June 20, 2089

Mr. Edward F. Hawkins
Licensing Branch 1
U. S. Nuclear Regulatory Commission

Cranium Recovery Field office, RIV
P.O. Box 25325

Denver, CO 90225

In accordance h it the requirements in Llecure Condition 22 and 10 cms in
 be submitted to NRC 90 days prior to our desis:ated a a.i....isu. y date of Detobs 1.

As you know, Petrotokics is current?
lamation plan. We have been told the appuiti of ours , la... is Imainen: approval of that plan we will be requited $L 0$ sulall a proposed ecol. ton to the

The current bund 43 specified in Lick iso Condition 23 is $\%: 2,220,513$.
 there Lees any additional disturbances in 1 . . bonded area. Potrotosics proposes to update the surety amount by a fact: of $\$, 05$ the increase in the consumer File Index from Marc!. 1988 to March. 1280). The bonded ament for U NH C area at Petrotomics would increase by $\$ 0 C, 027$ to a tots: of $\$ 2,016,572$. The supporting documentation has not changed for the current siprov. 1 reciamaton plan.

This submittal was discussed with you on June 22, and Mr. Nose ch June 20, 1089.

Please find enclosed a check for $\$ 250.00$ fur the amordaent application foe as required by paragraph 170.31 of Part 170.

Should there be any questions please for free to contact we at (307) 356-4341.

Sincerely,

PETROTOMICS

ESTIMATED COST FOR RECLAMATION

NRC LICENSE SUA-551 CONDITION NO. 23

JANUARY, 1990

PETROTOMICS COMPANY ESTIMATED COST FOR RECLAMATION SUMMARY

1. Facility Decommissioning2. Groundwater Restoration and Well Plugging3. Interim Stabilization of Tailings Duringthe Drying-out Phase4. Tailings Impoundment Area Reclamation$\$ 2,598,534$
2. Radiological Survey and Environmental Monitoring \$ 212,6426. Project Management and Miscellaneous$\$ 1,082,950$
3. Labor and Equipment Overhead, Contractor Profit - 0 -
Subtotal8. Long Term Surveillance and Control Fee
4. Contingencies
A. Engineering \$ 612, 663
B. Contract Administration $\$ 408,442$
Estimated Total Cost $\$ 5,569,275$

PETROTOMICS COMPANY

ESTIMATED COST FOR RECLAMATION

1. Facility Decommissioning

- Salvageable building and equipment decontamination - None.

Petrotomics Mill was decommissioned in 1985. Minor salvage only is anticipated from the remaining office complex. Costs are estimated under non-salvageable buildings below.

- Non-Salvageable building and equipment disposal.

Four one-story sheet metal buildings remain in the office complex. In addition, two small building foundations remain.

	CF	SF	CY		
Office	42,841	4,284	53	concrete	
Accounting	37,639	3,764	47	concrete	
Warehouse	33,472	3,347	41	concrete	
Shop	21,913	1,725		21	concrete
Foundations only-2 each	9,005	112	concrete		
Total	135,865	22,125		274	

Demolish \& bury buildings.
Unit cost (Appendix. Section B.1) - $\$ 0.082 / \mathrm{CF}$

$$
135,865 \mathrm{CF} \times \$ 0.082 / \mathrm{CF}=\quad \$ 11,141
$$

Light building foundation demolition.
Unit cost (Appendix. Section B.1) - $\$ 0.052 / \mathrm{SF}$

$$
22,125 \mathrm{SF} \times \$ 0.052 / \mathrm{SF}=\quad \$ 1,151
$$

Removal of electrical power distribution system.
Unit cost (Appendix. Section B.1) - $\$ 0.85 /$ LF

$$
21,600 \mathrm{LF} \times \$ 0,85 / \mathrm{LF}=\$ 18,360
$$

Subtotal Non-salvageable buildings/equipment
$\$ 30,652$

- Restoration of contaminated areas.

Reclamation of the ore storage pad was completed in 1988 , Clean cuver was placed on the process area in 1985. Removal of contaminated soil, topsoil placement and revegetation of 27.5 acres located north of the process area was completed in 1988. An additional 12.5 acres was cleaned up in 1986.

Remaining cover material, contouring, topsoil and revegetation for the process area and office complex area are included under Item 4. - Tailings Impoundment Area Reclamation. Also included under Item 4 is 143,000 cubic yards estimated excavation and cleanup required outside of the tailings area which will be used in shaping the tailings area. Cleanup of access roads and the East drainage basin cleanup is included in this quantity.

Placement of topsoil and revegetation for remaining cleanup areas is included in Item 4 .

Subtotal Section 1. Pacility Decommissioning \$30,652
2. Ground-water Restoration and Well Plugging

- Method of restoration

The corrective action program is continuing in accordance with License Condition 47C. Three additional wells will be installed in the downgradient area early in 1990.

Pumping is planned for eight wells north of the tailings (seepage, $51-\mathrm{SC}, 54-\mathrm{SC}, \mathrm{PT}-6, \mathrm{PT}-7,58-\mathrm{SC}, 59-\mathrm{SC}$, and $60-\mathrm{SC}$). Wells $55-\mathrm{SC}, \quad 56-\mathrm{SC}$, and $57-\mathrm{SC}$, completed in 1989 encountered little or no saturation and are not pumpable.

It is anticipated that corrective action will be complete about mid - 1992.

The Stage I and II clay-lined evaporation ponds have been completed in the tailings ares and are in operation, as is the enhanced evaporation system.

In addition, tailings dewatering is anticipated to be continued with about 12 wells (8 existing, 4 additional in early 1990).

- Volume of aquifer, pumping cycles, and cycling time.

Full data concerning the upper sand is not currently known. Recent reported data, October 1989, indicates substantially less saturation than previously estimated. There are indications that the fluid may consist of leachate only in the downgradient area of the upper sand. The basis of this corrective action estimate is a plan to continue pumping from tailings and from upper sand until the pumpable water is removed. Four and one-half years (until mid 1992) are estimated for multiple well pumping. The seepage collection system in the upper sand will have been pumped for about 11 years.

It is anticipated, as the annual reviews and interim reports are developed in accordance with License Condition 47D, that modifications to the corrective action plan may be made.

Labor and equipment cost estimate - corrective action
Instell three upper sand wells.
Est, unit cost (Appendix Section B.2) - \$3,780/well
$3 \times \$ 3,780=$
$\$ 11,340$
Install four tailings wells
$\begin{array}{r}\text { Est. unit cost (Appendix B, 2) }-\$ 1,448 / \text { well } \\ 4 \times \$ 1,448=\end{array} \$ 5,792$
Well and enhanced evaporation operation and maintenance
Est, unit cost (Appendix B.2) - $\$ 42,541 / \mathrm{yr}$.
Est remaining time requirement - 2.5 years
2,5 years $\mathrm{X} \$ 42,541 / \mathrm{yr}$,
$\$ 106,353$

Subtotal labor/equipment
$\$ 123,485$

Verification Sample Analysis
It is anticipated that verification sampling and testing would be performed over approximately a six month period in accordance with License Condition 47 A requirements for constituents. A full set of constituents would be analyzed at the beginning, middle and end of the six month period to determine verification.

Twenty five wells - sampied three times
Est, unit cost (Appendix Section B.4) - \$281.04
25 wells $\times 3=75$ samples
75 samples $\mathrm{X} \$ 281.04 /$ sample $=\quad \$ 21,078$

Well Plugging

The anticipated number of wells to be plugged is 51. Depths range from 19 feet to 400 feet. Well casing size ranges from two inch to six inch. Total footage to be plugged is about 5,960 LF .

