Return to: WMUR 461-55 Docket 20-8728

40-8728 PDR

JUL 0 7 1981

WMUR r/f
WMUR c/f
NMSS r/f
WM r/f
Mill file
IF % do (2)

IE & Hq (2) DMartin HPettengill

JLinehan

FRoss BFisher

RAScarano/REBrowning

JBMartin

WMUR: FWR 40-8728

MEMORANDUM FOR: Ross A. Scarano. Chief

Uranium Recovery Licensing Branch

THRU:

John J. Linehan, Section Leader Operating Facilities Section I

Uranium Recovery Licensing Branch

FROM:

Frederick W. Ross

Operating Facilities Section I Uranium Recovery Licensing Branch

SUBJECT:

GROUNDWATER QUALITY RESTORATION AND POST-RESTORATION MONITORING

PLANS AT TETON EXPLORATION DRILLING INC.'S LEUENBERGER SITE

R&D IN SITU URANIUM LEACH MINE

BACKGROUND

On June 1, 1980, Teton Exploration began restoration procedures on Test Pattern N-1 in the "N" ore zone. On April 30, 1980, the NRC was informed by letter that restoration would commence within sixty days (Attachment No. 1). The April 30, 1980 transmittal referenced the transmittal of October 23, 1979 for specific plans for groundwater restoration including restoration steps, projected schedules of activity, and plans for post-restoration monitoring (Attachment No. 2). Restoration criteria are also provided in this transmittal.

In November 1980, Teton completed restoration on Test Pattern N-1 and began a four month post-restoration stability monitoring program. In February, 1981, Teton filed a final restoration report with the DEQ demonstrating stability in Test Pattern N-1 at approximately background levels (Attachment No. 3). The four month stabilization period has been voluntarily extended by Teton and further restoration groundwater quality data will be supplied to the DEQ. Also, restoration of the "M" ore zone was initiated in February.

DISCUSSION

License Condition No. 15 requires the licensee to file with the NRC a specific plan for groundwater quality restoration at least sixty days prior to termination of

8108100412 810707 PDR ADOCK 04008728 PDR C PDR

Man annual section of the last		The factor of the latest section of the late	-		The Property of the Parks of th			
OFFICE	FRoss 5.27	000			***************************************		*********	***************************************
-FYRNAME >	FROSS	CLIV	nan					
10000	7/.6./81	>1/8	l	********		**********		

mining activites. The transmittal must include descriptions of restoration steps, projected schedules of activities and plans for post-restoration monitoring.

The October 23, 1979 transmittal from Teton to the NRC (Attachment No. 2) hardly constitutes specific plans for groundwater quality restoration and post-restoration monituring as required by License Condition 15. Furthermore, the April 30, 1980 transmittal (Attachment No. 1) notifying the NRC of the imminent restoration of Patter, N-1, did not give the required minimum sixty days notice. Teton is currently in the process of restoring the remaining three Test Patterns and have failed to give the proper notice or file restoration plans and post-restoration monitoring plans.

I have been in contact with Mr. Richard Appel, Teton's coordinator of permits and licensing, concerning Teton's shortcomings in this matter. He agreed to submit groundwater quality restoration plans and post-restoration monitoring plans for the N-2 and "M" ore zone test patterns. Subsequent correspondence between Mr. Appel and myself has not produced all the desired information stipulated by License Condition 15. The final restoration report on Test Pattern N-1 (Attachment No. 3), although submitted after the fact in support of their commercial scale application, does a more than adequate job of detailing restoration and post-restoration monitoring efforts for that pattern only.

In conclusion, I feel that in the past much of this problem was brought about by confusion on the part of Teton in interpreting their license, and by Teton attempting to deal only with the DEQ and ignoring NRC requirements. At present, I feel that Mr. Appel, although more than cooperative, does not fully appreciate the necessity of meeting the exact letter of each license requirement.

PROPOSED COURSE OF ACTION

I propose that a letter be sent to Tetch (1) citing the requirements of License Condition No. 15 and listing specific information required to meet those requirements and (2) stressing the importance of meeting all dates or time frames specified in the license.

License Condition No. 15 also holds Teton to the post-restoration monitoring program described on page IV-5 of the Environmental Report calling for a four month post-restoration stability period. It is generally accepted by the NRC staff and the Myoming DEQ that a four month stability period is not long enough to reasonably insure permanent restoration. Therefore, I propose that Source Material License SUA-1373 be amended changing License Condition 15 to include post-restoration monitoring plans for all test patterns that will meet current standards. In making these changes, the entire license condition should be rewritten cleaning up ambiguous language and terms of the condition.

