DEFINITIONS

REPORTABLE EVENT

1.7 A REPORTABLE EVENT shall be any of those conditions specified in Section 50.73 of 10 CFR Part 50.

CONTAINMENT INTEGRITY

- 1.8 CONTAINMENT INTEGRITY shall exist when:
 - All penetrations required to be closed during accident conditions are either:
 - 1. Capable of being closed by the Safety Features Actuation System, or
 - 2. Closed by manual valves, blind flanges, or deactivated automatic valves secured in their closed positions, except as provided in Table 3.6-2 of Specification 3.6.3.1. Those approved to be
 - b. All equipment hatches are closed and sealed.
 - c. Each airlock is OPERABLE pursuant to Specification 3.6.1.3,
 - d. The containment leakage rates are within the limits of Specification 3.6.1.2, and
 - e. The sealing mechanism associated with each penetration (e.g., velds, bellows or O-rings) is OPERABLE.

CHANNEL CALIBRATION

1.9 A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions, and shall include the CHANNEL FUNCTIONAL TEST. CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.10 A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

DAVIS-BESSE, UNIT 1

Amendment No. /93,135

9001110090 891222 PDR ADOCK 05000346 PDC PDC

3/4.6 CONTAINMENT SYSTEMS

3/4.6.1 PRIMARY CONTAINMENT

CONTAINMENT INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.1.1 Primary CONTAINMENT INTEGRITY shall be maintained.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

Without primary CONTAINMENT INTEGRITY, restore CONTAINMENT INTEGRITY within one hour or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.1 Primary CONTAINMENT INTEGRITY shall be demonstrated:

a. At least once per 31 days by verifying that:

 All penetrations* not capable of being closed by OPERABLE containment automatic isolation valves and required to be closed during accident conditions are closed by valves. blind flanges, or deactivated automatic valves secured in their positions, except as provided in Table 3.6-2 of Specification 3.6.3.1, and those valves that may be opened Under administrative controls per Specification 3.6.3.1 and

2. All equipment hatches are closed and sealed.

By verifying that each containment air lock is OPERABLE per Specification 3.6.1.3.

*Except valves, blind flanges, and deactivated automatic valves which are located inside the containment and are locked, sealed, or otherwise secured in the closed position. These penetrations shall be verified closed during each COLD SHUTDOWN except that verification of these penetrations being closed need not be performed more often than once per 92 days.

DAVIS-BESSE, UNIT 1

3/4 6-1

	NT SYSTEMS	ADDITIONAL CHANGES PREVIOUSLY PROPOSED BY LETTER
3/4.6.3	CONTAINMENT ISOLATION VALVES	Serial No. 1415 Date 8/31/87
IMITING	CONDITION FOR OPERATION	
a.6.3.1 : shall be (All The containment isolation value OPERABLE with isolation times to required isolation time LITY: MODES 1, 2, 3 and 4.	as chown in Table 26.2 /and H.
CTION:		
lith one of noperable	or more of the isolation valve e, either:	e(s) specified in Table 3.6-2
a.	hours, or Isolate each affected penetra at least one deactivated auto position, or	s) to OPERABLE status within 4 tion within 4 hours by use of matic valve secured in the isolati tion within 4 hours by use of at
	and the crosed manage faire	or blind flange; or
d. SURVEILLAN	Be in at least HOT STANDBY wi in COLD SHUTDOWN within the f	thin the next 6 hours and
URVEILLAN .6.3.1.1 emonstrat aintenance r its ass f a cycli Surveil ICSIIB be per to The The T	Be in at least HOT STANDBY wi in COLD SHUTDOWN within the f ACE REQUIREMENTS The isolation valves Frontie and OPERABLE prior to returnin the, repair or replacement work ociated actuator, control or ing test and verification of i lance testing of valves is not required prior to formed prior to entering	thin the next 6 hours and ollowing 30 hours.

4.6.3.1. demonstr	ANCE REQUIREMENTS (Continued) 2 Each isolation valve specified in Table 3.6-2 shall be ated OPERABLE during the COLD SHUTDOWN or REFUELING MODE at ce per 18 months by:
a. b.	Verifying that on a containment isolation test signal, each automatic isolation valve actuates to its isolation position Verifying that on a Containment Purge and Exhaust isolation test signal, each Purge and Exhaust automatic valve actuate to its isolation position.
4.6.3,	1.3 The isolation time of each power operated or automatic value shall be determined to be aithin its limit when tested porsuant to Specification 4.0.5.