Est, unit cost (Appendix Section B.2) - \$ 2.53/LF $5960 \mathrm{LF} \times \$ 2.53 / \mathrm{LF}=$
$\$ 15,079$

Estimated total cost - Ground-water restoration completion

Subtotal Section 2. Groundwater Restoration and Well Plugging

$\$ 159,642$
3. Interim Stabilization of Tailings During the Drying-out Phase

The drying of surface water on the tailings was substantially complete in December, 1987. Final interim soil cover placement was completed in 1988.

Operation and maintenance costs for the enhanced evaporation system, and seepage control cost, are included in Item 2 above.
4. Tailings Impoundment Area Reclamation

Estimated costs of work required to complete reclamation of the area are computed below. Estimated unit costs for this work are developed in Appendix Sections A and B.4.

- Shaping, grading, and cover material.

Tailings excavation and shaping.
Est. quantity of $57,000 \mathrm{CY}$ remain. Est, unit cost (Appendix Section B. 4 and Taiole B. $4-1$) $=\quad \$ 0.57 / \mathrm{CY}$ $57,000 \mathrm{CY}$ X $\$ 0.57 / \mathrm{CY}=\$ 32,490$

Outside excavation and clean-up.
Est. quantity of $143,000 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.72 / \mathrm{CY}$ $143,000 \mathrm{CY}$ X $\$ 0.72 / \mathrm{CY}=\$ 102,960$

Borrow to complete shaping.
Est. quantity of $50,000 \mathrm{CY}$
Est, unit cost $=\$ \$ 0.63 / \mathrm{CY}$
$50,000 \mathrm{CY} \mathrm{X} \$ 0.63 / \mathrm{CY}$

Excavate and place clay cover.
106 acres remain to be completed, thickness 61 Cm . obtain cover material from clay stockpile.

Est, quantity of $343,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.77 / \mathrm{CY}$
$343,000 \mathrm{CY} \mathrm{X} \$ 0.77 / \mathrm{CY}=\$ 264,110$

Regrade and recompact surface of clay cover,
145 acres of the clay cover to regrade and recompact, . $5^{\text {' }}$ average thickness.

Est, quantity of $117,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.33 / \mathrm{CY}$ $117,000 \mathrm{CY} \mathrm{X} \$ 0.33 / \mathrm{CY}=\$ 38,610$

Excavate and place silty-sand cover.
145 acres to be covered, thickness 62 Cm . Obtain the cover material from the north channel, southwest channel and southwest borrow area.

Est. quantity of $476,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.88 / \mathrm{CY}$
$476,000 \mathrm{CY} \times \$ 0.88 / \mathrm{CY}=\$ 418,880$

Excavate and place topsoil on tailing area.

```
137.1 acres to be covered, thickness 25 Cm .
Obtain topsoil from topsoil piles \#8 and \#9
directly west of the tailings area.
Est. quantity of \(182,000 \mathrm{CY}\)
Est. unit cost \(=\quad \$ 0.76 / \mathrm{CY}\)
\(182,000 \mathrm{CY}\) X \(\$ 0.76 / \mathrm{CY}=\$ 138,320\)
```

Dam Outslope Shaping.
Cut the existing tailings dam to the designed configuration.

Est. quantity of $532,000 \mathrm{CY}$
Est, unit cost $=\quad \$ 0.47 / \mathrm{CY}$
$532,00 \hat{U}$ ČY X $\$ 0.47 / \mathrm{CY}=\$ 250,040$

East Drainage Basin Shaping.
Fill the bottom to elevation 7085 and shape the slope into the basin. Obtain the material from the clay pile.

Est. quantity of $108,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.60 / \mathrm{CY}$
$108,000 \mathrm{CY}$ X $\$ 0.60 / \mathrm{CY}=\$ 64,800$

Construct the east and west dump channels.

Minor cuts and fills along the face of the dump area for PMF drainage contol.

Est, quantity of $22,000 \mathrm{CY}$ Est, unit cost $=\quad \$ 0.59 / \mathrm{CY}$ $22,000 \mathrm{CY}$ X \$0.59/CY =

Complete shaping of the north channel.
After excavating the material for the silty-sand cover, finish shaping will be required.

Est. quantity of 87.000 CY
Est. unit cost $=\quad \$ 0.68 / \mathrm{CY}$
$87,000 \mathrm{CY} \mathrm{X} \$ 0,68 / \mathrm{CY}$
$=$

Complete shaping of the southwest channel.
After excavating the material for the silty-sand cover, finish shaping will be required.

Est. quantity of $34,000 \mathrm{CY}$ Est, unit cost $=\quad \$ 0.67 / \mathrm{CY}$ $34,000 \mathrm{CY} \mathrm{X} \$ 0.67 / \mathrm{CY}=\$ 22,780$

Remove topsoil from the dam face and below.
Est. quantity of $40,000 \mathrm{CY}$ Est. unit cost $=\quad \$ 0.61 / \mathrm{CY}$ 40,000 CY X $\$ 0.61 / \mathrm{CY}$

Replace topsoil on shaped dam outslope.

$$
\begin{aligned}
& \text { Est. quantity of } 40,000 \mathrm{CY} \\
& \text { Est, unit cost }= \\
& 40,000 \mathrm{CY} \mathrm{X} \$ 0.61 / \mathrm{CY}
\end{aligned}
$$

$$
=\$ 24,400
$$

Remove and replace topsoil in drainage areas.
Est. quantity to be removed $88,000 \mathrm{CY}$
Est, quantity to be replaced $88,000 \mathrm{CY}$
Est. unit cost $=\quad \$ 0.51 / \mathrm{CY}$ $176,000 \mathrm{CY}$ X $\$ 0.51 / \mathrm{CY}=\$ 89,760$

```
Place topsoil on remaining disturbed areas.
    142,6 acres will require 0.5, topsoil from
    topsoil piles $1 and $10.
    Est. quantity of 115,000 CY
    Est, unit cost = $0.97/CY
    115,000 CY X $0.97/CY = $111,550
Millsite clay cover.
    An additional 52 Cm, - (use 21") of clay cover will be
    placed over 4 acre process area. Clay from
    clay stockpile.
    Est. quantity of 11,300 CY
    Est, unit cost = $0.57/CY
    11,300 CY X $0.57/CY = $ 6,441
Office area cover.
    4 acres to be covered with 1.5' of clean
    slay from the clay stockpile.
    Est. quantity of 9,700 CY
    Est. unit cost = $0.57/CY
    9,700 CY X $0.57/CY = $ 5,529
    Subtotal shaping, grading, and cover material $1,698,710
```

- Kevegetation of disturbed areas.

AREAS

Tailings area
Tailings dam, SW channel, and North Channel

Southwest borrow area
East and West dump channels 14.0
$\begin{array}{ll}\text { South dump slope repair } & 39.6\end{array}$
East drainage basin area 38.0
Clay stockpile area 22.2

ITEM	Est. Quantity H CY	Haul Length	PERCENT CRADE	$\begin{aligned} & \text { Cycle } \\ & \text { Time } \\ & \text { Minutes } \end{aligned}$
Tailing Exc. * Shaping	57.00	1,200,00	3.00	3.20
Outside Exc. Clean-up	143.00	2,000,00	2.00	3.90
Borrow to Complete Shaping	50.00	1,840,00	-1.00	3.40
Clay Cover 61 cm.	343.00	2,900.00	-1.00	4.20
Regrade a Recompact Clay Surface	117.00	0.00	0.00	
Silly-sand Cover 62 ca .	476.00	3,800.00	1.00	4.80
Topsoil, Top of Tailings 25 cm .	182.00	2,720,00	1.00	4.40
Das Outslope Shaping	532.00	200.00	-12.00	
East Drainage Basin	108.00	800.00	-5.00	2.75
East 4 West Dump Channels	22.00	1,500.00	1.00	3.20
North Channel	87.00	1,200.00	-1.00	3.10
S. W. Channel	34.00	1,000.00	-1.00	2.65
Remove Topsoil - Dam Pace a Below	40.00	1,100.00	-10.00	2.80
Replace Topsoil - Dae Outslope	40.00	1,100.00	5.00	3.30
Remove a Replace Topsoil Drainage Areas	176.00	600.00	0.00	2.35
Place Tonsoil (8 Disturbed Areas)	115.00	5,000,00	0.00	6.10
M111 site Clay Cover and office Cover	21.00	975.00	-1.00	2.60

