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The purpose of this report is to examine the theory and simulation capabilities
of selected sheath-heated and internally-heated electrical rods for reproducing

.

nuclear rod behavior. In the process of examining the Semiscale M00-1 heater
rod, an algorithm is developed for computing the input power function needed to
force the MOD-1 rod to duplicate the LOFT L2-3 nuclear rod data. It is observed
that in order for the Semiscale rod to simulate the L2-3 measured data, large
quantities of negative power must be supplied to the rod prior to and duringe

rod quench. This indicates that it is not possible for the MOD-1 heater rod to
g exactly duplicate the rapid cooling phenomenon observed for the LOFT nuclear

rods during the L2-3 test.

DISPOSITION OF RECOMMENDATIONS

No disposition required.
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ABSTRACT
,.

The theory, simulation' capabilities, and limitations of direct and
,

indirect heated electrical rods to reproduce nuclear rod behavior during
rapid cooling events are examined. In particular, calculations are made of-
the local rod power function for the Semiscale Mod-1 heater rod needed to.
force this red to reproduce the measured cladding quench data from the LOFT
L2-3 experiment. Finally, suggestions for improving the simulation'

capabilities _ of current electric rod designs are presented.
.
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SUMMARY*

This report examines the capabilities and limitations associated withv
simulating nuclear rod behavior with some currently designed surface heated
and internally heated electric rods. The theory of the Zaloudek and LOBI
(Loop Blowdown Investigation Facility)* direct heater rods, as well as the
Semiscale solid type indirect heater rod are reviewed..

For the Semiscale (solid type) heater rod an alog'rithm is developed
for evaluating the local rod power needed to force the rod to duplicate two
prescribed surface boundary conditions. The principal result of the
calculations and supporting analyses indicates that in order for the
Semiscale heater rod to' reproduce the LOFT L2-3 nuclear rod temperature

. quench data, unrealistic negative rod powers are needed to compensate for
'the high internal thermal conductivity of the rod (BH vs. UO ), whichp

causes the stored energy in the Semiscale heater rod to be transferred to.! 'a

the cladding surface more rapidly than normally occurs in a nuclear rod.
This characteristic of the Semiscale rod and other indirect heater rods,v
results in an inherent design limitation for simulating rapid cooling

events..

In comparison *,o the solid type (indirect) heater rods, some of the
sheath heated (or.directly heated) rods have a distinct advantage. For
instance, from theoretical calculations it can be shown that the Zaloudek

.

type heater rod can be realistically powered in such a manner as to afford
perfect simulation under all possi'le nuclear rod events. However, theo

assumptions made in order to derive-this result are somewhat unrealistic
when applied to a real rod. Furthermore, as in the case for solid type

N1C Researc1 and "ecmica,
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.. All acronyms used~ in the report are defined in Appendix C.*
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internally heated rods, the nuclear rod surface oeundary conditions must beo

known in order to calculate the proper rod power function for the Zaloudek

rod.,

It appears that the LOBI heater rod might also be able to reproduce
nuclear rod behavior, but since the response of the rod is extremely
. sensitive to the driving power function, it s difficult to utilize the LOBI'

rod to predict unknown nuclear rod phenomena. Instead, the LOBI rod is

generally used for only code verification studies.

The ideal fuel rod simulator would " naturally" respond like a nuclear
rod under a broad range of test conditions with little or no input rod
power. This is desirable since the electric rod power function is
dependent upon nuclear rod boundary conditions that are usually not well
known, or in some cases, totally unexpected prior to testing. This
occurred when-the Semiscale counter part tests failed to indicate the LOFT*

L2 nucicar rod rewet events. It is now known that the Semiscale heater rod
o has difficulties in simulating such events.
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h4 ~ NUCLEAR FUEL ROD SIMULATION USING ELECTRICAL HEATER RODS

b.,
-1'. 0BJECTIVES

r.

The purpose of this study is'to investigate the basic theory,
associated with electrical rod simulation of. nuclear rod behavior, :nd then

,

use this information to illustrate the inherent difficulties that many
heater rod. designs'have in simulating rapid cooling transients. Al so ,
identification of some key design criterit; wil1 be made in order to

-

facilitate' future heater rod designs that Letter simulate or typify nuclear
- fuel rod behavior during loss-of-coolant experiments (LOCEs). Finally, it

-

wil1 ~ be demonstrated that the Semiscale heater rod'cannot reproduce the

: nuclear rod cooldown behavior observed during the LOFT L2-3 test, unless

the rod is powered according to an unrealistic negative rod power function. .
.

O
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2. INTRODUCTION<-

-

. . A major problem that is addressed in the report is the determination-
~

Jof a metnod or algorithm by which a time dependent heat source distribution

[g'"(r,t)] can.be evaluated for a given electric rod design so that the
electric ~ red will simulate the behavior.of a nuclear rod. As we shall see,
however, the1 electric rod heat source distribution generally depends upon <

the surface temperature'and heat flux response of the nuclear rod' during
~

the experiment. This means that, in general, it is not possible to power
an electric rod with one and only one sort of _" decay power" function and
expect the electric rod to exactly duplicate the response of'the nuclear'

rod in every possible transient, even though the hydraulic boundary
conditions agree. . Furthermore, the power input to the electric rod depends
upontthe nuclear rod boundary conditions. In other words, most electric

rod designs must' be powered according to formulas which themselves depend

upon a prior knowledge of, or at least an expectation of, the response of -.

the nuclear rod in the postulated transient.

.b.

Although the response of a nuclear roo to a particular thermal-
hydraulic transient is usually not known, a " target" response might be-
postulated and then an appropriate electric rod power could then be
calcul ated. If the rccponse of the electric rod is not very sensitive to
the input power, then the actual response of the electric rod might be
reasonably close to that of the nuclear rod response even though the
" targeted" curve is not exactly correct. The difference between a
mathematically exact duplication and a reasonably close approximation is
ratier large. It is not known-at this time how close of an approximation
is close enough in order to adequately simulate the required thermal-
hydraulic boundary conditions.

.

.%

2
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4 It-'may ; turn out 'that an-electrical rod that has the theoretical
capability of simulating a nuclear rod will not function as expected underr

experimental conditions; and that another electric rod dcsign whichy
according to theory 'can'not exactly duplicate _a nuclear rod response may
indeed provide better simulation, and would th'erefore represent a better
design.

,

Resolution of these problems can only be achieved by both-computer

analysis and experimental testing. The interac. tion between,the various rod
parameters defined by rod geometry, material ,, location and powering of
heater elements'are far too complex to analyze in one all encompassing
theory. Instead,'it _is the objective of the report to develop some basic-
theory concerning electric rod simulation of nuclear rods, and then use
this information to provide some guidance and insight into developing
better electric rod designs, and suggest reasons that explain why some
heater rods may not be as good as others. . Also, some formulas will be.-

derived showing the-relationship between electric rod input power and the
nuclear. rod boundary conditions.o
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3. BOUNDARY CONDITIONS
w .

. , . .

'

' We bedin. by defining the term " simulation."- An . electric rod is said
r
'E

' ^t'o s h late the response-of a nuc ear rod (or vise ven.1) if the1 surface' l

I. - [ heat flux.and the surf ace temperature of both rods'are respectively equal

b |duringihegivenexperiment. These two-conditions necessarily imply that.
.the heat transfer' coefficient of both rods'will be.the same as long as the ,

h bulk coolant-temperaturesLare equal. Consequently, if these-conditions are
satisfied,~.then the heat trcssfered between the rod and coolant will be the 'o

same.for 'both'the electric and .uclear rods,
~

f
p} ,In symbols, felec'tric-nuclear rod simulation means that Equations:(la)

an'd|(lb) are valid.:
.

Identical surface heat fluxes:

.

(la)*i$E N
, surface- tsurface,.

.,

-Identical surface temperatures:
f
f

p
,-

IE ; surface surface

In cylindrical-coordinates with no axial heat conduction and
azimuthal synnetry;>the electric and nuclear heat fluxes are defined by

- Equations (2a) and-(2b), respectively.'
.

L

.3TE (2a)
& ..= --kE 3rE

y

*~, '

(2b)
*N = .k '

N ar.
g

~~ <
,

4

o m



'" '
-

;
_

.

-
,-

- O .,

.. u . -.x .
' ~a: y.> 3. ,~ , ; . x,- ,_ ,

. s . :.,
,_,

' '$
;+ , c ;* ! s @)j . 'E ':-

+

t . c' ; ... ,,

' .\, y
*

..-:, _

6 .

.
. , .

,

'

;
-

y -

:: ;;. + .

-
" ~

2 - LO-14-81 -074 -.,

., - . .. s -

' 5,.'. ? *

E L"iE(r,t)!and }y-= T (r,t)':are the electric andy ' Here :T y,

.

. nuclear rod | space-time temperature distributions. The:. respective:-
.

.... . .- . ,.. .

' material . thermal conduc civities- are k .and k . - That. i s, kE". , . -'
E; g,

~

ik (T ) and k ;= k (T If ," '
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--4. 0NE DIMENSIONAL HEAT CONDUCTIONy _

.

_

We begin:with the one-dimensional heat conduction' equation written in-

= vector notation:)-
.:..

~ .Vf* k V T;- (C - = -q'.(r,t). (3a)"
,

_

p,

where

'T(r,t) -{3b)T =

'k(T) -(3c)k- =-

p(T)C (T) (3d)pC . ~ = -
pp

.

Here, T(F,t)lis the incal temperature of the solid, p(T) and C (T)p

' are the density and specific heat, respectively, k(T) is the thermal.s

conductivity, and q'"(F,t) is the volumetric heat generation. term. Al so,

|the vector f = xi + yj + zk.

For cylindrical rod geometry with azimuthal symetry and no axial heat
. conduction,- system (3) can be written in the :following form:

h fr k = -q'"(r,t) (4a)L -y

where~

(4b)T(r,t).T =
,

4

'
~

4- k(T)- (4c)k-

V 6 pC '= p(T) C (T) (4d)cy p p

..

I

~

6
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.

For simplicity, the symbol y = pC has been introduced top
. ,

.
;

' represent the volumetric specific heat. . Consequently , . thermal di f fusi vi ty-

-

. _ , __
Jcan.be written as: a = _ k /y.

~

Notice that in cylindrical geometry with azimuthal':ymmetry and 'only-
radial heat' conduction, the gradient and. divergence operators have been

interpreted as follows: ,

.

grad (T)'= VT = 6 (Sa)
r

div|(V(r)6)=.V*(V(r)6)=hh[rV(r)] (Sb)
7

Where e is a -unit ' vector in the "+r" direction, e.g. @r " ( *1 + Y +
r 22 + z ).-- Notice Figure 1.zk)/SQR(x2+y

. -

q. .

.. t

i

'|.
1

,___ _ L, _
( l N

= r= R | j g
"

r= R Ay
'' '

/ x i

I-

lIA |( jer ,

' ~' INEL A-17 564e-

Fig. 1. Rod geometry showing the cylinder radius (r = R) and unit
vectorsTr nonnal to the surface of the cylir. der.''
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are generally functions 'of temperature, T, _Since k and y =- pCpo.
the:diffe' ential Equations (3a) or (4a) will not be linear in T.- Since it-

i s very difficult .to solve non-linear partial differential equations, we
_,_

shall assume that k and y = pCp are not directly dependent on
temperature. _ For example, given a space-time temperawre distribution
T f T(r,t),'then k = k(T) and y = y(T); and therefore,

(6a)k = k[T(r,t)]

and,

(6b). y = y[T(r,t)]

Consequently,:if T is a known function of r and t, then k and y will
be functions of r and t. From Equations (6a) and (6b), k and y are

- - therefore_ functions of the variables r and t; however, r and t are not
completely independent since-they are related via the T function. In

general, the solution tenperature T(r,t) is not known so that k and y are
,

not known as functions of r and t. Nevertheless, if one assumes that some

initial estimate can be made for T, say T (r,t), then an estimate can beg

made for k and y based on T as foll'ows:o

k = k (r,t) E k[T (r,t)] (7a)
g g g

(7b)o " Y (r,t) 5 y[T (r,t)]y o g

and y, are written as on1y functions of r and t, andSince kg

not T, then Equation (4a) is linear in T. Solving the modiffec' linear

dif ferential equation (with estimates _made for k and y), one obtains a

j and y) based on T) innew estimate for T, say T) . Next, using k'

Equation (4a), another new estimate for T, say T , can be made. Hope-*~
2

fully,.by going through enough iterations one can obtain a sequence of'

functions: <k > <y >, and <T ) such that: |* j j 9

l

8
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i(r,tjM11m T (rd)4
3

P -

. i -- + =
? ).-

q-6 - .k[T(r,t)] = lim kj (r,t)-

.

