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|| ABSTRACT

.

Lumped-parameter models are presented for the prediction of transient
!

( conduction in cylinders, plane-parallel slabs, tubes and fuel elements under
1

conditions of small-break loss of coolant accidents and planned transients in
7

nuclear reactor systems. The model accounts for heat generation by fission

and decay and oy gamma absorption and water reaction.
|

The models consist of ordinary differential equations, one each for the

solid cylinder, the slab and the tube, and two for fuel pellet and clad in the

fuel element. The differential equations are derived from the partial differ-

ential equation of energy conservation by volume averaging.
i

1

The models can be applied to each axial node of a flow passage. The model'

formulation is particularly suitable for explicit integration over time with,

1

l

[ high-order integration schemes for ordinary, first-order differential equations.

!

!
1
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I 6

NOMENCLATURE

a,b,c Coefficients of polynomial for temperature profiles in
Eqs. (iii), 81 and 82

c Specific heat in energy balance

D Common denominator of coefficients for surface temperatures,
defined by Eq. 31 for hollow cylinder, Eq. 63 for slab, and
Eq. 103 for fuel element

f(r) Initial temperature distribution

h Convective heat transfer coefficient

k Thermal conductivity of solid

Profile parameter for heat generation rate, Eq. 114m

n Exponent for heat generation rate, Eq. 114

!! num er, s/kBi

q "' Volumetric heat source strength (fission, decay heat, gamma
absorption, water reaction, etc.'

r Padial distance

R, E Radius of surface, mean radius of tube

s Characteristic length, s = R for cylinder, s - R -R for2 2
hollow cyline'.er and slab, s = R -R for clad3 2

T Temperature
i

U Coefficients for initial steady state of fuel element, Table 4g

V Coefficients for initial steady state of fuel element, Table 4

Greek Symb 's,

a Thermal diffusivity, k/(oc)

813, s, Coefficients for surface temperatures and temperature distribu-
tions, defined by Eqs. 19 through 30 for hollow cylinder,
Eqs. 38 through 40 for solid cylinder, Eqs. 51 through 62 for
slab, Eqs. 105 through 107 for fuel element. See also Tables 1
through 4.

Y . ,Y, Fixed geometric parameters
3

- vii -

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



;

6 Cas gap width, R -R
2 1

A Ratio of thermal conductivities, II/k , i = c,f
g

& Normalized radial coordinate, defined by Eq. 8 for hollow and
,

solid cylinders and slab'

T Time

Q ....,0, Parameters, defined by Eqs. 98 through 102

i Subscripts

j 1,2,3 Surface label

|
| c Clad
!

cy Cylinder

f Fuel pellet

i

g Cas

! 1 Inside of tube, lef t side of slab

|
| s1 Slab

o Fluid, outside of tube and cylinder, right side of slab

<> Averaging operator, defined by Eq. 5 for tube, cylinder and slab

|

Superscripted bar implies dependence on averaged temperature only.
l

!

|
!

!
1

l

|

|

? 1

| |
!
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1. INTRODUCTION

1

Transient lateral heat conduction in fuel elements, steam generator

tubes, hydraulic duct walls and support structures of simple geometries can

f requently be' predicted , with computing efficiency and suf ficient accuracy, by

lumped-parameter conduction models. Lumped parameter models are developed by

the integral method or vclume-averaging technique. Their application to dif-

fusion problems has been reviewed by Goodman (1964).

Two distinct lumped parameter models are require o describe two dif-

ferent phases of transient, one-dimensional conductiva. The first phase is

the early time span during which a thermal boundary layer advances from the

i thermally perturbed boundary toward the interior of the solid. This phase
J

ends when the advancing boundary layer meets an unperturbed boundary surface
,

or a second thermal boundary layer. During this phase, the material thickness

is greater than the thermal boundary layer thickness; the conducting system is

then called thermally thick. The analysis of the rmally thick systems is im-

portant for fast thermal transients, including periodic heating and cooling

processes, whose characteristic time is less than, or of the order of, s*/a,

where s is the characteristic dimension of the systen (half-thickness for

plane-parallel slab, radius for cylinder and sphere, etc.), and a is its
i

thermal di f fusivity*.

This report deals wi h the second phase of transient conduction, namely,

,

with transients, the characteristic times of which are significantly greater

2than s /a. The analysis presented here is relevant to the investigation of OP-

erational transients and of stall-break Loss of Coolant Accidents in nuclear
4

!

* Symbols are defined in ' the Nomenclature.

|
'

f i

I I

|
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reactor systems, that is, co t*ansients which'are currently predicted in "non-

- LOCA" codes such as TWIGL, RAMONA III and IRT. These transients are charac-

terized by one-dimensional conduction in most solid structures. The one--

dimensional ~ temperature profiles have only monotic variations of curvature.
~

An unknown thermal boundary layer thickness does not appear in the analysis.

I Axial conduction, parallel to the directioa of the coolant flow, is not in-

portant.