MATKD :ARTHWORK COSTS

```
TADLE B.4 - I
```


Millsite and office area
Access roads
Est, total
6.0
437.0 acres

Est. unit cost (Appendix Section B.4) - \$311/acre 437 acres X $\$ 311 /$ acre $=\$ 135,907$

Riprap and rock armor are required as follows:
North and SW Channels and Swale Discharges - 11,100 CY of riprap, 1.9 feet thick, underlain by a 6-inch thick coarse filter, $2,900 \mathrm{CY}$, and a 6 -inch thick fine filter, $2,900 \mathrm{CY}$. The dam outslope and the north swale discharge extensions require a 4.5 -inch layer of rock armor, total $2,900 \mathrm{CY}$, underlain by a 4 -inch thick layer of fine filter material, $2,600 \mathrm{cY}$. The $5: 1$ slope above tailings requires $7,200 \mathrm{CY}$ of rock armor 5,75 -inches thick, underlain by $5,000 \mathrm{CY}$ of fine filter material 4 -inches thick All of these materials will require processing by crushing and/or screening. For purposes of this cost estimate, it is assumed that all of the above materials will be obtained from a quarry approximately fifteen miles East of the site.

Material from this site is currently being tested.
In summary, required quantities are as follows:
Quantity, CY

Riprap	11,100
$5.75^{\prime \prime}$ rock armor	7,200
$4.5^{\prime \prime}$ rock armor	2,900
$6^{\prime \prime}$ coarse filter	2,900
fine filter	10,500
Est. total	$34,600 \mathrm{CY}$

Categories for estimating the cost for these materials are drilling and blasting, crushing and screening, haulage and placement, and royalty.

Drilling and blasting:
34,600 CY product required
Est. unit cost (Appendix Section
B.4) $-\$ 2.54 / \mathrm{CY}$

$$
34,600 \mathrm{CY} \times \$ 2.54 / \mathrm{CY}
$$

Crush and Screen:

Fine filter
Est. $10,500 \mathrm{CY}$ product required Est, unit cost (Appendix Section B.4) $-\$ 9.54 / \mathrm{CY}$

```
10,500 CY X $9.54/CY
\(=\)

Haul and place
All materials estimated at the same rate of production.
Est. 34,600 CY product required
Est, unit cost (Appendix Section
B.4) - \(\$ 7.66 / \mathrm{CY}\)
\(34,600 \mathrm{CY} \mathrm{X} \$ 7.56 / \mathrm{CY}=\$ 265,036\)

Royalty
All materials estimated at the rate of \(\$ 1.50 / \mathrm{CY}\)
\(34,600 \mathrm{CY}\) X \(\$ 1.50=\$ 51,900\)

Subtotal Riprap/rock armor
\(\$ 651,227\)
- Special engineered features

There are no special engineered features which require additional costs.

\section*{Compacted clay and silty-sand cover:}

For these materials, quality assurance testing frequency is as follows:
\begin{tabular}{ll} 
Field density & \(1 / 1000 \mathrm{CY}\) \\
Gradation & \(1 / 5000 \mathrm{CY}\) \\
Atterberg limits & \(1 / 5000 \mathrm{CY}\) \\
Proctors & \(1 / 20,000 \mathrm{CY}\)
\end{tabular}

The material quantities and number of tests by type are:

* Probably nonplastic and will not be needed, but are included in estimate.
```

Assume Approx. Production of
6000 CY/day = 6 field density test/day
Days technician required = 936 test/6 test/day = 156
days
Assume a }10\mathrm{ hour day.
Rates are from a local consultant and are current.
Technician cost \$35/Hr.
156 days X 10 Hr./day X \$35/Hr, = \$54,600
Mileage@\$0.30/mile
156 days X }130\mathrm{ miles X \$0.30/mile= \$ 6,084
Field Density (included in cost
of inspection)
Atterberg Limits @ \$40/test
188 test X \$40/test = \$ 7,520
Gradations @ \$52/test
188 test X $52/test =$ 9,776
Proctors@ \$79/test
48 test X \$79/test = \$ 3,792
Project Engineer@ \$75/Hr.
100 Hr, X \$75/Hr. =\$7,500
Est. total - clay \& silty-sand \$89,272

```

\section*{Riprap, Rock Armor, and filter material}

For these materials, quality assurance testing criteria are as follows:

Rifrap Durability; Initial + Final + test at \(1 / 3 \& 2 / 3\) of total \(Q\)

Rock Armor: Same as for riprap + 1 gradation/1000 CY Coarse Filter: Same as for riprap + 1 gradation/1000 CY Fine Filters: 1 gradation/1000 CY
* Riprap gradation will be done by inspector it the field - no charge other than Technician rate.

Material quantities and the number of test by type are:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM & \begin{tabular}{l}
QUANTITY \\
M CY
\end{tabular} & G'radations & \[
\begin{aligned}
& \mathrm{SP}, \\
& \mathrm{Gr} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ABSORP- } \\
& \text { TION }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SODIUM } \\
& \text { SOUNDNESS }
\end{aligned}
\] & \begin{tabular}{l}
L. A. \\
ABRASION
\end{tabular} \\
\hline 1.9'riprap & 11 & * & 4 & 4 & 4 & 4 \\
\hline 5.75' R.A. & 7 & 7 & 4 & 4 & 4 & 4 \\
\hline 4.5 \({ }^{\prime \prime}\) R. A. & 3 & 3 & 4 & 4 & 4 & 4 \\
\hline 6" C. F, & 3 & 3 & 4 & 4 & 4 & 4 \\
\hline FINE F. & 11 & 11 & - & - & - & - \\
\hline TOTAL & 35 & 24 & 16 & 16 & 16 & 16 \\
\hline
\end{tabular}

Assume Technician required for above materials throughout placement period of 35 days, plus 5 days at production site.

Technician cost \(\$ 35 / \mathrm{Hr}\).
40 days \(\times 10 \mathrm{Hr} . /\) day \(\mathrm{X} \$ 35 / \mathrm{Hr}=\$ 14,000\)
Mileage @ \(\$ 0.30 / \mathrm{mile}\)
40 days X 130 miles X \(\$ 0.30 /\) mile \(=\$ 1,560\)
Gradations @ \(\$ 27 /\) test (coarse
aggrate only)
24 test X \(\$ 27 /\) test \(=\$ 648\)
Sp. Gravity @ \(\$ 30 /\) test
16 test X \(\$ 30 /\) test \(=\$ 480\)
Absorptic? @ \(\$ 30 /\) test
16 test X \$30/test \(=\$ 480\)
Sodium Soundness @ \(\$ 150 /\) test
16 test X \(\$ 150 /\) test \(=\$ 2,400\)
L. A. Abrasion \(\$ 100 /\) test

16 test X \(\$ 100 /\) test \(=\$ 1,600\)
Project Engineer @ \(\$ 75 / \mathrm{Hr}\).
\(30 \mathrm{Hr}, \mathrm{X} \$ 75 / \mathrm{Hr}\). \(=\$ 2.250\)
Est. total-riprap, R. A. F. M. \(\$ 23,418\)
```

