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1. Cackaround

L. D. Efsenhart has been engaged in a study of the nurmerical beravicr of a
simplified (three-regfon core) set of THON difference equations. Certain puz-
21ing numerfcal irreqularities occur near the time cf flow reversal, The study
renorted herein is aimed at finding possible causes for such frrequiarities.

['ve based information on THOP on an incomplete examination of various
sources ‘e.g. Pefs. a through d). I've dufined a relatively simple probler
cimilar to that studied hy Tisenhart in an effort to clear away details that
are horefully unimportant. !'ve also used sort of a conglomorate notation,
berrowing a 1ittle from varfous THOP sources, but also using notations from
references that are more familiar to re.

2. Simplified Probler

Consider the three region (one dimensional) gecmetry shown in Fisure 2.1
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Consider a three-zone problem used by L. D. Eisenhart for numerical studies:

the total length is short (0.17 m);

an initial steady state (at t=10.0s) is achieved in which all flow
patterns of Figure 2.1 are initially present;

a flow reduction transient is initiated following t=10s by ramping down
the inlet plenum pressure; and

the change in average flow path pressure (the pressure for property
evaluation) during the transient is fairly modest (from 7698 kPa at
t=10s to 7695 kPa at t=10.16s).

Calculated results are illustrated in Figure 2.2. Mass velocities fall to

an inlet flow reversal near t=10.17s. A1l three flow patterns are still present

at that time.

The observed solution behavior is:

until the time of flow reversal, all variables seem to behave well for
time steps at least as long as 5 ms; and

after that time, a variety of problem stops occur (such as negative
anthalny (~ -4000 kJ/kg) values or crossing of flow pattern interfaces)

as various wmethods of time step control and fixes are attempted.

My investigation of these difficulties ha: been based on a feeling that the

difficulties would still be present if the following additicnal problem simpli-

fications were made:

a)

b)

¢c)

Rather than initiating the transient by changing the plenum-to-plenum
pressure drop, ['11 consider that the inlet mass velocity (G:‘ is a
known function of time, as given in Figure 2.2a.

I['1) neglect all changes with time in the reference pressure for
property evaluation.

I'11 study the equations which are differenced in space but still
differential equations in time. These (DE)t/(sE)z egquations are given

by Ruger (Ref., b).
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d) As in Pef, b, 2l properties will be evaluated at satu
corditions, sc that no vapor mass equation will be recy
3. Partial Nifferential Ecuatiors

This section contains a brief preserntation of conservaticon
combination of concepts and notations from 2 variety of sources

through ¢ and Ref. ¢, S and £5.

w©w
™

a) CLonservation of Mass

For one-dimensional flow through a constant area flow chann

2; - 2: = T‘
st 22

where
?‘Tf;f'f;
A
£ 8 o sy rf.
B =% LAy
L}

» \
‘4n the positive z Zirection);

-
]

U o] .

b ]

velocity
s = local dersity;

» = flow are2;

¢ = volume weighted density;
£ = mass velocity:
t = tire; and

"

= axial rosition.

h} Censervaticn of Enerqy




where:

Fele 50, f

zA

a3 . y
H a/;quA,

H = local enthalpy;

Lo )
.

o
S
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H = yolume weiqhted or static enialpy;
H'= flow weighted or mixing cup enthalpy;
7 = heat input per unit volume;
and where varicus terms have been neglected as indicated in Ref. e in a2 manner
consistent with Puger (Pef. b).
An alternate form f the energy equation can be ohtained by muitiplying

£3. 2.1 by T and subtracting from £q. 3.4:

- 37 P -
N — o | B(H' M) 0. £3.7)
ol 6 ¥4 52 [“' '] b (3.7)

¢! Serarated Flew Sepresentation

Adopt a sinsle value each for dersity, enthalpy, and velocity to repre-
sent all liquid in the channel at a given axfal level. “enote these values by

2pe s and u,. Cencte alsc the corresponding quantities for vapor as oy M., and

A 7

U, Finally, designate the fraction of the flow area occupied by vapor as a

(static vapor fracticn). Then the guantities defined in Ecs. 3.2, 3.3, 3.5 and

3.8 become:
?=ag + (1-a) oy (3.8)
G =g + (1= {1 9
] ovuv (] a) °1u1 H \ )
Tedl [,pvuv & (Taa)o ] (2.19)
[+
and



In the s'mr” ified case defined in Section 2, the quantities o

.G,.H.
“

v v

and Hz are all evaluated at saturation conditions corresponding to a pressure
which is independent of time. In this case, o from £q. 2.2 and H from Eq. 2.10
depend only upon a. Or equivalently, : is a function of ¥ only. Therefore,

the mass equation (Eq. 3.1) can be rewritten

or by combining with £q. (3.7):
] L (3.12)