Original Signed By:

Frederick W. Ross

				Facilities Se		
DFFICE	75741744741772442-17441X	 *************		f Waste Manag	Control of the contro	
SURNAME >	***************************************	 		*****************	****************	***********
DATE	***************	 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****************	*****************	

ANO CY

UNC TETON EXPLORATION DRILLING, INC.

unc

Subsidiary of United Nuclear Corporation

AUNC RESOURCES Company

PO Drawer A-1 Casper, Wyoming 82602 Telephone 307/265-4102

Mist Section

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

April 30, 1980

Mr. Ross Scatano
Uranium Recovery Licensing Branch
Division of Waste Management
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

Dear Mr. Scarano:

RE: Source Material License SUA-1373
Docket Number 040-872

Pursuant to Stipulation 15 of the referenced License, Teton-Nedco hereby notifies the NRC that ground water restoration may begin within 30 to 60 days in the N Aquifer at the Leuenberger site. As specified in our approved License Application, leach solution injection and mining activities will continue in the M Aquifer while restoration takes place in the N Aquifer.

The specific plan for ground water restoration, restoration steps, the projected schedule of activity and plans for post restoration monitoring are referenced in an October 23, 1979 transmittal to Mr. Ron Kaufman of the US NRC.

Should you have any questions, please do not hesitate to call.

Sincerely,

UNC TETON EXPLORATION DRILLING, INC.

Dan Herlihy Solution Mining Dept.

DH: fne

Attachment No. 2

Dan Herlihy Teton Exploration Drilling Co. P. O. Drawer A-1 Casper, Wyoming 82601

23 October 1979

Mr. Ron Kaufmann U.S. NRC . Mail Stop 905 SS Washington, D. C. 20555

Dear Ron:

Re: Docket 40-8728

Attached please find a copy of the TETON-NEDCO application for a Research & Development Testing License submitted to and approved by the Wyoming Department of Environmental Quality (DEQ). The R&D License number for our approved DEQ License is 2 RD. A copy of the License is also attached. This License authorizes TETON-NEDCO to proceed with all phases of the R&D test subject to the conditions listed in the attached license.

The DEQ application is submitted to the NRC as a reference in the review of the TETON-NEDCO application for Source Material License. Section III.3.5 (Leach Solution Excursion) of the DEQ application supercedes Section III.3.5. of the ER submitted to the NRC, Section IV (Reclamation) of the DEQ application supercedes Section IV of the NRC ER. For your immediate reference, I have attached Table IV-1.02 (Ground Water Restoration Goals for R&D Test) of the DEQ application. This Table supercedes Table IV.1.01 of the presently submitted NRC ER and should answer comment 4(h) of the 10/22/79 NRC comments concerning our Source Material License application.

In reference to comment 4(a) of the 10/22/79 NRC comments requesting a schedule for the Testing operation, the proposed testing schedule is as follows:

25025 add 1 m/s

Des: 8001310068

Mr. Rcn Kaufmann 23 October 1979 Page 2

Days	After Operation Commences	Activity
	0	Begin mining in N&M production zones
	60	Complete mining in M zone
	60	Begin restoration in M zone
	90	Complete mining in N zone
	90	Begin mining in second pattern in N Zone
	100	Complete restoration in M zone
	100	If needed begin mining in second pattern in M zone
	150	Complete mining in second pattern in N zone
	150	Begin restoration of both patters in N zone
	160	Complete mining in second pattern of M zone
	160	Begin restoration of second patern of M zone
	210	Complete all ground water restoration
	210	Implement surface reclamation
	365	Complete reclamation

If you have any questions concerning the above, please contact me at your earliest convenience.

Sincerely,

Dan Herliny Solution Mining Department

DH:sfs

Attachments

Ground Water Restoration Goals for R & D Test (All units in mg/l except as noted.)

Chemical Parameter	M Aquifer Restoration Goal	N Aquifer Restoration Goal
рН	5.0-9.0	5.0-9.0
Ammonia (NH ₃)	.5	.5
NC2/NO, Total	1,	1,
Bicarbonate	TDS	TDS
Carbonate	TDS	TDS
Calcium	TDS	TDS
Chloride	250	250
Boron	1	1
Fluoride	1.4 to 2.4	1.4 to 2.4
Magnesium	TDS	TDS
Potassium	TDS	TDS
Sodium	TDS	TDS .
Sulfate	250	250 .152
Aluminum	.332	.152
Arsenic	.05	.05
Barium	1.0	1.0
Cadmium	.01	.01
Chromium	.05	.05
Copper	1.0	1.0
Iron	.73	.30
Lead ,	.053	.05
Manganese	.063	.053
Mercury	.001	.013
Molybdenum.		.07
Nickel	1.03	1.0
Radium 226	236.5	208.3
Selenium	01	.01
Uranium	5	5
Vanadium	.34	.21
Zinc	5 500	5543
TDS	300	334-