The lumped-parameter models presented here are derived by volume aver-

aging the heat conduction equation. The models satisfy therefore the thermal,

i energy balance on the average over the volume of averaging. Local details of

the temperature fields are estimated from postulated temperature profiles,

which are consistent with the boundary conditions and the mean temperatures as

computed ' f rom the time-integrals of the averaged conduction equations.
,

The computing efficiency of the lumped parameter models stems from the

fact that the partial differential equations of lateral heat conduction in r,T |
|

coordinates are replaced by a single ordinary dif ferential equation in T for |

|

every component with significant storage of thermal energy (one for each axial

node with coordintee z, if needed). There is one equation for steam generator j

tubes, pipe walls, support rods, vessel walls, reflectors and shields, and two
|

equations for fuel elements .(pellet and clad). Surface temperatures and in-
,

I

ternal temperatures are computed from explicit algebraic expressions in *.erms

of mean structural and coolant temperatures. Computing speed is achieved by

using efficient algorithms for the integration of ordinary dif ferential equa-

tions..

|

* The analysis of quenching during reflood, following a large-break LOCA, in-
volves both phases (Ishit 1975, Wulff and Jones 1978).

i
!

I

_2_ 1
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The computing accuracy of the lumped-parameter models may be estimated to

be approximately equal-to that achieved by finite differenes schemes with

' three internal nodes for each structural component (at each axial node, if

needed). The actual accuracy may be greater, but it should be assessed for

each type of transient by comparing selected lumpea-parameter results with an-

alytical or accurate finite difference solutions.
,

The application of lumped-parameter models, as derived by integral

methods, is absolutely indispensable in the development of fast-running com-

puter codes.

The lumped-parameter models are developed below in four steps for four

1'
different relevant geometries. First is presented the model for the hollow

cylir. der (tube). The result is first specialized for the solid cylinder (solid

rods), and then for the planc-parallel slab (to approximate vessel walls with

sme.11 curvatures) . After that is developed the model for the composite con-

centric cylind.er (fuel element). Finally, the results are summarized for easy

-reference.

-

!

1

f

f

-

!
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2. MODEL DEVELOPMENTS

i

'

2.1 Hollow Cylinder (Tube)
|

Consider transient one-dimensional heat conduction through a rigid tube,
~

confined between two concentric, right-circular cylinders of radii R, and R, ,

as shown in Figure 1. The governing equations for heat conduction are the

combination of Fourier's law with the energy balance (Eq.1), the initial con-

dition (Eq. 2), and the boundary conditions (Eqs. 3 and 4) below:.

=f + q '" for R < r<R,T>0 (1)pc r

f i
'

|
i T(r,0) = f(r) for R <r<R,T=0 (2) '

1- - 2'

|
!

BT
-kjg- = h,(T -T) at r=R,T>0 (3)g

r= R
I

I = h (T -T) at r=R,T>
dr 2 2 0 2

- 0 (4)-k

r=R
2

The symbols, p, c , k, h, q"*, T, r and T designate, respectively, density, spe .

cific heat and thermal conductivity of the solid tube, convective heat trans- 1

fer coefficient, volumetric heat generation rate inside the tube wall, temper-

ature, radial distance and time. The subscripts 1 and 2 refer to positions R
1

and R . T and T are the inner and outer coolant temperatures, respectively,g o

which are specified from hydraulics calculations.

Define the c.eraging operator < >

R
2

'

rde , (5) l2
<4> A $(r) -

2 2
R -R ;

2 1
R

1

. .-4-
| ,

|

!
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and introduce the simplifications *

___

(i) p(r) c(r) E pc(<T>) A pc
_

~

(ii) k(R ) = k(R ) = k(<T>) -

Ak
1 2

Apply the operator of Eq. 5 to both sides of Eqs. I and 2, use Eqs. 3 and 4 to

eliminate the temperature gradients in the averaged conduction equation, and use

Assumption (i) to obtain the ordinary differential equation

|

d<T> 2 R h (T -T ) - R h (T -To) < q'" > (6)
'

i
|

1 i 1 2 2 2 ,,,

dT E (R -R 2) W2

2 1

subject to

<f(r)> (7)<T> = .

T=0

Equation 6 is exact, except for its limitation by Assumption (1), and can be

integrated, subject to Eq. 7, once the surface temperatures T and.T are known.

| To calculate the surface temperatures T and T , we approximate the temper-
1 2

ature distribution T(r) in R,,R, by a quadratic polynomial which accommodates

| a_11 e,ailable information, as contained in Eqs. 3, 4, and 5:
1

(iii) T((,T) = T (T) + b(T)E + c(T)(2

where
r -R r-R

1 1 (8)(A = .

- R -R s
2 1

The three time-dependent parameters T , b and c are determined from three con-
3

I ditions imposed by Eqs. 3, 4 and 5, respectively:

1

o Simplifying assumptions are labelled by Roman numerals; other equations by
Arabic numerals.

- 6-



+ b + 2c = (NBi}2T (9)(NBi)2 2 9

(NBi}!T - b = (N3 Bi 1 i

*

T, + V b + y,c = <T> (11)
3

are al ulated with the aid of Assump-Here, the Biot Numbers (N and (NBi}iBi o

$hsd,whereh and h are de n ned bytion (ii) as (NBi}I phs/kand(NBi 2 2 3 2i

the instantaneous flow conditions on both sides of the tube wall. The ger, metric

parameters Y and y, are fixed in time and given by3

3R + 2s3

5Y $ 3(2R + s) 3 (12),
i t

1
4 + 3s

31Y b (R
3 i

2 6 2R + s) I *

2
3

The lower ani upper limits in Eqs. 12 and 13 represent plane-parallel and solid

cylindrical geometries, respectively.