Subtotal - Quality assurance program - \$112,690

```

\title{
Subtotal Section 4. Tailings Impoundment Area Reclamation
}
5. Radiological Survey and Environmental Monitoring

A radiological survey consisting of gamma surveys and soil samples was conducted on the areas outside the restricted boundry in 1985. Cleanup of contaminated areas was performed in 1986,87 , and 88. All equipment salvaged from the mill was surveyed prior to being released for unrestricted use in 1985 and 86 . Records are on file at Petrotomics.
- Soil samples for radium-226

It is anticipated that 25 additional soil samples for radium-226 will be collected on areas surrounding the tailings as reclamation proceeds on site.

Est, unit cost (Appendix Section B.5) - \$71.36/sample 25 samples X \(\$ 71.36=\$ 1,784\)
- Decommissioning equipment and building smear samples.

The mill and the associated buildings were decommissioned in 1985.

\section*{Gamma Survey}

Two gamma surveys are planned. The first is to locate any contamination which may have been missed by previous surveys and flag it for cleanup. The second would be done prior to completion of the tailings cover to insure all areas meet the established standards for closure.
```

Est. unit cost (Appendix Section B.5) - \$2,210/survey
2 surveys X \$2,210/survey = \$ 4,420

```

Environmental Monitoring
Environmental monitoring will be conducted in accordance with License Condition Nos. 41 and 47. The monitoring program is subject to change as additional wells are brought on line or wells are abandoned due to construction requirements. Sampling is projected through 1994 when completion of the tailings cover is planned.

The environmental monitoring program consists of air, radon, ground-water, surface water, and direct radiation measurements as prescribed in license Condition 41 and 47 .

Est. cost of Environmental Monitoring \(\$ 206,438\). Individual Item cost and total costs are shown below.
-
Total cost of Radiological Survey \& Environmental Monitoring.
Cost shown represent the cost of the sampling and analysis to be done through 1994 .
```

25 soil samples
Est. unit cost (Appendix B.5) - \$71.36
25 samples X \$71.36/sample = \$ 1,784
2 gamma surveys
Est. unit cost (Appendix B.5) - \$2,210
2 surveys X \$2,210/survey = \$ 4,420
20 air samples
Est. unit cost (Appendix B.5) - \$677
20 samples X \$677/sample = \$ 13,540
4 0 ~ r a d o n ~ s a m p l e s
Est, unit cost (Appendix B.5) - \$70
40 samples X \$70/sample = \$ 2,800
3 7 5 quarterly ground-water samples
Est, unit cost (Appendix B.5) - \$359.92
375 samples X \$359.92 sample = \$134,970
125 annual ground-water samples
Est. unit cost (Appendix B.5) - \$407.92
125 samples X \$407.92/sample=
\$ 50,990
20 surface water samples
Est, unit cost (Appendix B.5) - \$161
20 samples X \$161/sample = \$ 3,220
4 0 ~ d i r e c t ~ r a d i a t i o n ~
Est, unit cost (Appendix B.5) - \$22.95
40 samples X \$22.95/sample = \$ 918
Total cost of Radiological survey,*

* (Includes cost of environmental monitoring)
\$212,642
Subtotal Section 5. Radiological Survey and Environmental Monitoring
$\$ 212,642$

```
6. Project Management and Miscellaneous

Reclamation work is anticipated to be complete by year-end 1994. Project management and miscellaneous cost are therfore estimated for a five year period.

Site representative - one
Est. \(\$ 40 / \mathrm{Hr}, \mathrm{X} 2,000 \mathrm{Hr}, / \mathrm{Yr},=\$ 80,000 / \mathrm{Yr}, \mathrm{X} 5 \mathrm{Yr},=\$ 400,000\)
Transportation - 250 day/Yr. 250 day \(/ \mathrm{Yr}, \mathrm{X} 130 \mathrm{mi}, \mathrm{X} \$ 0.30 / \mathrm{mi}, \mathrm{X} 5 \mathrm{Yr} . \quad=\$ 48,750\)

Clerical - One half time
Est. \(\$ 20 / \mathrm{Hr}, \mathrm{X} 1000 \mathrm{Hr}, / \mathrm{Yr},=\$ 20,000 / \mathrm{Yr}, \mathrm{X} 5 \mathrm{Yr},=\$ 100,000\)

Field Survey - 4 construction seasons
Est. 5 months each or 20 months total
Est. 20 mos. X 20 days/mo. X \(10 \mathrm{Hr}, /\) day \(=4,000 \mathrm{Hr}\).
Est. 2-man crew @ \(\$ 50 / \mathrm{Hr}\). (equipped)
\(4,000 \mathrm{Hr}, \mathrm{X} \$ 50=\$ 200,000\)

Transportation \(-20 \mathrm{mos}, \mathrm{X} 20\) days \(/ \mathrm{mo}=400\) days
400 days \(\mathrm{X} 130 \mathrm{mi} . \mathrm{X} \$ 0,30 / \mathrm{mi}\)

Telephone and Miscellaneous Supplies
Est. \(\$ 500 / \mathrm{mo}\). X 60 mos. \(=\$ 30,000\)

Radiological Safety
Personnel monitoring, Instrument calibration, and bioassay.
Est. \(\$ 4,900 / \mathrm{Yr}, \mathrm{X} 5=\$ 24,500\)

Electrical power
Est. average \(\$ 5,000 / \mathrm{mo}\), to mid 1992 or 30 months, then \(\$ 1,500 / \mathrm{mo}\). through 1994.
\(\$ 5,000 \times 30 \mathrm{mo}\). \(=\$ 150,000\)
\(\$ 1,500 \times 30 \mathrm{mo}\). \(=\) \$ 45,000

Legal and Technical Consulting
Est. \(\$ 10,000 / \mathrm{Yr}, \mathrm{X} 5\) Years \(=\$ 50,000\)

Equipment Mobilization


Crushing \& Screening Spread mobilize in 1994
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Drills \& Compressors & 2 & ( & \$400 & \(=\) & \$ & 800 \\
\hline Grizzly & 1 & © & \$700 & \(=\) & \$ & 700 \\
\hline Crushing Plant & 1 & (e) & \$2,400 & \(=\) & & , 400 \\
\hline D9H Dozer & 1 & C & \$500 & \(=\) & \$ & 500 \\
\hline 988 Loader & 1 & e & \$500 & \(=\) & \$ & 500 \\
\hline Trucks & 7 & @ & \$200 & \(=\) & & , 400 \\
\hline 140G Motor Grader & 1 & © & \$400 & \(=\) & \$ & 400 \\
\hline Truck scale & 1 & @ & \$900 & \(=\) & \$ & 900 \\
\hline 235 Backhoe & 1 & © & \$500 & \(=\) & & 500 \\
\hline Subtotal & & & & & & , 100 \\
\hline
\end{tabular}

Est. total Mobilization

\section*{Subtotal Section 6. Project Management and Miscellaneous}
\(\$ 1,082,950\)
7. Labor and Equipment Overhead, Contractor Profit

The labor and equipment overhead and contractor profit are included in the labor and equipment rates used. Rates are developed in the Appendix.
8. Long Term Surveillance and Control Fee
```