- The concentration of this parameter shall be at a level such that the restoration concentration for TDS is not exceeded. There is no known recommended Public Water Supply criteria for this parameter.
- No Public Water Supply Criteria exists. Average values shown are determined from wells PN5-L301, PN5-L306, and PN5-L308 in M Aquifer and wells PN5-L302, PN5-L312, PN5-L317, PN5-572, PN5-L573, PN5-L574 in N Aquifer.
- Baseline value (Table II.6.04) exceeds Public Water Supply Criteria. Average values shown are determined from wells PN5-L301, PN5-L306, & PN5-L308 in M Aquifer and wells PN5-6302, PN5-L312, PN5-6317, PN5-572, PN5-L573, PN5-L574 in N Aquifer.

Attachment No. 3

APPENDIX D-6.5

GROUND WATER RESTORATION REPORT

The Research and Development Testing plan approved by the DEQ-LQD under the R&D Testing License 2RD calls for a demonstration of ground water restoration after the in situ uranium leaching phase of the Leuenberger operation. Details concerning the R&D operation at the Leuenberger Site can be referenced in the R&D Testing License Application 2RD.

The ground water restoration demonstration effort at the Leuenberger Site was conducted in the Pattern 1 of the N Well Field Area. Pattern 1 consists of well NR-1, four surrounding injection wells, and the process observation well 317. These wells are shown on Figure 1 and are located on the northwest side of the N Well Field Area. During May and June, 1980, additional injection-recovery wells were installed in the southeast portion of the N Well Field Area in keeping with the approved R&D Testing plan. These wells are also snown on Figure 1.

Mining commenced for Pattern 1 in the N Well Field Area on January 22, 1980, and continued through May 31, 1980. The ground water restoration effort commenced on June 1, 1980, and ground water restoration was achieved using five steps. Ground water samples were collected and analyzed at the end of each step. The chemical results for each step are listed in Table 1 along with the volume of ground water recovered, injected and/or discharged to the solar evaporation ponds during each step of the restoration effort. A summary of the procedure used to achieve ground water restoration is provided below.

GROUND WATER RESTORATION PROCEDURE

Step 1 6/1/80 through 7/12/80

Ground water circulation with no oxidant or leachant addition. This step was conducted to remove residual UO2 + left in the formation after leaching. The pattern was shut down from 7/13/80 through 8/9/80 so that several pumping tests could be conducted for commercial application purposes.

Step 2 8/10/80 through 8/18/80

In an effort to reduce the chemical constituents in the N zone to be restored, water from Pattern 1 of the N Well Field Area was commingled with fresh water from a new pattern installed in the M Well Field Area. The commingled water was continually recycled back to the N & M Well Field Areas. Pumping problems were experienced in the M field and this step was terminated before a fifty (50) percent reduction in chemical constituents from the N zone was realized.

TABLE 1

ANALYTICAL TRENDS FOR N ZONE RESTORATION

(Units in mg/l except as noted)

Date 1980	June 1	Aug. 9	Aug. 18	Sept. 19	Oct. 21	Nov. 6
Step che	end of mical additi	ion 1	2	3	4	5
U308	28.4	6.8	3.9	3.2	3.0	2.9
C1 ⁻	52	44	26	15	16	10
нсо3	1,342	936	672	444	432	312
so ₄	461	391	316	266	286	292
COND (µmhos/cm)	2,010	1,480	1,135	875	1,040	885
rds	2,500		1,066			585
Gallons Recovery	6,218,640	1,860,927	601,770	1,501,192	862,481	691,699
(pore volume- recovered)*	(47.72)	(14.28)	(4.62)	(11.52)	(6.62)	(5.31)
Gallons Injected	6,045,630	1,785,289	589,200			
(pore volume injected)	(46.39)	(13.70)	(4.52)			
Gallons bleed	173,100	75,638	12,570	1,501,192	862,481	691,699
(pore volume bleed)	(1.32)	(.58)	(.10)	(11.52)	(6, 62)	(5.31)
Total Recov	ery During	Restoration Restoration		518,069 ga 374,489	11. = 42.34 = 18.22	pore volumes
Net Sweep			3,	143,580	= 24.12	pore volumes
Total Recov	ery Dufing N	Minirg		219,640	= 47.71	pore volumes

6,045,630

173,010

= 46.39 pore volumes

= 1.32 pore volumes

Total Injected During Mining

2.78%

Net Bleed

^{*} I pore volume = .4 acre-ft = 130,332 gallons (See page IV-5b of R&D application) D-6.297

Step 3 8/21/80 through 9/17/80

Ground water sweep commenced by pumping NR-1 at approximately 40 gpm and discharging the water directly to the solar evaporation ponds.