The fourth unknown, the outer surface temperature T is obtained frcm the
2

polynomial (iii) with & = 1

T -T +b+c=0 (14)3 2

Equations 9, 10, 11 and 14 are solved for T , T and for a and b. The solu-
i 2

tion is

8 Ti+8 <T) + S T (15)T =
3 33 12 33 o ,

6 T + B <T) + S T (16)T *
21 22 23 ,2

<T) + 6 T (17)8 Tt+6o = ,33 32 33 9

<T) + 8,3 T (18)= Sg3 Tg+6c .42 9

| - 7-
1
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|

|
i

| |

I l

The coefficients S , i= 1, . . . . ,4 ; j=1, . . . . ,3, depend on the time-independent

f geometric parameters Y and Y , and'on the ^*ow and propertf-dependent Biot
i 2

!

j numbers (NBi}1 and (NBi 2* -

: (N (Y -Y) /D (19)(N Y -Y2 Bi 2 3
S =

2ti Bi 1 i

(2+(N IUS =

Bi 2i2

- ,

i3
- Y (N ,!S =

2 Bi 2
.\

!

.

(N Y -Y ~I /D (22)8 =
22 Bi 1 i 2

|
_

, l

: - . i

(8
_

Bi} 1,2 + (N" '

22

| -

-

O 1-Y + ( Bi): N - h_23 Bi 2 2 1

|
t

6 = -(N + ( Bi 2 ( -Y) /D (25)33 Bi 1 2

8 = (N /D (26)22 Bi A Bi 2

3 3 2 Bi 1 ( Bi 2/D (2D= -Y (N

8, 3 = (NBi}1 l + ( Bi 2 ( -Y /D (28)
3

_

42 Bi 1 Bi}1 (N ( Bi 2,/D (208 (N +=-
Ni 2

8,,, = (N 1+Y (N ( 0)
Bi 2 3 Bi 2

i

where D = 2 + (N - Y ) + (Ngg)3 (2y1 -Y)+Bi 2 2 2

(Ng) 3 (N (Y -Y). (31)Bi 2 3 2

Notice that the evaluation of Eqs. 17, 18 and 25 through 30 is not required for the

integration of Eq. 6, but only for the calculation of the temperature profile ac- |

cording to (iii) .

-8-



Equations 15 through 31 are generally valid for all values of Biot numbers

(N * One might expect significant simplifications from special-
Bi 1 Bi 2

izing Eqs. 19 thtOngh 31 for the cases of small Biot numbers.

The Biot numbers (N # ar sma respectMy, een the WM,

Bi 1 Bi 2

resistance to heat transfer in the coolaat boundary lay 2r inside or outside the

tube overwhelms the *hermal resistance in the tube wall. One speaks of Newtonian

heating or cooling if both Biot numbers are small compared to unity. Newtonian

are charactedzd by smanhec. lag and cooling, (NBi)1 and (NBi)2 ,

temperature differences in the solid and large temperature differences in the

coolant boundary layers.

After introducing either (N r ese con ~
' ,

Bi 1 Bi 2

ditiens into Eqs. 19 through 30, one realizes that no significant simplifications

are poss ble in general, because

(a) first-order terms of small Biot numbers must be retained to maintain

thermal coupling between fluid (s) and solid and to achieve a steady-

state for time-invariant fluid temperatures T and T and for time-
1 g

invariant heat genera tion <q"' >.

(b) steady-state can be achieved under isothermal conditions, T =<T>=T,,1

only if

1 for i = 1,?.

O ~

ij
j 0 for i = 3,4 .

It will be shown in Sect. ion 2.2, however, that for the simpler geometry of

a solid cylinder, one can achieve simplifications in Eqs. 19 through 30 without

violating the constra*.ts (a) and (b) above.

In summary, after evaluating Eqs. 19 through 24 and 31 for the coefficients

in Eqs. 15 and 16, one can compute explicitly the surface temperatures T and Tg

-9-
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i

1

as functions only of the mean temperature <T), the inner coolant temperature T ,
1

and the outer coolant temperatr.re T . With the known surface temperatures T
g 3

and T , one can then integrate Eq. 6 explicitly to obtain future values of the
2

mean temperature <T>. For implicit numerical integration of Eq. 6, the set of

| Eqs. 15, 16, 19 through 24 and 31, together with the finite-difference form of

|
| Eq. 6, become part of the non-linear equation set that describe the channel hy-

|

[ draulics and must be solved iteratively for each time step. In either case, a

single ordinary differential equation is integrated to solve the transient con-

. duction problem.

It might be proposed to increase the computing accuracy by extending this

m- sd for a model with two or more regions. This is possible in principle;

however, each additional region introduces an additional ordinary differential
,

| equation for the region mean temperature and three additional unknowns which de-

|
fine the quadratic temperature distribution in the added region. Each one of

1

|
the three unknowns, in turn, requires three coefficients S because the unknowns I

g
depend on the three principal temperatures T , <T> and T,. Thus, the number of

1

coef ficients rises from six to fif teen and the computing ef fort more than doubles.

As a s.onsequence, the extendem. model might be a poor contender in the competition

with well established collocation methods (Chawla, 1975) which also achieve the

increased computing accuracy.

1

2.2 Solid Cylinder
! .

I \

| The results obtained in Section 2.1 for the hollow cylinder can be special- 1

I l
i ized for the solid cylinder. For this purpose set
1

R =0 (32)
3

= R, (33)s
i

h = (Ngg), = 0 (34)
3

i
i

- 10 -



in Eqs. 5, 6, 8, 12, 13, and 19 through 31. Equations 32 and 33 are self-evident,

while Eq. 34 implies the appropriate boundary condition 3T/Br = 0 at r=0 for a

solid cylinder with radial conduction. As expected, Eqs. 32 through 34 yield,

after substitution into

Eq. 12: Y, = 2/3

1/2Eq. 13: Y2
=

6 =B =6 -S =0 (36)6Eqs. 19, 22, 25 i 28: 8 ==
11 21 31 32 33 41

2 + (N !Eq. 31: D = 'Bi 2

4 + 2 (N
Bi 2

'

Eq. 20: S =

4 + (NBi 2
,(38)

( Bi 2Eq. 21: 8,, =

4 + (NBi)2 '

4 '

Eq. 23: S =

4 + (NBi 2
,(39)

Eq. 24: 6 -S=

23 13
.

