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Abstract.

1

A variety of measures have recently been proposed for*

J measuring the relative importance of individual components
,

t

in the overall reliability of a system. Several of these

seemingly different measures are very closely related under j

the conditions typically assumed in the reliability litera-

ture. The measures are also closely related to the probabilis-

tic values of game theory.
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1. Introduction

In many systems, the effect on the system of the failure

of a given component is dependent on which other components

have previously failed. For example, in nuclear safety
,

systems a high degree of redundancy is provided, and therefore

very few components can cause system failure in the absence,

,

of other component failures. Because of the complex relation-
.

ships introduced through this redundancy, it becomes difficult

to assess the relative contribution, or relative importance,

of each component to the overall reliability of the system.

This importance, however, would be a useful quantity to know

when designing, modifying, or protecting a system subject to

failure.

A number of seemingly different measures for the impor-

! tance of individual components have been proposed; these

include those of Barlow and Proschan,1 Birnbaum,2 and

Fussell.3 Although these measures have, on occasion, been

! discussed together (e.g., Lambert 4), their relationships

have not been developed. We will define a broad class of

measures which include those mentioned, and examine their
.

properties under specified conditions.
,

The above reliability measures are closely related to
'

the concept of probabilistic values in game theory; probabil-

istic values measure the relative contributions of the players

5to the outcome of the game. Although the work by Banzhaf

9
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and Shapley6 predates the corresponding reliability literature

by up to two decades, the connection has apparently not been
i

observed before now. We will.use certain game theoretic

results, translated into the context of reliability to

critically compare a variety of measures for the importance l

)
of individual components in the reliability of a system.

i
*

i

2. Model

Let N = 1, 2, ..., n denote the set of components

comprising a system, while*Se denotes the subset of components

not functioning at time t. S{isthecomplementofS andt,

therefore the set of components functioning at time t. The

system is defined by probability functions Pt(S) and Q(S).

The probability Pt(S) that St = S can include the possibilities

that failed components este eventually repaired, and that each

component's failure rate depends on time and on the status

of the other components; Q(S) is the probability that the

i system is not functioning if St = S. The probability H(t)

that the system is not functioning at time t is thus given

by the expression Ig Q(S) Pt(S). Finally, define d'X(t )

=I S:XES Pt(S); the (marginal) probability that each of the
.

| elements of X is not functioning at time t. .

I Systems without the possibility of repair are often

described by the joint probability distribution of the fail-

tre times of the individual components. Although computing

Pt(S) from such distributions may be non-trivial, it is

1
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cle sr that, at least in theory, the Pt(S) may be obtained

from the joint distribution of f ailure times. Although such

notation is not commonly used, describing the failure times

via the functions Pt(S) simplifies our exposition.

The function O(S) typically takes only values of zero or

one; the value one corresponds to a set " critical" for the-

functioning of the system. This-zero-one case is the struc-
,

ture function of Birnbaum.2 More general functions allow

'

ron-trivial (i.e. not either zero or one) probabilities

that cer'ain sets are critical. For-example, there may be at

subset of components in a nuclear power f acility such that

if all these components are non-functional the system could

still function; however, there may be a non-trivial probabil-

ity that the operator will order the facility shut down due

to factors external to the model. The function O(S) is assumed
,

to be monotonic in the sense that if S is contained in S',

i then O(S) is no greater than O(S'). For the zero-one case,

this monotonicity is called coherence by Barlev and Proschan.1

The following two assumptions on Pt(S) are frequently made

~ in the literature on reliability; we will not make these assumptions

unless specifically stated.

Assumption 1 (Independence of Failures):

Pt(S) " U P (t) H ( 1-S'i ( t ) ) ,i
icS icS

where .9 (t) is shorthand for .9{i}(t).1

11

. ..
_



._ --- .-.

