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1. Cackground

!.. D. Eisenhart has been engaged in a study of the numerical behavior of a
3

simplified (three-region core) set of THOR difference equations. Certain puz-

zling numerical irregularities occur near the time of flow reversal . The study
*

reported herein is aimed at finding possible causes for such irregularities.

I've based infornation on THOP. on an incomplete examination of various

j sources (e.g. Refs. a through d). I've defined a relatively simple problem

similar to that studied by Eisenhart in an effort to clear away details that

are hopefully unir.portant. I've also used sort of a conglonorate notation,
,

borrowing a little from various THOR sources, but also using notations from

references that are core familiar to re.4

2. Simplified Probler

Consider the three region (one dicensional) geccetry shown in Figure 2.1.

.

.

e 4-

<3)

FLOW PATTERNS, p
e 3- (I) : CHURN TURBULENT (BUBBLY)

(2) (2): SLUG

<3) ANNULAR'

2Aj e 2+

| e 2-

(l>
'

e |+.

A

'a ' OIRECTION OF POSITIVE FLOW

Figure 2.1

. . _ . _ _ _ _ _ _ _
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Consider a three-zone problem used by L. D. Eisenhart for numerical studies:

the total length is short (0.17 m);.

an initial steady state (at t=10.0s) is achieved in which all flow.

patterns of Figure 2.1 are initially present;
.

a flow reduction transient is initiated following t=10s by ramping down.

the inlet plenum pressure; and
,

the change in average flow path pressure (the pressure for propertye

evaluation) during the transient is fairly modest (from 7698 kPa at

t=10s to 7695 kPa at t=10.16s).

Calculated results are illustrated in Figure 2.2. Mass velocities fall to

an inlet flow reversal near t=10.17s. All three flow patterns are still present

at that time.

The observed solution behavior is:

until the time of flow reversal, all variables seem to behave well for-

time steps at least as long as 5 ms; and

after that time, a variety of problem stops occur (such as negative-

enthalpy (~ -4000 kJ/kg) values or crossing of flow pattern interfaces)

i as various Methods of time step control and fixes are attempted.

My investigation of these difficulties has been based on a feeling that the

difficulties would- still be present if the following additional problem simpli-

fications were made:

; a) Rather than initiating the transient by changing the plenum-to-plenum

pressure drop, I'll consider that the inlet mass velocity (G{} is a

known function-of time, as given in Figure 2.2a. -

b) I'll neglect all changes with time in the reference pressure for -
'

property evaluation.

c) I'll study the equations which are differenced in space but still

differential equations.in time. These (DE)t (aE)z equations are given/

by Ruger (Ref, b).

. - ...
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r f. b, all ;roperties will be evaluated at saturationd) As in e

conditions, se that no va;cr -ass equation will be recuired.

3. Partial Differential Ecuatices

This section contains a brief presentaticn of conservatien la..'s based en a

cerbinaticn of concepts and n0tatiens frcr a variety of scurces (chiefly Fef. a
.

thrcugh e and Oef. f, pp. 5 and 65-71).

a) Conservaticn cf !'an

Fcr one-dirensienal ficw thrcugh a censtant area ficw crannel:

:- .c
8,5 + fd.} = 0, ( 3.1 )

w e

where

-- 1 d ., ; 's , . 3
, .

=-: , . ,

.
-

c=f.udA; (~.3)
.-

u = iccal velccity (in the positive : direction);

: = iccal density;

,'. = fl ow area ;

E = volur.e :eighted density;

1 = ass velocity;

t = tire; and

: = axial positicn.

5) Ccnservatten of Energy
.

A h

4c.- (? 7) f.- (w ) = c (3.:':
: s

e
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where:

II = _b o H dA; (3.5)
cA

|-

H' = h o u H dA; (3.6)

i H = local enthalpy;

II = volume weighted or static enthalpy;

H'= flow weighted or mixing cup enthalpy;

Q = heat input per unit volume;

and where varicus terms have been neglected as indicated in Ref. e in a manner

consistent with Ruger-(Ref. b).