\$250,000 in 1978 dollars
Using the 1982 base CPI,
October 1989 = 125.6
December 1978=67.7
125.6/67.7 = 1.855

```
\(\$ 250,000 \times 1.855=\$ 463,750\)
9. Contingencies
A. Engineering Contingency

Reclamation cost estimate \(\$ 4,084,420\)
\(15 \% \times \$ 4,084,420 \quad \$ 612,663\)
B. Contract Administration Contingency
\(10 \% \times \$ 4,084,420=\)
\$ 408,442

Estimated Total Cost
\(\$ 5,569,275\)

\section*{APPENDIX}

\section*{A. Equipment and Labor Costs}

Equipment proposals for three Petrotomics Company projects, bid in 1988 and 1989, were analyzed to determine estimated equipment rates for completion of the reclamation work. The high bidder for each project was eliminated. Remaining bid rates for like units among twelve proposals were averaged to yield conservative rates. Equipment rates shown include ownership costs, operation, maintenance, supervision, overhead and profit. The rates determined on this basis are:
\begin{tabular}{lr} 
Cat 631 Scraper & \(\frac{\text { Hourly Rate }}{}\) \\
Cat 627 Scraper & \(\$ 124.00\) \\
Cat D9H Dozer/Rip & 107.00 \\
Cat D7G Dozer/Rip & 105.00 \\
Cat 140G Motor Grader & 81.00 \\
Water Truck-4000 gal. & 67.00 \\
Cat 815 Compactor & 40.00 \\
Dump Truck \(10-12 \mathrm{CY}\) & 60.00 \\
\end{tabular}

A similar analysis of labor rate bids results in the following labor rates, which include wages, payroll tax and insurance, transportation, overhead and profit:

\author{
Classification \\ Foreman \\ Operator \\ Truck Driver \\ Laborer
}

Hourly Rate
\(\$ 18.00\)
16.40
14.23
11.88

Rates for equipment units other than shown above are estimated based on the Cost Reference Guide For Construction Equipment, 1982. "Total Hourly Costs" from the guide are increased by \(15 \%\) for contractor overhead and profit, and the appropriate operating labor cost above is added. Comparison of these rates with the current average bid rates shown above for the major equipment (Scrapers, D9H dozer, and trucks) shows that current bid rates are about 10 to 20 percent less than the adjusted Cost Reference Guide rates. The support equipment bid rates approach or exceed the adjusted Cost Reference Guide rates, from slightly less for the compactor to about \(25 \%\) more for the water truck. Since production equipment spreads are heavily weighted with the major equipment, estimated costs on the 1982 Cost Reference Guide basis for equipment for which current bids are not available are believed to yield conservative values. These rates are as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
CRG \\
Total \\
Hr.Cost
\end{tabular} & \begin{tabular}{l}
Contr. \\
\(\mathrm{OH} \& \mathrm{P}\) \\
- \(15 \%\)
\end{tabular} & Operating Labor & Total & \begin{tabular}{l}
Est. \\
Hrly. \\
Rate
\end{tabular} \\
\hline Cat 235 Backhoe & \$84.70 & \$12.71 & \$16.40 & \$113.81 & \$114 \\
\hline Cat 988 Laader & \$102.22 & \$15.33 & \$16.40 & \$133.95 & \$134 \\
\hline Tractor-Hwy & & & & & \\
\hline 80 M GVW & \$25.19 & & & & \\
\hline Trailer- & & & & & \\
\hline Rear dump-21CY & \[
\begin{array}{r}
\$ 9.09 \\
\$ 34.28
\end{array}
\] & \$5.14 & \$14.23 & \$53.65 & 854 \\
\hline Air Trac (12') & \$14.07 & & & & \\
\hline \(21 / 2^{\prime \prime}-4^{\prime \prime} \mathrm{drill}\) & \$ 3.82 & & & & \\
\hline 600 cfm Cmpr. & \$33.13 & & & & \\
\hline Subtotal & \$51.02 & & & & \\
\hline Bits \& Steel- & & & & & \\
\hline Est, \$0.12/ft & & & & & \\
\hline 25'/hour & \$ 3, 00 & & & & \\
\hline Total & \$54.02 & \$8.10 & & \$62.12 & \$63 \\
\hline Crushing Plant & & & & & \\
\hline Cedarapids & & & & & \\
\hline 544 VS-M & \$94.86 & & & & \\
\hline 250 hp motor & \$ 9.24 & & & & \\
\hline Total & \$104.10 & \$15.62 & & \$119.72 & \$120 \\
\hline Portable Screen & Plant & & & & \\
\hline 5'x 10' 3 deck & \$37.64 & & & & \\
\hline Motor - allow & \$ 5.00 & & & & \\
\hline Total & \$42.64 & \$6.40 & & \$49.04 & \$50 \\
\hline Grizzly & \$25.99 & & & & \\
\hline Motor - allow & \$ 5.00 & & & & \\
\hline Total & \$30.99 & \$4.65 & & \$35.64 & \$36 \\
\hline Generator Set - & 200 KW & & & & \\
\hline Cat 3406 DITA & \$30.55 & \$4.58 & & \$35.13 & \$36 \\
\hline Truck Scales & & & & & \\
\hline \(10^{\prime} \mathrm{x} 60^{\prime}\) Tandem & & & & & \\
\hline 60 ton & \$8.20 & \$1.23 & \$11.88 & \$21.31 & \$22 \\
\hline
\end{tabular}
B. Reclamation Crews, Production Rates and Unit Costs
1. Facility Decommissioning

Demolish and bury buildings.
Crew:
1 Cat D9H
Hourly Cost
1 Cat 235 /Backhoe
\(\$ 105.00\)
2 Labcrers \$11.88 each
\(\$ 114.00\)
Small tools - est. 10\% labor cost Total
\(\$ 23.76\)
\$ 2.38
\(\$ 245.14 / \mathrm{Hr}\).
Production rate estimate - 3,000 CF per hour
Est. unit cost \(\$ 245.14 / 3,000 \mathrm{CF} / \mathrm{Hr}=\$ 0.082\) per CF

\section*{Light building foundation demolition.}
\begin{tabular}{ll} 
Demolition crew item 1. & \(\$ 245.14 / \mathrm{Hr}\). \\
Less - Cat 235 Backhoe & \(\frac{\langle 114.00\rangle}{\text { Total }}\) \\
& \(\$ 131.14 / \mathrm{Hr}\).
\end{tabular}

Production rate estimate - \(2,500 \mathrm{SF}\) per Hr .
Est, unit cost \(\$ 131.14 / 2,500 \mathrm{SF} / \mathrm{Hr},=\$ 0.052\) per SF

Removal of electrical power distribution system.
Cost estimate obtained by personal contact with local (Casper, Wyoning) electrical contractor, January, 1990.

Remove electrical power distribution system - unit cost - \(\$ 0.85 / \mathrm{LF}\)
2. Ground Water Restoration and Well Plugging.

Instull wells:
Upper sand wells - depth est. 220 LF each
Drill, case and develop:
Drilling rates for Petrotomics in 1988 and 1989 ranged from \(\$ 92 / \mathrm{Hr}\). to \(\$ 125 / \mathrm{Hr}\).

```

Tailings wells - depth est. 50 LF each
Drill, cage, \& develop:
Overall production est. 10 LF/Hr.
Cost per well - Est. 5 hours e \$125 = \$ 625/well
Casing, sand, bentonite \& supplies
Est. \$4.24/LF X 50 = \$ 212/well
Pumps, piping, \& installation supplies:
Pumps - 1/2 HP - Est.
Pipe \& supplies Est.
\$ 300/well
\$ 170/well

```

Install pumps and piping:
Est. 1 electrician \& 1 labor - 3 hours
\(\$ 35 / \mathrm{Hr}+\$ 11.88 / \mathrm{Hr}=\$ 46.88 / \mathrm{Hr}\).
\(\$ 46.88 / \mathrm{Hr}\). X 3 hours =
\$ \(141 /\) well
Est. total per tailings well
\$1,448/well

\section*{Well and enhanced evaporation operation and maintenance:}

Operation and maintenance labor,
1 laborer \(\$ 11.88 / \mathrm{Hr}\), - Est, one-half time \(\$ 11.88 \times 0.5 \times 176 \mathrm{Hr} . / \mathrm{Mth} . \mathrm{X} 12 \mathrm{Mth} . / \mathrm{Yr} .=\$ 12,545 / \mathrm{Yr}\).

1 electrician \(\$ 35 / \mathrm{Hr}\). Est. 1 day \(/ \mathrm{Mth}\).
\(8 \mathrm{Hr}, /\) day +2 hours travel \(10 \mathrm{Hr}, / \mathrm{Mth} \mathrm{X} \$ 35 / \mathrm{Hr}, \mathrm{X} 12 \mathrm{Mths} / \mathrm{Yr}\).
Est, total labor
\(=\frac{\$ 4,200 / \mathrm{Yr}_{\mathrm{r}}}{\$ 16,745 / \mathrm{Yr} .}\)
```