3G ] do { [ W 2 s I
M, . LY. fcd.L qgu.d
a2z -5 (dH ) 3z aZ ,

Senarated flow quantitiec and equations o€ interest include:

)
/

it Y = the static quality (the vapor mass concentration cenoted by ¢ in

LUulff, fef. d):

Y = (a o,/ @ ) S (2.14)
or equivalently
p,Y
= - s (2,1%8)
0, Y+ oy {1-Y) ) ‘
and
Heyd + 1Y) 4, . (2.1%)

Let ¥ = the flowing quality (the mass flow rate of vapor divided by the
total mass flow rate):
X (apu/6) {2.17)
and let 2 = the flowing vapor fraction (the volume flow rate of vaper divided

=

by the total volume flow rate):

c = (4 /75) £ {2.18)
- (VV/V .

J




where i 1is the superficial velocity of vapor,
I, = (¥672,) , (3.19)
where j; is the superficial velocity of liguid,
J; B1-x) ﬂ/ol] 5 (3.20)
] and the volumetric flux j is
: L FRL g8 5% (3.21)
The interrelation between £ and X is similar to that between a and ¥, That
5.
T ozX | (3.22)
se |5 “cv“-”J .
Aso,
W e xR+ (-0 N . (3.23)
4) "rift Flux Pepresentation
A drift flux representation can be considered as an empirical relaticn
hetuecen static and €lowing vapor fractions. That is,
2 = [co + oy, / j)] " (3.24)
where ¢, = an empirical flow distribution parameter;
and Ugs ® the weighted mean drift velocity, another empirical cerareter.
The

relation can be combined with the various separated “low relations
(and a great deal of algebra) to obtain the relation:

G g
*F '.::,L;‘+g(c-7] B
c(uv-u) = v 2 V_L - C 3
o w fe oY1) Y (s «5.)
[v ‘co g ('v”zJ

In the cases for which c, = 1, the atove relation can be qreatly sirpli-

(&
3
»
~—

fied as done by Puger in Ref, b:

e(H'-H) = o, u . (To4))
o Vv 2

{2 28)




Knowledge of the quantity G(H'-H) is needed for the sclution of
3.7 and 3.13.

&. Spatially Differenced Equations

Mass Equation with Moving Boundaries

Use 1 as an index to describe the positions in Fig. 2.1. Integrate the
conservation of mass equation (Eq. 2.1) over axial region i, and incorporate

moving boundaries by the techniques of ‘W1 ff (Pef, d, Eq. 21):

4 <g>, A2 . + e <2 é T BB ;]* =0 4.1)
dt R Bt =T i+] ey ¥ TS

where 2z, = z,., - 2z, - (4.2)

%) Energv Equation with Moving Boundaries

In a similar manner, integrate the conservation c¢f enerqy eguation

(Eq. 2.4) to obtain:

ufo

e [F®] ¢+ [ -574

—
.
.
.

- jeN . 3’§'z] = <O, a2

¢) Interface Fcuations

Sy writing equations similar to 4.1 and 4.2 for & region interface of zerc
thickness, it is found that the following cuantities are continuous at each

interface 1:

- ‘ -
[G’gz] - [C‘ B z] i (5.4)
i 4y
= + o e
lGH' ~ :U z] = [GF' -0 H z] /A 5\
i 3
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Sumrtry of Puger Equations
Puger's equations of Ref. b can be keyed to the equations developed in

d)

this report as follows:
o1 (Overal! Momentum) - not needed here since inlet flow is specified.

o2, 5, 8 ICAE (Inteqrated Algebraic Mass Flux) - not needed here since
+ -

these are profile equations to relate <G>1 to (G,‘,1 and (G)1+1

We do not need <C>1.

3, 6, 9 GAE (Mass Yelocity Algebraic Equation) - This set of equa-
3.13:

-

tions 1s equivalent to the following difference form for Eq.

AZ; ;
1 ( )1 8ty

where
Ed —
Yo * (o 5) "

where
——
i

where £q. 2.2€ has been incorporated and where (o u ) is constant through

negion 1.
4.4,

e &, 7 SHM (Mass Jump at Interface) - the same as Eq.

.
.
4
.
y
¥

e 10, 13, 1€ EN (Enerqy Eguation) - an approximation to fq.

- M i
° 3% given by

c ‘ "ﬁ-) P ['12' (ém X éﬁ](

-
o
L%
o
W
—
w
S
e




=11 -
where

has been employed.

The convective term has been approximated by

Al

;g 3 T + ‘
G —— e {(H"'} 'n { pe— (

where Eq. 3.2€ has been incorporated and where fciuv,) is constant through

i=
.
—t
o
—

Reqien 1.

e 11, 124 IF !Interface Definition) - the enthalpy {H}; is supplied at
each interior interface (i=2 and i=3) to define the conditions “or
flow pattern changes.

