

David E．En：…nger
Depart－ent of Statizここのe
The University of California，Jerkeley

Freamble．Z was fezuested by an hide to Congresaman ．．．Jcilums to review certain materiais relating to the siting of ruciear reaztor＝at valiecitos， California．

This material was：
1．Probability Anaiysis of Surtace Bupture offset Seneath Beactor Eutiaing General Bectric Test Reactor（12 April 19～9）DAC－117－217．13
2．Additional Probability Anaiyses of Surface Rupture offset Eeneath Feactor Euilding General Electric Test Reactor（Karch 12，1980）Jミi－111－01 3－01
3．Probobility Analysis for combined Surface Rupture Offset and Vibratory Ground Notion Ceneral Electric Tett Reactor（April 29，1980）J3．＿－111－014－01 4．Combined Farameter Frobability Analysis General Zlectric Test Reactor （July 18，1980）121－017－02
5．Le：ter from L．C．Rouse，MRC to R．A．Moschner，OEC dated Feb．26， 1981

Erief Sumary of Review．The aralysis provided in Reports ？－is incoripleve， simplistic and unaccompanied by proper quelifiestions．I do not believe that any reasonable statistician would let hirself be associated nith probabilistic and statistical results of the sort provided．The approach does not address the properly skeptical audience．The IlRS has not been well served．The conclusions are extremely debatable．

A desire for sizplicity is commendable；however simple rodels can be very missieading，and this may well have happened here．It appears to me that too zany simplifying assurptions have been maie．The problen has been oondensed ：o0 far．：：has been treated as one－iimeneional，instead of its actual three－ di－enatcral nature．It has besn treated as statie，instead o？：ts actual
 analysis，a single number（probabil2ty），cons：itutes voo brutai a summazy of the s：tus：ton．Fosz：ble da－age to the gz－tut the ：Uu－ar Fozulation depends on－uch more．

The usual scientific proceture of pointing out the limits of unceriainty is the findzngs and inference has not been followed. lany assumpii. is made have not been justified and may at best be described as Euessos of convenient approximations. A cursory reviek of the literature yielis confilicting physical values for eany of those employed. Other vaiues and physical nodels fit the data equally well aru some undoubtedly lead to quite different end numbers.

The letier S. strikes me as premature. It refers tc a deterministic approach and a probabilistic approach. In fact, deterministic approaches are probabllis:ic. The authors neglect phenomena that have small probability of cocurring and employ parameter values sub;ect to reasurement error. The probabilis"h apgroach values recorded in the le:ter constitute too savage a sumary of the situetion, are based on data subject to error and are based on debstable assumptions. The implications of delibersteiy building in bias, (conservatism?), need to be investigated.
a full Fisk study should be carried out and the approach of stich a study assessed in detail. The study should incluce error analysis, critical examination of essumptions, specific study re all reactors at the site, Konte Carlo / simulation work, be multivatiate rather than scalar, and examine ground-to-structure interaction (feedjack) among other thans. If a decision to resume activities is made, all assur, tions and procedures of the aralysis should be set dom in as specific and detailed fashion as possible, in order that if an accident or other surprise cocure, specific scientific knowledge will be gained (rather than only the knowiedge thot someone's engineering judgenert was incorrect.)

- One final comment. It seems that in a probabilistic approach, ratios of probabillties of alternatives are relevant as well as absolute probabilities. In particular, are not the risks associated k ith other sites clearly less than those of Vallecitos?

 comes ip each time. hre you then rilling to proceed or the basis that the probe:ility of a head the nex: flip is $/ /(\mathrm{n}-2)$? Tais is the essence of wha: the authors of this report would have you do. (See expressions ($=-11$), ($=-12$),) The resuit is known as Laplace's Rule of Succession and was popular in the nineteenth century. It hes since fallen into total discredit, except for hypothetical situations in which the precise matheraticsi conditions for its validity hold, and which are far from true here. The formula comes from ajopting a Eayesiar. approach to the problem - assuring that constarts are in fact random variabies and indeed, rardom variables whose distribution is known.I make two remarks. First, the Eayesian approach is not eenerally accepted by the vest majority of statisticians (unless certain very specific conditions obtain). I: is exceedingly controverzial. Second, quoting the report page $2-1$ quoting USKRC Standard Review Plan, Section 2•2•3: "Acco: gly, a conservative calculation showing that the probability of occurrence of potential exposures in excess of the IOCFR Part 100 suidelines is approximately 10^{-6} per year is accejtable if, ..." . In my opinion the results derived fron Bayesian argumen:s, of the sort presentel :iere, ARE NOM IN FACT PROBABIL:TIES. COmputi:g them bears no relationship to satisfying the quoted recuiremert.