DAVIS-BESSE, UNIT 1 3/4 6-15

TABLE 3.6-2 CONTAINMENT ISOLATION VALVES

DELETED

/			TABLE 3.6-2	/
/			CONTAINMENT ISOLATION VALVES	/
		ON VALVE	FUNCTION ISO	LATION
	. \		/	conds)
	A. CONT	AINMENT IS	OLATION	
	1/	RC240A	Pressurizer Sample Line	30
	1	RC240B	Pressurizer Sample Line	30
	2 #	55607	Steam Generator Secondary Water Sample	10
	3	CC14TLA	Component Cooling Water Inlet Line	15
	3	CC14118	Component Cooling Water Inlet Line	15
	4	CC1407A	Component Cooling Water Outlet Line	15
	4	CC1407B	Component Cooling Water Outlet Line	15
	8A	CV5070	Contatoment Vessel Vacuum Breaker	15
	88	CV5071	Containment Vessel Vacuum Breaker	15
	80	CV5072	Containment Vessel Vacuum Breaker	15
	8D	CV5073	Containment Vessel Vacuum Breaker	15
	8E	СУ5074	Containment Vessel Vacuum Breaker	15
	8F	CV5075	Containment Vessel Vacuum Breaker	15
	8G	CV5076	Containment Vessel Vecuum Breaker	15
	8H	CV5077	Containment Vessel Vacuum Breaker	15
	81	CV5078	Containment Vessel Vacuum Breaker	15
	8J	CV5079	Containment Vessel Vacuum Breaker	15
	12/	CC1567A	Control Rod Drive Cooling Supply Line	15
	/12	CC1567B	Control Rod Drive Cooling Supply	15
	/ 13	DR2012A	Containment Vessel Normal Sump Drain	15
1	13	DR2012B	Containment Vessel Normal Sump Drain	15
/	14	MU3	RCS Letdown Line	10
/	14	MU2A	RCS Letdown Line	15

DAVIS-BESSE, UNIT 1

3/4 6-16

TABLE 3.6-2

CONTAINMENT ISOLATION VALVES (Continued)

DELETED

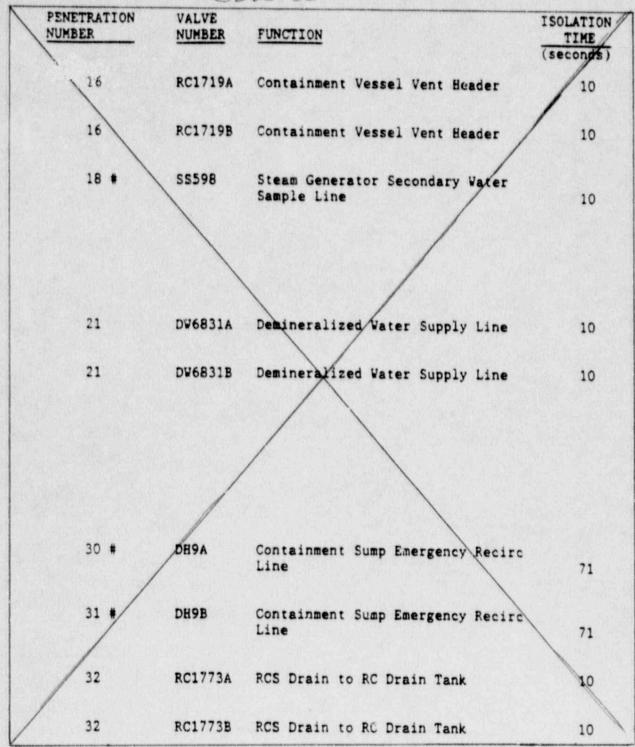


TABLE 3.6-2

Docket Number 50-346 License Number NPF-3 Serial Number 1737 Attachment 1 Page 10

CONTAINMENT ISOLATION VALVES (Continued)

