NUREG/CR-1950 PNL-3709 R3

Data Report for the NRC/PNL Halden Assembly IFA-432: April 1978-May 1980

Manuscript Completed: February 1981 Date Published: April 1981

Prepared by E. R. Bradley, M. E. Cunningham, D. D. Lanning, R. E. Williford

Pacific Northwest Laboratory Richland, WA 99352

Prepared for Division of Reactor Safety Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B2043

ACKNOWLEDGMENTS

The authors wish to thank the Fuel Behavior Research Branch, Office of Reactor Safety Research, U.S. Nuclear Regulatory Commission (NRC), for their continued support and encouragement of the experimental program. We also thank the Halden Reactor staff and R. W. Miller, the NRC representative at Halden, for their efforts in recording and transmitting the experimental data. Special thanks are given to W. D. Bennett, who produced the many data plots, and to S. K. Edler for editing this report.

ABSTRACT

This report presents the in-reactor data collected from the U.S. Nuclear Regulatory Commission (NRC)/Pacific Northwest Laboratory (PNL) Halden test assembly IFA-432 for the period from April 1978 through May 1980. The irradiation test is part of an experimental program entitled "Experimental Support and Development of Single-Rod Fuel Codes" sponsored by the Fuel Behavior Research Branch of the NRC. The purpose of this program is to reduce the uncertainties of predicting the thermal and mechanical behavior of an operating nuclear fuel rod.

Fuel centerline temperatures, cladding elongation, internal fuel rod pressures, and local powers at the thermocouple (TC) positions are shown as a function of time. The local powers were derived from neutron detector readings while the other variables were measured directly.

Detailed analysis of the data is not made, but topical reports discussing certain aspects of the data are referenced. Descriptions of the assembly, instrumentation and calibration, and data processing methods are also presented.

SUMMARY

The U.S. Nuclear Regulatory Commission (NRC)/Pacific Northwest Laboratory (PNL) Halden test assembly IFA-432 has operated since December 1975 and has reached peak burnups in excess of 2560 GJ/kgU (29,600 MWd/MTM) as of May 1980. Data are currently being obtained from six neutron detectors, four fuel thermo-couples (TCs), three cladding extensometers, and two pressure transducers. These data are providing valuable information regarding fuel performance at high burnups. The assembly will be removed from the reactor in mid-1981 with projected peak burnups in excess of 3000 GJ/kgU (35,000 MWd/MTM).

This report presents in-reactor data collected from IFA-432 for the period from April 1978 through May 1980. Data collected prior to April 1978 were presented in a previous report (Hann et al. 1978b). Fuel temperatures, power levels, and elongation data are presented in the form of plots of the variables versus time while internal pressure data and calculated burnups are tabulated.

Descriptions of the test rationale, assembly and rod designs, test facility, instrument array and calibration, and data processing methods are included. Topical reports discussing specific aspects of the data analysis are referenced.

CONTENTS

ACKN	OWLED	GMEN	TS	•	•			•		•	•	•	•	•	111
ABST	RACT				•										v
SUMM	ARY											4.5			vii
INTRO	ODUCT	ION													1
TEST	DESC	RIPT	ION												3
	CROS	s-col	RRELAT	TION	EFFORT	rs									3
	TEST	FAC	ILITY												8
	FUEL	AND	CLAD	DING	PRECHA	ARACTE	RIZAT	ION							8
DATA	PRES	ENTA	TION												13
	POWE	R HIS	STORI	S	. (13
	FUEL	TEM	PERATI	JRE H	15:001	ES									32
	CLAD	DING	ELON	GATIO	N HIST	ORIES			10						44
	ROD	INTER	RNAL F	RESS	URE HI	STORI	ES								54
	BURN	UP	10		1.1		1	1							62
REFER	RENCE	S		•			. 1		11	1					65
APPEN	NDIX	A - I	FUEL P	ROD A	ND FUE	L COL	UMN S	CHEMA	ATICS	FOR	IFA-4	32			A.1
APPEN	NDIX	B - (DATA P	ROCE	SSING										B.1
APPEN	NDIX	с -	INSTRU	JMENT	DESCR	IPTIO	NS AN	D CAL	IBRAT	TION					C.1
APPEN	XIDIX	D - /	ASSEME	BLY P	OWER U	ALIBR	ATION								D.1

FIGURES

1	Arrangement of Temperature Sensors, Neutron Detectors, Fuel Relative to Reference Axial Thermal Flux Profile	and .			6
2	Schematic of Instrumented Fuel Assembly (IFA)-432 .				7
3	IFA-431 and IFA-432 Arrangements in the Flow Channel				10
4	Local Linear Heat Ratings at Upper Thermocouple Location for Rods 1, 2, and 3 of IFA-432 from April 24, 1978, to June 18, 1978	ons o			14
5	Loca' Linear Heat Ratings at Lower Thermocouple location for Rods 1, 2 and 3 of IFA-432 from April 24, 1978, to June 18, 1978	ons			14
6	Local Linear Heat Ratings at Upper Thermocouple Locatin for Rods 5, 6, and 8 of IFA-432 from April 24, 1978, to	ons			
	June 18, 1978	•	•	•	15
7	Local Linear Heat Ratings at Lower Thermocouple Locatin for Rods 5, 6, and 8 of IFA-432 from April 24, 1978, to June 18, 1978	ons o			15
8	Local Linear Heat Ratings at Upper Thermocouple Locatin for Rods 1, 2, and 3 of IFA-432 from July 13, 1978, to August 31, 1978	ons			16
9	Local Linear Heat Ratings at Lower Thermocouple Locatin for Rods 1, 2, and 3 of IFA-432 from July 13, 1978, to August 31, 1978	ons			16
10	Local Linear Heat Ratings at Upper Thermocouple Locating for Rods 5, 6, and 8 of IFA-432 from July 13, 1978, to august 31, 1978	ons			17
11	Local Linear Heat Ratings at Lower Thermocouple Locati for Rods 5, 6, and 8 of IFA-432 from July 13, 1978, to August 31, 1978	ons			17
12	Local Linear West Datings at Hener Thermosour le Locati				
10	for Rods 1, 2, and 3 of IFA-432 from September 1, 1978 to October 7,	,			18
13	Local Linear Heat Ratings at Lower Thermocouple Locati for Rods 1, 2, and 3 of IFA-432 from September 1, 1978 to October 7, 1978	ons			18

14	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from September 1, 1978, to October 7, 1978			19
15	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from September 1, 1978, to October 7, 1978			19
16	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from November 28, 1978, to January 26, 1979			20
17	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from November 28, 1978, to		Ċ	20
	January 26, 1979	•	•	20
18	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from November 28, 1978, to			
	January 26, 1979	•	•	21
19	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from November 28, 1978, to			
	January 26, 1979	•		21
20	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from April 5, 1979, to			22
	May 22, 1979	•	•	22
21	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-43? from April 5, 1979, to May 22, 1979			22
	huy 22, 1979	÷		the fee
22	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from April 5, 1979, to May 22, 1979			23
22	Less Linear Hest Datings at Lover Thormsonyals Locations			
23	for Rods 5, 6, and 81 of IFA-432 from April 5, 1979, to May 22, 1979			23
24	ing line let Debien et Heren Theresen le Loostiere			
24	for Rods 1, 2, and 3 of IFA-432 from July 10, 1979, to August 23, 1979			24
25	Local Linear Heat Ratings at Lower Thermocouple Locations			
	August 23, 1979			24
26	Local Linear Heat Ratings at Upper Thermocouple Locations			
	August 23, 1979			25

27	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from July 10, 1979, to August 23, 1979			25
28	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from October 1, 1979, to November 30, 1979			26
29	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from October 1, 1979, to November 30, 1979			26
30	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from October 1, 1979, to	·		20
31	November 30, 1979	•	Ċ	27
	November 30, 1979	•		27
32	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from December 1, 1979, to January 6, 1980			20
33	Local Linear Heat Ratings at Lower Thermocouple Locations			28
	January 6, 1980			28
34	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from December 1, 1979, to January 6, 1980			20
35	Local Linear Heat Ratings at Lower Thermocouple Locations		•	29
	for Rods 5, 6, and 8 of IFA-432 from December 1, 1979, to January 6, 1980			29
36	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from March 26, 1980, to			
27	May 24, 1980	•	•	30
37	for Rods 1, 2, and 3 of IFA-432 from March 26, 1980, to May 24, 1980			30
38	Local Linear Heat Ratings at Upper Thermocouple Locations for Rods 5, 6, and 9 of IFA-432 from March 26, 1980, to	Ť.		
	May 24, 1980	•	•	31
39	Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 9 of IFA-432 from March 26, 1980, to			
	May 24, 1980			31

40	Upper Thermocouple Readings for Rod 3 of IFA-432 from April 24, 1978, to June 18, 1978		33
41	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from April 24, 1978, to June 18, 1978		33
42	Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from April 24, 1978, to June 18, 1978		34
43	Upper Thermocouple Readings for Rod 3 of IFA-432 from July 13, 1978, to August 31, 1978		34
44	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from July 13, 1978, to August 31, 1978		35
45	Lower Thermocouple Readings for Rods E and 6 of IFA-432 from July 13, 1978, to August 31, 1978		35
46	Upper Thermocouple Readings for Rod 3 of IFA-432 from September 1, 1978, to October 7, 1978		36
47	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from September 1, 1978, to October 7, 1978		36
48	Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from September 1, 1978, to October 7, 1978		37
49	Upper Thermocouple Readings for Rod 3 of IFA-432 from November 28, 1978, to January 26, 1979		37
50	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from November 28, 1978, to January 26, 1979		38
51	Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from November 28, 1978, to January 26, 1979		38
52	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from April 5, 1979, to May 22, 1979		39
53	Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from April 5, 1979, to May 22, 1979		39
54	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from July 10, 1979, to August 23, 1979		40
55	Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from July 10, 1979, to August 23, 1979	•	40
56	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from October 1, 1979, to November 30, 1979		41

57	Lower Thermocouple Readings for Rod 5 of IFA-432 from October 1, 1979, to November 30, 1979	41
58	Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from December 1, 1979, to January 6, 1980	42
59	Lower Thermocouple Readings for Rod 5 of IFA-432 from December 1, 1979, to January 6, 1980	42
60	Lower Thermocouple Readings for Rods 1 and 3 of IFA-432 from March 26, 1980, to May 24, 1980	43
61	Lower Thermocouple Readings for Rod 5 of IFA-432 from March 26, 1980, to May 24, 1980	43
62	Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from April 24, 1978, to June 18, 1978	45
63	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from April 24, 1978, to June 18, 1978	45
64	Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from July 13, 1978, to August 31, 1978	46
65	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from July 13, 1978, to August 31, 1978	4.;
65	Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from September 1, 1978, to October 7, 1978	47
67	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from September 1, 1978, to October 7, 1978	47
68	Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from November 28, 1978, to January 26, 1979	48
69	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from November 28, 1978, to January 26, 1979	48
70	Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from April 5, 1979, to May 22, 1979	49
71	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from April 5, 1979, to May 22, 1979	49
72	Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from July 10, 1979, to August 23, 1979	50
73	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from July 10, 1979, to August 23, 1979	50

74	Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from October 1, 1979, to November 30, 1979		51
75	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from October 1, 1979, to November 30, 1979		51
76	Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from December 1, 1979, to January 6, 1980		52
77	Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from December 1, 1979, to January 6, 1980		52
78	Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from March 26, 1980, to May 24, 1980		53
79	Cladding Elongation Sensor Readings for Rod 9 of IFA-432 from March 26, 1980, to May 24, 1980		53
A.1	Schematic Arrangement of Fuel Rods for IFA-432	÷.	A.2
A.2	Stack Arrangement for Rods 1 and 6 of IFA-432		A.3
A.3	Stack Arrangement for Rods 2, 3, and 5 of IFA-432		A.4
A.4	Stack Arrangement for Rod 2 of IFA-432		A.5
A.5	Stack Arrangement for Rod 4 of IFA-432 (Xenon Fill Gas) .		A.6
A.6	Stack Arrangement for Noninstrumented Replacement Rods 7, 8, and 9 of IFA-432		A.7
8.1	Flow Diagram for Processing Halden Data		B.2
C.1	Schematic of Self-Powered Beta Current Neutron Detector .		C.2
C.2	Schematic of W 5% Re/W 26% Re Thermocouples with Grounded Junction		C.3
c.3	Calibration Curve for W 5% Re/W 26% Re Thermocouples		C.4
C.4	Cladding Elengation Monitor		C.6
C.5	Fission Gas Pressure Transducer		C.7

XV

TABLES

1	Design Parameters and Instrume	entation	for I	FA-432 .	•	•	•	4
2	Cross-Correlation Matrix .		•				•	8
3	Operating Data for the Halden	Boiling	Water	Reactor				9
4	Pressure Data from IFA-432		•					54
5	Burnup in GJ/kgU						•	62

INTRODUCTION

The thermal stored energy in a fuel rod is the driving function for the severest postulated nuclear energy-related accident--the loss-of-coolant accident (LOCA). Because of this, the final acceptance criteria for emergency core cooling (ECC) systems require calculation of the stored energy and gap conductance of a fuel rod, both for normal operation and for the duration of the LOCA. Although these calculations are used in the regulation of commercial nuclear power plants, uncertainties in them have caused temporary derating of many power plants and delays in the startup of other plants. Many of these uncertainties can be attributed to the lack of well-characterized data for fuel irradiated throughout the normal operating power range of commercial nuclear power plants.

