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STATEMENT OF PROBLEM
Develop information which will provide the basis for structural anaiy-
sis and design rules for systems and componeni. which utilize snubbers
as supports. Results will be used to assure that cynamic response
characteristics of snubber supported systems and components will be
bounded within acceptable Timits.

restraints. The validity of the analysis of snubber-supported systems
| depends on their realistic characterization. The purpose of this work
was to: 1) identify those parameters which characterize hydraulic and

ABSTRACT:

Snubbers are used widely throughout the nuclear industry as seismic

mechanical snubbers which significantly affect snubber dynamic re-

sponse; 2) determine the response sensitivity to variations of these
parameters. Based upon the results »f the foregoing, simplified design
and analysis procedures are proposed, to maintain svstem response with-
in acceptable limits.

Germane results of a test program to evaluate the effects of snubber
mismatch in multiple support applications are included in this report.
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1.0 INixODUCTION

The object of this effort under NRC contract FIN No. B3076-8 is to
develop simplified design and analysis rules for snubber supported systems
which will bound snubber response within acceptable limits. Simplified
ruies or guidelines are formulated from the results of numerous analytical
studies performed under this contract and presented in this report. In
addition to these analytical studies, results of a test program performed
under NRC contract FIN No. D30558 are included.

The guidelines for snubber usage presented have been formulated solely
from the limited analytical and test results presented herein and must there-
fore be considered preliminary in nature only. Modification or changes
should be expected in time as additional knowledge is gained through further
analysis and testing.

Only seismic applications of snubbers are considered in this study.
Furthermore, the analysis is limited to two specific snubber designs which
are presently most widely used for seismic application: the nonlocking
mechanical snubber with an acceleration sensing activation mechanism and
the hydraulic snubber with a velocity dependent activation level and load
dependent release rate.

The analytical work presented represents the results of a two phase,
two year study. The first phase (FY 78) consisted of an analytical evaluation
and parametric study of various snubber characteristics with the following
objectives: 1) Identify snubber structural and performance parameters which
significantly affect snubber dynamic response characteristics, and 2) Determine
the sensitivity of the snubber response to variations in each parameter identi-
fied in 1. Tie second phase (FY 79) represents an extension of analytical
studies initiated in FY 78 and the formulation of simnlified design and analysis
guidelines from both analytical studies.

—
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The test data included in this report are taken from the results of
a program designed to: 1) Evaluate changes in response that occur when a
single large snubber is replaced by two smaller snubbers with approximately
the same total rated capacity and 2) Evaluate the effects of snubber mis-
match for multiple snubber applications. These result. are included as
part of this report to broaden the scope of the simplified rules.

discussiun regarding the guidelines presented in Appendix B. The discus-

sion of the guidelines references various sections of the Appendices of this
report. These references are of the form Y.X.X.X, where Y and X.X.X. iden-
tifies the referenced Appendix and the referenced figure, paragraph or section
number in Appendix Y, respectively. Material referenced in the DISCUSSION
from other locations in the DISCUSSION will have the form X.X.X. The Ap-
pendices of this report are as follows:

The discussion section of this repe-. -~ontai'is the justification and

Appendix A - Fiscal Year 1979 Analytical Study

Appendix B Guidelines for Simplified Design and Analysis Pro-
cedures for Snutbers

Appendix C Fiscal Year 1978 Analytical Study

Apnendix D Test Data from Single Versus Multiple Snubber Test

Program
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wo. ETEC-TDR-80-10  _ mev, ___

pace _11 oF i,
pave _11-26-80
REV. DATE

2.0 SUMMARY

This report summarizes the work performed by ETEC for NRC under
Contract FIN #B3076-8.

2.1 Program Objectives

The program objectives were to:

1) Identify structural and performance parameters which significantly
affect snubber dynamic response characteristics.

2) Determine the sensitiv..y of the snubber response and the corre-
sponding effects on the snubber supported system to variations
of each parameter identified above.

3) Develar simplified analyses techniques and design rules which
bound the response of the system within acceptable Timits.

Tasks (1) and (2) represent analytical studies of the exiernally evident
parameters associated with 1) acceleration activated mechanical snubbers and
2) velocity activated poppet-type hydraulic snubbers.

These studies were based primarily on single degree of freedom lumped
mass systems and simple piping systems subjected to hsrmonic and seismic
loadings. The guidelines in (3) were based on the results of the first two
tasks. Inasmuch as they were based on a limited number of studies, modifi-
cations may be required as future efforts continue.

2.2 Summary of Results

2.2.1 Performance Parameters

Analysis has indicated the externally evident parameters nich most
significantly affect snubber dynamic response are:

FORM 735A-7 REV 678
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i) Clearance (lost motion)
i1) Activation level

iii) Release rate

iv) Stiffness

v) Friction (drag)

2.2.2 Response Sensitivity

Although it is recognized that there is some interaction between
the various snubber parameters and system response, these effects wer2 not
considered in this study. Brief summaries of results for each of the per-
formance parameters identified in 2.2.1 are provided below.

2.2.2.1 C(learance/Lost Moticn - This is the response parameter that

has the greatest effect on system response. For clearances in excess of

.05 inch the response changes cannot be predicted without detailed non-
linear analysis. Clearance is responsible for impact loads, decreased ef-
fective support stiffness and a reducec resnonse sensitivity to other snubber
parameters. The ideal situation is one of minimum clearance or lost motion.

2.2.2.2 Activation Level - The activation level is that velocity or
acceleration at which the snubber restrains dynamic motiun. The velocity
activated hydraulic snubber is effective in reducing system response pro-
vided that the activation level does not exceed 50 inch/minute. The ac-

tivation level of the acceleration activated mechanical snubber should

not exceed .02g when ve2d as a seismic restraint. The study indicated that
the effective stiffness of the acceleration activated mechanical snubber is
frequency dependen® and the possibility exists that dynamic interaction be-
tween the snubber and supported component may result in response amplification
rather than response reduction.

FORM 735-A-7 REV 678
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2.2.2.3 Relcase Rate - An expression was derived from the maximum
allowable release rat- . a hydraulic snubber in terms of the muximum
snubber load and the mass of the component being supported. The snubber
release rate should not exceed XB' where

b
"

4 .50 X (%}) inches/minute

where

x
"

L Rated Load (1bs.)

=
"

Component Weight (1bs.)

The release rate of the acceleration activated mechanical snubber is
the same as its activation level therefore, the activation level results
control selection of this parameter.

2.2.2.4 Stiffness - Since the "effective" stiffness of a snubber is
generally greater than that for the snubber support assembly (clamp,
transition tube extension, back-up support structure, etc.) the snubber
response characteristics, e.g., damping, activation level, release rate,
etc., may be "washed out” by the added flexibility. The results of the
work presented in this study indicate that the combined "effective" stiff-
ness of the snubber support assembly must be at least twenty times greater
than the piping or component stiffness to be totally effective in reducing
response.

Snubber stiffness should be evaluated independently of clearance/lost
motion, activation level or release rate. ne stiffness should ve based on
the structural compliance only. The stiffness of a hydraulic snubber can
often be represented in terms of fluid compressibility

FORM 735%A-7 REV 678
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where

E = Bulk Modulis at operating temperature (lb/inz)
V = Cylinder Volume (in3)
A = Piston Area (inz)

The stiffness of the mechanical snubber is equal to the stiffness in tension
or compression of a locked snubber, whichever is less.

2.2.2.5 Friction (Drag) - The <tudv of friction (Coulomb) indicates
that in general, small friction loads ha' e necligible effects on dynamic re-

sponse. However, the response may be affected when the frictio.. loads exceed
40% of the applied loading. DOrag or friction loads may however affect normal
operating stresses (thermal expansion) at much lower values.

2.2.3 Simplified Design and Analysis Guidelines

A complete set of design and analysis guidelines are presented in
Appendix B. The guidelines are intended to apply to the utilization of
specific designs of hydraulic and mechanical snubbers as seismic restraints
for component or piping systems. Guidelines relating to multiple snubber
support applications based on an independently NRC sponsored test program
are also included. A brief summary of selected topics follows.

2.2.3.1 Allowable Parameter Ranges - Ranges were based on the results of
2.2,

2.2.3.2 Snubber Selection - Surveys of past snubber failures indicate that
consideration should be given to the most common failure mode of the type
of snubter *o be selected. Hydraulic snubbers usually "fail" in a fr
condition, whereas me-hanical snubbers generally fail in a locked c 1.
Based on the foregoing only, it appears that long straight pipe runs w

few snubbers should be supported with mechanical snubbers whereas pif J

— -
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systems with many bends and short runs should be supported with hydraulic
snubbers.

2.2.3.3 Linear Representation of a Snubber - There does not appear to be

a satisfactory linear representation (spring or rigid support) that will
permit system response and snubber reaction loads to be predicted with an
accuracy sufficient to justify their use for seismic loading when clearance
is present. The best simple representation of a snubber is a nonlinear
representation consisting of a linear spring with a gap set equal to the
total clearance of the component. This representation enables both re-
sponse and reaction loads to be predicted with sufficient accuracy in mest
cases, provided all response parameters are bounded within the 1. 'ts
described in 2.2.2. However, a linear analysis may be made provided the
total clearance is less than .05 inch, and the load and stresses are multi-
plied by tihe appropriate load factors. Snubber reaction loads and stresses
shall be increased by 100% for clearances greater than .0 but less than .02
inch. Snubber reaction loads and stresses shall be increased by a factor of
4 for clearances greater or equal to .02 inch but less than .05 inches.
Detailed nonlinear analysis is required for systems with .05 inch or greater

clearance.

2.2.3.4 Multiple Snubber Usage - The guidelines for mulitiple snubber usage
are bascu on a single test program described in Reference 1.

2.2.3.4.1 Snubber Mismatch - Mismatch of snubber end fitting clearance in
multiple snubber supports has a greater effect on load sharing of parallel
mounted snubbers than mismatch of activation level or release ra*e. Uniform
load sharing of multiple snubber supports (within 10% of the total load)

can be expected for hydraulic snubbers when end fiiting clecrance differentials
are less than .01 inches and the activation level and release rate are between
8 and 25 inches/minute and 4 and 14 inches/minute, respectively.
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Equal load sharing of multiple snubber supports should not be expected
if the end fitting clearance mismatch exceeds .01 inches. [f the mismatch
clearance differential excecds .01 inches but is 1.3s than .04 inches, peak
lpads shall be assumed twice *he uniform load sharing value. Mismatch of
end fitting clearance shall not exceed .04 inches.

2.2.3.4.2 Design Considerations for Hydraulic and Mechanical Snubber Pairs -
The load sharing of a hydraulic snubber pair is more sensitive to mismatch
of end fitting clearance than the load sharing of a mechanical snubber pair

for harmonic input.

The load sharing of a mechanical snubber pair is more sensitive to mis-
match of end fitting clearance than the loai sharing of a hydraulic snubber
pair for seismic input.
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3.0 DISCUSSION

Justification for the Guidelines for Simplified Design and Analysis
Procedures in Appendix B, herein after referred to as "Guide" is presented
in this section. References to material contained elsewhere in this re-
port will be described in the Introduction section. However, references
to the Guide will be contained in the [] brackets.

3.1 Snubber Selection [B.2.1.2]

The selection of a snubber for a specific application should be based
on its response characteristics, most probable failure mode and operating
characteristics. The most probable failure mode of a snubber is related
to its design features.

Mechanical snubber failures in the "locked condition" may be due to
ball screw mechanism failures, contamination of the ball screw mechanism,
or by wearing of internal parts. “Free condition” failures may be associ-
ated with failure of the capstan spring tangs or excessive torque drum wear.
Mechanical snubbers are susceptable to fatigue failures resulting from steady-
state low level vibrations.

Hydrauiic snubbers fail most often in a free state. Loss of hydraulic
fluid resulting from-seal deterioration, reservoir leakage or piston rod
scoring s the principle cause of failure. Valve failures can produce a
locked failure condition, however these failures are rare.

3.2 Stiffness Requirements [B.2.1.2]

The minimum support stiffness requirements are intended to assure that
response at the support can be bounded within acceptable 1'mits. The study
presented in C.6.1 addresses this problem. The approach was based on estab-
lishing an upper bound for the stiffness of a support above which further
increases in stiffnes: causes insignificant changes in response. This ap-
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proach enables lower limits of the combined stiffness of all support hard-
ware between the ground and the center of the component to be specified.
Support hardware includes all items between ground and component such as
backup support struc-ure, clevis, pins, extension tubes, snubbers and all
clamping hardware. Stevon-un (2) presents a study of specific pipe sizes
and support spacing which supports the results of the study presented in
C.6.1.

The evaluation of the hydraulic snubber stiffness based on fluid bulk
modulus (Ey), cylinder volume (V) and piston area (A) is described in Section
A.3. The Lissajous figures (load-deflection curves) shown in A.2.1 through
A.2.5 indicate that the stiffness %;, is insensitive to the release (bleed)
rate, clearance and forcing frequency for loads less than 10 percent of
the rated load, R . This initial slope or stiffness can be estimated from
the fluid compressibility kg = EgAZ/V. Since the release rate and clearance
have little effect on dF/dX for loads less than 80 percent of R_, the stiff-
ness should be expressed as df/dX = kg = EAZ/V. The response studies of A.3
also indicate that kg is the best iinear representation of the hydraulic
snubber stiffness.

The same reasoning is believed to hold true for mechanical snubbers,
i.e., the effective stiffness is represented best in terms of its structural
compliance.

3.3 Allowable Parameter Ranges [B.2.1.3]

The proposed criteria "allowable" paramet:zr ranges are applicable both
to piping systems and component supports. The criteria do not assure that
structural adequecy or functional integrity arc maintained, but attempt to
assure that the results of linear analytical studies bound the true response
with reasonable assurance. The three specific criteria used Lo establish
allowable parameter ranges are:
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a) The response sensitivity of the characterization parameter
is in the stable range and the response is therefore
predictable;

t) The response at the snubber location resulting from
seismic excitation will be less than .10 inch;

¢) Displacement response and impe-t loads can be bounded with
reasonable assurance that the predicted values will not be
exceedec.

Relative to the above:

a) The sensitivity of system response to the characterization
parameter is inconclusive because of the complex nature of
the forcing function or impact characteristics of the snub-
ber (See Figures A.5.2, A.8.3, A.8.4, C.7.1.7 etc). Since
reasonable assurance of limiting system response is sought,
the parameter was limited tc that range which will assure
predictable response characteristics.

b) The allowable response of .10 inch resulting from a seismic
disturbance is based on the foilowing reasoning. Assuming
snubber spacing suggested by paragraph 121.1.4 of Reference
(3) for pipe hangers, deflections of .10 inch at the seismic
supports will produce stresses which will not exceed 1500 psi.
Since design seismic loadings are generally less than 1.0g,
the resulting static stresses should not exceed 1500 psi.
The dynamically induced stresses due to impact effects will
also be in a predictable range if the cverall response does
not exceed .10 inch. This is indicated by the results of
the study presented in Section A.8. It is assumed that
stresses can be related directly to impact loads, therefore
these terms will be interchanged throughout this discussion.
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3.3.1 Activation Level/Release Rate [B.2.1.3.1]

Although the activation level (lock velocity) of a hydraulic snub-
ber has, in most cases a negligible effect on the Lissajous curve (See
Figure A.2.5), this parameter does have a pronounced effect on system
response (See Figures C.7.2.2 throurh C.7.2.6 and Figures C.7.2.8 and
C.7.2.9).

The (g) parameter utilized for the study of the activation level
of hydraulic snubbers can be related to the release rate of the snubber.
The release rate, Xg, is velated to the (C/M) parameter as follows:

Assume

(%) = f sec']
Then

(RL/iB) = f sec”!

M

. R

Xg = L sec

8 wr

Xg = (%}) §§$Lﬁ sec

iB = QQ%LQ (%}) in/sec

iB = §§$45160)(%f) in/min (A)

Xg = 23(104)(%':_)/f in/min
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where

iB = bleed rate in/min)
RL = snubber rated load
W = component weight

M = component mass

f = value of (C/M) parameter

For a properly designed system, the rated load will usually be 2
to 6 times greater than the maximum anticipated load. Hence, using the
results of A.8.3 which indicate that the maximum anticipated impact load
is 4 to 5 times the nonimpact value, a range of 10-30 appears reasonable
for the (R /W) ratio. Assuming (R /W) = 20, the (C/M) values are related
directly to release rate by

4.6x106
g « :500
Thus,
107 sec-! .5 in/min

1f (§) = {108 sec-?} , kg =15 in/min

105 sec-! 50. in/min

The data (Figures C.7.2.5, C.7.2.6, C.7.2.8 and C.7.2.9) indicat
that response is insensitive to (%) > 10%, that is, bleed rates less than
50 inches/minute. The same trend is ind.cated (Figures A.7.1 and A.7.2)
from tre results of the refined hydraulic snu' ber model.

Equation (A) can be used to est~blish the upper limit of the allow-
able release rate assuming that response is insensitive to (%) > 5X104.
in particular,
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In particular,

R
Xg < .50 (TT) in/min

The system response is more sensitive to activation level than to
release rate (See Figures C.” 2.5 through C.7.2.9). In all cases, the
maximum response is limited to less than .1 inch if the activation level
is less than 50 inch/minute and the bleed rate limits are satisfied.

The response curves presented in Figures C.7.1.4 through C.7.1.6
indicate that a "resonance" or peak respcnse condition may be encountered
when the mechanica® snubber is subjected to harmonic oscillations. The
data also suggests that this resonant condition occurs at low frequencies
(< 3 Hz). Although Figure C.7.1.5 indicates that maximum response will
be less than .10 inch at forcing frequencies greater than 3 Hz and Accel-
eration Threshold Parameter (ATP) values less than .02g (10 inch/secz).
figure C.7.1.7 indicates that response may exceed .10 inch if a seismic
loading is applied rather “an a harmonic loading as in C.7.1.5. Based
on the results of these two studies, the upper limit for the allowable
ATP limit is .02g (10 inch/secz). There is considerable uncertainty
associated with system response when the ATP is greater than 10 inch/secz.
Figures C.7.1.5, C.7.1.6 and C.7.1.7 indicate that response amplification
may occur at larger ATP values, therefore the .02g limit is established.

3.2.2 Friction [B.2.1.3.4]

Figures C.7.4.1, C.7.4.3 and C.7.4.4 indicate that friction has
little effect on system dynamic response unless the friction load exceeds
40 percent of the applied load.

3.3.3 Clearance [B.2.1.3.3]

The results of Figures A.8.3 through A.8.5 show that consistent
trends in system response can be observed only when clearance is less
than .05 inch. Furthermore, figures C.7.3.1 and C.7.3.2 indicate that
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support flexibility reduces the effects of impact loading on stresses,
i.e. the added flexibility of the support reduces the deterimental effects
of clearance.

The ability to bound system response and impact loads for clearance
values less than .05 inch is the primary reason for establishing this
limit for clearance.

3.4 Desirable Parameter Limits [B.2.1.4]

3.4.1 Activation Level [B.2.1.4.1]

The results of studies regarding the activation level (Figures C.7.1.5
through C.7.1.8, C.7.2.2 through C.7.2.9, C.7.2.12, C.7.3.5, C.7.3.6, and
Figures A.7.1 and A.7.2) indicate that response will be reduced whenever
the activation level is reduced providing the forcing frequency is greater
than 3 Hz. The 3 Hz frequency stipulation is noted since, for low fre-
quency applications of mechanical snubbers, (Figure C.7.1.5) reductions
in the activation level may increase the system response.

3.4.2 Release Rate [B.2.1.4.2]

Aralytical studies (Figure C.7.2.7 and Figures A.7.1 and A.7.2)
indicate that the minimum response does not occur at the minimum bleed
rate. Based on the results of the indicated studies, the system response
wiil be minimized when the bleed rate is between 5 and 30 inch/minute.

3.4.3 C(learance [B.2.1.4.3]

In general, impact loads and displacements are minimized when clear-
ance is minimized. Clearance has an effect of softening the support. Con-
sequentiy, cases may exist where the natural frequency of the system will
shift away from the driving frequency as the gap increases thereby reducing
the system response and impact loads (Figure C.7.3.4). When the input
waveform is complex such as an earthquake, the response trends are often
unpredictable. In some cases (as shown in A.8.3) the impact loads increase
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with increasing clearance while in other cases, they decrease slightly
before increasing. Considering both displacement response and impact
loads, minimum c.earance is desirable.

3.4.4 Friction [B.2.1.4.4]

Friction loads have negligible effect on system dynamic response
ur.less they exceed 40 percent of the applied load (Figure C.7.4.1).
Friction loads of this magnitude are generally undesirable from the stand-
poing of thermal expansion. Therefore, it is desirable to have low friction
locds.

3.4.5 Stiffness [B.2.1.4.5]

The displacement response generally can be reduced by increasing
the effective stiffness of the snubber (Figure A.6.2 and Figures C.7.5.4
and C.7.5.5). The impact loading may either increase or decrease depend-
ing on the magnitude of the clearance (Figure A.8.3) or the relationship
between the natural frequency and the forcing frequency. The difference
between the maximum impact load and the zero clearance snubber load is
generally much greater than the difference between the zero clearance
and the minimum impact load. Therefore, it is reasonable to presume that
whenever clearance is present, impact loads will be greater than or equal
to the zero clearance loads. The zero clearance state is therefore pre-
ferred . Figures C.7.3.1 and C.7.3.2 indicate that added snubber flexi-
bility is desired when clearance is present.