Assumption 2 (Symmetry of Failures): Pt(S) is_a function
solely of |Si (i.e., the number of components in S); components

are interchangeable for purposes of computing Pt _( S ) *

3. Importance Measures
,

The first class of measures considered are of the form-

.

; "what is the probability that the system status changes when

i the characteristics of a particular subset of components are

altered?" Although the measures are frequently applied to-

single components, the reliability of sets will become impor-

tant in a later section when we discuss modules. We will-
|

express these measures in two ways: once directly in ter=s- ,

of the functions Pt( ) and Q ( * ) , and once as probabilistic-
expressions. Although these measures are typically defined

'

for individual components in systems with each Q(S) having

values zero or one, the definitions are easily stated in a
1

more general form. Thus, consider the following importance

' measures.

M1,t(X) = Eg Pt(S) IO(S)-Q(S\X)]

M ,t(X) =IsPt(S) [Q(SuX)-Q(S)] '

2

M3,t(X) =I s P (S) (Q(sux)-Q(s c)] =M1,t(X) + M2,t(X) -t

M ,t(X); dH(t)/d4(t). (This is defined only if H(t) is4 =
'

a function of # (t)).X

fSystemFailedM ,t(X) = Pt1 - Pr SystemFailedlXqS[
M ,t(X) = Pr System FailedlX c S - Pr System Failed .2

t

! M ,t(X) = Pr System Failed |X c_ S - Pr System Failedl3
t

X c S[ }
, ,

=Mg 1,t + M2,t

12
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Measures M ,t' M1 1,t may be interpreted as the probability
that the system status at time t changes if all the non-functioning

.

components in X are repaired at time t. Alternatively, it is

the change in the probability that the system functions at

time t when the components in the set X are made fail-proof.-

This appears an appropriate measure for those defending a
.

system against attack or trying to improve system reliability

-by selectively upgrading some components. Measures M and*

2,t

2,t may be interpreted as the probability that the systemM
i

status at time t changes if all the functioning components
;

in X are broken at time t. Such a measdre might be of interest

to anyone planning to sabotage a system. Finally, measures

M M and M may be interpreted as the sens'itivity3,t' 3,t, 4,t

of the reliability of the system to whether or not all the

components of the set X are functioning at time t.

Although the above measures have been stated as reliabil-
|

| ity measures, measure M1,t is closely related to the game

| theoretic "probabilistic values," vi (i=1, 2, n) , defined...,
,

by vi = S 3 P(S) [Q(Sui)-Qts)], where the P(S)'s may be

any non-negative numbers summing to one. A game theoretic

question analogous to that of reliability is: given the

value-of each coalition of players, what is the contribution.

of any one player to the overall value. For example, in a

voting situation, the value of a coalition is zero or one;_a

coalition's value is one if and only if the members of the

coalition, working together, can assure the passage of a

bill. The importance of a.particular individual depends on

13
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1

how many votes he has (or controls) and how often his votes;

can influence the outcome.

Shapley6 first introduced the notion for the value of a

game by providing a set of axioms and deriving a unique set

of P(S)'s wh.4ch produce a value satisfying these axioms. Under

the assumptions of independence and symmetry of failures, the
-

r

structural measure of Barlow and Proschan,1 which is defined'

*

only for binary Q(*), has Pt(S)'s identical to those of Shapley.
The measure introduced by Banzhaf5 also has this general form,

but uses a dif ferent set of Pt(S)*
In order to compare Fussell's measure, an additional

;

definition is needed. As in other reliability work, Fussell
,

assumes Q(*) binary. A set S is called a minimal cut set

if Q(S) = 1, and Q(S') = 0 for all S' contained in S. Fussell's

measure for a component i is then Pr at least one minimal cut

setcontainingiisfailed|systemisfailed. This measure is

similar to M and M and attempts-to capture the idea that1,t 1,t''

a component i is contributing to failure. The main difference
!
'

between Fussell's measure and M ( ther than scaling) is that1,t

M n t only looks for involvement in a failed cut set, but1t

requires that repair of i cauces restoration of system function.

