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ABSTRACT

NRC's Off ice of Muclear Regulatory Research, Division of Reactor
Safety Research has initiated a cooperative effort with the Federal
Republ ic of Germany in the Heissdampfreaktor (HDR) testing program to study
the response of nuclear power plant piping systems subjected to ground
excitation. The HDR is a decommissioned reactor being used for structural
and hydraul ic reasearch.

EGLG Idaho is supporting the NRC by making "blind" predictions of the
response of the HDR recirculation loop piping to explosive excitation of
the HOR containment. Contained in this interim report are predictions
using a nonlinear transient time history structural analysis. Input
functions consisted of experimental accelerations supplied by ANCO
Engineers of California.

Also included in this interim report are comparisons of the
predictions with experimen fata supplied after the predictions were
made. Finally, this repori ~a brief look at parameters which may
improve the comparison and in. es the direction of future work.
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SUMMARY

A nonlinear structural analysis of the HOR recirculation loop piping
has been performed to predict the piping response to explosively generated
ground excitations. This system was modeled on the computer program ANSYS
and included the reactor vessel, two recirculation pumps, and the
recirculation piping. Input consisted of uniform ground motion
acceleration time histories in three orthogonal directions since the room
was assumed to move as a rigid body with no rotational accelerations.

Results from ANSYS included acceleration histories at instrumented
points on the piping and response spectra generated from the acceleration
histories of these points. These spectra were compared to spectra
generated from measured acce.cration histories at the instrumented points.
Parameters which may improve the correlations between measured and
predicted response were enunerated and the effects of structural darping
and support stiffness were investigated briefly. Sensitivity to the two
parameters investigated is indicated by comparisons in the report.

This interim report presents the initial results and describes the
current status of this NRC task. A final report will be developed upon
completion of the task.
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Subsequent sections of this interim report describe the scope of work
and the finite element representations of the recirculation piping system,
The source of the input loading is then discussed. Results are presented
by comparing the "blind" predictions with measured data supplied at a later
date. Finally, some conclusions are discussed and recommendations for
future ref inement of the analytical model are provided.
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2. ANSYS MODEL

A representation of the ANSYS model is illustrated on Figure 3 with
only selected node points shown. Figures 4, 5, and 6 illustrate the nodal
detail of each section of the model. The actual model contains 182 node
points. With the exception of the supports, this model was used as
received from ANCO Engineers. Standard modeling procedures had been used
by ANCO.

Figures 7 and 8 show typical, measured curves describing the two
typical, nonlinear support types. Based on these curves, the sway braces
were modeled as nonlinear elastic trusses with a gap derived from measured
data. The constant force hangers were modeled as elastic-plastic trusses
with kinematic hardening while the spring hangers were modeled as 1inear
elastic trusses.

Damping in the ANSYS analysis shown in Figure 9 is proportional to
mass and stiffness. This damping function was chosen to approximate
previously detcrmined 1975 experimental damping values.4 It is noted
that the function adequately represents damping determined by test only in
the 3-8 Hz range. Test data indicates the first mode (1.6 Hz) damping to
be approximately 45% (0.45 on the scale) while the modes above 8 Hz are
generally in the 2-3% range.

3. ADINA MODEL
The ADINA model(a) was constructed to have the same properties as

the ANSYS model. Although ADINA was used for the modal analysis, program
limitations made it easier to use ANSYS in the prediction phase.

a. The term model is used in this report to mean a finite element
representation of the structure.
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Figure 4. URL Piping System - Model Detail A
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Figure 5. URL Piping System - Model Detail B
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4. NUPIPE MODEL

Since the tests were limited to the low level explosive charge when
they were finally performed, it was expectea that the system would respond
in a linear fasnion as, indeed, the ANSYS analysis indicated. With this in
mind a third set of models of the URL was constructed using the linear
elastic structural piping code, NUPIPE, and was used for parameter studies.

This code varies from ANSYS and ADINA in the way {° aoplies the
damping scheme to the structural model. Where the other two codes use mass
and stiffness proportional damping, NUPIPE uses constant damping for all
modes considered. Another difference is the use of modal superposition
instead of direct integration in the solution technique. As a result, the
modal calculation was performed only for modes having frequencies up to
33 Hz as prescribed by the Regulatory Guides for seismic analysis.

Two linear models were used and sensitivity to two different
parameters were investigated on each of the two models. The first model
used standard procedures for model ing supports. In other words, stiffness
properties were taken from manufacturers' catalogues. The second model
used stiffness properties based on the undef lected value of the nonlinear
load-def lection curves determined by static tests. Each of the models was
run for both 1% and 7% damping to determine sensitivity to this parameter.