3.5 Linear Representation of a Snubber [B.2.2.2]

A linear analysis of a system may be performed provided that the
clearance at the snubber is less than or equal to 0.05 inch. The 0.0%5
inch value represent the upper limit of clearance which permits reasonable
assurance that response will be maintained within acceptabie limits. If
the gap is greater than 0.05 inch, the impact loads become dependent on
the initial condition or distribution of gap at the onset of loading
(Figure A.8.7). Figure A.8.5 shows that the dynamic impact load can be
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as large as 4 times the zero clearance value.

The 0.02 inch gap is that value which will assure that displacement
response and impact loads will be predictable and also the impact load
factor will not exceed twice the zero clearance value. Considering the
| results of Figure A.8.3, the impact load factor will be less than 2 if
(A/XB) is less than .003.

Assuming XB = 6.0 in.(San Fernando 1971, Figure C.5.7),
A < .020 inch
Therefore, 0.02 inch represents an upper limit for clearance where
dispiacements and impaci loads are predictable and impact loads are less

than twice the zero clearance values.

3.6 Multiple Snubber Supports [B.2.3]

Justification for guidelines for multiple snubber supports is pro-
.aed from resqlts of a test program from which Appendix D was extracted
see Reference 1).

Results of the test program are summarized as follows:

1) End fitting clearance has a greater effect on load
sharing of dual snubber supports than mismatch of
activation level or release rate. For zero end fit-
ting clearance and any combination of activation level
and release rate between 8 to 25 in/min and 4 to 14 in/min,
respectively, equal load sharing (50%/50% to within 3%)
was observed. However, for end fitting clearance dif-
ferentials of 0.05 in., 30%/70% load sharing distributions
were obtained.

2) The effects of end fitting clearance on support reactions
were extremely variable. Different trends were obtained
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for the various support types (rigid strut, hydrauvlic
snubber or mechanical snubber), support configuration
(single or dual) and inputs (seismic or sine). Table 2.3.1
in Appendix D summarizes the trends observed for the single
and matched pair tests.

3) For each type (rigid strut, mechanical snubber or hydraulic
snubber) of matched pair of snubbers and given type of load-
ing (seismic or sine):

i) For zero clearance, the total reaction force for
the pair was less than the reaction force for a
single snubber of the same type of loading. Table
2.3.2 in Appendix D lists the results.

ii) For nonzero clearances, the single snubber force
may be greater or less than the total load for
the pair.

These data have been used to formulate the guidelines presented in
B.2.3.1 and B.2.3.2. Other data obtained from the test program and sum-
marized in Appendix D (specifically Figures 2.3.1 and 2.3.2) have been
utilized to present the general design considerations presented in 8.2.3.3.

The zero end fitting clearance requirement for equal load sharing has
been modified to reflect lost motion differentials that existed in the test
hardware (snubbers). The zero end fitting clearance requirement shall be
modified to include both lost motion and end fitting clearance, and shall
not exceed .01 inch.
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A.1 Mathematical Model of Hydraulic Snubber

Details of a mathematical model of hydraulic snubbers are presented
in this section. Analytical expression for the rate of change of snubber
load is derived in terms of various kinematic, dynamic and characterization
parameters and the integration of this expression to obtain Lissajous curves
is described.

First we consider the case when the snubber is activated (See Fig. Al.1,.
Kinematically, the change in volume of the fluid in the cylinder, dV, during
an increment of time, dt, is given by

dV = XAdt (1)
where

X = Piston velocity

A = Piston area

Since the change in volume is due to the effect of fluid compres-
sibility and bleeding, we also have

v = dFE\!A— + CAFdt (2)
where
F = Force in piston
dF = Increment of piston force due to

compressibility
Vv = Volume of fluid
= Area of piston
E = Bulk modulus of fluid

X
. B _ Bleed Rate Fi A1.2
¢ ﬁ[ " Rated Load (ses Figure A.1.2)
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Equations (1) and (2) give
dF EAZ, ..
a - & J)[X - CF], when the snubber is activated (3)
dF . .
Clearly ® ° 0 when the snubber is not activated (4)
Hence, by Equaticans (3) and (4),
[ (EA% 4
(TT J)[X - CF], when the snubber is activated
aF (5)
ot 0 , otherwise

During snubber characterization test, snubber Lissajous curves
for loads up to the rated loads are generated over a range of frequen-
cies {usually 3Hz to 33Hz). These curves are obtairad by subjecting
the snubber to sinusoidal displacements X = A sin  where the displace-
ment amplitude, A, is initially small, increasing A until the rated
load of the snubber is reached and then recording the resulting load-
deflection plot.

Similar curves can be generated analytically by inteygration of
Equation (5) with X = AQ cos Qt. Integration over several input cycles
are necessary to obta'n stable curves.
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FIGURE A.1.2  EVALUATION OF DAMPING COEFFICIENT
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A.2 Load-Deflection Characteristics of Hydraulic Snubbers

The results of a study of the effects of clearance, snubber geometry,
fluid bulk modulus, activation level and release rate on the shape of
Lissajous curves are presented in this section. The curves shown in this
section were generated in accordance with the procedure described in
Section A.1.

Figure A.2.1 shows the 3Hz curve frr the "base" siubber that was
selected for this study. The stiffness characteristics were based on the
following data which are comparable to those for a typical 15K 1b. snubber:

Piston Area - B in2
Cylinder Volume - 30 in’

Fluid Bulk Modulus - 200,000 1b/in?
Release Rate - 50 in/min
Activation Level - 10 in/min
Rated Load Capacity - 12,500 1b
Clearance - .02 in

The effects of changes in frequency, gap, release rate and activation
level on the base curve of Figure A.2.1 are shown in Figures A.2.2, A.2.3,
A.2.4 and A.2.5, respectively.

Although Figure A.2.5 shows that the shape of the Lissajous curve is
insensitive to changes in activation level, the studies of this Appendix
and Appendix C indicate that significant changes in system response occur
when the activation level varies between 0 to 80 in./min. Hence, system
response cannot be related to dynamic stiffness per se.

The insensitivity of the shape of the Lissajous curve to changes 1in
activation level is investigated in Figure A.2.6. The upper right quadrant
shows the Lissajous curves for three clearance configurations. The lower
right quadrant shows the velocity deflection characteristics for the snubber
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input. Points A', B", and C" represent the zero load points at which the
hydraulic snubber disengages during the loading cycle for the 0, .01, and

.02 incu clearance curves respectively. Points A', B', and C' indicate the
points where the snubber activates, and points A, B, and C represent the
velocities at which activation occurs. It can be seen that if the activation
level(lock velocity)is less than 67 in/min that variations in lock velocity
will have no effect on the Lissajous curve for the zero clearance curve.
Similarly, for the 0.01 inch clearance call if the activation level does not
exceed 72 in/min, there will be no effect on the Lissajous curve. The data
indicate that for the given response parameters (bleed rate, forcing frequency,
amplitude, fluid properties, etc...) that changes in load-deflection character-
istics will occur only if the activation level(lock velocity)exceeds 90% of

the peak input velocity (79.18 in/min). Figure A.2.7 indicates the load-
deflection characteristics change for this system when the activation level
(lock velocity)varies between 90 and 100% of the peak input veloci'y.

Figure A.2.8 shows the load-deflection characteristics for the same
system at a higher forcing frequency (8Hz). This data indicates that much
higher lock velocities are required to change the load-deflection character-
istics. The activation level (lock velocity)must be increased beyond 200 in/min
to change these properties.
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FIGURE A 2.2

EFFECT OF FREQUENZY ON LOAD-
DEFLECTION CHARACTERISTICS OF THE
HYDRAU'LIC SNUBBER
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EFFECT OF GAP ON LOAD-DEFLECTION
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10k 4
xs = 50 inch/min
+

Rated Load = 12,500 1bs
Bulk Modulus = 200,000 psi
Piston Area = § iné 3

Cylinder Volume = 30 in

.02 inch

A =

.01 inch

LOAD (1b)

.0 1nch

Deflection (in)

48.

60.

- —— —————— —

72. 4
79.14 inch/min

Pt A iL > 67 inch/min
9. T Pt B xL > 72 inch/min
[ Pt C X > 75 inch/min

X-PISTON VELOCITY (.n/min)

FIGURE A.2.6 ACTIVATION LEVEL REQUIREMENTS FOR HYDRAULIC
SNUBBER AT LOW FREQUENCY EXCITATION
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FIGURE A.2.8
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A.3 Effective Stiffness of Hydraulic Snubbers

The results of an examination cf and relationships between various
definitions of snubber stiffness are presented in this section. These
results will be utilized in the next section which addresses the problem
of "best snubber stiffness representation.”

First we show that in the case of zero clearance, the dynamic stiff-
ness K, as defined in Figure A.3.1, can be approximated by its static stiff-
ness, Kst' due to fluid compressibility, where

Ry
st v

where E, A and V are as defined in Section A.1.

To this end, we examine the Lissajous curves of Figure A.3.1. These
curves were based on the same data assumed in Section A.2 except that the
gap, release rate and frequencies are as indicated in the figure. From the
referenced data, Kst = 166,660 1b/in, which is approximately equal to the
K, values shown in Figure A.3.1.

Also, from Figure A.3.2, it is clear that the following relationship
holds between the alternate stiffness parameterc K1 and K2

| 2
where
K o oM
1 Xy 6/,
K Py
2‘ T
M

.
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FIGURE A.3.1  SNUBBER STIFFNESS VALUES
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A.4 Effect of Snubber Stiffness Representation on System <esponse

The problem of the best snubber stiffness representation for the
accurate prediction of system response is addressed in this section.

The problem was investigated with the aid of the SDOF lumped mass
system shown in Figure A.4.1. The responses of this system to the E1
Centro seismic event were obtained for various snubber stiffness repre-
sentations and are compared below. The detailed stitfress representations
in the comparisons were based on the data of Section A.2 with various lock
velocities and bleed rates as defined below and the K, and K2 representa-
tions as defined in Figure A.3.2. Thus, for the first of the preceding,
Figur2 A.3.1 (b) and (c, are typical Lissajous curves.

We first consider the case of zero clearance. Table A.4.1 summarizes
the results of several response studies. The data inagicate that for this
case system response car be predicted with reasonable accuracy when the
lock velocity is less than 40 in/min. The data also indicate that maximum
snubber reaction loads will be overpredicted with the spring representation
for activation levels below 40 in/min and underpredicted if exceeded.

The results of studies for an actual nonzero clearance case are Sum-
marized in Table A.4.2. They indicate that an "effective" stiffness repre-
sertation must include the clearance as part of its characterization.

If the static stiffness representation with zero gap is utilized, the
maximum system displacement can be approximated by increasing the resulting
displacement by cne-half the clearance, e.qg.:

-
"

5 0.02154 + 0.5 x 0.4
0.4154 in (cf 0.4304 in)

The impact loads are however underestimated.
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TABLE A.4.1

COMPARISON OF SYSTEM RESPONSE FOR VAF10US
SNUBBER STIFFNESS REPRESENTATIONS FOR
ZERO CLEARANCE CASES

SNUBBER STIFFNESS REPRESENTATIONSIf sysT EM RESPONSES

DETAILED MODEL SPRING REPRESENTATIONS MAX IMUM MAX IMUM
LOCK BLEED DISPLACEMENT sgggggn
GAP VELOCITY RATE GAP K K K2 (In) (1bs)
(In) (In/Min) (In/Min) (In) (1bzin) | (1bzin) | (1b/in)
0 10 8 .01078 1674
0 12 50 .01565 1523
0 164,000 .01275 2090
0 20 50 .02237 1917
0 35 50 ! .02929 1862
0 50 50 . 06926 2848

! $. Second Paragraph of Section A.4 for Definition
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TABLE A.4.2

COMPARISON OF SYSTEM RESPONSE FOR VARIOQUS
SNUBBER STIFFNESS REPRESENTATIONS FOR
NONZERO CLEARANCE CASES

= SNUBBER STIFFNESS REPRESENTATIONS 'system RESPONSES

DETAILED MODEL SPRING REPRESENTATIONS MAX IMUM MAX IMUM

DISPLACEMENT SNUBBER
LOCK BLEED FORCE
GAP VELOCITY RATE GAP K K1 K2 (In) (1bs)

(In) (In/Min) (In/Min) (In) (1b/in) | (1b/in) | (1b/in)

.04 10 50 .04524 4298
.c4 156,250 .04304 3600
0 125,000 .03047 3808
0 156,250 .02154 3366

1

See Second Paragraph of Section A.4 for Definition
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A.5 Effect of Cther Snubber Representation on System Response

The results of comparisons of system responses for two different
snubber representations are contained in this section. The basic system
considered for the comparisons is of the type shown in Figure A.4,1, i.e.,

a SDOF lumped mass system. The two snubber representations considered

were the usual linear viscous model and the detailed model of Section A.1.
The models were subjected to both harmonic base excitations and the E1 Centro
seismic event input. The system natural frequency for harmonic inputs was
8Hz but varied between 1Hz and 13Hz for the seismic input.

A comparison of the maximum displacement between the two represen-
tations when subjected to harmonic inputs is shown in Figure A.5.1. The
figure indicates that larger displacements are proedicted by the detailed
snubber model of Section A.1 and the difference in maximum displacement
between the two models increases as the input frequency increases. The
results also showed that in the case of the detailed snubber model, the
rate of load change in the snubber increases as the frequency increases.
Since the fluid exits the orifice at a faster rate, the cylinder pressure
decreases at a faster rate thereby reducing the restraining load on the
mass and increasing the displacements.

Observations similar to the above were also obtained for the seismic
input case (See Figure A.5.2). Local resonant conditions may however occur
as indicated by the 3Hz peak response.
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A.6 Analytic Solution for SDOF System Under Harmonic Input With Detailed
Snubber Representation

An analytical solution for the SDOF system shown in Figure A.6.1 when
subjected to harmonic inputs X = XB sin Ot is reviewed in this section. The
detailed snubber representation was used with zero clearance. Equation (5)
of Section A.1 therefore becomes

dF

dt = k(& - CF) (1)
where
k = EA
v
& = Piston velocity

In terms of dimensionless parameters the response of this system can
be expressed as,

g2 (e% + %)
) = _ (2)
B L0 - 86)(8% ¢ ) + 8%+ [Qey]”
where
Q = (9 (3a)
y = (§) (36)
g = (& (3¢c)
B
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Figure A.6.2 shows a plot of the response function, Eq. (2) for a
family of "Q" curves for a system where y = (k/K) = 100. The curve for
Q = 0 is identical to the classical response curve of a SDOF having a
natural frequency of / %-(1 +y) and no damping. Unlike the classical
frequency response curves for which increased damping always produces de-
creases in response, the response is increased by increasing the "damping”,
Q, when 8 < / 2—541 . The range of interest of Q is from .1 to 3.0 and
the range of y is from 10 to 100.

Figure A.6.2 indicates the maximum response occurs when the forcin
frequency (2) is equal to the n.tural frequency of the system (/ % (W + v ).
This figure indicates that the mzximum expected response will be minimized

when (1 < y < 10).

Figure A.6.3 indicates the maximum response as a function of & for

various Q values.

-
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A.7 Effect of Bieed Rate and Lock Velocity for SDOF System Under Seismic
Input With Uetailed Snubber Rep:esentation

The SDOF utilized in this study is similar to that shown in Figure A.6.7.
The natural frequency of the unrestrained, i.e. unsnubbed, system was 2Hz
and the mass was 10 1b. seczlin. Bleed rates (iB) between 2 and 35 i~/min.
and lock velocities (iL) between 0 and 60 in/min. were considered.

The maximum snubber loads and maximun displacements are shown in
Figures A.7.1 and A.7.2 for the first 2 and 5 seconds. respe-tively. [(he
figures show that, in general, the response is insensitive tc the bleed rate
but maximun displacement and loads increase with increasing lock velcrities.
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FIGURE A.7.2 RESPONSE AS A FUNCTION OF BLEED RATE FOR SEISMIC INPUT
(0 TO 5 SECCNDS)

*RATED LOAD = 12500 b
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A.8 Effect of Gap on System Response

Previous studies have indicat 1 that gaps or clearances have marked
effects on system responses in that small changes in clearance may have
significant effects on response. The results of further studies to eval-
uate the effects of clearance on system response for both h monic and
seismic loadings arc presented in this section. These studies were based
on the SDOF system of Figures A.8.1 and A.8.2.

The series of sketches shown in Figure A.8.3 indicates the mathematical
represcntation of snubber clearance - the method used in this study. The
center of the unloaded snubbe: (center of gap) changes with time as shown.
This is different than a spring with gap since the unloaded position for
the spring does not charge with time.

The response of the system is expressed in terms of the following
dimensioniess parameters;

r .

d A k 0
(=) () (7)s (5). (2)
FS XB ¥ W
The parameter (Fy/Fg) is the ratio of the "dynamic impact load" when

clearance is considered and the "static" or zero clearance load.

The results for harmonic loadings are shown in Figures A.8.4 and A.8.5.
The results are based on the assumption £ = 0.10. Since the damping is not
small transient response was attenuated very rapidly and system response
reached steady state conditions after a few cycles.

Figure A.8.4 shows the steady state impact load characteristics. These
characteristics are based on the maximum values occurring during the 6 - 8th
cycles and, in view of the foregoing, can be considered to be the maximum
steady state values. Data for several (Q/w) values where (0/w) varies from
0.3 to 3.0 are shown. The values of g selected were based on the results
of C.6.1.1 where it was shown that the (k/K) ratio should be greater than
20 if the support stiffness (k) is to effect the dynamic response of the
system. The data indicates that impact load ratios do not exceed 1.50 for
the cases studied.
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Figure A.8.5 shows the peak value of the transient response for the
same three systems, i.e. values of ¢ considered in .igure A.8.4. The data
indicates that the dynamic impact load can be as large as 4 or 5 times the
zero clearance value.

Figures A.8.4 and A.8.5 show that the impact loads decrease to zero
| with increasing (A/Xg). This is to be expected since system response Joes
not exceed the snubber clearance ().

The results for seismic loads are shown in Figures A.8.6 and A.8.7.
Figure A.8.6 shows the maximum relative displacement response and maximum
snubber load as & function of snubber gap. The range of gaps investigated
is much greater than realistic values. The study indicates that displace-
ment response trends are much more predictable and stable than snubber re-
action load trends. However for snubber clearance less than .10 inch, both
displacement response and snubber loads are stable.

In Figure A.8.6 a dotted line is shown besides the displacement re-
cponse curve. This dotted line indicates that protion of response that is
due to clearance. The data indicates nearly a linear relationship between
clearance and displacement response. As expected and shown in the “igure,
impact loads decrease to zero when the gap (A) exceeds the system response.

The :nitial clearance configuration prior to the application of load-
| ing affects the maximum snubber load and system response. Figure A.8.7

| shows the maximum snubber load as a function of initial gap configuration.
The curve shows that the maximum snubber load is dependent on the clearance
configuration when the total gap exceeds .10 inches.
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thXB sin Qt

FIGURE A.8.1 HARMONIC INPUT MODEL
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A.9 Effects of Mass Magnitude on System ?géponse

A brief study to investigate the effects of component mass on response
was made. The study indicates that there exists an optimum mass size for
a given snubber at which response may be minimized, or conversely an opti-
mum snubber for a given component size. Figure A.9.1 summarizes the re-
sults of this study.

The data indicate that the response of a specific system excited by
a seismic disturbance is mirimized when the system mass is between 100-200
pounds. This conclusion is independent of the natural frequency but slight-
ly sensitive to fluid bulk modulus. When very large masses are supported
(m > 103 19:§§§ ) the ability of the snubber to minimize system or gomponent
response is'GLeat1y reduced. When the mass is small (< 1073 192535 ) the
response is dependent on input magnitude and frequency characteristics.
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APPENDTIX B

GUIDELINES FOR SIMPLIFIED DESIGN
AND ANALYSIS PROCEDURES

FOR SWUBBELRS

FORM 735A-7T REV 678



wo. ETEC-TDR-80-16  mev,

PAGE 76 OF
DATE 11-26-80

REV, DATE
TABLE OF CONTENTS
Page
BRI e e s b TR B W 8 e mom b e e e e ke 78
Bt TTRUDUETION & . & o ok s r s s s s e s N ke s e wom 79
EEEE IRV & & » e e s B b E m b 8 e s w6 Eowe e o ? 75
e P O s 79
T Y R e e v P A F E R Ak ke w e h o b 79
B.2.0 SIMPLIFIED DESIGN AND ANALYSIS GUIDELINES . . . . . . . . . . .. 80
B.2.1 Design Guidelines . . . . . . . . .« « « « v v v« v o 4 T 80
Rt FOMMAEY SREOERIIN ' v s v e b kW a e s A s w Parm s 80
B.2.1.2 Stiffness Requirements . . . . . . + « « & o « o o » s Sl o S 81
B.2.1.3 Allowable Parameter Ranges . . . . . . . . . . .« « . « « « . . . 83
B.2.1.3.1 Activation Level . . . . . . . . .. e AR LN 83
e e R T S R 84
B.2.1.3.3 Clearance . . . . . . .. T IV RO AL ve! ol 84
R T T 8
B.2.1.4 Desirable Parameter Ranges . . . . . . . . . . . . . .. fa S 85
R IREETYDRIN COWE ' o s & se e s o E & s 8 s e o m e A 35
RN T e I S S e s 85
N e e N &€
BRI EPICEION . . o i v e e KE e womee e B s e om sl s s ke 86
B BRI s S s W 6w % e v A s Wy e ow s o S 87
R AT BT INEE (& il v s s ow s s b om e b oe b s w e e 87
i) PRRIYEIS PROCBNTE o & s v 5 & 4 5 ' 45 8 v s €« 5 4w b ¥ s 88
B.2.2.1.1 Time History Analysis (Nonlinear). . . . . . . . . . . . . .. 88
B.2.2.1.2 Time History Analysis (Linear) . . . . . . . . . .. L b 88
B.2.2.1.3 Response Spectrum Analysis . . . . . . . . . . « . . . T Y 88
P.2.2.1.4 Static Inertfa Analyses . . . . . . . v & ¢ o v ¢ o 4 o % o = 89
B.2.2.2 Linear Representation of A Snubber . . . . . . . . . . . . . .. 89
B.2.3 Multiple Snubber Usage . . . . . . . . . . . A A ‘ 90
Rl R MISEREER & s s Y e W e e h e e e s e a o S 30
B.2.3.2 Design Considerations for Hydraulic and Mechanical
SUDBRPF PRIPE . s s ks e e S e 4 s Bk E s e ol S 31

FORM 735%A-7 REV 678




wo, ETEC-TOR-80-16 __ mev,

pace /] o
oave __11-26-80
REV, DATE
TABLE OF CONTENTS
Page
el PEERBEMEES. . i v v ¥ v s h e Eoe s s e e e e L e - 92
TABLES
8.1 Allowable and Desirable Snubber Response Parameter Ranges . . . . . 93

FORM 735 A-7 REV 678

T T e




NO, jTEC'TDR°80'16 .‘V.

page __ /8 oF

oave ___11-26-80

REV, DATE

~-ABSTRACT -

There are concerns about the reliability of snubbers when used as seismic
supports. ~4e Nuclear Regulatory Commission (NRC) developed a Task Action
Plan to establish consistent analysis and design rules, qualification testing
procedures, and preservice and inservice testing requirements to ensure
snubber operability. This document which was developed under the NRC Task
Action Plan, provides an analysis and design methodology which will reasonably
assure that snubber system response will be bounded within acceptable limits,
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B.1 INTRODUCTION

B.1.1 Background
The material presented herein is the result of an effort identified in

the Nuclear Regulatory Commission (NRC) Task Action Plan (Reference B1) which

was developed to resolve outstanding issues pertaining of snubber operability

assurance. An overview of this Task Action Plan is contained in Reference B2.
This guide is a direct result of the analytical and test efforts

described in References B3, B4 and B5 and were performed under contract to

the NRC. The results of these programs were formulated into the Snubber Guide

(Guide) presented rerein.

