LICENSEE EVENT REPORT

CONTROL BLOCK: | 1 | 1 | 1 | 1 | $]_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(PLEASE PRINT OR TYPE ALL RE QUIRE INFORMATION)
ont $60 \quad 61$ DOCKET NUMBER
EVENT DESCRIPTION AND PROBABLE CONSEQUENCES (10)
On May 11, 1981, at 1100 hours while performing routine surveillance, Main Steam
Line High Radiation Functional Test, suczhannel B was found to trip outside its acceptable trip setpoint band (T.S. Table 3.1.1). There were no consquences. See attachment.
$[5] L$
0
0 \qquad
67 \qquad

0	8
8	9

\square

ACTION FUTURE
TAKEN ACTION \square EFFECT SHUTDOWN
ONPLANT METHOD
\qquad $\left[\begin{array}{l}Z \\ 35 \\ \hline\end{array}(20)\right.$ $!$ Z 21 (21)
\square
co \square
COMPONENT CODE
$N|S| T|R| U$
 20 manufacture 1 E (19) $\frac{2}{35}$

01 Hours (22 ATtachment
$\left[\begin{array}{l}Y \\ 4\end{array}\right]$

CAUSE DESCRIPTION AND CORRECTIVE ACTIONS (27)
1] 0 L Failure of the subchannel to trip at its desired setpoint is attributable to
[11 L instrument setpcint drift. The subchannel was recalibrated and satisfactorily tested.

112] \qquad
[13 \qquad
14 ! \qquad
FACe
FACILITY
STATUS
Noma
OTHERSTATUS 30
METHOD OF
DISCOVERY
DISCOVEAY DESCRIPTION (32)

ACTIVITY CONTENT
RELEASED OF RELEASE

1	6

NA
,

\square
 NA

2](42)
9 a a wicitr

ATTACHMENT TO LER 81-09/3L NORTHEAST NUCLEAR ENERGY COMPANY MILLSTONE NUCLEAR POWER STATION - UNIT 1 PROVISIONAL LICENSE NUMBER DPR-21 DOCKET NUMBER 50-245

IDENTIFICATION OF OCCURRENCE
A reactor protection system instrument setting was found to be less conservative than that established by the technical spec "ication.

CONDITIONS PRIOR TO OCCURRENCE
Prior to the occurrence the plant was shutdown for performance of main turbine repairs.

DESCRIPT ${ }^{\circ}$ ON OF OCCURRENCE
On May 11, 1981 at 1100 hours while performing rot cine surveillance, Main Steam Line High Radiation Functional Test, the subchannel B trip setpoint was found to be $700 \mathrm{mR} / \mathrm{hr}$. Technical Specification Table 3. 1.1 requires that the trip level setting be less than or equal to seven (7) times the normal full power background dose rate, which corresponded to a maximum trip setpoint of 689 $\mathrm{mR} / \mathrm{hr}$. Additionally, the subchannel B downscale trip was found to be inoperative. The normal downscale trip setpoint is $0.1 \mathrm{mR} / \mathrm{hr}$.

DESIGNATION OF APPARENT CAUSE OF OCCURRENCE
Failure of the subchannel to trip at its desired setpoint is attributable to instrument setpoint drift.

ANALYSIS OF OCCURRENCE

The main steam line radiation monitoring system consists of four (4) radiation monitors arranged in one-out-of-two-twice logic system. On receipt of a main steam line radiation signal, the system initiates a reactor scram and isolation to reduce the source of radiation to the extend necessary to prevent excessive release of radioactive materials. Failure of the subsystem in question to trip at its desired setpoint did not result in a condition that has not been previously analyzed. Tie remaining subsystems were found to be within their desired setpoint range and would have initiated the requirts action of a main steam line high radiation condition had existed.

CORRECTIVE ACTION
The subsystem in question was recalibrated to within its acceptable setpoint range and was satisfactorily tested.

The radiation monitor was manufactured by the General Electric Company and has a scale may imum of $1 \times 10^{6} \mathrm{mR} / \mathrm{hr}$.