To focus on these uncertainties, four instrumented fuel assemblies (IFAs) have been designed by the Pacific Northwest Laboratory (PNL)^(a) and are being irradiated in the boiling water reactor (BWR) at Halden, Norway. The first two tests in the series are IFA-431 and IFA-432, which are identical 6-rod assemblies containing the same variations of gap size and fuel type but operating at different power levels. IFA-513 is the third assembly in the series and contains six identical rods except for fill gas composition and pressure. The fourth assembly, IFA-527, uses xenon for the fill gas to study the effects of fuel pellet cracking and relocation. The subject of this report is IFA-432, the second assembly, which had a design power of 49 kW/m (15 kW/ft) and reached its goal burnup of 1720 GJ/kgU (20,000 MWd/MTM) in late 1978. However, since most of the instruments in IFA-432 were still functioning properly at that time, it was left in the Halden core to obtain data at higher burnups.

IFA-432 has provided a vast amount of well-characterized experimental data under conditions that realistically simulate light water reactor (LWR) conditions. The data have been used extensively for analyzing fission gas release

(a) Operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute.

(Bradley et al. 1979a; Bradley et al. 1979b) and thermal and mechanical fuel rod performance (Lanning, Barnes, and Williford 1979; Lanning, Barnes, and Sheffler 1980; Williford and Hann 1977; Cunningham, Williford, and Hann 1979; Hann and Marshall 1977; and Williford et al. 1980) and for estimating error propagation in stored energy calculations (Cunningham et al. 1978). As a result of the data analysis, improved models for computer code calculations of fuel rod performance in LWRs are being developed.

The experimental data collected for IFA-432 from startup through January 1978 were reported previously by Hann et al. (1978b). This report presents the experimental data collected from April 1978 through May 1980.^(a)

⁽a) The reactor was shut down from January 1978 to April 1978.

TEST DESCRIPTION

Experimental verification of computer codes provides a means to quantify uncertainties in simulating the conditions for an operating nuclear fuel rod. A collection of mathematical models (i.e., a computer code) is used to simulate the wide range of conditions postulated during an evaluation of reactor fuel safety. Any computer code that is forced to rely on a collection of empirical and semiempirical models for much of the analysis is limited and should be primarily used for interpolation. Some extrapolation can be accomplished with models based on first principles; however, well-characterized data are needed in either case to test code predictions. When this program began in July 1974, very little data were available describing the effects of burnup on LWR fuel and no data were available describing the effects of fuel densification on fuel temperatures. Accordingly, a test matrix was developed (see Table 1), and two IFAs were designed to provide the data.^(a)

CROSS-CORRELATION EFFORTS

Much thought went into the design of this test in order to:

- insure a means for cross-correlating the data
- provide as many indeperdent checks of data validity as possible
- insure against instrument failure
- insure at least internal consistency on a relative basis
- provide some reference points to commercial plant designs and other fuel research programs.

One of the basic premises of the test design was to provide a systematic approach that would allow adequate interpolation and extrapolation with computer codes. The first step in this approach was the decision to begin with two identical assemblies since this would enhance the ability to interpolate

⁽a) IFA-432 and IFA-431 are identically designed assemblies; IFA-431 was irradiated from June 1975 to February 1976 (Hann et al. 1978a; Nealley et al. 1979).

TABLE 1. Design Parameters and Instrumentation for IFA-432

IFA-432 [Peak Power - 492 W/cm (15 kW/ft)]

0.14

	Diameter Diametra		tral		Fue1		Instrumentation					
Rod	Pe 1	let	Gap	(a)	Fill	Density,	Fue (b)	Temper	ature	Dunan	Cladding	
No.	mm	in.	mm	1n.	Gas	% 10	Type	upper	Lower	Pressure	Length	
1	10.681	0.4205	0.229	0.009	He	95	Stable	TC(C)	TC	PT(d)	ES(e)	
2	10.528	0.4145	0.381	0.015	Не	95	Stable	UT ^(f)	TC		ES	
3	10.833	0.4265	0.076	0.003	Не	95	Stable	TC	TC		ES	
4	10.681	0.4205	0,229	0.009	Xe	95	Stable	TC	TC		ES	
5	10.681	0.4205	0.229	0.009	Не	92	Stable	TC	TC	PT	ES	
6	10.681	0.4205	0.229	0.009	He	92	Unstable	TC	TC	PT	ES	
7	10.528	0.4145	0.381	0.015	Не	95	Stable					
8	10.681	0.4205	0.229	0.009	Не	95	Stable					
9	10.732	0.4225	0.179	0.007	He	95	Stable					

(a) Cladding for all rods has an OD of 12.789 mm (0.5035 in.) and an ID of 10.909 mm (0.4295 in.). Diametral gap is cladding ID minus pellet diameter.

(b) With respect to in-reactor densification.

(c) TC = Thermocouple

(d) PT = Pressure Transducer

(e) ES = Elongation Sensor

(f) UT = Ultrasonic Thermometer

over a range of powers and replicate initial conditions. (For example, all the data from the first power ramp of IFA-431 were duplicated with IFA-432.) Uncertainties associated with assembly and rod power distributions would also be reduced with identically designed assemblies.

The power profile in the Halden BWR (Figure 1) was also considered during the design. The top of the rods was placed at the peak, which forced the bottom of the rods to operate at 70-80% of peak rod power. To take advantage of the power distribution, thermocouples (TCs) were placed in the top and bottom of each rod. No tests had ever been run at Halden with TCs penetrating both end caps; however, Halden staff were able to develop a workable design. TCs in both ends allow modelers to check the ability of various codes to extrapolate over a short power range within the same rod. If a code cannot perform these calculations adequately, calculations of the temperature distribution over a \sim 4-m fuel length are also suspect.

Reference points with commercial plants and $c_{\rm e}$ fuel research programs were also developed by selecting a BWR-6 fuel geometry, procuring commercialquality tubing, and selecting appropriate assembly powers. Some of the cladding procured for this program was shipped to EG&G-Idaho National Engineering Laboratory (INEL) for use in their Halden tests. Both programs (PNL and INEL) also used the same starting powder for fuel manufacture. Some of the fuel structures were similar to those investigated in the Edison Electric Institute/ Electric Power Research Institute (EEI/EPRI) U0₂ fuel densification study (Brite et al. 1975) to provide a reference point to a much larger structural characterization program.

The correct assessment of rod powers and the distribution of power within the rods are of utmost importance to assure the best possible thermal data. Therefore, seven neutron sensors were placed in each assembly (Figure 2): one cobalt detector in the center, three vanadium detectors at the top plane of the TCs, and three vanadium detectors at the bottom plane of the TCs. An extensive calibration of the vanadium sensors was conducted during the initial startup of any assembly. In addition, rod 3 (0.076-mm diametral gap) was included as an internal standard. The small gap is closed at power; thus, the temperature gradient across the gap is minimized. Since the coolant temperature and fuel

FIGURE 1. Arrangement of Temperature Sensors, Neutron Detectors, and Fuel Relative to Reference Axial Thermal Flux Profile

centerline temperatures are known, an independent check of rod power at both the top and bottom planes in the assembly can be obtained. Rod powers and fuel temperatures in both assemblies have been compared to assure consistent data. Each rod has a cladding elongation sensor; rods 1, 5, and 6 also have null balance fission gas pressure transducers (PXDs).

Table 2 illustrates the amount of cross-correlation that is possible. In addition to the rod-to-rod comparisons, top-to-bottom comparisons can be made in each rod, and separate effects as a function of burnup and power can be evaluated.

FIGURE 2. Schematic of Instrumented Fuel Assembly (IFA)-432

Rod Number	Gap 512e	Fuel Relocation	Fuel Eccentricity	Fuel Stability	Gas Composition	Fuel Density	Rod Powers	Rod Pressures	Dynamic Temperature
1 (9-He-90-51(a)	x	x						x	×
2 (15-He-95-5)	x	×							
3 (3-40-95-5)	x	x					×		×
4 (9-Xe-95-5)					\$				*
5 (9-He-92-S)								x	×
6 (4-110-4 2-0)								x	×

TABLE 2. Cross-Correlation Matrix

(a) (9-He-95-5) indicates that the rod has a 9-mil nominal diametral gap, is filled with helium, has a 95% theoretical density, and has stable fuel.

TEST FACILITY

The Halden BWR (HBWR) uses natural circulation of heavy water for cooling. Reactor operating data are shown in Table 3. A schematic of the HBWR core loading in November 1975 is shown in Figure 3 with the locations of IFA-431 and IFA-432 indicated.

FUEL AND CLADDING PRECHARACTERIZATION

Extensive precharacterization of the fuel and cladding was essential to assure quality data and to reduce calculational uncertainties. Since this is presented elsewhere (Hann et al. 1977), only the main objectives will be discussed here.

The previous discussion emphasized the importance of knowing the correct power distribution. Thermal diffusivity measurements were made on each fuel type up to 1873K. The heat capacity and density were obtained from previous experimental work to calculate the thermal conductivity of the fuel as a function of temperature. Substitution of these data for the Lyons et al. (1964) thermal conductance equation used in the GAPCON-THERMAL-2 (Beyer et al. 1975) pretest predictions improved the power calibration calculation using

TABLE 3. Operating Data for the Halden Boiling Water Reactor

Power Level	12 MW
Reactor Pressure	3.4 MPa (500 psi)
Heavy Water Saturation Temperature	513K (464°F)
Plenum Inlet Temperature	510K (459°F)
Thermal Flux	$\sim 2 \times 10^{16} \text{ n/m}^2 \text{-s/(W/g)}$
Fast Flux (>1 Me강)	$\sim 5 \times 10^{15} \text{ n/m}^2 \text{-s/(W/g)}$
Average Fuel Power Density	14.8 W/g

rod 3. However, after the first rise to power that produces fuel cracking, the Lyons formulation for the thermal conductance is believed to be more applicable.

Establishing the initial dimensions and void volumes within the pins was also an essential part of assessing all thermal calculations; consequently, the lengths and diameters of each pellet and the cladding for each rod were measured. Each pellet was identified with a unique number to trace pellet types and position within the rod (see Appendix A). With this information the axial distribution of gap volume and the plenum volume were obtained with considerable accuracy. Pellet and cladding roundness profiles were also obtained to illustrate the departure from ideal coaxial cylinders used in most computer code models.

Geometric densities were determined for all pellets, and immersion densities were determined for a significant fraction of the pellets. A correlation was developed relating immersion density to geometric densities. These data were used in two ways: in the correction to rod powers caused by differences in mass distribution and in the verification of U.S. Nuclear Regulatory Commission (NRC) resintering models used to characterize the propensity of the fuel to densify. Resintering tests conducted on each fuel type are discussed in Hann et al. (1977).

The EEI/EPRI UO₂ densification program demonstrated the importance of pore-size distribution measurements in characterizing the stability of various fuel types. Therefore, the pore-size distributions of the three fuel types

used in these experiments were measured prior to irradiation to assure that the desired response to irradiation would be achieved. Both fuel densities and pore-size distribution will be measured during postirradiation examination (PIE) for rods 1, 5, and 6 at Harwell, UK. Archive pellets from each fuel type were retained to provide a means of reducing variances associated with potential differences in examination techniques used in the pre- and post-test measurements.

