MEMORANDUM FOR: Stepan Chemical Company File
FROM: Myu Campbell, Radiation Specialist
SUBJECT: DOCUMENTS RECEIVED FROM LICENSEE DURING 80-01 INSPECTION

Enclosed are four (4) documents which were given to my by Mr. E. Swanson of Stepan Chemical Co. on November 24, 1980. The first is a copy of an aerial picture of the Maywood Chemical facility circa 1951. The second is a copy of the plot plan of the facility, also circa 1951. The third is a copy of an internal memorandum dated September 9, 1968 describing the closeout survey of the south dike area. The fourth is a copy of an internal memorandum dated July 26,1963 describing the thorium process which was used by Maywood Chemical.

Myu Campbell
Radiation Specialist

Enclosures: As Stated

Meno to: D. H. Francis (4)
Froms E. A. Svanson - E: SEP 91968
Date: September 9, 1968
Subject: Statns of Burial Protect

The burial of waste material from the south dike was completed on Auguet 3, 1968. A prelisinary radiation survey was nede by us, and indicated that the entire area had wafficient cover. showing that all readinga were below $0.2 \mathrm{mra} / \mathrm{hr}$.. the average limit specified by AEC for unrestricted use. Isotopes, Inc.. of Westwood, N. J., made the final radiation survey on August 7. This eurvey, along with the building 77 area survey, was sent to the ABC on Auguat 15, requesting that both former storage areas be released from the licensing requiremente. In reaponse to this rempest, Mr. R. G. Gilbert, Compliance Inspector for the AEC Hewar t office, made an independent survey of both former storage areas on Thursday, September 5. His survey substan-iated the Isotopes survey, showing that both areas were well below the $0.2 \mathrm{mr} / \mathrm{hr}$. avarage. Spot readings of 0.3 and $0.4 \mathrm{mrs} / \mathrm{hr}$. wert noted. The AEC allows spot readings as high as $1.0 \mathrm{mrs} / \mathrm{hr}$.

A letter received from the ABC on September 9, 1968, is attached, and states that both former etorage areas can be released on an unrestricted basis.

Mr. John Russo of the Radiological Health Program of the New Jersey State Dopartment of Fiealth was called and informed of the AEC deciaion. A copy of the ABC letter was sent to Mr. Russo.

EAS/ab

Fo: D. H. Francis	
From:	B. H. Nichols
Date: July 26,1963	

DEPrancis - 4 Howers
Jituber
IHNichols
HRSpiess
JPAlrutz

Subject: Thorium Process as of 1943 - Nonasite Sand to Thorium Nitrate and Cxide.

Sand -ocessing

1. A charge of approximately 1000 pounds - $66^{\circ} \mathrm{H}_{3} \mathrm{SO}_{4}$ is placed in each of two kettles. The ,aid is hoated until it begins to fues at wich time orat 8 bags of monaxite sand is addes. (The sand is not actually weighed and 8 full bags are not always added). The charge in the kettles is approximately 1000 pounds acid and 900 pounds monazite in each kettle. The mixture is cooked for about 4 hours with constant agitation.
2. When the mixture has cooked the required time it is dumped into receiving tanks where it is diluted with water. The material is agitated for 1 hour and the gravity is checked and adjusted to $40^{\circ} \mathrm{Be} \mathrm{b}$. adding water. After the agitation has been cospleted the silution $i s$ allowed to stand for $\frac{1}{2}$ hour and the rare earth swits with the exception of Thorium eettle out. The 40° Be liquid is decanted off the top and purped into a storage tank to be usad for manufacturing of thorium salts. The R.E. salts remining are diasolved in cold water and purmed to atorage tanks.

This original separation of thorium from the reat of the R.E. salta is not quantative. It ia dependent on the fact that thorium sulfate is soluble in concentrations less than 40° Is and the other R.B. sulfates are insoluble in hot solutions at this concentration.
3. The 40° Be liquor, Thorium sulfate, is pumped to the \#2 ervaporator and the solution is concentrated to $56^{\circ} \mathrm{Be}$. At this concentration the thorium saits in solution are precipitated. The salta precipitated are really a mixture of $\mathrm{Th}_{2} \mathrm{O}_{5} ; \mathrm{SO}_{4}, \mathrm{ESO}_{3}$. The acid solution remaining from this precipitation is pumped to a atorage tank and sold as spent sulfuric acid.

POOR ORIGINAL

When the spent acid has been decanted the precipitated salts are dissolved in cold water to make a solution ef $40^{\circ} \mathrm{Be}$. This 40° Be solution is purped to a lad ator age tank or direct to Bualding \# 21 for procesaing to thorium aalts.

Thorium Mitrate

The 40° Be liquar from process 31-01-1 is oumped to a load tank and then diluted to $20^{\circ} \mathrm{ge}$. This solution is allowed to settle and is then decanted to ancther lead tank. The reaidue is allowed to accumalate for several batches aftor which it is filtered on a sutsch and stored in metal drums. This "blsck mud" is saved as the source of mesothorium.