DELETED

PENETRATION	VALVE NUMBER	FUNCTION	ISOLATION TIME (seconds)
41	RC232	Pressurizer Quench Tank Circulating Inlet Line	10
422	SA2010	Service Air Supply Line	10
42B	CV5010E	Containment Vessel Air Sample Return	n 15
43A	IA2011	Instrument Air Supply Line	10
43B	CV5011E	Containment Vessel Air Sample Return	n 15
44A	CP3541	Core Flood Tank Fill and N2 Supply Line	10
44B	NN236	Fressurizer Quench Tank N2 Supply Line	10
47A	CF1545	Core Flood Tank Sample Line	10
47B	CF1542	Core Flood Tank Vent Line	10
48	RC229A	Pressurizer Quench Tank Circulating Outlet Line	10
48	RC229B	Pressorizer Quench Tank Circulating Outlet Line	10
51	CV5037 /	Hydrogen Purge System Exhaust Line	60
51	CV5038	Hydrogen Purge System Exhaust Line	60
52	MUGGA	Reactor Coolant Pump Seal Supply	12
53	MU66B	Reactor Coolant Pump Seal Supply	12
54	HUGGC	Reactor Coolant Pump Seal Supply	12
55	HU66D	Reactor Coolant Pump Seal Supply	12
56	MU38	Reactor Coolant Pump Seal Return	12
56	MU59A	Reactor Coolant Pump Seal Return	30
56	MU59B	Reactor Coolant Pump Seal Return	30
56	MU59C	Reactor Coolant Pump Seal Return	30
56	MU59D	Reactor Coolant Pump Seal Return	30

ADDITIONAL CHANGES PREVIOUSLY PROPOSED BY LETTER Senial No. 1415 Date 8/31/87

TABLE 3.6-2

CONTAINMENT ISOLATION VALVES (Continued)

DELETED

PENETI	RATION	VALVE NUMBER	FUNCTION	ISOLATION TIME (seconds)
1.	57	CV5090	Hydrogen Dilution System Supply	60
1	58A	SS2354	Pressurizer Quench Tank Sample	30
	AR	SS235B	Pressurizer Quench Tank Sample	30
	BB	CV5010B	Containment Air Sample	15
(88	CV5011B	Containment Air Sample	15
(9 1	CV5065	Hydrogen Dilution System Supply	60
;	1B	CV5010A	Containment Air Sample	15
,	1B	CUSOLIA	Containment Air Sample	15
7	10	CF1544	Core Flood Tank N2 FM1	10
,	3B	CV5010C	Containment Air Sample	15
7	3B	CV5011C	Containment Air Sample	15
7	4B	CV5010D	Containment Air Sample	15
7	4B	CV5011D	Containment Air Sample	15
3 3 3	CONTAINME 3 ** 3 ** 4 **	VT PURGE AN CV5005 CV5006 CV5007 CV5008	D EXHAUST ISOLATION Containment Vessel Purge Inlet Line Containment Vessel Purge Inlet Line Containment Vessel Purge Outlet Line Containment Vessel Purge Outlet Line	10 e 10
c. o	THER	/		
5	• /	SW1366	Containment Air Cooling Units SV Inlet Line	N/A
6	/	SV1368	Containment Air Cooling Units SU Inlet Line	N/A
/1	•	SW1367	Containment Air Cooling Units SV Inlet Line	N/A
/ •	•	SV1356	Containment Air Cooling Units SW Outlet Line	N/A

DAVIS-BESSE, UNIT 1

and the second

Church Street

f. ë

. ·

n" Ø

* ^{**}

÷.,

TABLE 3.6-2

CONTAINMENT ISOLATION VALVES (Continued)-

DELETED

PENETRATION	VALVE NUMBER	FUNCTION	ISOLATION TIME (seconds)
10 *	SW1358	Containment Air Cooling Units SV Outlet Line	N/A
11 .	SV1357	Containment Air Cooling Units SV Outlet Line	N/A
17	CV343	Containment Vessel Leak Test Inde	N/A
17	Flange	Containment Vessel Leak Test Inle Line (Inside Containment)	t N/A
19	NU6422	Normal RCS Makeup Line	N/A
19 🛊	HPS7	High Pressure Injection Line	N/A
19 #	HP2A	High Pressure Injection Line	N/A
20 #	HP56	High Pressure Injection Line	N/A
. 20 .	HP2B	Bigh Pressure Injection Line	N/A
22 *	HP49	High Pressure Injection Line	N/A
22 •	HP2D	High Pressure Injection Line	N/A
23 🛊	SF1	Fuel Transfer Tube	N/A
23	Flange	Fuel Transfer Tube	N/A
24 🗰	SF2	Fuel Transfer Tube	N/A
24	Flange	Fuel Transfer Tube	N/A
*25	C\$33	Containment Spray Line	N/A
*25	CS17	Containment Spray Line	N/A
25	SA536	Containment Spray Dine	N/A
25	SA532	Containment Spray Line	N/A
25	C\$1531	Containment Spray Line	N/A
26	/cs1530	Containment Spray Line	N/A
*26	C\$36	Containment Spray Line	N/A
*26 /	C\$18	Containment Spray Line	N/A
26	SA535	Containment Spray Line	N/A
2,6	SA533	Containment Spray Line	N/A
/27 *	DH1A	Low Pressure Injection Line	N/A
27 \$	DH76	Low Pressure Injection Line	N/A
28 #	DEIB	Low Pressure Injection Line	NXA
28 •	DB77	Low Pressure Injection Line	N/A