DATA PRESENTATION

In-reactor data collected from IFA-432 by the Halden IBM/1800 on-line computer data acquisition system for the period from April 1978 through May 1980 are presented in this section. Linear heat generation rates, fuel temperatures, and cladding elongation data are plotted as a function of time. In each plot, the rod number for each curve appears in the upper left-hand corner. The relative position of the rod number corresponds to the relative position of the curve in each figure. Rod 8 is a noninstrumented rod that replaced rod 4 following its removal at the end of February 1976. Rod 8 was replaced by rod 9 in February 1980.

Internal pressure data were taken manually and are presented in tabular form along with the moderator temperature and the reactor and assembly power levels. All of the pressure data taken since the initial startup (December 1975) are presented. The calculated burnup of the upper and lower TC locations are also given on a monthly basis.

POWER HISTORIES

Power histories for the upper and lower TC locations for all six rods are presented in Figures 4 through 39. These values were deduced from the vanadium self-powered neutron detector (SPND) readings after applying correction factors to account for local mass distribution, radial flux tilt, and axial flux shape (see Appendix B).

Corrections were also made for the burnup-dependent depletion of 235 U. The correction that was used (-0.66% per 1000 MWd/MTM) was taken from depletion calculations performed at Halden.

The neutron detector readings during transient periods have not been corrected for the response lag of the detector caused by incomplete saturation of the vanadium emitter. This lag amounts to about 5 min during a power ramp or one-third of the normal data collection frequency.

FIGURE 5. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2 and 3 of IFA-432 from April 24, 1978, to June 18, 1978

FIGURE 7. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from April 24, 1978, to June 18, 1978

IFA-432 from July 13, 1978, to August 31, 1978

GURE 11. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from July 13, 1978, to August 31, 1978

FIGURE 13. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from September 1, 1978, to October 7, 1978

IFA-432 from November 28, 1978, to January 26, 1979

FIGURE 19. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from November 28, 1978, to January 26, 1979

FIGURE 21. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from April 5, 1979, to May 22, 1979

FIGURE 23. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from April 5, 1979, to May 22, 1979

FIGURE 27. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from July 10, 1979, to August 23, 1979

FIGURE 29. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from October 1, 1979, to November 30, 1979

FIGURE 33. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from December 1, 1979, to January 6, 1980

FIGURE 35. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 8 of IFA-432 from December 1, 1979, to January 6, 1980

FIGURE 37. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 1, 2, and 3 of IFA-432 from March 26, 1980, to May 24, 1980

FIGURE 39. Local Linear Heat Ratings at Lower Thermocouple Locations for Rods 5, 6, and 9 of IFA-432 from March 26, 1980, to May 24, 1980

FUEL TEMPERATURE HISTORIES

Figures 40 through 61 indicate the fuel centerline temperature histories at the upper TC location for rod 3 and the lower TC locations for rods 1, 2, 3, 5, and 6. These data were collected from the W 5% Re/W 26% Re-sheathed, grounded TCs inserted in each end of each rod (see Appendix C). The upper TCs for rods 1, 2, 5, and 6 failed prior to April 1978. The upper TC for rod 3 failed after January 1979, while the lower TC for rod 6 failed after August 1979.

The TC data presented here should be used with caution since no correction has been applied for thermal neutron irradiation-induced decalibration. This decalibration results in the measured temperatures being less than the true temperatures. A current estimate of the rate of decalibration is $1.75\%/10^{24}$ n/m² thermal neutron fluence at the TC tip (Crouthamel and Freshley 1980). Analysis of transient temperature data taken during reactor scrams in August 1979 and January 1980 has indicated up to 20% decalibration of the remaining TCs.

April 24, 1978. to June 18, 1978

FIGUKE 43. Upper Thermocouple Readings for Rod 3 of IFA-432 from July 13, 1973, to August 31, 1978

FIGURE 45. Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from July 13, 1978, to August 31, 1978

FIGURE 47. Lower Thermocouple Readings for Rods 1, 2, and 3 of IFA-432 from September 1, 1978, to October 7, 1978

to January 26, 1979

FIGURE 51. Lower Thermocouple Readings for Rods 5 and 6 of IFA-432 from November 28, 1978, to January 26, 1979

to November 30, 1979

to January 6, 1980

to May 24, 1980

CLADDING ELONGATION HISTORIES

Figures 62 through 79 show the cladding elongation histories obtained during the reporting period. The elongation sensors for rods 1 and 5 failed prior to April 1978; the sensor for rod 3 failed during January 1979. The elongation for rods 8 and 9 was measured by the sensor originally mounted for rod 4. Elongation was measured with a linear variable differential transformer (LVDT)type elongation sensor of Halden design to monitor length changes throughout life (see Appendix C).

FIGURE 62. Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from April 24, 1978, to June 18, 1978

FIGURE 63. Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from April 24, 1978, to June 18, 1978

FIGURE 64. Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from July 13, 1978, to August 31, 1978

FIGURE 65. Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from July 13, 1978, to August 31, 1978

FIGURE 66. Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from September 1, 1978, to October 7, 1978

FIGJRE 67. Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from September 1, 1978, to October 7, 1978

FIGURE 68. Cladding Elongation Sensor Readings for Rods 2 and 3 of IFA-432 from Movember 28, 1978, to January 26, 1979

FIGURE 69. Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from November 28, 1978, to January 26, 1979

FIGURE 71. Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from April 5, 1979, to May 22, 1979

FIGURE 72. Cladding Elongation Sensor Readings for Rod 2 of 15A-432 from July 10, 1979, to August 23, 1979

FIGURE 73. Cladding Elongation Sensor Readings for Rods 6 and 8 of 1FA-432 from July 10, 1979, to August 23, 1979

FIGURE 74. Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from October 1, 1979, to November 30, 1979

FIGURF 75. Cladding Elongation Sensor Readings for Rods 6 and 8 of IFA-432 from October 1, 1979, to November 30, 1979

December 1, 1979, to January 6, 1980

FIGURE 78. Cladding Elongation Sensor Readings for Rod 2 of IFA-432 from March 26, 1980, to May 24, 1980

FIGURE 79. Cladding Elongation Sensor Readings for Rod 9 of IFA-432 from March 26, 1980, to May 24, 1980

ROD INTERNAL PRESSURE HISTORIES

Rods 1, 5, and 6 in IFA-432 were equipped with diaphragm-type pressure transducers to measure internal fuel rod pressures. Table 4 lists the pressure data obtained from these three rods and the moderator temperature and power levels at the time the measurements were taken. Pressure data have been corrected to reflect absolute internal pressures (see Appendix C). The pressure transducer in rod 6 failed in January 1979.

		Reactor Power.	Assembly Power.	Temperature.	P	MPa	
Date	Time	MW	kW		Rod 1	Rod 5	Rod 6
Date 1 12 75 1 12 75 2 12 75 7 12 75 8 12 75 8 12 75 8 12 75 8 12 75 8 12 75 8 12 75 13 12 75 13 12 75 15 12 75 15 12 75 15 12 75 16 12 75 17 12 75 18 12 75 19 12 75 10 12 75	Time 745 1930 845 1315 1545 815 1115 1500 1630 215 1430 400 1000 1330 1445 215 900 1600 2045 2330 845 1315 715 730 1415 1215 1230	Power, MW 0,00 0.00 1.00 0.15 0.00 0.17 4.10 7.90 8.80 0.00 0.00 11.10 11.50 11.05 11.42 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.80 8.99 7.13 0.00 11.15 11.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.17 4.10 7.90 8.80 0.00 0.00 0.00 11.10 11.42 11.43 11.43 11.43 11.43 11.43 0.00 0.17 1.42 11.42 11.43 11.43 11.43 0.00	Power, kW 0.0 0.0 11.4 7.0 0.0 6.3 50.0 99.0 113.0 0.0 133.0 133.0 133.0 133.0 133.0 133.0 133.0 135.0 135.0 135.0 138.0 140.0 142.0	Temperature, <u>°C</u> 150.0 153.6 108.0 240.0 235.0 240.0 238.0 238.0 238.0 238.0 237.0 236.0 222.0 222.0	Pri Rod 1 0.144 0.142 0.148 0.138 0.164 0.213 0.248 0.252 0.162 0.265 0.271 0.270 0.279 0.275 0.263 0.271 0.270 0.275 0.263 0.271 0.270 0.275 0.263 0.271 0.270 0.265 0.271 0.270 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.275 0.265 0.271 0.276 0.275 0.265 0.271 0.276 0.275 0.265 0.271 0.275 0.265 0.271 0.276 0.275 0.265 0.271 0.276 0.275 0.265 0.271 0.270 0.275 0.265 0.271 0.270 0.275 0.265 0.271 0.270 0.275 0.265 0.271 0.276 0.275 0.265 0.271 0.276 0.275 0.265 0.271 0.270 0.276 0.265 0.217 0.276 0.265 0.217 0.265 0.265 0.217 0.265 0.265 0.265 0.217 0.265 0.149 0.146	Rod 5 0.150 0.155 0.192 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.234 0.276 0.271 0.272 0.270 0.271 0.271 0.271 0.271 0.269 0.265 0.270 0.269 0.230 0.216 0.250 0.138 0.144	MPa Rod 6 0.175 0.188 0.192 0.211 0.171 0.193 0.235 0.265 0.253 0.265 0.253 0.265 0.291 0.271 0.271 0.271 0.271 0.271 0.275 0.265 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.275 0.265 0.257 0.265 0.26
2 01 76 2 01 76 7 01 76	1424 1446 1000	11.70 11.78 0.00	138.0 138.0 0.0	236.0 236.0 222.0	0.240 0.245 0.138	0.240 0.241 0.128	0.220 0.218 0.138
7 01 76	1015	0.00	0.0	220.0	0.142	0.136	0.142