An alternate form 3f the energy equation can be obtained by nultiplying

Eq. 3.1 by I and subtracting from Eq. 3.4:I

+h G(H '-li) =q. (3.7)i +G

c) Separated- Flow ReDresentation

Adopt a single value each for density, enthalpy, and velocity to .repre-

sent all liquid in the channel at a given axial level. Denote these values by

o , Hj, and u . Cenote also the corresponding quantities for vapor as c , H , andg t y y

u. Finally, designate the fraction of the flow area occupied by vapor as ay

(static vapor fraction). Then the quantities defined in Eqs. 3.2, 3.3, 3.5 and

-3.6 becone:

o = .ao + {1-2) o ; (3.0)y g

'

G = co u + (1-a) o u ;- (3.9)yy gg

v- ii = so H + (1-a)p H : (3.10)yy g

and

H' = h.- ac uH +-(1-a)c u H ( 2,11 )-.y yy gg
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In the s'mr",1fied case defined in Section 2, the quantities o , o , H ,y g y

and H are all evaluated at saturation conditions corresponding to a pressure
g

which is independent of time. In this case, i from Eq. 3.3 and II from Eq. 3.10

depend only upon a. Or equivalently, o is a function of H only. Therefore,

the mass equation (Eq. 3.1) can be rewritten
.

h=0 ; (3.12 )+

or by combining with Eq. (3.7):

h=-b - -hG(H'-II)).
0- G ( 3.13 )

p (dH ) -

Separated flow quantitiec and equations o# interest include:

.]t Y = the static quality (the vapor mass concentration denoted by c in

''ul ff, F.ef. d) :..

Y = (a py/ i ) ; ( 2.14 )

er equivalently

p,Y
/1"*15)=

"

-''-
o Y+p (1-Y)g y

ar.d

ii = Y H + (1-Y) H ( 3.l f. ).
y

Let X = the flowing quality (the mass flow rate of vapor divided by the

total mass flow rate):

; ( 3.17 )X = (a p,,u /G)

and let E = the flowing vapor fraction (the volune flow rate of va;cr divided .

by the total volume flow rate):

$ = (f /j) (3.13).y
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|

where j is the superficial velocity of vapor,y

j = (XG / py) (3.19),y

where J is the superficial velocity of liquid,
~ . .

(I'X) E/0 ; (3.20)- j *
2 2

, ,

and the volumetric flux j is
.

j=j +J (3.21)y 2,

The interrelation between 5 and X is similar to that between a and Y. That

is,

~

loX
3* ( '22)

y(1-X)
*p X p

- -

Also,

(1-X) H (3.23)H'=7H +
y g.

d) Drift Flux Pepresentation

A drift flux representation can be considered as an enpirical relation

between static and flowing vapor fractions. That is,

(3.24)2= c + (u / j) a,g y3

-

wFere c = an empirical flow distribution parameter;
g

and u = the ueighted mean drift velocity, another erpirical parareter.y

The relation can be combined with the various separated ' low relations

(and a great deal of algebra) to obtain the relation:

G
-

-

|9
- y3 + y (cu I

_
i 0 0 ,'

- c
-

~.
'

(M-H,) (3.25)C(H'-H) =
.

g )_ J
''

I
p - (c -1) Y (p -p'

y g y

In the casee for which c = 1, the above relation can be creatly sirpli-
s g

fled as done by P.uger in ?.ef. b:

G(H'-li) = c u , (E-H ) (3.26).
6 v a
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Knowledge of the quantity G(H'-R) is needed for the solution of

Eqs. 3.7 and 3.13.

4 Spatially Differenced Ecuations

Pass Ecuation with Foving Boundaries -

Use i as an index to describe the positions in Fig. 2.1. Integrate the
~

conservation of nass equation (Eq. 3.1) over axial region i, and incorporate

noving boundaries by the techniques of Mulff (Pof. d, Eq. 21):

d
~ ~

~ -
~ '+'

+ G-p z - G-o: =0 ; ( 4.1 )1 A*i- ,i
Et ###

'

where a:4 = :9,) 4
-2 (4.2).

