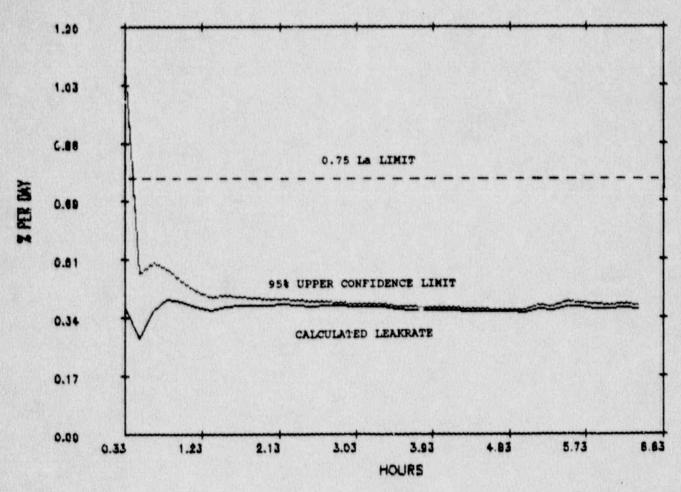
LCL = L - T + o

Reason:

Same As Above

APPENDIX F

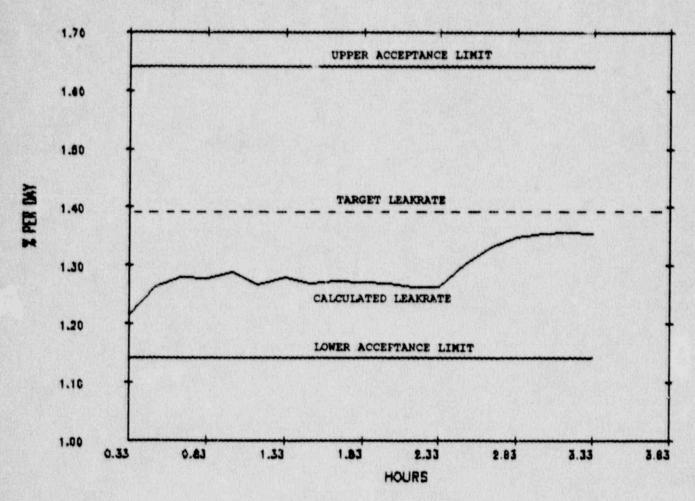
TYPE A TEST RESULTS USING MASS - PLOT METHOD MEASURED LEAK RATE PHASE


TYPE A TEST RESULTS USING MASS-PLOT METHOD MEASURED LEAK RATE PHASE

DATA SET #	DATA SET TIME DAY HH MM SS	TEST TIME, (HR)	DRY AIR MASS, (LBM)	LEAK RATE	95% UP CONF LIMIT, (%/D)
56	319 00:35:48	0.000	0.87912484E+05		
57	319 00:45:48	0.167	0.87911078E+05		
58	319 00:55:48	0.333	0.87907922E+05	0.3739E+00	0.1088E+01
59	319 01:05:48	0.500	0.87907750E+05	0.2844E+00	0.4718E+01
60	319 01:15:48	0.667	0.87903015E+05	0.3646E+00	0.5038E+01
61	319 01:25:48	0.833	0.87900422E+05	0.3963E+00	0.4876E+01
62	319 01:35:48	1.000	0.87899000E+05	0.3901E+00	0.4515E+01
63	319 01:45:48	1.167	0.87897437E+05	0.3762E+00	0.4230E+01
64	319 01:55:48	1.333	0.87895453E+05	0.3664E+00	0.4034E+01
65	319 02:05:48	1.500	0.87891515E+05	0.3766E+00	0.4075E+01
65	319 02:15:48	1.667	0.87889500E+05	0.3800E+00	0.4052E+00
67	319 02:25:48	1.833	0.87887484E+05	0.3801E+00	0.4008E+00
68	319 02:35:48	2.000	0.87885328E+05	0.3793E+00	0.3966E+00
69	319 02:45:48	2.167	0.87882234E+05	0.3824E+00	0.3974E+00
70	319 02:55:48	2.333	0.87881062E+05	0.3796E+00	0.3929E+00
71	319 03:05:48	2.500	0.87878797E+05	0.3776E+00	0.3893E+00
72	319 03:15:48	2.667	0.87875578E+05	0.3792E+00	0.3896E+00
73	319 03:25:48	2.833	0.87874078E+05	0.3779E+00	0.3872E+00
74	319 03:35:48	3.000	0.87872437E+05	0.3753E+00	0.3840E+00
75	319 03:45:48	3.167	0.87869219E+05	0.3755E+00	0.3833E+00
76	319 03:55:48	3.333	0.87867828E+05	0.3738E+00	0.3811E+00
77	319 04:05:48	3.500	0.87866890E+05	0.3699E+00	0.3775E+00
78	319 04:15:48	3.667	0.87865375E+05	0.3656E+00	0.3738E+00
79	319 04:25:48	3.833	0.87861703E+05	0.3647E+00	0.3722E+00
80	319 04:35:48	4.000	0.87858594E+05	0.3653E+00	0.3722E+00
81	319 04:45:48	4.167	0.87857391E+05	0.3643E+00	0.3707E+00
82	319 04:55:48	4.333	0.87856172E+05	0.3622E+00	0.3685E+00
83	319 05:05:48	4.500	0.87852875E+05	0.3619E+00	0.3677E+00
84	319 05:15:48	4.667	0.87851609E+05	0.3605E+00	0.3661E+00