B.1.2 Scope

ihis juide addresses desiyn and analysis guidelines which relate to the
operability of a specific hydraulic snubber design and the specific mechanical
snubber design described in B.1.3. These guidelines provide a uniform approach
to verifying snubber performance requirements by addressing parameters that
affect snubber response such as activation level, release rate, clearance,
friction and stiftness. Guidelines relating to multiple snubber support
applications are also presented.

The guidelines are based on numerous studies of simple piping and lumped
mass structural models subjected to harmonic and seismic loadings. However,
since this material is based on a limited number of studies, modifications to
the guidelines m2y be required as future efforts continue.

B.1.3 Applicability

This document is intended to apply to the utilization of mechanical and
hydraulic snubbers as seismic restraints for component or piping systems. The
use of snubbers for other applications is not implied. The guidelines are
applicable for systems supported by: 1) Acceleration activiated mechanical
snubbers; and/or 2) Velocity activated hydraulic snubbers with load dependent
release rate. A snubber support may consist of a single snuboer or two snub-
bers acting in parallel with either radial or tangential attachments. Multiple

snubbers acting in series are not considered .n these guidelines.

FORM 736-A-7 REV 6-78




e

——————————————————————




~wo, ETEC-, DR-80-16 ___ mev,

page o1 oF
oave __11-26-80
REV, DATE

fluid loss or seal deterioration. This failure mode does not affect thermal
expansion stresses in the piping system but renders the snubber ineffective

as a seismic restraint. Mechanical snubbers, on the other hand, generally
fail in a locked condition. Although this failure does not affect the ability
to function as a seismic restraint, excessive thermal stresses may be im-
posed on the piping system as a result of this failure mode. Based on the
foregoing only, it appears that long straight pipe runs with few snubbers
should be supported with mechanical snubbers whereas piping systems with many
bends and short runs should be supported with hydraulic snubbers.

Snubber selection should initially be based on the maximum expected
loads. The snubbers selected should be the smallest size available whose
rated capacity will not be exceeded by the expected loads. This will minimize
the possibility of overstressing of the system due to the restraint of thermal
growth by snubber frictional or drag forces. These forces are usuvally ex-
pressed as a percentage of the snubber rated capacity.

Environmertal effects should also be considered in snubber sciection.
Thus, if Tow frequency loads with long durations are anticipated, a locking
type snubber should be considered provided that thermal expansion effects
after lockup are not critical. Furthermore, since the physical properties
of the fluid strongly affect the lock velocity and bleed rates of hydraulic
snubbers and are temperature sensitive, consideration should be given to
operating temperature ranges to assure that the activation level and release
rate of hydraulic snubbers will remain within acceptable limits. The ability
of a snubber to function after long term sustained vibrations such as created
by a pump or fluid flow should also be considered.

B.2.1.2 Stiffness Requirements

Minimum support stiffness requirements are recommended to maintain
system response within acceptable 1imits. The support stiffness is the
effective stiffness of all the hardware between the geometric center of the
component/pipe being supported and the location of the input seismic dis-
turbance exclusive of clearance. Support stiffness shall be based on, but

-
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not limited to, flexibility of structural members, snubber and snubber ex-
tensions, clamp/fittings and component distortion.

The snubber support stiffness should not be less than 20 times greater
than the stiffness of the pipe/component at the point of application. Pipe/
component stiffne.s is expressed as:

k = ]
PIPE Pipe Flexibility
The pipe flexibility represents the deflection produced by a unit load at the
geometric center of the component at the plane of attachment, with other
snubber locations having rigid supports. Therefore:

1 1 1 1

+ +$ —_—— s - = - < ———
KSNUBBER  XCLAMP  XsupPORT = 20 kpype

The individual stiffness calculations required for the above expression
is made without consideration to clearance. Clearances associated with the
clamp or other supporting hardware are added to the existing ard fitting ciear-
ance. The snubber stiffness is based on its structural compliance which is
independent of frequency.

The stiffness of a hydraulic snubber car be expressed in terms of fluid
compressibility

k EA

£ = Bulk modulus (@ operating temperature)
V = Cylinder volume
A = Piston area

The stiffness of a mechanical snubber is equal to the stiffness in
compression or tension of a locked snubber, whichever is less.

—
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B.2.1.3 Allowable Parameter Ranges

Allowable parameter ranges are established with the aim of providing
reasonable assurance that: 1) The response will be maintained within
acceptable limits; and 2) The response can be reasonably predicted with
simple analytical techniques thereby precluding the use of sophisticated
nonlinear analytical procedures.

The allowable parameter ranges established for the hydraulic and
mechanical snubber characterization parameters are based on the following
criteria:

a) The response sensitivity to the characterization parameter
is in a stable range and the response is therefore predict-
able;
b) The response at the snubber resulting from seismic excitaticn
will be less than .10 inch;
Displacement response and impact loads can be bounded with
reasonable assurance that predicted values will not be ex-
ceeded.

o
e

The parameter limits established herein may be exceeded if it can be
demonstrated analytically or by *-~. that system response can be maintained
within acceptable limits. Allowable parameter ranges are summarized in
Table 1.

B.2.1.3.1 Activation Level

The activation level is defined as that velocity or acceleration at
which free motion of the snubber actuator or piston ceases and restricted
motion begins.

Although the activation leve, of a hydraulic snubber is independent
of its bleed rate, the respons. is a function of both quantities. The
activation level of a hydraulic snubber shall not exceed 40 inches/minute
when the bleed rate is greater than 5 inches/minute. The activation level
may exceed 40 inches/minute but not exceed 50 inches/minute if the bleed
rete is less than or equal tc 5 inches/minute.

FORM 735-A-7 REV 678
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The activation level of a mechanical snubber which is equal to its
release rate and defined in terms of its acce.eration shall not exceed
.02g. Application of the mechanical snubber shall be limited to environ-
ments where low frequency loadings (<3 Hz) are not anticipated.

B.2.1.3.2 Release Rate

The release rate is defined as the rate of snubber axial movement
under load after the snubber is activated. The release rate of the mechanical
snubber is the same v2lue as its activation level and independent of load.
The release rate of the hydraulic snubber is independent of its activation
level and is proportional to the applied load.

The release rate of a hydraulic snubber is commonly defined in terms
of its bleed rate and rated load capacity. The bleed rate is defined as
the release rate at the snubber rated load. The bleed rate of the hydraulic
snubber used for component and p:ping systems shall not exceed XB where,

’

XB = .50 X (%%%%gﬁ%%$gﬁf) inch/minute

If the snubber is used to restrain piping, the component weight
represents the equivalent piping weight. The equivalent weight is the
weight loading at the snubber assuming all snubbers are locked with the
gravity loadings acting in the direction of the snubber.

P.2.1.3.3 C(Clearance

The response of a piping system or component supported with snubbers
is highly dependent on the clearances located at the supports. This is
especially true of impact loads. Evaluation of clearance at a specific
support location shall be based on snubber free play, end fitting clearances,
pipe clamp tolerances, and other clearances not indicated. The support
clearance is the summation of individual gaps existing between the snubber
backup support structure and the center of gravity (or geometry) of the
component being supported. The total gap shall not exceed .05 inch.

FORM 738-A-7 REV 678
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B.2.1.3.4 Friction

Friction or resistance to free movement of the snubber does not have
an adverse effect on its ability to act as a seismic restraint. The loads
in general restrain thermal growth and hence increase thermal expansion
stresses. Since the snubber drag loads are expressed as a percentage of
the snubber rated load capacity, snubbers having a reted capacity much larger
than required should not be .i;ed. The system response due to seismic ex-
citation will decrease as the snubber friction increases. The response of
the system becomes very sensitive to further increases in friction when the
friction load approaches about 40% of the applied load. Further increases in
friction load will often preclude system response.

B.2.1.4 Desirable Parameter Ranges

The desirable response parameter ranges in this section are intended
to further reduce system response and maximize confidence in maintaining
response parameters whick this study identifies as having the greatest effect
on system response.

B.2.1.4.1 Activation Level

The displacement response at the snubber location will be minimized
if the activation level is minimized. The activation level should be only
as great as that necessary to prevent lockup during thermal expansion or
other non-seismic loading events. Activation level has i1ttle influence on
snubber reaction loads and piping stresses within its allowable range. The
activation level of the snubber also has Tittle influence on the effective
stiffness within this range.

B.2.1.4.2 Release Rate

The displacement response of a hydraulic snubber will be minimized
when the release rate exceeds 5 inch/minute, where the exact value depends
on system resonant frequeiicy, activation level, clearance, and effective
stiffness properties of the snubber. Generally the displacement response is
minimized when the release rate is greater than 5 inch/minute but less than

-
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30 inch/minute. When the release rate has a low value (< 5 inch/minute)
the snubber shows very little capacity to dampen response with a velocity
dependent reaction component but acts instead as a linear spring. The
snubber reaction load will generally decrease as the bleed rate increases
with the greatest decrease occurring as the bleed rate increases from

0 to 30 inches/minute.

The release rate of the mechanical snubber is not an independent
parameter but is equal to its activation level. Therefore 8.2.1.4.1 is
applicable to the mechanical snubber release rate.

B.2.1.4.3 Clearance

Displacement response and snubber reaction loads and stresses are
minimized when clearance is minimized. The ideal condition is one of zero
clearance. As the clearance decreases, r2sponse becomes more predictable
(stable) and impact effects are minimized. In specific rare cases,response
may decrease as clearance increases due to 1 shift in resonance away from
the driving frequency. Impact loads at a support will decrease as clearance
increases from a zero value. After a minimum iapact load condition is
reached, usually when the clearance is about i% of the input ground displace-
ment, impact loads increase with increasing clearance until the clearance
approaches the free system response value at which time the impact loads
decrease quickly to zero.

3.2.1.4.4 Friction

From the standpoint cf reducing thermal expansion stresses, the friction
loads associated with a snubber should be as smal! as possible. Frictional
forces w 11 have negligible effects on the dynami_ response of the system
provided they are less than 40% of the snubber reaction forces.

FORM 735-A-7T REV 678
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B.2.1.4.5 Stiffness

The response of a system is generally sensitive to the "effective"
stiffness of a snubber. The snubber stiffness is affected by the structural
compliance of the device, the activation level, the release rate, and clear-
ance. An increase in clearance reduces the "effective” stiffness of the
snubber, the activation level has insignificant effects on stiffness, and an
increase in release rate produces a slight decrease in "effective stiffness.

The ideal snubber configuration is one where stiffness is very high
and clearance is negligible. When significant clearance (> .02 inch) is
present, large stiffness values are not always desirable. In this situation,
reduction of the stiffness will reduce the impact reaction loads of the
snubber. In the presence of significant clearance values, the snubber
stiffness should be reduced until deflections become critical, and as a
result the impact loads and stresses may be reduced significantly.

B.2.2 Analysis Guidelines

The ana'ysis procedures/guidelines are intended tu give assistance to
the analyst by providing means of reasonably assuring that system response
will be maintained within acceptable limits. Guidance is given to the analyst
through simplified analysis procedures and recommendations for mathematical
modeling of structural elements. Specific attention is given to linear
representation of snubbing devices, characterization parameter limits, ef-
fective snubber stiffness and analysis procedures (time history, response
spectrum, etc.).

A rigorous analysis of a snubber-supported system requires sophisticated
analysis techniques due to the highly nonlinear nature of the snubber. The
analyst can in certain situations predict with reasonable accuracy the re-
sponse of the nonlinear component or piping system by using linear analysis
procedures. Guidelines are presented which will assist the anaiyst in achiev-
ing this objective.

FORM 735-A-7 REV 6-78
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Mathematical modeling of snubbers, comparison of a.alysis procedures,
linear analysis of nc linear systems, and simplified analyses procedures are
considered.

B.2.2.1 Analysis Procedure

The following analysis procedures are available for analyzing .ystems
or components utilizina snubbers.

a) Time History Analysis (Nonlinear)

b) Time History Analysis (Linear)

c) Response Spectrum Analysis (Linear’

d) Static Inertia Analysis (Nonlinear,linear)

A brief discussion of each procedure is given.

B.2.2.1.1 Time History Analysis (Noilinear)

This method is a rigorous method for analyzing snubber support systems.
The effects of the characterization parameters and the seismic input can be
treated rigorously without introducing uncertainties resulting from simplify-
ing assumptions. [he method, howsver, is costly to implement and susceptille
to instabilities associ ted with various integration schemes available to the
analyst.

B.2.2.1.2 Time History Analysis (Linear)

This method is less costly to implement than nonlinear analysis pro-
cedures and is less susceptible to numerical instabilities. The use of this
linear ana.ysis procedure requires the representation of the nonlinear snubber
as a linear spring (see B.2.2.2).

B.2.2.1.3 Response Spectrum Analysis

This analysis method is strictly limited to linear systems. This method
can Le used provided the snuhhers can be represented as linear springs. When
the range of characterization parameters does not permit representation of the
snubber as a linear support, a modified response spectrum (R.S.) procedurc may

FORM 735-A-7 REV 678
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be adopted. When performing a modified R.S. analysis, the results are modified
to reflect the use of equivalent linear snubbers in place oi the actual non-
linear snubbers.

B.2.2.1.4 _catic Inertia Analyses

This methcd is commonly used to satisfy basic building code requirements
and is permitted by Appendix A of the "Code of Federal Regulations," 10 CRF
100 only when .t can he demonstrated that this m:thod provides adequate con-
servatism for the analysis of Category I and Category Il components. The
method is based on the application c© a lateral and sometimes vertical static
gravitational loading. Inasmuch this method does not inherently take into
accourit the dynamic response characteristics of the system, the conservatism
or unconservatisms pr-vided by this methed are highly dependent on the gecmetric
configuration of the systew. Since this document does not address overall
system design considerations, the static ir~rtia analysis is precluded from
further discussion.

B.2.2.2 Linear Rep-esentati. _ ..ubber

Snubbers have usually been represented as fixed anchors or linear springs
for .he purpose of linear dynamic analysis. Neither is a rigorous represen-
tation of the snubber. A linear representation is permitted when both the
system response and snubber impact loads (as predicted by rigorous time-history
analyses) do not ditfer from those predicted by linear analyses by more than
20%. This may be verified by testing or comparisons of analytical studies.

There does not appear to be a satisfactory linear representation (spring
or rigid support) that will permit system response and snubber reactior loads
to be predicted with an accuracy sufficient to justify their use for seismic
loading when clearance is present. The best simple reprcsentation of a snubber
is a nonlinear representation consisting of a linear spring with a gap set
equal to the total clearance of the component. This representation enables
both response and reaction loads to be predicted with sufficient accuracy in
most cases, provided all response parameters are bounded within the limits
described in B.2.1.3. However, a linear analysis may be used; provided the
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total clearance is less than .05 inch, and the
~1ied by ihe appropriate ioad factors. Snubber re
shail be increased by 100% for clearances greater

1ich. Snubber rea_tion loads and stresses shall be

4 for clearances greater or equal to .02 inch but
tailed nonlinear analysis is re ‘ed for systems witt

clearance.

Clearance and structural compliance have the
response when the characterization barameters are within the a
indicated in B.2.1.3. Displacement response can be determined with greater
confidence than snubber reaction loads, particularly when support clearance
in excess of .02 inch is present. This situation exists for two
first, the complexity of the seismic input wave form combined witth lear

creates a situation of unpredictability; and second, the high stiffness of the
snubber creates a situation where, mathematically, the impact load is sensi-
tive to the integration time increment and solution technique Hence the need

for load factors with the linear analysis

Itiple Snubber Usage

The cuidelines addressed in this section are presented 1r
t_ -

1 o 1

oncerns regarding the practice of using several ibbers

a single large snubber. These guidelines are based on the resul

program _ scussed in Reference BS.

Snubber Mismatch

Mismatch of snubber end fitting clearance in multiy
has a greater effect on load sharing of parallel mounted snubbers
match of activation level or release rate. Uniform load sharing
snubber supports (:10%) can be expected for hydraulic snubber
clearance differentials plus lost motion differentials
and the activation level and release rate are betweer

2

and 4 and 14 inches/minute, respectively.

FORM 735 A-7T REV 678




~no. _ETEC-TDR-80-16_  mev,
PAGE 91 __ or
DATE 11-26-80

REV.DATE

Equal load sharing of multiple snubber supp.rts should not be expected
if the end fitting clearance mismatch exceeds .01 inches. If the mismatch
clearance differential exceeds .01 inches but is less than .04 inches, peak
loads shall be assumed twice the uniform load sharing value. Mismatch of
end fitting clearance shall not exceed .04 inches.

B.2.3.2 Design Considerations for Hydraulic and Mechanical Snubber Pairs

The l1oad sharing of a hydraulic snubber pair is more sensitive to mis-
match of end fitting clearance than the load sharing of a mechanical snubber
pair for harmonic input.

The load sharing of a mechanical snubber pair is more sensitive tc mis-
match oy end fitting clearance than the load sharing of a hydraulic snubber
pair for seismic input.
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TABLE B.1  ALLOWABLE AND DESIRABLE SNUBBER RESPONSE PARAMETER RANGES
PARAMETER TYPE ALLOWABLE RANGE DESIRABLE RANGE
40 in/min if X, > 5 in/min | .
ACTIVATION H < ! o sa &l , " Low as possible, but great
LEVEL < 50 In/win 3% xB < 5 in/min | enough to preclude lockup
M < .02g I during thermal expansion.
Rated Load ,. ; . .
RELEASE H < .50 x (m)m/mm 5 -+ 30 in/min
RATE
X
(Xg) M See Activation Level See Activation Level
CLEARANCE -8B < .05 in. 0
!
E As large as possible but
| small enough to maintain
FRICTION }—B—| < 40% Rated Load ; tharmsl Strwssan Witk
i acceptable limits.
i
20 ! 20
STIFFNESS 8 > 3 - ZQ(IH i >> ’)._:TO(TH
i
NOTES:
H = HYDRAULIC (Velocity Activated, Poppet Type)
M = MECHANICAL (Ac-eleration Activated)
B = BOTH
a = Flexibility of pipe @ snubber location (in/1b)

aH = Combined flexibility of all hardware between the center of the
component and "ground" (in/1b)
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NOTICE

This report was prepared as an account of work sponsored by an
agency of the United States Government. Naither the United
Stater Government nor any agency thereof nor any of their
contractors, subcontractors, or any of therr employees, makes
Ny warranty, expressed or implied, or assumes any legal
Nabsity or responsibi'ity for any third party’s use. or the results
of such use, of any nformation, apparatus, product or process
disclosed in this report, or represents that its use by such third
party would not infringe privately-owned rights.
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STATEMENT OF PROBLEM
Develop information which will provide the basis for structural analy-
sis and design rules for systems and componenis which utilize snubbers '
as supports. Results will be used to assure that dynamic response
characteristics of snubber supported systems ana components will be
bounded within acceptable limits.

ABSTRACT.