TABLE 4. Pressure Data from IFA-432

TABLE 4. (contd)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date	Time	Reactor Power, MW	Assembly Power,	Moderator Temperature, °r	Pod 1	ressures	, MPa
						ROG I	ROG 5	KOG D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 01 76	1630	11.30	138.0	236.0	0.210	0.210	0.210
	24 01 76	1645	11.20	138.0	236.0	0.210	0.210	0.210
	5 02 76	1600	0.00	0.0	232.0	0.108	0,108	0.108
	6 02 76	1440	9.30	113.0	235.0	0.179	0.189	0.199
	13 02 76	530	7.20	84.0	235.0	0.179	0.189	0 199
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 02 76	1500	0.00	0.0	232.0	0.119	0 110	0 110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 06 76	730	0.00	0.0	227.0	0 131	0 125	0.119
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28 06 76	1500	12.21	140.0	240.0	0 157	0.125	0 100
$ \begin{array}{ccccccccccccccccccccccccccccccc$	6 08 76	1340	11.82	140.0	321.0	0.169	0.270	0.221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 08 76	1615	11.50	139.0	230.0	0 100	0.311	0.231
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 08 76	730	0.00	0.0	225.0	0 128	0.210	0.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 08 76	800	0.00	0.0	225.0	0.103	0.210	0.179
7107613000.000.000.00227.00.1280.12700.1280.2200.229211076130012.30140.0238.00.2800.6950.52329107619300.000.0233.00.1380.3860.51729107619300.000.0233.00.1380.3560.311712765052.909.3238.70.1670.4120.3437127610054.7041.6240.00.2060.5190.4417127613339.20109.2240.10.2650.6860.51081276193811.60123.5240.40.2740.7150.53991276193312.50146.4239.90.2740.7350.55930177143412.40144.0240.10.3040.8430.706401776260.000.022.70.1570.4020.372170177103311.80135.9239.70.3140.8620.75519017710383.0033.9237.00.1860.6370.578190177103311.80135.9239.70.3140.8620.755190177103311.00139.9<	22 09 76	1915	0.00	0.0	234 0	0.100	0.100	0.176
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 10 76	1300	0.00	0.0	227 0	0.120	0.270	0.229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 10 76	1300	12.30	140.0	220 0	0.136	0.280	0.240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 10 76	1015	11 82	128 0	230.0	0.280	0.695	0.523
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 10 76	1930	0.00	0.0	233.0	0.23/	0.688	0.51/
1 = 276 305 236 306 236.7 0.167 0.412 0.343 7 12 761333 9.20 109.2 240.1 0.266 0.519 0.441 7 12 761333 9.20 109.2 240.1 0.265 0.686 0.510 8 12 762004 3.00 13.1 239.5 0.147 0.451 0.353 9 12 761938 11.60 123.5 240.4 0.274 0.715 0.539 10 12 761933 12.50 146.4 239.9 0.274 0.735 0.559 3 01 77 1434 12.40 144.0 240.1 0.304 0.843 0.706 4 01 77 626 0.00 0.0 222.7 0.157 0.402 0.372 17 01 77 1033 11.80 135.9 239.7 0.314 0.862 0.755 19 01 77 1511 8.50 96.3 240.4 0.216 0.823 0.735 19 01 77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02 77 1023 11.10 139.9 239.3 0.314 0.784 0.794 $26 03 77$ 1233 6.50 54.8 239.3 0.314 0.784 0.715 $26 03 77$ 1233 6.50 54.8 239.4 0.392 0.862 0.970 $14 04$ 77 1437 12.20 143.2 239.0 0.421 0.931 0.882 <tr< td=""><td>7 12 76</td><td>505</td><td>2 00</td><td>0.0</td><td>233.0</td><td>0.138</td><td>0.356</td><td>0.311</td></tr<>	7 12 76	505	2 00	0.0	233.0	0.138	0.356	0.311
12.76 1333 9.20 109.2 240.0 0.206 0.519 0.441 8 12.76 2004 3.00 13.1 239.5 0.147 0.451 0.353 9 12.76 1938 11.60 123.5 240.4 0.274 0.715 0.539 10 12.76 1933 12.50 146.4 239.9 0.274 0.735 0.559 3 01.77 1434 12.40 144.0 240.1 0.304 0.843 0.706 4 01.77 626 0.00 0.0 222.7 0.157 0.402 0.372 17 170 1033 11.80 135.9 239.7 0.314 0.862 0.755 19 01.77 1038 3.00 33.9 237.0 0.186 0.637 0.578 19 01.77 1511 8.50 96.3 240.4 0.216 0.823 0.735 27 01.77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02.77 1023 11.10 139.9 239.3 0.314 0.804 0.892 25 03.77 1233 6.50 54.8 239.3 0.314 0.794 0.735 26 03.77 1233 6.50 54.8 239.3 0.314 0.794 0.735 26 03.77 1233 6.50 54.8 239.3 0.314 0.794 0.735	7 12 76	1005	4 70	9.5	238.7	0.16/	0.412	0.343
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 12 76	1222	9.20	100.2	240.0	0.206	0.519	0.441
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 12 76	2004	3.00	12.1	240.1	0.265	0.686	0.510
10 12 10 123.5 240.4 0.274 0.715 0.539 3 01 77 1933 12.50 146.4 239.9 0.274 0.735 0.559 3 01 77 1626 0.00 0.0 222.7 0.157 0.402 0.372 17 01 77 1033 11.80 135.9 239.7 0.314 0.862 0.755 19 01 77 1038 3.00 33.9 237.0 0.186 0.637 0.578 19 01 77 1511 8.50 96.3 240.4 0.216 0.823 0.735 27 01 77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02 77 1023 11.10 139.9 239.9 0.363 0.804 0.892 25 03 77 1628 1.50 4.0 203.1 0.216 0.500 0.480 26 03 77 1233 6.50 54.8 239.3 0.314 0.784 0.715 26 03 77 1728 12.00 116.6 239.7 0.314 0.951 0.862 10 04 77 1437 12.20 143.2 239.0 0.421 0.931 0.902 14 04 77 1437 12.20 143.2 239.0 0.421 0.931 0.902 16 <	9 12 76	1030	11 60	122 5	239.5	0.14/	0.451	0.353
120 1270 1933 12.50 146.4 239.9 0.274 0.735 0.559 3 01 77 1434 12.40 144.0 240.1 0.304 0.843 0.706 4 01 77 626 0.00 0.0 222.7 0.157 0.402 0.372 17 01 77 1033 11.80 135.9 239.7 0.314 0.862 0.755 19 01 77 1038 3.00 33.9 237.0 0.186 0.637 0.578 19 01 77 1511 8.50 96.3 240.4 0.216 0.823 0.735 27 01 77 930 11.90 144.1 239.3 0.333 0.921 0.843 4 02 77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02 77 1023 11.10 139.9 239.9 0.363 0.804 0.892 25 03 77 1628 1.50 4.0 203.1 0.216 0.500 0.480 26 03 77 1233 6.50 54.8 239.7 0.314 0.784 0.715 26 03 77 1728 12.00 116.6 239.7 0.314 0.951 0.862 10 04 77 1437 12.20 143.2 239.0 0.421 0.931 0.902	10 12 76	1033	12 50	123.0	240.4	0.274	0.715	0.539
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 01 77	1/3/	12.50	140.4	239.9	0.274	0.735	0.559
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 01 77	626	12.40	144.0	240.1	0.304	0.843	0.706
17 1033 11.80 135.9 239.7 0.314 0.862 0.755 19 01 77 1038 3.00 33.9 237.0 0.186 0.637 0.578 19 01 77 1511 8.50 96.3 240.4 0.216 0.823 0.735 27 01 77 930 11.90 144.1 239.3 0.333 0.921 0.843 4 02 77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02 77 1023 11.10 139.9 239.9 0.363 0.804 0.892 25 03 77 1628 1.50 4.0 203.1 0.216 0.500 0.480 26 03 77 1233 6.50 54.8 239.3 0.314 0.784 0.715 26 03 77 1728 12.00 116.6 239.7 0.314 0.951 0.862 10 04 77 1034 11.70 136.6 239.4 0.392 0.862 0.970 14 04 77 1437 12.20 143.2 239.2 0.382 0.892 0.970 18 04 77 1331 12.00 138.3 238.9 0.441 0.931 0.902 11 05 77 1331 12.00 138.3 239.3 0.627 1.313 1.245 1	17 01 77	1022	11.00	125.0	222.7	0.157	0.402	0.372
19 101 77 1038 3.00 33.9 237.0 0.186 0.637 0.578 19 01 77 1511 8.50 96.3 240.4 0.216 0.823 0.735 27 01 77 930 11.90 144.1 239.3 0.333 0.921 0.843 4 02 77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02 77 1023 11.10 139.9 239.9 0.363 0.804 0.892 25 03 77 1628 1.50 4.0 203.1 0.216 0.500 0.480 26 03 77 1233 6.50 54.8 239.3 0.314 0.784 0.715 26 03 77 1728 12.00 116.6 239.7 0.314 0.951 0.862 10 04 77 1034 11.70 136.6 239.4 0.392 0.862 0.970 14 04 77 1437 12.20 143.2 239.0 0.421 0.931 0.882 3 05 77 1331 12.00 138.3 238.7 0.441 0.931 0.902 11 05 77 1354 5.30 77.8 239.1 0.529 1.107 1.058 19 05 77 2308 12.50 143.1 239.3 0.637 1.303 $1.$	10 01 77	1033	11.80	135.9	239.7	0.314	0.862	0.755
1901771511 8.50 96.3240.4 0.216 0.823 0.735 27017793011.90144.1239.3 0.333 0.921 0.843 4027713244.1066.3235.0 0.284 0.794 0.735 990277102311.10139.9239.9 0.363 0.804 0.892 25037716281.504.0203.1 0.216 0.500 0.480 26037712336.5054.8239.3 0.314 0.784 0.715 260377172812.00116.6239.7 0.314 0.951 0.862 100477103411.70136.6239.4 0.392 0.862 0.970 140477145811.50118.6239.2 0.382 0.892 0.970 18047713136.2085.8238.7 0.441 0.931 0.902 110577133112.00138.3238.9 0.568 1.205 1.117 160577130812.50143.1239.3 0.627 1.313 1.245 190577233412.40143.2239.3 0.637 1.303 1.245 200577130012.40143.0239.5 0.627 1.303 1.245 200	19 01 77	1038	3.00	33.9	237.0	0.186	0.637	0.578
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 01 77	1511	8.50	96.3	240.4	0.216	0.823	0.735
4 02 77 1324 4.10 66.3 235.0 0.284 0.794 0.735 9 02 77 1023 11.10 139.9 239.9 0.363 0.804 0.892 25 03 77 1628 1.50 4.0 203.1 0.216 0.500 0.480 26 03 77 1233 6.50 54.8 239.3 0.314 0.784 0.715 26 03 77 1728 12.00 116.6 239.7 0.314 0.951 0.862 10 04 77 1034 11.70 136.6 239.4 0.392 0.862 0.970 14 04 77 1438 11.50 118.6 239.2 0.382 0.892 0.970 18 04 77 1437 12.20 143.2 239.0 0.421 0.931 0.882 3 05 77 1313 6.20 85.8 238.7 0.441 0.931 0.902 11 05 77 1354 5.30 77.8 239.1 0.529 1.107 1.058 19 05 77 2308 12.50 143.1 239.3 0.627 1.313 1.245 19 05 77 2334 12.40 143.2 239.3 0.637 1.303 1.245 20 05 77 1300 12.40 143.0 239.4 0.637 1.303 1.245 20 05 77 <td>4 02 77</td> <td>930</td> <td>11.90</td> <td>144.1</td> <td>239.3</td> <td>0.333</td> <td>0.921</td> <td>0.843</td>	4 02 77	930	11.90	144.1	239.3	0.333	0.921	0.843
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 02 77	1324	4.10	66.3	235.0	0.284	0.794	0.735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 02 77	1023	11.10	139.9	239,9	0.363	0.804	0.892
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 03 77	1628	1.50	4.0	203.1	0.216	0.500	0.480
260.377172812.00116.6239.70.3140.9510.862100477103411.70136.6239.40.3920.8620.970140477145811.50118.6239.20.3820.8920.970180477143712.20143.2239.00.4210.9310.8823057713136.2085.8238.70.4410.9310.902110577133112.00138.3238.90.5681.2051.11716057713545.3077.8239.10.5291.1071.058190577230812.50143.1239.30.6271.3131.245190577233412.40143.2239.30.6371.3031.245200577150012.30144.0239.40.6371.3031.245210577280.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	20 03 77	1233	6.50	54.8	239.3	0.314	0.784	0.715
100477103411.70136.6239.40.3920.8620.970140477145811.50118.6239.20.3820.8920.970180477143712.20143.2239.00.4210.9310.8823057713136.2085.8238.70.4410.9310.902110577133112.00138.3238.90.5681.2051.11716057713545.3077.8239.10.5291.1071.058190577230812.50143.1239.30.6271.3131.245190577233412.40143.2239.30.6371.3031.254200577130012.40143.0239.50.6271.3031.245200577150012.30144.0239.40.6371.3031.2352105772180.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	20 03 77	1/28	12.00	116.6	239.7	0.314	0.951	0.862
140477145811.50118.6239.20.3820.8920.970180477143712.20143.2239.00.4210.9310.8823057713136.2085.8238.70.4410.9310.902110577133112.00138.3238.90.5681.2051.11716057713545.3077.8239.10.5291.1071.058190577230812.50143.1239.30.6271.3131.245190577233412.40143.2239.30.6371.3031.254200577130012.40143.0239.50.6271.3031.245200577150012.30144.0239.40.6371.3031.2352105772180.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	10 04 77	1034	11.70	136.6	239.4	0.392	0.862	0.970
18 04 77 1437 12.20 143.2 239.0 0.421 0.931 0.882 3 05 77 1313 6.20 85.8 238.7 0.441 0.931 0.902 11 05 77 1331 12.00 138.3 238.9 0.568 1.205 1.117 16 05 77 1354 5.30 77.8 239.1 0.529 1.107 1.058 19 05 77 2308 12.50 143.1 239.3 0.627 1.313 1.245 19 05 77 2334 12.40 143.2 239.3 0.637 1.303 1.254 20 05 77 1300 12.40 143.0 239.5 0.627 1.303 1.245 20 05 77 1500 12.30 144.0 239.4 0.637 1.303 1.245 21 05 77 218 0.00 0.0 199.6 0.314 0.637 0.657 21 05 77 <td< td=""><td>14 04 77</td><td>1458</td><td>11.50</td><td>118.6</td><td>239.2</td><td>0.382</td><td>0.892</td><td>0.970</td></td<>	14 04 77	1458	11.50	118.6	239.2	0.382	0.892	0.970
3 05 77 1313 6.20 85.8 238.7 0.441 0.931 0.902 11 05 77 1331 12.00 138.3 238.9 0.568 1.205 1.117 16 05 77 1354 5.30 77.8 239.1 0.529 1.107 1.058 19 05 77 2308 12.50 143.1 239.3 0.627 1.313 1.245 19 05 77 2334 12.40 143.2 239.3 0.637 1.303 1.254 20 05 77 1300 12.40 143.0 239.5 0.627 1.303 1.245 20 05 77 1500 12.30 144.0 239.4 0.637 1.303 1.245 20 05 77 28 0.00 0.0 199.6 0.314 0.637 0.657 21 05 77 218 0.00 0.0 198.9 0.294 0.647 0.657	18 04 //	1437	12.20	143.2	239.0	0.421	0.931	0.882
110577133112.00138.3238.90.5681.2051.11716057713545.3077.8239.10.5291.1071.058190577230812.50143.1239.30.6271.3131.245190577233412.40143.2239.30.6371.3031.254200577130012.40143.0239.50.6271.3031.245200577150012.30144.0239.40.6371.3031.2352105772180.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	3 05 77	1313	6.20	85.8	238.7	0.441	0.931	0.902
16057713545.3077.8239.10.5291.1071.058190577230812.50143.1239.30.6271.3131.245190577233412.40143.2239.30.6371.3031.245200577130012.40143.0239.50.6271.3031.245200577150012.30144.0239.40.6371.3031.245210577280.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	11 05 77	1331	12.00	138.3	238.9	0.568	1.205	1.117
190577230812.50143.1239.30.6271.3131.245190577233412.40143.2239.30.6371.3031.245200577130012.40143.0239.50.6271.3031.245200577150012.30144.0239.40.6371.3031.245200577280.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	16 05 77	1354	5.30	77.8	239.1	0.529	1.107	1.058
190577233412.40143.2239.30.6371.3031.254200577130012.40143.0239.50.6271.3031.245200577150012.30144.0239.40.6371.3031.245210577280.000.0199.60.3140.6370.6572105772180.000.0198.90.2940.6470.657	19 05 77	2308	12.50	143.1	239.3	0.627	1.313	1.245
20 05 77 1300 12.40 143.0 239.5 0.627 1.303 1.245 20 05 77 1500 12.30 144.0 239.4 0.637 1.303 1.235 21 05 77 28 0.00 0.0 199.6 0.314 0.637 0.657 21 05 77 218 0.00 0.0 198.9 0.294 0.647 0.657	19 05 77	2334	12.40	143.2	239.3	0.637	1.303	1.254
20 05 77 1500 12.30 144.0 239.4 0.637 1.303 1.235 21 05 77 28 0.00 0.0 199.6 0.314 0.637 0.657 21 05 77 218 0.00 0.0 198.9 0.294 0.647 0.657	20 05 77	1300	12.40	143.0	239.5	0.627	1.303	1.245
21 05 77 28 0.00 0.0 199.6 0.314 0.637 0.657 21 05 77 218 0.00 0.0 198.9 0.294 0.647 0.657	20 05 77	1500	12.30	144.0	239.4	0.637	1.303	1.235
21 05 77 218 0.00 0.0 198.9 0.294 0.647 0.657	21 05 77	28	0.00	0.0	199.6	0.314	0.637	0.657
	21 05 77	218	0.00	0.0	198.9	0.294	0.647	0.657