DAVIS-BESSE, UNIT 1

騆

∦ ∰ ⊧"

9

1 e e 🥻

-

TABLE 3.6-2

CONTAINMENT ISOLATION VALVES (Continued)

DELETED

PENETRATION	VALVE NUMBER	FUNCTION	I SOLATION TIME
/			(seconds)
•29 •	DE11	Decay Beat Pump Suction Line	N/A
*29	DE23	Decay Beat Pump Suction Line	/ N/A
29 4	PSV4849	Decay Best Pump Suction Line	N/A
35	AF599	Auxiliary Peedvater Line	N/A
36 •	AF608	Auxiliary Feedvater Lin	N/A
37 •	FV601	Main Peedwater Line	N/A
38 0	PV612	Main Feedwater Line	N/A
**39 \$	N\$100	Main Steam Line	N/A
**39 •	ICSMA	Main Steam Line	N/A
39 •	H\$375	Main Steam Line	N/A
39 •	H\$100-1	Hain Steam Ling	N/A
+39 \$	M\$107	Nain Steam Line	N/A
*39 •	M\$107A	Hein Steap Line	N/A
*40 .	MS106	Hain Steam Line	N/A
*40 \$	NS106A	Main Steam Line	N/A
**40 \$	M\$101	Main Steam Line	N/A
**40 1	ICSIIB	Main Steam Line	N/A
40 .	M\$394	Main Steam Line	N/A
40 .	MS101-1	Main Steam Line	N/A
41	RC113	Pressuriser Quench Tank Inlet Line	N/A
424	SA502	Service Air Supply Line	N/A
428	CV124	Containment Vessel Air Sample	
	/	Return	N/A
43A 43B	TA501 CV125	Service Air Supply Line Containment Vessel Air Sample	N/A
/		Return	N/A
444	CF15	Core Flood Tank Fill and Nitrogen Supply Line	
443	NN58	Pressurizer Quench Tank Inlet Line	N/A N/A
*474	CFZA	Core Flood Tank Sample Line	N/A
*474	CF2B	Core Flood Tank Sample Line	N/A
*478	CPSA	Core Flood Tank Vent Line	N/A
/ *47B	CF5B	Core Flood Tank Vent Line	N/A

ADDITIONAL CHANGES PREVIOUSLY PROPOSED BY LETTER Serial No. 1667 Date 6/13/89

ADDITIONAL CHANGES PREVIOUSLY PROPOSED BY LETTER Serial No. 1415 Date 8/31/87

Docket Number 50-346 License Number NPF-3 Serial Number 1737 Attachment 1 Page 14

TABLE 3.6-2

CONTAINMENT ISOLATION VALVES (Comesaced)

PENETRATION	VALVE		ISOLATION
NUMBER	NUMBER	FUNCTION	TIME
/			(seconds)
49	DES7	Refueling Canal Fill Line	N/A
96	DESS	Refueling Canal Fill Line	N/A
50 0	8248	Bigh Pressure Injection Line	AIA
50 0	EP2C	Bigh Pressure Injection Ling	N/A
50	MU6421	RCS Makeup Line	N/A
52	MU242	RCP Seal Veter Supply	N/A
53	MU243	RCP Seal Vater Supply	N/A
34	MU244	RCP Seal Vater Supply	N/A
55	MUSY2	RCP Seal Vater Supply	N/A
59	Flange	Secondary Side Cleaning (Inside	
		Containment)	N/A
59	Flange	Secondary Side Cleaning (Outside	
		Containment)	N/A
57 0	H\$603	Stong Generator Blovdovn Line	H/A
60 0	MS611	Stead Generator Blowdown Line	N/A
67	CV209	Bydrogen Dilution System Supply	N/A
69	CV210	Sydrogen Dilution System Supply	N/A
714 0	CV2000B	Containsent Pressure Sensor	N/A
710	CP16	Core Flood Tank Mitrogen Fill	
		Line	N/A
724 0	CV20018	Containment Pressure Sensor	N/A
72C 0	CV6248	Containment Pressure Differential	
	/	Transaitter	N/A
734 0	CV20028	Containment Pressure Seaver	N/A
73C 0	CV645B	Containment Pressure Differential	
		Transmitter	N/A
744 0	CV2003B	Containment Pressure Sensor	N/A
*740	D82735	Pressurises Auxiliary Spray	N/A
*74C	DE12736	Pressurizer Auxiliary Spray	N/A

"May be opened on an intermittent basis under administrative control.