REV. DATE
~ . PR
TECHNICAL DATA RECORD
AUTROR DEPT & GROUP NO. ]
A. T. Onesto 2Pt  720-2M : ! J
TITLE

Snubber Sensitivity Study Final Report, FY 78 L + -
PROCRAM ‘
NRC Contract T 1
FIN #B3076-8 i
- -
- |
. :
|

The sensitivity of mechanical and hydraulic snubber parameters to
system displacements, stresses and forces are analyzed. Acceleration
threshold, clearance and friction are evaluated for mechanical snub-
bers while hydraulic snubber investigations include lock velocity,
bleed rate, unlock loading, clearance and friction. The back-up
structure is influential for both types of snubbers and although not
a8 snubber parameter, per se, is treated like a paramrter. Forcing
functions are utilized, and include both harmonic ana time history
seismic inputs to the nuthematical models. Mathematical models are
used to simulate snubber characteristics. Special mathematical tech- !
niques are developed for economical use in piping programs. Accept-
able parameter ranges are established, based on criteria for the
various mechanical and hydraulic snubber characteristics.
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1. INTRODUCTION

The objectives of this program under NRC contract FIN #83076-8 are to
perform analytical evaluations and parametric studies to:

(1) Identify structural and performance parameters which significantly
affect snubber dynamic response characteristics;

(2) Determine the sensitivity of the snubber response and the corres-
ponding effects on the snubber supported system to variations in
each parameter identified above; and

(3) Develop simplified analyses techniques and design rules which wiil
bound the response of the system within acceptable limits.

The areas of work covered in (1) and (2) were completed this fiscal year,
FY 78, and work under (3) is planned for completion in FY 79.

Simple analytical models with simple loadings were used initially to
establish dimensionless response parameters permitting insights into the basic
problem. The use of steady-state harmonic response calculations was invaluable
as a tool. After the simple models and loadings were examined the more sophis-
ticated models and loadings were studied. Figure 1.1 illustrates both the
simple and more sophisticated models.

Snubber parameters, e.g., acceleration threshold parameter and bleed rate,
were considered invariant quantities, 1.e., unaffected by feedback with the
restrained system. Although it is recognized that there is scme interaction
between the various snubber parameters and system response, these effects were
not considered in this study. The work does not consider variables that effect
parameter magnitudes such as hydraulic fluid properties, entrapped air, and
fnertia effects.
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TASK 3 - SELECT APPROPRIATE TIME HISTORY FORCING FUNCTIONS

The selection of forcing functions is important if meaningful results are
to be obtained. Harmonic loadings provide insights into physically urderstand-
ing the problem. Seismic loadings are then used in evaluating or relating
response sensitivity to actual conditions. The four most used, strong motion
seismic events for the design of facilities have been employed as "benchmarks"
for this study. The, include: E)] Centro (California-1940); Taft (California-
1952); San Fernando (California-1971); and Washington (washington-1943), These
seismic events represent varying earthquake magnitudes and frequencies.

TASK 4 - EVALUATE RESPONSE SENSITIVITY FOR PARAMETERS ESTABLISHED IN TASK 1

This part of the study consisted of forming response curves for the various
structural models and for the various loadings with the aim of graphically
presenting the response sensitivity data. Consideration is given to displace-
ment, stress and loads.

TASK 5 - ESTABLISH AN ACCEPTABLE RANGE OF PARAMETERS THAT WILL BOUND SYSTEM
RESPONSE WITHIN ACCEPTABLE LIMITS

Establishing the acceptable parameter ranges requires the consideration of
all the findings of the prev-ous tasks. This i3 one area where the actual mag-
nitude was considered in the time history forcing functions for the four seismic
events utilized. The acceptable ranges were based on the dynamic response
characteristics of displacement, stress ana snubber loadings.

The results or conclusions obtained from this study are based on a limited
observation contained nerein. Experimental and analytical work by other authors
was not considered. The effor! scheduled fo- FY 79 will supplement this work
and as a result, future refinement of the acceptable ranges for the various
parameters is expected.
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This study interrogated the externaliy evident pa-ameters associated with
mechanical and hydraulic snubbers. The basic apgroach taken was to first use
simple and fundamental models. As more sophisticated systems were developed
analytical comparisons were made with the fundamental investigations. Summar-
fes of each parameter are presented below to highlight results of the snubber
sensitivity study for FY '78.

ACCELERATION THRESHOLD PARAMETER (A.T.P.) — Analytical studies of simple
systems reveal that the acceleration threshold parameter has the potential of
increasing system response rather than reducing the response as might be
expected when snubbers are used. Analytical studies indicate that an amplifi-
cation may exist when compared to the base motion when the forcing frequency
is less than the natural frequency of the snubbed system or when low forcing
frequencies {< 3 Hz) are applied to the system. For the more complex s ismic
inputs. amplification also occurs in some cases. Acceptable ranges for this
parameter depend on the frequency response characteristics of the system being
restrained.

VISCOUS PARAMETERS (LOCK VELOCITY, BLEED RATE, RELEASE CRITERIA) — Responsd
sensitivity of the viscous parameters is not greatly dependent on the forcing
frequency or on the magnitude of the applied load. The release criteria (con-
dition when velocity changes from bleed velocity to free velocity) has the
least effect on response of the viscous parameters. Lock velocity has the
greatest effect on system response. The response of highly loaded systems
(based on benchmark seismic loadings) are in general reduced to 5 percent of
the unrestrained response for realistic bleed rates when the lock velocity is
less than 1 in/sec. A realistic bleed rate (< 1 in/sec) reduced response to
acceptable 1imits since the snubber represents a highly “damped” or cri ically

demped restraint,
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FRICTION LOADS — The study of friction (coulomb; indicates that small
friction loads have negligible effect on system response. For the case of
harmonically excited simple system, the response is affected significantly
only after the friction load exceeds 40 percent of the applied load. The
same trends were observed for nonharmonic (seismic) loadings.

CLEARANCE — Clearance reduces the effectiveness of other snubber parameters
in reducing the response of the system (stress and displacement). Snubber
reaction loads, however, may be increased or decreased by clearance fepending
on the magnitude of the load and the amount of clearance, compared to the free
displacement (no support) condition.

BACK-UP STIFFNESS — Since the "effective" stiffness of a snubber is gener-
ally greater than its back-up support structure, the snubber response character-
istics, e.g., damping properties, acceleration limits, etc., may be “washed out"
by flexible supporting structures. The results of the work presented in this
study indicate that the combined “"effective" stiffness of the back-up structure
and snubber must be at least twenty times greater than the piping or component
stiffness to be totally effective in reducing response. In terms of hydraulic
snubber viscous parameters the support stiffness should be greater than 1.2 (CQ)
and 1000 C/M where C is the snubber rated load (1b) divided by the bleed rate
(in/sec), @ is the predominant forcing frequency in rad/sec, and M is the support
structure effective mass.

SUPPORT DYNAMIC INTERACTION — Since the “"effective" snubber stiffiess is
in general quite large, the snubber acts as a "rigid" connectinn between the
supporting structure and supported system. A classical resonant condition can
occur {f the forcing frequency coincides with the combined system-support natural
frequency. Based on this situation it is adv.sable to have a supportiny struc-
ture with a higher natural frequency than the supported system. Ideally it is
desirable to have the supporting structure with a natural frequency that is
twice that of the supported structure. In addition to the specific parameters
mentioned above the study indicated other results some of which are discussed
below.
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NOTES:

With Other Paramet:rs(a)

Rated Load/Bleed Rate (1b-sec/in)

Predominant Forcing Freq. (rad/sec)

Support Stiffness (1b/in)
[Pipe Flexibility]™' (1b/in)

(3) & * Clearance Gap (in)
& = Unrestrained Response (in)

|~
TABLE 2.1
ACCEPTABLE LIMITS "JR SNUBBER PARAMETERS
Acceleration Threshold Parameter <0.: g
Lock Velocity <6( in/min
ted load 4 .
Bleed Rate (C = ;‘?‘éa""r::?’ >(10)" 1b-sec/in
o - 3 -1
(cm Sass ) >(10)° sec
Friction Load 40% rated load
Back-Up Structural Stiffness
Viscous Parameters’') k > 1.2(Ca)
Effective Snubber Stiffness(?) K/K* > 20
Clearance
i No Other Paraueters(s) (66’65) < 0.18%
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3. SNUBBER PARAMETERS

addressed.

3.1 The Mechanical Snubber

and compression loading is identical.

g. Snubbers can be designed for other values that might be desired.

ation threshold characteristics.

The scheme adopted for identifying snubber pa-ameters was to isolate para-
meters applicable to mechanical snubbers, hydraulic snubbers and those common
to both. Following analyses of the individual parameters, combinations are

The mechanical snubber is a device that operates on the principle ot
limiting the acceleration of any pipe movement, relative to the snubber base, to
a threshold value of a specified "g" level, Figure 3.1. Should a disturbance
accelerate the pipe in either direction, a braking force is applied within the
arrestor to restrict the acceleration to specified 1imits. Thermal expansion
which is a gradual movement is not restricted. A particular feature of the
snubber is that its performance is independent of the force being applied. The
design of the unit is completely symmetrical. Braking action in both tension

3.1.1 Acceleration Threshold - This snubber parameter is unique to the mechan-
fcal arrestor. It represents the limit acceleration of pipe movement relative
to the base of the snubber. For the "ideal"” mechanical arrestor, unrestrained
pipe movement is permitted when pipe accelerations are less than a specified

"g” level. At acceleration rates equal to or greater than the threshoid para-
meter, the snubber reacts with a load that does not permit pipe movement to
accelerate at a rate greater than the threshold value. The acceleration
threshold is a "built-in" feature of the snubber. It cannot be ad .isted or
modified. The acceleration threshold level is normally set from 0.02 g to 0.08

the Pacific Scientific Srubber, one that is in extensive use. Here the threshold
values are basically a function of the capstan spring rate and the inertia mass,
Figure 3.1. Other type mechanical snubbers are assumed tn have the same acceler-

Consider
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At impact loads greater than the rated capacity, the capstan spring “ay
slip as it engages the torque transfer drum. This "safety" device prevents
failure of the device and permits accelerations greater than the acceleration
threshold limit. Since snubbers shouid not be used above their rated capacity,
this sftuation is not being considered.

3.1.2 Clearance - The primary source of clearance is established by setting
the ball nut mechanism. This is where the linear translational motion caused
by a seismic disturbance is converted to rotational motion of the ball screw
and drum assembly.

3.1.3 Friction - Breakaway or friction loads are created when parts rub or
ro’l upon each other. Mechanical snubbers have fairly low breakaway loads,
usually about | percent of the rated capacity. These loads are generated in
the ball nut mechanism, bearing sleeves, and in the teiescoping cylinder. The
friction loads are sensitive to corrcsion and certain types of contamination.
Situatians may arise where friction or breakaway forces exceed this 1 percent
value.

3.2 The #ydraulic_Snubber

The wydriu:. ‘rrestor is a velocity sensitive device used for restraining
pipe motion durin, dynamic loadine while permitting free thermal motion. A
control valve perm.ts unrestricte) motion at low velocities, whereas resistance
to motion is encountered at high relocities. The operational characteristics
of the hydraulic snubber are relat:d in general to two parameters - the locking
velocity, and the bleed velocity. The locking velocity is the velocity at
which free flow of the hydraulic fluid through the valve is stopped, and
resistance to movement develops. At this velocity, a poppet valve closes and
the fluid flow is restricted through a bleed orifice. When the hydraulic fluid
s channeled through the “bleed" system, restraining forces are created which
are proportional to the bleed velocity, Flgure 3.2. The bleed and locking
velocities can be set independentiy of each other and can be changed from the
nominal values that have been set at the factory.
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3.2.1 Lock Velocity - The lock velocity is that actuator or piston velocity
at which free motion of the actuator stops and restricted motion begins. Prior
to a seismic event, all motion occurring with a velocity less than this value
will be unrestrained. The actuator will also lock when acceleration exceeds a
given level.

3.2.2 Bleed Rate - The Yleed rate is the restrained motion that occurs after
snubber lock up occurs (see Locking Velocity). The piston velocity is propor-
tional to the actuator load, that is, a velocity dependent force is produced
as a result of this action,

The physical properties of the fluid have significant effects on tne
operation of hydraulic snuvvers. The stiffness properties of snubbers are
particularly sensitive to the effective bulk modulus and, of course, the bulk
moduly. is quite sensitive to air entrapment and temperature. I[f air pockecs
exist in the system, dead bands may also exist.

3.2.3 Clearance - For hydraulic snubbers this is unrestrained motion, at pis-
ton velocities greater than the locking velocity. It occurs because of mechan-
ical tolerances at end fittings ana entrapped air in the hydraulic fluid. The
unrestrained motion acts as a clearance or dead band.

3.2.4 Friction - The friction or breakaway loads result from the actuator rod
bushing and seal, and the piston seal. Corrosion effects tend to increase these
loads.

3.2.5 Unlock Loading - This is the actuator load due to hydraulic pressure
which causes the snubber to become unlocked; that is, free flow of hydraulic
fluid takes place in the snubber as the poppet vaive opens.

3.3 Parameter Combinations

The snubber parameters that affect response can be divided into two cate-
gories. The first category represent those parameters which affect the relative
motion between the pipe (component) attachment and the arrestor support. And
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the second category represent those parameters which effect the snubber support
motion. Although the second category of parameters may not be related directly
to the snubber component, it is important that these characteristics be recog-
nized.

Some parameters that may be considered in the first category include:
acceleration threshold parameter, dead bands (gaps due to tolerances), linear
stiffness characteristics due to the mechanical structure, nonlinear stiffness
characteristics due to fluid compression or air entrapped in the hydraulic
system, and viscous parameters such as lock velocities and bleed rates. Para-
meters that may be considered as belonging to the second category include: back-
up or structural response characteristics, nonlinearities due to snubber orien-
tation (single snubber usage), and clearances or local support flexibility
associ “ with installation such as loose connections.

Figurss 3.3.1 and 3.3.2 show analytical schematics of the mechanical and
hydraulic snubbers. Included in these schematics are the snubber support mass
and stiffness properties, and the snubber attachment flexibility characteristics.
The figures describe “generalized" snubbers with various possible parameters.

3.3.1 Mechanical Snubber Model - For the mechanical snubber the schematic shOwsi
two stiffness terms, one a displacement dependent characteristic k(X), the other
a velocity dependent stiffness characteristic k(X), a load dependent parameter
Cf, which is a velocity dependent reaction, and Xy which represents a load due
to motion constraints. It should be noted that the spring constants are not
necessarily linear. They could be either hardening, softening or a combination
of both. The respective clearances for each of these parameters are also shown.
The displacement dependent stiffness characteristic represents the flexibility
of the internals of the snubber, i.e., the telescoping cylinder, the ball screw
shaft, and threads. The velocity dependent stiffness k(X) is a n:bulous entity
but is probably best visualized as resistance to changes in motion of the
rotating ifnertia mass. The C¢, or velocity dependent load may actually
represent the frictional resistance of moving parts such as screw shaft - ball
nut friction, or sliding interfaces like the telescoping cylinder. Some of the
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Figure 3.3.1 Mechanical Snubber Model

PORM T36-A T REV ETS

s
FORM 735-A-7 REV 678




~vo. ETEC-TDR-80-16 _ _ mev,
paGce __ 117 OF
pate _ 1 1-26-80

REV.DATE

wo, ETEC-TOR-78-17 .0

pace 21 o
pare _ 2/79/78
REV. DATE

l Xg(t)

k (Support Structure)

M
(Support Structure)

k (Snubber Attachmert)

i'cs 2 Snubber Base
X I

K(X) k(x)

Component Attachment

Figure 3.3.2 Hydraulic Snubber Model
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frictional characteristics may be coulomb type; however, they result in an
“effeciive" velocity dependent loading. The acceleration threshold reaction
is an acceleration dependent parameter which results from the interaction
between the capstan spring and the inertial mass.

The clearance &cx and &cx associated with structutal stiffness of the
overall component may be related to tolerances between internal parts and gaps
in end attachments. The clearance éc¢ which is primarily due to friction is
usually small since friction exists even without relative motion. The acceler-
ation constraint clearance cX 1is related to slop or tolerances between the
ball screw shaft, and the ball nut. It is difficult to categorize these
clearances according to origin, consequently clearances are lumped together
as a single 1tem,

3.3.2 Mydraulic Snubber Mode! - For the hydraulic snubber, the load parameter

C represents a viscous load proportionality factor relating load to velocity.
This is an important parameter that results from the bleed velocity setting for
the snubber, and to a lesser extent the lock velocity and "free flow" pressures
exerted on the hydraulic fluid. It is the classical viscous damping coefficient
with one exception; it may be a function of velocity and displacement. Frictional
forces may also be considered in this category. The ficaibility parameters k(X)
#~d k(k) are similar to those of the mechanical snubber, that is, a combination
of "external” structural flexibilities and “internal” flexibilities. The
internal flexibilities, however, are dependent on the properties of the hydraulic
fluid such as air entrapment and entrainmen*, bulk modulus, and viscosity. The
spring constants are not necessarily linear, and could be either, hardening,
softening, or a combination of both.

Clearances from external sources such as installation tolerances are
treated the same for both hydraulic and mechanical snubbers. Internal sources
differ; the greatest source of clearance is from entrapped or entraired air in
the hydraulic snubber. Since clearances are related to the hydraulic fluid
they will be considered as part of the nonlinear restorative characteristic of
the fluid.
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4. STRUCTURAL/ANALYTICAL MODELS '

The selection of a mathematical model involves consideration of system
response characteristics, load types, restraint characteristics, and the ‘nter-
action with other dynamic systems, e.9., the snubber and supporting stru. re.
Utilization of simple structural models formed the basis for meeting the goals
of the study. The single degree of freedom lumped mass oscillator was used
intensively in the study. The simple oscillator model enables one to readily
isolate parameters and establish dimensionless combinations including both
system response characteristics and snubber parameters. The simple oscilliator
also minimizes the number of variables that affect system response.

The response of the lumped mass oscillator when related to a more complex
system can be viewed as an anchor motion or base excitation input to the system
which is restrained by the snubber.

When a simple system is used to develop response sensitivity characteristics,
one must realize that input and restraint effects become more pronounced than
they would be for a complex system. For example, consider the single degree of
freedom lumped mass sytems shown in Figure 4.1, here each system has the same
characteristic equation,

mE o+ CX + kX = f(t).

The response magnitude is a function of f(t) and is different for each model
shown. The load expressions for each of the six cases are shown in Table 4.1,

The response sensitivity to the viscous parameter, C, can be studied using
at least five different structural models. Although it is possible to logically
single out one mode! as more realistically representing a given situation, the
reference sensitivity of snubber parameters suggests that any one or all of the
models can be used to meet the goals of this program.
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TABLE 4.1
FORCING FUNCTION PERMUTATIONS
Case f(t)
1 kxg [ sin at)
2 kXg [% sin ot + (Ca/k) cos ot]
3 kXg [% sin at)
ES kXg [ sin (at - ¢) + (CQ/k) cos at)
5 kXg [% sin 0t + % sin (at - $) + (C/k) cos at)
6 kXg [% sin ot + ¥ sin (At - ¢) + (CQ/k) cos at])

Depending on the component or system configuration, the snubber may affect
the system ras,onse by restraining motion, by acting as a load or input attenua- :
tor, or a combination of the two. Component sensitivity studies are based on 9
vartous types of loadings and supports. This allows an overall response sensi-
tivity to be established. Studies consider base excitation, force inputs, and
displacement acceleration inputs.

In addition to the simple oscillator, more complicated structures have been |
studied, such as, a multi-degree of freedom lumped mass model, simple beam mode s |
and piping loops. These more sophisticated models are used to verify the resultls
of the study of simple systems. Consideration of the more sophisticated system
permits insights into multi-mode effects and reduced response sensitivity.

The lumped mass models represent a series of models with different natural
frequencies and forcing functions. Figures 1.1(c) and 1.1(d) represent two of
several beam models used in this study. Figure 1.1(e) represents the "typical”
piping loop with components that are found in reactor piping such as valves,
springs, straight pipe runs and elbows. The valve weights, spr: ; rates, and
lengths with dynamic characteristics - in particular, the natural frequency and
displacement and stress responses - approximate those found in typical reactor
fnstallations. Without the snubber installation the first three natural fre-
quencies of this model are 2.311 Hz, 4.191 Hz and 7.25]1 Hz. With the snubber
installed the first three frequencies are 5.854 Hz, 9.881 Hz ana 11.292 Hz.
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It 1s recognized that the static and dynamic properties of i5> back-up
structure contribute to or modify the response characteristics of *he snubber .
Compliance with the dynamic coupling of the systems are investigated as a
separate task in this study.
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§. FORCING FUNCTIONS

Use of harmmonic forcing functions in simple oscillators allows the develop-
ment of dimensionless expressions thus reducing the number of independent vari-
ables. with the response characturistics dependent on the forcing frequency,
the use of actual seismic in~:%s is essential to the development of a compre-
hensive understanding of snubber parzmeter sensitivity.

Seismic loadings selected for this study represent the four most widely
used seismic inputs for the design of niclear facilities (Table 5.1).

TABLE 5.1
SEISMIC EVENTS INPUTS
Richter
Event Location Magnitude Max G
Imperial valley Earthquake El Centro, California 6.7 .348
Kern County Earthquake Taft, California S .196
San Fernando Eirthquake San Fernando, California 6.4 .253
Western Washinjton Earthquake Olympia, Washington Rl .280

Information was obtained from the CAL TECH Earthquake Engineering Research
Laboratory, Reference 2, with test instrument corrected and fully documented
digitized acceleration, velocity and displacement data. This data was processed
through the Rockwell computers and the CRT plots are shown for the various seis-
mic disturbances in Figures 5.1 through 5.9. Acceleration traces are shown in
Figure 5.1 through 5.4 and displacement traces are shown in Figure 5.5 through
5.8. The response spectral data for these siesmic events are shown in Figure 5.9.