Th us , i must be in all failed cut sets to be considered criti- -

cal under M Fussell's measure was defined with safety1,t.

systems in mind, and therefore, the P(S) are such that the

probability of two minimal cut sets existing simultaneously

is negligible, and therefore the measure is virtually ~ identical

to M1,t*

14
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Work in other areas fits witNin the general definition
of the measures given here. Among these is Chow's7 work on

characterization of threshold functions. Dubey and Shapley8 j

; present a number of other applications of the type of measures

discussed here. |
|
I

| 4. Relationships Among Measures
,

In order to relate the various reliability measures, it
.

is u3eful to assume that H(t) is a function of # (t) for eachi

i. Although this assumption rules out many forms of dependen-

cies among the failure distributions of different components,

the assumption is consistent with many reliability models.

Measures M1,tr M2,t, M ,t and M ,t are illustrated in3 4

Figure 1. The first three measures correspond to intervals,

while the fourth (and also the third) correspond to slopes. |

This figure, together with some results of Owen9 on multilinear

extensions of games, suggests the following theorem.
4

Theartm 1: When H(t) is a function of F (t) Vi, then thei

following four conditions are equivalent.

1. Pt(S) H # (t) n (1-91(t)) Vt.=
i

i(S 1(S *

.

2. For any function Q, the corresponding H(t) is
given by

F (t) H (1-J1(t)) Vt. |H(t) Is Q: S) H=
i

icS its

i

16
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3. For any functibn 0, the corresponding H(t) is

linear in each J'i(t), and H(t) = Q(S)

whenever # (t) = 0 VitS and F (t) = 1 Vies.1 i

4. For any function 0, the corresponding measures

satisfy
,

;

M ,t(il/# (t) = M ,t(i)/(1-di(t)) = M3,t(i)| 1 1 2
,

'

| = M4,t(i) Vi,t.

.

Proof: It is clear that 1 => 2 => 3. It follows from Figure 1

9
that 3 <=> 4 . Owen proves that 3 => 2. Finally, 2 => 1

follows f rom comparing the second condition to the definition

H(t) =Is Q(S) Pt(S) for all Q.
Condition 1 is the Independence of Failures assumption

described in Section 2. Although this assumption is common to

most of the literature on reliability measures, the relationship
,

it implies is apparently not mentioned in the literature. Because

the numerators of the relationship in 4 are dependent on i, the
'

vectors Mj,t * (Mj,t(1)s Mj,t(2), ..., Mj,t(n)), (j=1,2,3,4) are
,

not proportional, and therefore the relationship.is not obvious

from numerical results.

The relationship between measures Mj,t and Mj,t is examined
1

in Theorem 2. In order to prove the theorem, however, we begin

with two lemmata. (Note: We assume that O < Pi(t) < l. If
'

F (t) = 0 or 1, the component is irrelevant to the system in the
i

sense that it cannot change state, and therefore cannot cause a

change in system state.)

17
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Pt(Sui) Pt(S)
Lerna 1. If =0 vi, VS, i/S-

F (t) 1 f (t)i i

then Pt (S) U#1 (t) H (1-9 (t)) VS"
i

i(S itS
|

Proof: Consider S, irs. By hypothesis
*

Pt(S\il9 (t)i

Pt IS) Ut (E)
.

Fj{t)
* =P

1 i(g 3c5 -

1-p.(t)
3

i Pt(E)

n (1-F. ( t)) jS)I'*jS ~J I'."

jrN

ifNIISince IPt(S) 1 nd I(ig39 (t) i s (1-S (t))) IF (t)+(1-P (t))) 1= =
i i

=
i t

'

S S

Pt(N)
Then 1=

(1 .9 (t))g i

i( N

Therefore
.