,

b) Energy Ecuation with Poving Boundaries

In a sinilar manner, integrate the conservation of energy equation

(Eq. 3.1) to obtain:

d
' ' ' '' '

+ Gri' -pHz7 <c H>$
_ i+1

. .+
- GM' - I II z = <Q> az$ (4.3)

i
c) Interface Ecuations

By writing equations similar to 4.1 and 4.3 for a region interface of :ere

thickness, it is found that the following rJantities are Continuous at each

interface 1:
- _ .- +

(G-pZ_ .3 ; (4.4)G-p: =

[ di i

. . - + - __..
GH' - p II z GM' - p H : (a.5)=

. ,

-1 1
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l' d) Sum try of Ruger Ecuations 1,

; Ruger's equations of Ref. b can be keyed to the equations developed in
a

this report as follows: )
e 1 (Overall Momentum) - not needed here since inlet ficw is specified.! '

.

| e 2, 5, 8 IGAE (Integrated Alcebraic t' ass Flux) - not needed here since |
'

+ -
;.

i these are profile equations to relate <G>$ to (G), and (G)p) .

We do not need <G>9

e 3, 6, 9 GAE (l' ass Velocity Algebraic Equation) - This set of equa-

tions is equivalent to the following difference form for Eq. 3.13:

- - +-+-- -

(G)p) - (G)$ ) (i)p) - (i)4
,

=- + n
az

, _ (7){ 377
_

j j
_

where
, ,

<C>9 -
-(G){+(p y3 ), - aii() g u jg

; (4.6)A =-
37 j

where

i (4.7)AII = (II)}+) - (E)jg
i

where Eq. 3.26 has been incorporated and where (p u ) is constant throughgy

-Region i.

e 4, 7 SHf? (l'as's Jump at Interface) - the same as Eq. 4.4.

* 10, 13, 16 E!! (Energy Ecuation) - an approximation to Eq. 3.7 with

i given by

ija(o)[i d>j ,z { -(zg3 + z,)_
i

i (4.0)
i

.
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where

<Ii>g=f (ii)~ + (ii)+
. i +1 i_ (4.9)

has been employed.
.

The convective tern has been approximated by

55- - - -

Gh+h G(H '-II' Es
I(G)f+(p

~

yj) ; (4.10)ug

uhere Eq. 3.26 has been incorporated and where (o ug yj) is constant through

Region 1.

11, la IF (Interface Definition) - the enthalpy (H){ is supplied ate

each interior interface (i=2 and i=3) to define the conditions for

flow pattern changes.
.

* 12,15 SHE (Energy Jump at Interface) - obtained by combining

Eqs. 3.26, 4.4 and 4.5:

(ii)f - H (G)f+(p.c )$-(Ez){ =
y

.

. . .
, .

(II)}-H (G){+(p yj)9,) -(p:)j (4.11 )u .g g
- - . .

* 17, 18, 19 HPRO (Enthalpy Profile)

for through flow the linear profile Equation 4.9 is used;-

- for both inflows to a region, no profile equation is required; and
(4.12)

for both outficws from a region the old slope of enthalpy with-

respect to position z is. retained.

* 20, 21, 22 BC (Soundary Conditions)
,

are not required for the simplified problem; (G))^ must,P) , Pg-

however, be specified as a function of. time. -

._ ii))~ is required as a. function of time for any time the flow at (4,)3)(-

interface 1-is directed from the inlet plenum into the channel.-
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,

i-

(ii){ is required as a function of time for any time that the flowI
-

j (4.14)
{ at interface 4 is directed from the exit plenum back into the channel.
t

| 5. Comments
|

|* a) Calculations with Flow Reversal

* CHIC experiences - I'm familiar with some numerical studies performed
'

: by G. Birkhoff and T. F. Kiees using the CHIR 'c nvection of Heat Ino
!

| C_hannels) Code (Ref. g). Several numerical approaches were studied.

! One of them, prog.*an II, (C !IC-2), is relevant here. It ases a " box

=ethod" for representing the convection (energy) equation and is,

therefore, a nethod akin to the linear profile approach of Eqs. 4.8

and 4.9. CHIC-2 results showed:

the predictor-corrector feature did not provide significantly-

improved accuracy; and

irprovements to the mass equation treatment ware required.-

These. findings were incorporated in subsequent thermal hydraulic develop-

cents. In addition, and more pertinent to our present discussion, the nathe-

natical ideas incorporated in CHIC-2 concerning flow reversal (Equations E2

thrcugh E4, Ref. g) were used as 'a basis for subsequent developments. The fol-

leving approach was felt to be cathematically sound *:
.