		Reactor Power,	Assembly Power,	Moderator Temperature,	Pr	ressures,	MPa Rod 6
Date	1 1me	MW	KW		K00 1	K00 5	K00 0
21 05 77	1840	0.00	0.0	68.8	0.186	0.441	0.421
21 05 77	2056	0.00	0.0	70.4	0.176	0.431	0.392
22 05 77	1950	0.00	0.0	70.6	0.245	0.461	0.500
16 06 77	1931	0.00	0.0	79.0	0.245	0.421	0.441
19 06 77	2250	0.00	0.0	183.3	0.255	0.568	0.588
22 06 77	1556	0.00	0.0	73.0	0.235	0.421	0.421
23 06 77	555	0.00	0.0	153.1	0.284	0.519	0.519
24 06 77	921	2.90	2.1	215.7	0.412	0.862	0.853
24 06 77	1543	0.00	0.0	213.5	0.333	0.637	0.647
28 06 77	2234	2.50	21.5	200.2	0.372	0.853	0.833
29 06 77	953	3.50	21.8	238.6	0.451	0.951	0.941
29 06 77	1510	6.00	91.6	238.5	0.559	1.088	1.019
7 07 77	1209	0.00	0.0	145.2	0.274	0.529	0.549
8 07 77	1954	4.50	46.0	225.2	0.480	0.882	0.862
9 07 77	54	11.20	127.2	235.6	0.647	1.186	1.156
9 07 77	1543	11.50	139.7	237.7	0.627	1.235	1.196
11 07 77	1151	12 10	138.0	238.4	0.647	1.245	1.225
12 07 77	1204	12 40	159.6	234.8	0.627	1.245	1.225
15 07 77	1300	0.00	0.0	206.5	0.265	0.627	0.657
100 77	1046	12.00	160.1	234.6	0.745	1.303	1.372
2 00 77	1020	12.30	162.8	233.0	0.774	1.343	1.421
3 00 77	1420	0.00	102.0	216 1	0.392	0.706	0.784
3 00 77	1920	1 60	9.1	211.6	0.431	0.804	0.872
5 00 77	1420	0.00	0.0	215 1	0.392	0.696	0.794
5 08 77	1420	12.10	150 6	234 0	0.872	1 382	1.509
1/ 08 //	1415	12.10	150.0	222.0	0.882	1 352	1 490
10 08 77	1020	12.00	160.4	224 0	0.802	1 372	1.568
22 08 77	1200	12.00	161 0	222.0	0.002	1 362	1 548
22 08 77	1314	11.90	160.0	233.0	0.902	1 382	1 530
22 08 77	1410	11.90	100.0	234.0	0.902	1 302	1 588
26 08 77	954	12.00	104.2	234.0	0.706	0.070	1 147
26 08 77	1607	2.50	42.9	220.0	0.502	0.970	0.960
26 08 77	1059	1.80	10.7	220.1	0.950	1 352	1 568
14 10 77	1022	9.20	100.7	230.4	0.002	1 441	1 646
15 10 77	1434	10.00	128.7	230.4	0.911	1 460	1 676
16 10 77	1443	11.80	138.4	230.2	0.921	1.400	1 490
16 10 77	1508	11.90	133.8	(30.1	0.000	1.100	1 646
17 10 77	752	12.00	131.0	238.5	0.911	0.041	1 127
17 10 77	1449	4.00	25.0	233.4	0.01/	0.941	0.000
18 10 77	1208	12.70	0.7	234.3	0.549	0.833	1.000
19 10 77	2038	3.90	16.6	237.8	0.598	0.931	1.090
19 10 77	2101	. 0.00	6.3	230.8	0.480	1.272	1 507
24 10 77	937	11.40	109.2	238.0	0.882	1.3/2	1.09/
29 10 77	13	10.70	118.8	239.0	0.902	1.592	1.040
31 10 77	308	15.20	170.5	238.6	0.941	1.519	1.784
31 10 77	2028	15.30	174.4	238.8	0.960	1.529	1.803
1 11 77	745	1.70	4.3	238.0	0.559	0.794	1.000

Date	Time	Reactor Power, MW	Assembly Power, kW	Moderator Temperature, °C	P Rod 1	ressures Rod 5	, MPa Rod 6
1 11 77	832	1 70	0.6	236 0	0 500	0 715	0.041
A 11 77	052	1.70	0.0	230.0	0.500	0.715	0.941
4 11 //	000	1.00	3.0	237.5	0.529	0.764	0.970
4 11 //	902	1.70	3.2	237.7	0.529	0.784	0.970
4 11 11	911	1.70	3.3	237.3	0.529	0.794	0.970
4 11 77	919	1.60	3.6	237.1	0.539	0.784	0.980
4 11 77	926	1.60	3.7	237.2	0.529	0.794	0.980
4 11 77	934	1.70	3.7	237.2	0.539	0.784	0.980
7 12 77	1312	0.00	0.1	159.4	0.431	0.588	0.745
7 12 77	2224	0.00	0.2	180.8	0.421	0.627	0.804
10 12 77	831	2.40	5.7	238.7	0.559	0.804	0.911
10 12 77	916	2.20	13.6	206.2	0.559	0.823	0.872
10 12 77	924	2.20	14.2	207.5	0.559	0.853	0.872
11 12 77	2105	12.40	152.4	239.2	0.862	1.411	1.666
13 12 77	2033	2.60	8.1	238.7	0.568	0.833	0.941
13 12 77	2044	2.60	7.9	238.9	0.559	0.843	0.951
13 12 77	2056	2.60	7.5	238.8	0.568	0.823	0.951
16 12 77	904	2.50	5.9	238.2	0.549	0.794	0.921
17 12 77	859	11.60	137.8	238.7	0.960	1 382	1 646
21 12 77	1022	11.90	137.4	238 6	0.941	1 333	1 646
21 12 77	1220	11 90	137 4	232 6	0.941	1 372	1 646
4 01 78	1013	11 30	156 3	238.0	0.900	1 272	1 726
5 01 78	035	11.20	155 0	230.5	0.951	1 272	1.735
5 01 70	955	11.20	155.0	220 0	0.002	1.372	1.715
5 01 70	1050	11.30	153.0	230.0	0.970	1.382	1./35
5 01 70	1050	11.50	153.8	238.8	0.970	1.372	1.725
5 01 78	111/	11.40	153.5	230.0	0.970	1.382	1.725
5 01 78	1151	11.40	153./	239.0	0.970	1.392	1.725
5 01 78	1211	11.30	153.7	238.9	0.872	1.382	1.725
5 01 78	1224	11.20	153.5	238.7	0.970	1.382	1.735
/ 01 78	931	11.60	155.6	239.0	0.872	1.372	1.725
11 01 78	848	1.50	7.3	238.5	0.578	0.823	0.970
12 01 78	1313	11.60	158.0	239.4	0.882	1.372	1.754
12 01 78	1331	11.40	154.6	239.2	0.882	1.382	1.744
13 01 78	1452	1.70	8.5	238.6	0.568	0.861	1.000
13 01 78	1507	1.70	8.5	238.6	0.568	0.843	1.000
7 07 78	1630	0.00	0.4	72.4	0.402	0.490	0.608
7 07 78	1638	0.00	0.3	72.4	0.372	0.490	0.588
7 07 78	1644	0.00	0.3	72.2	0.372	0.470	0.598
7 07 78	1651	0.00	0.3	72.4	0.372	0.470	0.617
10 07 78	911	0.00	0.2	200.2	0.557	0.706	0.931
10 07 78	918	0.00	0.1	200.2	0.578	0.706	0.031
10 07 78	924	0.00	0.2	200.1	0.578	0.725	0.031
10 07 79	031	0.00	0.1	200.1	0.570	0.912	0.931
10 07 70	020	0.00	0.1	200.3	0.500	0.015	0.902
10 07 78	2022	2.10	5.0	200.1	0.508	0.700	1 117
10 07 78	2032	2.10	5.0	239.9	0.617	0.003	1.11/
10 07 78	2030	2.10	4.8	239.5	0.01/	0.843	1.049
11 11/ /8	21134		2 /	/ 54 4	CL PALDS	1 2444	11/1/1

