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ABSTRACT

This report describes the numerical procedure of COMMIX-2
for the calculation of steady / unsteady, single phase /two-
phase, three-dimensional fluid flow and heat transfer. The
procedure is based on the control-volume approach, which
enables the derivation of physically meaningful finite-

difference equations. % e conservation equations employed are
based on a two-fluid model, and this permits the analyses of
nonbonoganeous and nonequilibrium flow conditions. The
conservacion equations of mass, momentum, and energy of each
phase are solved as an elliptic system. In addition, the

porous-medium formulation with concept of volume porosity,
surface permeability, distributed resistance, and distributed
heat source is employed and provides a greater range of
applicability. D e concept of surface permeability is new and

greatly facilitates modeling of anisotropic flow and
temperature fields.

NRC

FIN No. Title

A2045 3-D Time-dependent Code Development

11

_ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ -



TABLE OF CONTENTS

.P a,ge,

ABSTRACT................................................................ 11

NOMENCLATURE............................................................ viii

EXECUTIVE SUMMARY....................................................... xi

1. INTRODUCTION........................................................ I

2. DIFFERENTIAL EOUATIONS: CONTINUUM.................................. 5

2.1 Continuity Equations........................................... 5

2.2 Momentum Equations............................................. 5

2.3 Energy Equations............................................... 6

2.4 Ce n e r a l Fo rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. CONSERVATION EQUATIONS: OUASI-CONTINUUM............................ 7

3.1 Fl ow Domain wi th So l id 0bj ec t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Volume Poros ity and Surf ace Permeability. . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Continuity Equations........................................... 8

3.4 Momentum Equations............................................. 10

3.5 Energy Equations............................................... 10

4. CONSTITUTIVE EQUATIONS.............................................. 11

4.1 Ph a s e Ch a n ge R a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Interfacial Friction........................................... 11

4.3 Interfacial Heat Transfer...................................... 13

4.4 Wall Friction.................................................. 13

4.5 Wall Heat Transfer................................ 14............

5. PRELIMINARY CONSIDERATIONS.......................................... 23

5.1 Construction of Control Volumes................................ 23

5.2 Unsteady Situations............................................ 25

5.3 Conve c t ion a nd Di f fu s ion Te rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii

i
i
k .. , . , -. .

- - _ - _ - _ - - -



- _ - _ _ _ _ _ _ _ _ _ _ .

TABLE OF CONTENTS

?.* E.'-

5.4 Source Term.................................................. 28

5.5 U n s t e a d y Te rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. GENERAL FINITE-DIFFERENCE EQUATION................................. 30

6.1 General Form................................................. 30

6.2 Formulations in i, j, k Notations............................ 33

7. FINITE-DIFFERENCE FORM OF MOMENTUM EQUATIONS. . . . . . . . . . . . . . . . . . . . . . . 37

7.1 Staggered Grid............................................... 37'

7.2 Th e Mome n t um Co n t r o l Vo l ume s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3 The Finite-difference Equation for Monantum.................. 37

7.4 Veloc ity-P re s s ure Relat ionship s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.5 Solution of the Momentum Equation............................ 42

8. FINITE-DIFFERENCE FORMS OF THE CONTINUITY EQUATIONS. . . . . . . . . . . . . . . . 43

8.1 Phase Continuity Equation.................................... 43

8.2 Combined Continuity Equation................................. 44

9. PRESSURE AND PRESSURE-CORRECTION EQUATIONS......................... 45

9.1 P r e s s u re Equ a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.2 Pressure-correction Equation 1............................... 46

9.3 Pressure-correction Equation 2............................... 47

10. INITIAL AND BOUNDARY CONDITIONS.................................... 50

10.1 Initial Conditions........................................... 50

10.2 Boundary Conditions.......................................... 50

10.3 Boundary Conditions for Pressure and Pressure-correction
51Equations ...................................................

10.4 Irregular Geometries......................................... 51

|

iv

_ _ _ _ _

. .