During the comparison stage of this study, some of the information
EG&G had received concerning mass model ing was found to be incorrect. Each
of the NUPIPE models was run with mass corrections to determine sensitivity
to this problem. Indication of mass sensitivity to frequency calculations
in NUPIPE can be seen in Table I.

16



[V. LOADING

The inertial loading considered in this investigation was the motion
of the URL pump cubicle walls, floor, and ceiling caused by a 5 kg charge
of buried explosive located outside of containment on the positive X axis
of Figure 10, [Details of the test wnicn was conducted in Decemoer 1979
were reported oy ANCO Engineers5 in April 198). Comparisons of vegtical
accelerations at various points in the URL cubicle indicate extremely good
correlation, Horizontal acceleration history correlations are good wien a
slignt amount of torsional motion of containment 1s considered.
Accelerometers located at tne four points 1llustratea in Figures 10 and 1]
provided accelerations which were recorded on computer tape and strip chart
recorders. After comparison of the strip charts, it became apparent that
the region of the 2g where the recirculation loop was supported was
benaving essentia. 4s a rigig body. Tnis is illustrated on Figure 12,
where three segments of strip chart accelerations are shown,

Tne accelerations shown on Figure 12 are at three different points
(1, 2, 3) un tne building shown on Figures 10 and 11. The three charts
shown on Figure 12 2re for vertical (Y) acceleration at tne tnree aifferent
node points. Horizontal accelerations of different node points cannot De
compared directly since the coorcinate systems used for the accelerometers
are not the same. Coordinate transformations of the horizontal
accelerations a. points in the pump cudbicle were made anu compared to each
other. wWhile the comparison showed a slight rigid boay rotation of the
cubicle about the center of contcinment, that effect was smali. Therefore,
for this first analysis uniform ¢round motion with no rotation was assumed
for simplicity.

Appendix B shows the response spectra generated from the three

components of uniform ground motion used for transient input to the
computer analyses.

17
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e e B il

V. SPECTRAL ANALYSIS

The responses of the URL system determined from accelerometer
measurements and analytical calculations were compared in the frequency
rather than the time domain. To implement this comparison a spectral
analysis was performed on both the measured and calculated response
acceleration time histories. This analysis numerically integrated the
normal convolution time integral for natural periods from 1-100 Hz with the
given acceleration histories as input functions. This integration was
performed for both measured and calculated data assuming zero damping, thus
causing the peaks of the spectra to be maximized.
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VI. RESULTS

1. FORMAT OF RESULTS

this analytical study has produced some interim results which are
presented in two parts. The first part consists of the “blind"
predictions. These are in the form of acceleration response spectra
derived from the ANSYS time history analysis of the URL piping system.
Af ter these predictions were publicized, the measured acceleration
histories of various points in the piping system were provided.
Comparisons of the measured data and the original “blind" calculations and
subsequent comparisons of modified model calculations with measured data
compose the second part of these interim results. The comparison studies
are also based upon acceleration spectra. Details of these results are
included in Appendix A.

2. COMPARISONS

Table 1] summarizes the comparisons of ANSYS and NUPIPE calculations
with the measured data. It must be noted that, while the NUPIPE data in
this summary ref lects the appropriate mcdeling of masses in the URL system,
the ANSYS model does not. Specifically, it was originally thought that tne
5 kg test was run with no water in the URL piping. During the NUPIPE
analyses, it was discovered that the piping was actually at operating
conditions during testing and that some signif icant dif ferences in actual
valve weights existed. Since the NUPIPE analysis was in progress at that
time, both conditions were analyzed. Such modification was not made in the
ANSYS analysis. NUPIPE results in this table are based on a calculation at
7% damping.

22



TABLE II.

RESPONSE ACCELCRATION SPECTRA

COMPARISONS AT VARIOUS NODE LOCATIONS

Node

1662
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77y

77z

Ansys vs Measured

Nupipe vs. Measured

Peak
amplitude

Peak
amplitude
frequency

m O O ©

o O o

0o o

Peak
amplitude

O O =

n

Peak
amplitude
frequency

©

T nmn OO 06 06 vV 606 O ©v

"
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The table rates the qualitative comparison of analytical to measured
data, which is detailed in Appendix A, in three aspects of the spectral
curves up to 33 Hz. They are: (1) peak amplitude; (2) peak amplitude
frequency; (3) curve shape. The rating criteria is as follows:

Calculated Peak Calculated Peak
Amp1itude Amplitude Frequency Curve Shape
Good Within 30% of Within 20% of Same number of signifi-
measured measured cant peaks and peaks
in fairly good
proportion
Fair W thin 60% of Within 40% of Peak amplitude in rough
measured measured proportion to rest of
curve

A rating of "Poor" is given when neither of the other ratings are
justified. Model node location and directional response are noted and
correspond to those of Figure 3.