Pt(S) U Fi(t) (1-F (t))"
i

i(S iS

Pt(Sui) P IS)t
Lerna l': - =0 -Vi , VS , i/S ~=> Assumption 1 holds -

1-F (t) (independence of failure)9 (t) i1

Proof: => by Lerca 1; <= by laws of probability.

18
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Theorem 2. M ,t(i) = M3,t(i) Vi, VO <=> Assumption 1 holds.3

3 )[ Pt(S) }] P.(S)M ,t(i)Proof: =

S O(S) - S O(S)
i(S 6Pi(t) 1/S 1-9 (t)1,

Pt(S) Pt(S)
((1-F (t))+9 (t)) E O(S) - ((1-F (t)+9 (t)) E - O(S)

' =
i i i t

S 9'i ( t ) S 1-9'i ( t )
i(S ig S .

,

1-9 ( t) F (t)1 i

=EPt(S)O(S) + [Pt(S)0(S) - { Pt(S)O(S) - [ P (SIQ(S)t
F (t) S S 1-9'i( t) SS i

i( S itS i/ S ip S

interchange and rewrite the 2nd and 4th terms

9'i ( t ) 1-9'i( t )
= )3 Pt(S)C(S)-)[ Pt(S\i)0(S\i)- )[ Pt(S)0(S)t)C Pt(Sui)0(Sui)

S S 1-9'i ( t) S S F (t)i
ie S itS ifs ifs

S'i ( t )
=)[(Pt(S)0(S)-Pt(S)0(S\i)+Pt(S)O(S\i)- Pt(S\i)0(S\i))1

1 9 (t)! S 1
ie S

1-9 (t)i

- )[ [Pt(S)O(S) - Pt(S)0(Sui) +Pt(S)o(Sui) - Pt(Sui)O(Sui))
S 9'i( t)

i ifs '

~Pt(S) Pt(Ski) ^
= )[ Pt(S)l0(S)-Q(S\ill+9 (t) )[ O(S\i)i

ie S i< S
-9'i ( t ) 1-91(t) _S S-

t ( S ui ) '- Pt(S) P

+ )[ Pt(S) lO(Sui)-Q(S)l-(1-F ( t)) }] O(sui) -
i

ltS igS
-1-91(t) 9'i ( t ) _

S
.

S

19
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Combining 1st and 3rd terms' -

~Pt(Sui) Pt(S)
=~ { pt(S) [Q(Suil-Q(3\i) )] + 9'i ( t) 1 Q ( S ) +-

S 'S _ d'i ( t ) 1-f (t)_i

i/S

Pt( S ui) Pt(S)
.

(1-5"i(t)) 1 Q(Sui) -

F (t) 1-J'i ( t ) _S i

i/S
,

.

Terms 2 and 3 = 0 (for all non-trivial Q) <=> factors in []
ara 0. (This can be seen by considering the family of O's

k k By lemma l',- Q :Q (S) = 0, S / T, Q (S) = 1, S = T thisT T T

occurs <=> assumption 1 holds.

Therefore

[Pt(S) (Q(Sui)-Q(S\i)]' = M3,t(i) <=> assumption 1 holds.M3,t(i) =

S,

Carollary: for each j,j=1,2,3 Mj,t(i)"M ,t(i) <=> assumption 1 holds.

Theorems 1 and 2 clearly show the stront, structure induced

on the measures by the independence of failures assumption. Since

this assumption is the basis for much of the existing literature,

these Theorems demonstrate the equivalence in computing the various

measures. Continuing to use the independence assumption may severely

restrict the ability to accurately model many situations, since

failures in complex sy s t.e ms , such as nuclear power plants, often

have a sequential or common cause basis which cannot be modeled

under the independence assumption. One approach to modeling common

cause failures is to " factor out" the common cause as a separate

20
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'

" component", and reduce the failureiprobabilities of the involved

components by an appropriate amount. This results, however, in

two mutually exclusive events, which are obviously not independent.