Well pumps - replace
Tailings - Est. 50%/Yr, - 12 wells
6 \$ \$300 = \$ 1,800/Yr.
Upper Sand - Est. 25%/Yr. - 8 wells
2 X \$850
Pump replacement
= \$ 1,700/\mp@subsup{\textrm{Yr}}{.}{\$}

```

Enhanced evaporation system
Pump - 60 HP 480 v
Equipment Cost Guide \(-1982=\$ 5.59 / \mathrm{Hr}\).
Less electrical power \(\$\langle 2.01\rangle\)
Est. cost/Hr.
\(\$ 3.58 / \mathrm{Hr}\).
Est. 8 months/Yr., 24 Hr ./day \(24 \mathrm{Hr}, \mathrm{X} 30 \times 8\) Mths, \(=5,760 \mathrm{Hr}, / \mathrm{Yr}\). \(5,760 \mathrm{Hr}, / \mathrm{Yr}, \mathrm{X} \$ 3.58 / \mathrm{Hr} .=\$ 20,621 / \mathrm{Yr}\).

Small tools and supplies
Est. 10\% of labor
\(0.10 \times \$ 16,745 \quad=\quad \$ 1.675 / \mathrm{Yr}_{\text {. }}\)
Est, total unit cost
\(\$ 42,541 / \mathrm{Yr}\).

\section*{Verification sample anslysis}
```

Sample 25 wells
Est. 3-10 hour days for 25 wells
Technician - $35/Hr, X 30 Hrs. =$ 1,050
Vehicle - Est. \$0,40/mile + \$40/day
(\$0.40 < 130 miles + \$40) X 3 days = \$ 276
Supplies - Est. \$ 100
Laboratory analysis \$224/sample
25 samples X $224/sample }=\frac{$, 5,600}{\$ 7,026
Est, total unit cost/sample period
\$7,026 / 25 samples = \$ 281.04

```

\section*{Well plugging}

Drilling Contractor - ream and plug hole Production rate - Est. \(50^{\prime} / \mathrm{Hr}\). Cost Est. \(\$ 100 / \mathrm{Hr}\), plus bits, plus mud from communication with local (Casper, Wyoming) drilling contractors - January 1990.
```

