EGG-EA-5460

May 1981

KUOSHENG MECHANICAL IMPEDANCE TESTING

V. W. Gorman

U.S. Department of Energy

Idaho Operations Office • Idaho National Engineering Laboratory

This is an informal report intended for use as a preliminary or working document

Prepared for the U.S. Nuclear Regulatory Commission Under DOE Contract No. DE-AC07-76ID01570 FIN No. A6353 PDR RES

PDR

INTERIM REPORT

Accession No. ______ Report No. _____EGG-EA-5460

Contract Program or Project Title:

Kuosheng SRV Discharge and Piping Vibration Tests

Subject of this Document:

Kuosheng Mechanical Impedance Testing

Type of Document:

Informal Report

Author(s):

V. W. Gorman

Date of Document:

May 1981

Responsible NRC Individual and NRC Office or Division:

J. A. O'Brien - GRSR: MERB

This document was prepared primarily for preliminary or internal use. It has not received fuil review and approval. Since there may be substantive changes, this document should not be considered final.

EG&G Idaho, Inc. Idaho Fails, Idaho 83415

Prepared for the U.S. Nuclear Regulatory Commission Washington, D.C. Under DOE Contract No. DE-AC07-;61D01570 NRC FIN No. <u>A5353</u>

INTERIM REPORT

ABSTRACT

This report documents the results of mechanical impedance tests conducted on five USNRC selected plant components at the Kuosheng Nuclear Power Station (Unit 1) located in Taiwan which is operated by Taiwan Power Crmpany (Taipower). The plant will be the world's first operational boiling water reactor (BWR) using the General Electric designed BWR-6 Mark III containment system. The specific purpose of the tests was to measure resonant frequencies, damping ratios and structural mode shapes of the test items over a frequency range of 1 to 100 hertz (Hz) using input acceleration levels up to 0.4 g. Three different methods of testing (impulse hammer, electromagnetic shaker and hydraulic shaker) were utilized to excite the components with an impulse or pseudo random noise Output response from accelerometers placed on the components were processed by a minicomputer based spectrum analyzer to obtain the required data. The results of these tests were found to be consistent with tests on similar components.

ACKNOWLEDGEMENTS

This work was performed by TRANSITEK, Inc. for EG&G Idaho, Inc. under EG&G subcontract K-7685.

The following TRANSITEK personnel participated in the project:

M. C. Plummer ---- Principal Engineer
G. P. Coleman ---- Manager
A. Nothelfer ----- Senior Engineer
P. Barney ------ Technician

I. K. Hall of EG&G Idaho assisted TRANSITEK and acted as technical monitor and control over the testing aspects of the project.

We are particularly indebted to Taipower Jersonnel for granting permission to run the tests, providing assistance for customs clearance, moving the test equipment, providing test fixtures and, in general, aiding the test staff. We are also indebted to Drs. Tim Lee and John O'Brien of the USNRC for assistance in coordination of the effort, securing export licensing and international communications.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
INTRODUCTION	1

TABLES

1.	COMPONENTS	TESTED	2
2.	SUMMARY OF	FREQUENCIES AND DAMPING RATIOS	3

APPENDICES

APPENDIX	h	 TEST RESULTS	A-i
APPENDIX	В	 FIGURES OF COMPONENTS TESTED	B-i
APPENDIX	С	 SUPPLEMENTARY TEST DATA	C-i
APPENDIX	D	 MODE SHAPE DATA	D-i

KUOSHENG MECHANICAL IMPEDANCE TESTING

INTRODUCTION

The Kuosheng Nuclear Power Station, located on the northern tip of Taiwan close to the port city of Keelung, will be the world's first operational boiling water reactor (BWR) using the General Electric (GE) designed BWR-6 Mark III pressure suppression containment system. The plant was constructed by the Bechtel Power Corporation under contract with the plant owner, the Taiwan Power Company (Taipower). Fuel loading was completed in January 1981 and preoperational testing, including an extensive safety relief valve (SRV) test program is planned for mid-year of 1981. Information obtained from the Kuosheng tests will provide data useful to the United States Nuclear Regulatory Commission (USNRC) licensing determinations for safety evaluations of the U.S. systems.

Late in 1980 EG&G Idaho was requested by USNRC to conduct mechanical impedance tests on selected components at the Kuosheng Nuclear Power Station in Taiwan in cooperation with Taipower's startup test program. Since EG&G Idaho did not have on hand the proper equipment to provide this service nor sufficient time to purchase it before required testing in January 1981, the task was subcontracted. TRANSITEK, Inc. was retained for the task because of their expertise and previous experience in performing tests on similar components at La Salle and Zimmer nuclear power plants.

TRANSITEK, with EG&G Idaho assisting and acting as technical monitor and in cooperation with Taipower, performed on-site tests from January 18 to January 27, 1981. The components tested are listed in Table 1.

Appendix A describes the impedance test procedures utilized for each component tested along with test equipment used; analysis methods used for data reduction to obtain resonant frequencies, damping ratios and structural mode shapes; and, finally, results and conclusions concerning the test

TABLE 1. COMPONENTS TESTED

Item	Equipment No.	Model No.	Manufacturer	Date of Mfg
Jet Pump Instrument Panel B	R-53-H22-P009	282-R2C31*	GE	7-27-78
Recirculation Control Valve B	R-57-B33-D003	205-AH740*	GE	11-22-77
RHR Pump A-3	IP-48C	5KE 36XC295A	Byron Jackson	7-12-79
480V Motor Control Center 1C1D (located in auxiliary building)		Series No. 5600	Gould/ITE	10-19-77
3-Inch Motor Operated Valve (located near SRV-V8 discharge)		SMB-000-2	Anchor Darling	3-10-17

3

* GE Purchase Order No.

N

program which include figures depicting mode shapes and tables defining resonant frequencies and damping ratios. Table 2 presents a summary of the first four frequencies and damping ratios for each component tested. Appendix B contains figures of personnel involved in the testing, equipment tested and some of the test equipment. Appendix C contains supplementary information regarding data obtained during the tests. Appendix ⁿ contains microfiche with mode shapes listed.

TABLE 2. SUMMARY OF FREQUENCIES AND DAMPING RATIOS

		Moda			
		1	2	3	4
Jet Pump Instrumentation	Hza	19.87	21.32	22.70	31.45
Panel B	ς ^b	2.1	0.9	3.7	2.4
Recirculation Control Valve B	Hz	16.21	18.97	22.57	27.07
	ζ	9.0	3.8	8.5	3.3
RHR Pump A-3	Hz	17.34	18.30	87.00	92.12
	ζ	2.3	2.4	1.7	3.1
480V Motor Control Center	Hz	7.40	29.19	33.93	39.72
	ς	2.4	2.6	4.4	1.4
3-Inch Motor Operated Valve	Hz	18.20	20.60	21.1	21.4
	ξ	1.1	4.1	1.0	1.0

a -- Frequency in hertz (Hz)

4

b -- Percent of critical damping

*

2

1

APPENDIX A

TEST RESULTS

Transitek, Inc.

2328 J Walsh Avenue Santa Clara, CA 95050 Telephone 408-246-1616

FINAL REPORT

TEST RESULTS

MECHANICAL IMPEDANCE TESTS

ON

SELECTED COMPONENTS

KUOSHENG NUCLEAR POWER STATION

for

EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415

Subcontract No. K-7685 to Contract No. DE-AC07-761D01570 TRANSITEK Job No. 81001

May 15, 1981

Written by: Mitty C. Plummer, PhD., P.E. (Date) President

Reviewed by: <u>Schale P. Coleman</u> Gerald P. Coleman

Manager, Data Services

(Date)

Transactions in Technology

	81001-1	
March	13, 1981	
Rev. May	8, 1981	

Ŧ	AD	10.1	F	n	F	mi	CA.	1.77	-	117	50
Ł	AH		E	U	F 1		JN	11	÷ i	N	5
		-	-	~		20.	1.4.1	e. e.	Sec.		

			Page
EXE(UTIVE	SUMMARY	ES-
1.0	PURP	OSE	1-1
2.0	TEST	METHODS	2-1
	2.1	Theoretical Background	2-3
	2.2	Hammer Test Procedure	2-27
	2.3	Electro Magnetic (E-M) Shaker Test Procedure	2-33
	2.4	Hydraulic Siaker Test Procedure	2-35
3.0	ANAL	YSIS METHODS	3-1
	3.1	Theoretical Background for Analysis of Transfer Functions	3-2
	3.2	Identification of Resonant Frequencies	3-14
	3.3	Estimation of Dampings	3-18
	3.4	Mode Shape Calculation	3-38
4.0	RESU	LTS	4-1
	4.1	Reactor Recirculation Flow Control Valve (RRFCV)	4-2
	4.2	Residual Heat Removal (RHR) Pump	4-25
	4.3	Motor Control Center (1C1D)	4-37
	4.4	Jet Pump Instrument Panel	4-51
	4.5	3 Inch Motor Operated Valve	4-83
5.0	CONCI	LUSIONS	5-0
6.0	REFE	RENCES	6-1

EXECUTIVE SUMMARY

TRANSITEK, Inc. was retained by EG&G under Subcontract No. K-7685 of Contract No. DE-AC07-761 D01570 to provide mechanical impedance measurements on five items of plant equipment of the Kuosheng Nuclear Power Station - Unit 1. The tests were performed on-site from January 18 to January 27, 1981. Analysis of the test data proceeded from February 6 to March 13, 1981 at the TRANSITEK offices in Santa Clara, California. Analysis was performed concurrently with analysis of supporting data from other power plants.

The equipment tested and included in this report consists of the following items:

Jet Pump Instrumentation Panel B, Equipment No. R-53-H22-P009 Recirculation Control Valve B, Equipment No. R-57-B33-D003 RHR Pump A-3, Equipment No. IP-48C

480 V Motor Control Center 1C1D (located in auxiliary building)
3" Motor Operated Valve near V-8 SRV discharge

Resonances were found on each piece of equipment in the 33 to 100 Hz frequency range. These resonances are in the frequency range above the original seismic qualification (1 to 33 Hz) and in the frequency range where LOCA loads contribute to dynamic loads. The measured resonant frequencies, dampings and mode shapes are believed to be generally accurate and entirely usable in confirmation of subsequent computer modeling for equipment qualification. The one item of equipment on

ES-1

14

which the data quality is degraded, due to restrictions imposed by Taipower of .2 g maximum acceleration and 33 Hz maximum frequency is motor control center 1C1D. The resulting low input force levels, coupled with ambient vibrations of .01 to .03 g, had the end result of poor quality mode shapes and probably reduced estimates of damping.

1.0 PURPOSE

Background Information: The dynamic qualification of Kuosheng Nuclear Power Station safety related equipment has been achieved for seismic loads. Later determination from test data developed by G.E. and others showed the hydrodynamic loads from the pressure suppression pool contained frequency components greater than 33 Hz, the cut-off frequency for the original seismic qualification. In some cases, it is difficult to determine the sensitivity of the equipment to the high frequency loads.

The purpose of this project is to measure the dynamic characteristics of five representative items of equipment. The equipment tested includes the following:

Jet Pump Instrumentation Panel B, Equipment No. R-53-H22-P009 Recirculation Control Valve B, Equipment No. R-57-B33-D003 RHR Pump A-3, Equipment No. IP-48C

480 V Motor Control Center 1C1D (located in auxiliary building) 3" Motor Operated Valve near V-8 SRV discharge

The characteristics measured include resonant frequency, damping, and mode shape. On each item of equipment in the containment vibration was induced to a sufficiently high level (.4 g) to excite all modes between 1 and 100 Hz. This procedure allowed us to measure dynamic properties in both the seismic and higher frequency ranges of interest.

1-1

For the RHR pump and the 480 V MCC we used decreasing force amplitudes between 30 and 100 Hz. This procedure was successful in giving us all modes on the RHR pump. An additional restriction (.2 g max.) on the MCC panel caused reduced quality of the higher frequency data and distorted mode shapes of the lower frequency data.

ŕ

 $\Psi_{t} \in \mathcal{X}$

2.0 TEST METHODS

In the performance of this program, three different methods of testing were used to excite resonances of the equipment. Each are discussed separately in the following sections. The theory behind the data collection procedures are discussed in Section 2.1.

The instrument systems used in this testing program were based on the GenRad 2508 four-channel data acquisition system. The theoretical background information of Section 2.1 is of general application to any mini-computer based analyzer. The specific comments for hammer and shaker tests are unique to this system and to the MPLUS⁽¹⁾ computer program which was used exclusively in this project.

An overview of modal testing activities is shown in Figure 2.1.

.

FIGURE 2.1

Q

A FLOW DIAGRAM SHOWING THE OVERVIEW OF MODAL TEST ACTIVITIES

2-2

2.1 Theoretical Background:

2.1.1 Overview

With the evolution of the dual channel minicomputer based frequency analyzers in the early 1970's, engineers were making the first applications of these instruments to perform modal tests in a few hours on structures that had previously taken weeks to perform with swept sine techniques and analog analyzers. In the following section, we will detail the considerations that made these advances possible.

2.1.2 FFT Processes in Modal Analysis

The first operation performed on the analog signal entering the Gen Rad system is low pass filtering. The filtered signal is then digitized and undergoes a Fast Fourier Transform (FFT) in a dedicated microprocessor.

The filters are included to prevent "aliasing" of higher frequency signals which appear as low frequency signals in the range of interest. Figure 2.1.2.1 shows how a high frequency signal can be misinterpreted as a low frequency by the digitization process.

Generally, the filters cut off frequencies (F_c) are set to at least one-half of the sampling frequency (F_{max}) and generally less (.45 to .25). Aliasing then occurs only in the upper half of the channels in the frequency data block. These frequency channels (the hatched areas of Figure 2.1.2.2) contain invalid data and are disregarded (set to zero) and only the valid frequencies are displayed or stored.

2-4

A DIAGRAM SHOWING ALIASED AND DISTORTED DATA RELATIVE TO SIGNAL ANALYSIS PARAMETERS

These processes are handled automatically and correctly by the MPLUS ⁽¹⁾ computer code

Once we have FFT's of the input, it is possible to compute a number of functions more useful to modal analysis. These, and the storage locations of each in the computer, are listed in Table 2.1.2.1

TABL 2.1.2.1

FUNCTIONS GENERATED BY MPLUS

Function Name	Symbol	Storage Block	Definition
Input Auto Power Spectrum	Gxx(f)	2	Average Input Power Spectrum Gx(f)* G*x(f) Generally of the force
Response rower Spectrum	Gyy.(f)	3	Any Response Power Spectrum Gy(f) * Gy(f)
Transfer Function	H(f)	1	$H(f) = \frac{Gyx(f)}{Gxx(f)} = \frac{Gy(f)*G*x(f)}{Gx(f)*G*x(f)}$
			The ratio of input to output in both phase and amplitude. The ratio of the output power spectrum that is linearly re- lated to input power.
Coherence	γ ²	4	$0_{\leq \gamma}^{2} \leq 1 = Gxx(f) ^{2} \cdot Gyy(f) $

Of the four functions listed, only the transfer function is critical to the modal analysis. The others "support" the transfer function measurement by serving as tools with which we can examine its quality and diagnose problems in the data collection.

2.1.3 Frequency Content of Impulses and Random Force Excitation

The impulse is an ideal forcing function for modal

analysis for the following reasons:

- A. The frequency content of an impulse is very uniform as shown in Figure 2.1.3.1.
- B. The break frequency and general shape of the frequency content of triangular or square impulses are approximately the same as that of the half sine and depend mostly on the pulse duration. In other words, we do not have to worry too much about the shape of the pulse.
- C. The uniform distribution of the force in frequency gives each resonance equal excitation out to the break frequency of the pulse.
- D. Impulses can be applied quickly and easily with a small hammer. A large number of points can be tested in a short period of time.
- E. We can easily control the pulse width of the applied force by changing the mass of the hammer and hardness of the tip. Figure 2.1.3.2 shows examples of different hammer tips.

FIGURE 2.1.3.1

TIME HISTORY AND FREQUENCY CONTENT OF A ONE-HALF SINE PULSE OF DURATION T

FIGURE 2.1.3.2

INFLUENCE OF HAMMER TIP MATERIAL ON FORCE FREQUENCY CONTENT

In the structures tested by impulse technique, the hammer tip was a very soft rubber to provide approximately 125 hz break frequency.

There are several points about the way the force time history looks when acquired through the anti-aliasing filters and the A/D converter that should be noted. First, as shown in Figure 2.1.3.3, the filters may introduce a small amount of ringing into the time history. This is acceptable as long as the response is treated similarly in a matched filter. The GenRad anti-aliasing filters pay careful attention to matching to assure that the does not develop into a problem.

1

- 181 av

?

. S

P

. An Another feature of the force that requires attention is the trigger level. It is necessary that the trigger level be set as low as possible to reflect accurately the true phase and amplitude of the pulse. The effect of a "too high" trigger level or a "soft tap" on frequency content is shown in Figure 2.1.3.4.

A clean, single pulse is the Lest form of excitation. On occasion, the hammer will slip and enter multiple taps. The consequence in the frequency domain is shown in Figure 2.1.3.5.

Here we see that little excitation is provided at some frequencies. In severe cases, this can cause the transfer function to appear to have additional resonances.

The best procedure, which fall wed consistently in this program, is to discard this data and reachine with "clean" impulses.

A final consideration is the selection of pulse width and frequency range for analysis. Examples of digitized force pulse signals are shown in Figure 2.1.3.6.

2-10

F t

Unfiltered Pulse

t

F

Filtered Pulse with Ringing

FIGURE 2.1.3.3

THE EFFECT OF THE A/D FILTERS ON FORCE SIGNAL APPEARANCE

FIGURE 2.1.3.4

THE "SOFT TAP" OR "HIGH TRIGGER LEVEL" PROBLEM

A trigger level of 2% of the peak was used in this program and is sufficient to eliminate spurious triggers but avoid distorting the pulse.

A

EXAMPLES OF SAMPLE RATE ON PULSE DEFINITION

In this program we used sampling rates of 1048 hz to give excellent definition to the pulse.

To resolve the difficulty of too narrow a pulse, a higher sampling rate or a greater hammer force pulse width should be chosen. This must be done with some attention to the resolution of the response as described in Section 2.1.4.

Similar consideration exists for random force excitation, the significant features for consideration are:

- The forces shall be approximately uniform in frequency over the entire frequency range of analysis.
- Clipping of the signal will introduce spurious high frequency content. Avoid this by using a "Sampling Abort" option at all times as is done in MPLUS.

The advantage of random force excitation is that the impulse equivalent (force times time) of a relatively small shaker is equivalent to a large hammer in providing continuous excitation. With a four channel analysis system, the rate of data acquisition is approximately equal to that of the hammer test.

2.1.4 Frequency Response of Structures

The dynamic response of structures depends on its geometric and material properties as well as the excitation. If the modal properties (resonant frequencies, dampings and mode shapes) are known, the response can be predicted for any force at any location on the structure.

The responses of real structures have three elements that describe the response. First is the rigid movement of the mass as a solid body. This mode dominates at the lowest frequencies and can be thought of as the inertia of the structure.

The second element of the structural response is governed by resonances. Generally, these dominate the response for the kind of forces that are encountered in real problems because the frequency content of the forcing functions are aligned with the areas of greatest dynamic response.

The third element of the structural behavior is treated as a residual compliance of all other modes outside the range of measurement or interest. Real structures have infinitely more responses, but only the few major ones are of interest.

The three elements of a response are shown in Figure 2.1.4.1.

2-15

.

FIGURE 2.1.4.1

CONCEPT OF INERTIA RESTRAINT AND RESIDUAL FLEXIBILITY APPLIED TO A FREQUENCY RANGE OF INTEREST ¢

The key element of structural response that influences the quality of a measurement is the sharpness (damping) of a resonance. If the sampling rate is too high (or the resolution too low) for a particular resonance, two things will happen to degrade the quality of the measurement. First, the resonance will be poorly resolved and fitted. For example, only three or so frequency lines will describe the resonance. Because of leakage, the data from the highest response will tend to "leak" into the lower lines, and an incorrect estimate of the damping will result. Efforts to circle fit the data will also be frustrated because not enough points are available to describe the resonances as shown in Figure 2.1.4.2. (For definitions of circle tit, see Section 3.2).

The next section shows the importance of each of these elements in the measurement of transfer functions which contain the modal properties.

đ

r

ø

.

Circle Fit to Data With Inadequate Resolution

6.00

Circle Fit to Data With Adequate Resolution

FIGURE 2.1.4.2

EXAMPLES OF CIRCLE FITS WITH DIFFERENT SAMPLING RATES

2.1.5 Transfer Functions

The modal analysis of structures relies on the measurement of the transfer of force to a variable of the structural response. Common names for each of the commonly used transfer functions are listed in Table 2.1.5.1

TABLE 2.1.5.1

COMMON NAMES OF TRANSFER FUNCTIONS

Variables	Common Name			
Acceleration/Force	Inertance, acceleration admittance			
Force/Acceleration	Apparent mass, acceleration impedance			
Velocity/Force	Mobility, velocity admittance			
Force/Velocity	Mechanical impedance, velocity impedance			
Displacement/Force	Compliance			
Force/Displacement	Stiffness			

The real art of modal analysis is in the interpretation of transfer functions. Through long experience, the following has been developed as an interpretation and ways to use transfer function data.

MEANING OF TRANSFER FUNCTION DATA FROM A SYSTEM DYANAMIC ANALYSIS POINT OF VIEW

- For driving point transfer functions, the resonances and antiresonances must alternate as one goes up the frequency range.
- 2. The addition of a single mass to a system decreases all non-zero resonances where the connection point participates. The resonances of the higher modes tend to be shifted more and as the frequency becomes large the new frequencies approach the anti-resonances of the original component at that location.
- 3. The addition of a single spring to a component increases all resonances in which the connection point participates. The frequencies of lower modes tend to be shifted more and as the frequency approaches zero the new resonances approach the antiresonances of the original system.
- 4. If a sprung mass is added to a component such that its antiresonances occurs between two successive resonances (i.e., ω_a and ω_b) of the original system, all resonant frequencies of the original system below ω_a will be decreased and all resonant frequencies above ω_b will be increased. In addition, a resonance of the combined system will occur between the anti-resonance of the sprung mass and the anti-resonance of the original system which lies between ω_a and ω_b .
- 5. If a constrained single degree of freedom system of natural frequency ω_a is connected to a system, the natural frequencies of that system will be shifted toward ω_a . In general, the farther a resonance is from ω_a the more it will tend to be shifted toward ω_a .
- 6. If a component is altered by means of a single interconnection to another system then resonances of the original system cannot be shifted from their original positions farther than the antiresonances adjacent to each original resonant frequency.
- 7. If one component is connected to another component, at a single location, one and only one resonance of the combined system will lie between the resonances of the unconnected components, and one and only one resonance will lie between the anti-resonances of the unconnected components.
- 8. When anti-resonances of two separate systems coincide, a mode of the combined system in which the point of interconnection has zero displacement exists at that frequency.
- 9. If two components are rigidly interconnected at n points, the number of modes in the connected systems is n less than the numbe. of modes in the separate systems.
- 10. When a system with two or more degrees of freedom is rigidly constrained at one point, the lowest resonance is raised and between every pair of resonances in the unconstrained system there will be a resonance of the constrained system. Also, the resonances of the constrained system will be at the anti-resonances of the unconstrained system viewed at the point of constraint.

11. When a strong and a weak system are rigidly interconnected at a single point, the modes of the combined system lie near the resonances of the strong system and the anti-resonances of the weak system.

- 12. If a resonance of the strong system and a resonance of the weak system lie close together, the combined system will have a pair of modes in this neighborhood. Furthermore, one of these modes will occur at a lower value of frequency than either the anti-resonance or the resonance and one will occur at a higher value of frequency.
- 13. When two systems of comparable strength are rigidly connected at a single point and a resonance of one lies near an anti-resonance of the other, the natural frequencies of the combined system will be displaced from that neighborhood by a substantial fraction of the maximum allowed by statement 7.
- 14. When two systems are connected together through a single weak spring, the resonances of the combined system will occur near and at slightly higher frequencies than the resonances of the separate systems. If two resonances of the separate systems lie close together, two corresponding resonant frequencies of the combined system result, of which one lies between the two separate resonances and the other lies slightly higher than either.

- 15. When two systems are connected together by means of a single large mass, the resonances of the combined system will lie near and slightly higher than the anti-resonances of the separate systems. If two anti-resonances of the separate system lie close together, but do not coincide two corresponding resonances of the combined system result, of which one lies between the anti-resonances of the separate systems and one lies higher than either.
- 16. When two systems of comparable strength are connected together at a single location by a weak coupling element, whose transfer function varies slowly with frequency, the two systems will have little effect on one another unless a resonance of one system is nearly coincident with a resonance of the other. In that case, a pair of modes will exist which will have a large participation of each component.
- 17. When two systems of comparable strength are interconnected by a general stiff coupling element, where transfer function varies slowly with frequency, the two systems will have little effect on one another unless an anti-resonance of one is nearly coincident with an anti-resonance of the other. In this case a pair of modes will exist which will have a large participation of each component.

2.1.5.1 Criteria for Good Transfer Function Measurements

The following criteria will generally result

in high quality measurements:

TABLE 2.1.5.1.1

EXCITATION CRITERIA FOR HIGH QUALITY TRANSFER FUNCTION MEASUREMENTS

- The excitation signal level should be 40-60 db above the background noise.
- The frequency content of the excitation should be uniformly distributed (+ 15 db) over the range of interest.
- 3. The excitation should contain no zeros at any frequency over the frequency range of interest. Dividing by zero will improperly range the transfer function.
- The force should be appropriately ranged to the mass of the structure. The force should not permanently deform the structure or produce a non-linear response.
- The analyzer input should be ranged appropriately for the peak signal level. (If a 2 volt peak is produced by the force, the analyzer should be set for 2 or 4 volt but not 8 volt signals).
- If impulse testing is used, the trigger level should be set as low as possible.

The following response criter:a will generally

produce high quality transfer function measurements:

TABLE 2.1.5.1.2

RESPONSE CRITERIA FOR HIGH QUALITY TRANSFER FUNCTION MEASUREMENTS

- The response signal should be 40 60 db above the background noise.
- The sensor should be appropriately selected for the modes of interest. Generally, displacement, strain or velocity are preferred for low frequency modes (below 5.0 Hz). Further, the sensor weight should be small compared to the weight of the structures (less than 1%).
- The range of the response input should be correctly set to allow full use of the dynamic range of the instrument.
- The mounted resonant frequency of the sensor should be at best five times that of the highest mode of interest.
- There should be no major resonances just outside the range of analysis. The residual compliance of a large resonance can greatly distort the measurement of modal properties of a small adjacent resonance.

The criteria for coherence in obtaining usable

transfer functions for modal analysis are described in Table 2.1.5.1.3

TABLE 2.1.5.1.3

COHERENCE CRITERIA FOR HIGH QUALITY TRANSFER FUNCTIONS

- 1. Coherence = .9 and above at resonances.
- 2. Coherence = .6 and above at all but antiresonance.
- Partial coherence for indirect transfer functions are above .8 and well understood.

These criteria were met throughout this program.

If the coherence is less than .8 in the vicinity of an important resonance or over any substantial frequency interval, it is an indication that:

- The signal-to-noise ratio of either or both signals is too low (this could be caused by insufficient excitation at the input or response point, or by faulty measurement equipment).
- Extraneous inputs are entering the structure.
- Excitations are not being measured properly (i.e., transducers are loose or mounted in the wrong place or in the wrong direction).
- Not enough averages are being taken for each measurement (i.e., the more noise sources inherently associated with the structure, the more averages that should be taken).
- Aliasing of the data is taking place.
- Resolution of the measurement is not adequate.
- The response of the structure at a non-resonant frequency is extremely low relative to the response of resonant coherence at non-resonant frequencies.

2.2 Hammer Test Procedure

The equivalence of hammer (impulse) testing to shaker testing is described in Reference 4.

This section describes only the data acquisition activity for hammer testing as it differs from shaker testing. The analysis procedure for impulse generated data is described in Section 3.0.

First, the response measuring accelerometer is attached to the structure under test at a point where all modes can be measured. Generally an end or edge point is best. Next, the hammer is used to hit the structure at several points and the accelerometer moved to new points to assure that all modes are sensed at the final accelerometer position. This determination is made by observation of the data.

Several steps precede the acquisition and analysis of data. The first steps establish a "project file" on the magnetic disc. The project file is a framework in which all of the testing and analysis can take place in an orderly manner and which allows easy information retrieval.

In this example (a fuze), the project was initiated by the command:

IZ "FUZE"

I implies initiate.

Z implies project.

(The word in quotation marks is the title of the project.)

Next we attached Associated Data Files (ADF's) to have stored on the discs. The commands are:

AP 'FUZP' for modal parameter storage.
AS 'FINTS' for mode shapes of the interior compenents.
AG 'FUZ_d' for the fuze geometry (all points).
AH 'FUZH' for the fuze transfer functions.
AT 'FUZT' for the fuze trace links and coordinate traces.
A readout of the project status is possible using the ?Z
command. For our example, the computer responded as follows:

#?Z

	CHECKPU.	INI 092278-000000		
1	Z FUZE	091878-000000	O/MODAL SURVEY PATRIOT DUMMY	FUZE
1	P FUZP	091878-000000	10/FUZE PARAMETERS	
	S FINTS	092178-000000	10/FUZE INTERNAL SHAPE	
(G FUZG	080878-000000	1/FUZE GEOM	
1	H FUZH	091878-000000	150/FUZE TRANSFER FUNCTIONS	
-	T FUZT	080878-000000	12/FUZE SEQUENCES	

The next step was to enter a description of the geometric location of each point for which we would test into the geometry file using the RG@K command, entering the data as follows:

Point No.	X Dimension	Y Dimension	Z Dimension	
1	0	0	0	Return
2	300	0	0	Return

and so on for each point. The units are in inches and no decimals are allowed in the geometry.

We saved the geometry with the "WG" command and recall it with the "RG" command when needed for listing on the disc or changing. Next, the trace links are entered into the computer using the "RTL@K" command. The trace links represent lines from one point of the geometry to the next to show how the model is formed. After the trace link was formed as described, it is saved by the WTL command. Generally, we make the trace link file in several sections to avoid excessive re-type work to accommodate errors.

The final step preparatory to data acquisition is the building of a condition file in the /D (data acquisition) subtask. By using the MC (modify condition) command, we communicate to the computer the methods we will use to perform the tests. An example is given in the following listing.

