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ABSTRACT

Results of droplet size distributions are reported for varying
conditions of air-water flow and conduit geometry. Geometry variations were
open pipe and the pipe containing simulated nuclear rod bundles with various
support structures.

The experimental tests showed the gas velocity to be the primary
variable influencing droplet size. The Hinze (1949) expression generally
predicted the effective droplet size as a function of lower gas velocities.
The Hinze (1949) correl.tion, however, showed the droplet size as a function

of u 2. The exponent (2) appeared to he too high.

! At higher gas velocities, the Hinze (1949) correlation failed and
this appeared to indicate a change in the oreakur mechanism for the higher
gas velocities.

The droplet size change with respect to changes in geometry and mix-

ture quality was small. It fell in the general range of the uncertainty for

the data.
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DROPLET DISTRIBUTIONS IN OPEN PIPES AND SIMULATED ROD BUNDLES

INTRODUCTION

This report summarizes a study to determine dreplet sizes and geo-
metric positi ns with respect to variables in gas velocity and geometry,
including open pipes and simulated rod bundles. The fluids were air and watev
and the droplet data were obtained by means of axial photography. Complete
details of the project may be found in the final NRC report dated July 1980.

Single and double camera flow loops were applied as shown in Figs. ]
and 2. In the cingle camera loop, the photographs were at approximately focal
length from the camera, at the exit of the rod bundle. This loop had the
advantage of an entrance length of at least 50 uiameters. The double camera
flow 1rop shown in Fig. 2 provided photographs both at the rod bundle entrance
and at the exit. However, it had a very short entrance length which was
necessitated by the geometry requirements and the focal length of the cameras.
Fig. 3 shows the rod bundle with the grid installed in the tube of approxi-
mately 2-inch inside diameter. In addition to this geometry, tests were run
on rod bundles without the grid (the rods were held in place by small pins
to provide minimum fiow disturbance), and data were obtained additionally for
2-inch open ‘ubes and for 1-1/4-inch open tube runs.

For each run conditfon of fixed gas velocity, fluid quality, and geo-
metrical arrangement, droplets were recorded by size and radial position.
These droplet data were placed on computer cards to provide capability for
analysis of the size and geometrical distributions with respect to the experi-

mental variables of gas velocity and geometry. The total range of gas velocity



was approximatily 7 to 22 m/s. The simulated rod bundles were, however, in

a gas velocity range of 13 to 17 m/s. The total range of qualities was from
about 20% to 90%, buti for the simulated rod bundies was at 40%, 55%, and 70%
quality. Figures 4a, b, c, d, and e show typical tracings of droplet photo-
graphs as they were prepared for data reduction. The droplet size was assumed
to be roughly elliptical and the major and minor axes were recorded. It was
assumed that the droplet snape would be approximately that of an ellipsoid

and from that an effective droplet diameter was determined and that diameter

is reported in the subsequent sections.

GENERAL REMARKS REGARDING DATA

Reliability
When the droplet data are reduced to an effective diameter such as

the Sauter mean diameter (d32). the reliability is assessed on the basis of
the number of droplets analyzed. Using the system outl.ned by Bowen and
Davies (1951), the general accuracy of our reported values of d32 is *6%.
Tne enormous effort associated with the photography and the manual reduction
of the data limited the number of droplet sizes analyzed for each run, and

thus limited the reliability for the data of this r>nort.

Droplet Shape

Figure 4 shows that the droplets were not sphcrical. Our judgement
was that they should be recorded as a general ellipsoid with data for the
major and minor axes. For all experimental flow cases, the ratio of the
minor axis to the major axis was approximately 0.6. There has been some
concern regarding the apparent conflict between our datz a.d others who

generally report spherical droplets. It is possible that droplet radial



ytion 11d cause a spherical droplet to appear elliptical on a photograph
taken in a finite time period. Granting this however, it was *hought that

surely this radial velocity effect on 'roplet shape would be different for

open tube data and for the rod bundle geometries. The in'ariant axis ratio
was interpreted to show that the ellipticity reported was to a major extent

a reasonable representation of the dropiet sha.:. As stated previously, the

data were subsequently reduced to an effec*ive spherical diametc

Effect of Quality

the test conditions reported, both of geometry and of gas
veloctiy variations, it was not possible tc determine any pronounced change
in the droplet data as a funclion ot the fluid quality. Indications of
quality variations were in ail cases within the range of the scatter of the
droplet data. Therefore, the data reported are for all qualities grouped

together as a single run condition.