TABLE OF CONTENTS

.Pa,ge

11. SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS....................... 55

11.1 Tri-Diagonal-Matrix Algorithm............................... 55

11.2 Line-by-line Schene......................................... 56

11.3 Trave rse and Sweep Dir ec t ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11.4 Optimization of the Equation-solving Effort................. 58

12. ITERATION SCHEME................................................... 59

12.1 Sequence of Operations....................................... 59

12.2 Under-relaxation............................................. 60

12.3 Linearization of the Source Term............................. 62

12.4 Distinction between Steady and Unsteady Situations........... 64

12.5 Performance of Integral Balances............................. 64

13. FLOW CHARTS........................................................ 68

13.1 Time-step and Iteration Loops................................ 68

13.2 Iteration Sequence........................................... 68

14. CONCLUDING REMARKS................................................. 71

APPENDICES

A. The rmodynamic and Trans po r t Propert ies . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B. Thermal Structure Modu1e......................................... 84

! C. Wire Wrap and Resistance Models.............'..................... 90

D. Input Description................................................ 96

ACKNOWLEDGMENTS......................................................... 116

REFERENCES.........................,.................................... 116

v



. . - - .
_ .

LIST OF FIGURES

No. Title Page

3.1. Domain containing dispersed solid object s. . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Finite control volume in Cartesian coordinate................... 9

4.1. Wall heat-transfer logic-sodium................................. 20

4.2. Wall heat-transfer logic-water.................................. 21

4.3. Wall heat-transfer correlations and their regions of
applications: sodium........................................... 22

4.4. Wall heat-transfer correlations and their regions of

applications: water............................................ 22

5.1. Construction of control volumes (first practice)................ 24

5.2. Construction of control volumes (second practice)............... 24

5.3. Total flux across a cont rol-volume f ace . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4. Effect of Peclet number on the variation of 4................... 27

5.5. Comparison of various finite-difference schemes for convection

and diffusion terms............................................. 29
s

6.1. Control volume around point 0................................... 31

6.2. Control volume around point 0 in ijk notation................... 38

7.1. Staggered grid.................................................. 38
"

7.2. Momentum control volume in relation to the main
control vo1umes................................................. 40

10.1. Near-boundary control ve1ume.................................... 52

10.2. Design of control volumet for irregular geometry................ 54

11.1. Illustration of the line-by-line scheme......................... 57

13.1. Th e ove ra l l f l ow ch a r t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

13.2. Iteration sequence.............................................. 70 I

B.1. Cross section of a thermal-structure element.................... 86 ,

e
'

B.2. Energy balance of partition ce11................................ 86

B.3. Energy balance of cell adjacent to coolant...................... 88

B.4. Cell surrounded by different materials with air gap
between them.................................................... 88

B.S. Cell with adiabatic boundary.................................... 88

C.I. Typical wire-wrap arrangement................................... 93

C.2. Cross section of helical wire-wrap around a fuel pin............ 93

vi



. .. -

LIST OF TABLES

_No. Title Page

2.1. Source Terms for Continuity, Momentum, and Energy Equations...... 7

5.1. Convention Used in COMMIX-2 for Defining Neighboring Control
Volumes or Grid Positions........................................ 23

.

i

l

; vil
i



i

|

|
<

l

NOMENCLATURE
l

A Area
1

a Finite-dif ference coef ficients f
1

0 Finite-difference coefficients arising from the unsteady terma

B Defined in Eq. 6.3

b " Constant" term in the finite-difference method
o

c Specific heat at constant pressurep
'

D Diffusion strength, Eq. 5.9; diameter

d Pressure coefficient, Eq. 7.4

F Flow rate, Eq. 6.4

gj Gravitational acceleration in the jth direction

h Heat-transfer coefficient; enthalpy

hgg Latent heat

H Enthalpy
'