LC CODE DEFINITION 1 TRIGGER TYPE 1 EXTERNALLY GENERATED TRANSIENT, AS OPPOSED TO RANDOM OR OTHER EXCITATION. 5 2 TRIGGER LEVEL TRIGGER AT 5% OF THE LEVEL SET IN CHANNEL 1 RANGE (CONDITION 21) 3 COUPLING CODE 0 AC AS OPPOSED TO DC 4 HANNING CODE 0 NO HANNING WEIGHTING 5 ENSEMBLE SIZE 4 AVERAGE 4 HAMMER TAPS 6 MAXIMUM FREQ 2994.2 MAX. FREQUENCY 7 A-A FILTERS 3000.0 8 EXCITATION TRANSIENT 1 9 FREQRESP 21 1 CHANNEL 2/CHANNEL 1 **10 FREQRESP** 2 0 11 FREQRESP 0 3 12 OVERRANGES 0 OVERRANGES ALLOWED PER FRAME OF DATA L 0.00000 13 CLEAR FREQ 14 CLEAR FREO U 2994.2 15 MINIMUM FREQ 0.00000 *INT. PLATE* **19 MASTER IDENT** 10 20 AUXIL SCALE 1.0000 21 CH 01 RANGE 0.50000 PEAK VOLTAGE ON CHANNEL 1 (FORCE SIGNAL) 22 CH 02 RANGE 1.0000 PEAK VOLTAGE ON CHANNEL 2 (ACCELERATION SIGNAL) 23 CH 03 RANGE 8.0000 24 CH G4 RANGE 8.0000 25 CH 01 SCALE 100.00 100 LBF/VOLT (10 MV/LBF) 26 CH 02 SCALE 100.00 100 G/VOLT (100 MV/G) SCALE 27 CH 03 1.0000 28 CH 04 SCALE 1.0000 29 CH 01 SIGNAL 4 FORCE 3 30 CH 02 SIGNAL ACCELERATION 3 31 CH G3 SIGNAL ACCELERATION 3 32 CH 04 SIGNAL ACCELERATION

Finally, we are prepared for preliminary data acquisition. To confirm that our signal form and amplitude are correct, using the "ES" command, we impact the fuse one time and observe the signal level using the \wedge #1 command for observing the force signal and \wedge #2 for the response. Examples of each are shown in Figures 2.2.1 and 2.2.2. These examples show that we are correctly ranged for this test.

Finally, we gather data into transfer function format. The transfer function we use is acceleration per pound of force at each frequency. It is in this format that the data is stored onto magnetic media for rater analysis.

.

. .

.

FIGURE 2.2.1

FORCE SIGNAL OBSERVED USING "ES" COMMAND

69

,

gens.

FIGURE 2.2.3 A PHOTOGRAPH OF THE TRANSITEK HAMMER

2.3 Electro Magnetic (E-M) Shaker Test Procedure

A typical E-M shaker test set-up is shown in Figure 2.3.1. The force signal is a broad band random signal with approximately equal input from 1 to 100 Hz. The accelerometers are moved from point to point until data is collected at each point for which a measurement has been specified.

Prior to start of testing, the force signal is examined by oscilloscope for smoothness and amplitude to confirm that the force transducer is not rattling and that the shaker armature is not bottomed out. This step assures us that all of the shaker energy is going into the desired frequency range. A complete set-up similar to that discussed in Section 2.2 is performed and verified.

The accelerometer signals are examined at each measurement point to assure that the range of the A/D converter is set to utilize the full dynamic range of the analyzer.

Once the shaker has been started, the force signal is not changed throughout the entire test. For this reason a representative sample of the force spectra is adequate to characterize the force at all times throughout the test.

Analagous to the repeated blows of the hammer, repeated samples of the time histories are analyzed to provide improved statistical estimates of the transfer function. In these tests 16-30 frames (samples) were analyzed, or about 3 minutes per measurement.

FIGURE 2.3.1

ELECTROMAGNETIC SHAKER TEST SET-UP

. 1

2.4 Hydraulic Shaker Test Procedure

In theory, the hydraulic shaker test is identical to that of the EM shaker. In practice, the measurement of force must be altered radically due to the bulk of the brackets involved in mounting the shaker.

Figure 2.4.1 shows a typical haudraulic shaker test set-up. The shaker force is measured by an accelerometer on the reaction mass. The shaker force is directly proportional to the reaction mass and to the acceleration of the mass. The advantage of this method is that no brackets or fixtures are required for anchoring the shaker to a wall or floor and no static load is applied to the structure by the actuator.

The oscilloscope (Figure 2.4.1) is used to observe the force to assure that no bottoming out is occurring and that the bearings supporting the mass are not binding. The accelerometer signals are observed upon starting the force to assure that the acceleration does not exceed reasonable levels on special equipment. Also, this observation assures that the signal levels are set into the computer to provide the maximum dynamic range for analysis.

At each measurement point, the accelerometer position gain and signal level were recorded and saved as part of the permanent test records.

HYDRAULIC SHAKER TEST SET-UP

3.0 ANALYSIS METHODS:

The methods for analysil are based on the MPLUS program. To understand the theoretical background as developed for analysis, we first present the general relationship of data from Reference (1) as Section 3.1. Next, the methods of obtaining resonant frequency and dampings from transfer functions are presented in Section 3.2 and 3.3. Section 3.4 discusses circle fitting, the method of mode shapes calculation.

3.1 Theoretical Background for Analysis of Transfer Functions(1)

The theory behind modal analysis via frequency response functions can be examined by referring to the equations of motion for an N degree of freedom system with viscous damping:

$$[M][\ddot{q}] + [C][\dot{q}] + [K][q] = [f]$$
(1)

where

[M] = mass matrix [C] = viscous damping matrix [K] = stiffness matrix [q] = time history of the displacement of system [f] = time history of excitation to system [q] = time history of velocity of system [q] = time history of acceleration of system

This equation is inconvenient to handle with standard methods of eigenvalue analysis if [C] is not proportional to [M] or [K]. However, a method has been proposed by Duncan⁽⁷⁾ which reduces these equations to a standard eigenvalue form. In this method combine the identity:

 $[M][\dot{q}] - [M][\dot{q}] = [0]$

with Equation 1 to obtain:

$$\begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} m \\ i \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} \begin{bmatrix} m \\ 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \begin{bmatrix} i \\ 0 \end{bmatrix} \begin{bmatrix} i \\ 0 \end{bmatrix} \begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} i \\ 0 \end{bmatrix}$$

$$(2)$$

Represent this equation in the following manner:

 $[A][\dot{y}] + [B][y] = [z]$ (3)

where

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 0 \\ M \end{bmatrix} \begin{bmatrix} 0 \\ M \end{bmatrix} \begin{bmatrix} M \end{bmatrix}$$
$$\begin{bmatrix} 0 \\ M \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ K \end{bmatrix}$$
$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

In order to find the solution to Equation 3 for the case of harmonic inputs, first consider the solution to the homogeneous equation found by letting [z] = [0]

$$[A][\dot{y}] + [B][y] = [0]$$
(4)
Seek a solution of the form $[y] = [Y] e^{St}$

therefore $[y] = s [Y] e^{St}$

.

Hence, Equation 4, becomes,

s[A][y] + [B][y] = [0] or[[B] + s[A]] [y] = [0]

This set of equations only have a solution if the determinant of the coefficient matrix is zero.

 $det \left([B] + s[A] \right) = 0$

This leads to a set of 2N roots or eigenvalues $s_1, s_2, s_2, ..., which$ satisfy the above equation. For a resonant system, these eigenvalues will occur in conjugate pairs. Corresponding to each eigenvalue s_r , there exists an eigenvector $[\Psi^r]$ having 2N components satisfying the following equation:

$$[B] + s_{r}[A] [\Psi^{r}] = [0]$$
(5)

In the case where the eigenvalues of a system are complex, in which case they occur in conjugate pairs, the eigenvectors will be complex and will also occur in conjugate pairs,

The above eigenvectors have important orthogonality conditions which can be easily shown. Consider the r^{th} and p^{th} eigenvectors $[\Psi^r]$ and $[\Psi^p]$ both of which satisfy Equation 5. First write Equation 5 for the r^{th} mode and premultiply by the transposed vector $[\Psi^p]^T$, to obtain:

 $[\Psi^{\mathbf{p}}]^{\mathrm{T}}[B][\Psi^{\mathbf{r}}] - s_{\mathbf{r}}[\Psi^{\mathbf{p}}]^{\mathrm{T}}[A][\Psi^{\mathbf{r}}] = [0]$ (6)

Using the reversal law for transposed matrix products and recalling that [A] and [B] are symmetric matrices, transpose Equation 6 to obtain:

 $[\Psi^{r}]^{T}[B][\Psi^{p}]+s_{r}[\Psi^{r}]^{T}[A][\Psi^{p}]=[0]$ (7)

Next write Equation 5 for the pth mode and premultiply by $[\mathbf{P}^r]^T$

$[\Psi^{r}]^{T}[B][\Psi^{p}] + s_{p}[\Psi^{r}]^{T}[A][\Psi^{p}] = [0]$ (8)

If Equation 8 is subtracted from Equation 7, the result is:

$(s_r-s_p) [\Psi^r]^T[A][\Psi^p] = 0$

If eigenvalues s_r and s_p are different, the following orthogonality properly relates the two eigenvectors:

$[\Psi^{\mathbf{r}}]^{\mathbf{T}}[\mathbf{A}][\Psi^{\mathbf{p}}] = \mathbf{C}$ ⁽⁹⁾

It follows that these vectors are also orthogonal with respect to matrix [B]

$$\left[\Psi^{\mathbf{r}}\right]^{\mathrm{T}}\left[B\right]\left[\Psi^{\mathrm{P}}\right] = 0 \tag{10}$$

1101

Equations 9 and 10 are important orthogonality conditions which shows that the 2N vectors $[\Psi]$ form a linearly independent set, and therefore any vector in 2N space can be expressed as a linear combination of these 2N vectors. Since we are interested in frequency response information, let

$$[z(t)]=[z] e^{j\omega t}$$
(11)

and seek a solution in the form:

$$[y(t)] = [Y]e^{j\omega t}$$
(12)

Substitute Equation 11 and Equation 12 into Equation 3 and divide by $e^{j\omega t}$ to obtain:

$$j\omega[A][Y] + [B][Y] = [Z]$$
 (13)

Since the eigenvectors defined by Equation 5 form a linearly independent set over 2N space, write the solution to Equation (13) as a linear combination of these 2N vectors

$$[Y] = \sum_{r=1}^{2N} \forall r [\Psi^{r}]$$
(14)

Substitute Equation 14 into Equation 13 and multiply by $[\Psi^{p}]^{1}$ to obtain:

$$j\omega[\Psi^{p}]^{T}[A] \sum_{r=1}^{2N} \aleph_{r}[\Psi_{r}] + [\Psi^{p}]^{T}[B] \sum_{r=1}^{2N} \aleph_{r}[\Psi^{r}] = [\Psi^{p}]^{T}[2]$$

From the orthogonality conditions, we obtain:

$$j\omega a_{p}(\mathcal{X}_{p}) + b_{p}(\mathcal{X}_{p}) = [\Psi^{p}]^{T}[z]$$
⁽¹⁵⁾

where

 $a_{p} = [\Psi^{p}]^{T}[A][\Psi^{p}]$ $b_{p} = [\Psi^{p}]^{T}[B][\Psi^{p}]$

Hence, we can solve Equation 15 for $\boldsymbol{\delta}_{\mathrm{D}}$ to obtain:

$$\delta_{p} = \frac{\left[\Psi^{p}\right]^{T}\left[z\right]}{j\omega a_{p}^{+} b_{p}}$$
(16)

Substituting Equation 16 into Equation 14, we obtain:

$$[\mathbf{Y}] = \sum_{r=1}^{2N} \frac{[\boldsymbol{\Psi}^{r}]^{T}[\boldsymbol{z}][\boldsymbol{\Psi}^{r}]}{j\omega a_{r} + b_{r}}$$
(17)

However, from Equation 7, we obtain

$$s_r = \frac{-b_r}{s_r}$$

Therefore, Equation 17 can be written

$$[\mathbf{Y}] = \sum_{r=1}^{2N} \frac{[\boldsymbol{\Psi}^r]^T[\boldsymbol{z}][\boldsymbol{\Psi}^r]}{a_r(j\omega - s_r)}$$
(18)

Frequently the complex eigenvalues s_r are written in the following form:

$$s_r = -\beta_r \omega_r \pm j \omega_r \sqrt{1-\beta_r^2}$$

Where

 S_r = damping ratio

 ω_r = undamped natural frequency

In terms of [Q] and [F], Equation 18 becomes:

$$\begin{bmatrix} j \ \omega \ Q \\ Q \end{bmatrix} = \sum_{r=1}^{2N} \frac{[\Psi^r]^T \begin{bmatrix} 0 \\ F \end{bmatrix} [\Psi^r]}{a_r (j \omega - \mathcal{S}_r \omega_r^+ j \omega_r \sqrt{1 - \mathcal{S}_r^2})}$$

Therefore the frequency response function recorded from excitation applied at location k and response monitored at location i is:

$$H_{ik} = \sum_{r=1}^{2N} \frac{\Psi_{k}^{r} \Psi_{i}^{r}}{a_{r}(j\omega + \beta_{r}\omega_{r^{\pm}} j\omega_{r}\sqrt{1-\beta_{r}^{2}})}$$
(19)

Since the eigenvalues occur in conjugate pairs, Equation 19 can be written as:

$$H_{ik} = \sum_{r=1}^{N} \frac{\Psi_{k}^{r} \Psi_{i}^{r}}{a_{r}^{(j\omega+\frac{5}{2}\omega_{r}+j\omega_{r}^{-})} + \frac{\Psi_{k}^{r'} \Psi_{i}^{r'}}{\Phi_{r}^{(j\omega+\frac{5}{2}\omega_{r}-j\omega_{r}^{-})} + \frac{\Psi_{k}^{r'} \Psi_{i}^{r'}}{\Phi_{r}^{(j\omega+\frac{5}{2}\omega_{r}-\frac{5}{2}\omega_{r}^{-})} + \frac{\Psi_{k}^{r'} \Psi_{i}^{r'}}}{\Phi_{r}^{(j\omega+\frac{5}{2}\omega_{r}-\frac{5}{2}\omega_{r}^{-})} + \frac{\Psi_{k}^{r'} \Psi_{i}^{r'}}}{\Phi_{r}$$

Equation 19 is an extremely valuable relationship between Frequency Response Functions and modal characteristics. It relates motion at any point i due to a force at point k. Notice that Equation 19 implies that the frequency response between response at i and excitation at k is the same as the function between response at k and excitation at i. Equation 19 is frequently written in the form:

$$H_{ik} = \sum_{r=1}^{2N} \frac{A_{ik}^{r}}{(s - s_{r})} = \sum_{r=1}^{N} \frac{A_{ik}^{r}}{(s - s_{r})} + \frac{A_{ik}^{r^{*}}}{(s - s_{r})}$$
(21)

where

$$A_{ik}^{r}$$
 = Residue at pole $s_{r}(i.e.\frac{\Psi_{i}^{r}\Psi_{k}^{r}}{a_{r}})$

The impulse response of the system can be obtained from Equation 21 by performing an inverse transform to obtain:

$$H_{ik}(t) = \sum_{r=1}^{2N} A_{ik}^{r} e^{srt}$$
(22)

Since the roots occur in conjugate pairs, Equation 22 can be written in the form:

$$H_{ik}(t) = 2 \sum_{r=1}^{N} |A_{ik}| e^{-S_r \omega_r t} \cos[(\omega_r \sqrt{1-S_r^2}) + \beta_{ik}]$$
(23)

where

18

Equation 23 indicates that the impulse response of the system can be represented by a summation of the number of damped cosine waves times the appropriate modal parameters.

The multi-degree-of-freedom (MDOF) curve fitting procedures in the modal analysis program calculates the value of A_{ik}^{r} in the above equations. Therefore, in the case where A_{ik}^{r} was determined from a displacement/force frequency response function, the value of a_{r} can be determined from the equation:

$$r = \frac{\Psi_i^r \Psi_k^r}{A_{ik}^r}$$

where

 A_{ik}^r is determined from a displacement/force function.

In the case where a velocity/force frequency response function was curve fit with the MDOF procedure, the parameter a_r is determined from the following:

$$a_{r} = \frac{\Psi_{i}^{r} \quad \Psi_{k}^{\dot{r}}}{A_{ik}^{r}} \times j \ \omega_{r}$$

where: ω_r is in the units of rad/sec and

 A_{ik}^r is determined from a velocity/force function Similarly, if an acceleration/force frequency response function is used, a_r is determined from the equation:

$$a_{r} = \frac{\Psi_{i}^{r} \Psi_{k}^{r}}{A_{ik}^{r}} \times (-\omega_{r}^{2})$$

where

 ω_r is in units of rad/sec and A_{ik}^r is determined from an acceleration/force function.

If an analytical model is to be created from the test data, the parameters a_r , Ψ^r , ω_r and \mathfrak{F}_r are all that is necessary to describe the component with complex normal modes. However, in some cases an analyst would like to use a "real" mode approximation with the associated effective mass or effective stiffness in order to describe the component under test via the following equation:

$$H_{ik} = \sum_{r=1}^{N} \frac{\Psi_{i}^{r} \Psi_{k}^{r}}{m_{r} [\omega_{r}^{2} - \omega^{2} + j z \mathcal{L}_{r} \omega \omega_{r}]}$$
(24)

In that case it is recommended that this approximate representation be determined by setting the magnitude of the .nde shape coefficient equal to the magnitude of the complex mode shape value and the sign of the mode shape coefficient from one of the following procedures:

- Inverse of the sign of the imaginary portion of the mode shape coefficient when a displacement/force frequency response function is used to determine the mode shape coefficients.
- 2) The sign of the real portion of the mode shape coefficient when a velocity/force frequency response function is used to define the mode shape coefficients.
- 3) Sign of the imaginary portion of the mode shape coefficient when an acceleration/force frequency response function is used to determine the mode shape coefficients.

The effective mass necessary to approximate the actual frequency response with that described by Equation 24 can be determined from one of the following equations:

$$m_{r} = \frac{(\text{Approx. } \Psi_{i}^{r})(\text{Approx. } \Psi_{k}^{r})}{2 \omega_{r} |A_{ik}^{r}|}$$
where A_{ik}^{r} is determined from a displacement/force function
$$m_{r} = \frac{(\text{Approx. } \Psi_{i}^{r})(\text{Approx. } \Psi_{k}^{r})}{2 |A_{ik}^{r}|}$$
where A_{ik}^{r} is determined from a velocity/force function
$$m_{r} = \frac{(\text{Approx. } \Psi_{i}^{r})(\text{Approx. } \Psi_{k}^{r})}{2 |A_{ik}^{r}|} \times \omega_{r}$$
where A_{ik}^{r} is determined from an acceleration/force function

In order to represent a component in an overall system model via a "real" mode approximation, the following approach can frequently be used. The uncoupled equations of motion for the component in terms of modal coordinates $[\sigma]$ are:

 $\left\{ -\omega^2 [\mbox{m}_] + j\omega [\mbox{m}_c] + [\mbox{m}_k] \right\} [\mbox{s}] = [\mbox{F_8}]$ where [-m_] is a diagonal matrix of effective masses
[-c_] is a diagonal matrix of effective damping
[-k_] is a diagonal matrix of effective stiffnesses

The motion of the physical coordinate: [Q] is related to the motion of the modal coordinates by:

 $[0] = [\Psi] [\delta]$

Symbolically, this can be represented by the following diagram:

* refore, a component can be represented analytically from test data i. . n overall system model by a set of springs, masses, dampers and equations of constraint which relate the motion of the physical coordinates to the motion of the modal coordinates. Since the equations of constraint can be quite voluminous, the NASTRAN input and MATRIX Generation task provides the capability to generate NASTRAN Multi Point Constraint (MPC) equations in a relatively automatic manner.

RESIDUAL INERTANCE AND COMPLIANCE

The frequency response in a specified range can be approximately described in terms of the following quantities:

- "Residual Inertance" of the modes of vibration below
 the range of interest.
- The modes of vibration which are resonant in the specified frequency range.
- "Residual Compliance" of the modes of vibration above the range of interest.

Mathematically this can be expressed as:

ŗ.

$$H_{ik} = \frac{X_{ik}}{\omega^2} + \sum_{r=1}^{2N} \frac{\Psi_k^r \Psi_i^r}{a_r (j\omega + 5_r \omega_r \pm j\omega_r \sqrt{1 - 5_r^2})} + Z_{ik}$$

This concept is shown graphically in the following figures:

The SDOF and MDOF curve fitting procedures available in the Estimation task are used to evaluate the contribution due to the modes which are resonant in the frequency range under investigation. In order to determine the contribution of the residual effects the Generate Residual command in the Frequency Response Synthesis task is used.

3.2 Identification of Resonant Frequencies

Resonant frequencies can be estimated in any of the following ways:

- 1) Peak identification from the transfer function.
- Zero crossing of the real component with simultaneous peaking of the imaginary component of the transfer function.
- Estimation from the inverse Fourier transform of the transfer function by the GE command.

Examples of results of each method are shown in Figures 3.2.1 through 3.2.3

Throughout this test program resonant frequencies were determined by the third method which is described in great detail in Reference 2.

An example of Resonant Frequency Identification by "peak picking". The numbered frequencies and amplitudes are listed to the left.

81001-1 March 13, 1981

3-15

.

81001-2 May 13, 1981

FIGURE 3.2.2

FREQUENCIES AT WHICH REAL VALUES OF THE TRANSFER FUNCTION GO TO ZERO AND THE IMAGINARY COMPONENT IS A MAXIUMUM, UNIQUELY IDENTIFY RESONANCES

81001-1 March 13, 1981 Inverse Fourier g/1bf Transform fit to Ae^{-at}cos(wt+\$\phi\$) Frequency Range of Inverse Transform Best estimate by Prony Algorithm f_n, ϕ_n, ξ , and A_r

.

19.9-

١

FIGURE 3.2.3

FLOW DIAGRAM FOR ESTIMATING MODAL PARAMETERS BY INVERSE FOURIER TRANSFORM

(See Reference 2)

3.3 Estimation of Dampings

There are four commonly applied methods of estimation of damping. Each has advantages and limitations as discussed in the following sections.

3.3.1 Exponential Decay Rate: (5)

If a mode can be excited in such a way as to not excite modes other than the mode of interest, measurement of the decay rate is a valid means of estimating damping. The variables involved are illustrated in Figure 3.3.1.

This method is generally limited to damping estimates of the fundamental or lowest frequency mode due to difficulty in exciting individual modes.

3.3.2 Forced Vibration Response

When modes are well separated from one another, two independent methods of estimating damping can be developed from the resonance curve whose parameters are shown in Figure 3.3.2.

This method is successful provided the modes are well separated and the amplitude of the mode for which an estimate of damping is desired is not substantially smaller than a nearby mode. In these cases, estimation by either circle fitting or Inverse Fourier least squares curve fitting is necessary.

FIGURE 3.3.1

ESTIMATION OF DAMPING FROM TIME DOMAIN DATA

This method often fails because other modes are also excited.

METHODS OF ESTIMATING DAMPING FROM FORCED VIBRATION

3.3.3 Damping Estimation by Circle Fitting

The original approach for this method was developed by Kennedy and Pancu (6) for systems with hysteretic damping characteristics. As shown below, the method can be extended to the viscous damping cases and has been extended to include complex modes by David Brown with the following assumptions:

> The modes are only weakly coupled in the range where one mode is predominant. The contribution of lower and higher modes can be approximated by a complex constant (R + jI).

2) The system is relatively lightly damped.

These conditions are frequently met, so circle fitting is very useful.

The frequency response of the structure in the frequency range where the r-th mode is predominant is obtained from Equation 1 as:

$$\frac{X_p}{F_q} = \frac{U_{pqr} + jV_{pqr}}{-\delta_r + j(\omega - \omega_{dr})} + R + jI$$

where R+jI includes the contribution of the term associated with the conjugate eigenvalue. If the complex constant is neglected and the magnitude of the mode is set to unity, $(U_{pg} + 0 \text{ and } V_{pg} + -1 \text{ for a} \text{ single degree of freedom}, \omega > 0)$ the following relations is obtained:

$$\operatorname{Re}\left\{\frac{X_{p}}{F_{q}}\right\} = -\frac{(\omega-\omega_{dr})}{(\omega-\omega_{dr})^{2}} \frac{1}{r^{\delta}r^{2}}$$

$$\operatorname{Im}\left\{\frac{x_{p}}{F_{q}}\right\} = \frac{\delta_{r}}{\left(\omega-\omega_{dr}\right)^{2}+\delta_{r}^{2}}$$

and thus,

$$\left[\operatorname{Re}\left\{\frac{X_{p}}{F_{q}}\right\}\right]^{2} + \left[\operatorname{Im}\left\{\frac{X_{p}}{F_{q}}\right\} - \frac{1}{2\delta_{r}}\right]^{2} = \left[\frac{1}{2\delta_{r}}\right]^{2}$$

In other words, the contribution of one mode to the general response can be represented in the Argand plane as a circle (Figure 3.3.3.1). Taking into coordinates of the center is calculated as:

$$\left(R = \frac{U_{pqr}}{2\delta_r}, 1 = \frac{V_{pqr}}{2\delta_r}\right)$$

and the diameter as:

$$d = \frac{\sqrt{u_{pqr}^2 + v_{pqr}^2}}{\delta_r}$$

The complex modal displacement vector expands or reduces the diameter and rotates the circle in the Argand plane. On the other hand, the complex constant (R+jI) will translate the center of the circle in the Argand plane (Figure 3.3.3.2).

A measure of the accuracy of this method is given by the shape of the frequency response in the region of the resonance: the more circular the curve, the more accurate the result.

.

AN ARGAND DIAGRAM OF A TRANSFER FUNCTION IN THE VICINITY OF A RESONANCE

ESTIMATION CF MODAL PARAMETERS FROM AN ARGAND DIAGRAM

It was shown in Reference 2 that the resonant frequency could be found where the variation of the phase angle as a function of frequency is a maximum:

$$\frac{\partial^2 \emptyset}{\partial \omega^2} = 0$$

20

The damping ratio, ζ_r , can also be determined from the fitted circle. By locating the two frequencies ω_1 and ω_2 at \pm 90 degrees with respect to the damped natural frequency (Figure 3.3.3.2), the damping can be calculated by the following relation:

$$\zeta_r = \left| \frac{\omega_1 - \omega_2}{2\omega_r} \right|$$

The diameter of the circle is proportional to the modulus of the residue:

$$d = \frac{1}{\delta_r} \|A_{pqr}\|^2$$

The phase angle apqr, of the complex modal coefficient can be calculated by passing a straight line through the point of the resonant frequency, ω_r , and the center of the circle. The angle this line makes with the imaginary axis is equal to the phase angle of the complex modal coefficient:

$$\alpha_{pqr} = \arctan\left(\frac{U_{pqr}}{V_{pqr}}\right) = \frac{\pi}{2} + \arg(A_{pqr})$$

Circle fitting typically is the next level of parameter estimation above quadrature response. It does a better job of separating coupled modes than the quadrature technique, but it, like most of the more sophisticated methods, can diverge and give very poor answers. In general, the method is fast and can be used to obtain complex modes but in order to get the best possible results it should be used interactively. The center frequency and bandwidth used in the circle fit can be varied depending upon the amount of noise, the coupling of modes, and the damping of the mode. This choice of data points utilized in the circle fit gives different answers and the best answer becomes a judgement. As a result, the best answers are obtained by a skillful operator with experience using the "GS" command of MPLUS.

The normal procedure for using the circle fit is to first determine the natural frequency of the system using the "GE" command procedures. Also, the peaks in the quadrature response or the peaks in a summation of power spectrums (constructed from the quadrature responses of all of the measurements) are very good indicators.

Using the following least squares Circle Fit algorithm, a circle can be interactively fit to the measured frequency response data at the designated natural frequency:

Least Squares Error Fit of a Circle

The general equation of a circle is $x^{2} + y^{2} + ax + by + c = 0$

1. 舜

Setting t is equation equal to an error function E, the least-squares error term is formed by a summation over the discrete frequencies in the area of the natural frequency.

 $\sum_{k=1}^{m} E^{2} = \sum_{k=1}^{m} (x_{k}^{2} + y_{k}^{2} + ax_{k} + by_{k} + c)^{2}$

The partial derivatives of the least-squares error term with respect to the constants, a, b, and c should be zero.

Writing these equations (while dropping the subscripts and summation interval for simplicity of notation):

$$\frac{\partial \Sigma}{\partial a}(E^{2}) = 2\Sigma(x^{2} + y^{2} + ax + by + c) x = 0$$

$$\frac{\partial \Sigma}{\partial b}(E^{2}) = 2\Sigma(x^{2} + y^{2} + ax + by + c) y = 0$$

$$\frac{\partial \Sigma}{\partial c}(E^{2}) = 2\Sigma(x^{2} + y^{2} + ax + by + c) 1 = 0$$

Rewriting these three equations in matrix form:

$\sum (x^2)$	Σ(xy)	Σ(x)]	[a]	$\left[-\Sigma(x^3 + xy^2)\right]$
E(xy)	$\Sigma(y^2)$	Σ(y)	ь	$-\Sigma(x^2y+y^3)$
Σ(×)	Σ(y)	m	c	$\left[-\Sigma(x^2 + y^2)\right]$

Therefore, using these three equations a, b, and c can be found and the center of the circle and radius calculated (Figure 3.3.3.2):

> x_{center = -a/2} y_{center = -b/2} Radius = $((\frac{a}{2})^2 + (\frac{b}{2})^2 - c)^{1/2}$

The damping ratio $(\boldsymbol{\zeta}_r)$ as well as the modal coefficient (amplitude and phase) are defined by the location, diameter and orientation of the circle.

In order to illustrate one of the more serious problems with circle fitting, the following example will be used. The first two modes of cantilever beam will be determined using circle fitting. The mode shapes for the beam are shown in Figure 3.3.3.3. If an excitation force is applied at point one on the beam, the measured frequency response plots between point one and all other points are shown in Figure 3.3.3.4. In this figure the resonance frequencies are marked with an X and the bandwidth used in the circle fit are shown by the double line. The problem which is being illustrated shows in the measurement at point 2. At point 2 the modal contribution of mode 2 is nearly zero. The circle fit in this case is really a fit of the skirt of the first mode. Instead of getting a value near zero, a very large value is obtained.

Due to this type of problem and due to bad estimates caused by noise, it is necessary to interactively fit the data with the circle fit algorithm.

FIGURE 3.3.3.3

MODES OF A CANTILEVER BEAM

At point 2 of the Second Mode, only poor Circle Fits can Le antici, ted because it is at a Node Point of that Mode.

6 12

3.3.4 Estimation of Damping from Multidegree of Freedom Curve Fits of Inverse Fourier Transformed Data

Since the single degree of freedom equations are simply special cases of the multiple degree of freedom equations, all theoretical discussions will be made in terms of the multiple degree of freedom case.

In studies carried out by Klosterman,⁽²⁾ Van Loon,⁽⁸⁾ and Richardson,⁽⁴⁾ a derivation is given for the general formula of the frequency response of a multiple degree of freedom system with viscous or hysteretic damping.

For general viscous damping, the frequency response for a multiple degree of freedom mechanical system can be written as:

$$\frac{A_{p}}{r_{q}} = \sum_{r=1}^{\infty} \left[\frac{A_{pqr}}{jw-S_{r}} + \frac{A_{pqr}^{\star}}{jw-S_{r}^{\star}} \right]$$
(1)

where

Continuous systems have an infinite number of degrees of freedom but, in _ weral, only a finite number of modes can be used to describe the dynamic behavior of a system. The theoretical number of degrees of freedom can be reduced by using a finite frequency range (f_a, f_b) . Therefore, for example, the frequency response can be broken up into three partial sums, each covering the modal contribution corresponding to modes located in the frequency ranges $(0, f_a), (f_a, f_b)$ and (f_b, \bullet) . (Figure 3.3.4.1). In the frequency range of interest, the modal parameters can be estimated to be consistent with Equation 1. In the lower and higher frequency ranges, residual terms can be included to handle modes in these ranges. In this case, Equation 3 can be rewritten as:

$$\frac{X_p}{F_q} = L_{pq} + \sum_{r=r_a}^{r_b} \left[\frac{A_{pqr}}{j\omega - S_r} + \frac{A_{pqr}^{\star}}{j\omega - S_r^{\star}} \right] + Z_{pq}$$
(2)

where

 r_a = lower mode index of the frequency range of interest, r_b = upper mode index of the frequency range of interest, L_{pq} = lower residual term, and Z_{pq} = upper residual term.