The decanted aolution is precipitated with oxalic acid (lab test showa a glight excess of acid) and the solution, after settling is pumped to the lime tank for diaposal. The thorium oxalate which has been precipitated is washed several times in the same tank until laboratory testa show it is free from seid. The thorium oxalate is then filtered on a Natach filter and stored in wooden service containers.
"Soda ash extraction" - 1200 pounds thorium oxalate is added to 15% soda ash solution in steel tanka, $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{Ha} \mathrm{HCO}_{3}\right)$; the small amount of HallCO 3 is added to eliminate the possibility of an sleori. When this errade thorium ocralate is converted to the carbonate any R.R. salts present are insoluble and the thorium carbonate is soluble. The solution is agitated and heated to 80° after which it is filtered in a press. The liquer (thorium carbonate) is placed in tank \#2, and the press cake (R.Z. Carbonate) is turned to tank \#l where it is washed and refiltered. The washed R.E.Cazbonate cake is returned to process $31-05-1$ where it is used in the manufacturing of R.E. Chlarido cake.

The Thoriura carbonate solution in tank \# 2 is treated with caustic soda, a laboratory control is used to detemine the amount of caustic, and the thorium is precipitated as ThOH_{4}. It is filtered in a press and the filtrate is returned to tank \#1 as soda ash liquor for the next batch. In tive this soda ash becomes so contaminated with silicates, ste. that a new batch is made and the sld batch is purered to tha lima tariks for disposal.

The thon 4 is washed and pressad agnin until it is free from alkalies. This material ia Thorium hydroxide technical.

Thorium Nitrate Pinishing

Thorium hydroxide is dissolved in the ECI and made to $30^{\circ} \mathrm{Be}$ in a wooden tank. It is then transferred to a stonewsre crock in which it is accurately neasured by vo' me and ${ }^{\circ} \mathrm{Be}$ to determine the amount of slectrolytu $\mathrm{H}_{6} \mathrm{SO}_{4}$ to use. The $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added from measuring tanks to the solution whtin is cooled with ice and con tantly agitated by hand. The astilion starts et 30° Be and steadily sails with the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ the se falla to about $10^{\circ} \mathrm{Be}$ at wich tim it begins to rise. This is the aritical point and deternine when enough $\mathrm{H}_{2} \mathrm{SO}_{4}$ has been used. (as a check against calculated amount) Thorium sulfate precipitates and is filtered on a Nutsch. The solution is returnud to process 21-02-1 to recover the R.E. values.

Thorium Sulfate is dissolved in cold water in a etoneware crock. Aqua asmonia is mided with hand agitation and $\mathrm{Fh}(\mathrm{CB})_{4}$ is precipitated. The $\mathrm{Th}(\mathrm{OB}) 4 \mathrm{is}$ filtered on a suction ifiter. the liquor is discarded and the hydroxide is dissolved in FiCl. and the precipitation of $\operatorname{Th}\left(\mathrm{SO}_{4}\right)_{2}$ is repeated as abovs. The $\mathrm{Th}\left(\mathrm{SO}_{4}\right)_{2}$ obtained by the aecond crystallization is tested with a spectroscope for presences of R.E. If any R.E. is present. a third precipitation is sade as the two above.

The $\left(\mathrm{SO}_{4}\right)_{2}$ which has passed the tast with the spectroscope is converted to Th(OB) 4 with aqua ammonia as previousiy. It is filtered on a sutsch and the product is $\mathrm{p}^{*-} \mathrm{Th}(\mathrm{OH})_{4}$.

75 pounds HMO_{3} is added to a stoneware crock and $\mathrm{Th}(\mathrm{OH})_{4}$ is slowly added from the cake on the Nutsch. ThiOn $)_{4}$ is added to excess when the solution becones cloudy. It is allowed to settle and the clear solution is transferres to another stoneware crock where $\mathrm{H}_{2} \mathrm{~S}$ is bubblad through to ppt. the heavy retals. The solution is filtered through filter papers on glass funnela and then evaporated in enamel pota to $150^{\circ} \mathrm{C}$. The material ia stirred out while cooling and the product is $\mathrm{Th}\left(\mathrm{MO}_{3}\right)_{4}$.

Thoxium Oxide C. P_{2}
To make a crystal for production of Thorium oxile the previous evaporation in process $31-02-2$ is stopped beiore the temperatura reaches $150^{\circ} \mathrm{C}$ and additional HNO_{3} is added. Thia liquor on cooling produces a large crystal which is Iiltered out and the liquor goes back as HNO_{3} for the nest batch.

The srystals are placed in silica dishes and ignitac to the oxide over gas burneri. Whan the open gas burners have ignited all that is poasible at that temperature the material is placed in the gas furmacea (Lanthanum Building) and the final ignition ia mada.

The oxide is sifted through a 60 mesh sieve, packed, and shipped $-\mathrm{ThO}_{2}$.

Ens/fe

No
To.
scale
anymore