Step 4 9/26/80 through 10/21/80

Continue ground water sweep by pumping NI-3.

Step 5 10/21/80 through 11/1/80

Continue ground water sweep by pumping NI-1. Ground water restoration is achieved.

Step 6 11/7/80 through 3/7/81

Stability demonstration period. Samples are collected over a four-month period to demonstrate chemical stability after achieving ground water restoration.

Water samples were collected and analyzed for major and trace elements from five wells within and adjacent to Pattern 1 of the N zone prior to leach solution injection. Table 2 lists the wells sampled and the analytical results. Post-leaching chemical samples have been collected from the same wells at the end of Step 5 and on a monthly basis thereafter. These results are given in Tables 3, 4 and 5. A summary of pre-testing and post-testing analytical data is provided in Table 6 along with the recently promalgated Myoming DEQ ground water quality standards for livestock.

As illustrated in Table 6, the restoration water is very similar to the pretesting water quality. A less than 10% change in TDS is observed between the restoration water and the pretesting quality. This is attributable to the residual baking soda (NaHCO3) left underground after mining. Baking soda is used to complex with the uranium during the leaching process.

Baking soda or NaHCO3 is not considered toxic, however, the slight increase in TDS is offset by the reduction in Vanadium from above livestock standards in the pretesting water to below livestock standards after ground water restoration. The result is that fewer parameters exceed livestock standards after ground water restoration than before mining commenced.

The results of the ground water restoration effort suggest that restoration of the ground water to a quality of use consistent with the uses for which the ground water was suitable prior to mining can be achieved.

TABLE 2

PRETESTING WATER QUALITY FOR PATTERN 1 OF N'ZONE

Wells Number	317	572	573	574	NR-1
pH (Units)	7.56	8.57	7.88	8.01	7.78
Ammonia (NH3 as N)	.09	.07	10	.10	1.00
Total NO2/NO3 (as N)	.03	.37	.05	.04	1.80
Bicarbonate (HCO3)	191.20	116	164.50	199	192
Carbonate (CO3)	0	8.50	0	0	0
Calcium (Ca)	96.60	58.50	77.50	98.33	134
Chloride (C1)	8	73.33	16	18	4.4
Boron (B)	.01	.01	.01	.01	.05
Fluoride (F)	.47	.42	.57	.56	.30
Magnesium (Mg)	23.60	22.50	21.50	22.33	3.10
Potassium (K)	11.60	95.50	19.50	18.67	9.2
Sodium (Na)	29	45	32	33	29
Sulfate (SO ₄)	233	208.67	236	229.33	255
Aluminum (Al)	.11	.01	.05	.07	.1
Arsenic (As)	.01	.01	.01	.01	.01
Barium (Ba)	. 03	.08	.04	.03	.05
Cadmium (Cd)	0	.02	0	0	.05
Chromium (Cr)	.01	.06	.01	/01	.05
Copper (Cu)	.02	.03	.01	.01	.05
Iron (Fe)	.22	.07	.02	.10	.58
Lead (Pb)	.01	.01	.01	.01	.05
Manganese (Mn)	.05	.01	.05	.03	.05
Mercury (Hg)	.00163	.0575	.0005	.0005	.00
Molybdenum (Mo)	.05	.08	.05	.05	.1
Nickel (Ni)	.02	.04	.02	.02	.05
Radium 226 (Ra) pCi/1	593.25	61	28.1	23.55	219.2
Selenium (Se)	.01	.01	.01	.01	.01
Franium (U)	1.78	.77	.03	.01	.1
Vanadium (V)	.05	.05	.05	.05	.05
line (2n)	.01	.04	.01	.01	.05
ros	513.4	581.67	529.33	476	548

. All data in mg/l except as noted.