J Total (convection + diffusion) flux
k Thermal conductivity

K Interfacial drag coefficient

Nu Nusselt number

p Pressure

p' Pressure correction

Pr Frandt1 number

Q Heat generation per unit volume, Eq. 2.5

R Interfacial heat transfer coefficient, Eq. 2.5;

the distributed frictional resistance per unit fluid volume

S Source term, Eq. 2.6

S Parts of the linearized source term, Eq. 5.14
| SC* P

S), S Positive and negative parts of S, Eq. 12.7
2

T Temperature

t Time

Velocity componentsu, v, w

0, v, O Pseudo-velocities, Eq. 7.3

V Viscoua source term; volume
:
I Thernal dif fusivity; defined in Eq. 9.10a
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NOMENCLATURE

r Diffusion coefficient, Eq. 2.6

6t Time step

ax, Ay, Az Control-volume dimensions

A Thermal conductivity; coefficient in Eqs. 4.2 and 4.3

p Viscosity

p Density

B Defined in Eq. 9.10; coefficient of thermal expansion

9 General dependent variable, Eq. 2.6

0 Fluid volume fraction; angle between fuel pin centerline

and helical wire wrap centerline

Yv Volume porosity

yx, yy, yz Surface permeability in x, y, and z directions

0, 0,, Oh S urce due to phase change (evaporation or condensation) in the
continuity, momentum, and energy equations

0 Viscous dissipation, Eq. 2.5

v Kinematic viscosity

a Surface tension

Superscripts

O Last iteration value; guessed value

0 Old values

Wire wrapw

Correction to last iterated value'

.

Subscripts

O Crid location under consideration; center of the control volume

1. (i-1, j,k) location

2. (i+1, j,k) location

3. (i, j-1, k) location

4. (i, j+1, k) location .

5. (i, j, k-1) location

6. (i, j, k+1) location

m Momentum

h Energy
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EXECUTIVE SUMMARY

This report describes the COMMIX-2 computer program. The proFram is
designed to analyze steady / unsteady, single-phase /two phase, three-dimensional
fluid flow with heat transfer in reactor components. It uses a two-fluid
model to describe the conservation equations for two-phase flow. Consequently,
one can analyze a wide spectrum: from homogeneous and equilibrium to non-
homogeneous and nonequilibrium flow conditions. The volume porosity, sur-
face permeability, distributed resistance, and distributed heat source are
included in the conservation equations to permit analyses of flow domain with
solid objects. The discretization equations are obtained by integrating the
conservation equations over a control volume. The convective, dif fusion,
interfacial friction and interfacial heat-transfer terms are made implicit for
more stable formulation. The final form of all discretization equations is
such as to permit various solution schemes, e.g., cell by cell, line by line,
etc.

At present, COMMIX-2 has two alternative forms of the pressure-correction
equation. One form is derived from the combined continuity equation, and in
the second procedure we make use of the condition.

Sum of fluid volume fraction = 1.

At present, both fctms are retained in the code, as not enough experimentation
has been performed to determine the computational efficiency and suitability
of these two forms of pressure-correction equation.

The COMMIX-2 code has a modular structure. It permits analysis of
single phase (gas or liquid) or two phase flow problems. The code has also an

option permitting uso of either a sodium property package or a water property
package.

The report describes in detail the formulation, solution procedures,

iteration sequence, flow chart, and input instructions. It also includes the

description of models used in COMMIX-2 for the following phenomena:

1. Interfacial mass, momentum, and energy exchange.
2. Wall-heat transfer and their regimes.

3. Distributed resistance due to internal structures.

4. Thermal interaction between structures and fluid.
5. Interaction due to the presence of wire wrap.

Even though the interfacial and wall heat transfer models for other flow

regimes have been incorporated into the code, the current version of COMMIX-2
is geared specifically for dispersed flow analyses.

xi
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As two phase flow is a very active and developing field, new and better
physical models and constitutive relations are expected to emerge. COMMIX-2
will therefore remains a dynamic code. We will make all efforts to retain the

same structure of the code while incorporating new developments in physical
models and solution procedures. As we make modifications in the code, some
changes are expected to occur in the input structure. Users of the code are

therefore requested to follow the latest version of the input description.

xii
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1. INTRODUCTION

The present generation computer speed and storage capacity, coupled with
recent advances in numerical-solution techniques for systems of quasilinear
partial differential equations, have made possible detailed numerical simula-
tion of many engineering problems. With the anticipated improved performance
of the next generation of computers and further advances in numet ical-solution

techniques, use of numerical simulation for solving engineering problems is
expected to increase for many years to come.