Estimated unit cost - 51 holes - 5,960 LF
Ream - \$100/Hr, / 50'/Hr.
=\$2.00/LF
Bit cost - 800'/bit, \$120/bit
\$120/bit / 800'/bit = \$0.15/LF
Drilling mud - Est. 223 bags
223 bags X \$5.25/bag = \$1,171
Abandonment mud - Est. }60\mathrm{ bags
60 bags X \$6.75/bag = \$ 405
Backhoe (1/2 CY)
0.5 Hr./hole \$26/Hr
0.5 Hr, X \$26/Hr, X 51 hole/s = \$ 663
Subtotal
2,239
Est., unit cost per LF
\$2,239 / 5,960 LF =\$0.38/LF
Est, total unit cost
= \$0.38/LF

```
4. Tailings Impoundment Area Reclamation

\section*{Earthwork}

Tailings excavation and shaping - 57,000 CY
Use 631 scraper crew
Haul distance 1,200 feet
Grade - Est. 3\%
Rolling resistance equivalent - Est. 3\%
Cycle time data from Caterpillar - Performance Handbook, Edition No. 11
\begin{tabular}{lrl} 
Cycle time: & Minutes \\
Load & 0.7 \\
Haul \(\quad 3 \%+3 \%=6\) & 1.2 \\
Return \(3 \%-3 \%=0\) & 0.6 \\
Dump \& turn & \(\frac{0.7}{3.2}\)
\end{tabular}

Efficiency adjustment - use 50 minute hour
Efficiency adjustment - limit D9H to 50 pushes/Hr.
\(50 / 3.2=15.6\) loads/scraper \(/ \mathrm{Hr}\).
\(50 \mathrm{pph} / 15.6=3.2\) scrapers - use 3
Scraper yield - Est. struck capacity \(=21 \mathrm{CY} / 10 a d\) Hourly production

3 scrapers X 15.6 loads \(/ \mathrm{Hr}, \mathrm{X} 21 \mathrm{CY}=983 \mathrm{CY} / \mathrm{Hr}\).
Crew:
\begin{tabular}{|c|c|}
\hline 631 scraper \$124/Hr. & \$372 / Hr . \\
\hline 1 - D9H \(\$ 105 / \mathrm{Hr}\). & \(=\$ 105 / \mathrm{Hr}\). \\
\hline 1 - 140 G Motor Grader e \(\$ 67 / \mathrm{Hr}\). & \$ \(67 / \mathrm{Hr}\). \\
\hline 1/2-Water Truck ( \({ }^{\text {c }} 40 / \mathrm{Hr}\). & \$ \(20 / \mathrm{Hr}\). \\
\hline Total hourly cost & \$564/Hr . \\
\hline
\end{tabular}

Estimated unit cost \(\$ 564 / \mathrm{Hr}\), / \(983 \mathrm{CY} / \mathrm{Hr}\).
The remaining estimated unit costs for scraper crew hauls were developec in a similar manner. Crews, haul characteristics, production and unit costs are sumarized in Table B.4-1.

Regrade and recompact clay surface
Use Cat 815 Compactor, 140 G Blade and 4,000 Gallon Water Truck
Compactor performance from the Caterpillar - Performance Handbook, Edition No. 11

Compactor yield \(0.5^{\prime}\) layer is \(616 \mathrm{CY} / \mathrm{Hr}\), compacted Efficiency adjustment - use 50 minute hour \(=513 \mathrm{CY} / \mathrm{Hr}\). Requires 70 additional hours of 140 G blade to scarify, grade and regrade.
Used one 4,000 gallon water truck for moisture control and dust abatement one-half of the time.
The total quantity of \(117,000 \mathrm{CY}\) is used to calculate the total equipment hours required.

Crew:
\begin{tabular}{|c|c|c|}
\hline Cat 815 Compactor & 228 Hr . \(\$ 60 / \mathrm{Hr}\). & \$ 13,680 \\
\hline 1 - Cat 140G Blade & 298 Hr , \$67/Hr & \$ 19,966 \\
\hline 1 - Weter Truck & 114 Hr . \(\$ 40 / \mathrm{Hr}\). & \$ 4,560 \\
\hline Total cost & & \$ 38,206 \\
\hline
\end{tabular}

Dam outslope shaping.
Shaping the existing tailings dam is estimated utilizing Cat D9H dozers. Using the Caterpillar - Performance Handbook, Edition No, 11 yields the following production:

Cat D9H production for a dozed distance of 200 feet is 640 LCY/Hr.

Correction factors are:
\begin{tabular}{ll}
\(30 \%\) swell & \(=0.769\) \\
Hard packed clay & \(=0.80\) \\
Grade correction & \(=1.10\) \\
Average operator & \(=0.75\) \\
Job efficiency & \(=0.833\)
\end{tabular}

Therefore:
\(640 \mathrm{LCY} / \mathrm{Hr}, \mathrm{X} 0.769 \times 0.80 \times 1.10 \times 0.75 \times 0.833=271 \mathrm{BCY} / \mathrm{Hr}\) 3 dozers X \(271 \mathrm{CY} / \mathrm{Hr}\). \(=813 \mathrm{CY} / \mathrm{Hr}\).

Crew:


Est. unit cost of \(\$ 382 / \mathrm{Hr}, / 813 \mathrm{CY} / \mathrm{Hr}\).
\(=\$ 0.47\)

Revegetation of disturbed areas.
Shallow ripping (scarification)
Est. cost per acre -
\(\$ 74\)
The shallow ripping cost is the average of five bids for State of Wyoming
Abandoned Mine Land Project \(\$ 13\), Shirley Basin, Wyoming, for performance in 1989.

Disking
Est. cost per acre - \(\$ 50\)
The disking cost is the contract rate from Petrotomics site for fall 1989 work.

Seeding
Est. cost per acre - \$ 50
The seeding cost is the contract rate
from Petrotomics site for fal! 1989 work.
Seed Cost
Est. cost per acre - \(\$ 137\)
The cost for seed is that used in the State of Wyoming Mine Permit Surety, Due to seasonal variations in pilces this value is higher than fall 1989 actual seed costs.

Est, totai unit cost for revegetation

\section*{Riprap/rock armor}

Est. total \(34,600 \mathrm{CY}\) required
Drill and Blast
Est, drille \(5^{\prime \prime} / \mathrm{min}\) rate
Efficiency adjustment - use 54 min hour
Allow for load and blast delays and equipment availability;
Est, total \(20 \%\) reduction for avefage rate per hour.
\(0.42^{\prime} / \mathrm{tain} \mathrm{X} 60 \mathrm{~min} / \mathrm{Hr}, \mathrm{X} 0.80=20.2 \mathrm{Ft} / \mathrm{Hr}\).
Est. pattern \(-6.5^{\prime} \times 6.5^{\prime}=1.56 \mathrm{BCY} / \mathrm{Ft}\)
Est. swell factor \(1 / .75=1.33\)
\(1.56 \mathrm{CY} / \mathrm{Ft} X 1.33 \quad=2.07\) in place CY/Ft
Allow 5\% not usable 2.07 X \(.95=1.97\) in place CY/Ft
\(1.97 \mathrm{CY} / \mathrm{Ft} X 20.2 \mathrm{Ft} / \mathrm{Hr}=39.7\) in plece \(\mathrm{CY} / \mathrm{Hr}\).

Estimate using 2 drilis:
Production: 2 drills X \(39.7 \mathrm{CY} / \mathrm{Hr}=79.4\) in place \(\mathrm{CY} / \mathrm{Hr}\).

Crew:
2 Air Trac \& compressor e \(\$ 63 / \mathrm{Hr}=\$ 126.00\)
2 drillers \(\$ 16.40 / \mathrm{Hr}\). \(\$ 32.80\)
2 helpers \(\$ 11.88 / \mathrm{Hr}\). \(\$ 23.76\)
Blasting supplies:
Est. \(\$ 0.30 / \mathrm{BCY}\) X \(62.7 \mathrm{BCY} / \mathrm{Hr},=\$ 18.81\)
Est. total
\(\$ 201.37 / \mathrm{Hr}\).
Est. unit cost \(=\$ 201.37 / \mathrm{Hr} . / 79.4\) in place \(\mathrm{CY} / \mathrm{Hr}\).
Est, unit cost \(=\$ 2.54 / \mathrm{CY}\)

Crush and Screen
Riprap and coarse filter - \(14,000 \mathrm{CY}\), will not require
crushing.
Est. \(165 \mathrm{lbs} / \mathrm{BCF} \times 0.75=123.75 \mathrm{lbe} / \mathrm{in}\) place CF or 1.67 tons/in place CY

Separate materials through grizzly 300 tons/Hr. 300 tons \(/ \mathrm{Hr}\). / 1.67 tons/in place \(\mathrm{CY}=179.6 \mathrm{CY} / \mathrm{Hr}\). Efficiency factor 85* \(0.85 \times 179.6 \mathrm{CY} / \mathrm{Hr}=153\) in place \(\mathrm{CY} / \mathrm{Hr}\).

Est, one D9 Dozer and one 988 Loader sorting and stockpiling from blasting to Grizzly and from Grizzly to product areas.
Est. \(120 \mathrm{CY} / \mathrm{HR}\).
Net \(60 \mathrm{CY} / \mathrm{Hr}\).
60 CY / 153 in place \(\mathrm{CY} / \mathrm{Hr},=0.39\) Grizzly operation
factor.
Crew:
1 Grizzly \& \(36 / \mathrm{Hr}, \mathrm{X} 0.39=\$ 14.04\)
1 Generator set \(\$ 36 / \mathrm{HR}\). X \(0.39=\$ 14.04\)
1 Foreman \(\$ \$ 18 / \mathrm{Hr}, \mathrm{x} 0.39 \mathrm{~m} .02\)
1 Operator \(\$ 16.40 / \mathrm{Hr}, \mathrm{X} 0.39=\$ 6.40\)
1 Oiler \(\$ 14.23 / \mathrm{Hr}, \mathrm{X} 0.39=\$ 5.55\)
1 Laborer \(\$ 11.88 / \mathrm{Hr}, \mathrm{X} 0.39=\$ 4.63\)
1 D 9 H Dozer \(\$ 105 / \mathrm{Hr}\). \(=\$ 105.00\)
1988 Loader \(\$ 134 / \mathrm{Hr}\). \(\$ 134.00\)
Est. Total
\(\$ 290.68\)
Est. unit cost \(-\$ 290.68 / 60 \mathrm{CY} / \mathrm{Hr}=\mathbf{\$ 4 . 8 4 / \mathrm { CY }}\)

Rock Armor - 10,100 cy
Est. 123.75 lbs/CF in place or 1.67 tons/in place Cy
Est. production through crushing plant 145 ton \(/ \mathrm{Hr}\).
145 tons/Hr, / 1.67 tons/in place \(\mathrm{CY}=86.8 \mathrm{CY} / \mathrm{Hr}\).
Efficiency factor = 85\%
\(86.8 \mathrm{cY} / \mathrm{Hr}, \mathrm{X} 0.85=74\) in place \(\mathrm{CY} / \mathrm{Hr}\).
Estimate 1.5 D9's and 1.5988 's sorting, stuckpiling,
feeding, tramming finished product.

Crew:
1 Crushing Plant
1 Generator Set
1 Foreman
1 Operator
1 Oiler
1 Laborer
1.5 D 9 H Dozere \(\$ 105 / \mathrm{Hr}\).
1.5988 Loader \(\$ 134 / \mathrm{Hr}\).

Est. Total

Cost/Hr.
= \(\$ 120.00\)
\(=\$ 36.00\)
\(=\$ 18,00\)
\(=\$ 16.40\)
\(=\$ 14.23\)
\(=\$ 11.88\)
\(=\$ 157.50\)
\(=\$ 201.00\)
\(\$ 575.01 / \mathrm{Hr}\).

Est, unit cost \(-\$ 575.01 / \mathrm{Hr}, / 74 \mathrm{CY} / \mathrm{Hr},=\$ 7.77 / \mathrm{CY}\)

Fine filt.9r - \(10,500 \mathrm{Cy}\)
Est 128.7 1bs/CF in place or 1.74 tons/in place CY
Est. production through crushing plant 90 tons \(/ \mathrm{Hr}\).
90 cons \(/ \mathrm{Hr}\). / 1.74 tons \(/\) in place \(\mathrm{CY}=51.7 \mathrm{CY} / \mathrm{Hr}\).
Efficiency factor \(=85 \%\)
\(51.7 \mathrm{CY} / \mathrm{Hr}, \mathrm{X} 0.85=44\) in place \(\mathrm{CY} / \mathrm{Hr}\).
Estimated. 85 D 9 's and \(.85988^{\prime} \mathrm{s}\) feeding \& tramming
Crew:
1 Crushing Plant
Cost/ Hr .
1 Generator Set
1 Foreman
\(=\$ 120.00\)
\(\$ 36.00\)
1 Operator
1 Oiler
\(\$ 18.00\)

1 Laborer
\(\$ 16.40\)
\(\$ 14.23\)
85 D9H Dozer \(8105 / \mathrm{Hr}\)
\(85=\$ 89.25\)
85988 Loader \(\$ 134 / \mathrm{Hr} . \quad \$ \$ 13.90\)
Est. Total
\(\$ 419.66\)
Est. unit cost \(-\$ 419.66 / \mathrm{Hr}, / 44 \mathrm{CY} / \mathrm{Hr},=\$ 9.54 / \mathrm{CY}\)

Haul and Place
All materials estimated at the same rate of production.
Est. 34,600 CY required.
Est, truck cycle time for round trip of 31 miles equals 1.34 hours at \(90 \%\) efficiency.
Est. trucks haul \(14 \mathrm{CY} / \mathrm{cyc} \mathrm{le}\)
\(14 \mathrm{CY} /\) cycle / 1.34 hours \(=10.45 \mathrm{CY} / \mathrm{Hr}\).
Est, 7 trucks used for haul
Production \(=10.45 \mathrm{CY} / \mathrm{Hr}, \mathrm{X} 7\) trucks \(=73.15 \mathrm{cY} / \mathrm{Hr}\).
Use 1.1 blade and water truck for haul road maintenance
.20 backhoe and , 30 blade for placement.
Crew:
\begin{tabular}{|c|c|c|c|}
\hline Crew: & & & Cost/ Hr , \\
\hline 7 Trucks & \$54 & = & \$378.00 \\
\hline 1 Scale & 822 & = & \$ 22.00 \\
\hline 1.1 Blade e & \$67 & = & \$ 73.70 \\
\hline 1.1 Water Truck & \$40 & = & \$ 44.00 \\
\hline . 2 Backhoe & \$114 & \% & \$ 22.80 \\
\hline . 3 Blade e & 867 & \(=\) & \$ 20.10 \\
\hline Est. Total & & & \$560.60 \\
\hline
\end{tabular}

Est. unit cost \(=\$ 560.60 / \mathrm{Hr}, / 73.15 \mathrm{CY} / \mathrm{Hr},=\$ 7.66 / \mathrm{CY}\)

Reyalty
All materials estimated at the rate of \(\$ 1,50 / \mathrm{Cy}\).
5. Radiological Survey and Environmental Monitoring

Prices used for technician, vehicle, mileage, and analysis are based upon current prices charged by a local (Casper, Wyoming) consultant laboratory from their December, 1989 price list.

Soil samples for Radium


Decommissioning equipment and Building smear samples.
The Mill was decommissioned in 1985.

Gamma Survey
```