.i + =:
-

t:

j[T(r t)] = lim y9(r,t)':U

i +=

-

In this way one can attempt to solve a non-linear partial differential
;

[ equation by.. solving'a sequence of linear partial differential equatio,ns,
each of which are easier to solve than the original problem.

|-

. Although no attempt will be made in the report to actually carry out-
the procedure described above, a justification has been made for assuming

.that k and y,can be treated as functions of-r and t only. Throughout the
report we shall assume that estimates can be made for k and y in terms of
the independent variables r and t.. For instance,

|.(

k = k(r,t) (8a)

[
. y = y( r , . . . (8b)-

| ,

! =. Special cases of Equations (8) occur when k and y are either
>

| . constants throughout the rod, or when they are simply functions of r only.

I -In fact, for ruch of the analysis that fc lows we shall assume that the rod~

l-
| thennal properties 'do not change very much, and therefore, reasonable

estimates can be made for. k and y in terms of the variable r only. In

this case we would write:

i

k = k(r) (9a)

|:. ..

.y = Y(r) (9b)
'

;..
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r .w

m, . s
.

. go b$ gin ; lit k'EL= k Ir,t) ind(Y f:Y (r,t)'representi
~

.( E. E E,

ifunctions'of the\ thermal conductivity, and volumetric specific heat:
N = k (r,t):'of. the materials' comprising the electric rod design; and k

~

N

6
. ;and Lyg =%(r,t) be-the respective values for the.nuclearf rod.

~

i

N = T (r,t) -representL the space . time5 Al so;- letf,TE =. T (r. ' ind T NE.r

temperature distributions in the. electric and: nuclear rods. .Likewise,
~

,

~ tthe heat fluxes.'for the electric and nuclear rods are respectively:
7

*
.

' ' fat. .. .

10a)$ " *E(r,t) . = ' -k ' arE E
-

.

r,t
8

,e

,and'
'

_-

-

r _-

.. aT"
- '

(10b)$ '" *N( r , t) = -kN arN r,t
0,

To' simplify writing of the heat conduction differential Equation (4a),
and-D defined as follows:we 1ntroduce|the operators DE N

,,

.

JD (T)'E !r fE I '~ Y .(lla)
E E

and for the nuclear rod:

D(T)2.hh(rs }-Y IllDI
N N N-

,

w

using the notation we' have developed, the heat conduction differential
,

equation for the: electric rod with solution temperature distribution TE
~

isi-

L
y.

:g;.
T

' - ' 10 :
.

_

E _~ -
-

- - - . _ . _ . _ _ _ _ _ _-.i.__
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'"
LD * ~ 9 ;(r,t)' -(12)E E E .

"'

Here,"qE (r,t)'is. the. power density source term. A similar equation_

could be written for.the_ nuclear rod.

5.1 ' Simulation Criteria
-

In' order to simulate a nuclear rod with an electric rod two important

' boundary condition must be satisfied simultaneously. Namely, the surface-

, . temperatures and surface heat fluxes of the electric and nuclear rods i.ust
agree. In- symbols:

'T (R,t) = T (R,t) (lha)
E N

,

*N(R,t) (13b)4 *
E

Here, r = R ocfines a boundary surface of the rods (both rods are assuaed
n.

to have the same outside radius OR) where the two respective boundary _
conditions are to agree. In general, r = R will represent the outer
surface of rods, however, a different inner cylindrical surface could also
be selected, e.g., the inside cladding surface or fuel pellet surface.

The difficult aspect of fuel rod simulation requires that one
'"

. find a power source tenn qE (r,t) for the electric rod so that both TE
g and $ , respectivsly at r =. R and for alland 4E agree with T N

'"

times t. Tha.t is, find a function qE (r,t) such that the solution of
Equatio'n (12) satisfies the two boundary conditions (13a) and (13b).

The uniqueness theorem for the heat conduction differential equation
'(proved in References 2 and 3) stipulates that for any prescribed function

'"~*
qE (r,t) and a boundary condition for either TE 0" *E, and some

. prescribed initial' temperature distribution [T (r,0)], there is at most
E

..

11
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. D (T)) = -qE . L Also,- for -
~ '"slutionlo the differentia'lLequation: .

E[ "c f
'

'

(the same boundary and init:al' conditions, existerce theorems for partial.;' - -

-

('

]. ' c Idifferentiel equations. show that there is ~a solution'. for the given-.

..[ : problem.3 -

,

% 1

;.- $ '

DThe; problem at hand is<that,there is-no etusatte that one'can'

.

' ,' find'a; source term q'E (r,t) such that T ',= T solves.-the differential
'"

E

,
v (Equation;(12). subject;to two) boundary conditions. Indeed, if the electric

.

~ ? rbd: design tis such that-the r' dependency in 'qE j(r,t).is already specified .",
_.

.

. ,
-

- - : . :.

* fbyithe~ particularidesign and po'sitioning 'of the' heater rod element (s),
.

~

|'h g. , qE (r,t) = iP(r) Q(t) wh'ere-P(r) is determined by rod design,- then
t ?' '

i
f there|m'ay be'no- fue. ion Q(t)'which solves the problem. - At the other end

~

iof the; spectrum, if fone were willing to admit any' real functions ("(r,t);

Lwhere qE 1may not' even'b'e a' separable function' of the variables- r and t,
' then there willcbe an infinite number of solutions. However, many of these~

L*- Jsolutions1will'not be realistically,possible since the source funt.tions -
take on negative values for some values of r and t.

m
~ '

'We begin our study of the simulatifon capabilities of electricalf heater
_

: rods by first examining sheath heated (direct heated) rods and then later-
t considering'. internally heated findirect heated). electric rods.

O
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; ygh : 6.9'SURFACEHEATEDELECTRICALRODS
3 ,

'

.s'*

1 A direc't heater rod usually; consists of a metallic sheath ~ surrounding -

:[
~ ' f a; ceramic / insulator. 'The insulator material is sometimes selected so' thate

~

-itsLthermal|propertie's a. a similar to that of nuclear fuel-(U0 ). _ Heatc*

2g ; ,

.is| generated in. a direct i.m W eod-by passing an electric' current directly.

through the outer' sheath |or cladding of the rod,' _which eliminates the need:

j _ for a heater; filament inside the insulator iFigure 2 depicts the basic

features associated with a surface heated-electric rod. Notice from the.
'

:

figure that the cladding thickness 'of the rod is varied so that ai'

sinusoidal axial. power distribution. is formed. .'

4i

; A method published by F. R. Zaloudek,L and summarized in Reference 4,"

[~ illustrates a' power scheme by which one particular type of direct heater

i' rod can be-powered so'.that. simulation of a nuclear. fuel rod is. theoreti-
~

.

f[ . cally possible. The nethod relies upon the following criteria:-
m

; 1. 1Th'e dimensions, thermal conductivity, volumetric specific heat,
er ..

. .

.and gap resistance of the electric and-nuclear rod are equivalent.r

2. --The energy _ deposited in the cladding of >the rod can be assumed to.
I' appear as a boundary surface heat source.
4

-

t

- 3.* The thermal properties of the electric rod are assumed to be

{ independent of temperature. (This is assumed so that the

l'- .

; resultant differential equation is linear in T.)
l:

,

./

*f It isipossible that Criteria 3 may be-relaxed somewhat by considering
the solution of the non-linear temperature dependent heat conduction

.. _

: differential equation as a limiting sequence of solutions to temperature'*s
.

. independent linear differotial equations' as shown in Section 4.
.

..E-

- D 13
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-Cladding with -

\? ~variable wall
#thickness r

\ -.y

a"hNNs 3. jCladding g jp
\f*5 hk\

Ceramic Ceramic \ $ I$ \
.

insulation insulation tin \
M N $)y \$ M@\B -93 93 gsq4ge g,

EfhfY $ BIN Nh $N \
Gap y g*% l$$ -re. q v s %

~

XQ % \ $.,f. c, 3-

-

)|Centerline hole : * s

s . 'NN,

Thermocouple g Q ;j \
Conterline hole Q{r g \

. . -y.

Ni (NNqE ;\
'

Gap

M
INEL-A.17 557

Fig. 2. An example of a direct heater rod with variable cladding
thickness, and a ceramic filler material that helps to
simulate rod stored energy. Some direct heater rods, like
the LOBI rod, do not have this insulation material. In the

Zaloudek heater rod. the insulation material is UO2 and the
cladding is zircaloy.
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-Although the above criteria 'can not be exactly. met, experience with
~

e, -

sNath h'eated rods has shown that good simulation is possible with some rod

-. designs.that are less than ideal.
.

We now demonstrate'how it is possible to power a sheath heater

rod,. that.confoms' with Criteria.1,_2, and 3, and yield a rod surface
.

temperature and surface heat flux that duplicates the corresponding
boundary con'di.tions of a nuclear. rod. The procedure developen here
p6rallels the method developed by Zaloudek.

6.1 Theory of the Zaloudek Heater Rod

To' begin let T = T (r,t) represent the electric rod space-time
E E

temperature, 'and define the function T (r,t) by Equation (14).e

T (r,t) E T (r,t) - U(r,t) + U(R,t) (14)
e N.

Where T (r,t) is the space-time temperature distribution in the nuclear-*
N

rod, and U(r,t) is a temperature function satisfying the following
equations:

)
(15a)(DE)* D (U) = -q r,

_

N N

Well cooled
(BC)* U(R,t) = a constant U(R,0) k nuclear (15b)

rod model

(IC)*' U(r,0) = - T (r,0) + T (r,0) + U(R,0) (15c )
E g

)

- .

..DE = differential equation, BC = boundary condition, and IC = f nitial*

condition.
,_

15
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%y ~ Here, T r,0) represents the el'ectric rod initial temperature
' ~

E.

idist0ibution - T (r 0) the nuclear; rod initial- temperature ' distribution,' a
N

, .,

' and' U(R,0) some ' arbitrary positive const' ant. A.valueLfor U(R,0) is.
' selected in order to avoid negative temperature solutions;for U(r,t) in.

' system (15). We will event'ually prove that T, =J 'E

<The D operator.in-(15) is basodion materials with thermal:g

properties k and yN; however, since kN=kE and TN * YEg -

(Criteri A11)', then the operators D and DE. are equivalent. _ Also,g
- .since k anj YE are._ Independent of temperature- (Criteria 3), then

~

E

k and y are temperatu e independent and therefore the operator DNg; N

is: linear. -Finally, qN (r,t) is the nuclear rod power density
' distribution.

The differential . Equation (15a), boundary condition (15b), and initial
:condit on-(15c) taken together describe a system which is usually referred*

s to as a "well cooled" rod. The term "well cooled" refers to the fact that
the' surface temperature [U(R,t)] does not change, although the storeda

energy and heat generation in the. rod may change with time. Clearly,
for a "well cooled" rod all of the energy generated inside the rod must
be transported to the coolant without affecting the surface cladding

' temperature.

It may be surprising, but nevertheless true, that the solution of
system (15) provides a means by which the surface heat source for the above
designed direct heater rod can be determined. We proceed as follows:

~ First, solve system (15) and determine the function U(r,t). Thi s i s ..
7

most efficiently accomplished by running a heat conduction code subject to
the.specified boundary and initial conditions. Next, compute the gradient

of Tf f rom Equation (14) and then evaluate - k VT. Doing this !f. N g

.we find that:.

. . -

yT =VT -VU . +0 for r < R (16a)'

e y
r,t r,t r,t

16'

E
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J-k [ e *~Nb#c = -k # .+ k .VU for r < R. (16b) ~*

"E N N g
s- r,t- r , t' - r,t i r , t -.