Date	Time	Reactor Power, MW	Assembly Power, kW	Moderator Temperature, °C	Pr Rod 1	Rod 5	MPa Rod 6
10 07 78 13 07 78	2050 1250	2.00	5.1 11.8	239.1 239.9	0.617	0.872	1.049
13 07 78	1324	4.30	22.2	238.4	0.784	1.068	1.372
13 07 78	1407	6.20	36.2	239.4	0.892	1.205	1.529
13 07 78	1430	7.20	43.0	239.2	0.960	1.254	1.588
13 07 78	1457	8.20	49.6	238.5	0.951	1.294	1.637
13 07 78	1511	8.70	52.3	238.9	0.970	1.313	1.676
13 07 78	1531	9.40	56.9	239.0	0.970	1.382	1.695
13 07 78	1558	10.30	63.7	238.9	1.000	1.372	1.754
13 07 78	1619	11.00	71.1	239.4	1.029	1.421	1.793
13 07 78	1640	11.90	78.1	239.5	1.049	1.460	1.842
24 07 78	945	12.30	83.1	239.9	1.049	1.490	1.852
1 08 78	1355	12.50	87.4	235.5	1.058	1.509	1.891
4 08 78	1450	12.70	88.8	235.7	0.980	1.519	1.891
4 08 78	1505	12.70	88.5	235.8	1.078	1.519	1.911
4 08 78	1512	12.70	88.3	235.8	1.058	1.529	1.911
7 08 78	1822	12.30	97.0	235.7	1.088	1.519	1.950
7 08 78	1829	12.40	96.8	235.9	1.078	1.539	
9 08 78	747	2.00	5.5	239.7	0.598	0.833	1.186
9 08 78	755	2.00	4.5	239.5	0.627	0.833	1.127
9 08 78	1059	1.50	0.2	229.9	0.559	0.745	1.098
14 08 78	1107	12.60	100.9	235.0	1.117	1.597	1.999
14 08 78	1115	12.60	100.6	235.0	1.156	1.588	1.989
15 08 78	1440	5.20	44.7	235.3	0.921	1.294	1.665
22 08 78	1634	3.90	48.7	234.9	0.951	1.303	1.686
22 08 78	1650	4.70	50.3	235.2	0.960	1.333	1.715
22 08 78	1706	6.30	56.2	235.3	1.019	1.372	1.784
28 08 78	746	12.30	101.7	233.7	1.254	1.539	2.019
28 08 78	758	12.40	101.6	233.5	1.147	1.578	2.019
31 08 78	751	12.60	100.3	235.1	1.176	1.568	2.038
3 09 78	2119	12.20	99.7	235.1	1.186	1.568	2.048
3 09 78	2138	12.10	99.7	235.3	1.186	1.558	2.048
3 09 78	2144	12.20	99.8	235.3	1.176	1.539	2.019
4 09 78	743	1.70	4.1	234.6	0.676	0.843	1.147
4 09 78	750	1.70	3.1	234.6	0.696	0.853	1.147
8 09 78	1048	12.40	96.8	235.5	1.186	1.558	1.999
13 09 78	759	11.20	98.3	235.0	1.196	1.548	1.989
13 09 78	808	11.60	98.3	234.9	1.196	1.558	2.009
15 09 78	753	11.90	99.7	235.1	1.196	1.558	1.999
20 09 78	758	11.80	100.9	235.2	1.196	1.519	1.999
20 09 78	808	11.80	100.9	234.9	1.205	1.539	1.999
25 09 78	755	11.70	101.0	235.0	1.215	1.539	1.960
26 .9 78	923	1.30	0.4	227.4	0.676	0.784	1.039
26 09 78	930	1.30	0.4	227.8	0.666	0.833	1.039
3 10 78	749	11.90	90.0	235.2	1.225	1.539	2.058
3 10 78	756	11.90	90.0	235.3	1.235	1.548	2.038

Date	Time	Reactor Power, MW	Assembly Power, kW	Moderator Temperature, °C	Pr Rod 1	ressures Rod 5	MPa Rod 6
5 10 70	202	10 50	96 5	235 1	1 254	1 507	2 059
5 10 78	1626	10.50	90.5	200.1	0.520	0.500	0.725
23 11 78	1030	0.00	0.0	72 1	0.529	0.550	0.725
23 11 78	1649	0.00	0.0	220 5	0.529	0.027	0.725
27 11 78	838	2.70	7.1	239.5	0.03/	0.755	0.001
2/ 11 /8	1244	2.80	1.0	238.7	0.794	0.715	0.921
28 11 78	/45	2.60	6.0	238.8	0.902	0.833	1,11/
28 11 78	2056	8.90	65.9	239.9	1.186	1.480	1.891
30 11 78	1027	13.10	89.0	240.2	1.264	1.59/	1.960
30 11 78	1115	13.30	90.8	240.3	1.313	1.656	2.038
30 11 78	1404	13.00	89.6	240.4	1.264	1.646	2.029
3 12 78	1020	6.10	37.8	238.1	1.009	1.254	1.578
4 12 78	1029	13.60	96.1	240.3	1.284	1.656	2.078
7 12 78	745	2.20	5.7	239.9	0.872	0.833	1.117
9 12 78	1719	13.00	90.5	239.9	1.264	1.607	2.019
14 12 78	754	1.70	4.4	239.5	0.862	0.833	1.127
18 12 78	750	1.60	4.3	239.2	0.882	0.843	1.147
20 12 78	745	1.60	4.8	238.9	0.882	0.960	1.147
21 12 78	805	12.20	78.4	240.3	1.264	1.607	2.038
2 01 79	810	12.30	80.4	239.6		1.548	1.960
3 01 79	920	11,90	89.5	240.1	1.264	1.607	2.097
3 01 79	939	12,10	89.6	240.3	1.264	1,607	2.097
3 01 79	953	12.00	89.4	240.3	1,284	1.617	2.107
3 01 79	1008	12.00	89.5	240.3	1,274	1.607	2.097
3 01 79	1021	11.90	89.4	240.0	284	1.627	2.097
3 01 79	1049	12 00	89 6	240.0	1 284	1.617	2.087
3 01 79	1121	12.10	89.5	240.3	1 284	1 627	2 097
2 01 79	1202	11 00	20 6	230 0	1 294	1 607	2 007
3 01 79	1203	12.00	09.0	239.9	1 204	1 627	2 097
3 01 79	1247	12.00	09.0	240.5	1.204	1.617	2.007
3 01 79	1308	12.00	89.7	239.9	1.204	1.01/	2.097
3 01 79	1318	12.00	89.7	240.0	1.294	1.03/	2.097
3 01 79	1418	12.00	89.0	240.3	1.274	1.01/	2.097
3 01 79	1436	12.00	89.7	240.3	1.284	1.61/	2.09/
4 01 79	845	1.60	4.9	239.1	0.862	0.804	1.100
4 01 79	944	1.50	4.0	238.6	0.882	0.833	1.205
5 01 79	1647	9.50	74.4	239.5	1.205	1.519	1.999
5 01 79	1647	9.50	74.4	239.5	1.205	1.519	1.999
15 01 79	755	1.30	6.0	239.4	0.902	0.804	0.794
16 01 79	2015	7.50	57.6	240.1	1.098	1.372	
9 01 79	755	11.90	93.9	239.5	1.264	1.607	
22 01 79	735	1.50	6.1	239.2	0.902	0.853	
25 01 79	756	12.00	92.9	240.1	1.284	1.607	
2 04 79	827	2.20	5.0	238.9	0.970	0.931	
2 04 79	848	2.30	5.2	238.8	0.843	0.970	
6 04 79	750	10.70	97.0	239.4	1.401	1.774	
7 04 79	821	2.60	16.2	238.9	0.862	1.049	
7 04 79	1253	11.10	99.4	239.6	1.421	1.774	

Date	Time	Reactor Power,	Assembly Power.	Moderator Temperature,	Pr Rod 1	ressures Rod 5	, MPa
Dave	1 mile		~~~		NOU I	KUU J	nou u
17 04 79	746	11.10	97.8	235.0	1.352	1.666	
20 04 79	1553	2.20	9.4	229.7	0.794	0.902	
22 04 79	1811	10.80	95.7	230.0	1.352	1.637	
26 04 79	756	10.70	94.8	229.8	1.343	1.617	
27 04 79	858	10.60	95.8	230.6	1.411	1.695	
27 04 79	0	10.50	95.6	230.3	0.098	0.098	
27 04 79	931	10.50	95.6	230.3	1.421	1.695	
27 04 79	1208	10.50	95.1	230.4	1.411	1.666	
30 04 79	754	10.70	97.4	229.9	1.431	1.686	
30 04 79	0	10.70	96.5	230.1	0.098	0.098	
30 04 79	1057	10.50	96.4	229.7	1.431	1.686	
4 05 79	746	1.40	16.2	229.5	0.911	1.009	
11 05 79	753	9.60	92.7	230.1	1.431	1.646	
11 05 79	1025	4.80	51.1	229.8	1.225	1.392	
15 05 79	802	0.00	1.0	71.1	0.608	0.627	
21 05 79	800	4.30	41.9	224.2	1.166	1.294	
27 05 79	1043	0.00	1.1	74.2	0.412	0.431	
9 07 79	1831	2.60	16.8	237.1	1.117	1.235	
10 07 79	635	2.20	14.3	239.6	1.078	1.196	
13 07 79	1400	10.10	88.1	238.9	1.656	1.921	
15 07 79	1322	11.00	94.4	238.6	1.685	1.950	
16 07 79	806	1.70	12.5	238.9	1.058	1.176	
16 07 79	1934	12.10	101.3	239.3	1.695	1,980	
25 07 79	1242	1.70	13.0	238.7	1.000	1,107	
26 07 79	750	11.80	97.2	239.4	1.695	1,960	
2 08 79	814	11.40	102.5	225.0	1.627	1.891	
7 08 79	748	11.40	100.3	225.3	1.627	1.862	
10 08 79	754	11.70	100.5	234.7	1.666	1,931	
15 08 79	925	11.30	97.0	234.8	1.666	1.882	
21 08 79	758	7.60	68.4	235 1	1 568	1.764	
23 08 79	1433	11.80	97.9	235 7	1 637	1 940	
23 08 79	1448	11.60	97.8	235.2	1.646	1 931	
23 08 79	1525	1.40	2.2	222 7	0.657	0.735	
24 08 79	1225	1.90	5 4	233.8	0.960	1 058	
5 10 79	1623	11 80	97.7	239 6	1 470	1 011	
5 10 70	1750	11.00	08.2	230.0	1 560	1 040	
10 10 79	1/30	8 40	66 8	239.9	1.500	1.940	
12 10 79	933	2 20	5.6	239.0	0.011	1.754	
19 10 79	620	11 00	00.7	230.7	1 540	1.070	
25 10 79	0 200	12.40	99.7	239.9	1.540	1.909	
25 10 79	1220	12.40	90.9	239.9	1.01/	2.009	
26 10 79	1010	12.30	99.1	239.9	1.017	2.029	
2 11 70	1202	12.30	99.2	239.7	1.01/	2.009	
9 11 79	1203	12.40	99.2	239.8	1.588	1.989	
24 11 79	010	12.10	99.9	239.5	1.60/	2.010	
30 11 79	1021	12 20	97.9	239.3	1.508	1.050	
			10.10			1000	

TABLE 4. (contd)

			Reactor Power,	Assembly Power,	Moderator Temperature,	P	ressures,	MPa
Da	ite	Time	MW	kW	°C	Rod 1	Rod 5	Rod 6
10 1	2 79	929	0.00	0.4	205.8	0.902	0.813	
13 1	2 79	816	2.60	5.9	239.8	0.853	1.058	
16 1	2 79	1930	11.60	92.9	239.2	1.539	1.931	
19 1	2 79	1229	4.50	33.1	210.1	1.088	1.362	
23 1	2 79	1805	12.10	96.5	239.7	1.539	2.009	
27 1	2 79	325	12.20	98.4	239.4	1.548	2.087	
2 0	1 80	2121	12.10	98.5	239.2	1.529	1.960	
14 0	3 80	1826	0.00	0.5	84.4	0.666	0.951	
16 0	3 80	1834	0.70	6.2	239.6	0.755	1.274	
16 0	3 80	2054	0.00	0.3	228.3	0.833	1.068	
28 0	3 80	1405	11.50	83.9	240.0	1.470	2.323	
2 0	4 80	1037	10.20	76.5	239.4	1.499	2.362	
5 0	4 80	2159	10.40	77.0	239.3	1.480	2.303	
10 0	4 80	2055	13.10	98.E	240.0	1.529	2.411	
13 0	4 80	957	13.20	88.2	240.0	1.470	2.293	
16 0	4 80	923	13.40	88.6	239.7	1.499	2.303	
25 0	4 80	1835	0.10	0.8	74.2	0.412	0.892	
27 0	4 80	927	1.70	4.0	234.4	0.804	1.274	
30 0	4 80	806	8.00	47.8	234.7	1.274	1.960	
5 0	5 80	1207	12.20	81.8	234.7	1.441		
5 0	5 80	2121	12.10	81.3	234.9	1.480	2.313	
8 0	5 80	1835	8.40	62.4	229.4	1.411	2.156	
90	5 80	1027	2.00	3.4	229.7	0.960	1.235	
18 0	5 80	1840	1.80	3.3	210.4	0.843	1.078	
BURNUP