The records used in the investigation were measured only in the United
States and predominantly in California, The conclusions are appiicable to the
west coast of the United States. Slower ground maticn attenuation rates in the
east and mid-west suggest that ground motions in these regions could have dif-
ferent frequency contents. Nevertheless, the seismic design of major structures
in the ecast and mid-west have of necessity, been basea or measured records from
the west This practice will no doubt continue until a sufficiently large
ensembie of strong motion records can be obtained from the east and mid-west.
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6. SUPPORT CHARACTERISTICS

6.1 Back-up Structural Stiffness

Typical dynamic analyses of components and piping systems crisider the
snubber as a rigid restraint. This is considered particularly va,‘d when the
motion during a dynamic disturbance is very small and applies when clearances
are nonexistent, or loads are low compared to the rated capacity of the snubbers.
The response of the system, however, can be influenced by the flexibility of the
supporting structure.

Consider an infinitely long pipe supported at ur‘ orm distances.

ol
]

F e e - iy -
L I | |
I’ [ '1‘ 1 'I 1 'I 1 ’]

The fundament:] mode of this system can be found using a single span.

b

|
ey

o

L

.
I

The second mode can be found by changing the boundary conditions from pin-pin
to fixed-fixed.

+ I

y
2
J
-
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Supports on the infinitely long pipe can be related to anchors in a general
piping system. The resonant frequency of the system can best be changed by
placing a snubber at the center of the span,

Using the two systems in the figure, the effects of snubber stiffness on
system frequencies can be evaluated by plotting the dimensionless parameters
of restrained natural frequency/unrestrained natural frequency, (f“/fl). and
the spring stiffness/pipe stiffness, (k/K°) as shown in Figure 6.1.1. The flexi-
bility at the point of snubber attachment is a. The pipe stiffness, K°, is
evaluated on the basis of pipe flexibility at the snubber location. K° is, there-
fore, a function of not only EI (modulus of elasticity and bending moment of
inertia) and ¢ for a general system but also a function of hanger and anchor
locations and geometry.

-«

* ,
7

-

For the snubber to be active in changing the system frequencies, its “effec-
tive" stiffness needs to be at least twenty times greater than the pipe stiff-
n:ss (K°). That is, the snubber is most effective in altering the response of
(he system when (k/K®) >20. This is the case when response can be directly
1elated to system natural frequencies. This can be verified by noting system
response, rather than system natural frequencies, as a function of the stiffness
parimeter, (k/K°). The results for a simpie beam model are shown in Figu - 6.1.2
vihere peak transient response for an undamped system is shown as a function of
“effective” snubber stiffness. Figure 6.1.3 presents the results for the El
Centro seismic loading.
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cases, the response was found to be inse
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vided reasonable engineering design prac
snubber were placed very clcse to either
(k/K®) would become less pronounced. Th

choice because the effect on the respons

The hydraulic snubber efficiencies

backup structure This can best be demonctrated by the dashpot-spring

ment subje« to @ harmonic excitation,
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This system crudely represents a hydraul
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the efficiency (n) versus (k/Ca).
experienced for reducing response.

of the snubber.

6.2 Support Dynamics

by its dynamic characteristics.

ing components and piping systems.
of nuclear facilities.

tures.

Tne development of the above relationship is given in Section 9.

If efficiency of the support is
developed to the maximm possible load, the following is obtained,

This expression gives a method for determining sunport stiffness for a given
forcing function, and type of hydraulic snubber.

in reducing response for high efficiencies.
desired from Figure 6.1.4, it can be seen that k must be greater than 1.2 (C2).

Knowing k and (Ca), Figure 6.1.5 can be used to evaluate the effectiveness

In the discussion of back-up structural stiffness, it was presumed that the
dynamic characteristics of the supporting structure did not attenuate the input
loading or couple dynamically with components and piping systems.
pling, however, can occur and the response of the syster can be greatly influenced

The response characteristics of structures should be considered when design-

Even when detailed dynamic analyses are not required the
spacing of piping supports and snubbing devices are often selected so that the
frequency of the piping will be significantly different from that of main struc-
Building structures typically have a resonant frequency range of 2 - 4 Kz.
For this reason, component and piping systems are designed to have a natural

ned as the ratio of the maximum load

2
3
(Ea)

.
Xy
1+ (Gq

Figure 6.1.4 shows a plot of
For low efficiencies 2 minimal effect is

On the other hand effectiveness is enhanced
If a minimum 0.75 efficiency is

Dynamic cou-

This practice is generally used in the design

FORM 73847 REV &8

FORM 735A-7 REV




wo. ETEC-TDR-80-16 mev,
pacge _ 140 OF
pave _ 11-26-80

REV.DATE

wo. _ ETEC-TOR-78-17

nev,
vace _ 4o
oare _ 9/29/78
REV.DATE
e
1 | c
.-
a
e
@
2]
-
o
SR e
— ~™
>
o - g
LY
o
-
-
-
i
-
<
v
oG -
> g 2
NN 3
- L
~ -
j 4
=
-
©
L Y
-
3
e
e
\ .
= B B - ~ E
9
(9-3-‘-') £3u9134443

FORM 72%A 7T REV &8

FORM 735-A-7 REV 678



wo, ETEC-TDR-80-16  mev,

pAGE __14] OF
oate _11-26-80

REV. DATE

wo, _ETEC-TDR-78-17

oar_ 8- o
oars __9/29/78

L | Jp—

REV. DATE
10’ .
= T T TTTTTT T TTTT
—
CRRT
Py - -
- - -
— e —4
: o —
w p— ——
w
i -
-
ii - -
s
£ 108
= - -
z =
— S
- —
104 5.4 i L L il L L1 it
10% 108 106 107
Viscous Stiffness (C2) (1b/in)
Figure 6.1.5 Support Efficiency

FORM 735-A 7 NEV &78

FORM 735A-7 REV 6-78




wo. ETEC-TDR-80-16 REV,

PAGE __142 OF

paTe _11-26-80

REV. DATE

wo ETEC-TOR-78-17

PAGE 4 OF
oare __ 9/29/78

REV. DATE

frequency of at least 8 Mz, Although a higher frequency would be desirable, 8 Hz

is conrsidered to be a realistic and acceptable value.

The basic structural feature selected to represent dynamic characteristics
of structures supporting snubbed components and systems is one where the ground
motion input is applied at all anchors and all snubber locations. The model is
an expansion of the generalized model as illustrated below.

-Es(t) ﬁ.(t)

Component
Componen K
System . System

é Snubber
§ Fa(t) .
Support % K J_"B( t)

Generalized Model Model for Studying
Dynamic Characteristics

The analytical solution for the response of the system can be found in
Section 9, Analytical Methods.

Consider the structural model shown in the figure below:

_i_lg sin Ot

= 10,000 sec-!
K
RATED LOAD
BLEED RATE

= 1.0 " ¢z

/-gcsm J[.)c.iL

m
k Xg sin Qt {
i T |

Q“-‘ =3 =o
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Viscous parameters are considered in this structural mode. The parameters
K (stiffness) and M (mass) represent the equivalent properties of the system for
which the response is studied and k and m those for the supporting structure,
The system and supporting structure natural frequency are g; ¥ and g; -
respectively. Coupling is accomplished using the snubbing device. In this
example, the “uncoupled” supporting structure has a natural frequency of 8 Hz
and is excited by a 6 Hz harmonic base excitation.

The maximum response can be evaluated for various values of supporting struc-
ture natural frequencies (k/m). Thus the effects of support frequency in com-
bination with the viscous parameters can be observed with the effects of viscous
properties. The results of this study are shown graphically in Figure 6.2.1.

The response of the masses, representing the two ends of the snubber, are
nearly equal. A response peak is noted similar to a classical response-frequency
curve. The small difference in relative motion between both ends of the snubber
relative to the overall motion of the masses suggests that the effective stiff-
ness of the snubber is much greater than the stiffness of the component system
or the supporting structure. Since the effective stiffness is much greater than
the apparent dynamic stiffness of the supporting structure the overall response
of the component system (K, M) can be approximated from the model shown in the

figure below.
1 Xg sin Ot
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The response of the system can be approximated by
Xg

(g * s g -0

&=

K

L}
mrQ|

m

8= (i)

The natural frequency of the coupled system is

When the forcing frequency approaches fns the response will increase as a
resonant condition is created.
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7. DETAIL PARAMETER STUDIES

7.1 Acceleration Threshold Parameter

The acceleration threshold parameter (A.T.P.) is a characteristic that is
unique to the mechanical snubber. It limits acceleration of the pipe movement
relative to the base of the snubber.

The effects of the A.T.P. on system response were studied using the single
degree of freedom lumped mass oscillators and simple beam models shown in Figure
7.1.1 and the more complex piping system shown in Figure 1.1(e). The investiga-
tion considered steady-state and transient response characteristics resulting
from harmonic loadings, and transisnt response characteristics resulting from
seismic inputs.

Consider the s'-2le system shown below excited by a harmonic loading. The
response of the system was evaluated by numerical methods (Section 9). The
transient response for the first few cycles of loading is shown in Figure 7.1.2.

tF sin 0t

X | 'n'sﬂl
taed /X <1 n .L. M £« 10 tn/sec?
N adm ’ .

The response of the lumped mass system does not respond at either the forcing
frequency or the natural frequency, but responds with a complex response wh'ch
appears to be the summation of two harmonics, one the forcing frequency and the
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Figure 7.1.1

A.T.P. Structural Models
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other a much lower frequency component. This lower frequency component is
referred to as the shadow frequency.

To describe this shadow frequency, consider the steady-.tate response of a
single degree of freedom, lumped mass as a result of an harmunic excitation,
without the influence of the acceleration limit - acceleration threshold para-
meter. The steady-state response, velocity and acceleration can be expressed

by
X = Aosin(nt -9),
X = Aoncos(nt -9),
X = Aonzsin(nt -9)
where, P is a phase angle between the applied force and the response.

The system acceleration is an harmunic function which is 180° out of phase
with the displacement. [f the acceleration were plotted as a function of time
it would be a continous sine wave shown below.

mzl}
% N - N
<
I -Aﬂz

This assumes an Acceleration Threshold Parameter where, iL e Aonz.
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figure below.

Applying the acceleration limits to the system acceleration response curve,
the system acceleration response becomes that shown by the solid line in the

Unrestrained
Acceleration ’r .

Acceleration

Acceleration

~-’  Restrained
Acceleration

If iL“ Aoaz. the acceleration characteristics become, for the first cycle

2

L BB}
-~

+ TIME

X

Where t is the perfod of the forcing function.
integrated from 0 + one finds that there is a net movement or shift of the mass

from the neutral position as shown in Figure 7.1.3.

If the acceleration is
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Figure 7.1.3 A.T.P. Residual Amplitude
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The mass undergoes an incremental displacement ax = 1/4 ilxz. [f this

sftuation were to continue to exist, the mass would continue to move away from
the neutral position at a rate of 1/4 isz/cycle. As the mass moves away from
its neutral position an additional force equal to kX is applied to the mass
causing a shift in amount of time that Oi applies and 'iL applies. For the
first cycle,

L

X_ exists when 0 < t < /2
and,
il. exists when /2 < t < <

For the second cycle, in which the applied load (resulting acceleration) is
changed because of the added force (kX) the following situation exists,
iL exists when 0 < t < (1/2 - 8)

and,

iL exists when (/2 - 8) <t <1

The & v .ue for each cyle of loading varies because the total force
(F sin o - kX) varies. The value of & increases during each cycle of loading
until the maximum displacement (zero velocity) of the shadow response occurs,
at which time, & reaches a maximum Smax’ The cycle then continues with a
decreasing until the time shift reaches its negative maximum- - at which |
time the shadow response is at its minimum position. The shadow response

represents the time integral of the acceleration, as shown below.
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This shows how the shadow response is created. The higher frequency
perturbations seen in Figure 7.1.2 have a period equal to the period of the
forcing function.

Considering the same lumped mass oscillator used in the previous example
the response characteristics have been determined for various frequency ratios
g, where

Forcing Frequency
Natural Frequency

This 1s shown in Figure 7.1.4 as a function of the A.T.P. The curve indicates
the response sensitivity to the A.T.P. One can see that the response sensitivity
fs a function of forcing frequency and A.T.P. value.

Utilizing numerical analysis procedures the response spectrum for a single
¢agree of freedom lumped mass is shown in Figure 7.1.5. The response of the
system as a function of the forcing frequency is shown for several acceleration
threshold parameter valur The dashed line shown on this figure represents the
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respinse if no snubber were present, (iL = w), The results presented for this
one case indicate that it is possible to obtaim a greate-~ response, with an ideal
snubber possessing ar acceleration threshold characteri<tic, than one would get
if no snubber were present.

The results f s particulsr case indicate that for low frequency harmonic
excitations (< 2t ne "rastrained” response of the simple oscillator will
exceed the unrestrained response for A.T.P. values that were considered. This
situation also exists at high frequencies, nowever, with a diminished response
amplitude. Therefore, the low (requency response characteristics are more
important.

To develop greater insight into the response sensitivity of simple systems
towards the A.T.P. the following evaluation is mede. [n the subsequent analyses
dimensionless ratios are utilized.

The iunped mass systems are subjected to a harmonic base excitation, where
iL represents the A.T.P. If XL << |X|, where |X| is the amplitude of the accel-
eration of the system without the A.T.P., the response of ila system can be
evaluated in terms of dimensionless parameters.

Beginning with the differential equations of motion for each system,
- 2 2
[Sys (a)] &+ &" - Xpa~ sin at, ... (71010)
and,

2

[Sys (b)] T & x'uz sin nt, ¢ = = L5105}

the following differential equation of motion representing the response for the
system can be developed. (See Section 3, Analytical Methods.)

6 = ¢ sgn [sin at - Q| el (702)
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For system (a)
X
e % &, g Wb . (7.0.3)
. % |%g]
and, ‘ r system (b),
X X
Q= () g (a® =) . .. (7.1.3b)
8 IXgl

Equation (7.1.2) is solved using computerized num ‘al techniques. The
results obtained from the solution of Equation (7.1.2) a.. shown in Fi ure 7.1.6.
The rtsponse curve shows the peak values of response (i “w ' «s a function of
(XLIIXBI) Although the pseudc response Q (see Equation 7 1.2) appears to be a
function of both £ and 2, the & can be eliminated since , also contains the
frequency parameter. Therefore, the remaining parameters are (X/xa) and
(lL/‘xl') The relative displacement & for system (a) and the absolute displace-
ment X for system (b) are interchangeable in Figure 7.1.6.

The insights that can be derived from Figure 7.1.6 is limited, yet impor-
tant. The observation most perticent to this study concerns the response para-
meter (X/x ). Results of the study indicate that (X/XB) > 1 for certain values
of (K /[Xal) The implications of this are not obvious at first. It appears,
however, that there can be response amplification in the presence of A.T.P , (xL).
consequently it is possible that response for a given system can be increased due
to the A.T.P.

Next, consideration was given to non-harmonic input, specifically seismic
ground motion. For the case of the lumped mass model, the sensitivity of the
dynamic response to A.T.P. has been evaluated and presented in Figure 7.1.7.

The E1 Centro ground acceleration was applied to a 6 Hz and 12 Hz Tumped mass
oscillator. The resnlts indicate that as the ', value increases, the response
increases. However, the response of the 12 Hz oscillator indicates, shaded area
of Figure 7.1.7, that for certain values of the acceleration threshold parameter,
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(iL).the response was greater than if the A.T.P, were not considered. Also
shown in Figure 7.1.7 is the response of both systems in“the absence of xL.
Although the response is greater for specific values of X, for the 12 Hz system,
the total response is an order of magnitude smaller than Ene response for the

6 Hz system.

The next step in this study was to develop a structural model tiat would
permit the response characteristics of simple beam models to be studied as a
function of the effects of the acceleration threshold parameter. An analyses
procedure that could solve this problem would be general in nature and be
applicable to piping analyses. The analyses procedure that was developed is
presented in Section §.

The basic model incorporated lumped mass finite element techniques,
utilizing modifi. ' modal analyses procedures. The result for the model are
shown below are presented.

F sin 2nfgt
fo= 2.5H fal = 2.19 K2

F =10 1bs 5 - * T m faz = 8.71 Hz
%xt

At this point in the study, it is appropriate to look at the results of one
specific system. The system described above was subiected to an harmoric load-
ing while attention was given to the transient displacement response. Although,
only a few cycles of response were studied, trends could be easily detected.

The mode! shows a simple beam that was used for purposes of studying varia-
tions of the snubber parameter, iL' acceleration threshold parameter. Figure
7.1.8 presents the results of this preliminary study. Shown on this figure are
the response traces for the initial transient phases of loading for various X

values.
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Figure A shows the r “ponse when X, = or when the snub

rigid support Figure B shows Lie response when A
imposed dashed line in this figure 15 the roso:"se‘:'
where the snubber is attached. From this figure,
shadow response starts to appear as a superimposed
an even more pronounced effect which 1s seen in the
Figure D shows the total response when the snubber

maximum,

When X, = 5 in/sec”, the
8

responding at the forcing frequency, 1s C et dominated

shadow response. The response of the point being forced

the response of the snubber As X, is increased, the sn

1 A
|

during certain portions of the app

begins to take on a complex form as shown in Figure &

ied loading At this

'3
)

ubber beco

time, the

And final)

snubber is removed ‘XL = =), the response becomes predictable

It is apparent from this example that if the stan
of representing a snubbc. as a rigid restraint were

could be underpredicted by a factor as high as 10

7.2 Viscous Parameters

c

Viscous properties r=~resent a series of three parameters that

t: hydraulic snubbers and are "lumped” together These

velocity; 2) bleed ra*:; and 3) unlock criteria. Their
Y

snubber operation, control snubber reaction, and disengage the snubt

dynamic loadings

The operation of the snubber can be described briefly as fo

movement is permitted until the velocity reaches the lo

parameters

d engineering

are

are

functions are

1Y A

king veloc

time the snubber engages This | ing velocity is dependent

)

of the hydraulic fluid and the . ompression of the

lockup, additional displacement o snubber piston 1

>

voy

»

er

t

prac

.
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mechanism. The bleed velocity is a function cf the load

flow rate through the bleed orifice varies approximately

load on the piston rod After lockup occur \ isto locit the rated
load of the snubber 1s defined as the "t ) f e snubbe when the
piston load drops below a certain value t poppE F g open nd free fl

occurs with the snubber disengaged

The viscous parameters are highly dependent on the physical properties

the hydraulic fluid, i1.e., operation of \ s sensitive to both
viscosity and bulk modulus of the fluid Since the scope of the study involves
only response sensitiyvity to the snubber parameters, this study

hydraulic fluid physical variations or any her considerations direc
with operation of the snubbing device that control the magnitudes of
parameters It is recognized that temperature and fluid volume have
on hydraulic snubber performance, however, this study only consider

meter and not the cause

The bleed rate is a load dependent property which

the rated load ¢f the snubber Since bleed rate and rated

e

with each other a new parameter referred the dampi

introduced. This parameter has s [— - =1 whi
classical viscous damping coefficient represents

rated load to bleed r.te at the rated load,

¢ » RATED LOAD
BLEED RATE

Therefore, throughout the following analysis this term will be used

place of bleed rate

Considering the range of viscous parameter values of hydraulic snubbers
{.e., the rated load capacities and nominal bleed rate values, the snubbers

have viscous damping parameters C that are much greater than the

va'ue for that of the system Consideration of resonant influer
required in the investigation of viscous parameters The effe

on system response may have a slight effect for large X , iock
L
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This effect is not consi lered significant in the practical range of lock ve’oci-
ties (xL < 1.0 in/sec).

For commercial snubbers the range of interest for the viscous damping para-
meter is 10‘ <« C« !06 1b-sec/in. The practical range of interest for the lock
velocity is 0.01 < lL < 1.0 in/sec.

Consider the single degree of freedom lumped mass oscillator, excited by a
harmonic base motion. The initial transient response for this system is shown
in Figure 7.2.1, Since the system is critically damped the transient response
does not contain free vibration components. The transient response consists
of the steady-state component plus an exponential decay component. Due to the
initial shift developed during the first cycle of loading the maximum response
occurs during the first loading cycle for harmonic excitations. The actual peak-
to-peak response maximum occurs later in time. Consequently a reasonable esti-
mate for the maximum displacement would be twice the steady-state amplitude. Any
trends that are established are based on steady-state harmonic analysis and
reflect response trends for the transient response regime.

With the large number of permutations of the various system parameters, the
present study was limited to a few selected cases. Since the dynamic response
appears to be more sensitive to lock velocity than to the other viscous para-
meters, this parameter is discussed first.

Since applied force, forcing frequency, and natural frequency are not viscous
parameters the first task was to determine the effects on system response. The
response data presented in Figure 7.2.2 1s used to eva.uate forcing'frequency
effects on the lock velocity response sensitivity. In this study various harmonic
excitations were considered in connection with a given dynamic system. The
response at small lock velocities (*L < 0.03 in/sec) for the frequencies con-
sidered is practically independent of lock velocity. This is reasonable since
the snubber is active during almost the entire excursion. [n this case the
response can be approximated by
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stat 2¢ (

E |D

)
where

¢ = Critical damping ratio >> 1
n = Forcing freguency

w = Natural frequency

The response for large lock velocities (iL > 10 in/sec) is also independent
of lock velocity. In this case the response velocity does not exceed the lock
velocity and snubber restraint is not experienced. For this region the response
is

X, \
Xtat J0 -G (2 D

Between the two extremes of lock velocity, 0.03 < iL < 10 in/sec, the
response sensitivity to the lock velocity appears to be similar for each of the
diffe "ent harmonic forcing frequencies studied. The free response amplitude is
reduced by 95 percent for lock velocities (ess than 1 in/sec (Figure 7.2.2).