-k VT N Nb N E(R,t) for r=R' (16c)-W
7.- E ' N e

R,t R,t R,t R,t

2
'H re S (R,t) is the electric rod-surface heat source term (W/cm )

E

-and is included in-Equation (16c) because the energy source for the direct -
- heater rod is treated as a~ surface boundary condition (Criteria:2), and not

'

part of the diffe.rential equation.. Defining 4E "~~NE #e, then
. Equation (17)'directly follows from (16c):

~

(-k VU I + S (R,t) (17)4 (R,t)4 (R,t) =
E

-

N NE g
-~w n~

electric nuclear - the well cooled electric
surface- : surface rod surface rod surface
heat flux-- heat flux heat flux heat source

~^

Since we want the surface heat flux on the electric and nuclear
rod to agree, i.e., 4 (R,t) = $ (R,t), then we must select the

E N..y.

surface' heat . source term S (R,t) to be equal to the heat flux that is
E

emitted from the surface of the well cooled nuclear rod. In symbols,

S (R,t) 5 -k W
.

,
(18)

E y

Therefore, Equation (17) reduces to:

4 (R,t) = $ (R,t) + 0 (19)..
E N

Notice-that since q '"(r,t) > 0 and U(R,0) is a constant, then theg
well cooled nuclear rod will always have a non-negative surface heat flux,

which means that the electric rod surface heat source term is also non-
.

= negative.

.

17
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*i Finally, al1 that remains to'_ be proved is that the function' T,(r,t),
~

..as- determined _by;the above equations is the required solution'of- the
,

'

Jelectric rod hea't conduction' equation described'in Equations (20a) thrug .

(20d):: -

..

.

. Direct Heater Rod Equations'-

f |(DE) ~ .D (T ) = 0 - (no internal heat source)- (20a)
E E

!(8C1) T (R,t) = T (R,t) (for all t): (20b)
E N

(BC2) ~ 4 (R,t) = 4g(R,t)- (for all t) (20c)
E _

(IC) 'T (r,0) = some initial temperature distribution = (20d)
E

~.

To| verify that T = T , it is only necessary to verify that T '
e E e

*1 as defined by Equation (14), satisfies the conditions specified in
- Equations- (20a) through (20d). This occurs, ~because there is at most one.-

< solution for the above system of equations. Therefore, if T satisfies~

e
the ~above equations it must be the one and only'one solution.

;

First, recall that since kE=kN and yE " Y , then DE"N

D. .Therefore, operating on both sides of Equation (14) we find that:
N

'D e)f D I * U (T ~ U (U) + D [U(R,t)] (21)
E N e N N N N

4

Since D (T I * ~9 '",: D (U) = -4 '", and D [U(R,t)] =
N N N N 9 N

D [U(R,0)] =-0, then D (T I " ~4 +UN +0=0. Hence
N g e N

- Equation. (20a) is. satisfied.^-
,

.

'

t
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Also, direct. substitution of r = R in Equation (14) will show that
T,(rit) = T (R,t). Notice that it has_been tacitly assumed that theN

- surface heat source does not affect the rod surface temperature but only-
* - corrects for the heat flux delivered to 'the coolant.

Next, by the judicious selection of S (R,t) [ note Equation (18)],'

E

we have shown that.4 (R,t) = $ (R,t) [ Equation (19)]. Finally, the
E N

initial temperature condition is satisfied since T (r,0) = T (r,0) -e N

:U(r,0)*.+'U(R,0) = T (r,0) + T (r,0) --T (r,0) - U(R,0) + U(R,0) =
N E N

-T (r,0).
E

Therefore, T (r,t) is the electric rod temperature function which
e

satisfies the electric rod heat conduction Equation (20a) subject to'the
two simultaneous nuclear boundary conditions (20b) and (20c). Therefore,
it is possible to power a Zaloudek type sheath heated rod, with a non-
negative surface heat source, and duplicate the surface response of a;

.

nuclear rod.

*

6.2 Theory of a LOBI Type Heater Rod;

The' LOBI (Loop Blowdown Investigations) test facility is located at
Ispra in northern Italy and is operated as a joint European research

_ program.5 The primary purpose of the facility is to provide experimental
data for the assessment of computer codes for blowdown type experiments.

In the LOBI facility, nuclear fuel rods are simulated by electrically
heated hollow type (stainless steel) tubes. Figure 3 compares the cross
sections of a nuclear fuel ro_d and a LOBI heater rod. To produce a chopped

cosine axial power profile, the LOBI rod is designed with five different
axial regions of varying tube thickness.

.

* Notice how U(r,0) was selected in Equation (15c).*

19
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Fig. 3. A cross section of a nuclear fuel rod and a LOBI heater" rod.
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Due to the' design and material differences between a nuclear and LOBI
.,

heater rod, the LOBI rod response will normally be different than the
;

.

nuclear rod unless the LOBI rod is powered in such a way as to compensate

for the lack of stored energy. However, as will be demonstrated, the
required. power function necessary to duplicate the response of a nuclear
rod is itself a; function of the nuclear surface boundary conditions, which
are usually not well known. Because of the rod design, the LOBI rod cannot

,

be successfully used to estimate the unknown response of a nuclear rod
during an unpr6dictable hydraulic event.~ This occurs because the LOBI rod
response is greatly affected by the rod input power function, and the
correct power function is itself a faction of the very same nuclear
boundary conditions that we are attempting to measure.

,

The following equation illustrates the functional relationship4

between the correct LOBI power function [q"'(t)] and the nuclear surface
~

T (R,t) and *N(R,t). Derivation of the formulaboundary conditions:
N.

is.obtained by a straight forward Taylor series approximation to the
. electric rod temperature function T(r,t) which solves the heat conduction

,

differential equation in the LOBI rod. The details of the solution are
presented in Reference 5.

For the LOBI heater-rod, the required power density function needed to

reproduce the nuclear rod surface conditions is:

~ 2R ~ aT (R,t).
N

| q'"( t ) = *N(R,t) + y
- R;2

2 at
-

| R
n

_ _

_
_ _ _

IR -R)R 3 $ (R,t)
g $ g ) N (22)+
3R -R H at

0 i
_ _ _ _

'

where

.
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the volumetric h' eat capacity of stainless steel=s- y

k/y the thermal diffusivity of stainless steel~

a =
,.

.

~

the outer radius of the rodR=R =
o

the inner radius of the rodR .=
4

time't' =

the nuclear rod surface temperatureT (R.t) =
N .

the nuclear: rod surface. heat flux4g( R,t) =

q"'( t) the v'olumetric heat generation rate=

,.

Equation (22) is reasonably valid if the wall thickness, which is the
heater element, is not very -large. As is evident from Equation (22),: the

,

required power functionig"'(t) is directly related to the time-dependent
~

' boundary functions T (R,t) and $ (R,t). All other terms in
N N

Equation (22) are constant.

-For the LOBI rod two major problems exist in simulating nuclear rod
behavior. First, it is important to accurately predict the nuclear rod
surface boundary conditions in order to calculate the correct electric rod
power function. And second, it is important to make sure that the nucir
and electric rod hydraulic conditions agree. That is, utilization of the
correct rod power function will not necessarily ensure that the electric
rod surface response will duplicate the nuclear rod surface response when
the hydraulic conditions are different. Both the correct rod power and the
same hydraulic conditions must exist before proper simulation of a nuclear

,

rod can occur.

..

22
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.7. SIMULATION CAPABILITIES' 0F. SOLID TYPE INTERNALLY- HEATED ELECTRIC RODS ~N -

.O.

.Unlike the. surface heated. rods already discussed, internally heated or.
;

*

indirect' heater rods generate power -in heater elements that are embedded-

inside the rod and separated from the rod cladding by an insulation
barrier.. F.igures 4, 5, and 6 show; examples of solid: type and cartridge
type | internally heated electric rods. A sol _id. type rod.is distinguished
from.a. cartridge type rod, and.a nuclear rod, by the' absence-of a gap or-

; gas annulus between the cladding and the inner heat source. . Consequently.
the c1 adding of a. solid type heater. rod cani.usually be considered as
directly coupled to the inner rod stored energy and heat. source via a

| -relatively' low thetmal resistance path provided by the thermal insulation.
fin contrast,:the cladding response of a cartridge type electric rod, or
nucle.r rod, is somewhat decoupled from the inner regions of the rod.
Co se ,acntly, for a nuclear rod, the behavior of the cladding and inner
m ,io.. of the rod can be widely different during rapid thermal transients

,.
' departure from nucleate. boiling (DNB) or r'od quench events..

~

s

' It is 'the intent of this section to investigate the simulation
capabilities of solid type heater rods to reproduce nuclear rod behavior.
To accomplish on n , it will be necessary to develop a mothod by which a
power _ing scheme can be derived that will force the electric rod to---

i~
; duplicate pre-determined nuclear rod surface boundary behavior.
!

L 7.1 Zero Power Response

o
i

' As discussed in Section 4 the general heat conduction differential
equation can be written in the following form:

- -0(T) s V a (k V T) - y h = -q'" (23)

.

In cylindrical geometry with azimuthal symmetry and no axial heat>

conduction, the above equation simplifies to:: .;

g

23-
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Fig. 4. A cross section of the Semiscale (solid type) heater rod.
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Fig. 5. A cross section of the FEBA (solid type) heater rod.
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Fig. 6. A cross section of the Rebeka (cartridge type) heater rod.
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D(T) E (r k BT/ar) - y = -q'"( r , t ) (24)
.

Again, the principal problem is to determine a function qE"'for the
: electric rod such that the electric rod surface temperature and surface
heat flux duplicates that of a nuclear rod. Before we attempt to solve
this. problem,'it would be informative to first look at the temperature
response of a heater rod subjected to the nuclear heat flux boundary

~

condition and zero transient heater rod power. This is considered the
" natural" or unforced response of the rod for a given surface boundary
condition. It is the unforced response of the rod which plays an important

part in determining the electric rod heat source tenn qE'" in the general
case.

Figures 7 and 8 illustrate the calculated inner surface cladding
temperature and ,he associated heat flux delivered to the cladding of a
nuclear rod dui i the LOFT-L2-3 test. These figures represent target

,.

curves for the electric rod. The immediate objective of the exercise is to-
see how the " natural" or zero power response of an electric rod compares

*
with the " natural". response of a nuclear rod, when -the nuclear heat flux
boundary condition is assumed for the electric rod at the inside cladding
radius of the rod. For this introductory problem it is advantageous to
select the electric rod heat flux boundary condition at the inside cladding
radius instead at the rod surface. Notice, however, that if the electric
rod has zircaloy cladding, and if we can match the nuclear rod heat flux
and temperature conditions at the inside cladding radius, then the surface

.~ ladding boundary conditions must also match for both rods.c

Before proceeding, it should be reiterated that the heat conduction
differential equation is non-linear in the variable T whenever k and y
are functions of T. To avoid material temperature feedback effects it will
be assumed here that k and y are constants. In this way we can study how

'' overall changes in rod thermal conductivity, with a fixed y, affect the

- .

27

t



-

m -

LO-14-81-074

;

.

G

.

I 1 i 7#
.

$ '

q 800 -

T.

?
2..
2
2
e

-

g 700 -

,.y
2
E
5

i ?_., ,

.5 800
-

-

s

,

' ' ' ' I
500

O 2.5 5.0 7.5 10.0 12.5 15.0

INEL A 17 605
Time (s) .

Fig.L7. A FRAP-T5 calculated inner cladding temperature (T (S,t)) forN

the hot axial node of a high powered nuclear rod (39.4 kW/m)
,

during the. LOFT L2-3 experiment. For this cace, the inside
radius (1.R.) of the cladding is S = 0.475 cm.
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Fig. 8. The calculated heat flux ($ (S,t)) delivered to the cladding ,

3
of the LOFT nuclear rod described in Fig. 7.
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temperature response of an electric rod undergoing nuclear heat flux
,,

cooling and zero transient rod power. Figure 9 s' hows a typical homogeneous
electric rod design that was considered for this calculation.

.

.

Uniform heat source

.

m ";; kp
Gr:7-

33'Ri M :-y .@NNS'q gg-' e Cladding

g'prT,k
'

0h" ' insulation
k,y

INEL.A 17 $$9

Fig. 9. An electric rod riodel of a solid type heater rod with*

no transient heat source and constant material properties.

During steady state the insulation pellet is assumed to..

be unifc.aly heated. S equals the inside cladding radius
of the rod where the nuclear heat flux boundary condition

is assumed, e.g. 4 (S,t) = 4 (S,t).
E N

.