4

FREQUENCY

In many cases the lower residual term is called the inertia restraint, and the upper residual term is called the residual flexibility. These can be written as:

$$L_{pq} = -\frac{Y_{pq}}{\omega^{2}} = Re \left\{ \sum_{r=1}^{n-1} \left[\frac{A_{pqr}}{j\omega^{-}S_{r}} + \frac{A_{pqr}^{*}}{j\omega^{-}S_{r}^{*}} \right] \right\}$$
(3)
$$Z_{pq} = Re \left\{ \sum_{r=r_{b}+1}^{\infty} \left[\frac{A_{pqr}}{j\omega^{-}S_{r}} + \frac{A_{pqr}^{*}}{j\omega^{-}S_{r}^{*}} \right] \right\}$$
(4)

Where

Re z = real part of a complex number z Y_{pq} = inertia restraint, and Z_{pq} = residual flexibility

Therefore, Equation 1 can be rewritten as:

$$\frac{X_{p}}{F_{q}} = -\frac{Y_{pq}}{\omega^{2}} + \sum_{r=r_{a}}^{r_{b}} \left[\frac{A_{pqr}}{j\omega - S_{r}} + \frac{A_{pqr}^{\star}}{j\omega - S_{r}^{\star}} \right] + Z_{pq} \qquad (5)$$

This concept is shown graphically in the following

The SDOF and MDOF curve fitting procedure available in the Estimation task are used to evaluate the contribution due to the modes which are resonant in the frequency range under investigation.

An alternate way to write the frequency response in terms of its undamped natural frequency and damping coefficient is:

$$\frac{x}{F_{q}} = -\frac{Y_{pq}}{\omega^{2}} + \sum_{r=T_{a}}^{r_{b}} \frac{B_{pqr} + j\left(\frac{\omega}{\omega_{r}}\right)B_{pqr}}{1 - \left(\frac{\omega}{\omega_{r}}\right)^{2} + j2\zeta_{r}\left(\frac{\omega}{\omega_{r}}\right)} + Z_{pq} \quad (6)$$

new linAbl Con figures:

where, by definition,

$$\omega_{r} = \sqrt{\delta_{r}^{2} + \omega_{dr}^{2}}$$

$$\beta_{pqr} = -\frac{\delta_{r}}{\omega_{r}}$$

$$B_{pqr}^{*} = -\frac{2(\delta_{r}U_{pqr} + \omega_{dr}V_{pqr})}{\omega_{r}^{2}}$$
(8)

The above terms have the units of compliance and as a result the numerator of Equation 6 is the "complex compliance". For the case of proportional damping, the equation for the frequency response has the more classical form:

$$\frac{\chi_{p}}{F_{q}} = \frac{\gamma_{pq}}{\omega^{2}} + \sum_{r=r_{a}}^{r_{b}} \frac{B_{pqr}}{1 - \left(\frac{\omega}{\omega_{r}}\right)^{2} + j2\zeta_{r}\left(\frac{\omega}{\omega_{r}}\right)} + \zeta_{pq} \qquad (9)$$

where B_{pqr} is the modal compliance.

Many of the parameter estimation techniques that are used will assume that only one mode exists in the range of interest and all of the other modes appear as residual terms. For this case, Equation 2 can be rewr'ten as:

$$\frac{X_p}{F_q} = -\frac{Y_p}{\omega^2} + \frac{A_{pq}}{j\omega - S} + \frac{A_{pq}^*}{j\omega - S^*} + Z_{pq}^{(10)}$$

or for the case of proportional damping as:

$$\frac{X_{p}}{F_{q}} = -\frac{Y_{pq}}{\omega^{2}} + \frac{B_{pq}}{1-\left(\frac{\omega}{\omega_{r}}\right)^{2} + j2\zeta_{r}\left(\frac{\omega}{\omega_{r}}\right)} + Z_{pq}$$
(11)

Several of the curve fitting cases which were discussed in this section utilized the unit impulse response of the system. The unit impulse response is the Fourier transform of the fraquency response. Therefore, a mathematical expression for the unit impulse response can be obtained by a Fourier transform of Equation 1:

$$h_{pq}(t) = \sum_{r=1}^{\infty} \left[A_{pqr} e^{S_r t} + A_{pqr}^{\star} e^{S_r^{\star} t} \right]$$
(12)

The method of estimation from inverse Fourier transform described in this section, was the method used exclusively in the analys for damping.

Generally damping was calculated from the driving point transfer function. In the case of complex structures, with strong local resonances, we also estimated damping from other points.

While the same method of curve fitting for damping estimation also gives modal coefficients, the circle fit technique developed in the following section is more efficient for estimating moda amplitudes.

3.4 Mode Shape Calculation

In the following sections two methods of mode shape calculation are discussed. The first method, circle fitting, was used exclusively in this report.

3.4.1 Mode Shape Calculation by Circle Fit

Once the transfer functions are safely stored on the disc, the data analysis can be begun. The procedure we prefer is to read in several of the transfer functions and use the "GE" command of the /E task to obtain the first estimate of modal parameters:

These rules apply to use of the "GE" command:

- Choose a range for analysis that includes a minimum at a low frequency and at a high frequency.
- Allow two degrees of freedom for each obvious mode over the range of analysis.
- Check the fit with the "GA" command and compare fit to original data.
- Store the appropriate modal parameters in the active modal parameter file.

Next, we estimate the mode shape for each real resonance using the MACROS to generate circle fits. The command to check the frequency range of the fit GS <u>LO</u>, <u>HI</u> where LO and HI are the low and high frequencies in hertz. The computer will respond with a circle fit as shown in the example below:

FREQ= 30.35 DAMP= 0.2371E-01 34Z+ 34Z+ MODE SHAPE 0: SCALE 20.86 MODE COEFFICIENT REAL 8.93705E-05 IMAG -7.36565E-04 AMPL 7.41967E-04 LIMITS 29.687 31.055

(A, L, R, Q, C, Z, S, E, I, B, T)*

The example shown is an example of a good circle fit.

The following options are available as a response to the circle fit:

- A To accept the modal coefficient as displayed. To temporarily enter a new frequency limit Lv1,v2 between v1 and v2 for a new SDOF estimation. Rv To use the measured response at frequency v for the mode shape definition. To use the measured quadrature response Qv (imaginary part) at frequency v for the mode shape definition. Cv To use the measured coincident response (real part) at frequency v for the mode shape definition. Z To set the mode shape coefficient for the current coordinate to zero. S To skip this coordinate and leave the mode shape unmodified.
 - E To leave the mode shape unmodified and force an exit from a macro, if the user has included the GS command inside a macro operation.
 - ! To accept the modal coefficient as displayed, but invert the sign before storage.

Now we are ready to run the macro program again for SDOF fitting of the data (Option 3). For this, the high and low frequencies are centered as we determined in the first circle fit at the reference coordinate. Of the SDO^r options, 8 is preferred from the list below:

Code (i)	Analysis	Mode Shape Type	Rotation
1	Automatic	Real	Center
2	Interactive	Real	Center
3	Automatic	Complex	Center
4	Interactive	Complex	Center
5	Automatic	Real	Resonance
6	Interactive	Real	Resonance
7	Automatic	Complex	Resonance
8.	Interactive	Complex	Resonance

Option 8 gives the interactive capability to change the frequency range or other steps to improve the mode shape estimate and uses the complex or total response. Options 1, 2, 3 and 6 use only the guadrature component of the response.

3.4.2 Mode Shape Calculation by MDOF Curve Fit

In order to generate mode shapes from either the circle fit or MDOF routines, the following prerequisites must be met:

- There must be a mode shape file appended to the project file through the AS command.
- 2) A geometry file is in core.
- 3) A trace link file is in core.

When using circle fit, acceptance of a fit of the data

(entering A to the query) automatically moves the numbers noted in Figure 3.4.2 to the active mode shape file.

The MDOF curve fis subroutine for generation of mode shapes is considerably more complex to use and subject to uncontrolled errors.

In this procedure the following steps are used:

- The most agreeable result of a "GE" command listing is moved to a parameter file using the "MP" command.
- The MDOF subroutine is selected from the MACRO subroutine.
- 3) Enter error bands for acceptance of resonant frequency (generally + 5% of the resonant frequency) and damping (generally a range from .5% to 5% is adequate).
- Enter the number of roots, frequency range, and trace coordinate file.
- 5) Execute the MACRO using the "XM commands.

FREQ: 30.35 DAMP: 0.2371E-01 34Z+ 34Z+ MODE SHAPE 0: SCALE 20.86 MODE COEFFICIENT REAL 8.93705E-05 IMAG -7.36565E-04 AMPL 7.41967E-04 LIMITS 29.687 31.055

(A, L, R, Q, C, Z, S, E, I, 8, T) \$#

FIGURE 3.4.2

In this example, the circle fit results moved to the active mode shape file are the numbers labeled REAL (8.93705E-05) and IMAGINARY (-7.36565E-04).

The program will automatically move the amplitude and phase results (as real and imaginary numbers) to the active mode shape file.

The several dangers to this procedure are:

- 1) The curve fitting cannot find the mode.
- 2) The routine will not converge.
- The time required for a long string of test points is inordinate.

For these reasons, generation of mode shape files by the MDOF option is not recommended. We recommend MDOF only for the odd occasion that circle fit does not adequately extract the modal coefficients at a particular point.

4.0 RESULTS:

The results of the testing are discussed separately for each component in the following sections.

The test program was generally very successful. The tests were conducted under a series of restrictions that influenced the outcome on some of the components.

Members of the Taipower organization, present to participate in the testing program, placed the restrictions on the test program in accordance with their concerns that the tests be nondestructive and not jeopardize the safety of the equipment. The restrictions under which these tests were performed are summarized as follows:

Component	Maximum Response (g's)	Maximum Frequency
3" Valve	.4	100
JPIP Panel	4	100
RHR Pump	.3	33
RRFC Valve	.4	100
480V MCC Panel	.2	33

A compromise was reached on the MCC panel and RHR pump to 100 HZ by decreasing the force level over 100 HZ in proportion to the inverse of frequency.

The 3" valve testing was completed before any restrictions had been communicated and the levels of acceleration may have exceeded the restriction.

4.1 Reactor Recirculation Flow Control Valve (RRFCV):

4.1.1 Equipment Tested:

The reactor recirculation flow control valve, located in the inner containment, was tested using excitation from the hydraulic shaker. The maximum acceleration on the valve body which weighs about 5,000 lbs., was raised to .4 g's and provided adequate excitation for modal analysis. The frequency content of the excitation was broad band pseudo random to a maximum frequency of 100 Hz.

At the time of testing, the flow control valve line is believed to have been filled and all hydraulic and electrical connections had been made to the valve controls. At TRANSITEK's request, the mirror insulation on the valve body was removed to permit access to the valve body. Mirror insulation was not removed beyond approximately two feet from either side of the valve due to the time restrictions placed on the testing by the construction schedule of the biological shield. Generally, more detailed geometric models are constructed. In this case, the extreme time limitations required that we go to reduced geometric description of the valve. The number of points appears to be adequate for the number of modes measured.

4.1.2 Method of Testing:

The reactor recirculation flow control valve was excited to a level of .4 g's at the body of the valve. The acceleration limit was imposed at the request of Taipower. The force level required to produce this level of acceleration was approximately 1200 pounds peak. Random force excitation was used in the Z and Y directions. The valve was not tested in the X direction (which generally produces only minimal information) due to the extreme limitations of time imposed by the construction schedule. Special brackets were constructed so that the shaker could be attached at point 7 in the Z direction and point 9 in the Y direction as shown in Figure 4.1.1. The acceleration response was measured at each of the numbered points shown in Figure 4.1.1. For more detail of the geometric model of the valve, see Figure 4.1.2. Table 4.1.1 lists the geometric location of each point of response measurement on the reactor recirculation flow control valve.

The response was measured using high sensitivity (1 v/g) PCB Model 308 accelerometers attached with beeswax. At each point, 16 frames of data were collected (this required about 3 minutes).

4.1.3 Modal Properties:

Driving point transfer functions are shown in Figure 4.1.3 for the Z direction and Figures 4.1.4A and 4.1.4B for the Y direction, respectively. The frequency listed to the left of each figure identify each of the resonance; found in this test. The modal properties estimated from the transfer functions are listed in Table 4.1.2. The range of damping values measured on this massive component range from 1.5% to 9% and are characteristic of TRANSITEK's measurements on similar equipment. Many of the resonances listed on this table are those of piping modes as noted in the following section.

4.1.4 Mode Shapes:

The mode shapes measured in the Y direction are shown in Figures 4.1.5 through 4.1.12. An attempt to identify each mode shape is indicated in the subtitle of each figure. The mode shapes measured in the Z direction are listed in Figures 4.1.13 through 4.1.17. The mode shapes are associated with measurements in the direction in which the excitation force was applied.

LABELED WIRE FRAME MODEL REACTOR RECIRCULATION FLOW CONTROL VALVE (RRFCV) 81001-1 March 13, 1981

*

.

.

FIGURE 4.1.2

FOUR ORTHOGONAL VIEWS OF THE WIRE FRAME MODEL REACTOR RECIRCULATION FLOW CONTROL VALVE (RRFCV) 81001-1 March 13, 1981

TABLE 4.1.1

GEOMETRIC LOCATIONS OF POINTS OF RESPONSE MEASUREMENT REACTOR RECIRCULATION FLOW CONTROL VALVE

Point	Х	Y	Z
No.	<u>(ln.)</u>	(In.)	<u>(In.)</u>
1	22	0	.0
2	0	9	0
3	8	-18	0
4	-30	0	0
5	0	16	8
6	.0	27	0
7	0	36	0
8	0	45	0
9	20	36	0
10	30	36	0
11	36	36	0
12	62	36	0
13	63	36	0
14	88	36	9
15	103	36	0

*

e.

FIGURE 4.1.3

THE DRIVING POINT TRANSFER FUNCTION MEASURED IN THE Z DIRECTION REACTOR RECIRCULATION FLOW CONTROL VALVE (RRFCV) 81001-1 March 13, 1981

*

.

FIGURE 4.1.4A

THE DRIVING POINT TRANSFER FUNCTION MEASURED IN THE Y DIRECTION REACTOR RECIRCULATION FLOW CUNTROL VALVE (RRFCV) SHOWING THE FIVE RESONANCES OF LOWEST FREQUENCY

4-8

5

.

*

THE DRIVING POINT TRANSFER FUNCTION MEASURED IN THE Y DIRECTION REACTOR RECIRCULATION FLOW CONTROL VALVE (RRFCV) SHOWING THE THREE RESONANCES OF HIGHEST FREQUENCY

81001-1 March 13, 1981

TABLE 4.1.2

MODAL PROPERTIES MEASURED ON THE RRFCV

Mode Shape #	Frequency (HZ)	Damping (% Critical)	
	Y DIRECTION		
1	18.97	3.8	
2	22.57	8.5	
3	30.69	1.5	
4	38.36	2.1	
5	4C.86	2.3	
6	45.20	2.5	
7	47.96	1.5	
8	89.99	1.9	
	Z DI	RECTION	
1	16.21	9.0	
2	27.07	3.3	
3	32.59	2.8	
4	37.98	2.7	
5	54.29	2.1	

٠

FIGURE 4.1.5

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 18.97 HZ RESONANCE MEASURED IN THE Y DIRECTION THIS VIEW IS DIRECTLY INTO THE SIDE OF THE VALVE. THIS MODE IS PROBABLY A PIPING RESONANCE.

81001-1 March 13, 1981

.

FIGURE 4.1.6

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 22.57 HZ RESONANCE MEASURED IN THE Y DIRECTION IT IS MOST LIKELY A PIPING MODE. £1001-1 March 13, 1981

3

-

6

.
1. 81001-1 March 13, 1981 THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 30.7 HZ RESONANCE MEASURED IN THE Y DIRECTION IT IS A RIGID ROCKING OF THE CONTROL ARM. * FIGURE 4.1.7 THE REAL

A

4-13

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 38.36 HZ RESONANCE MEASURED IN THE Y DIRECTION THIS IS THE FIRST TRUE CANTILEVER MODE OF THE CONTROL ARM.

81001-1 Mar in 13, 198;

6

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 40.87 HZ RESONANCE MEASURED IN THE Y DIRECTION THIS IS A SECOND CANTILEVER MODE OF THE CONTROL ARM.

81001-1 March 13, 1981

2)

.

.

THE MUDE SHAPE OF THE RRFCV ASSOCIATED WITH THE 45.21 HZ RESONANCE MEASURED IN THE Y DIRECTION THIS IS A THIRD CANTILEVER MODE OF THE CONTROL ARM.

81001-1 March 13, 1981

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 47.97 HZ RESONANCE MEASURED IN THE Y DIRECTION THIS IS A PIPE MODE DRIVING THE CONTROL ARM.

81001-1 March 13, 1981

5

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 89.9 HZ RESONANCE MEASURED IN THE Y DIRECTION THIS IS A CANTILEVER BENDING MODE OF THE SMALLER COMPONENTS AT THE END OF THE ARM.

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 16.21 HZ RESONANCE MEASURED IN THE Z DIRECTION THIS VIEW IS FROM THE SIDE OF THE VALVE AND OPPOSITE FROM THE CONTROL ARM.

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 27.07 HZ RESONANCE MEASURED IN THE Z DIRECTION THIS IS PROBABLY A PIPE TORSIONAL MODE.

G

-1

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 32.59 HZ RESONANCE MEASURED IN THE Z DIRECTION THIS IS PROBABLY THE FIRST CANTILEVER MODE OF THE CONTROL ARM.

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 37.98 HZ RESONANCE MEASURED IN THE Z DIRECTION THIS IS A SECOND CANTILEVER OR ROTATIONAL MODE OF THE VALVE BODY AND CONTROL ARM.

THE MODE SHAPE OF THE RRFCV ASSOCIATED WITH THE 54.29 HZ RESONANCE MEASURED IN THE Z DIRECTION THIS IS A CANTILEVER MODE INVOLVING THE SMALLER COMPONENTS OF THE CONTROL ARM.

4.1.5 Conclusions:

The results of this test show that large components uch as the reactor recirculation flow control valve can be tested successfully using the restraint applied by Taipower for conduct of this program. The effort to measure dampings at higher acceleration levels was not permitted, but the damping values indicated in this test are quite reasonable for this type of structure.

4.7 Residual Heat Removel (RHR) Pump:

4.2.1 Equipment Tested:

2

The residual heat removal pump, which we estimate weighs 3,000 lbs., was tested using the TRANSITEK hydraulic shaker-at a force level of approximately 500 pounds. At the time of testing, the RHR line is presumed to have been filled with water. All hydraulic and electrical connections had been installed and completed at the time of testing. The pump located in the auxiliary building was properly secured to a base and foundation on the floor of the auxiliary building. The wire frame model of the RHR pump prepared by TRANSITEK is shown in Figures 4.2.1 and 4.2.2. The geometric location of points of response measurement on the RHR pump are listed in Table 4.2.1. The dimensions are given in inches.

4.2.2 Method of Testing:

The RHR pump was excited to an acceleration level of .3 g's at the point of excitation. The .3 g acceleration limit was imposed at the request of Taipower. The force level required to produce this level of acceleration was approximately 500 pounds force peak. Shaped pseudo random force excitation was used for both axes of testing. The spectrum was shaped to produce a one over frequency rolloff in the range of 30 to 100 Hz. This was done to satisfy the request of Taipower that we not shake the pump at greater than 33 Hz which was the upper previous limits of its level of qualification. The force le el at the higher frequency proved to be adequate to excite the higher modes of the pump. Special brackets, which add approximately 70 lbs. of dead weight, were made to mount the shaker to the pump in both horizontal directions. The point of excitation for the X direction was 36 and point 48 for the Z direction.

The response was measured using high sensitivity (lg/volt) accelerometers (PCB Model 308) attached to the pump with beeswax. At each point 16 samples were taken, or about 3 minutes of continuous data collection.

FIGURE 4.2.1

A LABELED WIRE FRAME MODEL OF THE RHR PUMP

LOOKING DIRECTLY ALONG THE X-A \times 15

4-26

LOOKING DIRECTLY ALONG THE Z-A x 15

.

٠

9

3

2

FOUR VIEWS OF THE WIRE FRAME MODEL OF THE RHR PUMP

1

C

2

GEOMETRIC LICATIONS OF POINTS OF RESPONSE MEASUREMENT - RHR PUMP

Point	Х	Y	Z
No.	(In.)	(In.)	(In.)
,	9	a	26
2	a	4	27
7	A	4	16
4	9	20	16
	a	25	16
-	0	50	16
2	0	51	14
6	26	91	9
0	-20	4	9
10	-20	7	9
10	-10	20	9
12	-10	20	9
12	-10	50	a
10	-10	51	6
14	-14	91	26
10	0		-20
10	0	4	-20
10	0	20	-10
20	0	50	-10
20	0	51	-10
21	26	91	-14
27	20	4	9
20	16	4	9
24	16	29	9
20	16	20	0
20	16	50	9
20	14	51	9
20	70	75	9
70	55	75	9
21	55	75	27
72	20	75	9
77	-60	75	9
34	-00	64	9
35	1.	84	9
36	17	85	R
37	17	112	9
38	17	137	a
39	8	84	14
49	A	85	17
41	9	112	17
42	a	137	17
43	-14	84	0
44	-17	85	8
45	-17	112	0
46	-17	137	0
47	0	84	-14
48	8	85	-17
49	0	112	-17
50	0	137	-17
51	0	137	31
19	. 0	35	-16

4-28

4.2.3 Modal Properties:

The driving point transfer functions are shown in Figures 4.2.3 and 4.2.4 for the X and Z directions, respectively. Only two resonances were apparent in either transfer function. The slight difference in the resonant frequencies measured in the two directions are believed to be due to differences in the stiffness of the coupling housing between the motor and pump in the different directions. Table 4.2.2 lists the modal parameters estimated from the transfer functions shown in Figures 4.2.3 and 4.2.4.

4.2.4 Mode Shapes:

The mode shapes measured in the X direction are shown in Figures 4.2.5 and 4.2.6. The mode shapes are identified in the subtitle of each figure. The mode shapes measured in the Z direction are shown in Figures 4.2.7 and 4.2.8. The mode shapes are entirely those that would be predicted for equipment of this type.

4.2.5 Conclusions:

The results of this test show that even with relatively low levels of excitation and sharply reduced forces over 33 Hz, the mode shapes and modal properties of this type of equipment can be successfully measured. The damping values ranging from 1.7% to 3.0% are entirely believable and appropriate for equipment of this nature and is consistent with previous TRANSITEK experience.

The measurement of dampings at more than one force level was impractical on this piece of equipment for the extremely low levels of excitation to which we were restricted. The values stated, however, are a good indication that both structural and some acoustic damping would occur beyond the low values associated with hysteresis type damping.

4-30

. .

.

THE DRIVING POINT TRANSFER FUNCTION MEASURED IN THE X DIRECTION ON THE RHR PUMP

*

THE DRIVING POINT TRANSFER FUNCTION MEASURED IN THE Z DIRECTION ON THE RHR PUMP 81001-1 March 13, 1981

4-31

81001-1 March 13, 1981

TABLE 4.2.2

MODAL PROPERTIES MEASURED ON THE RHR PUMP

Mode Shape #	Frequency (Hz)	Damping <u>(% Critical)</u>						
	X DIR	ECTION						
1	17.34	2.3						
3	92.12	3.1						
	Z DIR	ECTION						
7	18.3	2.4						
5	87.0	1.7						

MODE SHAPE ASSOCIATED WITH THE T7.39 HZ RESOLAT MEASURED IN THE X DIRECTION ON THE RHR PUMP IS A FIRST ORDER CANTILEVE. BEAM MODE 81001-1 March 13, 1981

4-33

THE MODE SHAPE ASSOCIATED WITH THE 92.12 HZ RESONANCE MEASURED IN THE X DIRECTION ON THE PHR DUMP IS A SECOND ORDER CANTILEVER BEAM MODE

4-34

4-35

THE MODE SHAPE ASSOCIATED WITH THE 87 HZ RESONANCE MEASURED IN THE Z DIRECTION ON THE RHR PUMP IS A SECOND ORDER CANTILEVER BEAM MODE

.

4.3 Motor Control Center (1C1D):

4.3.1 Equipment Tested:

The motor control center 1C1D was tested to an acceleration level of .2 g's maximum. A high ambient background vibration (up to .05 g's) frustrated this test in the high frequency range in particular.

At the time of testing, all electrical connections and instrumentation of the control center, which is located in the auxiliary building, were completed. The cabinet was properly attached to the cement floor. The wire frame model of the control center prepared by TRANSITEK is shown in Figure 4.3.1. Four other views of the motor control center wire frame model are shown in Figure 4.3.2. The model is extremely detailed in an effort to make the very most of the possible mode shapes at the low level of excitation. The location of each point of response measurement is described in Table 4.3.1.

4.3.2 Method of Testing:

The motor control center was excited by the TRANSITEK hydraulic shaker to a maximum acceleration of .2 g's with wide band shaped pseudo random excitation. Above 30 Hz, the force spectrum was rolled off at approximately one over frequency rate of decrease. The actual rate of decrease was, in fact, higher due to the softness of the structure. The force level required to produce this level of excitation was approximately 300 pounds of force peak. The panel was tested only in the Z direction, or along the narrow dimension because previous TRANSITEK experience has shown that both vertical shaking and axial shaking tend to excite only the resonance of the narrow dimension with no new resonances. A special bracket which added approximately 100 lbs. of dead weight held the shaker at the top of the motor control center at point 92.

Thirty frames or samples of data were collected at each point to minimize the effects of the low level of excitation and high ambient vibration. The response was measured using high sensitivity (1 g/volt) accelerometers (PCB Model 308) attached to the structure with beeswax.

3

TABLE 4.3.1

1

.

The second secon

GEOMETRIC LOCATIONS OF POINTS OF RESPONSE MEASUREMENT MOTOR CONTROL CENTER 1C1D

		1																																				
	1	5	28	20	28	28	28	20	20	20	00	20	20	20	20	00	22	22	20	28	28	20	28	29	90	20	28	28	28	28	20	29	ac	00	20	20	20	22
~	1	(10.)	40	69	86	188	ø	20	49	69	80	100		90	40	202	200	88	199	8	28	40	69	83	199	a	20	40	69	80	199	G	ac	40	0.5	200	100	aar
>	Y	(1U.)	128	129	129	120	140	140	140	140	140	140	160	169	160	021	001	100	169	189	180	189	180	189	189	288	200	289	280	200	289	220	220	220	000	600	020	622
Daint	LUINC	NO.	12	22	23	74	75	26	22	28	20	68	81	82	82	20	+0	60	98	28	88	89	96	16	26	0	94	95	96	26	86	00	100	101	101	201	104	401
7	1 1 1	111.1	20	67	62	28	20	20	20	2.0	28	20	20	28	20	20	20	20	20	20	42	58	58	28	28	20	20 .	28	28	28	28	28	29	28	20	20	20	20
>	1 1 1	1.111	0.0	99	122	0	20	49	69	89	199	6	20	40	69	88	199	00	0.0	0.00	92	40	69	88	100	6	28	49	69	100	9	29	40	69	88	199	9	20
X	1 m 1	111.1	0 0	5	20	50	59	29.	29	29	59	48	49	48	40	48	40	00	00	00	69	68	69	69	69	88	80	88	88	80	100	189	100	199	199	190	120	120
Point	No	.00	00	31	59	39	49	41	42	43	44	45	46	47	48	49	59	17		10	25	53	54	55	56	52	58	53	69	62	63	64	65	66	29	68	69	82
7	(11)	1					5 0	8	0	æ	8	0	æ	8	8	ø	8	8	0	9			5 0	5	8	æ	80	80 0	5 0	a a	30	æ	8	8	1	20	28	28
٨	(In.)	0	40	00	00+	100		4	88	199	æ	40	86	199	8	48	88	188	0	40	00	00.	991	50	40	88	199	80 9	84	98	661		40	88	188	0	28	48
X	(In.)	10	a	0 0			24	419	49	40	88	88	89	88	128	129	128	129	160	160	001	001	169	188	189	188	188	288	882	882	286	229	220	220	220	60	0	8
oint	No.	1	•		, ,		• •		~		σ,	19	11	12	13	14	15	16	17	0	0,	17	59	21	22	23	24	22	26	12	28	53	30	31	32	33	34	35

81001-1 March 13, 1981

.

é

4.3.3 Modal Properties:

The driving point impedance function is shown in Figures 4.3.3A and 4.3.3B. It will be noted that resonant frequencies range from 7.4 to 63 Hz. There is the possibility that more resonances exist at higher frequencies, but, due to the extremely low level of excitation, the quality of the data is inadequate for modal analysis. The modal properties derived from the driving point transfer functions shown in Figure 4.3.3A and B are listed in Table 4.3.2. The values of damping presented in this table are generally lower than TRANSITEK's experience on similar equipment in which higher levels of excitation were applied. The ambient vibration at the motor control center is between .01 and .04 g's, and this high ambient vibration also inhibited the measurement process.

4.3.4 Mode Shapes:

The mode shapes measured on the motor control center and associated with the resonances of Table 4.3.2 are shown in Figures 4.3.4 through 4.3.9. The resonance at 69.65 Hz had no discernible mode shape due to the low level of excitation.

4.3.5 Conclusions:

The results of this test were somewhat marginal indicating that higher levels of excitation are essential to the success of measurements of this type. TRANSITEK experience on similar structures using excitations to the 1 to 3 g level show significantly higher values of damping and greater clarity of the mode shapes.

FIGURE 4.3.3A

THE DRIVING POINT TRANSFER FUNCTION SHOWING THE FIVE RESONANCES OF LOWEST FREQUENCY MOTOR CONTROL CENTER (1C1D)

.

.

.

FIGURE 4.3.3B

THE DRIVING POINT TRANSFER FUNCTION SHOWING THE TWO RESONANCES OF HIGHEST FREQUENCY. MOTOR CONTROL CENTER (1C1D) THE "FUZZY" APPEARANCE OF THE DATA AT HIGH FREQUENCY IS DUE TO INADEQUITE FORCE LEVELS. 81001 1 March 13, 1981

No.

.

ħ,

81001-1 March 13, 1981 ŧ

140

9h.

-

¢ 1

B

TABLE 4.3.2

MODAL PROPERTIES MEASURED ON THE MOTOR CONTROL CENTER (1010)

Mode Shape	Frequency (Hz)	Damping (% Critical)						
1	7.4	2.4						
2	29.19	2.6						
3	33.93	C.4						
4	39.72	i.4						
5	47.4	1.4						
6	62.98	1.3						
o Shape Found	69.65	5.4						

N

THE MODE SHAPE ASSOCIATED WITH THE 7.4 HZ RESONANCE IS A TORSIONAL MODE OF THE ENTIRE PANEL - MOTOP CONTROL CENTER (1C1D) THE LOW EXCITATION LEVEL AND TWO MASSIVE CONNECTOR PENETRATIONS FROM CABLE TRAYS DISTORT THIS MODE AND ALL OTHERS. 21001-1 march 13, 1981

.