M

Calculated burnups at each TC location for each rod are presented in Table 5. These are the local burnups at the end of each month of operation and were calculated by numerically integrating the depletion-corrected power history over time. There was good agreement between these results using this method and PIE data from rod 6 of IFA-431 (Nealley et al. 1979).

onth-Year 1-78	$\frac{\text{Location}}{\text{UTC(b)}}$	Rod 1 1456.1 1044.9	Rod 2 1393.8 1024.5	Rod 3 1408.1 1047.1	Rod 8 1186.1 877.9	Rod 5 1484.2 1091.0	Rod 6 1481.7 1077.3
4-78	UTC	1471.6	1409.0	1422.8	1200.4	1499.0	1497.1
	LTC	1056.6	1035.9	1058.4	889.1	1102.7	1089.2
5-78	UTC LTC	1515.0 1088.8	1451.2 1067.	1464.3 1090.3	1241.5 921.4	1541.4 1135.9	1540.5
6-78	UTC	1556.1	1491.1	1503.6	1280.7	1581.9	1582.0
	LTC	1118.4	1096.3	1119.6	951.0	1166.4	1152.5
7-78	UTC	1596.2	1530.7	1543.2	1319.9	1621.8	1622.2
	LTC	1149.0	1126.3	1150.1	981.7	1198.0	1183.9
8-78	UTC	1699.8	1631.8	1643.4	1420.1	1724.9	1727.0
	LTC	1224.8	1200.4	1225.1	1057.4	1276.0	1261.6
9-78	UTC	1803.1	1731.7	1741.8	1518.6	1827.2	1831.5
	LTC	1299.4	1273.4	1298.3	1130.7	1351.6	1337.5
10-78	UTC	1818.8	1746.9	1756.8	1533.7	1842.7	1847.4
	LTC	1310.4	1284.0	1309.1	1141.5	1362.7	1348.7
11-78	UTC	1825.1	1753.3	1763.1	1540.0	1849.0	1853.7
	LTC	1315.7	1289.3	1314.4	1146.9	1368.2	1354.1
12-78	UTC	1890.7	1818.2	1828.0	1606.2	1914.7	1919.8
	LTC	1368.3	1340.8	1366.5	1200.4	1422.2	1407.9
1-79	UTC	1933.3	1859.8	1869.2	1648.4	1957.2	1963.0
	LTC	1400.5	1372.4	1398.6	1233.2	1455.4	1440.9
4-79	UTC LTC	2015.4	1940.1 1437.5	1948.4 1465.0	1727.0	2037.9	2045.4

TABLE 5. Burnup in GJ/kgU(a)

Month-Year	Location	Rod 1	Rod 2	Rod 3	Rod 8	Rod 5	Rod 6
5-79	UTC LTC	2059.5	1983.3 1473.0	1991.0 1501.1	1769.2 1335.3	2081.2 1558.6	2089.6 1543.0
7-79	UTC	2111.3	2034.1	2041.2	1819.0	2132.1	2141.5
	LTC	1541.6	1513.1	1541.6	1375.3	1599.0	1583.3
8-79	UTC LTC	2188.2 1600.8	2109.6	2116.0 1601.6	1893.3 1434.8	2208.0 1659.0	2218.6 1642.9
10-79	UTC	2274.0	2194.1	2200.0	1976.7	2293.0	2304.7
	LTC	1666.4	1638.1	1668.9	1501.7	1726.2	1709.1
11-79	UTC LTC	2338.2	2257.2 1688.3	2262.6 1720.0	2039.0 1552.4	2356.6	2369.2 1759.5
12-79	UTC	2414.9	2332.4	2337.0	2113.0	2432.3	2446.2
	LTC	1776.3	1747.9	1780.6	1612.5	1837.8	1819.8
1-80	UTC	2436.3	2353.4	2357.9	2133.8	2453.5	2467.8
	LTC	1792.9	1764.6	1797.5	1629.4	1854.8	1836.6
3-80	UTC	2450.1	2366.8	2370.8	14.8(d)	2466.4	2481.3
	LTC	1804.0	1775.4	1808.4	12.3	1866.0	1847.8
4-80	UTC	2508.6	2423.8	2425.3	77.1	2520.9	2538.6
	LTC	1851.4	1821.9	1855.0	64.8	1913.9	1895.9
5-80	UTC LTC	2534.1 1872.1	2448.7 1842.1	2449.2 1875.3	104.5 87.6	2544.8	256° 6 1916.3

TABLE 5. (contd)

(a) To convert to MWd/MTM multiply by 11.6.
(b) Upper thermocouple.
(c) Lower thermocouple.
(d) At this time rod 8 was replaced by rod 9.

REFERENCES

- Beyer, C. E., et al. November 1975. <u>GAPCON-THERMAL-2</u>: A Computer Program for Calculating the Thermal Behavior of an Oxide Fuel Rod. BNWL-1898, Pacific Northwest Laboratory, Richland, Washington.
- Bradley, E. R., et al. 1979a. An Evaluation of the In-Pile Pressure Data from Instrumented Fuel Assemblies IFA-431 and IFA-432. NUREG/CR-1139, PNL-3206, Pacific Northwest Laboratory, Richland, Washington.
- Bradley, E. R., et al. 1979b. "Burnup Dependent Fission Gas Release." Trans. ANS 33:272-273.
- Brite, D. W., et al. June 1975. EEI/EPRI Fuel Ochsification Project--Research Project 131 Final Report. Prepared for the Electric Power Reserach Institute by Pacific Northwest Laboratory, Richland, Washington.
- Crouthamel, C. E., and M. D. Freshley. October 1980. Fuel Performance Improvement Program: Semiannual Progress Report, April 1980 -September 1980. DOE/ET/34215-19.
- Cunningham, M. E., et al. 1978. Stored Energy Calculation: The State of the Art. PNL-2581, Pacific Northwest Laboratory, Richland, Washington.
- *Conningham, M. E., R. E. Williford, and C. R. Hann. 1979. Effects of Fill Bas Composition and Pellet Eccentricity; Comparisons Between Instrumented Fuel Assemblies IFA-431 and IFA-432. NUREG/CR-0331, PNL-2729, Pacific Northwest Laboratory, Richland, Washington.
 - ann, C. R., et al. November 1977. Test Design, Pre-Characterization and Fuel Assembly Fabrication for Instrumented Fuel Assemblies IFA-431 and IFA-432. BNWL-1988, Pacific Northwest Laboratory, Richland, Washington.
 - Hann, C. R., et al. 1978a. Data Report for the NRC/PN_Halden Assembly IFA-431. PNL-2494, Pacific Northwest Laboratory, ...hland, Washington.
- *Hann, C. R., et al. 1978b. Data Report for the NRC/PNL Halden Assembly IFA-432. NUREG/CR-0560, PNL-2673, Pacific Northwest Laboratory, Richland, Washington.
- Hann, C. R., and R. K. Marshall. 1977. <u>Comparative Analysis of Pellet-</u> <u>Cladding Interaction from IFA-431 and IFA-432 Halden Reactor Tests</u>. BNWL-2240, Pacific Northwest Laboratory, Richland, Washington.

Lanning, D. D., B. O. Barnes, and W. A. Scheffler. 1980. "Use of Fuel Thermocouple Transient Response for Data Verification and Fuel Rod Modeling." Nuclear Tech. 50:95-107.

- *Lanning, D. D., B. O. Barnes, and R. E. Williford. 1979. <u>Manifestations of</u> <u>Nonlinearity in Fuel Center Thermocouple Steady-State and Transient Data:</u> <u>Implications for Data Analysis</u>. <u>NUREG/CR-0220</u>, <u>PNL-2692</u>, <u>Pacific Northwest</u> <u>Laboratory</u>, <u>Richland</u>, <u>Washington</u>.
- Lyons, M. F., et al. 1964. UO2 Pellet Thermal Conductivity from Irradiation with Central Melting. GEAP-4624, General Electric Company, San Jose, California.
- *Nealley, C. et al. 1979. Postirradiation Data Analysis for NRC/PNL Halden Assemby IFA-431. NUREG/CR-0797, PNL-2975, Pacific Northwest Laboratory, Richland, Washington.
- *Williford, R. E., et al. 1980. The Analysis of Fuel Relocation for the NRC/PNL Halden Assemblics IFA-431, IFA-432, and IFA-513; An Interim Report. NUREG/CR-0588, PNL-2709, Pacific Northwest Laboratory, Richland, Washington.
- Williford, R. E., and C. R. Hann. July 1977. Effects of Fill Gas Composition and Pellet Eccentricity. BNWL-2285, Pacific Northwest Laboratory, Richland, Washington.

*These reports are available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, U.C. 20555, and/or the National Technical Information Service, Springfield, VA. 22161. APPENDIX A

FUEL ROD AND FUEL COLUMN SCHEMATILS FOR IFA-432

APPENDIX A

FUEL ROD AND FUEL COLUMN SCHEMATICS FOR IFA-432

This appendix illustrates the fuel rod and fuel column schematics for instrumented fuel assembly (IFA)-432, which is being irradiated in the Halden boiling water reactor (HBWR) in Halden, Norway.

FIGURE A.1. Schematic Arrangement of Fuel Rods for IFA-432

A.2

5

POOR ORIGINAL

	PELLET D	IAMETER			
ROD NO.	IFA-431 CM (inch)	IFA-432 CM (inch)	FUEL DENSITY % TD	FUEL TYPE	FILL GAS 1 ATM
1 6	1.0681 (0.4205) 1.0681 (0.4205)	1.0681 (0.4205) 1.0681 (0.4205)	95 92	STABLE	HELIUM

FIGURE A.2. Stack Arrangement for Rods 1 and 6 of IFA-432 of IFA-432

TOTAL NUMBER OF PELLETS IN EACH STACK - 48 NUMBER OF FUEL PELLETS - 44 NUMBER OF POISON PELLETS - 4

32 SOLID, 12 DRILLED - 0, 175 ± 0,005 CM (0,069 ± 0,002 INCH) FURNISHED BY BNW DRILLED - 0, 175 ± 0,005 CM (0,069 ± 0,002 INCH) FURNISHED BY HALDEN

	PELLET D	IAMETER			
ROD NO.	IFA-431 CM (inch)	IFA-432 CM (inch)	FUEL DENSITY % TD	FUEL TYPE	FILL GAS
2	1 0528 (0 4145)	**	95	STABLE	HELIUM
3	1 0858 (0 4275)	1.0833 (0.4265)	95	STABLE	HELIUM
5	1.0681 (0.4205)	1.0681 (0.4205)	92	STABLE	HELIUM

FIGURE A.3 Stack Arrangement for Rods 3 and 5 of IFA-432

A.4

FIGURE A.4. Stack Arrangement for Rod 2 of IFA-432

FIGURE A.5. Stack Arrangement for Rod 4 of IFA-432 (Xenon Fill Gas)

A.6

ROD NO.	PELLET DIAMETER IFA-432 CM (INCH)	FUEL DENSITY % TD	FUEL TYPE	FILL GAS 1 ATM	
7	1.0528 (0.4145)	95	STABLE	HELIUM	
8	1.0681 (0.4205)	95	STABLE	HELIUM	
9	1.0732 (0.4225)	95	STABLE	HELIUM	

FIGURE A.6. Stack Arrangement for Noninstrumented Replacement Rods 7, 8, and 9 of IFA-432

A.7

APPENDIX B

DATA PROCESSING

APPENDIX B

DATA PROCESSING

The data received from Halden on magnetic tape are processed as shown in Figure B.1. After the data tapes are received, they are translated from the Halden IBM/1800 language (EBCDIC) to the PDP11/70 language (ANSI); the translated version is then stored on tape. The tape is formatted so that all data from a particular time on a particular date are in one block; all data are simultaneously stored on a disk file.

Once the raw data are stored on disk, another program corrects the rod local heat ratings at the thermocouple (TC) locations for radial flux tilt across the assembly. Rod local and assembly powers are corrected for axial flux shape and heat losses to the moderator, and corrections for local mass distributions of fissile material for each rod are made.