Technician e \$35/Hr
Est. }10\mathrm{ days sampling (}5\mathrm{ days initial,
5 days verification)
10 days X 10 Hr./day X \$35/Hr, = \$3,50?

```
vehicle \(\$ 0.40 / \mathrm{mile}+\$ 40 /\) day
\((\$ 0,40 / \mathrm{mi}, \times 130 \mathrm{mi},+\$ 40 /\) day \() \times 10 \mathrm{trips}=920\)
Est. Total
Est. unit cost - \(\$ 4,420 / 2\) surveys \(=\$ 2,210 /\) survey

Environmental Monitoring
Monitoring performed according to the requirements in License Condition 41 and 47.

Air Sampling - one site
One site sampled quarterly
Quarterly analysis of radionuclides \(=\$ 131 / \mathrm{qr}\).
Est. one trip per month by technician
On site personal will check sampler
Technician © \(\$ 30 / \mathrm{Hr}\).
Est. 3 days/quarter
3 days X \(3 \mathrm{Hr}, /\) day \(\mathrm{X} \$ 30 / \mathrm{Hr}=\$ 270 / \mathrm{qr}\).
vehicle \(\$ 0.40 / \mathrm{mile}+\$ 40 /\) day ( \(\$ 0,40 / \mathrm{mi}, \mathrm{X} 130 \mathrm{mi},+\$ 40 /\) day \()\)
X 3 trips =
Est. Total
\(\$ \quad 276\)

Est, unit cost \(=\$ 677 / \mathrm{sample}\)
Radon Sampling - two sites
2 sites sampled quarterly
Transportation and technician cost
included in Air Sampling.
Cost \(\$ 70 \times 2=\$ 140 / \mathrm{qr}\).
Unit cost \(\$ 70 / \mathrm{sample}\)
Groundwater
Groundwater is sampled at 25 locations on a quarterly basis according to License Condition 41 and 47. Cost of analysis is taken directly from a price sheet of a local laboratory,

25 locations sampled quarterly
Quarterly analysis of constituents \(=\$ 7,672 / \mathrm{gr}\).
Est. three trips per quarter by technician
Technician © \(\$ 35 / \mathrm{Hr}\).
Est. 3 days/quarter
3 days X \(10 \mathrm{Hr} . /\) day \(\mathrm{X} \$ 35 / \mathrm{Hr}=\$ 1,050 / \mathrm{qr}\).
vehicle \(\$ 0.40 / \mathrm{mile}+\$ 40 /\) day
( \(\$ 0,40 / \mathrm{mi}, \mathrm{X} 130 \mathrm{mi},+\$ 40 / \mathrm{day}\) )
X 3 trips \(=\)
Est. Total
\& \(276 / \mathrm{gr}\).
\(\$ 8,998 / \mathrm{qr}\).
```

\$8,998/qr. / 25 samples/qr. = \$359.92/sample

```
Est, unit cost \(=\$ 359.92 / \mathrm{sample}\)

25 locations sampled annually Annual analysis of constituents \(=\quad \$ 8,872 / \mathrm{qr}\). Est, three trips per quarter by technician Technician \(\$ 35 / \mathrm{Hr}\).
Est. 3 days/quarter
3 days X \(10 \mathrm{Hr}, / \mathrm{day} \times \$ 35 / \mathrm{Hr}=\$ 1,050 / \mathrm{gr}\). vehicle \(\$ 0.40 / \mathrm{mile}+\$ 40 /\) day
( \(\$ 0.40 / \mathrm{mi}, \mathrm{X} 130 \mathrm{mi},+\$ 40 /\) day \()\)
X 3 trips \(=\)
Est. Total
\(\$ 10,198 / \mathrm{qr}, / 25 \mathrm{samples} / \mathrm{qr}=\$ 407.92 /\) sample
Est. unit cost \(=\$ 407.92 / \mathrm{sample}\)

Surface Water

> 1 location sampled quarterly Quarterly analysis of constituents \(=\quad \$ \quad 161 / \mathrm{qr}\). Transportation and technician included in cost of Groundwater sampling.
> Est. unit cost \(=\$ 161 /\) sample

Direct Radiation

> 2 locations sampled quarterly. Unit cost of sample \(\$ 22.95\)

\section*{REFERENCES}

Cedarapids, Incorporated, 1985, Eleventh Edition. Pocket Reference Book. Form 11060-CR-Rev, 7-85. Cedar Rapids, Inc., 916 16St. NE, Cedar Rapids, IA 52402

Caterpillar Tractor Company, October 1980, Edition Eleven. Caterpillar Performance. Handbook. Caterpllar Tractor Company, Peoria, IL

Equipment Industry Services of Nielsen/DATAQUEST, Inc. 1982. Cost Reference Guide for Construction Equipment. Nielson/DATAQUEST, Inc, 2800 West Bayshore Rd., Palc Alto, CA 94303```