Droplet Size Distribution

Size distribution of the droplet samples was analyzed only to .e
point of showing a general indication that the reported distributions are
similar to those which have been previously reported. Preliminary examination

of the data indicated that it followed the general distribution as proposed

by Rosin and kammler (1933).




DROPLET SIZE AS A FUNCTION CF GAS VELOCITY

Proposed Mechanisms and Correlations

This report considered two general regions of droplet breakup mecha-
nisms which in turn determine the droplet size. In dealing with these mecha-
nisms and proposed correlations one assumes that the data are in an equilib-
rium or steady state condition, which may or may not have been the actual
condition for our runs. It is not believed that any difference from the
steady state or equilibrium condition will significantly affect the results
of the data reported here. Thc two droplet breakup mechanicms considered
were the "bag breakup” as proposed by Hinze (1949), and the turbulent fluc-
tuation breakup as reported by Azzopardi et al (1980). The factors vhich
determine the general region where "bag breakup" is predominant and urbulent
fluctuation is predominant are assumed to be a function of the fluid quality
(or liquid flux velocity) and the gas (or gas flux velocity). A genera! curve
separating these regions has been oroposed by Azzopardi et al (1922) :.4 is
shown with our data range in Figure 5. The curve indicating the divisions
was primarily chosen by examination of the character of the waves at the liquid
film. Higher gas velocities in general produced "cleaner" wave patterns, and
this suggested that in the region of "cleaner" wave patterns the turbulent
fluctuation breakup would be predominant. Convers2ly, in the lower gas
velocity region the wave form would be "messy" and the "bag breakup" mecha
nism would be predominant.

In the "bag breakup"” region, Hinze (1949) assumed that droplet breakup
would be governed by the balance between the forces of the pressure difference
across the drop and the surface tension forces. This produced the equation
pg Aug” dmax_

= 13. (1)
y |

Hecrit |
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s from

very large dronlets formed by initial shearing from
waves.
Comparisons of the "Bag Breakup" Correlation

iqure 6 shows the comparisons of all of the dat: of this report (with

11ities lumped together) with the general predictions from equation (1)
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At the lower gas velocities (8 to 12 m/s), equation (1) predicts the correct

jeneral range for droplet diameters. Equation (1) however, underpredicts

the droplet size at the higher gas velocities. This suggests that the velocity

squared term. while tending to predict the correct general range for the

effective droplet diameter, begins to fail for gas velocities greater than

his in turn suggests that the droplet breakup

mechanism begins to change in the 12 m/s range. There will be further
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DROPLET SIZE WITH RESPECT TO GEGMETRY CHANGES

Open Tube and Simulated Rods

Figure 9 shows the droplet size ratios for the open tube, the phantom
tube, and the simulated fuel rods with the grid (Fig. 4). The round symbols
show data from the double camera loop recording the inlet and outlet droplet
size through the rod bundles. The remaining symbols show the data from the
single camera loop indicating ratios of droplet sizes for the various geome-
tries. At the outset it should be noted that the total range shown in Figure
9 is not very great. This indicates that a reduction in droplet size is
noticeable as the geometry becomes more complex, but that the ratio is in
the range of 0.9 regardless of the geometry changes observed. Thus the
predominant conclusion is that the droplet size change is relatively small

with respect to quite a wide range of changes of geometry.

Droplet. Concentration Change in Flow through the Rod Bundle

~

A significant change in the droplet population with respect to radial
position is shown in Figures 10, 11, and 12. These data were taken from the
double camera loop thzt shows the rearrangement in the geometrical droplet
distribution between the entrance and exit of the simulated rod bundle with
grid. This change in droplet population with respect to position appeared

to be rather dramatic. Comparisons between the outlet data from the single
camera loop and the double camera loop showed similarities indicating that
this distribution change occurred roughly the same in both loops. This
change could have a significant effect on other experiments using simulated

rod bundles placed in relatively small tubes.




It was thought that the change in population might be simply because
the flow near the center part of the simulated bundie met with less surface
resistance than that toward the outer side of the containing tube. There-
fore the tube bundle was divided into two areas, shown as Area I and Area II
in Figure 13, and the hydraulic diameter computed for each section. The
results for the two sections are shown in Figure 14. They indicate that the
hydraulic diameter relationship in the rod bundle approximately matches the
droplet distribution and probably explains the change in distribution in

going through the grid.