This comparison suggests several observations: (1) 1inear response,
for this loading, is a pretty good assumption; (2) there also seems to be a
need for less damping in the ANSYS model; (3) the mass model ing inaccuracy
in the ANSYS model may have caused minor frequency shifts in the peak
calculated amplitude.

Table 11l compares the parameter variations carried out with the
NUPIPE analysis which are detailed in Appendix A. The effect of damping
changes is, by far, the largest effect. That large effect might be
expected. When these damping levels are conpared to measured data, it
points out the fact that current standard practice may be quite
conservative resulting in calculation of high peak accelerations.
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TABLE III.

COMPARISON OF PEAK

ACCELERATIONS FROM NUPIPE PARAMETER STUDIES

Node

166x
1662
77x
77y

772

53x
53y

53z

1% vs 7%
Damping*

100%
260%
90%

167 %
210%
250%
200%
240%
220%
220%
300%
350%
300%
400%
400%

90%
27%
67%
38%
64 %
17%
88%
26%
65%
51%
0%

0%

10%
0%

0%

Typical Supports
vs Actual **

"% change of 1% damping peak from 7% damping peak

"% change of analysis with typical support stiffnesses from

that of actual support stiffnesses

i~
w
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Tne second parameter variation studies tne effects of differences
between assumed “standard catalog" stiffness valucs for supports and those
stiffnesses actually encountered in the field., Static testing was
performed upon the supports to determine the in situ daita. AS can be seen,
the effect ranges from none to almost a factor of two in tnis case.

3. OBSERVATIONS

Tne data comparisons of Appendix A snow a significant amount of system
response in the 25-50 Hz range in the measured data. Looking at tne
norizontal spectra of tne input ground motion for tne analyses in
Appendix B confirms that there is, indeed, a significant contribution from
the norizontal pase motion in that frequency range. These do not follow
the typical form of seismic spectra wnicn are generally flat and at a lower
(relative to tne peak) level in tnis frequency range because tne eartnquake
epicenter is usually farther away and high frequencies are damped out of
the excitation,

Tne analytical models were constructed witn seismic analysis in ming
and, for tnat reason, did not have the capability of picking up response 1n
tne nigher frequency ranges, i.e., above 33 Hz. The ANSYS analysis used a
solution time step of 0.0075 seconds which could, at oest, be sensitive to
frequencies up to 33 Hz in its direct integration solution and could
comfortably assure accurate frequency response tnrougn 13 Hz. The NUPIPE
analysis used a time step of 0.003 seconds and a cutoff frequency of 33 Hz
in its modal superposition solution, That time step should have becn
sufficient to pick up tne response in tne 25-33 Hz range.

The comparisons presented in Appendix A suggest that the NUPIPE model
diu not respond in the 25-33 Hz range as expected. Tne most prooavie
reason for this discrepancy 1s tne fact that the NUPIPt computer code used
in the analyses prints accelerations only at every tnird time step. This

26



coula have an effect upon the generated spectra similar to performing the
dynamic analysis with a time step of ,009 seconds whicn could be too large
for picking up tne 25-50 Hz acceleration response.

A second possible explanation considers the use of moda! forces
derived from tne truncated set of mode snapes. Altnough tne nigher modes
may not respond dynamically, the “static" or load following response of
these nigner modes may effect the overall dynamic response.

A third possib ity may be the need for model refinement,
Eccentricities of the quick closing and cneck valves have not been included
in the model and may effect some localized modes in tne freguency range
concerned.

Tne effect of tne higher frequency response has not been addressed in
this study. In.pection of the input acceleration time history indicates
the amplitude of the hign frequency component to be small compared to that
of the low frequency component,

Two additional areas of parameter variation may be attriouted to
existing URL pipe wall thickness variations and the use of static, instead
of dynainic, testing of existing system supports, Before EGAG's first ANSYS
analysis was made, the variation of pipe wall thicknesses in the URL system
was discovered to be as much as JU% greater tnan nominal in some areas.,
Tnose changes nad been made to the structural model by applying the
20% increase to tne ocutside dimension of tne pipe in the designated areas.
Check calculations have also been made witn decreases of 20% on the inside
diameters in those areas and no significant changes were noted in the
system frequencies calculated.

Comparison of tne variations in support stiffnesses point out tne need
for accurate data 1n this area., [t is also suspected that differences
Detween test results of dynamic and static testing ¢f supports could prove
to be significant in the analytical results,

27



VII. CONCLUSIONS

Good predictions for this experiment were obtained using the computer
code NP IPE with 7% critical damping, stiffness values based on experiment,
and mass modeling changes as indicated. An analysis using current industry
practices would nave used 1% damping, manufacturers recommended stiffness
values, linear response assumptions, and, in general, would have predicted
a conservative response. Differences between tne NUP IPE and ANSYS Zivue!
predictions have not, as yet, peen resolved. This remains to be
investigated in the following weexs.