,

5. Causal Measures

An alternative measure for the importance of a particular
~

i component is the probability that the system' fails due to the

failing of this particular component. In such a measure, a-

component contributes to the fallibility of the system only

when it is the proverbial " straw which breaks the camel's back.".

A component which always fails before the system fails (but is

never the last component to fail before the system fails) con-

tributes nothing to system failures and is assigned a zero
i

! weight in such causal meacures.
!

Cons 1 der the following two causal measures.

M III " E Pr S =Sl i fails at time t* [Q(Sui)-Q(S)}S,t S t

time t+ f [Q(S)-Q(S\i)] ,M II) Pr S =Si i repaired at"
6,t S t

where "i fails at time t+" is interpreted as " ids utt,
|

S +e * S ui for all sufficiently small positive e," and "i| t t
i

repaired at time t+" is to be interpreted as "i t S butt,
,

S +e = St\1 for all sufficiently small positive e." Note thatt

'

|
this implicitly assumes zero p obability of more than one

failure and/or repair occurring simultaneously.

Unaer independence of failures, the probabilities in

M5,t(i) simplify to Pt( S )/ Il-l# ( t ) ) , while the probabilitiesi

,

) 21
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1

in M6,t(i) simplify to Pt(Sl/P (t). This observation, togetheri

with Theorem 1, yields the following result.

Theorem 3: If assumption 1 holds, then M6,t(i) =M5,t(i) "

M4,t(i) =M3,t(i) " M2, t(1)/(1 '# ( t) ) =M1, t ( i)/8'i( t ) .i

i Barlow and Proschanl consider systems without repair and
.

j define the importance M* of component i as the probability

that the failing of i causes the system to fail. Under ind- ^

ependence of failures, the expected number of system failures

| caused by component i during the time interval T is

ftrT M5,t(i) d91(t)+, where dS{(t)+ denotes the positive

part of d91 ( t ) . If there are no repairs, then this expectation

is equal to M*. Under independence of failures, Theorem 3 may2

be used to relate M* to the sensitivity measures.

In models with no repairs and symmetry of failures, it is

j easy to verify that each of the n! possible orders in which
L

[ the n components may fail are equally likely to decur. Thus,

i

the probability that the failure of component i is preceeded
,

1

i by the failures of all the elements of S is s!(n-s-1)!/nt,

| where s denotes the nurber of elements in S.
.

| Theorem 4: If there is symmetry of failures and there are no
!

*

| repairs, then

.

M*= s (s!(n-s-1)!/n!][Q(sui)-Q(s)]
!

I.

22
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The above value of M* is also the game theoretic Shapley6

value; the unique game theoretic value satisfying certain

axioms, including one of symmetry.

If M3,t(i) or M4,t(i) is independent of t in a model
'

without repairs and with symmetric and independent failures, then

these measures are equal tob [s!(n-s-1)l/n!] [0(S ui)-Q(S)] .s In
.

particular, as Weber 10 observes for game theoretic probabilistic
5'

values, M3,t(i) and M4,t(i) cannot be equal to the Banzhaf

value (or, equivalently, the Birnbaum2 measure evaluated at

Pi(t) = 1/2 Vi) for all times t in models with symmetric,

independent failures and no repairs.

Finally, an example shows that Theorem 4 need not hold if

there are repairs. In particular, consider a three component |
i.

1 andsystem with O(11,2,31) = O(fl,31) = O(12,31) = ,

'
O(S) = 0 for all other S. Assume that the " uptimes" (time

from completion of repair until the next failure) of the com-

ponents are identical independent exponential random variables.

Likewise, the " downtimes' (time from failure until completion

of repair) are identical independent exponential random variables;

the uptimes and downtimes are also assumed to be independent of
1.

each other. Thus, the failures and repairs are symmetric and

'

independent.