4-45

THE MODE SHAPE ASSOCIATED WITH THE 29.2 HZ RESONANCE IS A LATERAL BENDING OF THE RIGHT SIDE OF THE PANEL WITH SOME INTERACTION OF SIMILAR COMPONENTS AT THE LEFT SIDE. (MOTOR CONTROL CENTER (1C1D)

¥.,

,

THE MODE SHAPE ASSOCIATED WITH THE 33.9 HZ RESCNANCE CONSISTS ONLY OF BENDING AT THE RIGHT END CORNER. A SIMILAR MODE POSSIBLY EXISTS AT THE LEFT END, BUT, BECAUSE OF THE LOW EXCITATION LEVEL ABOVE 33 HZ, IT COULD NOT BE DETECTED. MOTOR CONTROL CENTER (1C1D)

5

THE MODE SHAPE ASSOCIATED WITH THE 39.7 HZ RESONANCE IS A BENDING OF THE MID-SECTION OF THE PANEL BETWEEN THE LARGE CABLE TRAY PENETRATIONS. MOTOR CONTROL CENTER (1C1D)

81001-1 March 13, 1981

۴.

THE MODE SHAPE ASSOCIATED WITH THE 63.0 HZ RESONANCE IS STRICTLY LOCAL. INADEQUATE FORCE LEVELS MADE ANALYSIS OF HIGHER FREQUENCY MODES IMPOSSIBLE. MOTOR CONTROL CENTER (1C1D)

.

1

81001-1 March 13, 1981

4.4 Jet Pump Instrument Panel:

4.4.1 Equipment Tested:

The jet pump instrument pane! was tested after it was completely installed and all electrical and hydraulic connections had been completed. All instruments and transmitters were in place and the panel was properly secured to the floor. Several individual and groups of small diameter $(\frac{1}{2}^n)$ pipe connect to the top of the panel.

Wire frame models of the jet pump instrument panel are shown in Figures 4.4.1 and 4.4.2. Additional views of the panel are shown in Figure 4.4.3. Table 4.4.1 lists the geometric location of points of response measurement of the panel. Excitation was applied at point 59 in the Z direction. The panel, which weighs an estimated 1,00C lbs, is located in the inner containment.

4.4.2 Method of Testing:

Vibrations of the jet pump instrument panel were excited by the TRANSITEK electromagnetic shaker to an acceleration level of .4 g's maximum at the point of shaker attachment. The shaker excitation was broad band pseudo random with frequency content between 1 and 100 Hz. The panel was also tested by impulses (up to 300 lbf) applied in the X direction, or long dimension, of the panel. Response was measured using high sensitivity (1 g/volt) accelerometers (PCB Model 308) attached to the panel with beeswax.

4.4.3 Modal Properties:

The modal properties of the jet pump instrument panel measured in the X direction are shown in Figures 4.4.4A through 4.4.4D. The corresponding transfer function measurements for the Z direction are shown in Figures 4.4.5A and 4.4.5B. The modal properties deduced from these transfer functions are listed in Table 4.4.2. -10

81001-1 March 13, 1981

A LABELED WIRE FRAME MODEL OF THE END OF THE JET PUMP INSTRUMENT PANEL WHICH IS TYPICAL OF A . FOUR CROSS BRACED PANEL ENDS

81001-1 March 13, 1981 18 CB

4

4

. 8

.

.

14

FOUR VIEWS OF THE WIRE FRAME OF THE JET PUMP INSTRUMENT PANEL

163

.

GEOMETRIC LOCATIONS OF POINTS OF RESPONSE MEASUREMENT JET PUMP INSTRUMENT PANEL

Point	Х	Y	Z	Point	Х	Y	Z
No.	(In.)	(In.)	(1n.)	No.	(In.)	(In.)	(In.)
1	0	0	0	44	120	0	30
2	0	14	0	45	120	14	30
3	9	29	0	46	120	29	30
4	0	43	0	47	120	43	30
5	. 0	57	0	48	129	57	30
6	0	78	0	49	120	70	30
7	0	84	0	50	120	84	30
8	25	0	0	51	97	0	30
9	25	29	12	52	97	23	21
10	25	51	12	53	97	43	12
11	25	77	12	54	72	0	30
12	25	84	0	55	72	14	38
13	47	0	0	56	72	29	30
14	47	29	12	57	72	43	30
15	47	51	12	58	72	57	30
16	47	77	12	59	72	78	30
17	47	84	0	60	72	84	30
18	72	0	0	61	97	84	30
19	72	14	0	62	47	9	30
20	72	29	0	63	47	23	21
21	72	43	0	64	47	43	12
22	72	57	0	65	25	0	30
23	72	78	0	66	25	23	21
24	72	84	. 9	67	25	43	12
25	97	0	0	68	47	84	30
26	97	29	12	69	25	84	30
27	97	51	12	70	6	0	30
28	27	77	12	71	0	14	30
29	97	84	0	72	6	29	30
30	120	0	0	73	6	43	30
31	120	14	0	74	0	57	38
32	120	29	0	75	6	70	30
33	120	43	0	76	0	84	30
34	120	57	0	77	0	84	12
35	120	70	0	78	0	70	12
36	120	84	9	79	0	57	12
37	120	0	12	86	0	43	12
38	120	14	12	81	0	29	12
39	120	29	12	82	0	14	12
40	120	43	12	83	0	8	12
41	120	57	12	84	72	51	12
42	129	70	12	85	72	29	12
43	120	84	12	86	72	77	12

ø

9

.

A REPRESENTATIVE TRANSFER FUNCTION MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION

.

.

FIGURE 4.4.4B

FIGURES 4.4.4B, C AND D ARE EXPANDED VIEWS OF THE REPRESENTATIVE TRANSFER FUNCTION MEASURED IN THE X DIRECTION. IN ALL, A TOTAL OF 11 MODES WERE DETECTED IN THE X DIRECTION.

.

81001-1 March 13, 1981

.

.

REPRESENTATIVE TRANSFER FUNCTION MEASURED IN THE X DIRECTION

•

.

4-59

REPRESENTATIVE TRANSFER FUNCTION MEASURED IN THE X DIRECTION.

ŧ.

THE DRIVING POINT TRANSFER FUNCTION MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION. A TOTAL OF 8 MODES ARE INDICATED IN FIGURES 4.4.5A AND 4.4.5B.

.

4-60

٤

£

.

FIGURE 4.4.5B

THE DRIVING POINT TRANSFER FUNCTION MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION

٠

k.

4-61

81001-1 March 13, 1981

TABLE 4.4.2

MODAL PROPERTIES MEASURED ON THE JET PUMP INSTRUMENT PANEL

Mode Shape	Frequency (Hz)	Damping (% Critical)
	X DIR	ECTION
1	19.87	2.1
2	21.32	0.9
3	31.45	2.4
4 .	34.57	0.8
5	42.2	1.9
6	52.0	1 5
7	64.0	2 6
8	78.4	1.8
9	85.3	1.3
10	89.0	2.4
11	94.4	2.7
	Z DIR	ECTION
1	22.7	3.7
2	35.0	2.8
3	38.4	3.7
4	44.9	8.8
5	48.2	3.8
6	53.8	3.8
7	58.5	2.4
8	60.1	0.9

4.4.4 Mode Shapes:

The mode shapes measured in the X direction on the end panel are shown in Figures 4.4.6 through 4.4.16. The mode shapes measured in the Z direction are shown in Figures 4.4.17 through 4.4.24. The mode shapes correspond to each of the modal parameters listed in Table 4.4.2.

4.4.5 Conclusions:

The results of this test show that structures such as the jet pump instrument panel are rich in both global and local modes of vibration, particularly in the frequency range of 30 to 100 Hz. The values of damping are similar to other structures TRANSITEK has tested and are appropriate for welded and bolted steel structures of this nature. Higher excitation levels would most likely raise the low estimates of damping observed at the 21 Hz and 34 Hz modes of vibration.

THE MODE SHAPE ASSOCIATED WITH 19.87 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION. 31001-1 March 13, 1981

8

4-65

THE MODE SHAPE ASSOCIATED WITH 31.45 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION £1001-1 March 13, 1981

THE MODE SHAPE ASSOCIATED WITH 42.26 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION

81001-1 March 13, 1981

5

.

4-68

THE MODE SHAPE ASSOCIATED WITH 52.0 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION 81001-1 March 13, 1981

1

4-69

4-70

THE MODE SHAPE ASSOCIATED WITH 78.41 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION

....

۲

×.

6-

4-71

THE MODE SHAPE ASSOCIATED WITH 85.29 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION

4

81001-1 March 13, 1981

.

THE MODE SHAPE ASSOCIATED WITH 89.03 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION

81001-1 March 13, 1981

*

THE MODE SHAPE ASSOCIATED WITH 94.35 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE X DIRECTION

81001-1 March 13, 1981

THE MODE SHAPE ASSOCIATED WITH 34.96 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION

.

81001-1 March 13, 1981

.

.

4-76

*

z

*

k.

FIGURE 4.4.19

THE MODE SHAPE ASSOCIATED WITH 38.37 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION 81001-1 March 13, 1981

THE MODE SHAPE ASSOCIATED WITH 44.9 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION

.

81001-1 March 13, 1981

1

THE MODE SHAPE ASSOCIATED WITH 48.24 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION 81001-1 March 13, 1981

۲

.

.

THE MODE SHAPE ASSOCIATED WITH 53.81 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION

5

20

FIGURE 4.4.23

THE MODE SHAPE ASSOCIATED WITH 58.45 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION

*

81001-1 March 13, 1981

.

.

4-81

1

THE MODE SHAPE ASSOCIATED WITH 60.1 HZ RESONANCE MEASURED ON THE JET PUMP INSTRUMENT PANEL IN THE Z DIRECTION

.

81061-1 March 13, 1981

4.5 3 Inch Motor Operated Valve:

4.5.1 Equipment Tested:

The 3 inch motor operated valve was tested using impulse techniques. At the time of esting, the valve was completely installed and all hydraulic and electrical connections to the valve were completed. The pipes on which the valve was locaced are believed to have been empty. We estimate the valve to weigh nominally 300 lbs.

The geometric location of each point of response measurement is listed in Table 4.5.1. Figure 4.5.1 is a labeled wire frame model of the valve. Figure 4.5.2 shows additional views of the wire frame model.

4.5.2 Method of Testing:

The valve located on the inner wall of the inner containment was excited to an acceleration level of .2 to .3 g's in each of the three directions by hammer taps of nominally 200 lbf. Higher accelerations resulted from more forceful hammer tar. up to 1,000 lbf in testing to determine if the damping changed appreciably with the level of excitation. Response was measured using sensitive (1 g/volt) accelerometers (PCB Model 308) attached to the valve with glued on mounting pads.

4.5.3 Modal Properties:

The driving point transfer function for the X direction is shown in Figure 4.5.3. Five modes are apparent in the transfer function. Figure 4.5.4 is a graph of the driving point transfer function measured in the Y direction. Again, five resonances are apparent in the transfer function. Figures 4.5.5A through D are the driving point transfer function measured in the Z direction. Eleven different modes are apparent in the expanded views (4.5.5B through D). The modal parameters derived from these transfer functions are listed in Table 4.5.2.

81001-1 March 13, 1981

TABLE 4.5.1

GEOMETRIC LOCATIONS OF POINTS OF RESPONSE MEASUREMENT 3 INCH MOTOR OPERATED VALVE

Point	X	Y	Z
No.	(In.)	<u>(In.)</u>	(ln.)
1	25	18	0
2	6	18	0
3	Э	12	0
4	0	6	0
5	0	0	0
6	0	-6	8
7	0	-17	0
8	0	-28	0
9	4	9	7
10	0	-4	7
11	-4	0	7
12	0	4	7
13	2	0	14
14	-2	0	14
15	3	-3	21
16	- 3	-3	21
17	3	-3	25
13	-3	- 3	25
19	6	-1	21
20	13	-1	21
21	13	-1	25
22	6	-1	25
23	6	4	21
24	13	4	21
25	13	4	25
26	6	4	25
27	4	16	18
28	-3	16	18
29	4	16	24
30	-3	16	24
31	-4	3	21
32	-7	3	21

A WIRE FRAME MODEL OF THE 3 INCH MOTOR OPERATED VALVE

.

٠

1

.

81001-1 March 13, 1981

3

.

4-86

.

.

FIGURE 4.5.3

THE DRIVING POINT TRANSFER FUNCTION OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE X DIRECTION

81001-1 March 13, 1981

.

•

FIGURE 4.5.4

THE DRIVING POINT TRANSFER FUNCTION OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Y DIRECTION

.

.

.

.

.

.

FIGURE 4.5.5A

THE DRIVING POINT TRANSFER FUNCTION OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION 81001-1 March 13, 1981

.

.

4-89

AN EXPANDED VIEW OF THE DRIVING POINT TRANSFER FUNCTION OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION DESIGNATING THE FIVE RESONANCES OF LOWEST FREQUENCY

.

ž

٠

٠

.

.

FIGURE 4.5.5C

AN EXPANDED VIEW OF THE DRIVING POINT TRANSFER FUNCTION OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION DESIGNATING THE FIVE RESONANCES BETWEEN 40 HZ AND 55 HZ 81001-1 March 13, 1981

*

.

4-91

AN EXPANDED VIEW OF THE DRIVING POINT TRANSFER FUNCTION OF THE 3 INCH MOTOR OPERATED VALVE MEASUPED IN THE Z DIRECTION DESIGNATING THE FIVE RESONANCES OF HIGHEST FREQUENCY

.

.

٠

8100i-1 March 13, 1981

8

TABLE 4.5.2

MODAL PROPERTIES MEASURED ON THE 3 INCH MOTOR OPERATED VALVE

Mode Shape #	Frequency (Hz)	Damping (% Critical)	
		X DIRECTION	
1	18.2	1.1	
2	21.4	1.0	
3	30.1	1.3	
4	33.4	9.7	
5	74.6	1.9	
		Y DIRECTION	
1	21.9	1.1	
	29.6	1.1	
3	44.8	1.0	
4	48.1	.9	
5	49.5	۰.	
6	75.1	1.3	
		Z DIRECTION	
1	20.6	4.1	
9	29.6	.9	
2	29.8	2.2	
10	30.2	.4	
3	44.1	.5	
4	48.2	1.0	
5	49.3	1.0	
6	72.4	1.6	
8	79.9	1.6	
7	75.8	.7	

ø

4.5.4 Mode Shapes:

The mode shapes associated with the resonances listed in Table 4.5.2 for the X direction are shown in Figures 4.5.6 through 4.5.10. The mode shapes for the Y direction are shown in Figures 4.5.11 through 4.5.16, and the eight modes measured in the Z direction are shown in Figures 4.5.17 through 4.5.25.

4.5.5 Special Test Results:

The 3 inch valve was subjected to special tests consisting of impulses at greatly different force levels. The purpose of this special test was to measure the change in damping with excitation level and the tests were completed before we were advised of Taipower's desire to limit the response levels.

The results of the tests, listed in Table 4.5.3, show that generally the damping increases with the level of applied force. There are exceptions, however. The most frequent result is that damping increased a factor of 2 to 4 with a factor of 10 charge in the force level.

٠

MODE SHAPE ASSOCIATED WITH THE 18.2 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE X DIRECTION

1

MOD' SHAPE ASSOCIATED WITH THE 21.3 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE X DIRECTION

٠

81001-1 March 13, 1981

٠

4

.

MODE SHAPE ASSOCIATED WITH THE 30.1 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE X DIRECTION 81001-1 March 13, 1981

MODE SHAPE ASSOCIATED WITH THE 33.4 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE X DIRECTION

٠

81001-1 March 13, 1981

.

FIGURE 4.5.10

.

MODE SHAPE ASSOCIATED WITH THE 74.6 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE X DIRECTION

81001-1 March 13, 1981

4-99

81001-1 March 13, 1981

1

an at

.

.

*

FIGURE 4.5.12

MODE SHAPE ASSOCIATED WITH THE 29.7 HZ RESONANCE OF THE 3. INCH MOTOR OPERATED VALVE MEASURED IN THE Y DIRECTION

81001-1 March 13, 1981

MODE SHAPE ASSOCIATED WITH THE 44.8 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Y DIRECTION

.

81001-1 March 13, 1981

MODE SHAPE ASSOCIATED WITH THE 48.1 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Y DIRECTION

13.

*

MODE SHAPE ASSOCIATED WITH THE 49.5 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Y DIRECTION

81001-1 March 13, 1981

.

FIGURE 4.5.16

÷

MODE SHAPE ASSOCIATED WITH THE 75.1 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Y DIRECTION

81001-1 March 13, 1981

MODE SHAPE ASSOCIATED WITH THE 20.6 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

81001-1 March 13, 1981

.

.

MODE SHAPE ASSOCIATED WITH THE 29.6 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION 81001-1 March 13, 1981

MODE SHAPE ASSOCIATED WITH THE 29.8 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

.

81001-1 March 13, 1981

.

*

FIGURE 4.5.20

MODE SHAPE ASSOCIATED WITH THE 30.2 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

.

FIGURE 4.5.21

MODE SHAPE ASSOCIATED WITH THE 44.1 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

.

81001-1 March 13, 1981

۹.

*

4-111

MODE SHAPE ASSOCIATED WITH THE 49.3 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

81001-1 March 13, 1981

.

.

.

1

.

MODE SHAPE ASSOCIATED WITH THE 72.4 HZ RESONANCE OF THE 3 INCH MUTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

MODE SHAPE ASSOCIATED WITH THE 75.8 HZ RESONANCE OF THE 3 INCH MOTOR OPERATED VALVE MEASURED IN THE Z DIRECTION

81001-1 March 13, 1981

.

TABLE 4.5.3

SPECIAL TEST RESULTS 3 INCH MOTOR OPERATED VALVE

h. rd (800-1000 1bf)		Soft (<100 1bf)		
Frequency (H_)	Damping (% Critical)	Frequency (Hz)	Damping (% Critical)	
	X DI	RECTION		
18.56	1.52	18.10	0.2	
21.11	3.89	21.66	2.11	
29.87	1.22	29.59	0.60	
33.34	2.31	32.94	1.08	
73.55	0.02	73.56	0.02	
	Y DIF	RECTION		
21.18	2.20	21.07	0.60	
21.73	0.66	21.82	0.42	
29.88	1.13	28.59	3.55	
44.99	0.69	45.19	0.63	
47.17	2.21	47.31	1.22	
49.55	0.98	48.83	0.58	
73.98	1.17	74.64	0.13	
	Z DIF	RECTION		
21.28	1.38	20.83	9.66	
21.54	1.06	21.11	2.02	
29.70	1.36	29.87	0.43	
44.73	1.16	43.88	0.80	
47.95	0.83	47.75	0.10	
49.70	1.07	49.49	0.51	
71.72	1.04	72.20	0.41	
75.25	2.68	74.53	0.53	
80.88	0.79	81.09	1.58	

4.5.6 Conclusions:

The valve itself exhibits very few resonances. The greatest number of resonances experienced by the valve are associated with the pipe on which it is mounted. The values of damping are somewhat low for structures of this type and reflect the relatively low excitation levels applied.

81001-1 March 13, 1981

5.0 CONCLUSIONS

The values of resonant frequency, dampings and modal coefficients are consistent with TRANSITEK experience on similar equipment. Many resonances were detected in the 1 to 100 Hz frequency range. While these resonances in and of themselves do not pose clear or potential hazards, they indicate that additional analysis is required to accurately assess the likelihood of failure in an event which produces a combination of seismic and high frequency loads.

The cooperation of station personnel (Taipower's C.C. Cheng, H.C. Lee and Hainan Hsiah) and EG&G personnel (Ira Hall and Bob Guenzler) enabled us to perform this program to the general extent of the original scope. The response levels to which the program was limited ruled out the hopedfor measurement of variation in damping with response amplitude and limited severely the quality of data from the Motor Control Center. The data are, however, usable as the values of damping are in the range of expected and are characteristic values.

6.0 REFERENCES:

- "Modal Analysis Users Manual The MPLUS Computer Program" SDRC, Cincinnati, Ohio, April 17, 1978 with revisions dating to March, 1980.
- (2) Klosterman, A.L. "On the Experimental Determination and Use of Modal Representation of Dynamic Characteristics". A PhD Dissertation for the Dept. of Mech. Eng.; University of Cincinnati, Ohio 1971.
- (3) W. G. Halvorsen and D.L. Brown, "Impulse Technique for Structural Response Testing" Sound and Vibration Magazine, November, 1977, pp. 8-21.
- (4) M. Richardson and K. Ramsey, "Dynamic Testing of Mechanical Systems Using Impulse Testing Techniques" Hewlett-Packard Application Note 140-3.
- (5) Baumeister & Marks, Eds. "Standard Handbook for Mechanical Engineers" 7th Ed., McGraw Hill, pp. 5-91.
- (6) C.C. Kennedy and C.D.P. Pancu "Use of Vectors in Vibration Measurement and Analysis" Journal of Aeronautical Sciences, Vol. 14, No. 11, 19 and 7, pp. 603-625.
- (7) W.J. Duncan, "Elementary Matrices" MacMillan Company, New York, 1946.
- (8) "Modal Parameters of Mechanical Structures" Van Loon, P.
 PhD. Dissertation, Catholic University of Leuven, Leuven, Belgium 1974, 183 pp.

General References or Modal Analysis

"A Critical Introduction to Some Industrial Resonance Testing Techniques" Pendered, J.W.; Bishop, R. E. D. Journal of Mechanical Engineering Science, Vo. 5, No. 4 1963. pp. 345-367.

"The Determination of Modal Shapes in Resonance Testing" Pendered, J.W.; Biship, R. E. D. Journal of Mechanical Engineering Science, Vol. 5, No. 4 1963, pp. 379-385.

"An Investigation into the Theory of Resonance Testing: Bishop, R.E.D.; Gladwell, G.M.L. Philosophical Transactions, Royal Society of London, Series A, Vol. 255, A 1055 1963, pp. 241-280.

"Modal Analysis Using Digital Test Systems" Richardson, M. Seminar on Understanding Digital Control and Analysis in Vibration Test Systems (Part 2) 1975, pp. 43-64.

General References on Modal Analysis (continued)

"Identification of the Modal Properties of an Elastic Structure from Measured Transfer Function Data" Richardson, M.; Potter, R. Instrument Society of America, ISA ASI 74250 1974, pp. 239-246

"Viscous vs. Structural Damping in Modal Analysis" Richardson, M.; Potter, R. 46th Shock and Vibration Symposium 1975, 8 pp.

"Identifying Modes of Large Structures from Multiple Input and Response Measurements" Richardson, M.; Kniskern, J. SAE Paper No. 760875 1976, 12 pp

"Effective Measurements for Structural Dynamics Testing: Part I" Ramsey, K. Sound and Vibratica, November 1975

"Effective Measurements for Structural Dynamics Testing: Part II" Ramsey, K. Sound and Vibraton, April 1976.

"Survey of Excitation Techniques Applicable to the Testing of Automotive Structures" Brown, D. L.; Carbon, G.; Ramsey, K. SAE Paper No. 770029 1977, 16 pp.

"Parameter Estimation Techniques for Modal Analysis" Brown, D.L., et al SAE Paper 790221 - Preliminary

General References on Digital Signal Processing

R. Otnes and L. Enochson "Applied Times Series Analysis Vol. 1." Wiley & Sons, 1978.

R. Otnes and L. Enochson "Digital Time Series Analysis." Wiley & Sons, 1972.

J. S. Bendat and A. G. Piersol, "Random Data", 1971.

APPENDIX B

FIGURES OF COMPONENTS TESTED

TRANSITEK Impedance Analyzer at Kuosheng

.

8-2

.

Kuosheng Impedance Test Analyzer Control

Kuosheng 3" Motor Operated Valve

Horizontal Vibration of Kuosheng Jet Pump Instrument Panel

 $\mathbf{z}_{\mathbf{z}}$

ی کل

ļ.

٠.

B-8

1.045

P

4

A. 3

ŗ

3

Ż

1

.

Hydraulic Shaker Installed On Kuosheng RHR Pump (Horizontal)

angel Second

.

.

۰Ŋ

× ,

Hydraulic Shaker Installed Horizontally On Kuosheng RHR Pump 100

Ś

. . .

2

e e

Kuosheng RHR Pump Base

.

.

B-16

.

Kuosheng RHR Pump Base

Kuosheng 480 V Motor Control Center

Horizontal Vibration of Kuosheng 480 V Motor Control Center

.

B-20

.

Kuosheng Recirc Control Valve B

B-22

.

Horizontal Vibration of Kuosheng Recirc Control Valve

8

.

Vertical Vibration of Kuosheng Recirc Control Valve B

٠

.

.

8-26

Kuosheng Recirc Control Valve B and Supports

Kuosheng Recirc Control Valve B and Supports

Kuosheng Recirc Control Valve B and Pipe Supports

APPENDIX C

SUPPLEMENTARY TEST DATA

Transitek, Inc.

2328 J Walsh Avenue Santa Clara, CA 95050 Telephone 408-246-1616

ŵ

DATA TRANSMITTAL

MECHANICAL IMPEDANCE TESTS

ON

SELECTED COMPONENTS

KUOSHENG NUCLEAR FOWER STATION

for

EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415

TRANSITEK Job No. 81036

May 15, 1981

Written by: <u>Herala P. Coleman</u> Gerald P. Coleman Manager, Data Services

(Date) 5-15-81

Reviewed by: Mitty C. Plummer President

0

(Date) 15, 1981

2

Transactions in Technology

81036 May 15, 1981

TADI	C	0C	CONT	TEATTC	
INDI	. E.	UF	LUN	CINIS	

		Page
1.	Overview	1-1
2.	Format for Disk Files	2-1
3.	Typical PROJECT FILE	3-1
4.	Typical PARAMETER Record	4-1
5.	Typical MODE SHAPE Record	5-1
6.	Typical GEOMEIRY File	6-1
7.	Typical FUNCTION Record	7-1
8.	Typical TRACE Record	8-1
9.	RHR Pump - Files	9-1
10.	Jet Pump Instrumentation Panel - Files	10-1
11.	Recirculation Control Valve - Files	11-1
12.	3" Motor Operated Valve - Files	12-1
13.	480V Motor Control Center - Files	13-1

Overview

Addendum to "Test Results, Mechanical Impedance Tests on Selected Components, Kuosheng Nuclear Power Station".

This addendum contains disk files from the above referenced test results. The raw data files are contained on both dual density floppy diskette and RK05 Hard Disk. In addition the hard disk contains all subsequent files generated during analysis and processing. Each file type is discussed in detail on pages 2 through 8. Pages 9 through 14 contain listings of each structure tested.

Format for Disk Files

1. The files are all in standard DEC RT-1? format.

Disk File Name	File Extension	Number of Blocks	Date File Created
6 characters maximum	3 characters maximum	256 Byte blocks	
Example:			
K3INZ.DAT	<u>52</u>	08-May-81	
File Extension	Blocks	Date Created	

2. After each file the contents are identified.

Example:

K3INZ.DAT	52	08-May-81	Project
And a second s		and a second	

By looking in the appendix under 'Typical PROJECT FILE', you will find a break down of the contents of a PROJECT FILE.

- Each Typical File or Typical record contains information which applies to that file type along with a more detailed description of the records within the file.
- 4. These files are structured around the FORTRAN based MPLUS structural analysis program written by SDRC (Structural Dynamics Research Corporation). FORTRAN listings are not supplied as a normal part of the program, we cannot go any deeper into the files.
- 5. Each of the five structures tested are broken down to the project file level with the listing of the records for each file.

81036 May 15, 1981

TYPICAL PROJECT FILE

A PROJECT FILE is the master file for a given structure. Each PROJECT FILE contains Attached Data Files which may be moved in and out of the PROJECT FILE Any Data-File may be attached to any PROJECT FILE.

PROJECT FILE

Check Point - A set of default conditions followed by the date and time of last update.

File Type	Code	File Name	<u>Nate Time</u>	Records Ident	ification
Project	Z	K3INZ	050881-000000	0/Taipower	3" Valve Project
Parameter	Р	wiNP	011881-000000	4/Taipower	3" Valve Parameters
Mode Shape	S	K3INS1	012181~000000	10/Taipower	3" Valve Shapes 29X
Geometry	G	K3ING	011881-000000	1/Taipower	3" Valve Geometry
Function	н	K3INH3	011981-000000	45/T. ipower	3" Valve Z-Functions
Traces	Т	K3INT	011881-000000	6/Taipower	3" Valve Traces

Only one record is contained in a given project file although any data file may be attached to any project file.

C	HECKPOINT	050881-000000				
Z	K3INZ	050881-000000	0/Taipower	3"	Valve	Project
P	K3INP	011881-000000	4/Taipower	3"	Value	Parameters
S	K31NSZ	030581-000000	20/Taipower	3"	Valve	Shapes 29Z
G	K3ING	011881-000000	1/laipower	3"	Valve	Geometry
H	K3INH1	011981-000000	45/Taipower	3"	Valve	X-Functions
T	K3INT	011881-000000	6/Taipower	3"	Valve	Traces
T RECORDS IN JSE REC 1:LC REC 2:LC REC 3:C

Trace Records in File L = Trace of Links C = Trace of Coordinates

P RECORDS IN USE REC 1:5: REC 2:7: REC 3:9: REC 4:1

Parameter Records in File

Mode Shape Records in File

 S RECORDS IN USE

 REC 1:
 18.190 HZ Shape #1

 REC 2:
 21.329 HZ Shape #2

 REC 3:
 30.140 HZ Shape #3

 REC 4:
 33.410 HZ Shape #4

 REC 5:
 74.570 HZ Shape #5

 REC 6:
 74.570 HZ Shape 5 Modified

 REC 7:
 18.190 HZ Shape 1 Modified

 REC 8:
 21.329 HZ Shape 2 Modified

 REC 9:
 30.140 HZ Shape 3 Modified

 REC 10:
 33.410 HZ Shape 4 Modified

Only one Geometry record is included in any Geometry file so no record listing is included.