. ijsing the HEATO conduction code,6 a series of calculations were made
fos *,he above electric rod assuming various insulator thermal conductivi-

3
ties. -ind a fixed volumetric specific heat (y = 3.7 J/cm -K). curther,

each calculation was made assuming the existence of a steady state

condition prior to t = 0, and an % side cladding heat flux equal to that
presented in Figure 8 for the LOFT L2-3 nuclear rod. The results of the'

caletlations are shown in Figure 10. Aside from an arbitrary vertical-

off-set, wnich'is made to simply separate the individual curves, Figure 10
shows the relative cooling behavior of a solid type heater rod for various

.

thermal conductivities under zero transient power.

30

L



.-

LO-14-81-074

.

b

o.

2400
i 1 I i i

k = 0.25
2200 -g ---- k = 0.05

-

( - - k = 0.025
u>
~

>

_$ 2000h [~'N
-8 \s,/ %s\s -

g . si
n ./ s.\

./ \. \
a..

y ./ \.\
g 1800 - _

s

_| \/ \. N ~ _ _ _ _ _ _ _ _. _ __ _m
-

g %.
*% ~.._../,

' ~.--c
-

1600 -
_

,

1

' ' ' ' '1400
0 2.5 5.0 7.5 10.0 12.5 15.0

Time (s) INEL-A 17 606

Fig. 10. An illustration of the relative cooling behavior of various
types of solid type heater rods of different insulator thermal

~

conductivities, and the same volumetric specific heat
3y = 3.7 J/cm -K . Calculations are based on the nuclear heat

flux boundary condition shown in Fig. 8. The, shape of the
lowest curve (k = 0.025 W/cm-K) approximates that of a nuclear-

-rod,

.
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Since k and y are assumed to be constants, therefore, independent
,

of temperature (T), the heat conduction operator D will also be independent

of the variable T. Therefore, no material temperature feedback exists.
*

Consequently, it is the general shape of the curves presented in Figure 10
that is important, not the absolute numerical value;.

From Figure 10 it is evident that as k is decreased from 0.25 W/cm-K
to 0.025 W/cm-K, the temperature response curve more closely approximates
the general shape of the LOFT nuclear rod temperature response. Further-
more, on close examination of Figure 10, it' is clear that the maximum
cooldown behavior of the solid type heater rods of high internal thermal
conductivity are not as large as that of the lowest curve (k = 0.025),
which most closely represents the nuclear rod case. Since only positive

internal rod power can be realistically produ:ed inside an electric rod, it
is apparent that the heatup rates evident in the curves of Figure 10 can be
easily increased by adding power to the rod; however, doing this can onlyo

aggreviate or decrease the electric rod cooldown rate later en. Therefore,
it appears that the electric rods can he forced to heatup at nearly any

,

prescribed rate; however, the cooldown rate is limited by the rod design
and the previous power history of the rod.

The preliminary data discussed here tends to indicate that the
cladding of a homogeneous solid type heater rod of high internal thennal
conductivity cannot cool down as quickly as a nuclear rod. This basic
conclusion will be supported by more detailed data that is presented later
on.

Two general facts that can be sumarized from the above discussion and
Figure 10 are:

1. Under zero transient rod power, the maximum cooldown rate is
'

achieved for the rod; and that this rate is influenced by the rod

thermal conductivity (k). The general rule is that as k
.
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increases, the maximum surface' cladding cooldown rate decreases.+

These conclusions are based on a' fixed surface heat flux boundary

condition. That is, by allowing the rod surface heat flux too

change, one~can also' influence the rod cooldown rate.

I2. Adding. power to an electric rod can help increase cladding h'eatup
rates, however, doing this will only decrease the optimal

| --

cooldown rate later on.
,

'

7.2_ Homogeneous Heater Rod Theory
,

'

We presently investigate how it is possible' to calculate'an electric
rod power for a homogeneous rod that will allow the rod to simulate the
surface behavior of a nuclear rod when the surface thermal-hydraulic
boundary conditions for boch rods are the same.' In order to do this we
need to use the "zero power response" concept introduced in the previous
section. To begin, let

'

F ,

the inside radius of the nuclear or electric rodS =

cladding

$ (S,t)_ the nuclear rod boundary heat flux (as a function of=
N

time) at r = S
,

, . -

*E(S,t) the electric rod boundary heat flux at r = S=

T (S,t) the nuclear rod inside cladding temperature=
N

4

T (S,t) the electric rod inside cladding temperature.=
E

Figure 7 illustrates a typical LOFT L2-3-(hot pin) ~ inner cladding.

~ temperature, and Figure 8 the corresponding nuclear heat flux. These
figures represent target curves for the electric rod. A method will be,,

described showing how a power function can be calculated for the Semiscale..

; hester rod so.that _the Semiscale, rod can match the b'oundary conditions of
,
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'

-the ' nuclear ' rod. Since' the Semiscale heater. rod ' involves several different
,.

regions of various dimensions, material properties, and a heater element
' that is embedded inside the rod,= it is not possible to immediately solve

| the problem for'this complicated rod design., Instead,'a more simple rod
! esign is first studied, and then the solution for this geometry is appliedd

to the more complex rod.-

| Figure- 11 shows a simple " homogenized" model of the Semiscale rod.
In the "ho'mogenized" model, the heated region. is uniformly distribut'ed

across the rod insulation (r < 5) and averaged values for kE and yg
are assumed for the entire insulation of the elcetric rod. We now proceed
to solve for the appropriate rod power' function of the simple homogeneous
rod model when the appropriate boundary conditions are specified at r = S;
and then apply'the= technique to the more complicated rod design.

.

=.

[ Uniform heat source*

T

. ''D^i~h
;h

CYRi '%|?'
.s

tid f 6Wp:3. gag Cladding
Jk: 'h

f Mixture of
" ggg$hJa baron nitride

- ' - and constantan
INEL A.17 615

Fig. 11. A ham.ogenized model-of the Semiscale heater

rod where the boundary conditions (Figures 7
and 8) are specified at the insulator surface'

r #-S.
e

g --
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First, define:e-

T(r,t) = T (S,t) + V(r,t) - V(S,t)' (25)
~

N

.

- where V(r,t) is that electric' rod temperature function which satisfies the'
. following problem:

(.-24(S,0)N t5 0 (steady state)- (26a)
l .S

D(V)=j. . . .

(26b)
( 0 t > 0 - (transient)

subject to the boundary condition:

-k
E S,t

'Here,-V(r,0) is uniquely determined by the steady state solution to
,

' Equation (26a) when V(S,0) is specified. . Notice that Equation (25) is.

very similar to Equation (14) for' the Zaloudek heater rod.

The V(r,t) function describes the " natural" electric rod temperature-
-response without material temperature feedback, subject to a nuclear heat
flux boundary condition and zero transient power. - Determination of V is-
very similar to the exercise performed in Section 7.1.

'Using the HEATO code it is quite easy to solve problem (26) and
determine the function V(r,t). It should be pointed out, however, that
due to a peculiarity in the HEATO code, negative temperatures are not
possible. Therefore it might be necessary to initialize the HEATO
calculation fron an arbitrarily high initial temperature distribution by
seiceting a high value for V(S,0). In' this way, negative or_near zero rod -

temperatures (V(r,t)] can be avoided. Since k and yE are constants,E
w
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y . no material? temperature feedback exists in the solution temperature
~

( -V(r,t). Therefore, the shape of the solution functi'.,n is independent 'of
, ,

~

the initialitemperature selection of V(S,0).- Furthermore, since it is the
:,

- shape of-the solution which is important and not the actual numerical
values of the solution, the above method adequately detennines an

'

appropriate V temperature function. That is, the function V(r,t) .is .

E ' determined to.within an arbitrary constant V(S,0).
-

New,'using| Equation (25) notice that:

4 - T(S,t) = T (S,t) (27a)
N

,

= h, which implies thatand'

4(5,t) = -k'E N
*

S,t 5,t

.

Therefore, Equations (25) and (26) specify 'a function T(r,t) that has
the same boundary temperature and brundary heat flux as the nucicar rod.

.Now, operating on both sides of. Equation (25) with the DE perator, and'

is linear, we find that during the transientusing the. fact that DE
'(t > 0):

t.

D = D [T .t)) + D [V(r,t)) - D [V(S,tB
E E N E E

a T (S,t) a V(S,t)g
+ 0 + yE at

.

=-YE at.

[T (S,t) - V(S,t)] (28)-= - yE N

,s
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"!Since;D (T)' = - 'qE , then the' transient power is::*
E

' ' "(t) = Y [T (S,t) - V(S,t)]- -(for t > 0 and boundary con- (29)
E N' ditions specified at r = S).

Equation (29)' describes the transient' uniform power density for the
'

homogeneous rod model when the rod boundary conditions are specified at

r = S. The steady state _ power density (for t 5 C5 is also easily
calculated and is:-

__

2 $ (S,0)-
N (30)q'E (O f = 3

The two.results, (29) and (30), define the entire time dependent rod
power density function (for the particular axial node under consideration):

.

/ 2 4 ($,0)
N t5 0 (steady state) (31a)

.- 5

Q '"( t ) = < -
E

[T (5,t) - V(S,t)] t > 0 (transient) (31b)
YE N

L
..

When _the rod boundary conditions are specified at r = R instead of r = S,

: then the appropriate power function can be determined by substituting R for
S in Equations (31a) and -(31b).

It is possibic to incorporate the steady state power solution as just
a special case of the transient, and thereby allow for a more general
formula where:(31b) actually represents the transient and steady state
powers, however, to do this one must allow for the uncomfortable result
that the time derivative of the function [T (S,t) - V(S,t)] is non-zerog

dur_ing 'the ~ steady state period. This result can occur if V(S,t) is allowed,-

,
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V
to be non-constant during steady state.*, Because one would normally6;- , 3

1ike all' time derivatives of functions 'to be zero during' steady state -

5 ' conditions, we have elected to represent qE (t) in terms of two parts, a
'"

-

.. .

- true steady state term and a transient term .thereby avoiding this problem.-

It should also'be pointed out that it is not really necessary
~

and.yE are constants in order to solve theto assume that k
E

.above problem. All that is really necessary is that kE and yE are-
independent temperature. For instance, had we assumed that kE and yE

E =.k (r,t) and yE " Y (r,t),were -functions of r and t, e.g., k
E E

"then the transient rod power density would have been:
,

,E(r,t)=Y(r,t)h[T(S,t)-V(S,t)] (32)
"'

q-
E N

Unless Y (r,t) is a separable function of its space and time
E,

variables, 'qE'" will generally depend upon 'both r and t and will not be a
separate function. If yE can be treated as only a function of r,'then

,

O "'( r , t ) = Y N(S,t) - V(S,t)] (33)
E E

'"

According .to Equation (33), qE (r,t) can be written as the product
of two factors: P(r) and Q(t) where

P(r) = yE(r) (34a)

Q(t) = h [T (S,t) V(S,t)] (34b)N

.

*: This is ~done by selecting zero as' the steady state power in (26a)
- .insteadiof 2.4g(S,0)/S.e.

,

'
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Here, P(r) represents the radial power profile function and Q(t) thee

time dependent power factor. Since all realistic electric rod designs

3 - position heater elements at discrete locati .ns inside the rod ~, only certain.

separable power functions are possible. In other words, arbitrary power
'" '

functions qE (r,t) are not. permissible since heat' can.be generated at
-

'"

only the heater rod element locations. Hence, if qE (r,t) = P(r) Q(t),
.

then P(r) is fixed by the design of the rod and Q(t) is the only free -
unassigned function we can define.

!

For the remaining analysis we shall. restrict our solutions to only
separable _ power functions. Please note that the uniform power solution
obtained in Equation (31) is a separable function si. ace yE is a
constant,' and the heater ele,ent region is assumed to be unifomly
distributed across the rod.