An important question in seismic desio- . "What range of locking velocity
will limit the response of the system to 7 .cer sble limits?" For practical
purposes it is reasonable to presume that iny snubbing device that reduces motion

to five percent of its unrestrained va i~ a :.~table. Based on these limited
observations locking velocitias le . tha. -. will perform this task
satisfactorily.

Since the previous results were obtained for a specific load value, (F/m),
the next step was to determine what effects th- applied load has on system
response. The results shown in Fiy..« ~ ..3 are used for making this determin-
ation, As in the previous example a harmonic loading was employed. However,
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in this example the applied frequency is fixed and is equal to the undamped
natural frequency of the oscillator.

At low lock velocities, iL < 0.03 in/sec, the response is proportional to
applied lcad, (F/m). The response is similar to that of a "classical” highly
damped lumped mass oscillator. For very high iock velocities, the response is
also proportional to the applied load, with the same response characteristics
as a single degree of freedom undamped lumped mass oscillator. For the inter-
medfate values of lock velocity the applied load, (F/m), appears to have a less
significant effect on response than at the lock velocity extremes. It appears
from these limited observations that the unrestrained free respcnse amplitude
will be reduced by 95 percent for lock velocities less than 1 in/sec regardless
of the applied load, {(F/m).

Since large motion seismic events may produce ground accelerations which
approach 1 g a practical value of (F/m) can be deduced from this. A typical

toading is
F - e in
n W3 (1.9 loading) = r = 386.4 ;;:2
and

F in
(=) = 350 - 400 (-——2)
" sec

Figure 7.2.4 indicates the response sensitivity for a different viscous
damping parameter, C/m = 103 (sec"). This value is considerably lower than
those encountered in typical systems, however, it indicates similar sensitivity
trends to those observed for C/m = 105 (sec-!).

The next step was to evaluate response sensitivity for various C (bleed rate)
values as a function of lock velocity. Two sets of data were generated for this
purpose and both studies utilize harmonic excitations. The input for these
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studies, the results of which are shown in F.gures 7.2.5 and 7.2.6 was a harmonic
base acceleration with a peak acceleration of 0.348g and a fregquency of 6 Hz.
This acceleration level was selected because it has the same maximum input level
as the E1 Centro earthquake. The present study was extended to consider this
earthquake for additional comparisons. Figure 7.2.5 shows the response results
for a 6 Hz natural frequency system while Figure 7.2.6 shows the results for a

12 Hz resonant system,

Inspection of Figures 7.2.5 and 7.2.6 indicates that the response ~haracter-
istics are nearly identical for lock velocities less than 1 in/sec independently
of the damping vulue. For heavily damped systems the response is independent of
the system natural frequency. It can be shown that the steady state relative
displacement can be approximated by

- -- X - E
where
6 = Relative displacement (in)
Ii.l = Base acceleration (1n/sec2) (a? Xg)

C = Damping (1b-sec/in)
2 = Harmonic forcing frequency (rad/sec), and
m = System mass \Ib-seczlin)
However, as the lock velocity increases the response becomes increasingly
sensitive to the natural frequency * the system and when the lock velocity is

sufficiently large the response | es that of an undamped oscillator whose
steady state response can be expressed as
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situation appearc to exist when the lock veloc

The results presented for the limiting ca
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8 * e
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onant characteristics of the sys-

1 for the 12 Hz system, relatively
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nticipated that later siudies will
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N2,
/ DISP
K(t)

The steady state load deflection relationship is shown above for a
hydraulic snubber subjected to a harmonic excitation (a fixed frequency).
One way of determining the effective stiffness is to draw a straight line
between the positive and negative peak responses as shown.

This represents the effective or average stiffness. The instantaneous
stiffness is the instantaneous slope of the response curve, i.e., k = k(t,
The effective stiffness range for a 2%-inch bore hydraulic snubber is
approximately 100,000 to 300,000 1b/in.

-

The stiffness characteristic of snubbers is the one most important para-
meter affecting dynamic response of piping s;stems. This applies to the
“effective" stiffness of the snubbing devices, Figure 7.5.1, or to “normal”
1inear stiffness characteristics, i.e., simple linear springs. The “effective”
stiffness of a snubber is a function of the following parameters: fluid bulk
modulus, clearance, lock and bleed velocities, acceleration and velocity
threshold parameters, and snubber support structure characteristics.
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characteristics are very similar for E1 Centro motion and for harmonic inputs
(both 0.348 g maximum acceleration) as can be seen from Figures 7.2.5, 7.2.6,
7.2.8 and 7.2.9. For realistic viscous dumping parameters (10‘ <C <« 106 !3;—"—\55)
the response appears to be insensitive to the damping (bleed rate) for lock
velocities greater than 0.03 in/sec (0.18 in/min). The response can be repre-
sented by a straight line on log-log paper as indicated in Figures 7.2.8 and
7.2.9. Although the maximum input g levels are the same for both models, the

E] Centro response is slightly greater than the harmonic input because the har-
monic response represents the st cycle maximum response whereas the El Centro
maximum response represents the maximum during the entire loading. Plotting the
first cycle maximum response, the actual maximum response will occur for c-iti-
cally damped systems for all cases where iL is sufficiently low enough so that
the snubber can apply a restraining load. For the cases studied, X < 10in/secor
600 in/min. Figures 7.2.10 and 7.2.)1 show the transient response during the
first 20 seconds of the seismic disturbance.

Taking a specific example where the system frequency fs 6 Hz and C/m =
12,.J0 s.-.:". the response due to four different seismic distrubances is cal-
culated and plotted in Figure 7.2.12. Response sensitivity and magnitude are
similar for lock velocities that are not representative of extreme values. The
largest differences in response occur at the extremes, i.e., when the response
is independent of the lock velocity (fully engaged or fully disengaged). This
characteristic property is also exhibited in Figure 7.2.3, where the response
due to harmonic excitations is studied, and in Figures 7.2.8 and 7.2.9 where
seismic input is studied. The results of this particular investigation suggest
that the variations in frequency content and magnitude of the four seismic
disturbances studied have very little effect on response sensitivity; the most
significant factor ic the amount or time that the velocity of the component
causes the snubber to be engaged. For example, if the velocity of the component
never exceeds the snubber lock velocity, the snubber will have no effect on
system response, or {i the unrestrained response velocity 1s large compared to
the snubber lock velocity, the response will be insensitive to changes in Tock
velocity.
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Figure 7.2.12 Seismic Effects on Viscous Response
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Most of the studies concerning the viscous parameters have been made using
the single degree of freedom oscillator. A logical extension of these studies
would be to consider the snubber parameters in relation to a "typical" piping
Toop. The response analyses of a system enables one to evaluate sensitivity
changes resulting for increased structural complexity. The system that will
be used is shown in Figure 7.2.13. Although this model does not represent an
actqul system, it is typical of piping loops in that it has many features found
in typical loops. It contains spring hangers, valves, rigid anchors, and a
piping routing (although very simple).

Assume a typical hydraulic snubber is utilized in the model, i.e., a
50,000 pound rated lcad, a 10 in/minute bleed rate and a 10 in/minute lock
velocity. The response of the system due to El Centro seismic excitation is
stud‘ed. Three conditions are examined. Case 1) investigates the response
without a snubber; Case 2) investigates the response with a typical (realistic)
hydraulic snubber; and Case 3) investigates the response with » rigid snubber.
The results of the study are summarized in the Table below. Deflections and
stresses are presented for keypoints.

w/0 WITH
| ___SNUBBER SNUBBER SUPPOPT
Stress @ Fixed Anchor 12846 #31 4691 PSI 31 7 pPsI
Stress ¢ Snubber 4910 PSI 301 PSI 2336 PSI
Disp. @ Snubber 1.595 in. .306 in. 0 in.

oscillator shown in Figure 7.2.9.

4R
8¢

Consider comparing the results of the complex structural model with
response characteristics developed from a simple 1-degree of freedom

Using the entire mass of the piping loop

.35

A75

fn evalsating c/m its value is 1,100 sec-!. Based on the data presented in
Figure 7.2.9, the ratio of the restrained response to free response is,
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Based on the response, of the piping loop the same ratio is

g, 306 191
173 1.59% :

The agreement appears good for this particular case. Consequently, the
results for the simple single degree of freedom oscillators are relevant with
regard %o complex systems.

7.3 Clearance

Clearance is associated with nearly all snubber designs and with snubber
installation hardware. Tne actual magnitude varies from negligibly small values
to accumulative values ranging from 0.125 to 0.250 inch (extreme cases). The
clearance effects become particularly important when load reversals take place.
For this case, the actual clearance becomes equal to the full "plus to miqus"
range of the dead band, hence large clearance values may need to be considered

when determi 'ing the effects of clearance on the snubbed system, the
clearance parameter is nearly always considered with another snubber parameter.
The consideration of the clearance parameter in the absence of other snubber
parameters does not represent a realistic situation since snubbers in general
are not rigid .or is the back-up support structure completely stiff. Certain
insights can be gained, however, by investigating the effects of clearance with
a rigid support.

Figure 7.3.1 shows the structural mocel that was used ! determi . the
sensitivity of load, stress, and displacement to snubber gap. Stresses were
evaluated for a series of gaps ranging from O (fixed support) to infinity (no
support). The dimensionless ratio (4g/6f) is plotted on the abscissa. For
values of (&g/6¢) > 1, the response is unaffected by the snubber gap because
it is greater than free response.
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Figure 7.3.1 C(Clearance Effects On Stress
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In this 1llustration, it is possible to create a situation where respcnse
l.‘, increases as dc increases, and another situation where X, decreases as 8.
increases. This is accomplished by changing the forcing frequency fn. Figure
7.3.4 shows the results.

Clearance affects response by attenuating the snubber parameter. Situations
can occur, however, where the response is affected as a result of changes in the
resonant frequency of the system. This is shown in the previous example.

The following study considers the effect of clearance and viscous para-
meters on the response of a simpie system excited by £1 Centro seismic event.
The investigation considers two values of the viscous parameter C (or (/M).

Consider the system shown:

The clearance is in series with the viscous parameters. The response is
calculated as a function of lock velocity. This model was selected because the
response is more sensitive to this parameter than other viscous parameters.
Figures 7.3.5 and 7.3.6 show the results of the study.

Based on these observations, the component response is restricted to the
clearance band for lock velocities less than 1 in/sec. The response increases
as the lock velocity increases until the undamped response is reached. As the
clearance increases, a decreased sensitivity of response to the viscous parameters
is experienced. It appears from these observations that clearances reduce the
response sensitivity to a given parameter, in this case the viscou. parameter.
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Breakaway Characterist

Breakaway loads are those ioads that restrain movement until the re-
action luad reaches the "breakaway" or release value, at which time, motion
can take p.ace The motion s opposed by a force equal to the breakaway
value. Movement ceases when the reaction load becomes less than the breakaway
value.

There are two frictional characte. istics te consider. First, there is
the initial breskaway load or static fri-“‘on, and second, the dynami
friction which is the resisting load during movement. The <tatic friction is,

fn general, greater than the dynamic friction. The response of the system is

greatly dependent on the dynamic breakaway loads (friction) and less dependent
on static friction. The maximum loading for seismic disturbances ucually
occurs several seconds after the earthquake beqgins It is probable that the
static restraint force will be exceeded during the early stages of the seismi.
disturbance and the dynamic frictional characteristic will apply when the

greatest loading occurs

ben Hartog, Reference 3, studied the breakaway frictional characteristics
for harmonic steady-state loadings for simple lumped m oscillators His
work considered one variance in the frictional laod whic.. in some cases caused
the motion to stop in each cycle. As a result of this work, response curves
were generated showing the response sensitivity with frictional loads. Figure
7.4.1 shows the resporse characteristics for a simple lumped mass system in
terms of dimensionless parameters. This responce curve indicates that the
resistive force Fp has little effect on . teady-state response when its value

fs less than 40 percent of the applied load, P.

A detailed look at the transient phase of the harmonic loading (Figure
7.4.2) indicates that the maximum total response prodably occurs during the
first cycle of loading and may approach twice the steady-state value The
cyclic range may be greater during the steady-sta®e phase of the response
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The response sen.itivity considering breakaway frictional cnaracisr-
istics and seismic base acceleration is shown in Fiyures 7.4.3 and 7.4.4.
The response is shown for two different dynamic systems, one having a natural
frequency of 6 Hz and the other of 12 Hz. The results show similar trends or
characteristics as those established for the harmonic loadings.

7.5 Stiffness Parameter

The load-deflection characteristic of a ~nubbing device is referred to
as the snubber stiffness. The stiffness parameter may be built into the
snubber by virtue of subcomponent flexibilities or it may b2 associated with
mounting hardware or structural supgort flexibilities.

-~ SNUBBER -l
}_ g
c. L ks E. ‘

In the above figure the overall stiffness is expressed as

1
o Bl s g
Kk kG ke

The individual stiffness or flexibilities could represent, for example,
k) (support flexibility), kp (free air compressibility), k3 (attaching hard-
ware flexibility), and kg (pistc- flexibility). If ky is small, the overall
stiffness of the snubber wiil be small, and the remaining large k's will have
little effect on the overall stiffress of the snubber.
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The load-deflection characteristic of TYPE @ in.alves the clearance
parameter, and is addressed in the section on Clearances. Nonlinear stiffness
charagteristics similar to those indicated by TYPES @ and @ are the
starting points for determining the sensitivity of response to the parameter
y, which will be referred to as the bilinear stiffness ratio.

i

A«

The figure above for TYPE @ shows the load deflection characteristics
for the support system. Inasmuch as K and yK can be interchanged without
changing the conclusions we will investigate the range where 0 < y < 1.

PORM T304 T REV &T8

FORM 735-A-7 REV 678



NO. ETEC-TDR'SO‘lﬁ REV,

pace _203  oF
oave _11-26-80

REV.DATE

wo _ETEC-TOR-78-17 o0

vace 107 __ o
oare __ 9/29/78

REV.DATE

Figure 7.5.2 shows how the natural frequency of a single lumpcd mass
varies as a function of the bilinear ratio y. Considering the typical linear
system, where y = 1, the results indicate that the rate of change of the
natural frequeicy as a function of y is greatest when y = 1, that is, (3fn/
3v)max for a linear spring. Consequently, a change in natural frequency can
be expected as bilinear effects are introduced.

For steady-state harmonic loading, Figure 7.5.3 shows how the system
steady-state response varies with the bilinear ratio parameter y. The
response is similar to a linear system and the maximum response occurs when
the forcing frequency is equal to, or approaches, the natural frequency of
the system.

The primary effects are, (1) sensitivity of the natural frequency to
the bilinear stiffness ratio y, and (2) the nearness of the forcing frequency
to the "modified" natural frequency.

The response peak-to-peak displacement is twice the maximum response X*
when y = 1, and less when vy # 1. This should be considered when evaluating
the total response range.
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Figure 7.5.3 1-D.0.F. Response Characteristics (Bilinear Spring)
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K(X) "
=
YK

To determine the steady state forced response of the dynamic system shown
above, consider the equation

MK + K*X = F sinaqt s EAD

K* is an equivalent linear spring. [t replaces the bilinear spring while
approximately producing the same response - the so called average energy
approach.

For tne single degree of freedom oscillatory system shown above, the
natural frequency can be determined from

Eas B
wn = v LT IE)
However, the natural period of vibration is
'l /
fn';/-.-"\]OI;)

or,

_— %'—/E‘/(l N /‘;) ool (2.5.3)
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Squaring (7.5.3) gives
2
I (x/-)/(l N /”;) . (7.5.4)
Equating the frequency eguations (7.5.2) and 7.5.4) yields
£ «ad i (7.5.5
3 (;)/ 1 + /—g . .5.5)
and solving for K*,
4K
K* — . (7.5.6)
Substituting equation (7.5.6) into equation (7.5.1) gives
2 2
MX + KX = F sin Qt . (7.5.7)
(I + / ;i ’
Solving for the steady-state response
F
X = 3 . (7.5.8)
x[ 2 -} - Wl
1+ / ;)
Or in terms of the natural frequency,
(F/%) -
l - —_— o A1 3.7}
2 “l’ i (_n_)’
(‘ 5 s “no
Y/d
where
K
uzm o (;)
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The steady-state response can graphically be represented by:

3!

Equation (7.5.13) does not consider damping. This can be incorporated

/\ » TIME

as follows
. 1
{f = J/’l ... (7.5.14)
st Y 2 22 a X1¢
—_1". (_r_) o[z (_) g
wno s wnojJ
1+ / 1 |
Y

Equations (7.5.9), (7.5.13), and (7.5.14) represent envelope values for
the response. These resuits are for an average energy approach. In reality
there is beating phenomenon that occurs as shown below. This results from
K # yK.

bx
-1r---~‘\ =

~
~
\

T \Z AVAV \/,,

--o"

>

» TIME
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This beating period is a function of the forcing frequency and the
natural frequency.

% = wew (1:6:18)

fn - -
v {1+ —-)
Y
The figure above shows the steady-state response of the system. The

total displacement range is

T (F/R)(1 + /¥ )

v (1.6:16)

The results indicate a lumped mass, supported by a bilinear spring
system, has response characteristics similar to that of a linear system. The
bilinearity stiffness ratio effects the system response by changing the natural
frequency. The response characteristics of a system with a specific y ratic
are similar to a linear system with forcing frequencies. The principle dif-
ference between a linear and bil.near supported system is the asymmetric
response that occurs about the neutral position.

The results obtained from the simple, single degree of freedom analysis
indicate the same trends should exist for more complicated lumped rass systems
or continuov- oeam models. Since the bilinear system response can be evalu-
ated in terms of an effective spring rate K*, the response trends can be
expected to follow those of linear supported systems. A more detailed dis-
cussion is presented later in this section.
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The stiffness or load-deflection characteristics described in TYPE @a
is an effect that is commonly referred to as a “"hardening” spring, that is,
as the deflection increases so does the stiffness. The "hardening” spring
characteristic is probably the most common naturally occurring effect, and
is most often found in hydraulic and soil systems. There is a~  another
stiffness property referred to as the softening spring. For this, the
stiffness decreases with increasing deflection. This effect is descriled
as TYPE (z)b. This situation is probably less common in nature than the
hardening effect. The most common examples can be attributed to nonl.ncar
geometric effects and inelastic behavior. As far as snubber systems are
concerned, the hardening characteristic is the most relevant.

The response of a simple single degree cf freedom oscillation having
“hardening” or “softening” stiffness characteristics has been studied in
great detail by Duffing, Reference 4.

Duffing's equation for a system with a nonlinear restoring force is,
mX ¢ k(X £ «2x3) = F sinat eer (7.5.17)

where the reaction load is,

R = k(X + «2x3) ... (7.5.18)

.

khen the upper sign of « is used, the system is said to have a "hardening
spring, while the lower sign means the system is restured by a "softening”

spring.
F’ F A

X

=¥

HARDENING (TYPE (2a) soFTenING (Tvee (D)
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The steady state response frequency equation for the single degree of
freedom system is

2
1:52‘—"—-“2:7 . (:){i ... (7.5.19)

The parenthetical plus-or-minus () sign refers to X being in phase (+)
or n radians out of phase (-) with the exciting force F.

By letting the excitation displacement approach 0 in equation (7 5.19),
the relation between the natural frequency and the amplitude of the non-
linear system can be found.

o * /E‘ /1 1&4-’!-” ... (7.5.20)

Referring to equation (7.5.19) the respouse frequency relationship for
a hardening spring is

or,

2
(1“3);3.[1 (g)}% -« 0 ... (1.5.21)

and for a softening spring'is

(1‘*_2.);3 ’ D . (g)zjx X (;) -0 . (7.5.22)
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With increasing excitation frequency, the amplitude increases beyond
“f" to some point “e" where the response drops to "c" and continues to
decrease. If the excitation frequency decreases from point “d", the response
will increase to point "b” where it will jump to point "f" and then continue
to decrease. Just »s with the "softening” spring, the middle branch is
unstable.

When the drop-jump phenomenon ozcurs, it is usually preceeded by an
accidental unsteadiness or extraneous disturbance. When the instability
occurs there is a phase change between the response and the forcing function
which gives rise to a transient superimposed motion at the time of the drop-
pump .

The effects of the "hardening" (softening) parameter <2 on dynamic
response can be evaluated using the fregquency response equation

LG -

Figures 7.5.4 and 7.5.5 show the variation of response amp itude X as
a function of x2, parametric with forcing frequency and magnitude, (F/k) and
(R/w), constant. These plots apply to a single degree of freedom system.
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Figure 7.5.4 Hardening Parameter Effects on System Response
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Softening Parameter Effects on System Response
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8. PARAMETER RANGES

Once the parameters affecting system response are dete-mined, the next
step is to estab’ sh parameter ranges that wiil assure system responses are
bounded within acceptable limits.

Parai rer ranges 1 be controlled directly by the snubber manufacturer,
or by installation pra es and procedures. Examples of parameters controlled
directly by the Custome 3 manufacturer are the acceleration threshold, lock
velocity, and snubber stiffness characteristics. Parameters which can best be
related to installation practices would include, end fitting clearances, back-
up support stiffnesses, positioning (orientation), and environmental consider-
ations such as radiation and temperature. The clearance parameter is unigue
in that is can be influenced by both the manufacturer and by installation pro-
cedures. Other parameters may be influenced more by probabilistic occurrences,
rather than by manufacturer or installers (designers) control. This would
include air entrainment or entrapment, and increased friction caused by cor-
rosion, and contamination. It is the intent of this work to consider ranges
of parameters that exceed the limits of current design practice.