SUMMARY
The data of "his repori led to the following observations:
In the region of lower (8 to 12 m/s) gas flow velocities and qeometries
tested, the Hinze (1949) equation (1) correlation serves reasonably well

to predict the effective droplet size (d

3?)‘

In looking at all data for droplet size, that is with the inclusion of

higher gas velocities recorded, it would appear that equation (1) does
not describe data at higher gas velocities (above 12 m/s). This
supports the concept of a mechanism change between low velocity and high
velocity droplet breakup. At the higher gas velocities the effective
droplet diameter varies at the gas velocity to a power less than 2 as
shown in equation (1).

The droplet size change with respect to changes in geometry does not
appear to be very great. This seems surprising considering the major
geometry changes which ware tested. Ho ver, all of the data show a
relatively small change, (d

/ d =~ 0.9).

complex geometry’ “simple geometry




Flow through a simulated rod bundle changes the droplet population

distribution with respect to radial position. The droplets are more
numerous toward the center of the bundle at the outlet of the simulated
rod bundle. This change of distribution appears to be a result of the

larger hydraulic diameter for the flow area near the center of the bundle.




NOMENCLATURE

constant

constant

iuter mean diameter

maximum drop diameter

tube diameter

entrained 1iquid mass flux (flow rate/unit area)

L1gu1d mass
gas velocity
density of gas phase

density of liquid phase

surface tension
gas phase Reynolds number

weber number ( = ;GuG‘dt/c)
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Figure 4a. Tracing of axial photograph of open tube. Gas velocity 16.7 m/s.
Fluid quality 30%. For this photograph there was a medium wave
height on the liquid film.




Figure 4b. Tracing of axial photograph of open tube. Gas velocity 16.7 m/s.
Fluid quality 30%. For this photograph tha2re was a medium wave
height on the -1iquid film.
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Figure 4c. Tracing of axial photograph of open tube. Gas velocity 16.7 m/s.
Fluid quality 30%. For this photograph there was a medium wave
height on the liquid film,
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Figure 4d. Tracing of axial photograph of open tube. Gas velocity 16.7 m/s.

Fluid quality 30%. For this photogi aph there w*s a maximum wave
height on the liquid film.




Figure 4e. Tracing of axial photoaraph of open tube. Gas velocity 16.7 m/s.
Flui. quality 30%. For this photograph there was a maximum wave
height on the liquid film.
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45, (calculated eq. 2) um

Comparison of experimental and calculated values of d3o. Turbulent
fluxuation breakup as expressed by eq. (2) does not correlate data

of this project. Calculations assume GLE 0.5 GL.
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single camera loop

single camera loop

double camera loop

~
18 20

Figure 9. Droplet diameter (djp) ratios to show geometry effect

(Tower portion) and with hydraulic diameter ratio
(upper portion).




GAS VELOCITY: 12.8 M/S

Rod Bundle Outlet 0O
Po4 Bundle Inlet =-=-=-= A

% OF DROPLETS
T 30

+ 20

Figure 10.

3 2 1 AREA

Oroplet diameter distribution in flow cross section
compared between rod bundle inlet and outlet.
For area designation see Figure 13.
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GAS VELOCITY: 14.5 M/S

Rod Bundle Outlet —— O
Rod Bundle Inlet —===<=A

% OF DROPLETS
{30

- 20

=10

Figure 11.

AREA

Droplet diameter distribution in flow cross section
compared between rod bundle inlet and outlet.
For area designation see Figure 13.

92



‘g1 @4nbi14 99s uoLjeubisap eade 404 &
*39|3N0 pue 33|uUl I|puUng poJ uaam3aq paJsrdwod
UO1329S SSOJD MO|J UL UOLINGLUISLP Jajawelp 33|doaq 2| d4nbLy

:H#

Ot+

S1371d040d 40

Ve=—- Jo|u] a|pung POy
Dllnl IBLiN0 a|pung POy

S/W L'9L :ALID013A SY9




AREA 1
for Figure 14

Equal Area Radii
for Fioures 10,11,12

Area 1 is at the center, )
Area 10 is at the outer wall ®

AREA 11
for Figure 14

vigure 13. Flwo area distributions for figures 10, 11, 12, and 14.
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Figure 14. Hydraulic diameters for inner and outer areas
of tube bundle. See Figure 13.
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