Eq. 29: 8 28=

42 13
(40)

Eq. '0: 8 -S=

43 42

With these results, one finds for the centerline temperature

. -

4 + 2 (NBi}2~ <T> - (Ngg)2 T
cy o

(41)T
~

,= -

1 4 + (NBi 2

for the surface temperature

4 <T> + (Ny Bi 2 (42)T = ,

2 4 + (NBi 2

- 11 -



and for the temperature distribut; ion, with & = r/R ,

Bi 2 ~ ( 31 24 + 2(N (l ~ } <
o (43)T(r,T) = -

cy
*

4 + (NBi 2 I

l

The time-dependent coolant temperature, T , is specified from hydraulics calcula-g

tions, while the transient mean rod temperature <T> is defined from Eq. 6 by
cy

<q"' >c y
-

4(NBi)2
d<T)

2kCY - (44)
#Y)(T - <T)

5 +5R
.

dT 2 4 + (NBi 2
2

and by Eq. 7.

Equations 41 through 44 can be furcher p' fied for the cases of Newtonian, . .

heating and cooling, which is discussed in Sectiou 2.1. If one ignores second-

order terms of (NBi)2 << 1 in Eqs. 41, 42, 43 and 44, then one obtains

- , )
T = <T> + (NBi)2/4 <T> - T

i cy cy o
_

T = <T) - (NBi)2/4 <T) -T
2 cy cy o

}
~

)(45)
2

T(r,T) = <T) + (NBi)2/4 <T> -T (1 - 2C )cy , cy o_

dT -
_

(NBi)2
h -Td<T> 2 cy 2k

pc -pcR - cy o2 - /
2

In summary, Eqs. 7 and 44 govern the transient mean temperature <T)cy, Eqs.

41 and 42 define, respectively, the centerline temperature T and the surface
1

temperature T , while Eq. 43 defines the internal temperature distribution T(r,T)
2

in the solid cylinder with transient radial conduction. The transient conduction

problem is solved by integrating a single, nrfinary differential equation.

- 12 -
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2.3 Plane-Parallel Slab

The results developed in Section 2.1 for a hollow cylinder can als9 be

specialized for a plane-parallel slab, by setting

(46)R +=
1

= s (47)R -R
2 i

in Eqs. 5, 6, 8, 12, 13 and 19 through 31. Eq. 5 reduces to

s

<4>7 = f $(r)dr (48).

o
Equation 6 becomes

d<T)l , -
-

- #4"# s1
a k (N (i ~ + ("Bi 2

-

Bi i o 2
-

Equations 12 and 13 yield, for the slab

Y, = f , Y, = h (50)

Substituting Eq. 50 into Eqs. 19 through 31 gives these results for the coefficients

in Eqs. 15 and 16 for T and T , respectively:
1 2

S = (N + / (51)
Bi i. Bi 2

$ =6 2 + (N /E (52)Bi 2

$ = -2(NBi)2/E (53)
is

3 = -2(NBi)i/E (54)
21

/E (55)B =6 2 + (NBi)222 ,

5 = (NBi}2 ("Bi}t / (56)+

- 13 -



and for the coefficients in Eqs. 17 and 18 which define the temperature profile
i

inside the slab:

- .

= -4 (NBi} t . + ( Bi '

2.

$ 6(N += *
Bi i Bi 2

$,=-2(11Bi)i I 'Bi) 2 *
3

~
- -

~

6,, = 3(N + *
Bi i . Bi 2.

$j=-6 (N +
Bi ( Bi ("B1)2 ( Bi 2 *

i

5,, = 3(N +
Bi Bi2 1

where D = 12 + 4 (NBi}i + ( Bi 2 Bi ("Bi 2+ *

With the inner and outer coolant temperatures T and T computed from the
1

1

the coefficients S ), 1-1,2, and j=1,2,3,coolar'. iydraulics, one evaluates first g

|
from Eqs. 51 through 56, then the slab surface temperatures T and T from Eqs.

,

1 2 i

|

15and16,respectively,andfromtheinitialorpresentmeantemperature<Tg, '

either from Eq. 7 or previous integrations, and finally, one integrates Eq. 49 to

find future values of the mean temperature <Tg. Again, a single ordinary dif-

ferential equation is integrated to solve the one-dimensional transient con-

duction problem for the geometry of a plane-parallel slab.

|

2.4 Fuel Element

Consider transient, axisyrmetric radial conduction through the fuel pellet,

gas gap and concentric clad as shown in Figure 2. The fuel pellet (subscript f)

has the radius R , the volumetric heat capacity (pc)g, the thermal conductivity

k , and the volumetric heat generation rate q"' (fission or decay heat). The gasg

!
- 14 -
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FIGURE 2. Geometry for Fuel Element

,

|
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!
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in the gas gap (subscript g) between the fuel pellet and the inner clad surface

with radius R =R + 6 is taken to have negligible thermal storage capacity
2 1

and no heat absorption, i.e.,

(iv) (pc)g = 0 ,

(v) q"'g = 0

There is no limitation on the relative gap thickness 6/R , except that the gas
1

is stagnant and has a thermal conductivity k to characterize the heat transfer

through the gas. The clad (subscript c) has the inner radius R and the outer

radius R =R + s, the heat capacity (pc) , the thernal conductivity k , andc

the heat generatio i rate q"' (absorption of gamma radiation and water reaction).