There is another important item that should be pointed out at this.e

time. Namely, what would have happened had we selected a non-zero but

uniform time dependent power function instead of the zero transient power.

that was selected in Equation (26b)? How would this have affected the
calculation of T(r,t) and D (T)? Since it can be shown that the func-

E

tions T and o''" = -D (T) are uniquely determined by the boundary and
~

E E

t,ittai conditions, then changing D (V) will n t affect the calculation
E

'"

of D (T). That is, qE (t) and T(r,t) are invariant to changes made inE

the uniform transient power selection that defines V. Therefore, we could
;

have selected some other function for D (V) and expected to obtain the
E

same result for T and D (T). The reason that D (V) = 0 was selected as
E E

the transient power is due to its simplicity; however, it sometimes occurs
that another more convenient transient power selection should be made. For
instance, for calculational _ purposes it might be best to select:

a T (S,t)
N'

D IVI " Y (t > 0) (35)
E E- at

.
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a/Ty(S,t); :3 T (5,t). 3y(3,t).
'

v Ns

. *TE .. at ~~ ~ " T . atE- := - yER 'ot - -E
,

. (- - e
.

a V( S",'t ) (36).
. ..YE at..

.

, m

-m .

,,

.

LThe function'V(r,t) derived from the differential Equation (35),A

O subjeit? tbf thejteady state | power condition |.(26a) and the nuclear heat
flux condition (26c) willJdiffer from the original V(r,t) function' deter-~

'nined from' system (26), however, evaluation of qE = -D (T) and T [fromE

Equation (36)] will result in the same functions'as before.

- To demonstrate how the method des ribed by Equations (26) and (79) are

applied,=a' simple example is considered. Recall Figure 10. This figure,-

; illustrated the' zero power or." natural" response of a homogeneous electri;
rod for various thermal conductivities, assuming a nuclear heat. flux~

I . boundary conditioa at r.'= 5. This is exactly what is called for in solving
,

' system (26) to determine V(5,t). Next,accordingtoformula(29)the
.

<

required' uniform power density necessary to duplicate the additional
~

't_.1perature' boun'dary condition T (5,t), is easily computed to be:
N;

. 3 [T (5,t) :- V(S,t)] .

(37)N
-

- n,

E..(t).=~yE at4.

.
_

where-

3.7 e cm h (forithese cases)=yue
.E.

T (5,M fis given in Figure 7
N

[ LV(S;t)lis"given in Figure ~lG
y.

...
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Doing the appropriate calculations, the required difference' functions*

e.
~

[T (Sat) --V(S,t)] are displayed in Figure 12.y
-

#

Inspection of the response functions displayed in Figures 12, and
formula (37) for:the desired power. density function shows that unrealistic
negative' rod powers occur,whenever the derivative of the response tempera-
ture [T (R,'t) .V(R,t)) is negative.- Inspection of Figure 12 shows that

N

- negative temperature slopes are prominent during part of the trans ent for-i

.two'of the three cases. The negative. rod powers occur becau:' of the
relatively high rod thermal conductivities, which allows the i stored.

energy to be quickly. transported to the rod surface. Only in one case
does the rod input power function remain essentially non-negative
throughout the transient, and this occurs .for a case for which the rod>

. thermal conductivity (kE = 0.025 W/cm-k) is similar to that of UO '2

It is quite clear from the observations made above that a homogeneous.

electric rod with 'a uniform power source might, require negative rod powers
to properly match rapid nuclear rod cooling boundary conditions when thej

electric rod material thermal conductivity differs greatly from that of a
nuclear rod.- This very same observation will be pointed out again as the

| behavior of more complicated electric rod models are studied.

7.3 Heterogeneous Heater Rod Theory

The purpose of this section is to develop a technique for extending
the results of the previous section to cover a more complicated electric
. rod design, e.g., the Semiscale heater rod. Figures 13 and 14 compare a
hemogeneous or uniformly ' distributed heat source (UDHS) model and a

he terogeneous'or standard model of the Semiscale heater rod.

4

k

#

41

,

E.- ^



;_
. -

.

T
LO-14-81-074- !

7.-

e

0 , , i g i

x -1000 - -

5 Y'
..

#
#,,.

k p *'\ , " " 'j-
/ |, s ,.. \,- ,\ v / *p' 7

g y
/ -z -1200 -

,/. . -

", / [/ .
/g

Negative temperature slope3
Indicates negative rod power8, (.- / -

-
.-

g -u00
,/ k = 0.025~

E - - - - k = 0.05.
,

8. f** - - k = 0.25
*

j, / Positive temperature slope
_

7 indicates positive rod power
Y = 3.7

.

I ' ' ' '
-1800

O 2.5 5.0 7.5 10.0 12.5 15.0

INEL A-17 613Time (s)

The response temperature (T (S,t) - V(S,t)) for the heaterFig. 12. 3

rod designs considered in Fig. 10. Any decrease in the
response temperature indicates that a negative electric rod
input power is required to match the specified nuclear rod
boundary conditions. Since the average thermal conductivity

' of the Semiscale rod insulation is' between 0.05 and 0.25, it-
,

appears that the input power to the Semiscale rod needed to
duplicate the LOFT nuclear rod boundary conditione should

,

also be negative between 6.5 and 7.0 seconds.
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Fig.~ 13. 'A uniformly distributed heat Fig. 14. A heterogeneous or discrete
'

source model of the Semiscale heater element model of the

[ heater rod. The material ' Semiscaia heater rod. The

properties of regions 1 thru material of regions 1 thru

4 are assumed to be temperature 4*are assumed to have

ir, dependent. standard Semiscale temperature*
,

dependent properties.

-

Using the technique developed.for a homogeneous rod with a uniform
power distribution,-it-is quite simple to calculate a rod power density
function P (t) for.the Model I rod that forces the rod to match two

7

-prescribed' surface boundary conditions. In order to solve the same problem -

for the: heterogeneous (Model .II) rod we make the initial estimate that the

he'terogeneous heater element power density function Py7(t) is propor-
.tional to P '(t), where the proportionality constant is A/A . Here, A rep-

7 h-

resents the cross sectional area of the rod (A = x Rf), and A represents~

h

= n (Rf - Rh].the cross sectional area of- the heater element region [Ah

- For-the Semiscale rod A/Ah = 3.56. Therefore,

a[T (R,t) - V(R,t)]'
N

: P;j(t)' ; 3.56 P (t)-= 3.56 ~yE7 at .(R = R )4
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;Here V(R,t)lis determined by solving the homogeneous heater rod problem,co-
E fe.g. system (26) for. Figure:13.;

. Equation (38) is based on a conservation of energy model; that
1.s, the' total linear energy delivered to the heterogeneous rod model

2
j )] should be approximately equal to the total linear[Pyg ,n (R2s -R

energy delivered *a the-UDHS model (P_y n R b. However, since energy'

4

deposited in the heater. element of the Model II rod does not instan-
taneously affect;the surface boundary conditions of the rod, Equation (38)
should be modified to|take into account this time delay. l.et t represent
the effective response time of the Semiscale rod, then a better estimate

for P is:yg

~

' (39)Py g(t) = 3.56- P (t + T)g

-

D Although t is itself temperature dependent, to a good approximation .''

it'can be assumed to be constant. Without going into details. estimates
have already' been made~ for the effective response time of the Semiscale'*

'

- heater rod and these calculations indicate that t is approximately
0.2 seconds'. Consequently, it takes _about 0.2 seconds for a change in

heater rod power to manifest itself c: a significant change :in the rod
surface temperature or heat flux. Therefore, for_ the Semiscale rod:

P;;(t) = 3.56 Py (t + 0.02) (40)

J Equation (40) should_in theory-be a reasonably accurate estimate of
;the correct rod power function, however, because the UDHS model is not a
highly. accurate description of the Semiscale rod, the power function

Py g(t) might need modification. Generally, Pgg(t) is treated as the-

i-

*:
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'second ~ estimate [Q " E II(t)].of the correct rod power function.*o
2

, ; Subsequent rod power estimates are based on the previous power estimates

; - using the algorithm developed below.

:. edification'of Q2 =LPjg(t) is made as follows. Using a' standard
~

.HEATO (Model .II) description of the Semiscale rod (see Appendix B)

calculate the; surface rod temperature based o'n (a) the heater. rod power
density Q (t), and (b) the orginal surface heat flux boundary condition.

2

The resulting temperature. (TE2) is then used to correct the power density
function as follows: First co~pute the' difference'(V) between the desired

.[T (R,t)]-~and the calculated surface-cladding' temperatures [TE2(R,t)].N

V(R,t) = T (R,t) - TE2( R,t )N

Then use the V(R,t) function to ettimate the change in rod power

[' needed to produce this. observed difference. An estinate of this power is:

d ,t) (4))A P (t) = Y I ) =C
2 E t t

For the Semiscale rod C = YE - ( A/A ) = (3.7)(0.897/0.252) = fh
' 1:' 17. Next, shif t the o P (t) power function by i = 0.2 seconds to

2
compensate for the finite rod response time, and then add this result to
the initial power estimate Q to obtain:p

.Q (t) = Q (t). + A-P (t + T) (42) '

3 2 p .

%..

- *D The first estimate is Q (t) 0 for .t > 0.n
1

.. 1
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Now, the' heater rod power density. function Q (t) should represent a
3

better estimate o# the desired rod power function than Q (t), but this
2

also might not be good enough. Therefore, repeat the process starting with-

0 (t) as the original power estimate and recompute a new temperature
3

~ difference T (R,t) - TE3(R,t) and a corresponding power A P (t+t)N 3

and finallyf a new power density function Q (t). Repeat the process as4

'many times as is necessary until the difference between the desired and
calculated surface cladding temperatures is as small as desired, or after a.
reasonable number of-iterations have been made.

Experience has.shown that the above process should converge rapidly

and that a good power estinate can be made by the third or fourth
iteration. Figure 15 presents a flowchart illustrating the entire
algorithm.

7.3.1 Determination of the local Semiscale Rod Power Needed to Reproduce*

the LOFT L2-3 Huclear Rod Response

..

Figures 16 and 17 show the measured surface cladding temperature and
the calculated surface cladding hesi flux of a nuclear rod during the LOFT
L2-3 test. These figures represent " target" curves for the Semiscale
heater rod and the problem at hand is to detennine a local rod power for
the Seniscale heater rod that will reproduce this surface rod behavior.

Using the technique explained above, a calculation is made for the
zero power response of the Semiscale.(Model I) rod using the nuclear heat
flux as the surface boundary condition at r = R = R . The calculated4
surface cladding response is shown in Figure 18a where it is overlayed with
the nuclear ~ surface cladding temperature. The corresponding electric rod
power function is shown in Figure 18b. Notice that the " natural" response
of the Semiscale rod is greatly different than the nuclear rod. Conse-.

quently it'is' necessary to find a power function for the Semiscale rod
that will force the rod to duplicate the nuclear rod response.

,_
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'
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a

II-
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'
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-
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Fig.15. An algorithm for estimating the electric rod power needed to
' duplicate two prescribed surface boundary conditions. For the

Semiscale' heater rod.C = 13.17 J/cm3-K and i = 0.2 seconds.
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Using the algorithm, the results of successive or iterative calcula-')..

tions have been made and are shown in Figures 19 thru 20. Figure 20a shows~ '

that a good approximation is made on the third calculation and the result-
,

ing power function .is displayed in Figure 20b. Notice that to match the
LOFT nuclear rod boundary conditions, the Semiscale rod must. receive

negative power over two time periods during the length of the transient.
Both. negative power requirements occur when the Semiscale rod is forced to
cool down like the nuclear rod.* Because of the negative power, it is not :

realistically possible for the Semiscale heater rod to duplicate the
postulated nuclear rod surface boundary conditions as presented in
. Figures 16 and 174 We shall continue to examine th'c cooldown behavior of
the Semiscale heater rod and a nuclear rod in the next section.

.

7.4 Comparison of RELAP Calculated and LTSF Measured Data

A series of rapid flooding tests were perfomed at the LOFT Test.

Support Facility (LTSF) on a Semiscale heater rod. The principal objective

of the tests was to investigate the cooldown and quenching characteristics
..

of an electric heater rod with and without LOFT type surface cladding
thermocouples. The hydraulic conditions for the LTSF tests were selected
to approximate th'e rapid ~ cooling transient that was observed during the

7LOFT L2-3 LOCE. A review of the. test data clearly shows that the
. exterior cladding thermocouple does quench sooner and much more rapidly
than the surface temperature of an uninstrumented rod. However, it is not
clear how these results can be applied to a nuclear rod since the Power

.

0Burst Facility (PBF) TC-3 tests have indicated that a nuclear rod is
capable of cooling down rapidly, much more rapidly than is expected for the

Semisc61e heater rod based on the LTSF data.

, .