Probable parameter ranges were established by using vendor literature and
informa’ ‘on obtained by NRC. These ranges were extended to consider values
that would be pertinent to this study. The minimum range of parameters addressed
by this study are presented in Table 8.1.

The establishment of acceptable parameter ranges is not an easy task in
light of all the variables involved. Consideration must be given to back-up
structure effects, load magnitudes, displacement-stress-load responses, para-
meter combinations, and response characteristics of the supported component or
system. The purpose of this section s to discuss which results were used in
establishing acceptable parameter ranges. The conclusions are based solely
an the data generated in this study.
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TABLE 8.1
SNUBBER PARAMETER RANGES
Range to be

Parameter Investigated
Dead Band .0 to .125 in
End Fitting Tolerancd .0 to .125 in
Breakaway Loads 1 to 3%
Frequency Range 3 to 33 Hz
Acceleration Threshold Jto.2g
Lock Velocity 0 to | in/sec
Bleed Rate (@ Rated Load) .001 to 1 in/sec
Snubber Support Stiffness 102 to '06 1b/in

The back-up structural support dynamic and stiffness characteristics influ-
ence snubber performance used as a basis for establishing parameter ranges. The
following describes the basis for establishing acceptable parameter ranges.

&.1 Viscous Parameters

The viscous parameters that effect response 're lock velocity and bleed
rate. The results of the study indicate that the forcing frequency does not
have a significant effect on response, Figure 7.2.2, nor does the applied load,
Fioure 7.2.3, for realistic values of bleed rate. Response curves such as those
indicated in Figures 7.2.5 and 7.2.6 are representative of system response.
Component responses are maintained within acceptable limits provided the lock
velocity is less than 1 in/sec. Figure 7.2.6 does not substantiate this value
based on percent reduction of response, however, it does support this concliusion
based on actual maximum response. Therefore, the established limit appears
reasonable. The bleed rate is related to the viscous constant C as follows.

RATED LOAD
BLEED RATE
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In generai, C values are large, e.g., a 2,000 1b snubber with a bleed
rate of 6 in/min has a viscous constant value of 2 (10%)(1b-sec/in). Sample
studies done to date indicate that if reasonable lock velocities are maintained
{< 1 in/sec' that a bleed rate less than the lock velocity will assure a bounded
response. Without putting excessive constraints on the viscous parameter, the
following limits will be established,

(C/m) > 103 sec~!

or

¢ > 108 lb-:ec

8.2 Friction Loads

The effects of friction on system response are negligible, i.e., the
friction loads must be at least 40 percent of the applied load before dynamic
response is significantly affected. Based '~ the results developed for harmonic,
Figure 7.4.1, and seismic, Figure 7.4.3, the frictional characteristics have in-
significant effects on dynamic response when less than 40 percent of the rated
load of the snubber.

8.3 Acceleration Threshold Parameter

The establishment ¢f an acceptable A.T.P. range is a complex issue. There
apparently is considerable inte-:ction between system response characteristics
end the A.T.P. as indicated in Figure 7.1.4. The possibility of increased
rather than reduced response, Figures 7.1.4, 7.1.6, and 7.1.7, complicates the
issue. The results shown graphically in Figure 7.1.6 indicate that the response
is nonlinear with load magnitude (Xg). Based on the results presented in Figure
7.1.6, an A.T.P. (X_) equal to .00) g would assure a 90-95 percent reduction in
free response. This appears: restrictive, however, if wise design practices are
used in realistic limit of .04 g should bound the response within acceptable
limits. This 1imit may be modified when further studies are completed.
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8.4 Support Stiffness Requirements

Current design practice does not consider support stiffness requirements.
This study indicates that with relatively high “effective” stiffness of snubbers,
the back-up structural support stiffness properties may effect snubber response
characteristics. Back-up structural stiffness requirements have been established
in this study so that the snubber can be “"effective.” For example, it would be
unreasonable to attach a snubber having an effective stiffness of 0.3(106) 1b/in
to a supporting structure having an effective stiffness of 5,000 1b/in for a
massive component. [f the back-up support stiffness is very low there could be
a dynamic i, *eraction that would affect response. Considering the combined
“effecti. * stiffress of both the back-up structure and the snubber, the
“effecti,.  stiffness should be at least twenty times greater than the stiffness
(1/flexibility) of the pipe at the snubber location. The factor of twenty can
be verified from Figures 6.1.1, 6.1.2, and 6.1.3. In terms of the viscous con-
stant, where C is the ratio of the rated load to bleed rate, the bac ip struc-
ture stiffness should be 1.2 (CQ) where 2 . the predominant forcing frequency
in rad/sec. Figure 6.1.4 shows the response efficiency of the support. The
efficiency represents the actual load transferred into the base compared to the
maximum load that can be transferred.

8.5 Clearance

Clearance is always associated with another snubber parameter. Limited
observations indicate that clearance attentuates the ability of the saubber
parameter to reduce the displacement response amplitude, Figures 7.3.3, 7 3.5,
and 7.3.6. Sufficient information has not been generated to date to establish
absolute clearance limits for all the snubber parameters. However, based on
observations, clearances are estimated to be 15 percent of the unrestrained
response for rigid supports and 10 percent of the unrestrained response for
snubbers.
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9. ANALYTICAL METHODS

The method used for solving the transient response problem must be capable
of considering parameters such as nonlinear restorative forces fg = F(X),
viscous forces Fy = F(X), clearancec, and motion constraints. Analytical
techniques must have the capabilities of considering these parameters singly
or in any combir ion.

Although the list of snubber parameters is considerahly longer than those
parameters listed above, the snubber parameters do fall into one of the above
categories. For example, the nonlincar stiffness characteristic associatec
with entrained air in hydraulic fliuids is categorized as a nonlinear restor-
ative force while the velocity dependent load associated with this fluid is
categorized as a viscous force.

The analytical method that is chosen must be general in nature, so that
large component or piping system with complex geometries may De analyzed. It
must be flexible enough to allow for modification so additional parameters may
be added. It must be efficient so that computer costs are to be kept at a
minimum. The method that can best be used to satisfy the previously mentioned
requirements is a modi{fied modal analysis procedure utilizing a load correcting
algorithm.

Prior to describing the analysis method that will be used to solve the
general problem, some of the analysis procedures that were abandoned in favor
of the modified modal analysis procedure will be discussed.

Equations of motion for nonlinear systems can usually be solved approxi-
mately by using step-by-step integration procedures. Many well known numerical
methods involve extrapolation or interpolation formulas for the solution which
are applied in a series of small but finite time intervals. Some of the more
popular methods are based on assumed acceleration functions between integration
time steps. Of particular importance are the constant, average, and linear
acceleration methods - the later two involving interaction procedures. The
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acceleration analysis method works quite well for simp) r 2 degree of

)
freedom systems but encounters stability problem: when the complexity of the
structural model increases or the natural frequencies become high Many

elaborate analysis procecdures have been develcoped to overcome most of these

problems, however, their complexity and long runn omputer times do not make
these methods suitable for the soiution of the snubber problem. Another major
~“rawback of the acceleration analysis method is the selection of an integration

ime interval that will produce a stable or at least conditionally stable solu-
tion In many cases very small integration time steps are required for a stabl
solution, and even smaller tim: steps may be required for an accurate solution
Figure 9.1 shows how the accuracy of a simple single degree of freedom solution
varies as a function of the integration time interval for the constant acceler-

ation method

The modal analysis procedure has an advantage over general step-by-step

integration procedures in that many of the stability problems can be eliminated

quite easily for large systems of equations. Although the modal analysis

5 pro
cedure requires the evaluation of system natural freguencies and modeshapes,
standard analysis methods can easily be adopted for this purpose. When
analyzing complex systems it is often necessary to calculate only a few modes
to get reasonably accurate results; consequently, the solution time is reduced
considerably

Due to the nature of the nonlinear parameters used to describe the snubbers

standard modal analysis procedures cannot be used to solve the problems HOw-~
ever, modifications can be made to this standard procedure to permit the adoption

of this procedure

The modal analysis technique has become a popular analysis tool since the

advent of finite element analysis The snubber analyses procedure developed

here will be incorporated in an ecisting finite element statics and dynamics

piping program SUPERPIPE The development of the procedure beings with the
differential equatiors of motion in terms of the mass and stiffness matrices

a

as shown in Equation (9.1)
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o) (X Ky Kys X} . [F(t)

[0 "'] {Xs} 4 [Ksl K;S {XS} { R . (921)

Xg, 'x's Known displacement and acceleration (excluding snubber locations)
X, X = Unknown displacement and acceleration

(F(t)} Specified forces

{R*) Unknown reaction forces

Separating (9.1) into parts we obtain two matrix equations,
(MI(X} + [N JEx) = (F(t)) - [K1s]iXs) ...(9.2a)
and
~{R*} + [ks1)(x} = -[M*)(Xs} - [KssliXs) ...(9.2b)
where the known quantities are on the right side of the equations.
By solving (9.2a) for {X} a1l the displacements can be determined.

Examination of (9.2a) indicates that the homogenous portions involve
only those degrees of rreedom tnat are unknown. Therefore, if modal analysis
procedur<s are to be used the frequencies and mode shapes are determined for
the system with all known movements removed or fixed.

(M)(X} + [K)(X} = (0O} ... 19.3)

The modeshapes and frequencies are determined for the homogenous differ-
ential equation shown in (9.3).

To solve (9.2a) assuming the modal coordinate transformation,
(X} = [A)Z)}, and (X} = ([AJ(D) ... (9.9)
where [A] = Matrix of eigenvectors normalized such that (AIT[MI[A] = (1],

(MI[AJ(Z) + [X)[AJ(Z} = (F(t) - [Kyglixg}) e (9.5)
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By multiplying both sides of Equation (9.5) by (A]T-e obtain
[AJT(MI(AN(Z) + [AJT(KI(AEZ) = (ADT(fF(t) - [Kis)iXs}) ...(9.6)

from the principle of orthogonality,

[AITEI(A) = [unl)
[AJT[MI[A] = (%)

Therefore, Equation (9.6) becomes

(427} + [wnll(Z} = (P(t)} voe (8 7)

This is a series of uncoupled equa’ ~ns, each representing the response of
a single degree of freedom oscillator,

Iy + ofi2y = Pi(t) ... (9.3)

Knowing, Zi, 2, and Zi we can proceed to solve for Xj, Xi, and Xj, where

(X} = [AJ(Z}, (0} = [AJ(D), O0) = [A)(D) .. (9.9)

The madal analysis procedure is limited to those probiems where boundary
restraints do not vary during the -ourse of the analysis.

For the nonlinear snubber problem, boundary restraints do vary with time.
A modification to this procedure is employed where [A] is also a function of
time.

A procedure which permits the use of modal analysis techniques has been
adoptea, the procedure utilizes a technique whereby reaction loads are
determined so that specified displacements or accelerations can be made
without modifying the modeshape matrix [A] or system frequencies.
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The ~rocedure involves the solution for a given time increment, for

examrie, X(t), X(t) are known and it is desired to calculate X(t + at) and
Xl + at).

The solution is obtained using the normal modal analysis techniques
described. The ri ults at (t + At) are compared with whatever boundary
restraints are specified. [f, for example,an acceleration limit is set at
XL, all snubber locations are checked to see if

IXlq 2 X ...(8.10)
If this situation exists one realizes that X; at (t + At) has to be

K(t + at)y = X(t) + K(t)at + X at2 . (9.11)
8X¢

Basically X; is unknown if |X|; < X, and X{ fs known if |¥|; 2 ¥|.

Having determined Xj for all “m" snubber locations where |X|4 l.l.L
one obtains the snubber specified displacement vector,

(ax} ool 12)

Returning to Equation (9.3), the homogeneous part of the differential
equation is formed which include: ‘ive degrees of freedam &t the snubbers,

[MI{x} + <J(x} = (R} «s:198:13)
whe e
R{ = 0 - At all non-snubber locations,
R{ = 0 - At all snubber locations where |X| <X
and Ry #0 - At m locations where |X|§ 2 X,
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Knowing {X(t)}, (X(t)), and {X(t)), we solve equation (9.13) by modal
analysis techniques for changes in Xi at the m snubber locations, by incre-
menting on a one by one basis the non-zero R loads. Thus we can find the
"dynamic" influence coefficients at the m active snubber supports.
a; an
m‘ s m ...(9.“)
ax; aXp
FLT T}
: (etc.) ;
The total deflections can be written as
aXy axy ax
axy = mﬂl’mM2’°---’mAﬂn
Xy axy 3xp
axz = mﬂ]’mdﬂZ*--'-"mAﬂn
ax 3 ax
n = sr?ﬁ“l ’a-ﬁgﬂz*---"sﬁ“ARn
or in matrix form,
r i
(ax} = L% (2R} e (9.15)
Since we know {AX} from equation (5 12)
!
(R} = [ﬁ (ax) ... (9.16)
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One can now proceed to determine the response at (t + At) and satisfy
the requirements of equation (9.10), or others that may be imposed on the
system, by solving equation (9.24) with the additional load term (AR).

Hence knowing (X(t)}, (X(t)}, (F(t + at}, end (4R},
[M)(X) + [KJX} = ((F(t)} - [Kyg)iXg)) + (4R, ...(9.17)
can be scived for (X(t + at)}, (X(t + at)}, and {X(t + at)}. Here,

8Ri = 0 - All non-snubber locations
AR; = 0 - A1l snuober locations |X|; < X
B8Ry # 0 - All snubber locations where |[XIg > X,

The solution for the next time increment can dbe solved by the same
method.

Returning to Equation (9.8), the solution to the uncoupled equations can
be found exactly if P(t) is «nown as a function of time. P(t) is not neces-
sarily limited to harmonic functions, but exact solutions ~an be obtained for
other functions such as ramps, steps, impulses, etc. However, seismic or
dynamic disturbances cannot be expressed mathematically as a function of time,
but rather as a series of pairs of points defining the excitation vs time. An
exact solution will not be obtained but instead an approximate solution will
be obtained, one that will be a function of the integratior time step that has
been chosen.

The solution of Equation {9.8) for an arbitrary e-citation can be solved
by using techniques presented by Ouhame), commonly referred to as a Duhame 15
Integral, the Convolution Integral, or Superpositon integral. Briefly, the
forcing function is broken up into a series of constant load steps as shown
below.
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At time (t) a step excitation F(t) acting from (t) to (t + At) exists.
The response of the single degree of freedom oscillator described by Equaiion
(9.8) can be expressed as

X(t) = Age~%"¢ cos{uwgt - y) - “TF:; e-Lwnt cos(wugt - ¥) + Ez (9.18)

where

o = / Ko + 2 Gun¥oXo * wn’Xo® ag

tan y -~

u“'.._i.__._
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Xo, kg = Initial cor” “ions, i.e., the displacement and velocity
respectively at t
¢ = Critical damping ratio
F* = Constant force furing time t - (t + At)

If the force F* does not wiry during At the solution can be calculated
exactly. Therefore to solve the snubber problem, At is chosen so that F(t)
does not vary significantly during st. As a matter of fact, if F(t) does
not vary wiuh time, At can be increased without significantly affecting the
results. Consequently, the computation may be reduced drastically. Knowing
the condition at t, equation (9.18) can be used for determining the response
at (t + at). The displacement, velocity, and acceleration can be expressed
as follows:

- Fr Fe
X(c»at) = Age w‘cos(u,,dt-v) m o N'cos(u‘At-') + = ... (9.19a)

. %
K(teat) = ¢ Semat = wdhocos (wgat - v) - Agugsin(wgat - y) ... (9.19b)
/-2

+ -'-'- (——‘—) cosf{w At -¥) + :_m: sin(w At - v)]

w \ Ao

) wge ™ Smat (_w stale - twn cos(wgAt - Y))..(9,l9c)

X(teat) = -Ag [——
v

_W-GMM (M cos(wdht - v) - Gwn sin{wgat - v))

. (—L—) o Sunit (-..4 sin(ugat - ¥) - Cun cos{wgAt - v))
“n \ /12

+ 2 o tunit (u¢ cos (wgAt - ¥) - twn sin{wgat - v))
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The analysis approach has been discussed in general terms in the pre-
ceeding section. The following section will be concerned with the computa-
tional procedures. Analysis procedurers for handling nonlinear restorative
forces, viscous forces, clearances, and motion constraints will be discussed.
The various procedures will be combined to form the total snubber analytical
mode! (computs = code).

This particular form of loading can be sepa-ated into two categories:
(1) nodal movements that are constrained thro.gnout the loading cycle; and
(2) nodal movements that are constrained during portions of the loading cycle.
The first class or category of constraints are those that can he handled by
standard modal analysis techniques. These movements are in general “he
specified Toading such as pipe anchor movements or support motions. The
solution for this type ot input is presented in the previous section and
since this technique is not unique, a detailed description of the procedure
is om.tted. However, the second category is unique to the snubber analysis
and 1111 be presented in detail.

The detail of the analysis procedure is ‘n the form of a flow chart The
snibber parar-‘er that the analysis procedu-e applies to is the acceler cion
threshold parameter. Basically, the nodal accelerations are limited to a
specified limit X_ . The flow chart in Figure 9.2 indicates ti general
approach for solving the problem when considering acceleration limits.

Viscous loads are those loads or reactions that are a func*‘nn of velocity.
The force may be proportional to the velocity as it is in classical viscous
damping or it may be any generalized function Fy = Fy(X). The calculation
and implementation of viscous snubber reactions is quite simple inasmuch as
the boundary conditions for the piping or component system do not vary with
time. Viscous loadings are created by hydravlic snubLers, and it should be
noted that there is no connection between these viscous effects and the modal
damp’ng referred to in Equation ( 9.8). This damping (percent critical damping)
refers to the piping or component system damping and not the discrete damping
of the snubbers. The flow chart in Figure 9.3 indicates the general approach
for solving the problem of viscous damping forces.
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Figure 9.2 Response Due to Acceleration Threshold Parameter
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STEP @- All anchor motions or specified displacements, loads and system
parameters are known at t = 0,

STEP @: The selection of a time increment is made based on either input
data frequency characteristics, system natural frequency charac-
teristics, or bot®. In general, the time increment is constant
throughout the analysis, but this is not a restriction. The
time increment (At) may be varied as the solution progresses to
minimize computer time.

STEP { 3): Knowing the conditions at t and the loads at (t + At) the response
at (t + At) can be calculated. [ See Equations (3.10), (9.8), and
9.4).]

STEP (4 ): After calculating the response at (t + At) each snubber location
motion is checked to see if the acceleration is greater than the
acceleration threshold parameter (limit acceleration). If al!l
accelerations are less than or equal to X, the solution calcu-
lated at (t + At) is correct. If not, go to STEP @

STEP @: Increment the time and proceed to calculate the response for the
next integration time interval.

STEP : Since certain accelerations exceed the limit values, the predicted
displacements from STEP @ will not be correct. The response at
these locations can be calculated since X'L is known. Knowing what
was calculated from STEP (3 ) and what should te, from STEP (6

the displacement increment is known:

Fs
—

AX = X(t + at) - X(t)

Therefore at each snubber location where the acceleration exceeds
'X'L. the displacement increment AX is known for the time step going
from t - (t + At).
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FIGURE 9.2 (Cont.)

sTEP (7): In order to calculate (3Xy/3Fj); terr , a unit change impulse load
is applied at snubber location j (whe X > X_) and the change of
displacement AX 1is noted at each snul er location where X(t + At)
> l{ This solution is represented by Equation (3.13). Therefore
in "m" locations have snubber responses where X(t + 4t) > X then a
(mxm) matrix of (3X§/3F3) terms will be formed.

sTEp (8): Having obtained the matrix of “Slexibility” terms (3Xi/afy), the
snubber reaction loads AR can e ‘alculated since AX{ are known
trom step (6).

STEP @: The snubber reaction loads calcuiated in STEP are added to the
applied load vector F(t + At); and the response calculation of
sTEP (3) is repeated. The desired response determined in STEP (6)
will not be obtained.
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Figure 9.3 Response Due to Viscous Parameter
(Without Consideration of Unlocking)
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STEP @ A1l anchor motions or specified displacements, loads, and system
parameters are known at t = 0.

sTEP (2): The selection of time increment is made. (See STEP @ - Motion
Constraints.)

STEP @: The calculation of the viscous force at (t + At) is based on the
velocity at t. This approach adds an insignificant error provided
At is not large - which removing the need for an iterative solution
scheme .

STEP @: The viscous force is added to the applied force to get the total
force acting on the system at (t + At).

STEP @: The response at (t + At) is calculated based on the applied force
obtained in STEP @ and t~- response at t, i.e., X(t), X(t), and
£(e).

STEP @: The integration time interval is incremented and the next integration
step is initiated.
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A problem that needs to be addressed for viscous hydraulic snubber reac-
tion loads is implementing the criteria when the snubber “unlocks". First,
there is the locking velocity parameter that dictates when the snubber becomes
active. Next, there is the hleed rate which effects the response when the
snubber is active. Finally there is the criteria which indicates the snubber
becomes inactive. Several criteria can be established for causing the snubber
to become inactive, some of these include:

a) Reaction ioad < RCRIT
b) X§ < XerlT
¢) X < XCRIT

The problem is one of establishing which parts of the response cycle have
an "active" snuober. This complicates the flow diaqram aralysis procedure

shown in Figure 9.3. The procedure used for this analysis is shown in Figure
9.4.