FUNCTION RECORDS IN FILE

H REC	CORDS	IN US	SE	1.1	n - reneeron keeprus in use
FEC	1	29%*	3X-	6	Record Number Reference Response Sequence Number
PEC	5	29X+	3X-	0	User Assigned
PEC	3	298+	4×-	6	
PEC	4	29X+	5X-	6	The sequence numbers used for this report are as
REC	5	29×+	6X-	6	follows:
REC	6	29%*	78-	0	
PEC	- 7	29X+	8X+	0	0 = Standard frequency response function
REC	8	29X+	9X+	6	1 = Special frequency response function
REC	9	29%+	11X+	6	2 = Response PSD
REC	19	29X+	13×-	8	3 = Force PSD
REC	11	298+	14%+	6	4 = Coherence
REC	12	29X+	15.5-		5 = Not used
REC	13	29X+	17X-	0	6 = Maximum force frequency response function
REC	14	29X+	20X-	0	7 = Maximum response PSD
REC	15	29X+	21X-	8	8 = Maximum force PSD
REC	16	298+	24X-	0	9 = Maximum Coherence
REC	17	29×+	25×-	8	10= Minimum force frequency response function
REC	18	29%+	27X-	0	11= Minimum response PSD
REC	19	29X+	29X-	3	12= Minimum force PSD
REC	26	29X+	29X-	15	13= Minimum Coherence
REC	21	29X+	29X-	16	14= Not used
REC	22	29X+	29X-	2	15= Force time history
PEC	23	29X+	28X+	9	16= Response time history
REC	24	29X+	30X+	8	
REC	25	29X+	31×+	0	
REC	26	298+	16X+	0	
REC	27	298+	18X+	6	
REC	28	29X+	294-	0	
REC	29	29X+	292-	6	
REC	30	29X+	214+	6	
REC	31	29X+	212-	6	
REC	32	29X+	5Z+	9	
REC	33	27X+	28X+	10	
REC	34	27X+	28X+	11	
REC	35	27X+	28X+	12	
REC	36	27X+	28X+	13	
REC	37	27X+	28X+	6	
REC	38	27X+	28X+	7	
REC	39	278+	28X+	8	
REC	48	27X+	58X+	9	
REC	41	29X+	29X-	4	
REC	42	29X+	29X-	1	
REC	43	29X+	29X-	6	

A Typical Record Taken From A Parameter File

LABEL		User identification for analysis
FREQ		Resonance frequency
DAMPING		Viscous damping ratio
AMPLITUDE	=	Modal amplitude
PHASE	-	Modal rotation
REF	æ	Reference Coordinate
RES	-	Response Coordinate
MODE	-	Associated mode number
FLAGS		Processing flags for analysis

MODE	PARAMETERS												
LABEL	FREQ	DAMPING	AMPLITUDE	PHASE	REF	RES	MODE		1	FL	AG	is	
1	21.250	0.014956	6.4277E-02	-1.4680	29Z+	29Z-	0	C	1.1	0	0	1	1
3	29.803	0.021740	0.4216	-1.4091	29Z+	29Z-	0	C	1	0	0	1	1
4	48.221	0.010247	8.1723E-02	-1.7421	29Z+	29Z-	0	C	11	0	0	1	1
5	44.067	0.005251	1.9301E-02	-2.2971	29Z+	29Z-	0	0	11	0	0	1	1
9	72.370	0.016246	0.1678	1.8579	29Z+	28Z+	0	C	11	0	0	1	1
10	75.784	0.007499	7.8523E-02	-2.1828	29Z+	29Z-	0	C	11	0	0	1	1
11	79.892	0.015758	0.2826	-1.6253	29Z+	297-	0	0	1	0	0	1	1
6	49.332	0.009690	0.4022	1.7980	29Z+	232+	0	C	11	0	0	1	1
2	20.552	0.040843	2.1412E-02	-0.4385	297+	297-	0	0	11	0	0	1	1

A Typical Record Taken From A Shape File

LOC = Geometry Location Followed by Coefficients for X, Y and Z Directions

BOOM	SH	APE					
LOC		X REAL	X IMAG	Y PEAL	Y IMAG	Z PEAL	Z IMAG
1	0	.000E-01	0.000E-01	0.000E-01	0.0095-01	-3.931E-03	-3.794E-33
2	U	.000E-01	0.980E-01	3.397E-04	3.273E-83	-2.296E-02	-2.781E-02
3	-1	.316E-03	-7.342E-03	0.000E-01	0.000E-01	-2.873E-02	-3.827E-02
4	9	0995-01	0.999E-91	0.000E-01	0.000E-01	-2.759E-02	-3.759E-02
5	6	.009E-01	0.0002-01	0.090E-01	0.009E-01	-2.564E-02	-3.930E-02
6	0	.000E-01	0.000E-91	0.000E-01	0.000E-01	-2.123E-02	-3.480E-02
7	0	000E-01	0.000E-01	0.000E-01	0.000E-01	-2.0995-02	-3.595E-02
8		.0025-01	0.000E-01	0.600E-01	0.000E-01	-1.765E-02	-1.984E-02
9	0	000E-01	0.999E-91	0.000E-01	0.000E-01	-5.018E-03	-1.155E-02
10		000E-01	0.000E-01	0.000E-01	0.000E-01	0.090E-01	9.999E-01
11	6	000E-01	0.080E-01	0.000E-01	0.989E-01	-3.262E-02	-5.828E-82
12	9	0905-01	0.000E-01	0.000E-01	0.000E-01	0.000E-01	0.000E-01
13	9	.000E-01	0.999E-01	0.000E-01	0.000E-01	0.000E-01	8.899E-01
14	6	090E-01	0.000E-01	0.000E-01	0.000E-01	0.000E-01	0.000E-01
15	0	.000E-01	0.000E-01	0.000E-01	0.000E-01	2.071E-02	3.364E-92
16	9	.009E-01	0.000E-01	0.000E-01	0.000E-01	-2.272E-02	-4.285E-02
17	0	000E-01	0.000E-01	0.090E-01	0.000E-01	9.000E-01	0.000E-01
18	0	.099E-01	0.090E-01	0.000E-01	0.000E-01	0.000E-01	0.000E-01
19		000E-01	0.099E-01	0.000E-01	0.000E-01	2.4195-03	4.769E-03
26	9	.000E-01	0.000E-91	0.099E-01	0.909E-01	1.505E-02	2.742E-82
2.	. 0	.099E-01	0.000E-01	0.099E-01	0.000E-01	-7.954E-03	-3.703E-03
22		000E-01	0.000E-01	0.000E-01	0.900E-01	-3.449E-02	-4.425E-02
23	0	000E-01	0.000E-01	0.000E-01	0.000E-01	-7.355E-03	-2.038E-02
24	9	099E-01	0.099E-01	0.000E-01	0.000E-01	3.478E-02	3.372E-02
25		009E-01	0.000E-01	0.000E-01	0.000E-01	8.940E-03	2.395E-02
26		000E-01	0.000E-01	0.0005-01	0.000E-01	-9.235E-03	-4.694E-03
27	-3	113E-02	-2.978E-02	6.819E-03	9.372E-03	-2.159E-02	-3.929E-02
28		.000E-01	0.000E-01	0.000E-01	0.000E-01	-2.766E-02	-4.789E-02
29		10-3660	0.000E-01	0.090E-01	0.090E-01	-2.272E-02	-2.671E-92
30	0	.000E-01	0.000E-01	0.000E-01	0.000E-01	-1.869E-02	-3.577E-02
31	8	.000E-01	0.000E-01	0 000E-01	0.000E-01	-5.968E-82	-5.089E-02
32	9	000E-01	0.000E-01	0.000E-01	0.009E-01	0.900E-01	0.000E-01

.

A Typical Geometry File

GEOMET	RY		
LOC X		Y	Z
1	25	18	0
2	6	18	
3	9	12	0
4	9	6	
5	0	0	
6		-6	9
7	. 0	-17	9
8	9	-28	
. 9	4	9	7
19	. 0	-4	7
11	-4	0	7
12	0	4	7
13	2	0	14
14	-2	0	14
15	3	-3	21
16	- 3	- 3	21
17	3	- 3	25
13	- 3	-3	25
1.9	- 6	-1	21
- 26	13	~ 1	21
21	13	-1	25
22	6	- 1	25
23	5	4	21
24	13	4	21
25	13	4	25
26	6	4	25
27	4	16	18
58	- 3	16	18
29	4	16	24
39	- 3	16	24
31	-4	3	21
22	-7	3	21

6-1

Typical Frequency Response Function

Function Number = Data array from which function was listed. 29Z = Reference location, axis and sense 29Z-= Response location, axis and sense Frequency = HERTZ followed by real and imaginary components, amplitude and phase.

FUNCTION I	2924 292-			
FREQUENCY	PEAL	Imeg	AMPLITUDE	PHASE
0.0000	-4.1429E-03	9.0000	4.1428E-03	3.142
0.3906	-6.8565E-05	4.9591E-04	5.0064E-04	1.709
0.7812	-7.7384E-84	4.19625-04	5.51998-04	2.299
1.172	-9 1553E-05	2.1362E-04	2.3241E-04	1.976
1.562	€ 1935E-95	8.3923E-05	1.0377E-04	0 9420
1.953	3.0512E-05	1.99366-04	2.0070E-04	1.419
2.344	0.0000	2.21255-04	2.21255-04	1.571
2.774	1 5259E-05	1.9336E-94	1.9895E-04	1.494
3 125	1.5259E-85	1.2207E-04	1.2302E-04	1.446
3.516	6.9665E-05	1.5259E-94	1.6733E-94	1 148
3.996	1 2970E-04	-3.8147E-05	1.3512E-04	-0.2861
4.297	1 2970E-04	-2.2888E-95	1.31705-04	-0.1747
4.687	1.0681E-04	1.8681E-04	1.5105E-04	0.7954
5.078	1.3733E-04	6.8665E-05	1.5354E-04	0.4636
5.469	1.6022E-04	9,9182E-05	1.8843E-04	0.5543
5.859	2.5940E-04	-2.2888E-05	2.6941E-84	-8.8007E-0
6.250	2.4414E-94	5.3486E-05	2.4991E-04	0.2154
6.641	2.6783E-84	-2.2888E-05	2.6801E-04	-8.5595E-0
7.031	3.1281E-04	-1.8681E-84	3.3054E-04	-0.3290
7 422	5.1117E-04	7.62948-96	5.1123E-04	1.4924E-0.
7.912	4.04365-04	7.62945-05	4.1149E-84	9.1865
8.203	5 4932E-94	1 52596-05	5 4953E-04	2.7771E-0
3.594	5.95896-04	-2 05995-04	€ 39745-94	-0.3332

9.375	7.78208-04 -1.52598-05	7.72356-04 -1 96056-02
9.766	7.6294E-04 -1.5259E-05	7.6309E-04 -1.9997E-02
10.16	1.0071E-03 0.0000	1.0071E-03 0.0000
18.55	1.0071E-03 1.0681E-04	1.0127E-03 0.1057
10.54	1.1057E-03 2.2888E-05	1.1065E-03 2.0687E-02
11.33	1.0834E-03 7.6294E-05	1.0861E-03 7.0306E-02
11.72	1.2817E-03 -9.9182E-05	1.2856E-03 -7.7227E-02
12 11	1.3962E-03 -8.3923E-05	1.3987E-02 -6.0037E-02
12.50	1.4267E-03 -1.2207E-04	1.4319E-03 -8.5354E-02
12.89	1.6022E-03 -1.2970E-04	1.6074E-03 -8.0776E-02
13.28	1.7014E-03 -3.0518E-05	1.7916E-03 -1.7935E-02
13.67	1.8616E-03 -7.6294E-05	1.8631E-03 -4.0951E-02
14.95	1.9760E-03 -5.3406E-05	1.9767E-03 -2.7020E-02
14.45	2.2912E-03 -3.0518E-05	2.2814E-03 -1.3377E-02
14.84	2 4185E-03 -1.6022E-04	2.4238E-03 -6.6149E-02
15.23	2.6093E-03 -1.6022E-04	2.6142E-03 -6.1327E-02
15.62	2.7390E-03 -3.1281E-04	2.7569E-03 -0.1137
15.92	3.9746E-93 -1.2207E-04	3.0771E-03 -3.9681E-02
16 41	3.2578E-03 -2.6703E-04	3.2687E-03 -8.1784E-02
16.80	3.5934E-03 -2 4414E-04	3.6017E-03 -6.7836E-02
17.19	3.9444E-03 -3.1281E-04	3.9568E-03 -7.9138E-92
17.58	4.4174E-03 -6.1798E-04	4 4604E 03 -0.1390
17.97	5.2567E-03 -1 99135-03	5 62128-03 -0 3621
19 36	4.6463E-03 0.0000	4 54535-93 8 6998
13 14	6.1139E-07 -7 705*E-04	6 16 18-23 -0 1253
19.53	6.9351E-03 -9 5212E-04	6 99956-03 -0.1237
19.92	9.6517E-03 -1.1902E-03	8 7332E-03 -0.136?
20.31	9.9716E-03 -2.3651E-03	1.0248E-02 -0 2329
20.70	1.3130E-02 -5 9507E-03	1.4068E-02 -0.3572
21.09	8.5229E-93 -3.2905E-02	3.3991E-02 -1.317
21.48	7.4234E-03 -9.2010E-03	1.1822E-02 -0 8919
21.87	-5.8746E-03 -2.3460E-02	2.4185E-82 -1.816
22.27	-4 4922E-03 -3.8452E-03	5.8451E-03 -2.424
22.66	3.66111 94 -6.94275-84	7.8494E-84 -1.085
23.05	2.9602E-03 1 7548E-04	2.9654E-03 5.9209E-02
23.44	4.9438E-03 -1.6785E-04	4.9467E-03 -3.3939E-02
23.83	6.1722E-03 -5.1935E-04	6.2023E-03 -9.8567E-02
24.22	5.9589E-03 -1.7098E-03	7.1549E-03 -0.2408
24.61	9.5517E-03 -1.0757E-03	8.7184E-03 -0.1277
25 08	1.0071E-02 -2 4719E-03	1.0370E-02 -0.2407
25.39	9.0103E-03 -4.1962E-03	3.9395E-03 -0.4358
25.78	1.1294E-02 -1.7166E-93	1.1414E-02 -0.1510
26.17	1.3069E-02 -2 7771E-03	1.3361E-02 -0.2094
26.56	1.4915E-02 -2.4948E-03	1.5123E-02 -0.1657
26.95	1.7197E-02 -2.3804E-03	1.7361E-02 -0.1375
27 34	2.1759E-02 -3.0899E-03	2 1977E-02 -0.1411
27.73	2.7794E-02 -5.4779E-03	2.8329E-02 -0.1946
29.12	3.4119E-02 -1 1210E-02	3 61056-02 -0.3332

28.91	5.07536-02 -	2.61386-02	5.7993E-02	-0.4755
29.39	7.56706-02 -	6.2195E-02	9.7919E-02	-0.6832
29 69	2.5177E-04 -	0.1227	0 1227	-1.569
30 89	2.0027E-02 -	0.1202	0.1219	-1.496
30.47	-9.2873E-02 -	3.9948E 02	0.1007	-2.744
30.86	-5.9380E-02 -	9 1934E-03	6.0087E-02	-2.988
31.25	-3.8033E-02 -	-2.3499E-03	3.8105E-92	-3.880
31.64	-2.5659E-02 -	-7.5760E-03	2.6745E-82	-2.854
32.03	-2.47805-02 -	-9.6139E-04	2.4799E-02	-3.103
32.42	-1.8234E-02 -	-1.6022E-03	1.8305E-02	-3.854
32.81	-1 3260E-02 -	-5 81365-93	1.4478E-02	-2.728
33.20	-1.7092E-02 -	-8.4229E-03	1.9946E-92	-2.583
33.59	-1.7433E-02 -	-6.9733E-03	1.8776E-02	-2.761
33.98	-1.6457E-02 -	-4.7531E-03	1.7129E-02	-2.860
34.37	-1.4961E-0°	-4.3335E-03	1.5576E-02	-2.850
34.77	-1.4252E-02 ·	-3.8681E-03	1.4767E-02	-2.877
35.16	-1.2909E-02	-3.3569E-03	1.3338E-02	-2.887
35.55	-1.2215E-02 ·	-3.7689E-03	1.2783E-02	-2.842
25.94	-1.3237E-02 -	-3.9444E-03	1.3812E-02	-2.852
36.33	-1.2009E-02	-1.8616E-03	1.2152E-02	-2.988
36.72	-1.1421E-02	-1.2360E-03	1.1488E-02	-3.034
37.11	-1.0277E-02	-1.0910E-03	1.0335E-02	-3.936
37.58	-9.3307E-03	-6.1798E-04	9.55125-03	-3.075
77.29	-9.43055-03	-4 19625-04	8.4409E-03	-3.892
79.47	-5.50025-03	-9 7772E-04	6.5592E-03	-3.097
12.96	-6 1798E-03	-1.12925-03	6.2821E-03	-2.961
35.45	-5.51615-97	-1 60228-03	9.7440E-03	-2.859
39.84	-5.00542-03	-2.3880E-03	7.2122E-03	-2.804
40.23	-6.4316E-03	-1.6556E-03	5.6412E-03	-2.95
40.62	-6.0272E-03	-7.2479E-04	6.0706E-03	-3.022
41.02	-5.1804E-93	-6.1035E-05	5.1807E-03	-3.130
41.41	-4.9588E-03	5.3406E-04	4.0938E-03	2.011
41.90	-2.4872E-03	1.8311E-04	2.4939E-03	3.068
42.19	-7.6294E-04	-7.7057E-04	1.0844E-03	-2.351
42.58	5.0354E-04	-2.8076E-03	2.8524E-03	-1.393
42.97	8.3923E-05	-4.4937E-93	4.4945E-03	-1.552
43.36	1.1215E-03	-4.7226E-03	4.8539E-03	-1.338
43.75	1.4038E-03	-1.8469E-82	1.0554E-02	-1.437
44.14	-1.1299E-02	-1.0735E-02	1.5585E-02	-2.382
44 53	-6.7673E-93	-3.0060E-03	7.4049E-03	-2.724
44.92	-5.1575E-03	-2.3193E-03	5.6559E-03	-2.719
45.31	-4.5242E-03	-1.3046E-03	4.7086E-03	-2.861
45.70	-2.6321E-03	-5.3486F-04	2.6858E-03	-2.941
46.89	-5.1890E-04	-3.1281E-04	5.8588E-84	-2.599
46.48	1.3962E-03	-6.7982E-84	1.5525E-03	-0.4527
45.87	3.35-9E-03	-1.5106E-03	3.6912E-03	-0.4229
47 27	36245-83	-3.91395-03	0.11965-03	-0.4996
47.65	9 9417E-93	-3.63166-63	1.3138E-85	-6 9723

48.44	-8.3694E-03	-1.0269E-02	1.3248E-02	-2.255
48.83	-7.6294E-04	-4.8218E-03	4.8818E-03	-1.728
49.22	9.6588E-03	-1.3916E-02	1.6940E-02	-0.9641
49.61	-1.1032E-02	-3.0823E-02	3.2738E-02	-1.915
50.96	-1.5594E-02	-1.3992E-02	2.0952E-02	-2.410
50.35	-1.2245E-02	-9.0561E-03	1.5230E-02	-2.585
59.78	-1.3504E-02	-6.4316E-03	1.4957E-02	-2.697
51.17	-1.0506E-02	-4.2801E-03	1.1344E-02	-2.755
51.56	-9.1476E-03	-3.6087E-03	9.8337E-93	-2.766
51.95	-7.9956E-03	-2.8610E-03	8.4921E-03	-2.798
52 34	-7.1640E-03	-2.7466E-03	7.6725E-03	-2.775
52.73	-6.5765E-03	-2.2278E-03	6.9436E-03	-2.815
53.12	-5.6381E-03	-2.2278E-03	6.0623E-03	-2.765
53.52	-4.8294E-83	-2.1286E-03	5.2777E-03	-2.726
53.91	-4.1428E-03	-2.4414E-03	4.8086E-03	-2.689
54.36	-3.7994E-03	-2.8534E-03	4.7516E-03	-2.497
54 65	-3.2120E-03	-3.4027E-03	4.6792E-03	-2.327
55.08	-3.6087E-03	-4.1733E-03	5.5172E-03	-2.284
55.47	-5.0507E-03	-4.0359E-03	6.4651E-83	-2.467
55.86	-4.5624E-93	-2.2507E-03	5.0873E-03	-2.683
56.25	-3.9444E-03	-2.7618E-03	4.8152E-03	-2.531
56.64	-4.4174E-03	-1.8463E-03	4.7877E-03	-2.746
57.03	-3.1357E-03	-1.2360E-03	3.3705E-03	-2.766
57 42	-2.8763E-03	-1.2589E-03	3.1397E-03	-2.729
58.26	-2.1057E-03	-1.2512E-03	2.4194E-03	-2.605
58.59	-1.1978E-03	-8.0872E-04	1.4453E-03	-2.548
58.98	-7.9346E-84	-8.5449E-04	1.1661E-03	-2.319
59.37	6.1035E-05	-8.0109E-04	8.8341E-84	-1.495
59.77	9.999.9	-1.0376E-03	1.0376E-03	-1.571
60.16	6.1798E-04	-1.2436E-03	1.3887E-03	-1.110
69.55	6.4037E-04	-9.5367E-04	1.1:90E-03	-0.9791
68.94	9.9182E-04	-1.0605E-03	1.4520E-03	-0.8188
61.33	2.0599E-03	-1.0605E-03	2.3169E-03	-0.4754
61.72	2.4109E-03	-1.1673E-03	2.6786E-03	-0.4509
62.11	2.8000E-03	-8.9264E-04	2.9388E-03	-0.3086
62.56	3 3798E-03	-1.3885E-03	3.6539E-03	-0.3898
62.85	4.1351E-03	-1.7395E-03	4.4861E-03	-0.3982
63.25	3.1891E-03	-2.7695E-03	4.2238E-03	-0.7151
63.67	4 0207E-03	-2.0142E-03	4.4978E-03	-8.4644
64.06	4.6463E-03	-1.9684E-03	5.0461E-03	-0.4007
64.45	5.2872E-03	-2.2964E-03	5.7644E-03	-0.4098
64.84	5.7755E-03	-2.3884E-03	6.2468E-83	-0.3909
65 23	5.6385E-83	-2.6093E-03	6.2057E-03	-0.4349
55.62	6.2943E-83	-2.1591E-03	6.6543E-03	-6 3385
66.02	7.4844E-03	-2.31938-03	7.8356E-03	-0.3905
66.41	8.1711E-03	-2.4719E-83	8.5368E-83	-0.2938
66.96	9.0256E-03	-3.3646E-83	9.6323E-03	-0.3568
67.15	9.3842E-03	-4.2953E-03	1.0320E-02	-0.4293

67.97	9.1858E-03 -4.5395E -	03 1.0246E-02 -0.4590
68.36	9.7733E-03 -3.7308E-	03 1.0461E-02 -0.3647
68.75	1.0788E-02 -4.0054E-	03 1.1508E-02 -0.3555
69.14	1.2177E-02 -4.0741E-	03 1.2840E-02 -0.3229
69.53	1.2642E-02 -4.5242E-	03 1.3427E-02 -0.3437
69.92	1.3596E-02 -4.7989E-	03 1.4418E-02 -0.3393
76.31	1.5236E-02 -5.9128E-	03 1.6343E-02 -0.3702
70.70	1 6289E-02 -6.8054E-	03 1.753E-02 -0.3958
71.05	1.8471E-02 -8.0490E-	03 2.0148E-02 -0.4110
71.48	1.8997E-02 -1.0948E-	02 2.1926E-02 -0.5228
71.87	1.9493E-02 -1.3466E-	02 2.3692E-02 -0.6045
72.27	1.7357E-02 -1.6479E-	02 2.3934E-02 -0.7595
72.66	1.4442E-02 -1.7769E-	02 2.2898E-02 -0.8883
73.05	1.3351E-#2 -1.6716E-	02 2.1394E-02 -0.8968
73.44	1 1229E-02 -1.4679E-	02 2.0443E-02 -0.8010
73.83	1.6922E-02 -1.4587E-	92 2.2342E-02 -0.7114
74.22	1.9287E-02 -1.6998E-	02 2.5709E-02 -0.7224
74.61	2.0073E-02 -2.0744E-	02 2.8866E-02 -0.8918
75.00 -	1.9119E-02 -2.5414E-	02 3.1802E-02 -0.9258
75.39	1.5503E-02 -3.0540E-	02 3.4250E-02 -1.101
75.78	2.6474E-03 -3.1784E-	02 3.1894E-02 -1.488
76.17	7.8583E-04 -1.9897E-	02 1.9913E-02 -1.531
76.56	5.8670E-03 -1.4709E-	02 1.5836E-02 -1.191
76.95	1.1253E-02 -1.3351E-	02 1.7461E-02 -0.8705
11 13	1.9249E-02 -1.6823E-	02 2.5564E-02 -0.7182
78.12	2.2964E-02 -1.9295E-	02 2.9994E-02 -0.6988
78.52	2.6176E-02 -2.4834E-	02 3.6082E-02 -0.7591
78.91	2.7335E-02 -3.2379E-	02 4.2375E-02 -0.8696
79.30	2.3689E-02 -4.0909E-	02 4.7273E-02 -1.046
79.69	1.6648E-82 -4.7481E-	02 5.0237E-02 -1.233
80.08	8.445/E-03 -4.8088E-	02 4.8824E-02 -1.397
88.47	1.5640E-03 -4.4418E-	02 4.4446E-02 -1.536
88.86	-2 9755E-04 -4.0436E-	02 4.0437E-02 -1.578
81.25	-7.0953E-04 -3.9116E-	02 3.9122E-02 -1.589
81.64	8.4586E-04 -4.0192E-	e2 4.0201E-02 -1.550
82.83	-8.8501E-04 -4.0665E-	02 4.0674E-02 -1.593
82.42	-2.1591E-03 -4.1328E-	02 4.1385E-02 -1.623
82.81	-6.8207E-03 -4.0726E-	02 4.1293E-02 -1.737
83.29	-1.00/1E-02 -3.8063E-	02 3.9373E-02 -1.829
83.59	-1.1154E-02 -3.6209E-	02 3.7888E-02 -1.870
83.98	-1.1688E-02 -3.4775E-	02 3.6687E-02 -1.995
84.37	-1.3/19E-02 -3.3531E-	02 3.6226E-02 -1.959
84.77	-1.3390E-02 -3.2791E-	02 3.5419E-02 -1.958
85.16	-1.4//1E-02 -3.1128E-	02 3.44552-02 -2.014
85.55	-1.6251E-02 -2.9182E-	02 3.3402E-02 -2.079
85.94	-1.6945E-02 -2.7046E-	02 3.1916E-02 -2.130
86.33	-1.6884E-02 -2.5810E-	92 3.8942E-82 -2.158
00.12	-1.7204E-02 -2.3433E-	02 2.3000E-02 -2.204

87.50	-1.5938E-02 -1 95475-02	2 5221E-02	-2.255
87.89	-1.3932E-02 -1 9449E-02	3 3459E-02	-2.214
-88.29	-1.2962E-02 -1.91275-02	2.2285E-02	-2.192
88.67	-1.1482E-02 -1.7991E-02	2.1259E-02	-2.141
89.96	-1.0475E-02 -1.7967E-02	2.07985-02	-2,099
89.45	-9.5596E-03 -1.8890E-02	2.1172E-02	-2.039
89.84	-1.0063E-02 -1.9508E-02	2.1951E-02	-2.847
99.23	-1.0132E-02 -2.1141E-02	2.3444E-82	-2.919
90.62	-1.0002E-02 -2.0073E-02	2.2427E-02	-2.033
91.02	-1.0857E-02 -1.8936E-02	2.1923E-02	-2.991
91.41	-1.2703E-02 -1.9188E-02	2.3012E-02	-2.156
91.80	-1.2764E-02 -1.7059E-02	2.1306E-02	-2 213
92.19	-1.2393E-02 -1.5640E-02	1.9949E-02	-2.240
92.58	-1.1116E-02 -1.4282E-02	1.8098E-02	-2.232
92.97	-1.0223E-02 -1.4175E-02	1.7477E-02	-2.196
93.36	-9 4833E-03 -1 3733E-02	1.6689E-02	-2.175
93 75	-8 2626E-03 -1 3634E-02	1 5942E-02	-2 115
94 14	-6 9885E-03 -1 4374E-02	1 5983E-82	-2 923
94 53	-6 9122E-03 -1 5717E-02	1 7169E-02	-1 995
94 92	-6 5536E-93 -1 6747E-92	1 7983E-02	-1 944
95 31	-7 7820E-03 -1 7746E-02	1 93778-92	-1 984
95 78	-9 6517E-03 -1 6937E-02	1 9919E-92	-2 943
96 89	-9 5997E-93 -1 6998E-92	1 8248E-82	-2 951
96 49	-8 7779F-93 -1 4191F-92	1 6684F-92	-2 125
97 27	-7 8430E-03 -1 3443E-02	1.55645-82	-2 999
97 66	-7 12595-97 -1 72295-92	1 5026E-02	-2 865
99 85	-5 9351E-93 -1 2819E-92	1 4567E-92	-2 967
99 44	-6 8130E-03 -1 3412E-02	1.5944E-92	-2 841
98 93	-6 34775-03 -1 1972E-02	1 3516E-02	-2.969
99 22	-5 2261F-93 -1 1369F-92	1 25955-92	-2 882
99 61	-3 7689E-03 -1 3733E-02	1 42415-92	-1 839
199 9	-4 2725F-P3 -1 4832F-92	1 54355-02	-1 851
100 4	-4 7760F-03 -1 5070F-02	1 5779F-02	-1 979
1. 3. 9	-4 7760F-03 -1 5480F-02	1 62995-92	-1 979
101 2	-7 17165-93 -1 50995-02	1 67155-02	-2 014
161.6	-6 1646F_03 _1 7790F_02	1 47415-92	-2 992
102.0	-6 11995-07 -1 74515-02	1 47775-02	-1 999
102 7	6 64500 07 1 20000 02	1 77255 02	2 076
102 2	-6 1417E-03 -1 0712E-02	1 27475-02	-2 001
192.1	-5.141/2-53 -1.0/122-02	1 27925 92	2 419
107.5	5 11975 97 1 97455 92	1.15475.00	2 070
107.9	7 12046 07 0 02026 07	1 94525 95	1 974
194 7	-3 95205 07 1 91205 02	1 09105-02	-1 941
104 3	-3 16625 03 9 90695 07	1 00100-02	-1.241
105 1	2 70000 07 1 00400 00	1 97205 92	-1 994
105.1	2 20202-03 -1.00432-02	9 47526 07	-1.201
135 0		0 57315 07	-1 -1 -1
1 2 2	1 06115 06 0 06125 02	2 2 4 12 42 2 0 1 4 1 2 4 2 2 4	1 6 4
A	A ANTIGATA -1 DOILE-DO		- A

107.0	2.2507E-03 -2.0713E-03	9.37986-03 -1.299
197.4	4.2419E-03 -7.9727E-03	9.03105-03
107.3	5.3482E-03 -8.6323E-03	1.0197E-02 -1.019
198.2	6.8359E-03 -8.4991E-03	1.0907E-02 -0.8934
103.6	8.7814E-03 -9.4833E-03	1.2925E-02 -0.8238
109.0	1.9155E-92 -1.9231E-92	1.4415E-02 -0.7891
109.4 .	1.1719E-02 -1.0818E-02	1.5949E-02 -9.7455
189.8	1.3390E-02 -1.3084E-02	1.8721E-02 -9.7739
110.2	1.3893E-02 -1.4343E-02	1.9969E-02 -0.9013
119.5	1.7014E-02 -1.4153E-02	2.2130E-02 -0.6939
110.9	1.8822E-02 -1.7586E-02	2.5759E-02 -0.7515
111.3	2.2179E-02 -1.8883E-92	2.9128E-02 -0.7053
111.7	2.4666E-02 -2.4834E-02	3.5002E-02 -0.7898
112 1	2.7634E-02 -3.4921E-02	4.4453E-02 -0.9000
112.5	2.5139E-02 -4 5898E-02	5.2332E-02 -1.070
112.9	1.6930E-02 -5.7083E-02	5.9541E-02 -1.282
113.3	4.3945E-03 -6.1363E-02	6.1520E-02 -1.499
113.7	-9.0485E-03 -5.8655E-02	5.9349E-02 -1.724
114.1	-2.0393E-02 -5.2757E-02	5.6562E-02 -1.940
114.5	-2.5421E-02 -4.1435E-02	4.9142E-02 -2.138
114.8	-2.6398E-02 -3.3112E-02	4.2346E-02 -2.244
115.2	-2.49485-02 -2.7313E-02	3.6992E-02 -2.311
115.6	-2.2324E-02 -2.1576E-02	3 1046E-02 -2 373
116.0	-2.0607E-02 -1.3234E-02	2.7516E-02 -2.417
116.9	-1.5976E-02 -1.5297E-02	2 2113E-92 -2 378
117.2	-1.51528-02 -1.5732E-02	2.1842E-02 -2.337
117 6	-1.3924E-02 -1.4854E-02	2.0292E-02 -2 320
118.0	-1.1551E-02 -1.3298E-02	1.7614E-02 -2.236
113.4	-1.1002E-02 -1.3496E-02	1.7412E-02 -2.255
113.8	-9.8267E-93 -1.3626E-02	1.6800E-02 -2.196
119.1	-1 0483E-02 -1.2794E-02	1.6540E-02 -2 257
119.5	-9.9792E-03 -1.0628E-02	1.4579E-02 -2 325
119.9	-8.4991E-03 -1.1009E-02	1.3908E-02 -2.228
120.3	-8.1177E-03 -1.1688E-02	1.4231E-92 -2 178
120.7	-7.2479E-03 -1.0796E-02	1.3003E-02 -2.162
121.1	-5.2185E-03 -9.6512E-03	1 09725-02 -2 066
121.5	-5.3635E-03 -9.1705E-03	1 8624E-92 -2 199
121.9	-4.4250E-03 -8.5907E-03	9.6634E-03 -2.946
122.3	-3.2578E-03 -8.4939E-03	9.0979E-03 -1 937
122 7	-2.5864E-03 -9.0561E-03	9 41826-93 -1 849
123.0	-1.2665E-03 -8 9935E-03	8 9931E-03 -1 712
123.4	-1.1902E-03 -8.7991E-03	8 8693E-93 -1 785
123.8	2.5177E-04 -8.2321E-03	8.2360E-03 -1 540
124 2	6.9665E-04 -9.3771E-03	8.40528-03 -1.429
124.6	2 8447E-83 -9 8942E-93	9.3213E-03 -1.350
125.0	2.8000E-03 -1.0612E-02	1.0976E-02 -1.313
125.4	1.0223E-03 -1 1597E-02	1.1542E-02 -1.483
125.9	5.9509E-04 -9 6283E-03	9 64678-83 -1 589