Characterize the state of the system by the subset of failed

components; there are eight possible states. The memoryless

|
1

23
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quality of exponential distributions results in a Markov process

for the transitions from one state to another. This process is
.

depicted graphically in Figure 2. The probability that the

system goes from state i to state j conditional on the system
.

being in state i are indicated in the figure as a function of p,

where p is the fraction of time a component is failed, or more
,

precisely, the mean downtime divided by the sum of the mean

uptime and the mean downtime. *

The above transition probabilities imply the following

state probabilities: P (S) = Pgg|Vt where PO= (1-p) /2t , ,

2Pt= (1+p) (1-p)/6 , P2 = p(2-p)/6 , and P3 * p /2. Thus, the

'
relative probabilities that the failing of component i causes

the ystem to fail are the probabilities that the system goes

from state (3) to state 11,31 the probability that the,

system goes from state ( 31 to state 12,31, and the pro-

bability that the system goes from state 11,2) to state
3

11,2,3), from state 121 to state (2,31 or from state 11) to

state 11,31 Thus, it follows that the probability component.

i failing causes the system to fail, conditional on the system;

failing, is (1-p)/(4-3p) (1-p)/(4-3p) , and (2-p)/(4-3p), ,

respectively, for i = 1, 2, and 3.

If p is close to one, then most of the system components -
.

are likely to be non-functional; under such cases, a system

failure is most likely to have been caused by a transition from

,
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state 11,21 to state 11,2,31. Indeed, as p tends to one,
:

the conditional probabilities that component i causes system
-

failure tends to 0, 0, and 1 respectively. Alternatively,
,

if p is very small, then the system is likely to be in a

state with few failed components and system failures are likely

i to have been caused by any one of the three components failing.
,

In particular, as p tends towards zero, the conditional pro-
'

bability that component i causes the system to feil tends

) to 1/4, 1/4, and 1/2 respectively. Note that in the above

example with symmetric and independent failures and repairs,
,

the relative importance of the three components (measured in

terms of which component's failing causes the system to fail)

depends on the parameter p and cannot satisfy the conclusion
i

of Theorem 4 for arbitrary p. Thus, the assumption of no repairs
i

is necessary for Theorem 4.
,

I
|

|

!
l

.

4
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Figure 2

Markov Process Corresponding to Exaraple
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J. Modules

In many systems, there exist identifiable subsystems which

can be treated as " super-components" in the sense that once one

knows the state of the subsystem, knowing the state of the

individual components within the subsystem adds no information in

determining the state of the overall system. Birnbaum2 develops
.

this concept for binary Q functions, called structure functions.

These " super-components" are called modules. For a system with*

component set N, and structure function O (i.e., Q = 0 or 1),

,((g N is a module .i* there exist structure functions O' and Og

O': {0,l}t N# |0,l } , Cg:.g,{0,1| and O(S) = O'

(Q (SO4), SLN, VS G N. The notion of a module can be useful ing

calculating the various importance measures under certain

conditions.

If W is a module of N, call.N independent of N //if

P (S ) = P ( S24) .P ( SLh1 VS g N. When modules can be found satisfying

this condition, a form of ' chain rule' property exists which can

simplify calculation, and expose more of the structure of the

measures. In order to prove this property, we first start with a

lemma.
.

Lemma: For a module /(, Q, O', Ogas above, Vic N, VS G N

a) O(S) - Q(S \i) = [Q (Sca) - O (S. N\i)][Q' (1,S\.N) - O'(o,SLn0]g g

b) Q(Sui) - Q(S) = [Qg{Sn Nui) - Ogd sc//)][Q' (1, S\.N) - O ' (0, Sl//)]
_

- Q(S\i) = [gg(Savai) - O (Sn NE)][Q' (1, SL//) - O' (0, T/d ]c) O(Sui) g

27

_ _ _ . _ _ _ . _ _ . . .
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Proof: (for, form a))

Case I. Q(S) - O(S\i) = 0

0,jf(S2(d - gg(S2N\i) = 0 (i.e., i has no effect on ./() .
or

O'(1,SkW) - O'(0,S(/t) = 0 (i .e. , .// has no ef fect on' system) .