List

TABLE 2

PRETESTING WATER QUALITY FOR PATTERN 1 OF N'ZONE

Wells Number's	317	372	573	574	NR-1
pH (Units)	7.56	8.57	7.88	8.01	7.78
Ammonia (NH ₃ as N)	.09	.07	10	.10	1.00
Total NO /NO (as N)	.03	.37	.05	.04	1.80
Bicarbonate (HCO ₃)	191.20	116	164.50	199	192
Carbonate (CO,)	0	8.50	0	0	0
Calcium (Ca)	96.50	58.50	77.50	98.33	134
Chloride (C1)	8	73.33	16	18	4.4
Boron (B)	.01	.01	.01	.01	.05
Fluoride (F)	.47	.42	.57	.56	.30
Magnesium (Mg)	23.60	22.50	21.50	22.33	3.10
Potassium (K)	11.60	95.50	19.50	18.67	9.2
Sodium (Na)	29	45	32	33	29
Sulfate (SO ₄)	233	208.67	236	229.33	255
Aluminum (Al)	1.17	.01	.05	.07	.1
Arsenic (As)	.01	.01	.01	.01	.01
Barium (Ba)	.03	.08	.04	.03	.03
Cadmium (Cd)	0	.02	0	0	.05
Chromium (Cr)	.01	.06	.01	,01	05
Copper (Cu)	.02	.03	.01	.01	.05
Iron (Fe)	.22	.07	.02	.10	.58
Lead (Pb)	.01	.01	.01	.01	.05
Manganese (Mn)	.05	.01	.05	.03	.05
Mercury (Hg)	.00163	.0575		.0005	.001
Molybdenum (Mc)	.05	.08	.05	.05	.1
Nickel (Ni)	.02	.04	.02	.02	.05
Radium 226 (Ra) pCi/1	593.25	61	28.1	23.55	219.2
Selenium (Se)	.01	.01	.01	.01	.01
Pranium (U)	1.78	.77	.03	.01	.1
/anadium (V)	.05	.05	.05	.05	.05
linc (Zn)	.01	.04	.01	.01	.05
ros	513.4	581.67	529.33	476	548

. All data in mg/l except as noted. .

1,4 1

TABLE 3

NOVEMBER 1980 WATER QUALITY FOR PATTERN 1 OF N ZONE

We St	X 313	572	1 573	17 571	7
Lab	Teton	Teton	Suton		1
Job Date Sampled	1946	1964	1965	1 1978	1945
Dato Analyzed	11-12-80	11-11-80		0 11-12-	80 11- 7-80 80 11-10-80
pH (Units)	7.8	8	8	7.90	7.8
Ammonia (NH ₃ as N)	<.1	.16	<.1	.21	<.1
Total NO2/NO3 (as %)	.16	.15	.16	.20	.23
Bicarbonate (HCO3)	190	180	193	256	220
Carbonate (CO3)	0	C	0	0	0
Calcium (Ca)	86	98	94	96	91
Chloride (C1)	6	3	5	8	8
Boron (B)	<.25	<.25	<.25	<.25	.25
Fluoride (F)	.42	.42	.44	. 29	.29
Magnesium (Mg)	28	19	23	29	18
Potassium (K)	12.5	15.7	11.7	13.8	11.7
Sodium (Na)	40	37	31	49	58
Sulfate (SO ₄)	257	273	257	275	269
Aluminum (Al)	<.05	<.05	<.05	.07	<.05
Arsenic (As)	<.005	<.005	<.005	<.005	
Barium (Ba)	<.1	<.1	<.1	<.1	<.1
Cadmium (Cd)	<.01	<.01	<.01	<.01	<.01
Chromium (Cr)	<.05	<.05	<.05	<.05	<.05
Copper (Cu)	<.05	<.05	<.05	<.05	<.05
Iron (Fe)	1.5/	<.05	.59	.32	.57
Lead (Pb)	<.05	<.05	<.05	<.05	.07
hanganese (Mn)	.07	<.05	<.05	.07	<.05
Mercury (Hg)	<.001	<.001	<.001	<.001	<.001
Molybdenum (Mo)	<.1	<.1	<.1	<.1	<.1
Nickel (Ni)	<.05	<.05	<.05	<.05	<.05
Radium 226 (Ra) pCi/1	775	89	6.10	55	337
Selenium (Se)	<.005	<.005	<.005	<.005	.019
Dranium (U)	1.20	<.1	<.1	.7	1.1
/anadium (V)	<.1	<.1	<.1	·.1	<.1
Zinc (Zn)	<.05	<.05	<.05	<.05	<.05
ros	553 5	65		636	585

Al! data in mg/l except as noted.