#Not subject to Type C leakage tests.

13

**Surveillance testing not required prior to entering MODE 6 but shall be performed prior to entering MODE 3.

##Provisions of Specification 3.0.4 are not applicable provided the valve is in the closed position and deactivated.

DAVIS-BESSE, UNIT 1

Amendment No. 2, 21, 39. 112,114,127. 135

CONTAINMENT SYSTEMS

BASES

leakage rate are consistent with the assumptions used in the safety analyses. The leak rate surveillance requirements assure that the leakage assumed for the system during the recirculation phase will not be exceeded.

3/4.6.2.2 CONTAINMENT COOLING SYSTEM

The OPERABILITY of the containment cooling system ensures that 1) the containment air temperature will be maintained within limits during normal operation, and 2) adequate heat removal capacity is available when operated in conjunction with the containment spray systems during post-LOCA conditions.

3/4.6.3 CONTAINMENT ISOLATION VALVES

The OPERABILITY of the containment isolation valves ensures that the containment atmosphere vill be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment. Containment isolation vithin the time limits specified ensures that the release of radioactive material to the environment vill be consistent with the assumptions used in the analyses for a LOCA. Containment isolation valves and their required isolation times are addressed in the OSAR. The opening of a closed inoperable containment isolation valve on an intermittent basis during plant operation is permitted under administrative control. Operating procedures identify those valves which may be opened under administrative control as well as the safety precautions which must be taken when opening valves under such controls.

SIGNIFICANT HAZARDS CONSIDERATION

Description of Proposed Technical Specification Change

The purpose of this significant hazards consideration is to review proposed changes to Davis-Besse Nuclear Power Station (DBNPS), Unit Number 1 Operating License, Appendix A, Technical Specifications (TS) 3/4.6.3.1, Containment Isolation Valves, Table 3.6-2, Containment Isolation Valves, TS 3/4.6.1.1, Containment Integrity, TS Definition 1.8, Containment Integrity, and TS Bases 3/4.6.3, Containment Isolation Valves. This request proposes to remove TS Table 3.6-2 from the TS and relocate the list of containment isolation valves and associated information to the Updated Safety Analysis Report (USAR). This change would allow changes to be made to the table in accordance with 19CFR50.59 while maintaining the surveillance test requirements for containment isolation valves in the TS. In addition, several administrative changes have been made for clarification purposes. The Technical Description (Attachment 1) discusses these changes.

Significant Hazards Consideration

The Nuclear Regulatory Commission has provided standards in 10CFR50.92(c) for determining whether a significant hazard exists. A proposed amendment to an Operating License for a facility involves no significant hazards if operation of the facility in accordance with the proposed changes would not: 1) Involve a significant increase in the probability or consequences of an accident previously evaluated; 2) Create the possibility of a new or different kind of an accident from any accident previously evaluated; or 3) Involve a significant reduction in a margin of safety.

The proposed changes do not involve a significant hazards consideration because the operation of the Davis-Besse Nuclear Power Station, Unit Number 1, in accordance with these changes would:

- Not involve a significant increase in the probability or consequences of an accident previously evaluated because the relocation of the information in the Technical Specification Table to another controlled document is an administrative change which does not affect accident conditions and assumptions since no hardware changes are being made. [10CFR50.92(c)(1)]
- 2. Not create the possibility of a new or different kind of accident from any accident previously evaluated because the accident conditions and assumptions are not affected and no new initiators are created since the changes are administrative only and no hardware changes are being made. On matters related to nuclear safety, no new malfunctions are involved. [10CFR50.92(c)(2)]
- Not involve a significant reduction in a margin of safety because the TS will continue to require operable containment isolation valves and appropriate surveillance requirements to ensure operability of containment isolation. [10CFR50.92(c)(3)]

Conclusion

•

Based on the discussion above, it is concluded that the proposed changes do not involve a significant hazards consideration.