Basically, numerical simulation in enginacring applications can be clas-
sified into two categories: the system computer program and the component
computer program. Generally, the system computer program consists of a num!mr
o f components; there fore, it cannot af ford to give a detailed numerical model-

ing of each component. In contrast, the component computer program deals with

one component of interest; the re fore, it can af ford to provide a detailed nu-

merical simulation. The work presented in this report is focused on the com-

ponent computer program.

During loss of coolant or transient overpower accident situations, boil-

ing of liquid coolant in a reactor core i expected due to high temperatures
of fuel pins. The fluid mixture of liqui ai vapor, in such circumstances,

is nonhomogeneous wita both phases being A.. nonequilibrium thermodynamic
states. It is, ther a fore, desir.able to develop a computer code for obtaining

numerical solutions of three-dimensional, transient, two phase (gas-liquid)
flow system with nonequilibrium and nonhomogeneous conditions.

The COMMIX-2 code is a steady / unsteady, three-dimensional two phase com-
puter code for thermal hydraulic analysis of reactor components under normal
and of f-normal operating conditions. It uses the two-fluid model of Harlow
and Amsdenl to describe the conservation equations of mass, momentum and en-
ergy. Consequently, we can analyze a wide spectrum of flow conditions; i.e.,

from homogeneous and equilibrium to nonhomogeneous and nonequilibrium condi-
tions. The interactions between two fluids are accounted for by incorporating
the corresponding terms in all of the conservation equations. The staggered

grid system is used to describe the field variables at the center of a cell

and flow variables at the surface of a cell.

The structure of the code is similar to that of COMMIX-1A.2 The calcu-
lation procedure employed is an extension of the single phase numerical pro-
cedure,3 known as SIMPLER (Semi-Implicit Method for Pressure Linked Equation-
R,evised). In this procedure, we use the liquid phase continuity equation to

obtain the void fractions, and use the combined continuity equation to derive
the pressure at.d pressure correction equations.

The specific features of COMAIX-2 are the following:
|

|
:

i
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1. To permit an analysis of a flow domain with solid objects, the vol-
use porosity, surface permeability, distributed resistance and distributed heat
source are incorporated in the conservation equations.

.

4 is used to derive the2. An approximate form of Spalding's equation
finite oifference formulation of the convective and diffusion terms. This
equation is a function of the Peclet nunber and it combines the best features

;

of both, the central dif ference and upwind difference schemes. I

l
1

3. The discretization equations are obtained by integrating the conser- |
vation equations over a control volume surrounding a grid point. Thus , the
derivation process and the resulting equations have direct physical meaning,
and the consequent solution satisfies the conservation principles.

4. The convective, dif fusion, interfacial friction and interfacial heat

transfer terms are made implicit for more stable formulation and to permit
larger time steps.:

i
!

5. The discretization equations are formulated with time step size
appearing only in the denominator of all transient terms. With this arrange-

ment, for a steady state calculation, all of the transient terms can be elimi-

nated from computation by specifying a very large value of time step size.

6. The general forn of all discretization equations is

a000* i* b nb " 0*n
nb

where, 4 is a dependent variable and subscript nb stands for neighboring
points. This general form of the discretization equation permits various so-

! lution schemes, e.g., cell by cell, line by line, plane by plane, block iter-

! ative, direct inversion etc.

!

7. The COMMIX-2 code is structured such as to permit solution of single
phase (gas or liquid) as well as two phase (gas and liquid) flow problems. In
addition, it permits ID, 2D, or 3D calculation.