TABLE 4

DECEMBER 1980 WATER QUALITY FOR PATTERN 1 OF N ZONE

Well Lab Jot No. Date Sampled Data Analyzed	317 Teton 2163 12-10-8	2138	2127	2136	2259
Jaca Malyzed	12-11-8	0 12-10-8	12-10-8	12-10-8	0 12-24-80
pH (Units)	6.80	8.40	7.80	8	6.80
Ammonia (NH3 as N)	.24	<.1	.13	.15	<.10
Total NO2/NO3 (as N)	.14	.17	.24	.19	<.1
Bicarbonate (NCO3)	205	156	195	276	232
Carbonate (CO3)	0	24	0	0	0
Calcium (Ca)	88	85	89	95	92
Chloride (C1)	4	4	4	8	4
Boron (B)	< .25	< .25	< .25	< .25	< .25
Fluoride (F)	.42	.44	.45	.29	
Magnesium (Mg)	39	19	20	23	.27
Potassium (K)	12	14	9.50	11.50	18.60
Sodium (Na)	42	36	35	48	12.90
Sulfate (SO ₄)	251	252	250	241	56
Aluminum (Al)	< 1.05	<.05	< .05	< .05	276
Arsenic (As)	<.005	<.005	<.005		<.05
Barium (Ba)	<.1	<.1	5.1	<.1	<.007
Cadmium (Cd)	<.01	<.01	<.01		<.1
Chromium (Cr)	< .05	<.05	<.05	< .01	1.01
opper (Cu)	<.05	<.05	<.05	< .05	5.08
ron (Fe)	1.88	.05	.2	< .05	<.05
ead (Pb)	<.05	<.05	<.05	< .05	.66
anganese (Mn)	.08	<.05	<.05	<.0=	<.05
ercury (Hg)	<.001	<.001	-	<.05	.16
olybaenum (Mo)	<.1	<.1	<.001	<.001	<,001
ickel (Ni)	<.05	<.05	<.1	<.1	<.1
adium 226 (Ra) pCi/1	The second second second second	74	<.05	<.05	<.05
elenium (Se)	<.005	<.005	7.80	35	
ranium (U)	.80		<.005	<.005	<.005
unadium (V)	<.1	<.1	<.1	.60	.8
ne (2n)	<.05	<.1	<.1	<.1	<.1
-		<.05	<.05	<.05	.01

All data in mg/l except as noted.

2 m 12

TABLE 4

DECEMBER 1980 WATE. QUALITY FOR PATTERN 1 OF N 20:1E

Well Lab Job No.	317 Tetor			n Teto	n NR-1 Tetor
Date Sampled	2163		21 27.2	7	
Data Analyzed	12-11-8	10 12-10-8	12-10-	80 12-08- 80 12-10-	80 12-23-80 80 12-24-80
pH (Units)	6.80	8.40	7.80	8	6.80
Ammonia (NH ₃ as N)	.24	<.1	.13	.15	<.10
Total NO2/NO3 (as N)	.14	.17	.24	.19	<.1
Bicarbonate (HCO3)	205	156	195	276	232
Carbonate (CO ₃)	0	24	0	0	0
Calcium (Ca)	88	85	89	95	92
Chloride (C1)	4	4	4	8	1 4
Soron (B)	< .25	< .25	< .25	< .25	< .25
'luoride (F)	.42	.44	.45	.29	.27
Magnesium (Mg)	39	19	20	23	18.60
otassium (K)	12	14	9.50	11.50	12.90
odium (Na)	42	36	35	48	56
ulfate (SO ₄)	251	252	250	241	276
luminum (A1)	< :05	< .05	<.05	< .05	< .05
rsenic (As)	< .005	< .005	<.005	< .005	
arium (Ba)	<.1	<.1	<.1	< .1	<.007 <.1
admium (Cd)	<.01	<.01	<.01	< .01	<.01
hromium (Cr)	<.05	< .05	<.05	< .05	
opper (Cu)	<.03	<.05	<.05	< .05	< .05
con (Fe)	1.88	.05	. 2	< .05	< .05
ead (Pb)	< .05	<.05	<.05	< .05	.66
inganese (Mn)	.08	<.05	< .05	< .05	<.05
rcury (Hg)	<.001	<.001	<.001	< .001	.16
lybdenum (Mo)	<.1	<.1	<.1	<.1	<.001 <.1
ckel (Ni)	<.05	< .05	<.05	<.05	
dium 226 (Ra) pCi/1	721	74	7.80	35	<,05
lenium (Se)	<.005	<.005	<.005	< .005	
anium (U)	.80	<.1	<.1		<.005
nadium (V)	<.1	<.1	<.1	<.1	8
ne (Zn)	<,05	<.05	<.05		<u> </u>
5			557	626	.01

All data in mg/1 except as noted.

2 10 14.