Each resh cell. is assigned a single mass velocity to be used in the-

energy equation solution (e.g. an average of inlet and exit mass

velocities);

-- If that " characteristic velocity" is pcsitive, then the cell is an
..

upflow cell; if negative. it is a -downflow cel . , and I'll omit from

this discussion the unlikely case of :ero flow;5-

5A difference'fren THCR is' that these are for =esn cells with fixed, not
coving, boundaries. ' I'd ' expect they could also be used as a guide in the

_

coving boundary case.
_
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4

For upflow cells, the enthalpy at the bottom interface must be taken-

from the cell below it;

For d swnflow cells, the top interface enthalpy must be taken from the-

>

cell above it; *

If a downflow cell is above an upflow cell then two enthalpies can be-

-

obtained at the common interface and sote energetically equivalent
1

average of the two should be adopted; and

;
- If an upflow ceil is above a downflow cell then an extra artificial

cell is temporarily (one time step) introduced at a position corre-
:

spending to zere velocity in order to obtain the enthalpy information

needed for both cells.
3

THOR Reverse Flow Logic - the reverse flow logic defined by Eqs. 4.12e

' through 4.14 seems to be mathematically quite different than the above ap-

proach. Possible deficiencies and possible remedies include:

Hith the box method and for. energy equation numerics a cell is either-

upflow 'or downflow. The categories "through flow," "both inflow," or

; "both outflow" are not meaningful .

- The ," characteristic velocity" that, in the pre'ent case, should be-

used for deciding whether a box is upflow or downfiow, is the breck-

{ eted term on the right hand side vf Eq. 4.10,
, _

(G)f+(o ( 5.1 )yj)4u .g

A rederivation of the difference equations probably should be per--

.

formed to obtain a more centered characteristic velocity such as .

I f(G)f+h(G), (5.2)+ (.uyy) .
,

t

1

s -,r n.. ,. -- , ,, - - -
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i

j The adoption of expression 5.2 is a mathematical refinerent and un--

; necessary for obtaining reasonably good answers. The otter consid-

I erations concerning characteristic velccities and cell natur . are
,

however essent1a to obtaining valid numerical solutions (though oiher*-

fixes than those suggested here may also work).

Spatial Ringino Difficulties

The use of a box differencing method has at least one other diffi--

culty for which there seems to be no easy fix. Consider a case where

|
the top cell in a channel has had upflow then switches to downflow.

| If at this tice, the exit plenun has an enthalpy euch different than

j the exit enthalpy of the top cell at the previous tine step, then a
i

violent enthalpy " ringing" can occur spatially, and by interaction with
_

i other (especially two phase) relations can destroy the numerical.

solution.
t

j- This latter difficulty suggests adopting core robust approaches-

j. (e.g., a change frem box to donor cell differencing was employed in
i

|
the SSC-L steam generater calculations, Ref, h).

b) Enthalpy Juro Sincularities

! The enthal'py jump relation (Eq. 4.11) could conceivably give stra'nge he-

havior in a nucerical solution. This would occur if the expression.

i .

yj),-(T$){.
.

} (G){+(e u
t

: .

approached zero during the. solution or was at least much sraller in ragnitude
3

.

than'

yj)$,) -(i$)'v (G)~ + (e u
'

.
g

I suspect this was the immediate.cause of the proble: stops ' rom negative en-

thalpy that were observed by Eisenhart (Section 2 and Ref. a). Quantitative
.