126.6	3.288EE-83	-9.8948E-83	8 7343E-03	-1.136	
127.9	4.3030E-03	-7.9880E-03	9.0732E-07	-1.877	
127.3	4.6692E-03	-8.2016E-03	9.4376E-03	-1.053	
127.7	5.5923E-03	-7.8735E-03	9.6575E-03	-0.9532	
128.1	6.8359E-83	-7.6218E-93	1.0238E-02	-0.8397	
128.5	7.2098E-03	-7.1487E-03	1.0153E-02	-0.7911	
128.9	9.6207E-93	-8.1406E-03	1.2603E-02	-9.7023	
129.3	1.0203E-02	-8.2855E-03	1.3147E-02	-0.6813	
129.7	1.0666E-02	-9.8572E-83	1.4523E-02	-0.7460	
130.1	1.1070E-02	-1.8437E-82	1.5215E-02	-0.7560	
130.5	1.2520E-02	-9.7198E-03	1.5350E-02	-0.6602	
138.9	1.4694E-02	-9.8953E-03	1.7715E-02	-0.5927	
131.3	1.3702E-02	-1.0780E-02	1.7435E-02	-8.6666	
131.6	1.6914E-02	-1.0919E-02	1.9377E-02	-0.5990	
132.0	1.7303E-02	-1.3145E-02	2.1730E-02	-8.6497	
132.4	1.6441E-92	-1.2062E-02	2.0391E-02	-0.6330	
132.8	1.9242E-92	-1.2665E-02	2.2207E-02	-0.6869	
133.2	1.7815E-92	-1.4679E-02	2.3083E-02	-0.6892	
133.6	1.9600E-02	-1.42975-02	2.4261E-02	- 0.6392	
134.0	2.1111E-P2	-1.5701E-02	2.6309E-02	-0.6395	
134.4	2.1984E-62	-1.8196E-02	2.8476E-02	-0.6932	
134.8	2.0432E-02	-1.8733E-92	2.7723E-62	-0.7422	
135.2	1.8751E-02	-2 1263E-02	2.8356E-82	-0.9473	
135 5	1.6823E-02	-2.1461E-02	2.7269E-02	-0.9060	
136.3	1.7220E-02	-1.9866E-82	2.5691E-02	-0.8362	
136.7	1.7319E-02	-1.7960E-02	2.4878E-02	-0.9608	
137.1	1.9714E-02	-1.9356E-02	2.7628E-02	-0.7762	
137.5	2.2285E-02	-1.9142E-02	2.9378E-02	-0.7097	
137.9	2.1988E-02	-2.0416E-92	3.0005E-02	-0.7484	
138.3	2.1904E-02	-2.0363E-02	2.9907E-02	-0.7490	
139.7	2 3026E-02	-2.3010E-02	3.2552E-02	-0.7851	
139.1	2.1614E-02	-2.2133E-02	3 0936E-02	-0.7973	
139.5	2.0943E-02	-2.1446E-02	2.9976E-02	-0.7973	
139.8	2.2072E-02	-2.0851E-02	3.0363E-02	-0.7570	
140.2	2.3376E-02	-1.9417E-02	3.0389E-02	-0.6931	
148.6	2.5737E-92	-1.9211E-02	7E-02	- a. 6403	
141.0	2.6566E-02	-2.0996E-02	J. J. L-02	-0.6688	
141.4	2.9587E-02	-2.8439E-82	3.5960E-02	-0.6045	
141.8	3.0411E-02	-2.0592E-02	3.6726E-02	-0.5952	
142.2	3.1013E-02	-2.1942E-02	3.7991E-02	-0.6157	
142.6	3.3905E-02	-2.3682E-82	4.1357E-82	-0.6097	
143 0	3.76598-02	-2.4651E-02	4.5009E-02	-9.5796	
143.4	3.6879E-82	-2.9481E-02	4.5966E-02	-0.6682	
143.8	3.9268E-02	-2.9694E-02	4.9231E-92	-8.6474	
144 1	3.9185E-02	-3.2402E-02	5.0846E-02	-0.6909	
144.5	3.9978E-02	-3.3890E-02	5.2484E-82	-0.7033	
144.9	3.9345E-02	-3.3523E-02	5.1754E-02	-0.7071	
145.3	2. 3EFFE-43	-1 49585-02	5.2126E-02	-0.7351	

146 1	4 12145-00 -7 79645-00	E 6074E-02 -0 7444
146 5	4 14125-02 -7 76145-02	5 59598-92 -9 7377
146 9	4 322 5-02 -4 07495-02	5 94915 92 -9 7569
147 3	4 41516-02 -4 19706-02	6 99495-92 -9 7599
147 7	4 49455 92 -4 77495 12	6 52976 02 -9 7114
149 9	4 79205 02 5 02175 02	C 9419E 02 0 0007
140.0	4 79665 92 5 29065 92	7 14725 02 0 0751
140.4	5 1070E 02 - 4 9000E 02	7 17916 00 0 7701
140.0	5 74926 93 5 67516 92	7 72992 92 -9 0115
149.6	5 1636E-02 -5 9094E-02	7 97175-92 -9 9599
150 0	5 00265 02 6 50425 02	0 26016 02 0 0211
150.0	4 9614E-02 -6 7520E-02	9 37996 92 -9 9771
150 9	4 94626 03 6 69256 02	9 36396 92 -9 9441
151 3	5 31696 02 - 2 26176 03	9 99915 92 -0 9799
151 6	5 00105 00 -7 56075 00	9 96555 92 -9 9963
152 0	5 25665 -02 -7 66535-02	9 35145-02 -0 9609
152 2	5 45006-02 -1.00006-02	9 99995_92 _0 9967
153.7	4 67575-02 -9 07795-02	9 1919 -1 993
157 1	4 96996-02 -9 54746-02	9 1972 -1 999
157 5	4 37395-02 -9 96715-02	9 1979 -1 154
157.9	4 91615-92 -9 99315-92	B 1876 -1 199
154 3	3 2017E_02 _0 1929	A 1878 -1 269
154 7	3 22595-02 -0 1085	8 1175 -1 277
155 1	3 35398-92 -9 1111	0 1161 .1 279
*****	0.00000-00.00000	····
155 9	3 28455-02 -0 1226	9 1269 .1 709
156.2	2 94116-02 -0 1179	8 1215 -1 326
156 6	2 (187E-02 -0 1173	9 1156 -1 795
157 8	1 4122E-02 -0 1275	9 1282 -1 469
157 4	1 9469E-92 -9 1399	0 1304 -1 491
157.8	7 4768E-03 -9 1260	0.1263 -1.512
158.2	9.2163E-92 -8.1291	9 1284 -1 499
158.6	1 4618E-02 -0 1328	0.1336 -1.461
159 d	2.1744E-03 -0.1363	0.1363 -1.555
159.4	4 4250E-04 -0 1450	9.1450 -1.568
159.8	-9.7580E-03 -0.1651	0.1654 -1.630
160.2	-2.9626E-02 -0.1601	9 1628 -1.754
168.5	-3.3752E-02 -0.1615	0.1650 -1.777
169.9	-5 0768E-02 -0 1649	0.1757 -1.924
161.3	-6.8756E-02 -0.1502	0 1652 -2.000
161.7	-6 4316E-02 -0 1492	0 1625 -1.978
162 1	-3.7585E-02 -0.1367	0 1623 -2 141
162.5	-8.4099E-02 -0.1216	0.1478 -2.176
162.9	-3.8737E 9? -0.1255	0.1537 -2.186
163.3	-9.2331E-1 9.1064	9.1499 -2.29%
163.7	-9.5007E-02 9.1023	0.1330 -2.64
164 1	-9.0477E-02 -6.1007	0 1354 -2 303
* 164 5	-9 9959E-02 -9.9356E-02	0 1254 -2 760
164 0	- 1 5275F-47 -9 2174F-42	0 1104

. 81036 May 15, 1981

165.6	-9 97922-02	-7.49525-02	0.1177	-2.452
166.0	-9.99436-82	-6 93745-92	9.1128	-2.479
166.4	-3 6342E-02	-5.99068-02	0.1051	-2.535
166.8	-8 6493E-92	-5 7602E-02	0.1039	-2.554
157 2	-8 3443E-82	-5 3795E-92	9 9288E-82	-2 569
157.6	-8 27685-82	-5 1254E-82	9 6928F-82	-2 584
168.9	-8 0275F-02	-5 1659E-92	9 5462E-82	-2 579
168 4	-7.5813E-02	-5 16365-82	9 1727E-P2	-2 544
163 8	-7 7118E-02	-4 7958E-82	9 9814E-#2	-2 585
169 1	-7 5479E-92	-4 1656E-82	8 6293E-92	-2 637
169 5	-7 2685E-92	-3.9284E-92	8 2622E-92	-2.646
169.9	-7.5194E-92	-4 81845-82	8 5178E-P2	-2.659
179 3	-6 6261E-02	-3 66821-92	7 5737E-92	-2.636
179 7	-5 2187F-02	-3 4317E-92	7 19275-92	-2 637
171.1	-5 8214F-92	-3 54468-92	7 6874F-82	-2 662
171 5	-6 4125E-92	-3 5858E-82	7 3479E-92	-2 632
171 9	-6 1348F-82	-3 9665E-82	7 3854F-62	-2 569
172 3	-5 9952F-92	-3 8781E-82	6 6555E-92	-2 662
172.7	-5 5823E-82	-2 9671E-92	6 2513E-92	-2 647
177 0	-5 4979F-92	-3 4561E-02	6 4986E-82	-2 580
173 4	-5 6694F-92	-3 3371F-92	6 5786E-92	-2 619
173.8	-4 8149E-02	-2 9953E-02	5 6796E-92	-2 595
174 2	-4 84545-82	-2 7855F-02	5 5890F-02	-2 620
174 6	-4 47985-32	-2 7275E-82	5 2371E-82	-2 594
175.4	-4 4670E-02	-3 69578-82	5 7976E-92	-2 459
175 9	-4 2801E-82	-3 8663E-82	5 2651E-82	-2 529
176.2	-4.2671E-02	-3.3890E-02	5.4492E-02	-2.479
176.2	-4.2671E-02 -4.0293E-02	-3.3890E-02 -3.4393E-02	5.4492E-02 5.2969E-02	-2.479
176.2 176.6 177.9	-4.2671E-02 -4.0283E-02 -3.0734E-02	-3.3890E-02 -3.4393E-02 -3.3432E-02	5.4492E-82 5.2969E-82 5.1167E-82	-2.479 -2.435 -2.439
176.2 176.6 177.0 177.3	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02	-3.3890E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02	-2.470 -2.435 -2.430 -2.453
176.2 176.6 177.0 177.3 177.7	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02	-3.3890E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02	-2.470 -2.435 -2.430 -2.453 -2.405
176.2 176.6 177.0 177.3 177.7 178.1	-4.2671E-02 -4.0203E-02 -3.0734E-02 -4.0713E-02 -4.1336E-02 -3.0612E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02 -3.7521E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02 5.3840E-02	-2.479 -2.435 -2.439 -2.453 -2.453 -2.405 -2.371
176.2 176.6 177.0 177.3 177.7 178.1 179.5	-4.2671E-02 -4.0293E-02 -3.0734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3479E-02 -3.7468E-02 -3.7521E-02 -4.4479E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8448E-02	-2.479 -2.435 -2.439 -2.453 -2.495 -2.371 -2.277
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.1183E-02	-3.3890E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02 -3.7521E-02 -4.4479E-02 -4.0886E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8448E-02 5.8448E-02 5.9032E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02 -3.7521E-02 -4.4479E-02 -4.6886E-02 -4.4548E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.3840E-02 5.8448E-02 5.8448E-02 5.9032E-02 6.2576E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.349
176.2 176.6 177.8 177.3 177.7 178.1 179.5 173.9 179.3 179.7	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.7470E-02	-3.3890E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02 -3.7521E-02 -4.4479E-02 -4.6886E-02 -4.4548E-02 -4.9977E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.9032E-02 6.2576E-02 6.2710E-02	-2.479 -2.435 -2.439 -2.453 -2.495 -2.371 -2.277 -2.360 -2.349 -2.429
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.7 180.1	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.8612E-02 -4.1183E-02 -4.1183E-02 -4.3945E-02 -4.7470E-02 -4.5899E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02 -3.7521E-02 -4.4479E-02 -4.6886E-02 -4.6886E-02 -4.4548E-02 -4.9977E-02 -4.2976E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.9032E-02 6.2576E-02 6.2576E-02 6.2266E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.349 -2.429 -2.400
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.7 180.1 180.5	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.5899E-02 -4.2404E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3479E-02 -3.7468E-02 -3.7521E-02 -4.4479E-02 -4.4479E-02 -4.6886E-02 -4.4548E-02 -4.977E-02 -4.2976E-02 -4.1298E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.9032E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.360 -2.349 -2.429 -2.400 -2.369
176.2 176.6 177.0 177.3 177.7 178.1 173.5 173.9 179.3 179.3 179.7 180.1 180.5 180.9	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.5899E-02 -4.2404E-02 -4.1924E-02	- 3.3990E-02 - 3.4393E-02 - 3.3432E-02 - 3.3479E-02 - 3.7468E-02 - 3.7521E-02 - 4.4479E-02 - 4.4886E-02 - 4.6886E-02 - 4.6886E-02 - 4.0977E-02 - 4.2976E-02 - 4.1298E-02 - 4.0268E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.8449E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02 5.8125E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.409 -2.409 -2.369 -2.369 -2.376
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.3 179.7 180.1 180.5 180.9 181.3	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.1183E-02 -4.3945E-02 -4.7470E-02 -4.5899E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3470E-02 -3.7460E-02 -4.4479E-02 -4.4479E-02 -4.6806E-02 -4.6806E-02 -4.0977E-02 -4.2976E-02 -4.1290E-02 -4.0260E-02 -3.4477E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.2714E-02 5.3840E-02 5.8448E-02 5.8448E-02 5.8448E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02 5.8125E-02 5.1793E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.409 -2.369 -2.369 -2.376 -2.376 -2.413
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.7 180.1 180.5 180.9 181.3 181.6	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.1183E-02 -4.3945E-02 -4.7470E-02 -4.5899E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02 -3.9940E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7469E-02 -4.4479E-02 -4.4479E-02 -4.4548E-02 -4.4548E-02 -4.9977E-02 -4.2976E-02 -4.1298E-02 -4.0260E-02 -3.4477E-02 -3.7575E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8448E-02 5.8448E-02 5.8448E-02 6.2576E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02 5.8125E-02 5.1793E-02 5.4113E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.429 -2.409 -2.369 -2.369 -2.376 -2.413 -2.374
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.3 179.7 180.1 180.5 180.9 181.3 181.6 182.0	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.8612E-02 -4.1183E-02 -4.1183E-02 -4.3945E-02 -4.7470E-02 -4.5899E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02 -3.9940E-02 -3.6987E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7468E-02 -4.4479E-02 -4.4479E-02 -4.4548E-02 -4.4548E-02 -4.4548E-02 -4.2976E-02 -4.1298E-02 -4.1298E-02 -3.4477E-02 -3.7575E-02 -3.9145E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.2714E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.8449E-02 5.8449E-02 6.2576E-02 6.2576E-02 6.2710E-02 6.2266E-02 5.9191E-02 5.8125E-02 5.1793E-02 5.4113E-02 5.3956E-02	-2.479 -2.435 -2.439 -2.453 -2.495 -2.371 -2.277 -2.369 -2.429 -2.409 -2.369 -2.376 -2.376 -2.413 -2.374 -2.329
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.7 180.1 180.5 180.9 181.3 181.6 182.0 182.4	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.5899E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02 -3.6987E-02 -3.6987E-02 -3.6926E-02	-3.3990E-02 -3.4393E-02 -3.4393E-02 -3.3479E-02 -3.7468E-02 -4.4479E-02 -4.4479E-02 -4.4548E-02 -4.4548E-02 -4.0977E-02 -4.2976E-02 -4.1298E-02 -4.1298E-02 -3.4477E-02 -3.7575E-02 -3.9145E-02 -4.2404E-02	5.4492E-02 5.2969E-02 5.1167E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.8449E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02 5.8125E-02 5.1793E-02 5.1793E-02 5.4113E-02 5.3956E-02 5.6229E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.369 -2.376 -2.376 -2.376 -2.376 -2.374 -2.329 -2.329 -2.287
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.3 179.7 180.1 180.5 180.9 181.3 181.6 182.0 182.4 182.8	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.2404E-02 -4.2404E-02 -3.9651E-02 -3.9940E-02 -3.6987E-02 -3.6926E-02 -4.1046E-02	- 3.3990E-02 - 3.4393E-02 - 3.4393E-02 - 3.3479E-02 - 3.7468E-02 - 4.4479E-02 - 4.4479E-02 - 4.4886E-02 - 4.6886E-02 - 4.0977E-02 - 4.2976E-02 - 4.2976E-02 - 4.0260E-02 - 3.4477E-02 - 3.7575E-02 - 3.9145E-02 - 4.2404E-02 - 4.4617E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.8449E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02 5.8125E-02 5.4113E-02 5.4113E-02 5.3956E-02 5.6229E-02 6.0525E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.349 -2.429 -2.400 -2.369 -2.376 -2.376 -2.374 -2.329 -2.287 -2.315
176.2 176.6 177.0 177.3 177.7 178.1 173.9 179.3 179.3 179.7 180.1 180.5 180.9 181.3 181.6 182.0 182.4 182.9 183.2	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02 -3.6987E-02 -3.6987E-02 -3.6987E-02 -4.1046E-02 -4.2900E-02	-3.3990E-02 -3.4393E-02 -3.4393E-02 -3.3479E-02 -3.7468E-02 -4.4479E-02 -4.4479E-02 -4.6886E-02 -4.6886E-02 -4.0977E-02 -4.2976E-02 -4.2976E-02 -4.0260E-02 -3.4477E-02 -3.7575E-02 -3.9145E-02 -4.2404E-02 -4.4617E-92 -4.5181E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.2714E-02 5.5790E-02 5.3840E-02 5.8449E-02 5.8449E-02 5.8449E-02 6.2576E-02 6.2576E-02 6.2266E-02 5.9191E-02 5.8125E-02 5.1793E-02 5.1793E-02 5.1793E-02 5.3956E-02 5.6229E-02 6.0525E-02 6.2304E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.429 -2.409 -2.369 -2.376 -2.376 -2.413 -2.374 -2.329 -2.287 -2.315 -2.315 -2.339
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.7 180.1 180.5 180.9 181.3 181.6 182.0 192.4 182.9 193.2 183.6	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.8612E-02 -3.7918E-02 -4.1183E-02 -4.3945E-02 -4.3945E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02 -3.9940E-02 -3.6987E-02 -3.6987E-02 -4.1046E-02 -4.2900E-02 -4.1649E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3470E-02 -3.7460E-02 -4.4479E-02 -4.4479E-02 -4.4548E-02 -4.4548E-02 -4.0977E-02 -4.2976E-02 -4.2976E-02 -4.2976E-02 -3.4477E-02 -3.7575E-02 -3.9145E-02 -4.2404E-02 -4.2404E-02 -4.5181E-02 -4.4731E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.2714E-02 5.3840E-02 5.3840E-02 5.8448E-02 5.8448E-02 5.8448E-02 6.2576E-02 6.2576E-02 6.2576E-02 5.9191E-02 5.8125E-02 5.1793E-02 5.4113E-02 5.3956E-02 5.6229E-02 6.0525E-02 6.2304E-02 6.1119E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.429 -2.409 -2.369 -2.376 -2.376 -2.376 -2.376 -2.374 -2.329 -2.297 -2.315 -2.330 -2.32
176.2 176.6 177.0 177.3 177.7 178.1 179.5 173.9 179.3 179.7 180.1 180.5 180.9 181.3 181.6 182.0 192.4 182.9 193.2 183.6 184.0	-4.2671E-02 -4.0283E-02 -3.8734E-02 -4.0713E-02 -4.1336E-02 -3.8612E-02 -3.8612E-02 -4.1183E-02 -4.1183E-02 -4.3945E-02 -4.7470E-02 -4.2404E-02 -4.1924E-02 -3.9651E-02 -3.9940E-02 -3.6987E-02 -4.1046E-02 -4.1046E-02 -4.1649E-02 -4.1649E-02 -4.4930E-02	-3.3990E-02 -3.4393E-02 -3.3432E-02 -3.3478E-02 -3.7469E-02 -4.4479E-02 -4.4479E-02 -4.4548E-02 -4.4548E-02 -4.4548E-02 -4.2976E-02 -4.2976E-02 -4.2976E-02 -3.4477E-02 -3.7575E-02 -3.9145E-02 -4.2404E-02 -4.4617E-02 -4.5181E-02 -4.3266E-02	5.4492E-02 5.2969E-02 5.2714E-02 5.2714E-02 5.3840E-02 5.8448E-02 5.8448E-02 5.8448E-02 6.2576E-02 6.2576E-02 6.2576E-02 6.256E-02 5.9191E-02 5.8125E-02 5.1793E-02 5.4113E-02 5.3956E-02 5.6229E-02 6.0525E-02 6.2304E-02 6.2304E-02 6.2304E-02	-2.479 -2.435 -2.439 -2.453 -2.405 -2.371 -2.277 -2.369 -2.429 -2.409 -2.369 -2.376 -2.376 -2.376 -2.374 -2.329 -2.287 -2.315 -2.315 -2.330 -2.321 -2.374

185.2	-4.3022E-02 -3.9574E-02	5.8455E-02	-2.398
135.5	-3.9040E-02 -4 0230E-02	5.5858E-02	-2.341
185 9	-3.7964E-02 -4.3358E-02	5.7629E-02	-2.290
196.3	-3.2677E-02 -4.1542E-02	5.2854E-02	-2 237
186.7	-3.7170E-02 -4.5685E-02	5.8896E-02	-2.254
187.1	-3.3279E-02 -4.8553E-02	5.8864E-02	-2.172
187.5	-3.4462E-02 -5.35285-02	6.3662E-02	-2.143
187.9	-4.3549E-02 -5.4672E-02	6.9897E-02	-2.243
188.3	-4.9179E-02 -5.7335E-02	7.5537E-02	-2.280
188.7	-5.5573E-02 -5.5962E-02	7.8367E-02	-2.353
189.1	-5.7541E-02 -5.1933E-02	7.7511E-02	-2.407
189.5	-5.4169E-02 -4.9835E-02	7.3605E-02	-2.398
189.8	-5.6374E-02 -5.1468E-02	7.6334E-92	-2.482
190.2	-5.5429E-02 -4.5036E-02	7.1412E-02	-2.459
190.6	-5.5122E-02 -4.5197E-02	7.1283E-02	-2.455
191.0	-5.9346E-02 -4.5479E-02	7.4371E-02	-2.484
191.4	-5.6694E-02 -3.97955-02	6.9267E-02	-2.530
191.8	-5.2155E-02 -4.5547E-02	6.9244E-82	-2.424
192.2	-5.5107E-02 -4.3381E-02	7.0133E-02	-2.475
192.6	-5.6236E-02 -4.8195E-02	7.4963E-92	-2.433
193.9	-5 5168E-02 -5 3246E-02	7.6672E-02	-2.374
193.4	-6.4291E-92 -5.8563E-02	J.6899E-02	-2.402
193.8	-7 8259E-82 -4 6219E-82	8.4098E-02	-2.560
194 1	-7.1678E-02 -5.3131E-02	8.92272-02	-2.504
194.9	-7.2433E-02 -2 104 5-02	8.0641E-02	-2.686
195.3	-5.77955-02 -3.5896E-02	7.6712E-02	-2.655
195.7	-6.8634E-82 -2.9884E-82	7.4858E-02	-2.731
196.1	-6.5613E-92 · 2.8595E-92	7.1573E-02	-2.731
196.5	-6.6469E-02 -2.9350E-02	7.2652E-02	-2.726
196.9	-7.2754E-92 -2.8847E-92	7.8264E-02	-2.764
197.3	-6 6154E-02 -2.6604E-02	7.1303E-02	-2.759
197.7	-6.8329E-02 -2.4353E-02	7.2539E-02	-2.799
198.9	-6.6553E-02 -2.1400E-02	6.9915E-02	-2.831
198.4	-6.6582E-82 -1.5366E-82	6.8332E-02	-2.915
138.8	-6.7062E-02 -1.8501E-02	6.9568E-02	-2.872
199.2	-6.4407E-02 -2.1774E-02	6.7988E-02	-2.816
199.6	-6 2225E-02 -1 7326E-02	6.4593E-02	-2.879

A Typical Record Taken From A Trace File

Trace of locations

Numbers = A line drawn between locations

LOCATIONS

1	2	3	4	5	6	7	8	0	6	10	0
4	12	0	9	10	11	12	9	5	11	0	9
13	15	17	0	11	14	16	18	0	15	16	0
17	18	0	19	20	0	21	22	0	23	24	0
25	26	0	23	19	22	26	23	0	24	20	21
25	24	0	16	31	29	0	18	30	0	27	28
30	29	27	0	32	31	0	15	19	0	17	22
0	23	27	0	26	20	0					-

Tr. e of coordinates

Coordinates = Sequence in which functions are accessed, includes axis and sense direction.

COORDINATES

1Z+	2Z+	3Z+	4Z+	5Z+	6Z+	7Z+	8Z+	JZ+	11Z+
15Z+	16Z+	31Z+	19Z+	20Z+	24Z+	23Z+	212-	222-	25Z-
267-	29Z-	30Z-	272+	28Z+	27Y-	27X-	2Y-	3X+	

Disk Files For RHR Pump A-3, Equipment No. IP-48C

KRHRT	DAT	11	21-Jan-91-	Trace
KRHRG	DAT	5	21-Jan-81-	Geometry
KRHRH2	DAT	279	21-Jan-81-	Function-X
KPHRZ .	DAT	52	98-May-81-	Project
KRHRP .	DAT	9	21-Jan-81-	Parameter
KRHPH1	DAT	279	21-Jan-81-	Function-Z
KRHRS .	DAT	61	23-Jan-81-	Shape

CHECKPOINT 050881-800000

÷	KRHEZ	050881-000000	0.TPC	RHE	PUMP		
P	KRHPP	012191-000000	4./TPL	PHP	PHMP	PARAMETERS	
ş	KRHRS	012391-000000	10/TPC	PHP	PHMP	CHODEC	
G	KRHRG	012101-000000	1/TPC	PHP	PIIMP	CEDMETRY	
H	KRHRH2	012181-000000	65 MPC	PHP	PIIMP	FUNCTIONS	TEV
1	KRHRT	012131-000000	18/170	PHP	PUMP	TRACES	201-

P RECORDS IN USE REC 1 2 REC 2 2

 KPHPS

 S RECORDS IN USE

 REC 1
 17 390 H2
 SHAPE 1

 REC 2
 17 390 H2
 SHAPE 1

 REC 3
 89 201 H2
 SHAPE 3

 REC 4
 89 201 H2
 SHAPE 3

 REC 5
 87 010 H2
 SHAPE 3

 REC 6
 87 010 H2
 SHAPE 5

 REC 7
 19 200 H2
 SHAPE 5

 REC 8
 18 300 H2
 SHAPE 7

T RECORDS IN USE PEC 1 LC REC 2 C PEC 3 LC PEC 4 C REC 5 C

SCHEY	RY			
36.	X	¥.	2	
20	0		26	
2	.6	4	23	
3	9	4	16	
4	6	20	16	
9	0	74	16	
6	0	58	16	
7	0	51	14	
8	-26	0	0	
9	-23	4	0	
10	-16	4	8	
11	-16	20	6	
12	-16	35		
13	-16	50		
14	-14	51	0	
15	0	9	-26	
16		4	-23	
17	0	4	-16	
18	. 0	28	-16	
20	- 0	50	-16	
21		51	-14	
22	26	6	9	
23	23	4	6	
24	16	4	6	
25	16	. 20	. 0	
26	16	35	0	
27	16	50	0	
28	14	51	9	
29	30	35		
70	55	35	0	
31	55	35	27	
32	-29	35	8	
33	-60	35		
34	8	64	0	
35	14	84	9	
76	17	85	0	
37	17	112	0	
38	17	137	0	
39		84	14	
69	0	85	17	
41	· · ·	112	17	
42	и	137	17	
43	-14	84		
44	-17	95	0	
45	-17	112	. e	
44	-17	177	0	
47	0	84	-14	
4.9	R	85	~17	
49	9	112	-17	
50	a	137	-12	
51	R	137	31	
19		35	-16	
		1.	and the second sec	

r

H PECI	ORDS	IN US	E	
REC	1	36X-	22+	0
REC	2	36X-	. 24+	8
REC	3	36X-	42+	
REC	4	36%-	5Z+	0
REC	5	36X-	624	
REC	6	36%-	67+	0
REC	7	36%-	138-	6
REC	è	36%-	131-	0
REC	9	36X-	12X-	0
REC	10	368-	11X-	0
REC	11	36%-	9X-	
REC	12	36X-	9Y-	. 0
REC	13	36X-	167+	0
PEC	14	36X-	162-	6
REC	15	36X-	182-	.0
REC	16	36X-1	192-	0
REC	17	36%-	202-	0
RSC	18	36X-	2014	6
REC	19	36X-	27Y+	0
REC	20	36%-	27X+	6
REC	21	36%-	26X+	6
PEC	22	36%-	25×+	6
REC	23	36X-	23X+	ų
REC	24	36%-	231*	0
260	25	36%-	29%+	6
REC	26	36%-	292+	0
FEC	27	36X-	294+	0
REC	28	36%-	302-	9
REC	29	368-	314+	0
000	30	76X-	318-	8