8. The COMMIX-2 code has modular structure. This permits rapid imple-

mentation of the latest available drag models, heat transfer models, boiling

models etc.
,

9. The code has also an option permitting use of either sodium property
package or water property package.

10. The program also contains

(i) A generalized resistance model to permit determination of

resistance due to internal structures (fuel rods, wire wrap, baf fles, grid

spacers, etc.)

|

|
_- - .-_._. -.- _ _ . - .___
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(ii) A generalized thermal structure formulation Eo model thermal
interaction between structures (fuel rods, wire wraps, duct wall, baffles,
etc.) and surrounding fluid, and

(iii) A local regional mass rebalancing scheme, such as plane by
plane, for improving the convergence rate.

%is report describes the COMMIX-2 program for the solution of the gov-
erning equations for three-dimensional, single phase /two phase, steady /
unsteady flow with heat t rans fe r. %e description here starts with the dif-

ferential equations and deals with ntnerical method incorporated into a com-
puter program. Section 2 is devoted to the set of governing equations for the
situation considered. In Subsection 2.4, the general form of all the govern-

ing equations is recognized; this generalization facilitates a unified devel-

opment of the ntnerical method and the construction of the computer program.

%e conservation equations for quasi-continuta regime are presented in
Section 3. We define the quasi-continuta regime as a meditm which contains
finite, dispersed, stationary heat generating (or absorbing) solid objects.

'Ihe ef fects of solid objects in a medium are accounted for by introducing
volume porosity surface permeabilities, distributed resistance, and distrib-

uted heat sources. We physical models and constitutive equations used in
COMMIX-2 for describing the mass, momentta and energy exchange phenomena are
presented in Section 4.

In Section 5 we present some prelininary considerations before we start
assembling the finite dif ference equations. %e finite dif ference formulation

of the general equation is presented in Section 6. As we use a staggered grid

system, the control voltnes for momenttu equations are dif ferent and require
special considerations. We special features of the finite-dif ference equa-

tions for momenttu are discussed in Section 7. In Section 8 we have presented
the finite dif ference forms of the continuity equations.

Section 9 contains the derivation of pressure and pressure correction

equatione. In the present program we have two alternative forms of pressure
correction equation leading to two alternative solution procedures. %c first
procedure is an extension of the single phase ntnerical procedure,3 known as
SIMPLER (Semi-Implicit Method for Pressure Linked Equation-Revised). In this

procedure we use one of the two phase continuity equations to determine the
liquid voltme fractions, and use the combined continuity equation to derive
the pressure correction equation. In the second procedure we use both of the

phase continuity equations to determine the liquid voltme fractions; the dif-
ference lies in the derivation of the pressure correction equation. In this

procedure we dif ferentiate the phase continuity equations and momentta equa-
tions and then combine them to obtain the pressure correction equation. his
is analogous to the ntnerical procedures known as Inter Phase Slip Analyzer
[IPSA).
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'

Section 10 deals with the boundary conditions for the dif ferent dependent
variables. A discussion of the ways of handling irregular geometries is in-
cluded in Subsection 10.4. A line-by-line procedure for solving the finite-
difference equations is presented in Section 11. For most of the problems

analyzed, this procedure has been found to be superior to the usual point-by-
point procedure without rebalance technique. In Section 12, we take an over-

all view of the entire calculation sequence. The various steps in the itera-
tion scheme are listed in Section 12.1, while the remainder of Section 12 is

|

devoted to matters that enhance the chances of obtaining a converged solution.
Section 13 describes the flow chart.

The thermodynamic and transport properties of sodium and water are given
in Appendix A. The thermal structure module is described in Appendix B.
Appendix C contains the descriptions of the resistance and wire wrap models.
The code input description and sample problems are given in Appendices D and
E, respect ively.

,
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2. DIFFERENTIAL EQUATIONS: CONTINUUM

The governing equations for a single-phase /two phase, three-dimensional,
unsteady flow with heat transfer are given here in Cartesian tensor notation.
For two phase flow, we use the two-fluid model of Harlow and Amsden1 to de-

scribe the conservation equations of mass, momentum and energy. The three
coordinate directions, x, y, z, are denoted by xi, and the three velocity
com ponen t s , u, v, and w are denoted by ut. A repeated index implies the
sum of three terms; that is:

"i au 3v Ow
, . . (2.1)3x. 3x By Bz

.