TABLE 5

JANUARY 1981 WATER QUALITY FOR PATTERN 1 OF N ZONE

-	-	N AUNE			
Well Lab Job No. Date Sampled Date Analyzed	317 Teton 2344 1-13-81 1-15-81	572 Teton 2355 1-15-81 1-16-81	573 Teton 2356 1-15-81 1-16-81	574 Teton 2342 1-13-81 1-15-81	NR-1 Teton 2422 1-26-81 1-27-81
pH (Units)	6.78	7.37	7.88	7.58	7.36
Ammonia (NH ₃ as N)	.28	<.1	<.1	.13	.24
Total NO2/NO3 (as N)	-10	<.1	.1	<.1	<.1
Bicarbonate (HCO3)	200	1/6	195	254	244
Carbonate (CO3)	0	0	0	0	0
Calcium (Ca)	95	91	94	95	93
Chloride (C1)	5	8	6	6	5
Boron (B)	<.25	<.25	<.25	<.25	<.25
Fluoride (F)	.27	.44	.46	.20	.19
Magnesium (Mg)	22.60	19.40	21.90	23.80	21.80
Potassium (K)	11.50	15.50	11	12.30	10
Sodium (Na)	40	35	30	45	66
Sulfate (SO _A)	260	256	264	1263	278
Aluminum (Al)	<.05	<.05	<.05	<.05	<.05
Arsenic (As)	<.005	<.005	<.005	<.005	.009
Barium (Ba)	.10	.12	.22	<.1	<.1
Cadmium (Cd)	<.01	<.01	<.01	<.01	<.01
Chromium (Cr)	<.05	<.05	<.05	<.05	<.05
Copper (Cu)	<0.5	<.05	<.05	<.05	<.05
Tron (Fe)	.42	.21	.09	.08	.9
Lead (Ph)	< .05	.06	<.05	<.05	<.05
Manganese (Mn)	.09	<.05	.05	.05	.06
Mercury (Hg)	< :001	<.001	<.001	<.001	<.001
Molybdenum (**)	< .1	<.1	<.1	<.1	<.1
Nickel (Ni)	< .05	<.05	<.05	<.05	<.05
Radium 226 (Ra) pCi/I					•
Selenium (Se	< .005	<.005	<.005	<.005	<.007
Uranium (U)	.90	<.1	<.1	.7	.8
Vanadium (V)	<.1	<.1	<.1	<.1	<.1
7inc (Zn)	<.05	<.05	<.05	<.05	<.05
TOS	586	547	547	613	616

All data in mg/l except as noted.

^{*} Not available at this time.

TABLE 6

WATER QUALITY SUMMARY

N ZONE

PATTERN 1

	QUALITY	DEQ LIVESTO STANDARDS	November 100			
	And the second s	STD	Mean STD	DECEMBER'80 Mean STD	JANUARY '8: Mean STD	
ph (Units)	8.0 ±	,38	7.9 ± .1	7.6 ± .7	T	
Ammonia (NH ₃ as N)	.27 ±	.41	.11 2 .03		7.4 ± ;4	
Total NO2/NO3 (as N)	.45 ±	.76 100	.18 ± .03		<.1 ± 0	
Bicarbonate (HCO ₃)	172.5 ± 34	1.2	207.8 ± 30.7	212.8 ±44.6	213.8 ± 33.5	
Carbonate (CO ₃)	1.7 ± 3	8.8	0 ± 0	4.8 ±10.7	0 ± 0	
Calcium (Ca)	93 ± 28		93 ± 4.7	90 ± 3.8		
Chloride (C1)	23.9 ± 28	3.2 2,000	6 ± 2.12	1	****	
Boron (B)	.02 ±	.02 5	<.25 ± 0	<.25 ± 0	1	
Fluoride (F)	.46 ±	.11	.37 ± .08		< .25 ± 0	
Magnesium (Mg)	18.6 ± 8	.7	23.4 ± 5.03	23.9 ± 8.6	.31 ± .13	
Potassium (K)	30.9 ± 36	.4	13.1 ± 1.7	12.0 ± 1.7	21.9 ± 1.6	
Sodium (Na)	33.6 ± 6	.6	43.8 ± 9.6	43.4 ± 8.8	12 ± 2.1	
Sulfate (SO _A)	246.4 ± 33	.9 3,000	266.2 ± 8.7	254 ±13	43.2 ± 13.9	
Aluminum (A1)	.07 ±	.04 5	<.05 ± .01	<.05 ± 0	264.2 ± 8.3	
Arsenic (As)	.01 ± 0	.2	<.005 ± 0		<.05 ± 0	
Barium (Ba)	.05 ±	.02	<.1 ± 0	<.005± 0	.006 ± .003	
Cadmium (Cd)	.01 ±	.02 .05	<.01 ± 0	<.01 ± 0	.13 ± .05	
Chromium (Cr)	.03 ±	.02 .05	<.05 ± 0	<.01 ± 0	<.01 ± 0	
Copper (Cu)	.02 ±	.02 .5	<.05 ± 0	<.05 ± 0	<.05 ± 0	
Iron (Fe)		.23		<.05 ± 0	<.05 ± 0	
ead (Pb)		.02 .1	131	.57 ± .77	.48 ± .36	
Manganese (Mn)		.02		<.05 ± 0	-05 ± .004	
Mercury (Hg)		.02 .0005		.08 ± .05	× .21/ + 0 1/33	
olybdenum (Mo)		.02	<.001 ± 0	<.001± 0	601 ± 0	
Nickel (Ni)		.01	<.1 ± 0	<.1 ± 0	<.1 ± 0	
adium 226 (Ra) pCi/1	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN	5	<.05 ± 0	<.05 ± 0	<.05 ± 0	
elenium (Se)	.01 ± 0		252.42 ±318	309 ±316*		
ranium (U)	FULL BUILDING	.05	.008 ± .006	<.005± 0	<.005 ± 0	
anadium (V)			.64 ± .53	.48 ± .36	.52 ± .39	
inc (2n)			<.1 ± 0	<.1 ± 0	<.1 ± 0	
DS .	106 2	02 25	<.05 ± 0	.04 ± .02	<.05 . 0	

All data in mg/l except as noted.