The clad is convectively cooled by the fluid with coolant temperature T .

The transient radial conduction is governed in the fuel pellet by

BT f BTf)
+ q"'g

r 1
,

(pc)f 37 a-g1 01r<R (64)rk 1 ,g g
\ / .

l

T (r,0) = f (r) 0iriR (65),g f

BT
f
=0 at r = 0 (66),3r

l

BT BT
k =k at r=R (67),gg

T (R ) = T (R ) A T at r = R (63),

f I g 1 - 1 1

the nas g by Eqs. 67 and 68 and bya

11 {rk
3T \

I -E l= 0 R <r<R (69),

r 3r 3r i 2(g j
l

BT BT

k d =k at r = R (70),g 3r c 3r 2

- 16 -



T (E ) = T (R )-A T at r = R (71),

g. 2 C 2 ~~ 2 2'

1

; ' and in the clad by Eqs. 70 and 71' and by

BT / BT )'

*
I rk + q"' ..R <r<R, (72)_ (pc)c BT =

g cg

T (r,0) = f (r) ,R <r<R (73)
C C 2 ~~ ~ 3

4

BT
"

-k = h(T -T) , at r = R (74)*

c Br 3 o :

.
and T A T (R ). (75)

1 3- c 3
.

The conditions of temperature continuity at the radii r=R . and R,, namely,

Eqs. 68 and 71, are used here to develop the lunped-parameter conduction model for

the fuel element. Alternate conditions can be accommodated with the same method.

Integrating Eq. 69 and using Eqs. 68 and 71 as boundary conditions, one ob-

tains for the fpas fpap,:
,

|

. In(r/R )
T (r,T) = T,(T) - T,(T) - T (T)* In(R/RIE

-2 -1*

= T - (T -T ) (r-R ) / 6 for 6 << R
1 1 2 1 1

and
BT T -Tj

( }~
4' Br In(R /R ) 1 2

*

2 1

Combine Assumptions . (i) and (ii), namely that .the ' properties (pc)g = (5)g

and k Ek depend only on the mean temperature <T >g, with Eq. 64, apply theg g g

averaging operator of Eq. 5 with the inner radius equal to zero and the outer,

radius equal to R , use as boundary conditions Eqs. 66 and 67, and evaluate the
'

i.

'l

1

- 17 -
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latter with the aid of Eq. 77. The result is this ordinary, first-order differ-

ential equation for the mean f,uel, pellet temperature <T >f:g

2E
d<T >f T -T <q"'f >fg g

i 2 (78)
R 2 g) in(R /P.) +

=
*dT g

Employ Assumptions (1) and (ii) for the clad, i.e. , (pc) ? (E)c and

k E I , use the averaging operator of Eq. 5 with the innar radius set equal to
c c

and the outer radius equal to R,, use the boundary conditions of Eqs. 70 andR

74, nd evaluate the former with Eq. 77. The result is this ordinary first-order

i

differential equation for the mean clad temperature <T > *c

|

d<T > 2R h(T -T ) + 2E /In(R /R )(T -T )cc,, 3 3 o R 2 1 2

dT
(5)Cs (R +R )2 3

|
'

|
I< q "'c> c

(79)+

(E)c
|

|
|

| The two ordinary differential equations, Eqs. 78 and 79, can be integrated,
|

subj ect to the initial conditions from Eqs. 65 and 73, namely,!

!
! <f > (80)<T >f = <f >f and <T > =

f f cc cc

! as soon as the interfacial temperatures T , T and T are known. In order to com-
1 2 3

pute these surface tem eratures, we apply Assumption (iii) of Section 2.1 to the |

fuel and to the clad, and thus finr1 these polynomials for T and T :g

g + b (r/R ) + cf(r/R )2 (gy)T (r,T) = a
ff

i
!

2T (r,T) = a + b (r-R )/s + c (r-R )/s (82)
C C c 2 C

, 2
,

where the coefficients a , b and c , i = f,c, are functions of time, through
f y f

! their dependence on <T >g, <T > and T .
f cc g

- 18 -



The three unknown surface temperatures T , T and T , and the six unknown
1 2 3

coefficients a , b , c , a , b and c , are specified by the two conditions that
f f f c

Eqs. 81 and 82 must satisfy the appropriate forms of the averaging operator in

Eq. 5 and by the seven boundary conditions as given by Eqs. 66, 67, 68, 70, 71,

74 and 75.

Substituting Eqs.,66, 67 and 68 into Eq. 81 gives

0, (8,',)b =
g

T -T + (2A y )c 0, t ')=

1 2 f 3 f

0, (85)-T +a f+cf
=

where the fixed geonctric paraneter

Y A in(R /R )
3- 2 1

(86)

= 6/P for 6/R << 1
1 1

and the property ratio A A E /E (87).g f

Applying the averaging operator of Fq. 5, with inner radius equal to zero and

outer radius equal to R , to both sides of Eq. 81 yields

2a f+cf = 2<T >f . (88)g

Substitute Eq. 70, evaluated with Eq. 77, into Eq. 82. The result is

+ (Ac g)bT - '" 0, (89)Y =

c1 2

where the geonetric parameter y 4 -A n /s In(R /R )2 2 1

Y R /s (90)*

3 2

and the property ratio A A E /E (91).