,

3'
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a. e * f .-. .= *. c s '. - v . r 3.a. cu*.r".. *'.".r,'., '. r. .d i a . e *. *. = *. '. '. . $ . a. . - v a. d.w a.i. l *-.a... * ". # e.' *>. .. ..
*.r . .. ... . r . .

equation 'aculd have caused rc difficulties for rass velecity values grea*er
n

than approxirately -5*0 kg/.9-s. It is likely ther. that other difficulties,

such as those discussea in Secticn Sa, caused pccr values cf $, to be calculated, -

.

which in turn resulted in enthalpy disasters thecugh the fur relaticn (E;. t.11' .
.

c) Alternate Ferrulatien

I can see advantagcs te fellcwing liquid levels and -fxture lev-1s by 61-

n e . .= *. i c .' u. ,. s ' ' a. '. . ' . 0. . ' . .' ) .c, c r*ica. i . ' a .. n c *. c.a n v f .r. a. '. '.h.=*. 4. *. '.s a ,.ad.e..g i .. -.

i d. e .= *. c *. r a. .= *. #.1 w a *. *.e ra. ' c 'J a. ' .' *. 4. a. e . = . ' ' a a. . a '. i r. .' "s --.e. .' n .s. '. . a. r. . .- *. e .= - , r r. . .w r . .. . .m . - -
*

. . .-

**=* c a. e .s = *. *. r. .a " *. i v .a f r- . = ..u- a. r i c. a '. a *s a . ~d c '. . .*. , .= . . d , . c d. a. e. . r ". - ".#r-. =. ","e. i .= 1. . . . . . .. . . r . . , . . .

standpcint is as follows:

use spatially fixed control volures (ccccutational cells);.

use integrals of Eq. 3.7 (cr 3.;) to cbtain spatially di#ferer.ced.

equatters *: recresen* convective ; recesses;

r o. r,.J :. r e . w . ... . a. e. .x. ~res,,re .w ..w,1,-,. ui u.e .2 .-.4......s. , -
. . 2 . . ~ .. . . . n . . . .e

s. u r. e . 4. . . . -< E. .. .. - ... . ..sr . i . a r.s.s .,,- e.,4. . . . , 4. ., w i = e , , .w....a e 4. ,. , . a ;.... s . . ... . . . . ..

rivatives cculd te discentinucus;

. use drift lux ferrula* ions and flcu patterns consideratiens tc

.r o 3 a . 4. n. n s . w , . 2 r e. - - r. e. 4. s . = . . v. 4. . . ....._ ., .,.4_ e . i r. . o.
e ..e ..s+. un.w w

. . . . ... ... . . . . . . . . ....

continuity; and

<n.o r , <-n .. -u. s w,4,, c. r ;. < . .n. . ., . i ,. ,. s , a. . . t. r. _ . ,. t . . . -
-a . s. . a. s. . n a. .. . ,... .me. . ... . .

w. - . . . .e i s *. *. r. *. w i '. .'. #.1 - w a .= . *. e- - a. -".$"., a s a.x - a. e. '.e d. .- 9 *-a ' a . '. e ^ #... . o r . . -- r . .-~ . .

O and u values at the two ends of tre cell.
.

d) , n. , r. . . . .= . . e r_"_ 6 *. . a. C '. a. " "- . *. *. a l. . . , ..

I thir.k f * 's uossible, in orcblems of this type, tnat efforts to obtain -

.,
s. 5 c.r, c. r -,. . . .,. 5 ,.u } g. e .a a. e. . :. - . , . < r c ., . . E . , a :- -v. <,7.,a3.,.; s.aev =.e.<r ,.

.. . . . . ... ... . aq . .. . .

.'d"..-.'*.a. . #. '.' e. 3. ". .e S i. c . *. a ." ~.'."a.'J ' E - ". l j' * *. a. . . . C *.' r;" . Y. u' , ***a,ito .-*b.o. p._. J. g a*e..,*. .u . s s. .c.. . .. . .. . .. .
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steps that are chosen on the basis of transient speed. This of course does

i require some user knowledge abcut what is happening during the transicet. I'd

rather rely on user knowledge about transient speed than rely on him 591ng able

to detect when a complicated internal time step selection routine va' giving- .
;

him trouble.
,

',
j 6. Summary

i

In order to suggest possible causes for numerical irregularities observed
.

| by L.D. Eisenhart, I've defined a simpler but related problem for study. I've
!

then written the differential equations and the difference equations for this

problem as a basis for discussion. A prime suspect for the irregularities is

given in Section Sa. Other comments are also supplied.
,
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