REC	31	36X-	33X+	0
REC	32	36X-	32Y+	0
REC	33	36X-	322+	0
REC	34	36X-	34×+	0
REC	35	36%-	342+	0
REC	36	36X-	34Y-	0
REC	37	36X-	482+	0
PEC	38	36X-	412+	0
REC	39	36X-	422+	0
REC	49	36X-	424+	0
REC	41	36X-	384+	0
REC	42	36X-	38X+	0
REC	43	36X-	37×+	0
REC	44	36%-	36%*	0
REC	45	36X-	48Z-	0
REC	46	36%-	492-	0
REC	47	36X-	592-	0
REC	48	36X-	511+	0
REC	49	36X-	46Y+	0
REC	50	36X-	46X-	0
REC	51	26/4-	45X-	0
REC	52	36X-	44X-	0
REC	53	36X-	44Y-	0
REC	54	36X-	39Y-	0
REC	55	36X-	51X+	6
REC	56	36X-	51Y+	0
REC	57	36X-	512+	0
REC	58	36X-	36X+	1
REC	59	36X-	36X+	2
REC	60	36X-	36X+	3
REC	61	36X-	36X+	4

FEC 1 482+ 42+ 0 FEC 31 482+ 33x+ 0 REC 2 492+ 2Y+ 0 REC 32 492+ 32Y+ 0 REC 3 492+ 2Z+ 0 REC 33 482+ 32Y+ 0 REC 3 492+ 2Z+ 0 REC 33 482+ 32Y+ 0 REC 3 492+ 2Z+ 0 REC 33 482+ 32Y+ 0 REC 4 482+ 52+ 0 REC 34 482+ 34X+ 0 REC 6 482+ 13X- 0 REC 36 482+ 34Y+ 0 REC 9 492+ 13X- 0 REC 37 492+ 42+ 0 REC 18 492+ 13X- 0 REC 39 482+ 42+ 0 REC 19 492+ 12X- 0 REC 39 482+ 42Y+ <	H REC	CORDS	IN US	E		PEC	30	492+	31×-	0
REC 2 482+ 2Y+ 0 REC 32 482+ 32Y+ 0 REC 3 482+ 22+ 0 REC 33 482+ 32Y+ 0 PEC 4 482+ 52+ 0 PEC 34 482+ 34X+ 0 REC 5 492+ 62+ 0 PEC 34 482+ 34X+ 0 REC 6 492+ 62+ 0 PEC 35 482+ 342+ 0 REC 7 492+ 13X- 0 PEC 32 492+ 402+ 0 REC 8 492+ 13X- 0 PEC 32 482+ 412+ 0 REC 18 492+ 13X- 0 PEC 39 482+ 422+ 0 REC 18 492+ 12X- 0 PEC 39 482+ 427+ 0 REC 11 482+ 9X- 0 PEC 49 482+ 38X+	PEC	1	482+	42+	0	REC	31	482+	33X+	0
REC 3 482+ 22+ 0 REC 33 482+ 322+ 0 PEC 4 482+ 52+ 0 PEC 34 462+ 34x+ 0 REC 5 492+ 62+ 0 PEC 34 462+ 34x+ 0 REC 6 482+ 67+ 0 PEC 35 482+ 342+ 0 REC 7 492+ 13x- 0 PEC 37 492+ 492+ 0 REC 8 492+ 13x- 0 PEC 39 482+ 412+ 0 REC 10 452+ 11x- 0 PEC 39 482+ 422+ 0 REC 11 482+ 9x- 0 PEC 39 482+ 422+ 0 PEC 11 482+ 9x- 0 PEC 44 482+ 38x+ 0 PEC 13 492+ 162- 0 PEC 442 482+ 36x+	REC	2	482+	24+	8	REC	32	482+	324+	0
PEC4482+52+0PEC34482+34X+0PEC5492+62+0PEC35482+342+0REC6492+67+0PEC35482+342+0REC7492+13X-0PEC37492+402+0REC7492+13X-0PEC32482+412+0REC9492+13Y-0PEC39482+422+0REC10452+11X-0PEC39482+422+0REC10452+11X-0PEC39482+422+0REC10452+9X-0PEC39482+422+0REC11482+9X-0PEC44482+30X+0PEC13492+162-0PEC44482+36X+0PEC14492+162-0PEC44482+36X+0PEC15492+162-0PEC44482+36X+0PEC16482+192-0PEC44482+36X+0PEC16482+192-0PEC44482-90+0PEC17482+20Y+0PEC48482+50Y+0PEC<	PEC	3	497+	22+	8	REC	33	482+	322+ .	0
REC5 $492+$ $62+$ θ REC 35 $482+$ $342+$ θ REC6 $482+$ $6Y+$ θ REC 36 $482+$ $34Y \theta$ REC7 $482+$ $13X \theta$ REC 36 $482+$ $442+$ θ REC7 $482+$ $13Y \theta$ REC 37 $482+$ $442+$ θ REC9 $482+$ $13Y \theta$ REC 39 $482+$ $412+$ θ REC10 $452+$ $11X \theta$ REC 39 $482+$ $422+$ θ REC11 $482+$ $9X \theta$ REC 41 $482+$ $38Y+$ θ REC11 $482+$ $9Y \theta$ REC 41 $482+$ $38Y+$ θ REC13 $492+$ $16Y+$ θ REC 42 $482+$ $38Y+$ θ REC13 $492+$ $16Y+$ θ REC 42 $482+$ $38Y+$ θ REC13 $492+$ $16Y+$ θ REC 42 $482+$ $38Y+$ θ REC14 $482+$ $16Y+$ θ REC $442+$ $38X+$ θ REC14 $482+$ $16Y+$ θ REC $442+$ $36X+$ θ REC15 $482+$ $16Z \theta$ REC $482+$ $36X+$ θ REC16 $482+$ $16Z \theta$ REC $482+$ $482-$	PFC	4	4874	52+	0	PEC	34	48Z+	34X+	
REC6 482^{+} $6Y^{+}$ 0PEC 36 482^{+} $34Y^{-}$ 0REC7 482^{+} $13X^{-}$ 0PEC 37 492^{+} 492^{+} 0REC8 492^{+} $13Y^{-}$ 0PEC 38 492^{+} 412^{+} 0REC9 492^{+} $12X^{-}$ 0PEC 39 482^{+} 422^{+} 0REC10 452^{+} $11X^{-}$ 0PEC 39 482^{+} 422^{+} 0REC11 482^{+} $9X^{-}$ 0PEC 39 482^{+} 422^{+} 0PEC12 482^{+} $9X^{-}$ 0PEC 49 492^{+} 427^{+} 0PEC13 492^{+} $16Y^{+}$ 0PEC 42 482^{+} $39X^{+}$ 0PEC13 492^{+} $16Y^{+}$ 0PEC 42 482^{+} $39X^{+}$ 0PEC14 482^{+} 162^{-} 0PEC 42 482^{+} $39X^{+}$ 0PEC14 482^{+} 162^{-} 0PEC 44 482^{+} $36X^{+}$ 0PEC14 482^{+} 162^{-} 0PEC 44 482^{+} $36X^{+}$ 0PEC14 482^{+} 162^{-} 0PEC 482^{+} 482^{+} 482^{-} 0PEC16 482^{+} 202^{-} 0PEC 46	PEC		4074	62+		REC	35	482+	342+	6
REC7482+13X-0PEC37492+492+0REC8492+13Y-0PEC32492+412+0REC9482+12X-0PEC39482+422+0REC10452+11X-0PEC39482+422+0REC11482+9X-0PEC40492+42Y+0PEC12482+9Y-0PEC41482+38Y+0PEC13492+16Y+0PEC42482+37X+0PEC14482+162-0PEC43482+36X+0REC14482+162-0PEC44482+36X+0REC14482+162-0PEC44482+36X+0REC14482+162-0PEC44482+36X+0REC14482+162-0PEC44482+36X+0REC16482+192-0PEC44482+36X+0REC16482+192-0PEC44482+46X+0REC17482+202-0PEC47482+50Y+0REC19482+20Y+0PEC49482+46Y+0RE	PEC		4974	6.4+	8	REC	36	482+	34Y-	0
REC8492+13Y-0PEC32492+412+0REC9492+12X-0REC39482+422+0REC10462+11X-0REC40492+42Y+0FEC11482+9X-0REC41482+38Y+0REC12482+9Y-0REC41482+38X+0REC13492+167+0REC43492+37X+0REC14492+162-0REC44482+36X+0REC15492+162-0REC45492+482-0REC16482+192-0REC45492+482-0REC16482+192-0REC45492+0REC16482+207+0REC48482+507+0REC19482+27X+0REC48482+507+0REC19482+27X+0REC51482+46X-0REC19482+27X+0REC50482+46X-0REC19482+27X+0REC51482+46X-0REC20482+27X+0REC51482+46X-0REC21	PEC	7	487+	13%-	0	PEC	37	492+	492+	0
FEC9 $482+$ $12x-$ 0FEC 39 $482+$ $422+$ 0REC10 $462+$ $11x-$ 0REC 49 $492+$ $42y+$ 0FEC11 $482+$ $9x-$ 0REC 41 $482+$ $38y+$ 0REC12 $482+$ $9y-$ 0REC 42 $482+$ $39x+$ 0REC13 $492+$ $16y+$ 0REC 42 $482+$ $39x+$ 0REC14 $482+$ $162-$ 0REC 43 $492+$ $37x+$ 0REC14 $482+$ $162-$ 0REC 44 $482+$ $36x+$ 0REC14 $482+$ $162-$ 0REC 44 $482+$ $36x+$ 0REC16 $482+$ $192-$ 0REC 45 $492+$ $482-$ 0REC16 $482+$ $192-$ 0REC 46 $482+$ $36x+$ 0REC17 $482+$ $202-$ 0REC 44 $482+$ $36x+$ 0REC19 $482+$ $207+$ 0REC 48 $482+$ $592-$ 0REC19 $482+$ $27x+$ 0REC 48 $482+$ $592-$ 0REC19 $482+$ $27x+$ 0REC 59 $482+$ $46x-$ 0REC19 $482+$ $27x+$ 0REC 59 $482+$ $46x-$	PEr	8	497+	137-		PEC	38	482+	41Z+	0
REC10 $4 \le 2 +$ $11 \times -$ 0REC 40 $492 +$ $42 Y +$ 0FEC11 $482 +$ $9 \times -$ 0REC41 $482 +$ $38 Y +$ 0FEC12 $482 +$ $9 Y -$ 0REC42 $482 +$ $38 Y +$ 0FEC13 $492 +$ $16 Y +$ 0REC43 $492 +$ $37 X +$ 0REC14 $492 +$ $16 Y +$ 0REC43 $492 +$ $37 X +$ 0REC14 $492 +$ $16 Z -$ 0REC44 $482 +$ $36 X +$ 0REC15 $492 +$ $18 Z -$ 0REC45 $492 -$ 0REC16 $492 +$ $192 -$ 0REC45 $492 +$ 482 -0REC16 $492 +$ $192 -$ 0REC45 $492 +$ 482 -0REC16 $492 +$ $192 -$ 0REC45 $492 +$ 482 -0REC16 $492 +$ $20 Y +$ 0REC46 $482 +$ $492 -$ 0REC18 $492 +$ $20 Y +$ 0REC48 $482 +$ $59 -$ 0REC19 $482 +$ $20 Y +$ 0REC50 $482 +$ $46 Y +$ 0REC20 $482 +$ $27 X +$ 0REC51 $482 +$ $46 Y +$ 0REC21 $482 +$ $27 X +$ 0REC51 <td>FEC</td> <td>q</td> <td>497+</td> <td>12X-</td> <td>0</td> <td>REC</td> <td>39</td> <td>482+</td> <td>422+</td> <td>6</td>	FEC	q	497+	12X-	0	REC	39	482+	422+	6
FEC11 $482+$ $9x-$ 0PEC41 $482+$ $387+$ 0FEC12 $482+$ $9Y-$ 0PEC 42 $482+$ $39X+$ 0FEC13 $492+$ $16Y+$ 0PEC 42 $482+$ $39X+$ 0REC14 $492+$ $16Y+$ 0PEC 43 $482+$ $37X+$ 0REC14 $492+$ $162-$ 0PEC 44 $482+$ $36X+$ 0REC15 $492+$ $162-$ 0PEC 44 $482+$ $36X+$ 0REC16 $492+$ $192-$ 0PEC 44 $482+$ $36X+$ 0REC16 $482+$ $192-$ 0PEC 47 $482+$ $482-$ 0REC18 $482+$ $20Y+$ 0PEC 47 $482+$ $50Y+$ 0PEC19 $482+$ $20Y+$ 0PEC 49 $482+$ $46Y+$ 0PEC19 $482+$ $27Y+$ 0PEC 50 $482+$ $46X-$ 0PEC20 $482+$ $27Y+$ 0PEC 50 $482+$ $46X-$ 0PEC21 $482+$ $27Y+$ 0PEC 50 $482+$ $46X-$ 0PEC21 $482+$ $27Y+$ 0PEC 50 $482+$ $46X-$ 0PEC22 $482+$ $27X+$ 0PEC 50 $482+$ $46X-$ <	REC	10	467+	118-		REC	48	492+	424+	0
PEC12 482^{+} $9Y^{-}$ θ PEC 42 482^{+} $39X^{+}$ θ PEC13 492^{+} $16Y^{+}$ θ PEC 43 482^{+} $37X^{+}$ θ REC14 492^{+} 162^{-} θ PEC 44 482^{+} $36X^{+}$ θ REC15 482^{+} 162^{-} θ PEC 44 482^{+} $36X^{+}$ θ REC15 482^{+} 162^{-} θ PEC 44 482^{+} $36X^{+}$ θ REC16 482^{+} 162^{-} θ PEC 44 482^{+} 482^{-} θ REC16 482^{+} 192^{-} θ PEC 45 482^{+} 482^{-} θ REC18 492^{+} 202^{-} θ PEC 47 492^{+} 592^{-} θ PEC19 482^{+} 202^{-} θ PEC 48 482^{+} 592^{-} θ PEC19 482^{+} $20Y^{+}$ θ PEC 49 482^{+} $46Y^{+}$ θ PEC19 482^{+} $27Y^{+}$ θ PEC 50 482^{+} $46X^{-}$ θ PEC20 482^{+} $27Y^{+}$ θ PEC 50 482^{+} $46X^{-}$ θ PEC21 492^{+} $25X^{+}$ θ PEC 51 482^{+} $46X^{-}$ θ PEC23 492^{+}	PEC	11	482+	9X-	0	REC	41	482+	381+	0
PEC 13 492+ 16Y+ 0 PEC 43 492+ 37X+ 0 REC 14 492+ 162- 0 PEC 44 482+ 36X+ 0 REC 15 492+ 192- 0 PEC 44 482+ 36X+ 0 REC 16 482+ 192- 0 PEC 45 492+ 482- 0 REC 16 482+ 192- 0 PEC 47 482+ 502- 0 PEC 19 482+ 20Y+ 0 PEC 48 482+ 50Y+ 0 PEC 19 482+ 27Y+ 0 PEC 49 482+ 46Y+ 0 PEC 19 482+ 27X+ 0 PEC 50 482+ 46Y+ 0 PEC 20 482+ 27X+ 0 PEC 50 482+ 46X- 0 PEC 21 462+ 26X+ 0 PEC 51 482+ 4	PEC	12	4874	91-	9	PEC	42	482+	38X+	
REC 14 492+ 162- 0 PEC 44 482+ 36X+ 0 REC 15 482+ 182- 0 PEC 45 482+ 482- 0 REC 16 482+ 192- 0 PEC 45 482+ 482- 0 REC 16 482+ 192- 0 PEC 46 482+ 492- 0 REC 17 482+ 202- 0 PEC 47 482+ 502- 0 PEC 19 482+ 20Y+ 0 PEC 48 482+ 50Y+ 0 PEC 19 482+ 27Y+ 0 PEC 49 482+ 46Y+ 0 PEC 20 482+ 27X+ 0 PEC 50 482+ 46X- 0 PEC 21 482+ 27X+ 0 PEC 50 482+ 46X- 0 PEC 22 482+ 25X+ 0 PEC 53 482+ 4	PEC	13	4974	16Y+	0	REC	43	482+	37X+	0
REC 15 482+ 182- 8 REC 45 482+ 482- 8 REC 16 482+ 192- 8 REC 46 482+ 492- 8 REC 17 482+ 202- 8 REC 47 492+ 592- 8 REC 18 492+ 207+ 8 REC 47 492+ 592- 8 REC 19 482+ 207+ 8 REC 48 482+ 507+ 8 PEC 19 482+ 207+ 8 REC 49 482+ 467+ 8 PEC 19 482+ 27X+ 8 REC 50 482+ 46X- 9 REC 20 482+ 26X+ 8 REC 51 482+ 46X- 9 PEC 21 482+ 25X+ 8 REC 51 482+ 44X- 8 PEC 23 482+ 25X+ 8 8EC 52 482+ 5	REC	14	4974	167-	0	PEC	44	482+	36X+	. 0
REC 16 482+ 192- 0 REC 46 482+ 492- 0 REC 17 482+ 202- 0 REC 47 492+ 592- 0 REC 18 492+ 20Y+ 0 REC 48 492+ 592- 0 REC 19 492+ 20Y+ 0 REC 48 492+ 597+ 0 PEC 19 492+ 27Y+ 0 REC 49 482+ 59Y+ 0 PEC 19 492+ 27Y+ 0 REC 49 482+ 46Y+ 0 PEC 20 482+ 27X+ 0 REC 50 482+ 46X- 0 PEC 21 482+ 26X+ 0 REC 51 482+ 45X- 0 PEC 22 482+ 25X+ 0 REC 51 482+ 44X- 0 REC 23 482+ 25X+ 0 REC 52 482+ 5	REC	15	497+	187-	0	REC	45	482+	482-	0
REC 17 482+ 202- 0 PEC 47 492+ 502- 0 PEC 18 482+ 20Y+ 0 REC 48 482+ 50Y+ 0 PEC 19 482+ 27Y+ 0 REC 49 482+ 50Y+ 0 PEC 19 482+ 27Y+ 0 REC 49 482+ 46Y+ 0 PEC 20 482+ 27X+ 0 REC 50 482+ 46X- 0 PEC 21 482+ 26X+ 0 REC 51 482+ 45X- 0 PEC 22 482+ 25X+ 0 REC 52 482+ 45X- 0 REC 23 482+ 25X+ 0 REC 52 482+ 39Y- 0 REC 24 482+ 29X+ 0 REC 54 482+ 39Y- 0 REC 25 482+ 29X+ 0 REC 54 482+ 5	REC	16	482+	192-	0	REC	46	482+	492-	8
PEC 18 482+ 20Y+ 0 REC 48 482+ 50Y+ 0 PEC 19 482+ 27Y+ 0 REC 49 482+ 46Y+ 0 PEC 20 482+ 27X+ 0 REC 50 482+ 46X- 0 PEC 20 482+ 26X+ 0 REC 50 482+ 46X- 0 PEC 21 482+ 26X+ 0 REC 51 482+ 45X- 0 PEC 22 482+ 25X+ 0 REC 51 482+ 44X- 0 PEC 23 482+ 25X+ 0 REC 52 482+ 44X- 0 REC 23 482+ 25X+ 0 REC 53 482+ 39Y- 0 REC 24 492+ 23Y+ 0 REC 54 482+ 51X+ 0 PEC 25 482+ 29X+ 12X+ 0 REC 55 4	REC	12	482+	282-	8	PEC	47	492+	502-	0
PEC 19 482+ 27Y+ 8 REC 49 482+ 46Y+ 8 PEC 20 482+ 27X+ 8 REC 58 482+ 46X- 9 PEC 21 482+ 26X+ 8 REC 51 482+ 46X- 9 PEC 21 482+ 26X+ 8 REC 51 482+ 45X- 8 PEC 22 482+ 25X+ 8 REC 52 482+ 44X- 8 PEC 23 482+ 25X+ 8 PEC 57 482+ 44Y- 6 REC 24 492+ 23Y+ 8 PEC 57 482+ 39Y- 8 REC 25 482+ 29X+ 9 8 55 482+ 51X+ 8 REC 26 482+ 29X+ 9 8 8 6 482+ 51Y+ 8 REC 26 482+ 302- 8 8 8 51X+	PEC	18	482+	28Y+	0	REC	48	482+	507+	. 0
REC 20 482+ 27X+ 0 REC 50 482+ 46X- 0 REC 21 482+ 26X+ 0 REC 51 482+ 45X- 0 PEC 22 482+ 25X+ 0 REC 52 482+ 45X- 0 PEC 23 482+ 25X+ 0 REC 52 482+ 44X- 0 REC 23 482+ 25X+ 0 PEC 53 482+ 44Y- 0 REC 24 482+ 23Y+ 0 PEC 53 482+ 39Y- 0 PEC 25 482+ 29X+ 0 REC 55 482+ 51X+ 0 REC 26 482+ 29Z+ 0 PEC 56 482+ 51X+ 0 REC 28 482+ 30Z- 0 PEC 58 482+ 51X+ 4 REC 29 492+ 31Y+ 0 PEC 58 482+ 5	REC	19	482+	2744		REC	49	482+	46Y+	. 6
PEC 21 482+ 26X+ 0 REC 51 482+ 45X- 0 PEC 22 482+ 25X+ 0 REC 52 482+ 44X- 0 REC 23 482+ 25X+ 0 PEC 53 482+ 44X- 0 REC 24 482+ 23Y+ 0 PEC 53 482+ 44Y- 0 PEC 24 482+ 23Y+ 0 REC 54 482+ 39Y- 0 REC 25 482+ 29X+ 0 REC 54 482+ 51X+ 0 REC 26 482+ 29X+ 0 REC 56 482+ 51X+ 0 REC 26 482+ 29Y+ 0 REC 57 482+ 51X+ 0 REC 28 482+ 30Z- 0 REC 58 482+ 51X+ 4 REC 29 492+ 31Y+ 0 8 8 51X+ 4 <td>REC</td> <td>20</td> <td>482+</td> <td>27X+</td> <td></td> <td>REC</td> <td>50</td> <td>482+</td> <td>46X-</td> <td>9</td>	REC	20	482+	27X+		REC	50	482+	46X-	9
PEC 22 482+ 25X+ 0 REC 52 482+ 44X- 0 REC 23 482+ 25X+ 0 PEC 53 482+ 44X- 0 PEC 24 482+ 25X+ 0 PEC 53 482+ 44Y- 0 PEC 24 482+ 23Y+ 0 REC 54 482+ 39Y- 0 PEC 25 482+ 29X+ 0 REC 55 482+ 51X+ 0 PEC 26 482+ 29Y+ 0 REC 56 482+ 51Y+ 0 REC 27 492+ 29Y+ 0 REC 57 482+ 51Y+ 0 REC 28 482+ 30Z- 0 PEC 58 482+ 51X+ 4 REC 29 492+ 31Y+ 0 842+ 51X+ 4	PEC	21	482+	26X+	9	REC	51	482+	45×-	
REC 23 482+ 23X+ 0 PEC 53 482+ 44Y- 0 PEC 24 482+ 23Y+ 0 REC 54 482+ 39Y- 0 PEC 25 482+ 29X+ 0 REC 55 482+ 51X+ 0 REC 26 482+ 29X+ 0 REC 56 482+ 51X+ 0 REC 26 482+ 29X+ 0 REC 56 482+ 51X+ 0 REC 26 482+ 29Y+ 0 PEC 57 482+ 51Y+ 0 REC 28 482+ 30Z- 0 REC 58 482+ 51X+ 4 REC 29 492+ 31Y+ 0 REC 58 482+ 51X+ 4	PEC	22	482+	258+	8	REC	52	482+	44X-	0
PEC 24 482+ 13Y+ 8 811 54 482+ 39Y- 8 PEC 25 482+ 29X+ 7 8 55 482+ 51X+ 8 PEC 26 482+ 29Z+ 8 9 9 6 482+ 51X+ 8 PEC 26 482+ 29Z+ 8 9 9 56 482+ 51X+ 8 PEC 27 492+ 29Y+ 8 9 9 9 9 12 9 REC 28 482+ 30Z- 8 9 9 9 9 12 9 REC 29 492+ 31Y+ 8 9 9 9 12 12 4	REC	23	482+	27.84		PEC	53	482+	44Y-	0
REC 25 482+ 29X+ 29X+ 29X+ 29X+ 29X+ 20X+ 20	PEC	24	482+	2.38+	6	報告が	54	482+	391-	6
REC 26 482+ 292+ 0 REC 56 482+ 51Y+ 0 REC 27 492+ 29Y+ 0 PEC 57 482+ 51Y+ 0 REC 28 482+ 30Z- 0 . PEC 58 48Z+ 51X+ 4 REC 29 492+ 31Y+ 0 . PEC 58 48Z+ 51X+ 4	PEC	25	482+	298+	-	Rt **	55	482+	51X+	8
REC 27 492+ 29Y+ 0 PEC 57 482+ C12+ 0 REC 28 482+ 302- 0 REC 58 482+ 51X+ 4 REC 29 492+ 31Y+ 0 REC 58 482+ 51X+ 4	REC	26	482+	292+	8	PEC	56	48Z+	511+	6
REC 28 482+ 302- 0 . PEC 58 482+ 51X+ 4 REC 29 492+ 31Y+ 0	REC	27	492+	291+	0	REC	57	482+	51Z+	9
REC 29 492+ 31Y+ 8	REC	28	482+	30Z-	0	PEC	58	482+	51X+	4
	REC	29	492+	314+	0					

.

r

Disk Files For Jet Pump Instrumentation Panel B, Equipment No. R-53-H22-P009

JPCPP DAT 9 20-Jan-81- Parameter JPCPS DAT 121 20-Jan-81- Shapes-Shaker JPCPH1 DAT 556 20-Jan-81- Function-Z Shaker JPCPH3 DAT 215 21-Jan-81- Function-X-Hammer JPCPG DAT 5 20-Jan-81- Geometry JPCPT DAT 11 29-Jan-81- Trace JPCPS1 DAT 133 03-Feb-81- Shape-Hammer JPCPH2 DAT 87 20-Jan-81- Function-Special Points JPCPZ DAT 52 08-May-81- Project

```
        CHECKPOINT
        050891-000000

        2 JPCP2
        050851-000000
        0/TPC JET PUMP CONTROL PANEL

        P JPCPP
        012081-000000
        4/TPC JET PUMP CNTL PNL PARAMETERS

        S JPCPS
        012081-000000
        20/TPC JET PUMP CNTL PNL SHAPES

        G JPCPG
        012081-000000
        1/TPC JET PUMP CNTL PNL GEOMETRY

        H JPCPH
        012081-000000
        10/TPC JET PUMP CNTL PNL GEOMETRY

        H JPCPH
        012081-000000
        130/TPC JET PUMP CNTL PNL FUNCS 592

        T JPCPT
        012081-000000
        10/TPC JET PUMP CNTL PNL FUNCS 592
```

P RECORDS IN USE REC 1 11 REC 2 1 REC 3 8

JPCPS

S RECORDS	IN USE	
REC 1	22.730 H2	Z-AXIS SHAPE 1
REC 2	34 957 HZ	2-AXIS SHAPE 2
REC 3	38 378 HZ	Z-AXIS SHAPE 3
REC 4	44.899 HZ	Z-AXIS SHAPE 4
REC 5	48.240 HZ	Z-AXIS SHAPE 5
REC 6	53,810 H2	Z-AMIS SHAPE 6
PEC 7	58,450 HZ	Z-AXIS SHAPE 7
REC 8	60.080 HZ	Z-9X1S SHOPE 8
REC 9	22 730 HZ	Z-AXIS SHAFE 1 MODIFIED
REC 10	34.957 42	Z-AXIS SHAPE 2 MODIFIED
REC 11	38.370 HZ	Z-AXIS SKAPE 3 MODIFIED
FEC 12	44.899 HZ	Z-AXIS SHAPE 4 MODIFIED
REC 13	48 240 HZ	2-AXIS SHAPE 5 MODIFIER
PEC 14	53 810 H2	Z-AXIS SHAPE 6 MCDIFIED
REC 15	58.458 HZ	2-AXIS SHAPE 7 MODIFIED
REC 16	60 030 HZ	Z-AXIS SHAPE 8 MODIFIED

JPCPS1			
S PECOPES	IN USE		
REC 1	19.870 HZ	SHAPE 1	
REC 2	21.320 HZ	SHAPE 2	
PEC 3	31 450 HZ	SHAPE 3	
REC 4	34.570 HZ	SHAPE 4	
REC 5	42.260 HZ	SHAPE 5	
REC 6	52.000 HZ	SHAPE 6	
REC 7	64.010 HZ	SHAPE 7	
REC S	78.410 HZ	SHAPE 8	
PEC 9	85.290 HZ	SHAPE 9	
REC 10	89.030 HZ	SHAPE 10	
REC 11	94.350 HZ	SHAPE 11	
REC 12:	19.870 HZ	HAMMER SHAPE	1 MODIFIED
PEC 13	21.320 HZ	HAMMER SHAPE	2 MODIFIED
REC 14	31 450 HZ	HAMMER SHAPE	3 MODIFIED
PEC 15	34.570 HZ	HAMMER SHAPE	4 MODIFIED
REC 16	42.260 HZ	HAMMER SHAPE	5 MODIFIED
REC 17	52.090 HZ	HAMMER SHAPE	6 MODIFIED
REC 19	64.010 HZ	HAMMER SHAPE	7 MODIFIED
PEC 19	78.410 HZ	HAMMER SHAPE	8 MODIFIED
PEC 20	85.298 HZ	HAMMER SHAPE	9 MODIFIED
PEC 21	89.030 HZ	HAMMER SHAPE	10 MODIFIED
FEC 22	94 350 HZ	HAMMER SHAPE	11 MODIFIED

T RECORDS IN USE REC 1 LC REC 2 LC REC 3 LC REC 4 LC REC 5 LC REC 5 LC REC 6 LC REC 7 C REC 8 C REC 9 C

H RE!	CORDS	IN US	E	
REC	1	592+	98×+	
PEC	2	592+	98Y+	
PEC	3	592+	992+	0
REC	4	592+	91X+	0
REC		592+	91Y+	9
REC	6	592+	91Z+	
REC	7	592+	92%+	8
REC	8	592+	924+	6
REC	9	592+	922+	
REC	10	592+	592+	15
REC	11	592+	592+	3

16

1

H FEE	ORDS	IN US	E	
REC	1	7%-	7%+	1
REC	2	7%-	7%+	- 2
REC	3	7%-	7%+	3
PEC.	4	7%-	72.+	. 4
REC	5	714-	1X+	9
REC	6	7%-	2x+	
REC	7	7×-	3X+	0
REC	8	7%-	32-	
REC	9	7×-	4%+	
REC	18	7%-	42-	0
REC	11	7%-	5%+	8
REC	12	78-	52-	0
PEC	13	7%-	6%+	. 8
REC	14	77-	62-	
REC	15	7%-	72-	0
REC	16	7X-	77X+	. 0
REC	17	- 7%-	772+	8
PEC	18	7%-	797+	8
PEC	19	7%-	79%+	6
REC	20	7%-	89X+	6
REC	21	7%+	802+	3
REC	22	78-	81%*	6
REC	23	7%-	82X+	. 8
REC	24	7%-	822+	ų.
REC	25	7%-	83×+	0
REC	26	7%-	78%+	9
REC	27	7%-	71%*	. 0
REC	29	7%-	7124	6
REC	29	7X-	72%+	. 0
REC	38	78-	722+	8
REC	31	7×-	73X+	0
REC	32	78-	732+	.6
REC	33	7%-	74X+	6
REC	34	78-	742+	. 9
REC	35	7X-	758+	0
REC	36	-7X-	752+	6
PEC	37	7%-	76X+	9
PEC	38	7X-	762+	9
REC	39	7X-	7X+	15
999	40	78-	7×+	16