® 12, 15 SHE (Enerqy Jump at Interface) - obtained by combining

Eqs. 2.26, 4.4 and 4.5:

i 1T -

(M) - H.| [2): + (- ) -« (z 2); 4.11)
g = Mol 1182 * Loy Uygdiay = (e 2y - 81
- 4 L

® 17, 18, 12 HPRO (Enthalpy Profile)

-~

- for through flow the linear profile Equation 24.% is used;

- for both inflows to a regicn, no profile equation is recuired; and

(4.12)
- for both outflows from a regifon the old slope of enthalpy with
respect toc position z is retained.
e 20, 21, 22 8C (3oundary Conditions)
= Py, Pg are not recuired for the simplified problen; <51}$ must,
however, be specified as a function of time.
- (F)] is recuired as a function cf time for any time the flov at (3.13)

interface 1 is directed from the inlet plenum into the channel.



- 4
- (H)4 is required as a function of time for any tine that the low
at interface & is directed from the exit plenum back inte the channel.
5. Comments

a) Calculations with Flow Reversal

® CHIC experiences - !'m familiar with some numerical studies performed
by 6. Birkhoff and T. F. Kimes using the CHI™ [“onvection of !ieat In
Channels) Code /Ref. g). Several numerical approaches were ctucdied.
ne of them, pregram II, (Ci11C-2), is relevant here. 1t uses a "box
method" for representing the convection (enerqy) equation and is,
therefore, a method akin to the linear profile approach of Eqgs. 4.8
and 4.9, CMIC-2 results showed:
- the predictor-corrector feature did not provide significantly
improved accuracy; and
- improvements to the mass egquation treatment were required.
These findings were incorporated in subsequent thermal hydraulic cevelop-
rments. In addition, and more pertinent 4o our present discussion, the mathe-
matical ideas incorporated in CHI®-2 concerning flow reversal (Equatiens £2
through £4, Pef, g) were used as a hasis for subsequent developments. The fol-
lowing appreach was felt to be rathematically sound*:

- Zach mesh cell is assigned a sinqle mass velocity to he usec in the
enerny equation solution (e.q. an average of inlet and exit mass
velocities);

- If that "characteristic velocity" is pesitive, then the cell is an
upflow cell; if negative it is 2 downflow cel. and I'l11 omit from

+his discussion the unlikely case of zerc flow;

-

A difference from THCP s that these are for mesn cells with fixed, not
moving, boundaries. I'd expect they could also be used as a guide in the
moving boundary case.

(4.18)




For upflow cells, the enthalpy at the bottom interface must be taken
from the cell below it;

For d wnflow cells, the top interface enthalpy must be taken from the
cell above fit;

If a downflow cell is above an upflow cell then two enthalpies can be
ohtained at the common interface and som< energetically equivalent
average of the two should be adopted: and

If an upflow ceil is above a downflow cell then an extra artificial
cell is temporarily (one time step) introduced at a position corre-
sponding to zerc velocity in order to cbtain the enthalpy information

needed for both cells.

e THOR Reverse Flew Logic - the reverse flow logic defined by Egqs. 4,12

through 4,14 seems to be mathematically quite different than the above ap-

proach.

Possihle deficiencies and possitle remedies include:
With the box method and for energy equation numerics a cel! is either

upflow or downflow. The cateqories "through flow," "both inflow,” or
"both outflow" are not meaningful.
The "characteristic velocity" that, in the prerent case, should be
used for deciding whether a bex fs upflow or downf'ow, is the brack-
eted term on the right hand side uf Eq. 4,10,

[(n)} + (o, uvjh] : (5.1)
A rederivation of the difference ecuations prohably should be cer-

formed to obtain a more centered characteristic velocity such as

{[23 <¢>;+‘Z(s>;ﬂ] : (;:u,,ju;. (=.2)
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« The adoption of expression 5.2 is a mathematical refinement and un-
necessary for cbtaining reasorably good answers. The othrer consid-
erations concerning characteristic velocities and cell nmatur.- are
however essentia: to obtaining valid numerical sclutions [though c.her
fixes than those suggested here may 2lso work).