^{*} All data not available at this time.

TABLE 6

WATER QUALITY SUMMARY

N ZONE

PATTERN 1

	PRETESTING WATER OUALITY	WYOMING DEQ LIVESTOCE STANDARDS			
	Mean STD	STANDARD	NOVEMBER '80 Mean STD	DECEMBER'80 Mean STD	Mean STD
pH (Units)	8.0 ± .38		7.9 ± .1	7.6 ± .7	7.4 = :4
Ammonia (NH ₃ as N)	.27 ± .41		.11 ± .03	.14 ± :06	.17 ± .08
Total NO2/NO3 (as N)	.46 ± .76	100	.18 ± .03	.17 ± .05	<.1 ± 0
Bicarbonate (HCO3)	172.5 ± 34.2		207.8 ± 30.7	212.8 ±44.6	213.8 ± 33.5
Carbonate (CO ₃)	1.7 ± 3.8		0 ± 0	4.8 ±10.7	0 ± 0
Calcium (Ca)	93 ± 28	12 401 40	93 ± 4.7	90 ± 3.8	94 . ± 1.7
Chloride (C1)	23.9 ± 28.2	2,000	6 ± 2.12		6 ± 1.2
Boron (B)	.c2 ± .02	5	<.25 ± 0	<.25 ± 0	< .25 ±)
Fluoride (F)	.46 ± .11		.37 ± .08	37 ± .09	
Magnesium (Mg)	18.6 ± 8.7		23.4 ± 5.03	23.9 ± 8.6	
Potassium (K)	30.9 ± 36.4	Market Sale	13.1 ± 1.7	12.0 ± 1.7	1
Sodium (Na)	33.6 ± 6.6		43.8 ± 9.6	43.4 ± 8.8	
Sulfate (SO,)	246.4 ± 33.9	3,000	266.2 ± 8.7	254 ±13	43.2; ± 13.9
Aluminum (Al)	.07 ± .04	5	<.05 ± .01	<.05 ± 0	264.2 ' ± 8.3
Arsenic (As)	.01 ± 0	.2	<.005 ± 0	<.005± 0	<.05' ± 0
Barium (Ba)	.05 ± .02	Programme and the second	<.1 ± 0		.006 2 .002
Cadmium (Cd)	.01 ± .02	.05	<.01 ± 0	<.01 ± 0	.13 ± .05
Chromium (Cr)	.03 ± .02	.05	<.05 ± 0	<.01 ± 0	<.01 ± 0
Copper (Cu)	.02 ± .02	.5		<.05 ± 0	<.05 ± 0
Iron (Fe)	.20 ± .23			<.05 2 0	<.05 ± 0
Lead (Pb)	.02 ± .03	.1	.62 ± .57	.57 ± .77	.48 ± .36
Manganese (Mn)	.04 ± .02			<.05 ± 0	-050 ± .004
Mercury (Hg)	.01 ± .02	0005	.0€ ± .01	.08 ± .05	× .21/ ± 0 1/33
Molybdenum (Mo)	.07 ± .02	.0005	<.001 ± 0	<.001± 0	601 ± 0
Nickel (Ni)			<.1 ± 0	<.1 ± 0	<.1 ± 0
Radium 226 (Ra) pCi/l	NAME AND POST OF THE OWNER, WHEN PERSONS NAMED IN COLUMN 2 IS NOT THE OWNER, THE OWNER, THE OWNER, THE OWNER,		<.05 ± 0	<.05 ± 0	<.05 ± 0
Selenium (Se)			252.42 ±318	309 ±316*	•
Uraniva (U)		.05	.008 ± .006	<.0059 0	1.005 ± 0
Vanadium (V)	.54 ± .75	5	.64 ± .53	.48 ± .36	.52 ± .39
Zinc (Zn)	.14 ± .20	.1	<.1 ± 0	<.1 ± 0	<.1 ± 0
	.02 2 .02	25	<.05 ± 0	.04 ± .02	<.05 ± 0
	530 ± 39	5,000	577 ± 36	584 ±29	382 ± 34

All data in mg/1 except as noted.

^{*} All data not available at this time.