1

HRI	CORDS	IN US	ε		REC	59	592+	3484	9	REC	100	59Z+	69Y+	0
REC	1	592+	22+		REC	51	59Z+	35×+	0	REC	101	\$92+	692-	6
REC	2	592+	32+	. 0	REC	52	592+	362+	0	REC	102	1.32+	69Y+	8
REC	3	592+	12+		PEC	53	592+	36X+	0	REC	193	592+	76Y+	0
REC	4	592+	22+		REC	54	592+	36Y+	0	REC	104	592+	76X-	0
REC	5	592+	32+		REC	55	592+	434+	6	REC	105	592+	762-	0
REC	6	592+	424	8	REC	56	592+	43%+	. 0	REC	106	592+	752-	0
REC	7	592+	4%-	8	REC	57	592+	42X+	0	REC	107	59Z+	75X-	0
PEC	8	592+	52+		PEC	58	592*	41%+	0	REC	108	592+	742-	0
REC	. 9	592+	5%-	0	REC	59	59Z+	49 1+	9	REC	165	592+	74X-	0
REC	19	592+	62+		REC	69	54:4	39:4+	8	REC	110	59Z+	732-	0
REC	11	592+	6X-	9	REC	61	59Z+	38×+	6	REC	111	59Z+	73X-	8
REC	12	592+	72+	. 0	20	62	592+	37×+		REC	112	592+	72X-	0
REC	13	592+	7X-	0	REC	63	592+	442-	9	REC	113	59Z+	722-	8
REC	14	592+	74+	. 0	REC	64	59Z+	452-	0	REC	114	592+	71Z-	0
REC	15	592+	82+	8	REC	65	592+	462-	H	REC	115	592+	702-	9
REC	16	592+	92+	. 0	REC	66	59Z+	472+	0	REC	:16	592+	71X-	8
REC	17	592+	192+	0	REC	67	592+	47×+	8	REC	117	592+	83X-	8
PEC	18	592+	112+	6	REC	68	59Z+	492-	0	REC	118	59Z+	82X-	6
REC	12	592+	122+	6	REC	69	592+	49X+	8	REC	119	592+	81X-	. 6
RED	20	592+	12*+	6	REC	70	592+	48X+	0	REC	120	592+	80×-	
REC	21	592+	132+	8	REC	71	592+	492-	6	REC	121	592+	79X-	8
REC	22	592+	142+	6	REC	72	592+	50X+	8					
REC	23	592+	152+	9	REC	73	59Z+	502-	8					
REC	24	592+	162+	6	REC	74	592+	50Y+	0					
REC	25	592+	172+	6	REC	75	592+	512-	0					
REC	26	5904	177+	0	REC	76	592+	522-	0					
PEC	27	592+	182+	6	REC	77	592+	53Z-	9					
REC	28	592+	192+	0	REC	78	592+	612-	0					
REC	29	59Z+	202+	0	REC	79	592+	611+	9					
REC	38	592+	212+	8	REC	80	592+	60X+	8					
REC	31	522*	222+		REC	81	592+	692-	0					
REU	36	292*	232+		REC	82	592+	60Y+	6					
REC	35	522*	2424	8	REC	83	59Z+	592-	6					
REC	24	222*	2434		REC	84	592+	598+	9					
REL	20	5974	2417		REC	85	592+	58Z-	8					
DEC.	30	5924	222+	0	REC	86	592+	56X+	6					
DEC	20	5974	2774	0	REC	87	592+	572-	8					
PEC	20	5974	2074	9	REC	88	592+	57X+	8					
PEC	40	5971	297+	8	REC	89	592+	56X+	e .					
PEC.	40	5074	2944	9	REC	96	092*	-136	8					
REC	42	5974	397+	a	REC	21	5074	502-						
REC	43	597+	312+	8	REC	22	5074	632	0					
PEC	44	592+	327+		REC	23	592+	622-	0					
REC	45	597+	332+		REC	05	5974	647	0					
REC	46	597+	33X+	0	PEC	90	5974	652	0					
REC	47	592+	342+	8	REC	92	592+	662	9					
REC	48	592+	342+	8	REC	99	597+	677	8					
REC	49	592+	352+	9	REC	99	592+	68Z-	8					
					and the second sec			the second se						

,

GEOMET	RY			42	120	78	12
1.00	X	Y	Z	43	120	84	12
1	9	0	0	44	120	0	30
	0	14	0	45	120	14	30
3	0	29	1 . r -	46	120	29	30
4	ñ	47		4?	120	43	30
c	й	57	0	48	120	57	30
2	9	70		43	120	20	30
	a	84	6	58	129	84	30
	25	0	e	51	97.	6	30
4	25	29	12	52	97	23	21
1.0	25	51	12	53	97	43	12
11	25	77	12	54	72 -	0	30
12	25	84	Ĥ	55	72	14	30
17	47	0	3	56	72	29	30
14	47	29	12	57	72	43	30
15	47	51	12	39	72	57	30
16	47	77	12	59	72	70	30
17	47	84	0	69	72	84	30
19	72	9	0	61	97	94	30
19	72	14	9	62	47	9	30
20	72	29		63	47	23	21
21	72	47	9	64	47	43	12
32	72	57		65	25	9	30
23	72	70	9	66	25	23	21
24	72	94	. 0	67	25	43	12
25	97	0		69	47	84	30
25	97	29	12	69	25	84	30
27	97	51	12	70	0	9	30
28	97	77	12	71	0	14	30
29	97	84	0	72	0	29	30
30	120	0		73		43	30
31	120	14	. 0	74	0	57.	30
32	120	- 29	. 0	75	0	70	30
33	120	43	. 0	76	.0	84	30
34	120	57	9	77	9	84	12
35	128	70	9	78	9	70	12
36	120	84		79	9	57	12
37	120	9	12	80	6	43	12
38	120	14	12	81	0	29	12
39	120	- 29	12	82	0	14	12
40	120	43	12	83	8	9	12
41	120	57	12	84	72	51	12
				85	72	29	12
				86	72	77	12

.

×,

Disk Files For Recirculation Control Valve B, Equipment No. R-57-B33-V003

KRRUP .DAT 9 23-Jan-81 - Parameter 5 23-Jan-81- Geometry KRRVG .DAT KRRUH2.DAT 194 23-Jan-81- Function - Z KRPUH .DAT 215 27-Feb-81 - Function - Y KRRUZ .DAT 52 98-May-31 - Project KRRUT DAT 11 23-Jan-81- Trace KRRUS .DAT 121 23-Jan-81- Shape - Y KRRUS2.DAT 61 04-Mar-81- Shape - Z CHECKPOINT 050881-300000 2 KPPUZ 050891-000000 0/TPC REACTOR RECIRC VALVE P KPRIIP 012381-000000 4/TPC REACTOR RECIRC VALVE PARAMS 012301-000000 20/TPC REACTOR RECIRC VALVE SHAPES S KRRUS 6 KRRUG 012301-000000 1/TPC REACTOR RECIRC VALVE GEOM 012381-000000 45/TPC REAL RECIRC VALUE FUNCTIONS 72 H KRRUH2 012301-000000 10/TPC PEACTOR RECIRC VALUE TRACES T KRRUT P RECORDS IN USE REC 1 8 PEC 2 5 KRPUS. S RECORDS IN USE FEC 1 18.978 HZ Y-DIR SHAPE #1 22.570 HZ REC 2 Y-DIR SHAPE #2 30 700 HZ Y-DIR SHAPE #3 REC 3 38.360 HZ Y-DIR SHAPE #4 REC 4 REC 5 40.870 HZ Y-DIR SHAPE #5 45.210 HZ Y-DIR SHAPE #6 REC 6 47.970 HZ Y-DIR SHAPE #7 REC 7 89.900 HZ Y-DIR SHAPE #8 REC 8 REC 9: 18 970 MZ SHAPE #1 MODIF!ED 22 578 HZ SHAPE #2 MODI-IED REC 10 30 700 HZ SHAPE #3 MODIFIED PEC 11: 38.360 HZ SHAPE #4 MODIFIED REC 12: 40.870 HZ SHAPE #5 MODIFIED REC 13 45 210 HZ SHAPE #6 MODIFIED REC 14: 47 970 HZ SHAPE #7 MODIFIED FEC 15

89.900 HZ SHAPE #8 MODIFIED

0

REC 16

KRRUS2		
S RECORDS	IN USE	
REC 1	16 210 17	Z-DIR SHAPE #1
REC 2	27.070 HZ	Z-DIR SHAPE #2
REC 3	32.595 HZ	Z-DIR SHAPE #3
REC 4	37.930 HZ	Z-DIR SHAPE #4
PEC 5	54 290 H2	2-DIR SHAPE 15
REC E	16.210 HZ	SHAPE 1 MODIFIED
PEC 7	27.070 HZ	SHAPE 2 MODIFIED
REC 8	32 595 HZ	SHAPE 3 MODIFIED
REC 9	37.980 HZ	SHAPE 4 MODIFIED
REC 10	54.290 HZ	SHAPE 5 MODIFIED

T RECORDS IN USE REC 1 LC

GEOMETI	81		
201		Y	2
1	22	. 6	Ģ
2	6	0	. 6
3	. 9	-19	0
. 4	-30	6	6
5	0	16	.6
6	- 0	27	0
7	6	36	0
	0	45	0
9	20	36	0
10	30	36	.0
11	36	36	9
12	62	36	. 9
17	- 63 -	36	
14	88		6
18	107	26	0

>

81036 May i5, 1981

H F	ECOPDS	IN US	ε			RECORD	S 14 US	E	
REC	1	94+	11+	0	÷.	EC 1	72+	72+	16
REC	2	97+	12+	6	ç	50° 2	72+	72+	4
PEC	3	gy+	22+	0	¢	EC 3	72+	17+	0
PEC	4	914	31(+	6	8	Et 4	72+	12+	8
PET	5	914	32+	9		50 53	72+	22+	9
00		9Y+	42+	. 0	F	50 . é	72+	35+	9
DEL.	7	97+	44+	9	P.	E0 7	72+	72+	15
REC	. 8	944	52+	0	R	£C ε	72+	32+	9
1224	9	97+	62+	ê.	R	80 93	72+	42+	9
REC	10	94+	72+	9	P	EC 10	-72+	4Y+	.0
SEC	Sect:	99+	8%+	0	R	EC 11	72+	52+	6
REC	12	97+	87+	0	R.	EC 12	72+	62+	0
REC	13	97+	82-	. 6	9	80 17	72+	72+	0
REC	14	9Y+	92-	9	P.	EC 14	72+	87.+	. 0
REC	15	9Y+	974	0	P	EC 15	72+	87+	9
REC	16	.∋Y+	102-	6	F.	EC 16	72+	8Z-	e
REC	17	98+	107+		P	EC 17	72+	92-	ĥ
REC	18	9Y+	112-	9	P	EC 18	72+	91+	. 9
REC	19	97*	117+	0	R	EC 19	72+	102-	6
REC	28	97+	122-	9	F	EC 20	72+	101+	ø
PEC	21	. 9Y+	121+	. 0		EC 21	72+	112-	9
PEC	22	97+	13.2-	6	R	EC 22	72*	11 14+	6
REC	23	gy+	134+	6	R	EC 23	72+	122-	6
950	24	9Y+	142-	0	P	EC 24	72+	1274	6
REC	25	974	14Y+	. 6	P	EC 25	72+	132-	0
REC	26	97+	172-	6	R	EC 26	72+	13Y+	ē
REC	27	. 9Y+	157+	6	F	EC 27	72+	142-	6
REC	29	9Y+	15%*	.0	P	EC 28	72+	141+	6
REC	29	34+	37-	- Ň	R	EC 23	72+	152-	6
REC	36	3.1+	9Y+	3	1.1.1.1.1.1.8	EC 100	.72+	157+	0
REC	31	34.4	9Y+	2.	P.	EC 31	72+	15%+	6
REC	32	8 Y +	97+	4	R	EC 32	72+	- 3X-	6
REC	33	34+	5X+	1					
REC	34	31.+	97+	15					
REC	35	9Y+	9Y+	16					

5

11-3

Disk Files For 3" Motor Operated Valve Near V-8 SRV Discharge

68-May-81					
K3ING .DAT	5	18-Jan-81-	Geometry		
KAINP .DAT	9	18-Jan-81-	Parameter		
KSINHI DAT	194	19-Jan-81.	Function		Х
KINHI DAT	194	19-Jan-81-	Function	-	Z
K3INSZ .DAT	121	85-Mar-81-	Shape	*	Z
KINZ DAT	52	88-May-81-	Project		
KIINT DAT	7	18-Jan-81-	Trace		
KIINSX.DAT	61	21-Jan-81-	Shape	-	X
K31NH2 DAT	194	19-Jan-81-	Function	-	Y
KINSY DAT	121	26-Feb-81-	Shape	-	Y
K31NP1.DAT	9	10-Mar-81-	Parameter	-	Hi/Lo

```
CHECKPOINT 050881-000000
```

F31N2	050831-000000	0/TAIPONER	3*	VALVE	PROJECT
K3INP	011881-000000	4 TAIPONER	3*	VALUE	PARAMETERS
¥31462	030581-000000	20/TAIPOWER	3*	VALVE	SHAPES 292-
1.31NG	P11881-00000	1/TAIPOWER	3*	VALVE	GEOMETRY
K3INH3	011981-000000	45/TAIPOWER	3*	VALVE	Z-FUNCTIONS
K3INT	011881-00000	6/TAIPOWER	3*	VALVE	TRACES

P RECORDS IN USE REC 1 5 REC 2 7 REC 3 9 REC 4 11

٢.,

KJINSZ		
S RECORDS	IN USE	
REC 1	20.550 HZ	2-AXIS SHAPE 1
REC 2	29.800 HZ	Z-AXIS SHAPE 2
REC 3	44.070 HZ	Z-AXIS SHAPE 3
REC 4	48.220 HZ	Z-AXIS SHAPE 4
REC 5	49.330 HZ	Z-AXIS SHAPE 5
REC 6	72.370 HZ	Z-AXIS SHAPE 6
REC 7	75.780 HZ	Z-AXIS SHAPE 7
REC 8	79.890 HZ	Z-AXIS SHAPE 8
REC 9	29.610 HZ	Z-FXIS SHAPE 9
REC 10	38.190 HZ	Z-AXIS SHAPE 10
REC 11	20.550 HZ	SHAPE 1 MODIFIED
REC 12	29.900 HZ	SHAPE 2 MODIFIED
REC 13	44 878 HZ	SHAPE 3 MODIFIED
REC 14	48 220 HC	SHAPE 4 MODIFIED
REC 15	49.730 HZ	SHAPE 5 MODIFIED
REC 16	72.370 HZ	SHAPE 6 MODIFIED
PEC 17	75.780 H2	SHAPE 7 MODIFIED
REC 18	79 898 HZ	SHAPE 9 MODIFIED
REC 19	29.610 HZ	SHAPE 9 MODIFIED
REC 20	30 190 H2	SHAPE 10 MODIFIED

12-1

1.31031		
S RECORDS	IN USE	
REC 1	21.891 HZ	Y-AXIS 3" VALUE
REC 2	29.650 HZ	Y-AXIS 3" VALUE
REC 3	44 789 HZ	Y-AXIS 3" VALVE
REC 4	48.110 HZ	Y-AXIS 3" VALUE
REC 5	49.540 HZ	Y-AXIS 3" VALUE
REC 6	75.070 HZ	Y-AXIS 3" VALVE
REC 11	21 891 HZ	SHAPE 1 MODIFIED
FEC 12	29.650 HZ	SHAPE 2 MODIFIED
REC 13	44.780 HZ	SHAPE 3 MODIFIED
REC 14	48.110 HZ	SHAPE 4 MODIFIED
REC 15	49.540 HZ	SHAPE 5 MODIFIED
REC 16	75.079 HZ	SHAPE 6 MODIFIED
K31NSX		
S RECORDS	IN USE	
PEC 1	18.190 HZ	SHAPE # 1
REC 2	21.329 HZ	SHAPE #2
REC 3	30.140 HZ	SHAPE #3
REC 4	33.410 HZ	SHAPE #4
REC 5	74.570 HZ	SHAPE #5
REC 6	74.578 HZ	SHAPE 5 MODIFIED
REC 7	18.190 HZ	SHAPE 1 MODIFIED
PEC 8	21.329 HZ	SHAPE 2 MODIFIED
REC 9	30.140 HZ	SHAPE 3 MODIFIED
REC 10	33.410 HZ	SHAPE 4 MODIFIED
T RECORDS	IN USE	•
REC 1 LC		
REC 2 LC		
REC 3.C		

K31NP1 HI-LO FORCE P RECORDS IN USE REC 1 11 REC 2 14 REC 3 18

7

1

H REC	ORDS	IN US	3E	
REC	1	29X+	3X-	0
REC	2	29X+	3X-	0
REC	3	29%+	4X-	0
REC	4	29X+	5X-	0
REC	5	29X+	6X-	0
REC	6	29X+	7%-	0
REC	7	29%+	8×+	0
REC	8	29X+	9X+	0
REC	9	29X+	11X+	0
REC	10	29X+	13X-	0
REC	11	29X+	14X+	0
REC	12	29%+	15X-	0
REC	13	29X+	17X-	0
REC	14	29%+	20X-	0
REC	15	29X+	21X-	0
REC	16	29X+	24X-	0
REC	17	29X+	25X-	0
REC	18	29X+	27X-	0
REC	19	29X+	29X-	4
REC	20	29X+	29X-	16
REC	21	29X+	29X-	3
REC	22	29X+	28X+	0
REC	23	29X+	302+	0
REC	24	29X+	31X+	0
REC	25	29X+	16X+	0
REC	26	29X+	18X+	0
REC	27	29X+	29Y-	8
REC	28	29X+	292-	0
REC	29	29X+	214+	0
REC	30	29X+	212-	0
REC	31	29X+	52+	6
REC	32	27X+	28X+	10
REC	33	27X+	28X+	11
REC	34	27×+	28X+	12
REC	35	27×+	28X+	13
REC	36	278+	28X+	6
REC	31	278+	28X+	7
REC	38	278+	28X+	8
REC .	39	2024	288+	9
REC	40	294.	29%-	15
REC	41	2944	298-	2
REC	47	2944	228-	e
REC	40	5544	624-	1

H TH	POWER	R 3* 1	ALVE	Y-FUNCTIONS
H REC	COPDS	IN US	E	
REC	1	25Y+	1Y-	8
PEC	2	25Y+	2Y-	0
REC	3	25Y+	5Y-	6
REC	4	257+	7Y-	6
REC	5	25Y+	87-	8
PEC	6	25Y+	164+	. 0
REC	7	254+	134+	0
REC	8	25Y+	1444	9
REC	. 9	25Y+	154+	9
REC	10	25Y+	16Y+	8
REC	11	25Y+	17Y+	8
REC	12	254+	184+	8
REC	13	25Y+	194+	9
REC	14	25Y+	284+	8
REC	15	251+	214+	6
PEC	16	25Y+	224+	9
REC	17	254+	317+	9
\$EC	18	25Y+	324+	
PEC	19	251+	234-	6
PEC	20	25Y+	241-	6
REC	21	251+	25Y-	4
REC	22	257+	25Y-	3
PEC	27	257+	25Y-	2
PEC.	24	25Y+	25Y-	1
REC	25	25Y+	26Y-	9
REC	26	254+	274-	ε.
REC	27	257+	28Y-	8
REC	28	251+	29Y-	9
PEC	29	254+	30Y-	6
REC	38	25Y+	32+	0
REC	31	257+	42+	6
REC	32	251+	52+	6
REC	33	25Y+	62+	6
REC	34	251+	72+	6
REC	35	25Y+	5X-	8
REC	36	25Y+	29X-	4
REC	37	254+	292-	e .
REC	39	304+	30Y-	6
REC	39	30Y+	304-	7
REC	49	30Y+	301-	8
REC	41	364+	304-	9
REC	42	38Y+	30Y-	10
PEC	43	30Y+	301-	11
REC	44	30Y+	361-	12
REC	45	301+	364-	13

H TAL	POWER	P 3* U	ALVE	Z-FUNCTIONS
H REC	ORDS	IN US	E	
PEC	1	292+	12+	0
PEC	2	292+	22+	6
239	3	292+	32+	9
PEC	4	292+	42+	9
REC	5	292+	5Z+	6
REC	6	292+	6Z+	0
939	7	292+	72+	0
REC	6	292+	82+	8
REC	9	292+	92+	0
PEC	10	292+	112+	6
REC	11	292+	152+	0
REC	12	292+	16Z+	9
REC	13	2924	312+	6
REC	14	292+	192+	6
REC	15	292+	292+	0
PEC	16	292+	242+	0
PEC	17	292+	232+	6
REC	18	292+	21Z-	
PEC	19	292+	222-	6
PEC	28	292+	252-	- 0
REC	21	292+	262-	9
REC	22	292+	292-	4
REC	22	292+	292-	3
REC	24	292+	292-	2
REC	25	292+	302-	0
REC	26	292+	272+	9
REC	27	292+	282+	0
REC	28	292+	27Y-	0
REC	29	292+	27X-	6
REC	30	292+	2Y-	0
REC	31	292+	37.+	6
REC	32	292+	272+	6
REC	33	292+	272+	7
REC	34	292+	272+	6
REC	35	292+	272+	9
REC	36	292+	272+	10
REC	37	292+	272+	11
REC .	38	292+	272+	12
REC	39	292+	272+	13
FEC	40	292+	292-	1
REC	41	292+	292-	8

4

*

EDMET	RY		
.00	X	14	2
1	25	18	8
2	6	18	6
3	9	12	9
z		6	9
5	p.	0	ø
6		-6	
7	9	-17	0
\$	10	-28	
9	4	9	7
10	9	-4	7
11	- 4	0	7
12	e	4	7
13	2	0	14
14	-2	. 0	14
15	3	-3	21
16	-3	- 7	21
17	3	- 3	25
18	+3	-3	25
19	6	- 1	21
23	13	-1	21
21	13	-1	25
22	÷.	1	25
22	÷ 6	4	21
24	13	4	21
25	13	ą	25
26	6	4	25
27	4	16	18
28	-3	16	18
22	d	16	24
30	-3	16	24
21	- 4	3	21
20	- 7	7	21

)

Disk Files For 480V Motor Control Center 1C1D (Located in Auxiliary Building)

KMCCG	DAT	5	26-Jan-81 -	Geometry
KMCCP	DAT.	9	26-Jan-91 -	Parameter
KMCCH2	DAT	215	26-Jan-31-	Function-Front
KMCCS	DAT.	73	83-Feb-81-	Shape
KMCCZ	DAT	52	08-May-91-	Project
KMCCT	DAT	11	26-Jan-91-	Trace
KMCCH1	DAT.	215	26-Jan-81-	Function-Rear
киссиз	DAT	215	26-Jan-81-	Function-Front

CHECKPOINT 050881-000000

2	KMCCZ	050881-000000	0/TPC	KNCC-1C1D CONTROL PANEL
2	KMCCP	012681-000000	4/TPC	KMCC-1C1D PARAMETERS
ŝ	KMCCS	020381-000000	12/TPC	KMCC-1C1D MODE SHAPES
	KMCCG	012691-000000	1/TPC	MCC-1C1D GEOMETRY
4	KMCCH3	012681-000000	SE/TPC	KMCC-101D FUNCTIONS FRONT #2
ſ	KMCCT	012691-000000	10/TPC	KMCC-1C1D TRACES

P RECORDS IN USE REC 1 10 REC 2 7

KMCCS

S. 83	ECOKD3	TH USE		
REC	1	7.405	HZ	MCC-1C1D SHAPE 1
PEC	2	29.200 1	HZ	MCC-1C1D SHAPE 2
REC	3	33.930 1	HZ	MCC-1C1D SHAPE 3
REC	4 -	39.728 1	ΗZ	MCC-1CID SHAPE 4
REC	5	47.420 1	42	MCC-1C1D SHAPE 5
REC	6	62.980 1	HZ .	MCC-1C-1D SHAPE 6
REC	7:	7.485 1	4Z	SHAPE 1 MODIFIED
REC	8	29.200 1	HZ	SHAPE 2 MODIFIED
REC	9	33.938 1	ΗZ	SHAPE 3 MODIFIED
REC	10	39.720	HZ	SHAPE 4 MODIFIED
REC	11	47.420	HZ	SHAPE 5 MODIFIED
REC	12	62.980	HZ	SHAPE 6 MODIFIED

T RECORDS IN USE REC 1 LC REC 2 LC REC 3 LC REC 4 C REC 5 C REC 5 C REC 7 C REC 7 C REC 8 C REC 9 C

3EC 10 C
81036 May 15, 1981

GEOMET	RY			6.0	cu.	20	20
LOC	×	Y	7	57	20	10	20
1	"a		" a	5.0	00	40	29
2	à	40	à	54	00	68	- 20
	ä	90	9	22	06	59	28
4	a	100		26	69	166	28
	40	100	0	54	88	6	20
1. 2	40	40		28	80	24	28
	40	96		62	86	169	20
	40	93	6	63	100	8	20
	40	166	6	64	100	20	20
	66			65	100	48	20
10	80	40	6	66	100	60	20
11	89	86	6	67	100	89	20
12	36	168	6	68	100	100	28
15	129	6	6	69	120	0	20
14	120	48	6	70	120	20	20
15	120	80	6	71	129	40	20
16	120	166	0	72	120	60	28
17	169	6	6	73	120	80	20
18	166	40	6	74	120	100	29
1.9	160	80	6	75	140	9	28
20	160	166	6	76	148	20	28
21	186			77	140	48	28
22	190	48	0	78	140	60	28
23	186	88	. 6	79	148	98	20
24	180	166	. 6	99	148	100	20
25	200	6	6	81	160	8	29
26	288	40	0	82	168	28	20
27	200	88	0	83	160	45	29
28	200	188	. 6	84	160	60	20
29	220		. 6	85	168	80	20
30	220	48	0	86	168	199	28
31	229	88	9	87	180	A	20
32	220	166		88	180	28	20
33	6	6	20	89	180	49	28
34	6	20	20	98	180	69	20
35	9	40	20	91	180	88	28
36		-68	20	92	188	189	28
37	. 6	- 88	20	93	200	9	20
38	6	100	28	94	200	28	28
39	20	.6	20	95	289	40	20
48	20	20	20	96	200	68	20
41	20	40	20	97	200	89	29
42	20	69	20	98	200	199	28
43	20	80	20	99	220	8	28
44	20	199	29	100	220	29	20
45	40	8	20	101	220	48	20
46	40	20	20	192	220	69	21
47	40	48	20	193	220	99	28
48	40	60	20	184	220	100	20
49	40	88	20			100	
50	40	189	28				
61	63	80	28				
51	69	é	26				

13-2

81036 May 15, 1981

HR	ECORDS	S IN US	38		H REI	COPD	IN J	ISE		H RE	COPDS	SINU	SE	
REC	1	- 922+	922+	1	REC	1	922+	692+	9	REC	1	922+	372+	0
REC	2	922*	922+	2	REC	2	922+	702+	9	REC	2	922+	392+	9
REC	3	922+	922+	3	REC	3	922+	712+	0	REC	3	922+	362+	
PEC	4	322+	922+	4	REC	4	922+	722+		PEC	4	922+	372+	0
REC	5	922+	12-	0	REC	5	922+	732+	8	REC	5	922+	382+	
REC	6	\$22+	22-	0	PEC	6	922+	742+	0	REC	6	922+	38Y+	9
REC	7	922+	32-	0	REC	. 7	922+	741+	0	REC	7	922+	38X-	0
REC	8	922+	42-	6	REC	. 8	922+	752+	9	REC	8	922+	392+	R
PEC	9	922+	4%-	0	REC	9	922+	762+	9	REC	9	922+	402+	
REC	10	922+	4Y+	0	REC	10	922+	772+	9	REC	10	922+	412+	
PEC	11	922+	52-	0	REC	11	922+	782+	0	REC	11	922+	422+	0
REC	12	922+	62-	. 0	REC	12	922+	792+		REC	12	927+	432+	0
REC	13	922+	. 72-	0	REC	13	922+	802+	0	REC	13	922+	447+	9
REC	14	922+	82-	0	REC	14	922+	88Y+	8	REC	14	922+	444+	R
REC	15	922+	87+		REC	15	922+	812+	0	REC	15	927+	457+	R
REC	16	927+	92-	0	REC	16	922+	822+		REC	16	927+	467+	A
REC	17.	932+	102-	. 9	REC	17	922+	832+		PEC	17	927+	477+	R
REC	13	922+	112-	0	REC	18	922+	842+	0	PEC	18	927+	497+	
REC	19	922+	122-	0	REC	19	922+	852+	8	REC	19	927+	497+	A
REC	20	922*	127+	6	REC	20	922+	862+	0	REC	20	927+	597+	
REC	21	9224	132-	0	REC	21	922+	86Y+	0	REC	21	927+	544+	R
PEC	- 22	922+	142-	9	REC	22	922+	872+	9	REC	22	927+	517+	
REC	23	922+	152-	0	REC	23	922+	882+	8	REC	23	927+	522+	A
PEC.	24	922+	162-	6	REC	24	922+	89Z+	8	REC	24	927+	527+	a
REC	25	922+	167+	8	REC	25	922+	902+	.0	REC	25	927+	547+	8
PEC	26	922+	172-	. 6	REC	26	922+	912+	8	REC	26	927+	5574	a
REC	27	922+	182-	0	REC	27	922+	922+	0	REC	27	927+	567+	9
REC	- 23	922+	192-	6	REC	28	922+	922+	2	REC	28	927+	5644	9
REC	29	922+	202-	6	PEC	29	922+	922+	3	REC	29	9274	577+	A
REC	30	922+	207+	0	REC	30	922 -	922+	4	PEC	38	927+	587+	A
REC	31	922+	212-	0	REC	31	922+	924+	0	REC	31	927+	5974	A
REC	32	922+	222-	6	REC	32	92Z+	932+	8	REC	32	927+	687+	9
REC	33	922+	232-	9	REC	33	922+	942+	0	REC	33	927+	617+	A
PEC	34	922+	242-	9	REC	34	922+	952+	0	REC	34	927+	6274	P
PEC	35	922+	244+	. 6	REC	35	922+	962+	0	REC	35	927+	6244	A
PEC	36	922+	252-		REC	36	922+	972+	0	PEC	36	927+	6374	a
REC	37	922+	202-	8	REC	37	922+	982+	0	REC	37	927+	647+	A
REC	38	922+	27Z-	6	REC	38	922+	992+	0	REC	38	927+	157+	A
REC	39	922+	282-	6	REC	39	922+	1002+	8	REC	39	922+		A
REC	40	92Z+	58A+	6	REC	40	922+	1012+	0	REC	48	922+	672+	2
REC	41	922+	292-	8	REC	41	922+	181X+	9	REC	41	927+	687+	P
REC	42	922+	302-	9	REC	42	922+	1022+	0	REC	42	927+	684+	a
REC	43	922+	312-	6	REC	43	92Z+	102X+	0		12			
REC	44	922+	31×+	0	REC	44	922+	1032+	9					
REC	45	922+	322-	9	REC	45	922+	103X+	9					
REC	46	922+	328+	0	REC	46	922+	1042+	8					
REC	47	922+	324+	0	REC	47	922+	184%+	0					
REC	48	922+	332+	0	REC	49	922+	1844+	0					
REC	49	922+	342+	0	REC	49	922+	922+	1					
REC	58	922+	352+	0										

r

APPENDIX D

MODE SHAPE DATA

The microfiche in this appendix lists F3 files of mode shape data. The files are in the following order:

1-6	480V Motor Control Center
7-25	Jet Pump Instrumentation Panel
26-36	3-Inch Motor Operated Valve
37-40	RHR Pump
41-53	Recirculation Control Valve
54-63	3-Inch Motor Operated Valve