Spatial Ringing Difficultie:

- The use of a box differencing method has at least one other diffi-
culty for which there seems tc be no easy fix. Consider a case where
the top cell in a channe! has had upflow then switches to downflow.
If at this time, the exit plenum has an enthalpy much different than

the exit enthalpy of the top cell at the previous time step, then a

viclent enthalpy "ringing” can occur spatially, and by interaction with

other {especially two phase) relations can destroy the nurmerical
s¢lution,

- This latter difficulty suggests adopting mere robust approaches
(e.g., a change from box to doner cell Zifferencing was employed inm
the SSC-L steam cenerator calculations, Pef. h).

b) Enthaloy Jump Sinqularities

The enthalpy jump relation {Eq. 2.11) could conceivadly give strange be-

havior in a2 nurmerica) soluticn. This would occur i€ the excressicn

- - . P
ll"‘. & L 3 4 | l
e ’ U e ip 2

)‘. ot / V:’i ki |

apsroached zero during the sclution or was at least much sraller in magnitude

than

1 susnect this was the immedfate cause of the protlem sicps “rom negative en-

-

thalpy that were observed by Cisenhart (Section 2 and Ref. a). Nuantitative
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estimates from program ocutput though, indfcate that if i* behaved well tren tris
equation would have caused no difficulties for mass velocity values greater

than approxirmately -500 k;/n:s. It 1s Tikely then that other difficulties,

such as those cdiscusse: in Section Sa, caused poor values of i! to be calculated,
which fn turn rescited in enthalpy disasters through the jur» relation (fg. 4.11).

¢} Alternate Formylation

I can see advantages tc following 1iguic levels and mixture Tevels by hi-
nematic jumps (Ref. ¢, Section 1.2.2.2). 1! am not convinced that it is & good
fdea to treat flow patitern boundaries 2 Yinematic ‘umps. An 2lternzte arproach
that seems attractive from 3 nurerical standpeint, and c00d emcugh from a physical
standpoint is as follows:

e use spatially fixed control volumes (computational cells);

o use integrals of £q. 3.7 {er 3.4] to obtain spatially differenced
equations t0 recresent convective processes;

® require that at each pressure the enthalpy “' be a2 continucus
function of ¥ [ 1d C and geometric variables), though #irst de-
rivatives could be discentinucus;

e yse drifi TTux formulations and flow patterns considerations o
define the best 4’ relations that are consistent with mathematical
continuity; and

® Jafine information such as wall friction profiles within a cell to
be consfstent with flow tattern changes expected on the basts of
G and ¥ values at the two ends of the cell,

d) ’fon't Tamper" Time Step Contrel

I thirk 1t's possible, in problems of this type, that efforts to obtain

time steps from caiculated information can amplify numerica! irreqularities

that would otherwise e only temporary. ! am an advocate of user selected time
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steps that are chosen on the basis of transient speed. This of course does
require some user knowledge ahcut what is happening during the transiert. 1I'd
rather rely on user knowledge about transient speed than rely on him “einq able
to detect when a complicated internal time step selection routine w2i giving
him trouble.
£. Summary

In order to suggest possible causes for numerical irregularities observed
by L.D, Efsenhart, I've defined a simpler but related problem for study. I've
then written the differential equations and the difference cquations for this
problem as a basis for discussfon. A prime suspect for the irregqularities is
given in Section 5a. Other comments are also supplied.
7. PReferences
a) Conversations with L.D, Eisenhart, July 1972 through September 197%.
k) €. fuger, "2 Zone Core Eqn's. A1l 2¢," Handwritten Notes, 12/12/77.

v, Wulff, 0.C. Jones, Jr., et al., "THCR-1 (PWR): A Computer Code for

(2]
S

Predicting the Thermal Hydraulic Rehavior of 'luclear Reactor Systems,”

8NL-NUREG-24762, Volumes 1 through 4, August 14, 1978,

.
-

W. Yulf¢, “Lumped-Parameter Modeling of “ne-Nimensional Two-Phase Flow,"

ANL-24483, presented at Second CECD Meeting for Specfalists in Transient

Two-Phase Flow, Paris 1978,

e) J. E. “eyer, "Conservation Laws in One-Dimensicnal Hydrodynamics,” in "Bettis
Technical Review," YAPD.3T-20, September 1260, pp. 61-7C.

£) J. 6. Collier, "Convective 20iling and Condensation,” Mcfraw 4111, London,
1972,

3) 6. Birkhoff and T.F. Ximes, "CHIC Program for Thermal Transients,”
WAPT.TM-285, February 19€2.

h) Y. L. Yieaver III, J.5. Meyer, and A ¥, Agrawal, "® Few Pressure “ocel for

Transient Two-Phase Flews," Trans. Am. Mucl. Soc. 23, 273-274 (1972).



Distribution LWR Code Assessment & Application Program

BNL Associate Chairman (3)

BNL LWR Code Assessment & Application Group Personnel (30)
. E. Meyer, M.1.T, (5)

Fabic, NRC

Y. Hsu, NRC

Y. Kato, BNL

J. C. Kouts, BNL

. Lyon, NRC

Odar, NRC

M. Scroggins, NRC

M. Shotkin, NRC

H. Sullivan, NRC

. S. Tong, NRC

. Zuber, NRC

U.S.N.R.C. Division of Technical Information & Control

Z2rr-rroomEIX<unvcg