While this is being done, other checks are made on the data. A total heat balance check is made for the assembly and rod average powers during application of the axial correction factor to account for the difference between the average and true mean of the axial flux distribution. The first attempt at this uses an axial profile that represents normal operating conditions. If the heat balance for this profile does not check, a second attempt is made with an axial flux shape that represents a disturbed flux profile. This occurs when a nearby control rod is partially inserted.

After this step, another program corrects burnups and heat ratings for depletion of 235 U.

B.1

FIGURE B.1. Flow Diagram for Processing Halden Data

APPENDIX C

-

INSTRUMENT DESCRIPTIONS AND CALIBRATION

APPENDIX C

INSTRUMENT DESCRIPTIONS AND CALIBRATION

Instrumented fuel assembly (IFA)-432 was equipped with a comprehensive array of in-pile instrumentation to collect data (see text Figures 1 and 2, pp. 6 and 7). The most important of these instruments were:

- 6 vanadium beta emitter self-powered neutron detectors (SPNDs)
- 1 cobalt fast-response SPND
- 11 W 5% Re/W 26% Re-sheathed fuel centerline thermocouples (TCs)
- 1 ultrasonic thermometer
- 6 linear variable differential transformer (LVDT) cladding elongation monitors
- 3 diaphragm-type rod internal pressure transducers.

Each of these is briefly disccused below. The accuracy and uncertainty of their respective outputs is discussed more completely in Hann et al. (1977).

NEUTRON DETECTORS

IFA-432 is equipped with six vanadium self-powered beta current neutron detectors (Figure C.1) to monitor the power in the fuel assembly after the initial thermal-hydraulic calibration. Each detector is 100 mm (3.93 in.) long and is positioned so that the center of the detector and the TC junction are located on essentially the same plane.

The reutron detectors used in IFA-432 were not calibrated. Their precisions were based on the results of the irradiation of 30 similar vanadium neutron detectors in the Studsvik R2-0 Peactor in Sweden. The 30 detectors were irradiated in a thermal neutron flux of $1.1 \times 10^{14} \text{ n/m}^2$ -s. The error limits for the outputs of the detectors were estimated to be $\pm 2.5\%$ at a neutron flux of $1.1 \times 10^{14} \text{ n/m}^2$ -s.

C.1

In addition to correlating the detector outputs to the neutron flux in the Studsvik Reactor, Halden has conducted long-term tests of similar neutron detectors in the Halden boiling water reactor (HBWR). These tests have established the detectors as reliable and accurate instruments without a measurable change in sensitivity at the higher flux levels. The sensitivities of the test assembly neutron detectors were calculated from the sensitivities of the calibrated detectors and the physical characteristics of the test assembly detectors supplied by the manufacturar. The gamma sensitivity was not measured and is considered to be negligible by Halden.

The vanadium detectors have a calculated burnup rate of 0.013% per month at a neutron flux of 1 x 10^{17} n/m²-s. Based on this rate, the neutron detector end-of-life (EOL) burnup for IFA-432 is 0.3%. Because of this low value, the neutron detector outputs were not corrected for burnup. However, it should be noted that during up and down power ramps a correction factor should be considered for the output values because of the slow response time of the vanadium detectors.^(a)

The cobalt detector, which is similar in appearance to the vanadium detector but 200 mm long, was placed in the center of the assembly to monitor average assembly power during transient tests (Lanning and Hann 1977).

FUEL THERMOCOUPLES

The 11 TCs that were used in IFA-432 to measure the central fuel temperatures had grounded junctions with 1.575-mm (0.062-in.) outside diameter (OD) tungsten/22% rhenium sheaths and W 5% Re/W 26% Re seven-stranded TC wires with thorium oxide insulators (Figure C.2). The sensor in the top of rod 2 was an ultrasonic thermometer (Lynnworth et al. 1969) that failed immediately.

FIGURE C.2. Schematic of W 5% Re/W 26% Re Thermocouples with Grounded Junction

(a) 5.5 min, 0 to 63%.

The TCs were fabricated and calibrated by the Idaho National Engineering Laboratory (INEL); the calibration curve for the tungsten-rhenium TCs is shown in Figure C.3. Calibration of the TCs over the range of use produces a brittle assembly that is fragile and subject to breakage; consequently, only one TC, which was not used in the in-reactor test, was calibrated.

The tungsten-rhenium TC was calibrated against a reference TC of bare W 5% Re/W 26% Re and an optical pyrometer (as a second reference). The reference TC and the optical pyrometer agreed within 295K (40° F) up to 2477K (4000° F); but as the temperature approached 2755K (4500° F), the difference between the two widened. The optical pyrometer was thought to be closer since the 2755K temperature is above that given in most calibration tables for W/Re TCs. The calibrated TC had the following limits of error:

- ambient to 811K (1000°F) = +5.5K (10°F)
- 811 to 2477K (1000 tu 4000°F) = +1% of reading
- 2477 to 2755K (4000 to 4500°F) = +2% of reading.

Irradiation of the TCs will have long-term effects caused by the shunting of the EMFs by conduction across the insulators, transmutations in the TC materials, and temperature gradients along the TC wires. The insulator shunting effect was reduced to a negligible level by using thorium oxide insulators.

Decalibration of TCs during irradiation is not well defined at the present time. Experimental data from Halden and analysis of the IFA-432 transient data suggest possible decalibration of up to 1%/100 GJ/kgU burnup. Consequently, the measured fuel temperatures could be 20% lower than the actual temperatures at the end of the current reporting period; and, therefore, TC decalibration should be considered when using these data.

CLADDING ELONGATION MONITORS

Figure C.4 is a schematic of the LVDT cladding elongation sensors used in IFA-432. These instruments are mounted upside down at the bottom of the assembly with the core extension contacting the lower end plug of the rod. The ferromagnetic core is attached to the extension and moves inside a coil system with the central primary coil carrying 50-mA 400-Hz excitation. A secondary coil consisting of two balanced halves flanks the primary coil. The output voltage is zero when the core is in its central position and increases linearly when the cladding elongation moves the core. Sample calibration curves for these instruments may be found in Hann et al. (1978).

FISSION GAS PRESSURE TRANSDUCERS

Figure C.5 shows a schematic of the diaphragm-type pressure transducer used to measure the internal rod pressures due to fission gas release during irradiation. It is essentially an on-off measurement. The thin platinum alloy membrane is exposed to the rod internal gases on one side, while the other side is connected to an external pressure manifold. When the external pressure equals the internal pressure, the deflection of the membrane causes it to make an electrical contact. The step increase in voltage signals a null pressure balance. Over a range of 10 MPa (100 kg/cm²), the sensitivity of the instrument is 0.01 MPa (0.1 kg/cm²) and the accuracy and repeatability are $+0.1 \text{ MPa } (+1 \text{ kg/c}^{-2})$ and $+0.04 \text{ MPa } (+0.4 \text{ kg/cm}^2)$, respectively.

C.5

Calibration is done out-of-reactor and consists of checking the deflection sensitivity of the membrane, which does not change appreciably with pressure level. The effects of irradiation or temperature on the membrane are not known but are assumed to be minimal by Halden. Halden has made no recommendation for temperature compensation for this instrument. Details of the pressure transducer must be obtained from the Halden Project.

REFERENCES

- Hann, C. R., et al. 1977. A Method for Determining the Uncertainty of Gap Conductance Deduced from Measured Fuel Centerline Temperatures. BNWL-2091, Pacific Northwest Laboratory, Richland, Washington.
- Hann, C. R., et al. 1978. Data Report for the NRC/PNL Halden Assembly IFA-431. PNL-2494, Pacific Northwest Laboratory, Richland, Washington.
- Lanning, D. D., and C. R. Hann. 1977. Verification of Fuel Centerline <u>Thermocouple Readings Through Response to Linear Power Decreases</u>. BNWL-2189, Pacific Northwest Laboratory, Richland, Washington.
- Lynnworth, L. C., et al. 1969. "Ultrasonic Thermometry for Nuclear Reactors." In IEEE Trans. Am. Nuc. Soc. NS-16:184-187.

APPENDIX D

ASSEMBLY POWER CALIBRATION

APPENDIX D

ASSEMBLY POWER CALIBRATION

The data report for the instrumented fuel assembly (IFA)-431 briefly explained the usual method for calibrating assemblies in the Halden reactor.^(a) This procedure was not used in the case of IFA-432 because the calibration flow valve (text Figure 2, p. 7) failed in the normal operating position, allowing only natural circulation. However, both assemblies were in the core simultaneously at the time of IFA-432 startup. The second assembly was calibrated by comparisons of total assembly power and rod 3 (small gap) power. The uncertainty in assembly power for IFA-432 was estimated to be +6%.

⁽a) Hann, C. R., et al. 1978. Data Report for the NRC/INL Halden Assembly IFA-431. PNL-2494, Pacific Northwest Laboratory, Richland, Washington.

DISTRIBUTION

No. of Copies

OFFSITE

A. A. Churm DOE Patent Division 9300 S. Cass Avenue Argonne, IL 60439

- 400 U.S. Nuclear Regulatory Commission Division of Technical Information and Document 50 Pacific Northwest Laboratory Control 7920 Norfolk Avenue Bethesda, MD 20014
 - 2 DOE Technical Information Center
 - 4 G. P. Marino Chief, Fuel Behavior Research Branch Division of Reactor Safety Research U.S. Nuclear Regulatory Commission Washington, DC 20555

H. H. Scott Division of Reactor Safety Research U.S. Nuclear Regulatory Commission Washington, DC 20555

No. of Copies

R. Van Houton

Fuel Behavior Research Branch Division of Reactor Safety Research U.S. Nuclear Regulatory

Commission Washington, DC 20555

ONSITE

W. J. Bailey J. O. Barner E. R. Bradley (7) M. E. Cunningham (20) S. K. Edler M. D. Freshley R. L. Goodman R. J. Guenther C. R. Hann D. D. Lanning R. K. Marshall C. L. Mohr C. Nealley F. E. Panisko W. N. Rausch R. E. Schreiber M. S. Smith R. E. Williford Technical Information (5) Publishing Coordination BE (2)

NRC FORM 335 (7.77) U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET		1. REPORT NUMBER (Assigned by DDC) NUREG/CR-1950 PNL-3709	
4. TITLE AND SUBTITLE (Add Volume No., if appropriate) Data Report for the NRC/PNL Halden Assembly IFA-432:		2. (Leave blank)	
April 1970-may 1900		3. RECIPIENT'S ACCESSION NO.	
7. AUTHOR(S) E.R. Bradley M.E. Cunningham D.D. Lanning R.E. Williford		5. DATE REPORT COMPLETED	
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Incl	ude Zip Code)	DATE REPORT ISSUED	
Pacific Northwest Laboratory		April YEAR	
Richland, WA 99352		6. (Leave blank)	
		8. (Leave blank)	
12 SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (inc) U.S. Nuclear Regulatory Commission Division of Reactor Safety Research	lude Zip Codel	10. PROJECT/TASK/WORK UNIT NO.	
Office of Nuclear Regulatory Research		11. CONTRACT NO.	
Washington, DC 20555		FIN No. B2043	
13. TYPE OF REPORT	PERIOD COVE	RED (Inclusive dates)	
	April	1978 - May 1980	
15. SUPPLEMENTARY NOTES		14. (L. ave blank)	
This report presents the in-reactor data c IFA-432. The irradiation test is part of Support and Development of Single-Rod Fuel Research Branch of the NRC. The purpose i the thermal and mechanical behavior of an temperatures, cladding elongation, interna thermocouple (TC) positions are shown as a derived from neutron detector readings whi Detailed analysis of the data is not made, aspects of the data are referenced. Descr calibration, and data processing methods a	ollected from an experiment. Codes" sponse s to reduce the operating nuc l fuel rod pre- function of le the other w but topical m iptions of the re also present	the PNL Halden test assembly al program entitled "Experimenta ored by the Fuel Behavior he uncertainties of predicting lear fuel rod. Fuel centerline essures, and local powers at the time. The local powers were variables were measured directly reports discussing certain e assembly, instrumentation and nted.	
7. KEY WORDS AND DOCUMENT ANALYSIS	17a DESCRIPTOR	S	

18. AVAILABILITY STATEMENT	19. SECURITY CLASS (This report)	21 NO. OF PAGES
Unlimited	20. SECURITY CLASS (This page) Unclassified	22 PRICE

NRC FORM 335 (7-77)