It has'not yet been absolutely confimed that the assumed nuclear rod*
. . -

surface temperature quench actually occurred, nr was simply a themocouple'

.-measurement phenomenon. However, several recent nuclear rod tests tend to
indicate tnat the LOFT cladding quench did occur and that it was not

; greatly influenced by the surface cladding'themocouples.*

.
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Fig. 19b.' The Semiscale local rod power density function as detemined
from the data presented in Fig.184 and used to proouce the
electric rod response shown in Fig.19a.

I 52

- _ _



m- - - - - _ _ - - - - -

__,

p2 ,

LO-14-81-074f' '

3

4

- 900 , , , , ,
,

- 1.

' * - -- Nuclearrod i
-

>

E!ectric rod !-

1| ~
_

' 7 800 -

\* 4

> :..
-

i. / 1

IL / I
!! -l I'

h IC0 ] .\ /-~

'] I I
u -| [
Q' i

0 -

600 - g

-a

500 ' ' ' ' ' '

-2.5 - 0 2.5 5.0 - 7.5 10.0 12.5 15.0-
'"E'*1T #3Time (s)

Fig. 20a. An overlay of the LOFT nuclear rod surface cladding temperature.
'and the corresponding Semiscale temperature response assuming-

the local electric rod power density function' defined in Fig. 20b.'

and the nuclear heat flux boundary cordition described in Fig.17.

(Calculation /3)
e,

1.0 -

, , , , , ,

|

0.5 -' _

g.<

$
2
,

-

$ -

_ ^
' -

-k 0 -

.

5
~s

3'

$a,
- .

-

-0.5

.

. ,o : t 't >t t t t
-r ,5 0 2.5 S.O ?.5 10.0 12.5 15.0

Time (s) . tN et w ir eat
. . . .

Fig. 2Cb. The Semiscale local red power density (Lnction as determined

-
front the cata presented in Fig.19a, anci used to produce the;'

. electric rod responu shown in Fig. 20a.

-53.'

_-



<wa t

[b
( '

.

{ LO-14-81-074

F .
.

.
..

.

6 To better ur,derstand the reasons for the difference in responses of
the electric and nuclear rods during rapid flooding events, a series of
RELAP4/M006 calculations were undertaken. These computer code calculations

centered on evaluating the response of a Semiscale heater rod and a nuclear
rod under typical LTSF test conditions. The principal results of this work

-

' are shown in Fiqure 21.
,

In Figure 21, a best estimate RELAP4/M006 electric rod temperature,

response is compared with the measured LTSF electric ' rod data. The
difference between the calculated and measured electric rod data is thought
to be attributable to inaccurate modeling of the transition hotling regime

by the code.

Figure 21 also illustrates the results of substituting a nuclear rod
for the Seniscale. electric rod and performing the sane RELAP calculation.
Clearly, the nuclear rod cladding is cooling down to the saturation.

temperature more rapidly than the electric rod. This discrepancy in
rod behavior cannot he accounted for by oaking realistic changes in the

, o

electric rod input power. In fact, Figure 22 shows the required electric
rod power necessary to simultaneously duplicate the nuclear rod surface
temperature and surface heat flux as shown in Figures 21 and 23, respec-
tively. Notice the large negative powers needed to force the electric rod
to duplicate the nuclear rod response. Finally, Figure 24 shows an overlay
of the nuclear and electric rod surfaces cledding temperatures where the
Semiscale heater rod power function is defined in Figure 22.

The presence of unrealistic negative powers in the ideal electric rod
powering function, which duplicates the nuclear rod . boundary conditions,
indicates that the observed differences in the electric and nuclear rod
responses are the result of inherent limitaticns in the Semiscale rod
design. Supporting analysis has shown that the primary items responsible

-.

for the problen are the thernal conductivity or thermal diffusivity of the
' insulator (BH vs. U0 ), and the absence of a themal gas gap in the

7
"

electric rod.

i
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Because of the low thermal conductivity of UO , the presence ofpo-

cracks in.the fuel, and the existence of a gap between the fuel and the
' cladding, the cladding of a nuclear rod is thermally decoupled from the

s

stored energy and heat generation within-the 007 pellet during rapid 1

cooling transients. This is partly illustrated in Figure 25 by comparing
- the steady state nuclear and. electric rod radial temperature profiles at -
rod powers of 39.4 kW/m (12 kW/ft). Here, the electric rod cladding is
directly coupled to the inner heat source via the relatively low' thermal
resistance path provided by the BN insulation. This is evident in
Figure 25 by noting the low temperature gradients that can be supported
across the electric rod in contrast to the nuclear rod.- Consequently, in~

order for the electric rod to cool down and quench, a much more uniform

change:and subsequently a larger fraction of the' initial electric rod
stored energy must be transported to the coolant than is necessary for the
nucicar rod. This leads to the observed longer cooldown period for the
e;cetric rod relative to the nuclear rod, and therefore the inherento-

' onservatism of the electric rod data with regard to estimating nuclear rodc

3 hehavior during rapid cooling transients.

,
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8.- CONCLUSIONS
.

Pre'sent experimental and theoretical data indicates-that there' exist
,

rapid cooling transients for which the cooldown characteristics of a
-nuclear rod cannot be simulated with a Semiscale type heater rod. under any

sort of positive'. rod input powering scheme.* In other words, for certain
rapid cooling events it appears that the'Semiscale heater rod cannot' cool

:down as quickly as a nuclear rod when both rods experience the same surface
heat flux houndary condition, or the same heat transfer coefficient. fThis
observation does not preclude the possibility that the Seniscale heater rod
cannot experience a rapid cooldown event;** however, to do so the heat
transfer coefficient (or surface heat flux) wouid have to be initially
larger for the electric rod than is necessary for the nuclear rod.

' The electric / nuclear rod simulation problem occurs during rapid

cooling events because the nuclear rod cladding and the fuel heat source-,

are partly decoupled via the existance of a clad-pellet gas gap and the low
thernal conductivity.of UO . This allows the nuclear rod cladding to

2,

cool down and quench as soon as the stored energy in the cladding is
-removed. For the solid type electric rod, however, the cladding and the
internal heat source are directly coupled via a high thermal conductivity
path provided by the thermal insulation and the non-existence of a gas
gap. Consequently, a larger amount of rod energy must be removed from the
electric rod before it can rewet. This phenomenon occurs even though the

initial stored energy in the electric rod is less than the total stored
energy in the nuclear rod.

-~

Assuming that both rods experience the same initial surface boundary-*

conditions. and the same transient hydraulic event.
,

Note the Semiscale test data, Reference 9.**

.
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If significant themal-hydraulic feedback exists between the surface
heat transfer of a rod and its surrounding coolant, then the response of an
electric rod may or may not he-applicable to a nuclear rod under similar
conditions. In fact, the ability of predicting key nuclear rod thermal-
hydraulic nhenomersa from electric rod data is jeopardized whenever the
response of the electric rod is sensitive to the rod input power function,
which is in theory dependent upon unknown or uncertain nuclear rod boundary
conditions. Resulting in a classical " bootstrap problem."

Even when the " ideal" electric rod power function is known, it might

not be realistically possible to produce, e.g., negative rod powers. In

any case, there are an infinite number of ways of powering an electric
rod and they are all essentially incorrect except for at most one power
function, which not only depends upon the same nuclear rod boundary
conditions that are being estimated via the electric rod test, but may in
fact turn out to he physically impossible to generate in the first place.*

Consequently, compromises are made in the electric red input power function
that make it difficult to interpret and understand the test results with

,

regard to other electric rod test data and subsequent nuclear rod tests.
These problems help to illustrate why it is so difficult, if not sometimes
impossible, to simulate nuclear rod behavior with an electric rod; and
further, to understand the implications of this data.

11y comparing the theory of solid type internally heated rods and
surface heated (direct) electric rods it is easy to belicVe that from a
theoretical stand point the Zaloudek type heater rod might be superior to
the solid type internally heated electric rods in simulation capability.
At least it can be mathematically demonstrated that the 7aloudek heater

rod can be realistically powered in-such a way as to reproduce nuclear

rod behavior. In comparison, solid type (indirect) heater rods of high
internal thermal diffusivity cannot accomplish this criteria in all cases.

,

Nevertheless, there do appear to be some engineering problems with the

Zaloudek type rod that detract from its theoretical advritage over the
,

62



, ,
. . _ _ . - - _ _ _ . - - - - - _ _ __ _

#
< t

'
.

r-,, , , ,

y ,

y .

7 .-;T w 4,

- , . LO-14-81-074 '
'

,

,
_

- ~ . . ~ ,

~ '

- solid type' rods ~. ;In_ particu5ar, the three criteria ' assumed for the
'

x0 _

;Zaloudek rodicannot he exactly. satisfied for a real rod.1 Al so, : theory ~ '

-

,

'
~

,

" ' indicates :that. sone of: the problems associated with the solid type heater?
~

-

;,-

! rods can be allevia' ted by designing the Lrods with' thermal insulction

7
Finally,.jW '

' materia 1 that~more closely' approximates the properties of|UO *2-

I" . one| particular' tipe 'of rod designithat was .not. studied in the.--report, .but -
~

appears to hold muchL promise in simulating a nuclear rod, is the cartridge: ,

. itypeLheeter rod. ;Ths cartridge type rod ;is designed with-a gas. gap betweeni
~

-

the ' cladding and the' internal- heat ' source, making it possible for. the rod-
'

:to better simdlateitheinuclear heat delivery rate to the cladding.
~

1
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APPENDIX A

AN ANALYTICAL SOLUTION OF THE

LINEAR HEAT CONOUCTION DIFFERENTIAL EQUATION

SUBJECT TO TWO SIMULTANEOUS SURFACE B0UNDARY CONDITIONS
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'

UNEAR HEAT [C NDUCTION" DIFFERENTIAL EQUATION:-

_

. 15UBJECTLT'OLTWO SIMULTANEOUS SURFACE B0UNDARY CONDITIONS
<

,

>

.- i.

<

LAS we have already seen it is numerically-possible, utilizing the -

.

< _

THEAT0 ' conduction code. in an interactive: procedure,ito-evaluate a- rod power
'' - function that will approximate the: solution _ of the heat conduction

.diffe~ ential equation' subject to two: simultaneous surface. boundaryW - r

conditions, as: initialized from a_ steady state. temperature distribution.
-It;is the.xintent_ of this appendix to illustrate how an analytical solution' ~ '

ican-be ' derived for annular and cylindrical geometries ~.

* - ~We shall assume.that for each region under consideration, the thermal'
'

'

conductivity:.(k) and the volumetric ~ specific heat (y = pC ) are con :'

p

-y stants.' It. is noted, however, that this assumption is not particularly -
: critical in the-following; analysis but it does facilitate solution of the . ,

prebl em.*
.

(Case. 1 )
,

:We begin by writing the one-dimensional heat conduction differential.
equation in. cylindrical coordinates:

.

2

2 } r at: l'aT
,.-q"' . g g) )

'

T 1 aT'.
< -a

a at- k;97 _

- .

.-

a

~'~
i

'*
. . .. .

~

Although k and y could _be nore generally treated as functions of the,

..- Lspace variable r', it is still:important that k'and y are not functions of ,

, ,
-

Ltemperaturedin ' order to preserve linearity of the| heat conduction equation.-

=- -

-
-

,

'

'

.
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where,

T(r,t) is the rod space time temperature function'T =
#

k/y is the rod material' thermal diffusivityi -
cx .

~

=

the rod thermal conductivityk =

.p C = the rod volumetric _ specific heat=y p

q"' the volumetric heat source.=
.

-The boundary conditions for (A1) are usually the rod surface
temperature and surface heat flux. However. for the following analysis we
shall assume that the rod surface temperature [T = T(R,t)] and the rodR

surface temperature gradient*

T'=Ea
R ar R,t

_

- are. specified.' In any case, knowledge of the rod surface temperature
gradient and rod surface thermal conductivity implies knowledge of the
rod surf ace heat flux (4 = 4(R,t) = -kT '). Also, the rod surface

R R

heat transfer coefficient [h = *R (T -T)) can be determined if/ R

the bulk coolant temperature (T ,) is known.
_

We now solve Equation ( Al) for f = T(r,t) when TR = T(R,t) and

T'=E
R ar R,t

..