- 19 -



:

Substitute Eqs. 71, 74 and 75 into Eq. 82 to obtain

T -a =0, (92)
2 e

N T +b + 2e = ?!g Bi o '

and T, - a - b ~ "c ~ *

c e

where IT A * c '' """ "# * * *

Bi

Finally, apply the averaging operator of Eq. 5, with inner radius equal to

R and outer radius equal to E , to both sides of Eq. 82. The result is analogous

to Eq. 11, namely,

c (95)a +yb + )c c = <T > ,c se cc

where
3n +2s

and (96)A (2. +s)Y 33
2

4R +3s
Y, A (2k +s) ( )6

2

Equations 83 through 85, 88, 89, anc' 92 through 95 are nine linear equations in

the nine unknowns T , T , T,, a , b , c , a ,b and e . For simplicity, introduce
f f f

first these six parameters:

0 A 4A Y (98)f,+1 ,

3

C2 -~ Y - 2y (99)A ,

6 5

0 A 2A y , (100)
3- C g

0, A 0,(2+17Bf)/2 (101),

C, A 02,-D,)y, and (102),

D A_ 0 0 (0,, - Ds) + (1 - 0 )(C C* + O ) > 0 (103)3 3 3 2 s .

- 20 -
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. .
,

.

)
! The fuel pellet surface temperature T is then given by.

3

= E <T >f + 3,<T > + 3 T, ,- (104) l'

T
3 f cc 33

i
--6 f( (0 ~~ 1) 0*IO - 0 ) - O IO3+ I) /D

'o
- -

_.

(105)where '
,

3 t
, .

s 2 s

li, A 0 0,/6 , and
'

(106)-- 3

lis J1 - 0 0 /b - (107)3 s m.
.

*-
.

The inner clad surface tenperature'T is given by
2

3

'

<T >f -T =a (108)T, = <T >f - Q, ,
f f 3

while the outer clad surface temperaturc T is computed from
3

(0, - 0 )T -T + (0 + 1)T /0 (109)T =
3 3 3 2 49

The temperature profile in the fuel pellet is specified by Eq. 81 with the

. three coefficients a , b and c given from Eqs. 83, 84 and 85. With the fuel
f y f

e

! pellet mean and surface temperatures known, one finds for the fuel pellet center

line temperature a
f.

.

f -= 2<T >f -T (110)a
f 3

i.

! and for the remaining two coefficients
:
1

b =0 and (83).

f
,! - -

*

| c = -2 <T >f -T '(111).*

f f 1

i
,

:

The temperature profile in the'cl'ad is given by Eq. 82, with a defined by
.

| Eq. 108, and'with-

} b.=NBi( 3~ o} ~ (2~ 3) (112),c
|-

| +( ~T ) (113)c " ~ Bi s' o 2's
c .

i

i
'

21 --

,

. . .

-
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|

|

|

l

The temperature distribution in the gas gap is given by Eq. 76 in terms

of the interface temperatures T and T, in Eqs. 104 and 108. This completes the1

description of the transient temperature field in the fuel element.

In summary, two ordinary differential equations, Eqs. 78 and 79, subject

to the initial conditions in Eq. 80, must be integrated with respect to time to

obtain the two principal variables for the temperature in fuel pellet and clad,
;

namely, the mean temperatures <T >f and <T > . The third principal variable ing cc

the conduction analysis is the coolant temperature T and is computed from theg

coolant hydraulics. The two ordinary differential equations contain the inter-

facial temperatures T , T and T , which are explicitly computed from the prin-
i 2 3

cipal variables <T >g,<*"c>c and T,, wM. the aM of Eqs. W , 108 and W and
g

in terms of six parameters 0 , ... 0 and D. These parameters depend on geom-
3 3

etry, properties and flow conditions, and are defined in Eqs. 98 through 103,

and define in turn the coefficients 3 , 3 and 3 for the calculation of T .
3 2 3 g

! It should be emphasized that Eqs. 81 and 82 are approximations to the exact
|

temperature profiles. However, they encompass all the information contained in

the boundary conditions, Fqs. 83 through 85, 89, and 92 through 94, and in the
|

| definition of averaging, Eqs. 88 and 95. These conditions apply universally

during all transients and during steady state.

The accuracy of the quadratic profile in Eq. 81 can be assessed with the

| aid of Ucisler (Jakob 195F) charts for special transients with sudden change in

environmental temperature and without power generation. The Ucisler charts apply

2only to tines T > c /a, as does the model presented here. Figure 3 shows a com-

| parison between tl'c exact and the lunped-parareter profiles, both having the same
!

Biot number hF /IE = 20, the same mean' temperature <T >g, and the same environ-|
3 g g

mental temperature T . The curves depict the normalized temperature (T-T )/
; 2 2

(<T >g-T ) versus the normalized radius (r/P.g). The comparison holds for allf 3

.

- 22 -
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FIGURE 3. Comparison of Temperature Profile from Heisler Charts
(Curve a) with Lumped-Parameter Approximation (Curve b)

|
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2times T > 2s /a. The selected Biot number is close to the typical Biot number

of 24.6 which represents R = 6.5 mm, k = 3 Wm C (UO at 1000 C), andt 2

-I-2 ~I = 2,000 Btu hr ft F~ The agreement deteriorates for
~

h = 11,356 Wm C .

higher Biot numbers and improves for lower. Biot numbers, but is better than in

Figure 3 for typical initial conditions.