85	319 05:25:48	4.833	0.87847750E+05	0.3612E+00	0.3664E+00
86	319 05:35:48	5.000	0.87848172E+05	0.3591E+00	0.7644E+00
87	319 05:45:48	5.167	0.87834375E+05	0.3682E+00	0.3784E+00
88	319 05:55:48	5.333	0.87843000E+05	0.3662E+00	0.3760E+00
89	319 06:05:48	5.500	0.87827031E+05	0.3759E+00	0.3891E+00
90	319 06:15:48	5.667	0.87837875E+05	0.3738E+00	0.3864E+00
91	319 06:25:48	5.833	0.87838219E+05	0.3701E+00	0.3825E+00
92	319 06:35:48	6.000	0.87835672E+05	0.3671E+00	0.3792E+00
93	319 06:45:48	6.167	0.87823172E+05	0.3714E+00	0.3836E+00

TYPE A TEST RESULTS USING MASS - PLOT METHOD INDUCED LEAK PHASE

DATA SET #	DATA SET TIME DAY HH MM SS	TEST TIME, (HR)	DRY AIR MASS, (LBM)	LEAK RATE	95% UP CONF LIMIT, (%/D)
103	319 08:25:48	0.000	0.87765844E+05		
104	319 08:35:48	0.167	0.87758297E+05		
105	319 08:45:48	0.334	0.87751000E+05	0.1215E+01	0.1316E+01
106	319 08:55:48	0.500	0.87742625E+05	0.1262E+01	0.1344E+01
107	319 09:05:48	0.667	0.87734656E+05	0.1280E+01	0.1325E+01
108	319 09:15:48	0.834	0.87727187E+05	0.1277E+01	0.1304E+01
109	319 09:25:48	1.000	0.87718734E+05	0.1288E+01	0.1311E+01
110	319 09:35:48	1.167	0.87712703E+05	0.1268E+01	0.1296E+01
111	319 09:45:48	1.334	0.87702984E+05	0.1280E+01	0.1305E+01
112	319 09:55:48	1.500	0.87697094E+05	0.1269E+01	0.1292E+01
113	319 10:05:48	1.667	0.87688109E+05	0.1273E+01	0.1291E+01
114	319 10:15:48	1.834	0.87680969E+05	0.1271E+01	0.1286E+01
115	319 10:25:48	0.000	0.87673453E+05	0.1268E+01	0.1281E+01
116	319 10:35:48	2.167	0.67666390E+05	0.1264E+01	0.1276E+01
117	319 10:45:48	2.334	0.87658125E+05	0.1263E+01	0.1273E+01
118	319 10:55:48	2.500	0.87639219E+05	0.1303E+01	0.1345E+01
119	319 11:05:48	2.667	0.87630922E+05	0.1332E+01	0.1378E+01
120	319 11:15:48	2.834	0.87623859E+05	0.1349E+01	0.1394E+01
121	319 11:25:48	3.000	0.87618172E+05	0.1354E+01	0.1395E+01
122	319 11:35:48	3.167	0.87610594E+05	0.1357E+01	0.1393E+01
123	319 11:45:48	3.334	0.87604031E+05	0.1355E+01	0.1388E+01


MASS PLOT LEAKRATES VS TIME

SOFTWARE ID NUMBER: GN01405-0.0

FIGURE F-1

MASS PLOT LEAKRATES VS TIME

SOFTWARE ID NUMBER: GN01405-0.0

FIGURE F-2