Cther comments I have include:

1. Exceedingly precise assumptions are set donz, yet there is so little data made use of, and the situation is so important.
2. The vord "conservative" and even "very conservative" is used throughout. Because of the many unjustified assumptions, to my mind, these words are totally in ppropriate.
3. The problem is reduced to a one-dimensional one - of a point (he fault entry) being located in a certain interval (the reactor building) of a line. The problem in undeniably three-dimensional. The bu lding has three dimensions; Iength, with and depth. The building does not run para:lel to the faut. In a one-dimensional approach, its widest prospecz should be employed. I would argie, that a relevant probability to seek to eva, untu is that of a curve (not straight (ins) intersecting a box of the length, breatth and depth of the situation, The proczabilizy actually evaiuated is less thn this grobsb:iliy, and hence no:
conserva：2ve．
C．Fage g－i．A Poissor process is assumed．Z have anaiyzed many seismic even： seztes，and ：feel read the vast majzr2ty of scientific zapers writien on such analyses．The Po：sson assumption simŋ゙そ does not ho之e．Tre ：imes are ciustezet． （ $\because 0$ r is the Poisson assumption off in a conservative direction．Failing it resul：s in secmingly more precise estimates．）
5．I sense a belief on the part of the report＇s authors，that sny new movement is a lot more likely to take place on one of the existing shears．If this is the case，why is there more than one ahear at the site？（See es．？E－7．） 6．The report tarea nc note of the（possibly suzstantial）measurement error in the data．Nor does it model in variation resul：\quad ifom an（unknown） varying number of offsets．
7．Expression（ $5-2$ ）corfesponds to a zrobability of exactiy one offsct．What is required is a probability of at least one（a lazger value．）

The report does also provide a non－Eaそesian computation，estimating the yearly rate of shearing between the two given shears by the upper limit of a one－sided 95 per cent confidence interval（the data being no shears in 128,000 or 195,010 years）and then approximating ？by this value．Mins approach depenc strongly on the formulation adopted and the specific Poisson assumption（which as indicated above is strongly debatable．）No discussion of the estimate＇s variability is provided．Provision of variability is standard in the classical approach．（I remark that this repcrt，page 7－1，prowides the first time in my fairly long career that I have seen a 95 per cert confidence Level descrioed as＂very conservative＂．

Within the NRC scheme of allowtng the neglect of evense \because th probability approximately $: 0^{-6}$ ，this ，epozt comes no where near such a demonstration． Quite franky，it is at the level of a first or secong year undergraduate paper．
 the first report. : is more sophisicsted and goes into the issues in greater detail, howtver many of the above ori:iz:sms apply to it equaliy and further orizicisms can be made. Two approazhes aze provided; one Eayesian, one classical. Cnce again I question whether in fact "probab:i: :ises" provided by a Eayesian analysis are probab:1:ties ir ar apyrcpriace sense for fro regilations. Once again a one-dimensional model is assumed. The threeGimentional motei should be dealt with (and an aztificial aseunption removed Erom the probler.) Jevtain distributional assumptions are made. These ray be checked with S :eh's data. Why wasn't this done? Reating through the repo:t one notes a lot of assumptions being made. Yet there is mirimal, if any, examination of the reascnableness of the assumptions. In the classical approach provided, estimates of zrobabilities are derived - yet there is no indication of their sampling error. Crice again resuits, that are far from so, are describec as "conservative" and even "very conservative". No account is taken of the zeasurement error and b-ases ir the data analyzed.

Specific commen:s inciude:

1. Page 2-3. The independent binomial trials assumption will not be true. The degree of dependence of the zesu:ts on the assumptions needs to be checked Ergrescion $(2-2)$ is simply wirong or at a minimum of no use. The authons want to use $: \%$, th a larse value of t^{*}; however because they set p up as a conditional probscility, and because the conditioning event never happened, the expression is vacuous. (The authors shouldn't have so casually (as opposed :o. conservatively) set Z $\overline{O N}$ to 2. .) The expression (2-3) is available for manipulation at will. Ey choice of C one can get any value one choses. (The authors consider $C=.95, .90, .10$, but provide no justification.) 2. Page 2-4. Quite a number of very debetable assumptions are made on this page, with insufficient exarination. Eg. specific distibutional forms, equaliy :ikety movement on shears. The un:form izs:riou:ion VOES NOT produce "mazimum conservainsm" as ciaimed.
 4. Page j-2. Sampling fiuctuaticns anz measurenent erfors no: taken azcount of
in these prooodures.
S. Sable $\mathbf{- 4}$. Sich (29-8) J. Ceçhygical Res, 63, 3907-3939 indicates that the dates are subject te substantial measurement error (indications provided) and that mare ruptures may have taker place. Further, the last value is given by hiz az 545, not the 575 of the Table.
2. Page $4-1$. Note ail the assumptions made. How mush faith can one have in the resulting values ?
3. Page 4-2. Maxanum likelihood is used for estimation. This procedure has inown difficulties/requirements (eg. Large samplez for optimality, recularity ocnistions.) Cosse are not commented on in this very smail sample situation.
 debatabie. Simply assuming a distribuilion for N, as is done here, has to be justified.
4. I regard the numerical values determined in this Approach. : as totally unjustified and as based on a prosedure subject to easy manipulation. The authors are to be commended for seeking out data. However, why should Sar Andreas results be relovant? The fault is so very different. 10. Approsch 2. This is Mayesian. Highiy debatable. And in the end essentisliy cones down to nothing more than Laplace's Rule once again. I do not see how zng inportant decisicns could be based on its results - further I do not think its use should be accepted as meeting WRC probabilistic risk requiremants.
In summary, the authors of this report made many highly specific assu-ptions and yet spend little time justiforing te assumptions. Kany of the assumtions are wrong. Certain of the statistical procedures employed are inappropriate. It is hard to see w'iat meaning, if any, the numerical values produced have. GE's Karch i2, 1980 letter of transmittal describes the assumptions made as conservative and the estirate provided as "best". This seems hardiy to be the case. Evidence that the probability is of order 10^{-6} has not been proviced.
 of the geometry of the probiem, and hence is not conservative. in the derivation of the probabilities, certain i-pticit assumptions are este re the character of the offse: taking place. The analysis provided is s : ite, rathe: than the actual dynamic. (Apparentiy the aaceleration values witt be used later to sabie certain spectra; however a zingie rumber carnot come close to dealing with the somplexity of the problem.) The probability levels tha were darived in Regorts 2,2 are used to notivate oholces in this report. Sension and friction between the sonl and the foundation are not discuszed.

The logmormal distribution is uses to desoribe acos eration vaiues. Vy reviek of the i:terature suggests that its use has a veen scientifically justified. The effest of the actual distribution being sonething else has bence to be stubied. Further the parameter vaiues of the distribution (3 g , $2^{1 / 2}$) are singiy set dom. These choices have te be justified. y y review of the lisurature tumed up lots of larger values, anc * anything an indication of higher values being recorded and considered as time goes on.

The intention of the study seems to be to provide pairs of values (acceleration, cantilever (ength) for use in later studies. A product probability criterion is exployed. The best oritezion to use depends on what is done later. \% feeling is that no criterion should be used at this stage. The seprate values should be retained and propagated through the later analyses.

The last expression on page 2-3 contains three typos.

Fepor: $11:-017-02$. The general commente re the previous report apply here as wel2. A riew pair of values (maximum accsieration, average cantilever lengt.i) is introduced for later use. The average value has clear deffects in the description of a random variable. The separate random values chould be propegated through later analyses, as recommended sbove.

Pace :-1 contains a strange piece of logic. It is argued that it is conservailve to neglect certain cases (non-cantilever-)
kiether the results obtained in these last two reports are effective or not depends on the specific uses they will be Nt to.

Wetter E. The letter brings home the fact that the logical bases,or. wh. ich the decistons are mase, are fluid. Sometires a probabilistic approach is taken, soretimes a so-cailed deterriniotic approach. Deterninistic approashes are based on decsisions re likelihood, and values with measurenent error. Taese need to be taken note of in some formal fashion. Further consikeration of the deterministio approach bringe home the fact (also true for the probablitstic approach) that there is no way to prove that all the (hazardous) possibilities have been considered.

The letter mentions two physical parameters necessary for consideration in making thest decisions (accelevation and displacement.) Two parameters are far to few to describe these complicated matters. The wish scems to be to avoic a full analysis, father to carry through a rumber of separate self-contained analyses. Simplicity of approach is comendable, however these are serious matters. There are feed-backs and interactions between the parts of the problem here.

EXHIBIT