The quadratic profile in Eq. 81 is exact for steady state, constant thermal

conductivity and uniform power generatia . The power generation in fuel pellets

is known to be uniform when the fuel is fresh but to concentrate at the pellet

periphery after some burnup. In order to account for the non-uniform power dis-

tribution, one sets

q' ' (&) = n+ 1) #9f f( }j

with typical values of m = 0.5, n = 2, and extreme limits of 0 < m < 3, and
_

2<n<4. Fresh fuel is represented by m=0. Figures 4 and 5 show comparisons |

between exact si ady-state profiles and lumped-parameter approximations. The l

curves are drawn for the same Biot number N = r e same mean fuel. ,
Bi

j temperature <T >g, the same mean heat generatior rate <q"*g>f, and the same en-
f

vironmental temperature T . Figure 4 shows_the exact curves for the typical
3

) exponent n=2, and the distribution parameter m=0, 0.5, 1, 2 and 3, while Figure 5
t

i shows the same curves for the larger exponent n=4 It is clear that the quad-
j

f ratic profilc ~is sufficiently accurate for typical distribution parameters

0 < m < 0.5. It overpredicts the centerline temperature by at most 12%, typic-
i
j ally by 4%, and it underpredicts. the surface temperature by at most 15%, typic-

ally by 2%, all relative to the excess above the environmental temperature T -2

It may also be interesting to note that the mean temperature does not appear

; at the midpoint, ( = 0.5, but near E = 1/,T oc 0.707. The midpoint assumption is
~

1

of ten used in- finite differencing schemes with linear radial coordinates. It

applies.in cylindrical coordinates only to the quadratic coo'rdinate (2
T

- 24 -,
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0 0.5 i
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SOLUTION 2 \ SOLUTIONm=
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~~

>n >n
i

.

A. A

G f
1 1.0 - - 11.0 - -

' "
u

7 J- :
i

~

U s' 3
n'2 n=4~

m=O
,

|

1

'0
'O O.5 1.0 0 0.5 6.0
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FIGURE 4. Temperature Profiles for Non- FIGUPI 5. Temperature Profiles for Non-
uniform Power Generation, Compared with uniforn Power Generation, Compared with
Lumped-Parameter Approximation, n = 2 Lumped-Parameter Approximation, n = 4
(See Eq. 114) (See Eq. 114)
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3. SlHMARY OF RESULTS

. Tables 1 through 4 are a summary of the expressions for computing transient,

one-dimensional lateral conduction'in sold cylinders, plane-parallel slabs,

tubes and nuclear reactor fuel elements consisting of fuel pellet, gas gap and

clad.

Included in the tables are also expressions for initial conditions for the
,

special case that the initial state is steady. The initial steady state condi-

tions were derived by setting the time derivatives in the governing equation (s) '

equal to zero. This method guarantees an initial steady state which is con-

sistent with all the implied hypotheses (i) through (iii). The expressions for

the initial values are explicit in the mean temperatures and can be evaluated

explicitly from given geometry, thermophysical properties, flow conditions and

heating power levels, only if the latter three are temperature independent. In

general, the expressions must be evaluated iteratively.

The tables are organized to give first the governing equations, that is,

the ordinary differential equations for the principal variables of the temper-

sture fields in the solid. Then follow the appropriate initial steady-state

'

conditions and the important temperatures at the center line (where applicable)

and at the surfcces. Next are given the temperature distributions, and finally

the definitions for all the coefficients appearing in the preceding expressions.
f
! All but the expressions for the initial conditions are explicit in the principal
I
|- variables (mean temperature in solid and fluid temperatures), geometric param-

eters and heat generatian' rate.

|
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a

b

TABLF 1. Solid fylinder
i

s = R , (F3g) = hs/I, a = E/(Tc"), ( = r/s
1

-l

i
d<T) g (NBi}r( o cy} '9 'cy |~<

Coverning Piffer-
ential Equation dr *7 4 + (riBi): N

4

1
* '

: <q"*(o)> s (NBf a + 4Initial Condition cy

CY(r)>
=T +Ta0 <T> =<f

CY * BE (?;31),4 CY
evaluated for steady

state

,

. - '

5 Temperature
4 + ?(1:Bf)r_ <T> _ (rEi) 2T

o
, .

cy
7

at center line 4 + (n y
Ei 2

f, = 0

!
9

4<T> + (17 iTcy Bi* 2 o.

at surface ' , " 4 + (;; y
2C=1 t

!
J

t

8> - (iip g),(1-26 )T,1 4 + 2(Egi),'(I-6 )
distr bution cy

,

~ ~ Bi 2

!

o,' o .

d> A @ut
,

t,2o

- 27 -
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4

1

t

TABLE 2 (Cont'd)
,

Plane-Parallel Slab

Coef ficients

S = (N Bi) *"~

Bi Bi 2 2:

* +
S =6 2 + (NBi 2 22 Bi 2

(Bi}2f*(Bii! 06,, = -2(NBi 2 23
*

!