Variations in pipe wall thicknesses seem to have small effect upon the
system analysis when compared to other parametric cranges. Support
stiffness variation, however, nhas a wide range of effect on tne systein and
points out the need to use accurate support stiffness values for analytical
mode« input.
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VIII. RECOMMENDATIONS

The following recomnendations are presented based upon the interim
results of this study:

(1)

(2)

(3)

This investigation should te continued to determine more
precisely the reason for differences between the results of the
ANSYS and NUPIPE analyses.

Although the present analysis was performed to obtain dynamic
response below 33 Hz, additionz] analyses should be performed to
obtain better correlation between analytical and measured results
in the higher frequency range.

Furcher study into the effects of model damping, mass ref inement,
multi-support input motions, and dynamic support stiffness values
should be performed.

29
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APPENDIX A

COMPARISONS OF PREDICTED VERSUS MEASURED
ACCELERATIONS RESPONSE SPECTRA



GUIDE TO NOMENCLATURE AND F IGURE NUMIERING SCHEME FOR TYPES
OF COMPARISON CURVES
IN APPENGIX A

1. Consider Figure 1.36.Z labeled SPECTRA-MEASURED vs. ANSYS AWALYSIS:

1 corresponds to the title SPECTRA-MEASURED VS. ANSYS ANALYSIS

SPECTRA-MEASURED is the response spectra generated by using
acceleration histories from accelerometers at instrumented
locations.

ANSYS ANALYSIS is the response spectra generated by ANSYS using
acceleration histories predicted at the instrumented points by
the time history analysis.

36 refers to instrumented point number 36 as shown on Figure A of
fol lowing page.

Z refers to the accelerations in the global Z-direction as shown on
Figure A.

?. Consider Figure 2.36.2

2 corresponds to the title MEASURED vs. TYPICAL (D=.01, D=.07)

MEASURED 1s the response spectra generated by using acceleration
histories from accelerometers at instrumented locations.

TYPICAL refers to the response spectra generated using
accelerations predicted in NUPIPE for the case of support
stiffnesses obtained from manufacturers c¢*alogs. Masses for
these typical runs contained the same inaccuracies as the ANSYS
run. These are addressed later. The two TYPICAL curves shown
are for constant 1% and 7% critical daming respectively.

A-2
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3.

4.

Cong ider Figure 3.36.7

3 corresponds to the title MEASURED vs. NTYPICAL vs. NACTUAL (D=.07)

MEASURED is as described earlier.

NTYPICAL is the response spectra based on NUPIPE acceleration
predictions using support stiffnesses as listed in manufacturer's
catalog as would be done on a "typical" commercial analysis.
NACTUAL is the response spectra based on NUPIPE acceleration
predictions with support stiffnesses based on measured support

characteristics.

Both NTYPICAL and NACTUAL used 7% of critical damping and masses
as used in the ANSYS analysis.

Consider figure 4.36.7

4 corresponds to the title MEASURED vs. TYPICAL (Ml vs. M2) C=.07

MEASURED is as described earlier.
TYPICAL 1s the response spectra based on NUPIPE acceleration
predictions using support stiffnesses as iisted in manufacturers

catalog as would be done in a "typical" commercial analysis.

TYPICAL Ml is a “"typical"” analysis using masses as used in the
ANSYS analysis which did contain inaccuracies.

TYPICAL M2 is a "typical" analysis using corrected mas values
(pipes full of water and valve weights corrected).

Both "TYPICAL" analyses use 7% critical damping.



5. Consider Figure 5.36.Z
5 corresponds ty the title MEASURED vs. ACTUAL K (M1 vs., M2) (D=.07)
MEASURED is as described earlier,

ACTUAL K means support stiffresses were based on actual
measurements of existing support characteristics. Both

"ACTUAL K" runs used NUPIPE. As before Ml corresponds to ANSYS
mass modeling and M2 contains mass modeling corrections for pipes
full of water and two corrected valve weights.



APPENDIX A F IGURES

TYPES OF COMPARISCNS CURVES:

2.

3.

SPECTRA-MEASURED vs. ANSYS ANALYSIS

MEASURED vs. TYPICAL (D=.01, 0=.07)

MEASURED vs. NTYPICAL vs NACTUAL (D=.07)

MEASURED vs. TYPICAL (Ml vs. M2) D=.07

MEASURED vs. ACTUAL K (M1 vs. M2) D=.07
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