Nonlinear restorative loads are those that are other than linear functions
of displacement response Fgp = Fp(X). The linear restcrative forces are in
general treated as linear spring rates, while the higher order terms are
treated as nonlinear restorative forces. The consideration of these forces
in the dynamic analysis is identical tc the procedure used for solving the
viscous problem. The procudure differs only in STEP (:) (Figure 3. 3) where
the nonlinear translational load is calcuiated rather than che velocity
dependent load. The snubber characteristic that is more exemplified by this
nonlinearity, is caused by hydraulic fluid with entrained air.

Clearances are usually associated with other response parama2ters that act
in corjunction with them. Ffor example a clearance may exist with viscous
damping, or nonlinear restoring forces; or, a clearance may exist between the
system and a rigid anchor. C(Clearances may be symmetric or asymmetric about an
equilibrium point. Basically a clearance represents a dead band in the response-
reaction characteristics of a snubber. The analysis procedure used when
clearances are considered is basically similiar to that when no clearance
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exists. However, there exists a check in which the response is compared to
clearance values at a specific time, and if the response is in the dead-band
region, corrective steps or load modifications are not made. For example
consider the viscous damping parameter procedure. [f clearance is included
the flow chart is modified from trat shown in Figure 9.3 to that shown in
Figure 9.5.

Although the previously discussed analvsis technique works well when
damping effects are small, numerical problems are encountered when the discrete
damping parameter C = RATED LOAD/BLEED RATE is large. For a single degree of
freedom lumped mass model, a large value appears to be C > 20 Mu,. lhe
numerical instabilities can be minimized by using very small integrating time
steps; however, for most piactical problems the running time would be pro-
hibitively long. Therefore,to solve rroblems when viscous damping parameters
are large, an alternate analysis procedure has been adopted. This procedure,
which requires a load correction step for each integration step, is stable
for large discrete viscous damping parameters, C >> 20 Muy.

RATED LOAD

P - o e -

LOAD (#)

v
>
-

RATE OF P'STON MOENENI T
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Figure 9.4 Response Due to Viscous Paramaters (Includes Unlocking)
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Figure 9.5 Response Due to Viscous and Clearance Parameters
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Looking at a single degree of freedom lumped mass, we can proceed to
develry-*n analysis procedure that will not be sensitive to the magnitude
of C. The analysis technique is based on constant velocity between inte-
gration time sieps.

The response at (t + At) can be expressed by
Gt + at) = xy(t) - Xg,(R)at .++(9.20)
The same response cen be expressed in terms of the reaction loads,
Xi(t + at) = Xi(F, t, R) = X{(R) ... (9.21)
since F, t are constant during At.
Equating these expressions,
Xi(t) - Agg(R)at = (R) .. (9.22;

For the general system consisting of many mndes, there is one eguation
for each snubber support. Bascially we have "m" nonlinear equations in
which R must be solved.

In order to solve these equations, we take and rearrange the - uati~7 as
Xi(t) - Xg (R)at - X{(R) = ¥ ...(9.22)

where ¥4 = 0 when R is correct.
¥(R) {
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The figure on the previous page shows a graphical representation of the
function ¥(R). A first approximation is

EB?)( " %;(Ro) ...(9.24)

where

(gl'f)‘ - 5’“ x(t) - Xg(R)at - mn] . 13;! At - %z_ (Ro)

and

(%i), . .ot 3 (R) ... (9.25)

Since we are roncerned with the general solution,Equation (9.6) becomes

{
;oY =- 8 Xy
\ R )iy g8t - TRy (Rog) ...(9.26a)

therefore,

Bﬂ > Eﬂ’[i‘: .+ (9.26b)

Writing Equation (9.24) in matrix form,

ok - I (Re)

Y(Ro) = 2% (Ro) (Ro - R)
and,

3y
(*(Ro)} = |3g | ((Ro} - (R)) ..+ (9.27)
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Solving for (R},
]!
® = o)+ [3] viro)) .. (5.28)

Substituting (9.26b) inte (..28):

-1
R} = (%)o[ﬁﬂ oﬁ{ﬂ (¥(Ro)) ...(9.29)

Equation (9.29) is a recursion formula that can be used to sclve for the
snubber reaction loads (R}.

Furthe~ examination of Equation (9.29) reveals that since [3x/anj is a
linear matrix, the equation is linear. Therefore (R} can be solved after one
iterative load correction.

One can see, that as “C" becomes large, the [At/C] matrix becomes small,
and since [3X/3R ] is stable, the solution will remain stable.

9.1 Aralysis Fiocedure for Considering Support Dynamic Characteristics

NP— L
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i % - 82| 2% then R # 0, and
§ -8 = -R(," + ,1.) - (g)él + (}‘“)62 .(9.1.7)
Also,
81 = & + X sgn [}(g)6| + (;)62] e | T}
letting
P = -5+ B)gg .(9.1.9)
Then,
G -8 = X son(®) = R+l - (e e B (9000
Solving for R,
mM k K
R G5 )[(a)éz - (@& - X sqn(ﬂ)] (9.1.01)
Solving for 8 from equation (9.1.2a) and equation (9.1.11),
& = (rl—;)[(n + m)Xg - K&y - Kép + m_ sgn(D)] .(9.1.12)
And from Equation (9.1.8),
& = & - X sgn(p) ..(9.1.13)
If we let
B8 = () L (9.1.°4)
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The following expression

and the snubber reac

And finally,

If the snubber reaction

snubber, the following analysis

The differential equations

Since the load is velocity dependent,

of motion

ed to

calculate the

(9.1.9)

dependent, as for a hydrayli

are the same 3s previously developed

v
-Xg - &

XBOR
i M
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where

C = Viscous Damping Coefficient = grici LoD

During the time increment 4t, the response changes from &) + 6], ., and
82 » Cé.c(. Also d. ng the time increment the snubber reaction also changes.
The velocity at t and (t + At) can be determined from the following expressions:

Blact * 41 - (%:'—)E ...(9.1.19)
Shpce = G2 ¢ (2%, - ... (9.1.19b)

where
‘ilct' 65.“ = Correct velocities at (t + at)
81, &2 = Velocity at (t + At) when R = 0
(“ )s (%GRZ) = Partial derrivatives

Substituting (9.1.1%a) and (9.1.19b) into (9.1.1R) the following
expression is obtained.

S & 3
® - @l - - GG P] ... (9.1.20)
or, rearranging . * solving for (s).

(81 - 43)

® = § —rm—a
S R Tis g

... (9.1.21)
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The above expression for the reaction load can then be substituted into
Equations (9.1.2a) and (9.1.2b) and the solution can be obtained by convei-
tional analysis procedures.

9.2 Analysis of Acceleration Threshold Parameter (System A)

=]

K X,

) —t:a sin Ot

Given the single degree of freedom system shown above, in which X << |X|,
where [X| is the amplitude of the acceleration for the unsnubbed system, the
differential equation of motion iz

mf ¢+ kX = kXg sin Ot ...(9.2.1)

Expressing the response in terms of relative components, where

6 = X-Xg .(9.2.2a)
§ = X-1Xg oo (9.2.20)
§ = X-ig . (9.2.20)

then Equation (9.2.1) becomes
ms + kE = -mXg
or

Eeufe = Mg = xgof sin ot ...(9.2.3)
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§ = Q¢Xg sin Ot , 9 4
;4(,.,3'(:.‘ since the u € erat r | ted ¢t nd nce 1 X
the acceleration of the mas an be expressed as
A z lk sgn €Xp n Qt < ' {
The following equatior equivalent Equat ’ 3
§ = XL sgn t 9.2.6
¥
Letting !
~ " = |
Q = (9.2.7 |
QexXg !
ther !
x o - ,
v = (9.2.8 |
- !
Weig
itk byt Q 2 7 N 2 | l
Substituting (9.2 and (9.2.8) int 9.2.6) the f wing expres |
obtained
Zy‘ 2
Q = \Q.‘ =) sagn n it —~r 9.2.9)
u‘ls .‘-"5
or
Q = ¢ sgn|s ¥ - 9.2
where
A
" W .
Q - { K a
i B
" y X -
- . = 4 4
8 ’
|
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The same analysis procedure can be followed for the single degree of
freedom oscillator shown below.

The results are as follows:

@ = £ sgn|sinqt - Q| ...(9.2.10)

where
Q = (X/xg) ++49.2.12a)
g = (n? T:T:—l) «r+(9.2.12b)

The solution to Equation (9.2.19) can be obtained by numerical techniques
on a computer. It should be pointed out that due to the nature of this
equation very small integration time steps are required.

9.3 _Viscous Snubber Efficiency

_11-3 sin Gt

7
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Given the system shown

the base is the same as the load in

in the spring
Fglt)

The snubber efficiency n is de

to the maximum snubber lcad, where
‘d -

therefore,

The force in the dashpot 1is
Fd

and the force in the spring is

At any instant the forces are

C(Xg

A

fe =

in the above figure.

the dashpot

fined as the

the snubber

L\Xg

Cl

L3 -\_‘le— 1_\,‘

9 ix(‘

equal,

- Xo)

The load

1ich is the

Xo)

ratio of the

therefore

= kXo

transf

same as

snubber

rrred

th

into

e

oad
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The solution of (9.3.7) can be found by Lapiace Transfor~ ~~*hods or
other techniques. Solving for Xg(t),

k
Xo(t) = ‘-—;l—:r;z [(gﬁ)cos Qt + sin Qt - (gﬁ)e'(E)t] ...(9.3.9)
Cu

or disregarding transient terms,

Xo(t) = "—;——5 [(C"ﬁ)cos at + sin m] ...(9.3.10)
1+ (m)
Therefore,
io(t) = ——l!;—z [cos at - (a—.‘) sin m) 9.2 10)
1+ (g)

Substituting (9.3.11) into (9.3.4) the following expression is obtained,

Fg = C‘.‘{(-‘—%)COS at + (Tﬁz)sin nt] ...(9.3.12)

From (9.3.3) and (9.3.12),

Fq 2 .3 2
o Iﬂiﬁ 5 /"r':-:z) * (y 432 ...(9.3.13)
n = r—:—zj WHERE a = (é)

Therefore, the support efficiency is

’_(tﬁ)z (9.3.14)
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10. CONCLUSIONS AND RECOMMENDATIONS

Basic information on snubber response sensitivity was obtained, for
mechanical and hydraulic snubbers, using simple analytical models. Sophisti-
cated analytical models, utilizing hydraulic snubber parameters, were also
investigated. This data can now be used for the development of simplified
analyses and design rules. The results obtained from the analyses of the
simple models appeared to be consistent with the results of the more complex
models. In future work, it is recommended that ana” s of these more complex
models be extended to include the following parameters:

1. Mechanical Snubber Acceleration Threshold Parameters (ATP);
2. Mechaical Snubber ATP Combined with a Clearance;
3. Hydraulic Snubber Paramete-s Combined with a Cleara: :e.

This should verify that the parameter sensitivity developed for the simple
models is valid for the more sophisticated models and verify, or refine, the
acceptable parameter ranges in Table 2.1. In FY 79 detaile. time history studies,
using the snubber mathematical models developed herein, will be compared with
various simplified analytical procedures, to determine their applicability.
Comparisons will be made based on stress response, snubber loadings, anc
displacement. The simplified analyses procedures that will be developed
should assure that system response will be bound within acceptable limits.
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NOMENCLATURE

-

Mass (1b-sec”/in)

Spring rate (1b/in)

Effective spring rate (1b/in)
Pipe stiffness (1b/in)
Forcing frequency (rad/sec)
Forcing vrequency (M2
Natural frequency (rad/sec)
Natural frequency (Mz
Critical damping ratio
Bilinearity stiffness ratio

Translational displagement, velocity, and acceleration respecti
(in., in/sec, in/sec*

Time and time increment respectively (sec
length (in)

Beating period (sec

Hardening (softening) coefficient
Acceleration threshold parameter 17Nisec2‘
Viscous damping coefficient (1b-sec/in)
Bleed vrlo~ity (in/sec)

Base excitation (in)

Lock velocity (in/sec)

Flexidility (in/1b)

Peaction load (1b)
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Clearance
Damping forces (1b)
Infinity

Relative displacement, velocity and acceleration respectively
t )
(in., in/sec, in/secc

Friction load
Support efficiency

(k/Ca)

Forcing frequency/natural frequency
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MULTIPLE SNUBBER TEST PROGRAM
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The data contained in this appendix are extracted from the results
of a test program performed by ETEC for the U.S. NRC under a separate
contract with the Office of Standards Development. The test objectives
were: 1) To evaluate changes in system response that occur when a single
large snubber is replaced by two smaller snubbers and 2) To evaluate the
influence of mismatch of end fitting clearance, activation level and/or
release rate on load sharing capaci‘y of the snubber pair.

The material herein was abstracted from the final report for the
test program. Only data pertaining to multiple snubber usage have been
included.
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2. SUMMARY AND RECOMMENDAT]ONS

The work described herein was initiated in response to NRC concern
regarding the practice of using several small snubbers in place of a
single large snubber.

2.1 Test Objective

The test objectives were 1) to evaluate changes in system response
that occur when a single large snubber 1s replaced by two smaller snubbers,
and 2) to evaluate the influence of mismatch of end fitting clearance,
activation level and/or release rate on the load sharing capacity of the
snubber pair.

2.2 Test Setup
The test setup is shown in Figures 3.1 through 3.3.

The setup utilizes a horizonta)l test beam which was cantilevered
from a hydraulically activated shaker table. The test beam consisted of
3 10 foot long, 6.5 inch outside diameter, 0.5 inch wall carbon stee! tube
and supported a 1000 pound lead mass at the free end. Snubbers were located
between the test beam and & strongback structure which was attached %0 a
seismic mass. The attachment to the test bzam consisted of a trapeze type
structure which was identified by the NRC as being prototypic for cual
snubber installations. The snubber attachment locations between the trapeze
structure and the strongback are shown in Figure 3.3. Snubber characteri-
zation tests were per formed in the location shown in Figure 3.2. During
these tests snubbers were located between the shaker table and the strong-
back in the fixtures shown.
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2.3 Test Results
The following results were cbtained from the test data:

1) End fitting clearance has a greater effect on
load sharing of dual snubber supports than mis-
match of activation level or release rate. For
zero end fitting clearance and any combination
of activation level and release rate between
8 to S in/min and 4 to 14 in/min, respectively,
equal load sharing (50%/50% to within 3%) was
observed. However, for end fittina clearance
differentials of 0.05 in., 30%/70% load sharing
distributions were obtained.

2) The effects of end fitting clearance on subport
reaztions were extremely variable. Different
trends were obtained for the various support
types (rigid strut, hydraulic snubber or mechan-
ical snubber), support configuraticn (singie or
dual) and inputs (seismic or sine). Table 2.3.)
summarizes the trends observed for the single and
matched pair tests (Tests 5, 8, 9, 17, 20, 21).

3) For each type (rigid s.rut, mechanical snubber
or hydraulic snubber) of matched pair of snub-
bers and given type cf locading (seismic or sine):

1) For z2ro clearance, the total reaction
force for the pair was less than the
reaction force for a single snubber of
the same type subjected to the same
type of loadina, Table 2.3.2 lists the
results of Tes T and 17.
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fi) For non zerc clearances, the single snubber
force may be gr2ater or less than the ‘otal
load for the pair.

2.4 Recommendations

The results of the test program confirm the concern expressed in
the Introduction and, not unexpectedly, aisc raise additional ones.

Since clearances in snubber assemblies are expected to be much greater
than the 0.05 inch investigated in this program and ovalization of holes in
clevises had significant effects, it is reconmended that:

1) Further testing and analytical studies be implemented to
investigate the effects of clearance mismatch over 2 wider
range of parameters investigated.

2) Inspection be initiated to determine the extent of clearance
mismatch in existing plants.

3) Design changes be implemented to minimize the effects of wear
on end fitting clearance mismatch.

Relative to the first of the above, it is recommended that the effects
of varying a single parameter be investigated during testing. This could
require the leasing of equipment to control accurately the activation lavels
and release rates of hydraulic snubbers.
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TABLE 2.3.1
EFFECTS OF CLEARANCE ON SNUBBER LOADS

SNUBBER INPUT
JYPE TYPE
Rigid Sine

Mechanical Sine
Hydraulic Sine
Rigid Seismic
Mechanical Seismic
Hydraulic Seismic
Rigid Sine
Mechanical Sine
Hydraulic Sine
Rigid Seismic
Mechanical Seismic
Hydraulic Seismic

EFFECT OF INCREASING
CLEARANCE ON SNUEBBER LOADS

Increases
Increases
Decreases
Decreases
Decreases
Negligible Chanoe
Negligible Change
Negligible Change
Increase
Inconclusive*
Increases

Decreases
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TABLE 2.3.2

SUPPORT LOADS - SINGLE VS MATCHED PAIR OF SNUBBERS
(ZERO CLEARANCE TESTS)

SUPPORT INPUT TOTAL LOAD (LB3)
_TYPE TYPE SINGLE MATCHED PAIR

Rigid Sine 3680 1100
Hydraulic Sine 4150 2800

Rigid Seismic 2260 1000*
Hydraulic Sefsmic 1820 800

* Questionable Data
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3. TEST SYSTEM

The test setup is shown in Figures 3.1 through 3.3. Figure 3.1
shows a plan view of the shaker table and support setup. Section Views
A-A and B-B indicate snubbers in their test and characterization positions,
respectively. Snubbers were located in eitier of these positions but not
in both simultaneously. Figures 3.2 and 3.3 show the test and character-
ization positions, respectively, without the snubbers.

The test system consisted of a '0 foot long carbon steel tube (6 1/2
inch outside diameter, 0.5 inch wall) which was cantilevered from a hy-
draulically activated shaker table. The lLeam was oriented parallel to the
ground and supported a 1000 pound lead mass at the free end and a trapeze
structure 4 1/2 feet from the base. Snubbers were attached between the
trapeze structure and the strongback structure which was attached to a
50,000 pound seismic mass. The geometry of the trapeze attachment was
fdentified by the NRC as being prototypic and was used upon their recou-
mendaticns. Appendix C contains the drawi-;s of the support configuration
supplied by the NRC.

The design of the test hardware was p2rformed by ETEC and the test
was performed at the Rockwell International Autonetics Strategic Systems
Division (ASSD). Design drawings are presented in Appendix D. Design
modifications to the ASSD facility were required to provide torsicnal
rigidity to the shaker table as a result of large moment loadings produced
by the test article and to maintain the table support bearing side loads
within facility limitations. The drawings for the hardware for these
modifications are contained in Appendix 0.

Initial concepts for implementing the program had envisioned using
existing piping systems or prototypic piping loops. These concepts were
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sbandoned for the following reasons: 1) facilities were not available
which could be used for generating large snubber loads without fea~ of
uverstressing the existing piping; 2) the fabrication of a prototypic
piping loop capable of producing snubber loads in excess of 10,000 rounds
was outside the budgetary constraints on the program; 3) A prototypic
configuration would not permit control of all parameters aftecting system
response.

The selected test configuration had the following features:

1) The simple geometric configuration pe-mitted control
and measurement of parameters affecting system re-
sponse such as clearance, support flexibility and
load oricntation.

2) Large snubber loads and system deflections and stresses
could be developed (Snubber loads in excess of 30,000
pounds, piping stresses of approximately 50,000 psi and
displacement response of 0.75 inches at the snubber
attachment could be developed).

3) The dynamic characteristics of the test article were
similar to many short to intermediate length of piping
subsystems found in nuclear plants (4.5 Hz unrestrained
natural frequency and 7.5 Hz with snubber supports).
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Snubber Stmgbuh—7 Table Attachment Filtu7

IS

Table

Snubber Att:chment
Points

Figure 3.2  Saubber Characterization Fixture
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Figure 3.3 Snubber Attachment Locations
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TABLE 7.5.)

MISMATCH SNUBBER PROPERTIES® (IN/MIN)

Topr SNUBBRER™

SNUBRER ACTIVATION LEVEL RELEASE RATE
S/n Tenzion Compression Tenston esst

24074 pe2'" ge(M) el g
N4z 25120 4 (2) 7.00) 40l
Nasr 8320 55 g0 4 (@)
1ias? 83 7.5 8.8 .
Mg 8.3 7.5 0.8 .

SIN

24073
20074
24074
260742
2007-4(2)

sOoTTOM

ACTIVATION LEVEL

Tenston Compressfon
oM gealh)
g2 gea)
g2 g™
15.0)  1g.0(2)
TAL BPArALY

RELEASE RATE

Tensfon Compression

PRIL)

PRLL]

1¢.(2)
s.0l2)

an®
@
40!“’
15.(2)
20

* Release rates based on bulk modulus of 1(10°) pst.

** See Figure 3 3 for installation location.

(1) Factory set values.

(2) Setting selected Ly adjustment, for tests.
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TABLE 7.5.2
MISMATCH TESTS SNUBBER LOADS (1t)

SINE INPU: SEISMIC INPUT

TEST TP | BOTTOM | L BOTTOM

E

NO. SNUBBER SNUBBER SNUBBER SNUBBER
17 800. 1200. 480, 720.
23 500. 480. 700, 680.
25 480, 540. 760. 760.
27 480. 460. 680. 720,
29 300. 520. 240. 720.

* See Figure 3.3 for installation location.
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TABLE 7.5.3
MISMATCH TEST LOAD SHARING (PERCENTAGE)

SINE INPUT SEISMIC INPUT
TEST TOP * BOTTOM * TOP * BOTTOM *
NO. SNUBBER SNUBBER SNUBBER SNUBBER
17 40 60 40 60
23 51 49 - 51 43
25 47 53 S0 50
27 L a9 48 52
29 37 63 25 7%

* See Figure 3.3 for installation location.
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