-. o
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m

Lare specified functions of time t at surface r = R, and q'" = 0 between
f r: =;R and r = LS where R ~> S > 0 as shown in Figure A1. We first assume" J

g = T (t) and T ' = T '(t) can be representedtha; 'he functions T
R g R

by-polynomials of finite degree < m (where.m is some non-negative*
_

integer) for the entire length of the transient. For instance,

?T a T (t) = a =+ a t'+ a t + . . . + a, t 1A2-a)
R R. 0 j 2

2 + ... + b ,-t" (A2-b)T ' = T '( t) '= b0+bj 2
t+b t

R p

where some or all of the coefficients a and b may be zero.
9 4

insulator material with
#.. m:n q .., = 0 and constant

material properties k and y.

MIME p, TT R

jih h

p$$bANhr S msm
An???k;k$R.. Ts,ToS

mydb A?!
,

M

k@ .A}Y
'w- INEL A 17 560

Fig. A1. An annular region of outer radius R and inner
radius S, 'and no heat generation. Functions

T (t) and Tg(t) are specified at r a R andR

material properties k and y are assumed to be
constant. Based on these assumptions. T(r,t)

.

and T'(r,t) are calculated at r = S.

; ~
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e s - < ,

*
, ,

+.' -

.-

n .

5'n
p ,These equations are : assumed to be valid :for at least the transient-c:< ..

ip .
+

kN0lwhere t!UO represents.theltime at which the' rod is in a thermal 's;-

"y , ^, > steady | state condition.fThe reason (for the above assumptions.for T ;and. L
-. . .

E
_

-

R
-

,

!:T ''"ill he explained [ shortly, however, it|might first be observed thati
~

fj,v [r
R ,

1N+ ithesetasst.mptions;are .not unreasonable :since'T ::and T ':can always'be-'

. R R
"

y ' approximated ~ to within?any. degree of accuracy by polynomials. Further,
..

.. ..-- _
.

,

jsuch approximations''are.best suited for estimating the time derivatives of
, . '

JT ' are[ defined by' numerical data. .'

uTRandiT whenLhoth T
.

_
R. 8"d :R -R

,

,% b ?,.

.- ,.
~

-
. .

3' - If T , and;T 'f are represented by polynomials of degree < m', then
'r ; 3 .-

q R
~

and!al'15higherJorder time derivatives.of TR- ;

_

if t follods thatL the 'm' + 1st
- .

Jand T '.; are;zero. :That is,
R- .

1

,

jn+1 1 T .-^
_

-
_ ;

R~=LOL._
.

'

;Bjt"
~

where in >-m:' (A3-a)
'

~'
: ; -_

~ -

In+1 : T' --d --
-

+

R ~= 0 where n'> m (A3-b)'.

,a t"*I ' '~

9

Now wef assume that the solution 'of.-Equation (A1) takes the following-,

. series: form: :

'
- - .-

,

0(r) TR+***T =.:T(r,t) =)T .+ A(r) T ' + B(r) TR + C(r):TRR R
,

J

where ttie boundary conditions for'T and T ' require that
R R

'

A A(R)f=-B.(R).=C(R)[=D(R)=...=0 (A5)'

.

L . 4 a
>+

'

% J A ' ( R ) ' =.' _1 : (A6): _ ,
'

.

,

~;r. _
_ _

(A7)|B'(R) = C'(R)1=LD'(R) 5:... = 0/
,

'

t-
. -

,.b- . i:. i*-

'& . ',, ,

, ,f- .-,N'' I d

j *p p < [ .g ,x ,

'

, ' - - -

.s' 7,, , ,

= - -t:
., , ..

,
,

,
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. .

. ia T ''~ 2a T2
, .

;fa T~

. .-< pg

{ 7 g= gt ,7p at at ar , etc. (A8)
-

T i * -

iaL N Noticelthat because;of con'ditions (A5), ( A6), and (A7),
y x.

~ T('R',t)$=LT It) -

[R.
,

,

y>L ~ The specifled boundary conditions
: T'(R,'t)~ = T '(t)!

'

g<

>

' LTtie form of Equation (A4) can be deduced by writing T(r,t) in a
~

^

Taylor' series expanded about the point- r = R' and then using Equation .(A1)--

' to evaluate the spatial derivates of T(r,t) at r - R. Doing this and: -

of. , .,

R , T ,LT ',.etc., will
~

collecting together;the coefficient. term.s'of T R R

lead to Equation (A4).. In any case, it is not inoortant- how Equation'(A4)
41s deduced but. rather that functions A(r), B(r), C(r), etc., can he deter-
mined so that (A4) Tis the desired solution of (A1) satisfying the two

_

I surface boundary conditions.
.

', We-further point out that at t. = 0, considered the time at which the*-

-initial-. temperature distribution is specified, e.g. , T(r,0), Equation (A4)
uniquely detemines T(r,0) once T and T ' are .specified and A(r),

R R

.B(r), C(r) etc. are computed. Therefore, according to Equation (A4) we
.

a.'e not. free to arbitrarily'. select the. initial temperature cistribution-

T ( r ,0 ) . This should not cause any problems since the temperature.distri-
bution resulting from (A4) during steady state conditions is the correct
distribution that would naturally result. Therefore, we shall assume that
the transient calculation (t > 0) is initialized from a steady state

[ condition' existing for t < 0. We will not consider the problem for which-
_

the transient calculation:is initialized by some prior transient or some
other atypical int .f'al temperature distribution.

, -

i
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.

-

&
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I;d- : Getting'.back toLthe. original: problem we must determine: functions ' A(r),
.

.

3Eir),2C(r) letc.,-so that Equation (A4)Lsatisfies the heat. conduction:
.

~

,

[' . - ~ .Equatiori (Al) with q"'-L= 0. |We have already:noted that T(r,t) ~ defined by*

~

~

( A4) satisfies the surface' boun'dary conditions T (t) and T '(t)..p . R
.

~

Usibg (A4).we.. determine that:
~

,

- L

T":= A"(r) T ' + B"(b) TR + ' (r) TR +;0"(r) TR+***'

R. >
.

e ,

.
.

. . .

*

T' ,f A'(r) 'T , B'(r) {R
C'(r) * . D'(r)-{R , ,,

r r R r. r R-- r
_

-

-..

.

_lj.,,fA(r).j.,B(r) j* .-T , .

,,,

. o .- a. R a -R a R

- e:

~In order that T" + T'/r - T/a = 0.for all values of r snd t, we must
'

-have th'at:~

'

'A"'+ A''-=0- (A9-a)
--

-

r

B".+ b =~1- (A9-b)
r a

' A (A9-c).C"'+ =

.

,

.
-

;=

<

..:
,

Solving the above equations subject.to the boundary conditions defined
:by Equatiors ( A5),-( A6).: and ( A7) we find that:. .-

1

!
.

:

'
ii { i
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( A10-a)
A(r) ='R in'(r/R)

=R ,R in (r/R) ( A10-b )- B(s) = r Za- .w

..

2 3

C(r) = R r [1n (r/R).- 1] + h [1n (r/R) + 1]
( A10-c)

_ q,

.

.

.

and T 'Since the (m+1)st and higher order time derivates of TR R

are. assuned to be zero,* then there are at most a finite number of non-zero
tems in the ( A4) series representation of T(r,t), and therefore the series

Also, it can be shown that under the conditions considered forconverges.
~this problem the solution is unique. Therefore, Equation ( A4) represents
the solution of the heat conduction differential equation satisfying the*

two surface boundary conditions. It is not necessary to require that TR
.

and T be represented by polynomials in order to establish convergence
R

-

of the series ( A4), but it is more difff "'t to establish simple criteria

that will guarantee such convergence for a more general, case.

Using Equation ( A4), estimates can be made fo'r the temperature and
= T(S,t) and

temperature gradient at r = S; namely, T3,

T ' = aT '

S S,t

.

3

Since Tp and Tg' are approximated by polynomials.*

t
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g
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h ' Now we - insider a un'i formly hea'ted solid cylinder ref. radius r = S with .

surface'boundhry. condit, ions T3 and'T b[, 3-.;

r
|-;

F. (f 12)1

and T ' areAssuming that the" surface boundary conditions T3 3

eit'1er specified'or calculated'via an application of (Case 1), we now
determine a function q*(t) which represents a uniform power source term and
a function T(r,t) which ~ satisfies Equation (A1) and agreet, with the surfac.e' I-

boundary conditions and produces a finite temperature or zero temperature
gradient at .r = 0, note Figure A2 -

~

Uniform heat source~..

@d q"'(t) with constant
material properties s

*: and y.

uxn.cfifS'
Y h' \?t

@bh%RgML
15 % ,% g M 9 5%=R|gp$

3 ~~

MW
"Y{[[hhh?

~ "

~?% *[[ INEL.A 17 561
M4 "* (t)

Fig. A2. A solid cylin' dr' ical rod of radius r = S and
uniform powe: source q'"(t) with constant

.

material -properties k and v. Surface-boundary

conditions T andTjareassumedtobespecified.3

e

e
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W,<' E f Aga_in'we';' assume that ;T(r,t) takesjon the;following ~ series: form:..
7

-,

3
'

_

; %. - - . - -
-

.;z .
r

-
,

-

--

,

a- ~,
,

-
_

N l;..,,s ,1 _. .. . . _f . . - * . , . . . . . . .

m ' _.;-;w 9-. . 6T(r.t) = 'Tg A(r)S...T ' + B(r) J3 +M)1J3% D(r) 3 + ...
~ ( All (

-- .

n
. . .3

- 2
,

. 3
. -

, -- - :o x - .
,

-

: t ~ . .
_. . .. . .

,, .

. . .
,

:

, where L he; functions A(r),= B(r), C(r)Jetc., must' be' determined. Je begin;, *n . . , ..

y .

~

4? ' . ib); writing ,the following equstions:: ,

m .

' ; Y ..

#

s - 6 a
g .

r' < 1 w.w
,- .m , -7 . _ . . . _ _. ,-

_

3 + ... ~
,,

'

3 +.C"(r) T ''+ D"(r) T
- ,T":=J A"(r);T '1+| B"(r) -T

3
.

3
,a -

e m -

, ,

: -

,

*
, . . .

*
_

*
_

**
.

-
- |T':- = A ' ( r ) T - ,- J+ B ' ( r) T - + C ' ( r ) T , + D '- ( r ) T - + c.' . .

'
-

r- r; -S . 1 r, S r- .S r. -

: ;-

,
o

$'* :,_

_~ T- 1:' TA(r) T . B(r) T
' * **

+ ...
7. . '

-

. = - a .. . S . a- S. a - a
-

.Q
q --

<-
,y

' - . . ..
- .. .

| c, T 'y=:.a,T'3 b, T3 3 ' d, T3 + ...+ + +
x

.i

Hefe:we have assumed a series expansion for.q"'(t)/k where a , b ,~

g g. .

!-
''

e , etc. , -areias yet undetermined constants. In order that T" + T'/r_ -
g

~
~ T/a = -q'"/k. for_-all values of r and t, we must ha.ve.that _

S.
-,

'

A"(r) + A'(r) = a (A12ta)
r. .. o

- B ".( s) !+ '(#}=1+b (A12.b)-

r a ;o
. _

C"(r) + C'(r) ~ A(r) + c (Al2-c)m
=.s: -r- .- o.Qt z.
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i.Theinew boundary;coriditions arei-
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((A13-a)'
'

u +

p'?e ' 4 ' ' ?A(S)i= B(S)i =LC(S) '= . ..i= 0 ?
~ i'~ .: . . .

,

. ,

.L'

te . 2 m

'

|(A13-b)-
-

;A'('S) = in _

.
,

' ;
.. . ..

> '- -

*i L B.' ( S)-J=1 C ' (S)! = f.g =*0 ? ( A13-c) -

>, 3 ,

-

~ ' 2
[. TA';(0)?=B'(0)'=fC'(0)T= ... = O (A13 d)''

',' - ' Notice that condition ('A13-d) is introduced so that the temperatures
. .

gradient'of T(r,t) .is :zero;at r. WO.- The solutions of' the equations in -~

(A12) subject [to the boundary conditions in (A13) are:
.

'
i'

. .

w

..

. --2o -2
_

'

'

r iA(r) =I' 7 :andag=j (A14-a) .j 25

.' I B('r)| = 0 ' and - b ~1 (A14-b)=
o- <a'

4
.