D = I2 + 4 (II +
Bi Bi 2, Bi i Bi 2

b=6 Ti+6 <T> i.+ 6 Tsi s2 s ss o

.

c=$ Ti+6 <T)si + 6 T*: 62 ns o
1

" + !S,, = -4(Ngg), 3 + (N ! ( Bi : B1 2Bi 2 .
6:

* + !S,, = 6(Ngg) 2 + (N ( Bi : Bi Bi 2 Bi 2Bi 2 62

e,, = 3(N,1,;2 + (>:,,3,; a; e,, = -2 (N,1> , (N,1 ,s 33

i

!
+

- 29 -
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TABLE 3. Tube

s = R -n ; (l'Bi)j h s/k; j = 1,0; a - k/(pc); ( = (r-R )/s;=

2 i j 1

. - - -

Y, = (3R +2s)/ 3(2R +s) ; Y, = (4R +3s)/ 6(2R +s) ; R, = (R +F )/2
_

~n P < . . . >
Coverning Differ- dcT> a 1

(NBi)t (T -T ) + l (t1
~

-
,P, Bi 2 o 2g i2 Pential 1quation di s (pc),n

I
F - ,

. . . 2 R -
,Initial Steady-State

at T=0 m
.(8,,-1)T +S ,T,_ - [ (fbi} 2 , i+( :s-[(!!g),Condition, <T> =

3 g t 22 o
m

i

Bi 1 12 Bi 2 22
m m

Temperature

at inner surface E Ti+8 <T) +S TT =

12 13 0r= R , (= 0 1 11
1

at out-er surface 8 T1+6 <T> + 6 7T =

22 23 0r=R , (=1 2 21
2

distribution T(C,T) = T + b( + c(*
O<(<1
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TABLE 3 (Cont'd)
Tube

Coefficients ,

.
- .

(N Y~ Bi)1-2Y -Y -l /DS =

11 Bi 1, I . 'I 2 Bi 2, 21 1 2 .
,

4

- , .

12 ,
Bi}2,

,

("Bi 1,
~ +2 + (NS =

22

B,, = -Y,(N3i) 2! -Y,) MBi*

2s B1 2, 2 3

,

i-

n = 2 + (1-y,)(x31), + (2y,7y,)(NBi) , + (Y,-Y,) dBi): Bi 2 ;

i

b=6 Ti+8 <T) + 8 T
si s2 ss o

, c=8 T1+6 <T> + 8 7
42 4: O8 41

i

* p

!
) " ~

, .

-

Bi ( Bi 2+( Bi 2,
!! *- +"

32 Bi 1, B i 2_ .2 Bi i

i

8,,,= -Y,(BB1)3 (N3g)2! ~ ("Bi 2 1+Y,(M4 Bi 3,;

,

f

!

1

!

!

: - 31 -
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TABLE 4 Fuel Flemtnt
.

(n +R )/2; NFuel pellet.(f): E: Cas Cap (g): 6 = R -R ; Clad (c): s = R -R ; E ==

1 2. I s 2 m 2 s Bi y.
c

4

d<T >g < q"'f > g '2( T -T,g
f

I f
Governing Differ-
ential Equations

5d<T * #9 g "
R,c'c +

- ece
2- NBi(T -T )

(15c)e R s(TE)c In(R /R ) + R,
=

o 3dT a
m

!

_

|

w

<T >f (V, ti, ,-V,U , ,) / (U , ,U, ,-U, ,U, , )N =
g ,

I,

'

i

U23)(V Unt-Y U21)/IUtit'2 2-Ut2<T > =
2 t

Initial Steady- _

-8_ /D U (1+0 )Q -1 _8 /0(1+0 ) 1+Q (8 -1) =
State Conditions U =

11 3 I .
I 4 32 3 1 . 2 4

,

(T = 0) _

l' (1-0 )$_(1-C )(8 -1) =U =

21 1 1 22 1 2

I

s/R,
~

2,q..(o)>g R,s<q"'(o)> + 0, Y, (1+0,)D,-1- TR g e '
+V =

1 i N 2I Y - 'Bi - cc

R,2<q .(o)>f gu
2 _g;

In R, - S (1-n )TV .
2 3 3 oZE

8
|

;

i
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TABLE 4 (Cont'd)
Fuel Element

Temperature

at pellet surface T = S <T >f + S <T > +STa f 2 ec 3 0
r=R

= 2<T >g - Tat pellet center a gf
r=0

- -

-Tat inner clad surface T = <T >f -O <T >ff 1.f2 -

r=F

.

,

.(G -Q )T -T + (0 +1)T /0at outer clad surface T =
3

,
4' 3 0 1 3 2 4

Temperature Distribution
g + c (r/R )2in fuel pellet T =a g Ig

0 _< r _< R
3

. ,

2

in clad T = T +b (r-P )/s+c (r-R )/s
2 2 c. 2

R <r<R
2~ ~ 3

T = T -(T -T ) In(r/R )/ln(R /R )in gas gap
I I * * * I

R <r<R
1~ ~ 2

|

|

|
,

1

- 33 -
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TABLE 4 (Cont'd) ;

Fuel Flament

, = y,E,/sCoef ficients i = k /k ; A = k /k ; y, = In ; y
f g g

. - - -

(4R +3s)/ 6(2P.+s)
,

! .y = (3n +2s)/ 3(2R +s) ;y =

' 5 2 2 ,
6 2 , 2

,,

G = 4A y + 1- O = C (2 + ?!Bi)/2
. i f3 4 3

|

(0 - O )y0 =y - 2y D =

2 6 5 5 4 3 6'

C, = 2A,y 1,

!

|

|

D = 0 Q (Q - D ) + (1 - 0 )(0 0 +Q)
1 3 4 5 1 2 4 5

1

'
,

B = (n - 1) n(n -0)-n(0 + 1) ,/D
1 1 ,4 3 2 5 3

8 = 0 n /p 6 = - a n /n
3 3 52 3 4

|
!

!

I
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