Case II. O(S) - O(S\i) = 1 '

O ( SnM ) - Oj( Sn.N\i) = 1 (i.e., i swings./()g ,

and

O ' ( 1, S\ /4 - O ' ( 0, SL(t) =1 (i.e. , // swings system) .

b is a restatement of a with S replaced by Svi.
c is the sum of a and b.

Theorem 5. If //,a module, is independent of Nc(/,

then Mj,t(i) = M ,t'-(d Mj,t(i) 10/(, j = 1,2,33

(where M ,tl#) is the importance of.4/w.r.t. O', and Mj,t(1)3

is w.r.t. Og) .

Proof: For case j=1

M1,t(i) = [ P(S) [O(S) - O(S\i)]
SEN

[ P(S) [ (Og( Sc(o - O ( Sc(t\i) ) (O ' ( 1, SL(d -O ' ( 0, Sl(/) ) ] '= g
SEN

.

[ P ( Sold P ( Sr(t) [ (O ( Seafo -Og( Sc N\i) ) (O ' ( 1, S((t)- O ' (o, SLg) ) ]= g
SEN

[ P(S)[O'(1,S)-O'(0,S)] [ P(S)[Og(S)-Qg(S\i)]=

SEN 4/ SGW

= M ,tb#) M3 1,tIII
'

w.r.t.O' w.r.t.Qp

(The proofs for j = 2,3 are analogous.)

28
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1,2,3.A similar result applies for measures M ,t,
=

j

However, since no structure function is defined for the models

yielding measures Mj,t, an alternative definition must; be found.
For these measures, //is a probabilistic module if, for all i E //

-
1 ystem FailedlState of J/ and State of 1( A|I =! SPr

Pr System FailedlState of 4 .
.

9

The chain rules for measures Hj,t are given in the next Theorem.

Theorem 6: If ..// is a ,probabilistic module, then for all i ce//

i i i

Mj,t III * M3L IAI- Hj,t II)
w.f.t. system w. r. t. & .

Proo f: Let X denote system failed,

7 denote module d( failed,

Y denote module d(functioning,

Z denote component i functioning.

Pr X - Pr X l 2|1,t(i)M =

I'
' ;X|Y|Pr Y| - Pr Xl2 and Y:- Pr |Y l 2Pr XIY Pr Y| + Pr=

1 __l ;._'

i

- PrgX|2 and Y) Pr | Y | 2[ .

.

By modularity of.4/

= Pr X1Y Pr Y 4 Pr X|5 P Y| Pr XlY Pr Yl2 - Pr Xl5 Prg |2E
'

= Pr XIY ipr Y - Pr Yl2 ) + Pr X|Y [Pr Y - Pr Yl2 )
Pr Yl2 ] - Pr X|Y [Pr Y - Pr Yl2 ]Pr X|Y |Pr Y= -

-PrXIV][PrfYipr XlY - Pr Yl2 ]=

=M IM "M III3,t ,t

(Proofs for j = 2,3 are analogous).
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Since the calculation f im ortance measures is, in general,

exponential in difficulty, modules and chain rules can simplify *~ '

computation eignificantly.,

!

Conclusion

A number of apparently different measures for the importance

of an individual component to the reliability of a system are
'

examined in this paper. By defining all the measures within the
.

same, sufficiently general, model, some insight is gained into

; the different probability questions corresponding to the different

measures. It is, however, shown that under the (common) assumption

of independence of failures, the importance measures are very
closely related to each other. It is also shown that under the

4

(common) assumption of symmetric failure rate distributions, the

" causal" measures must take a particular form, and that they are

also, over appropriate time intervals, equal to one of the pr+vi-

ously mentioned sensitivity measures. Finally, the concept of

modules is developed for the different types of measures, and a

chain rule form is proven, which may be useful in computing the
various measures.

.

p
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