!C(rli= 32 S [r -2 Sbr 2,3] and.c,=h ( A14-c )

D(r) = 0 'and .d, = 0- (A14-d)
,

,

4 2 62 4 + 12S - r - SS ]1 -6:
E(r) =- [2r , ' 95 r.

22304 a 3...

m- -

Y

3
-S

.and e = ( A14-e) ." ' '

2O _ 96 a,

, . ,

.:O '.
"

-F(r) -=~ 0 . and f' - = 0 ' (A14-f).- '
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~ I' 2 * 4
.6 G (r);'a- [r .18S [r +|24 Sir - 28S r + 115 ] '-

;

J 73728 a? :S
.. . ~

-

,a e

and g :=|1 36 - ^" '9 'g ,

.. a
,

'- H ( r) _ = 0 . - a nd - h, = : 0 - ( A14-h)
'

,

.

-

.

.
-

:The fun-tions A('r), .B(r), C(r), etc., uniquely determine the
function T(r,t) which satisfies the given boundary conditions and.
the heat'. conduction. equation. : Also, the numbers a , b,, c ,..etc.,

~

n o.
- determine' the uniform power source term -q"'/k. Solving for q"! we write:

.3... -

.

96 a y h ' + ...q'- T'+yhg-hh'.+'Su - -2 k .A15)-(g 3

Hotice the term'~:

-
.

yh..g
S,t-

*-

-in Equation (A15).

.

This term also appears' as a tenn in Equation:(29) for the hybrid
- calculation.
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(''- L Sin,ce(theisurf ace heat 1 flux 4 (t) = 4(5,t): = -kT[.. then.q'"
-

3
cio alsoI e' written .is the following form:b-

_

.,

:- Q ,
e-

3+h396a + . . . - (A16)c q'"( t )l =.f ${+. T
2

,

-

,

;

Equation ,( A16) is' very 'similar_ to the formula presented in'-:
~

3EquationL(22);for the' LOBI rod when R'j = 0 and!R = S.: The solutions
-

g

forcT(r,t) and-q'"(t) are unique in that any twoipair of solutions T ,j
g '" and T ' 4 ""which. satisfy the same heat conduction differentialj 2 2
equation,ithe same two surf ace boundary conditions, Land the same initial

-

and g '" =-temperature condition, necessarily: implies that T).= T2 j
q "!. Therefore, 'the solution for q"', as shown in Equation (A16), proves

p
that the ti.me dependent rod power function necessary-to duplicate the

specified Lsurface temperature and surface heat flux conditions is itself a
functior. of .these. boundary conditions. Consequently. to properly power anC o,:

electric' rod to match the response of a nuclear rod, it is necesscry that-
the nuclear surf ace boundary conditions be known. In addition, it is also

*-

necessary that the electric rod be subjected to the same nuclear hydraulic

conditions.

Thdre'are several~ ways by which the above result can be extended.-

First, the results can be extended tc cover annular heated regions instead
of cylindrically heated geometries; and second, it can be extended to power
distributions that-are not unifdrm. For instance, if q'"(r,t) = P(t) Q(r)
where' Q(r)' i_s .some fixed radial power distribution-and.P(t) is the time-
dependent power factor. Further, by alternating between or patching

_

- together. separate results one can also solve for complicated multifaceted-
rod geometries like'that in Figure (A3).
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INEL A 17 562

Fig. A3. An example of a complicated heater .'od design with two separately
powered:but uniformly heated heater elements, and three non-powered.
conduction regions.

4

,_

-*:
.

a

78

'
_ . .



- - ,=
- .,. ,, ,

_

,

,

l{-
-

.
,

- > ; . .

' LO-14-81-074 .s -

' ~ -

-

?

|The end result'of. this analysis is that for many different heater rod-
;7 , ..

K~9eometries.:it is possible to' derive a heater-rod power function and a<

p i spac'e-time temperature, distribution function which solves the he$t :
~

- ' conduction . differentia 1 ' equation _and duplicates the prescribed'houndary

conditions.: And not too surprisingly, the resultant power source function

1c._
"i s" dependent upon these ~ surface boundary conditions.~ -
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APPENDIX B
s

TYPICAL HEATO INPUT DECKS

Figure Bl til"strates the geometry, dimensions, and materials
associated with the HEATO computer code models used to simulate the
Semiscale heater rod. Figure B2 shows the general input used for the
temperature independent HEATO calculations where the heater rod element has

been modeled between the radial nodes 3 and 8. For a UDHS model one would
'

s'mply place the heater element between nodes 1 and 20 (for this particular
input deck); however, in order to initilize the algorithm to solve for the
electric rod tcansient power it is not really necessary to start with the
UDHS model. In f act, it might not even be necessary to begin with a
temperature independent model of the Semiscale rod; nevertheless, this is-
usually done to avoid f alse temperature feedback effects in the initialo-

estimate of qE (t). Finally, Figure B3 shows the irput cards needed to
'"

run a HEATO model of the Semiscale heater rod with temperature dependent
,

materials, resulting in temperature feedback effects. For this example,
the rod surface heat flux bouncary condition and the rod input power

density are read from the attached data tape 21 with user supplied record

numbers on lines 570 and 580.

When negative rod powers are the result of the hybrid calculations,
then the significance of the terrperature dependent HEATO model might be
questioned. However, since negative rod powers are not possible for
the Semiscale heater rod anyway, it is really immaterial "how" or "if"
temperature feedback should be considered in the heater rod models in the

first place. .
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INEL A 17 558

o

Fig._C1. A one-dimensional cylindrical model of the Semiscale

MOD-1 heater rod.
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10B=UID,T W ,P2.
|119-ACCOLNT,50UtT CODC, CHARGE * F4.MdER, BIN ttMER.e

129 ATTACH,ENM.,Df#L176D,ID=RJW. |

139 -4 ! TACH, k'NR.IB, ID-K>R, t9t= 1.
149= LIBRARY,0WRL,KXRLIB.

0 iSB= ATTACH, TME21, IrfuT-FILE-NK, ID=UID,79t= 1, CY= 7.
168WJLEE r,TMES, *PF.
1?> ATTACH,EATOB, ID= DOS,79t=1.
198=E ATOB,R.=39BBB.
198=CATR.0G, TMEB, OUTPUTf1LE-NK, ID=UID, Pft= 1, F=999.
298 0
219= PROP
229=K,1 ItGIDE Ri
239=0.9 9.19 5900.0 9.19
249=CP,1 INSIDE BN
259=0.9 3.74 5000.9 3.74
269=M,2 IH/CONSTANTRi MIX
279=0.9 9.24 5908. 9.24-
298-CP,2 BM/CONSTRiTAN MIX r

299-9.9 3.8 5000. 3.8
30S=K,3 OUTSIDE BN
319=0.9 9.13 5908. R.13
329=CP,3 CUTSIDE BH
338-9.9 3.1 5000. 3.1
349=K,4 SS
359-9.9 9.18 5908. J.18
368=CP,4 SS
379=0.0 4.3 595B. 4.3'

398-0 0
398-MODEL
40B==C0t@UCTION MODEL #1
41B=91919801 21 2 9.9 1.8 19 9.5 9*

429=91918298 8 1

438-919182913 .993W 5 0.29837 5 9.440 Err 7 9.5349
440-919183B1 1 3 2 8 3 13 4 29
459-91919491 9.9 3 1.0 8 9.9 29
468=91919681 629. 21
479=/
498-BC1.,2,0.9 .

498=TIPE,-19.0,15.0,0.05
598=BCR,2, TM'E CHF 21' RECORIHtMER
519-PCER, -19.0,1561.7 -0.1,1561.7 9.9,0.9 15.0,0.0
539-STNET,1,59,0.91, STEADY
5:A-*COR
549-*00F

Fig. B2. A temperature independent Semiscale heater rod model
input deck for HEATO.
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100=UID,T37,P2.
c 110=ACCOLHT,F.RCE CODE,CH4tGE H21EER, DIN RttBER.

1294TTACH, DWRL, ENYRL176D, ID:RJW.
130<TAOi,KXRLIB, ID=KXR, m=1.
140=LIURRtY,DWRL, K)@ LIB.

, 150=A1 TACH, TAPE 21, IPPtK-FILE-NRC, ID=UID, tit = 1, CY= 7.
160=REGLEST, TM'ES, seF.
170= ATTACH,WTTOB, ID= DOS, Pft=1.
iBe=WATOB,PL- MMM.
190=CATR.OG, TFFEB, OUTPUT-FILE-NRE, ID=UID, tft= 1, RP=999.
290==COR
210= PROP
220=K,1 m TERMAL CONDUCTIVITY (WCM K)
23B=311. ,0.16, 533. ,0.14, 755. ,0.115, 922. ,0.19, 1909. ,0.0EE5
240=12'55. ,8.065, 1339. ,0.06, 1600. ,0. 05
250=CP,1 IN VOLL2iTRIC EAT CAPACITY (J/Ot3 K) DENSITY =2.91G/OG
260-311.,1.79, S?3.,2.73, 755.,3.36, 922.,3.74, 1999,4.82
270=1255.,4.30, 1422.,4.58, 1600.,4.90
290=K,2 CONSTANTm TERMAL CONDUCTIVITY (WCM K)
290=400. ,0.217, 600. ,0.297, 000. ,0.370, 1000. , O.459, 1298. ,8.548
300=1400.,0.621, 1600.,0.701
31B=CP,2 CONSTmTAN VOLIFETRIC HEAT CAPACITY (J/OG K) DEN =0.CZ
329=400. ,3.82, 600. ,4.09, 800. ,4.37, 1000. ,4.64, 1298. ,4.91
33B=1498.,5.19, 1600.,5.46
348=K,3 SS-316 THERMAL CONDUCTIVITY (WCM K)
359=400. ,0.150, 688. ,0.176, 808. ,0.2EG, 1988. ,0.239, 12M. ,0.257
368=1498.,0.294
379-CP,3 SS-316 VOLLJETRIC MAT CR*ACITY (J/CM3 K) DEN =9.SG/Gi3*

300=488. ,4.0, 600. ,4.29, 000. ,4.55, 10EM. ,4.83, 1298. ,5.19, 14W. ,5.4
398=K,4 IWCONSTMTAN MIX (5EV58) (WCM K)
488-311.,9.17, 533.,9.225, 755.,9.238, 922.,9.264, i W 9.,0.29
419-1255.,8.314, 1339.,0.329, 1600.,0.38*

429=CP,4 BN/CONSTmTM MIX (5EM50) (J/CN3 K)

438-311.,2.74, 533.,3.36, 755.,3.83, 922.,3.74, 1989.,4.39
448=1255.,4.64, 1422.,4.9, 1688.,5.1B
459-0 9
468-MODEl.
479== CONDUCTION MODEl. 41
408-01010001 21 2 8.0 1.0 10 0.5 0
498-91010200 0 1
588-01018291 3 .09337 5 0.29037 5 0.44087 7 0.5348
519=01018301 1 3 4 8 1 13 3 29
529-91019d01 0.0 3 1.8 0 0.0 2B
538-91910681 622. 21
540=/
559-BCL,2,0.8
568=TDC,-10. O,15. 0,0. 05
T79-BCR,2, TAPE CEAF" 21 RECORD-MkIBER
588-poler, TME CWAF 21 RECORD-MMBER
599=STMtT,1,58,0.91, STEADY
6es=eEOR
6;e=s00F

a,

Fig. B3, A standard (temperature dependent) Semiscale heater rod
n 'el input deck for HEATO.,,

|

[

! 844

| |



.- .

)

LO-14-81 -074

9

APPENDIX C

DEFINITIONS OF ACRONYMS AND INITIALISMS USED IN THE REPORT
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APPENDIX Co
.

DEFINITIONS OF ACRONYMS AND INITIALISMS USED IN THE REPORTO

Abbreviation Definition

BC Boundary condition
DE Differential equation
DNB Departure from nucleate boiling
IC Initial condition
IR . Inside radius
LDBI Loop Blowdown Investigations (Facility)'

LOFT Loss-of-Fluid Test (Facility)
LOCE Loss-of-coolant experiment
LTSF LOFT Test Support Facility
PBF Power Burst Facility
OR Outside radius
UD. 5 Uniformly distributed heat source9q,

O-
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*
.

4

86

. - . .. . .,