1

ne subscripts t and g are used to denote liquid phase and gas phase respec-
t ive ly . However, when the formulation is applicable to both phases or when the
formulation is for a specific phase, we have avoided the subscript 1 or g.

2.1 Continuity Equations

The phase continuity equation:

a[p01 3 [peu.) = 0. (2.2a)+
at ax. 1

L

Here, O is the source tem due to phase change [ evaporation or condensation]
and 0 is the void fraction. By combining the two continuity equations, we
eliminate the source terms, because Og = -O and obtaing,

[p6i I + p 8 ) + 3x. [p 6u. gggi)=0.+p6u . (2.2b)at gg 1 1 11
1

2.2 Momentum Equations

For liquid-phase and for the j direction:

Bu. )
P 3 3[p0u.) + 3x. [peu.u.)=-0 , 1:0 i + p0g. + V.Bt j t j 3x. 3x. 3x. 1 j j

1 J 1 1/

\

+K[u g)+S (2.3)
'

-u g

he subscript j can take the value 1, 2, or 3 depending on the momentum
direction chosen. H e subscript i is a repeated index and implies the
summation convention outlined in Eq. 2.1. We term S is a source to themQ
momentum field due to phase change and K is the interfacial drag coefficient.
W e viscous contribution to the momentum equation is expressed by two terms:

.-
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~

B u. "

h** *ax.
L - 1 -

and Vj , which is given by
~

/Bu. [*
901 I (2.4)V = .

*i ( *j /_
,

For turbulent flow, all quantities in Eqs. 2.3 and 2.4 are considered time
averaged values and the viscosity u is interpreted as the effective viscosity.

2.3 Energy Equations

For liquid phase:
,

PTe +0 + R[ T -T)+4+Q+S[p0h] + [p0u h) = g g g3 g h 3, ,

i t t

(2.5)

llere, Th stands for A/cp, where A is the thermal conductivity, and c isp
the specific heat at constaat pressure. The heat generation rate per unit
volume, the source due to phase change, the interfacial heat transfer coef-
ficient, and viscous dissipation are denoted by Q, ShD, R, and 4, respec-

tively. The term 3p/3t accounts for the fact that the internal energy [rather
than enthalpyl is stored in a fluid.

For turbulent flow, Th is interpreted as the ef fective transport coef-
ficient for enthalpy. Calculation of the effective viscosity and the effective

transport coefficient for the enthalpy often requires additional differential

equations. One such proposal is the K-c-g model described in Ref. 6.

2.4 Ceneral Form

Equations 2.2, 2.3, and 2.5 can be seen to possess a common form. If the

general dependent variable is denoted by 4, the corresponding dif ferential
equation has the form:

[p0$] + (p0u$)= T0 +S +S (2.6)
3 g 3 g,,

1 1 it

where the five terms can be referred to as: the unsteady term, the convection
term, the diffusion term, the source term and the source term due to phase

! change. We density p and the velocity components ui satisfy the continuity
equation 2.2. W e diffusion coefficient r4 and the source term S are specific4
to each meaning of 4 Source terms for all conservation equations are given
in Table 2.1. He recognition of this general form of the governing differential

equations is important as much of the formulation described in the following

sections is referenced to Eq. 2.6 alone.
!
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I TAB 12 2.1. nurce Terms for Continuity, Momentism, and Energy Equatione

Source Term ' Source Tern
Equation Variable $ S, Sg;

continuity voltsee fraction 1 _ Dg

(Liquid phase)

083,i + V,i + K(U -U}-6 -0,UHomentum Velocity Ug g g
Liquid phase; i-direction i

+V * E(U ~U)~ 0UHomenttan Velocity U
00g,i x t g gtCas phase; i-direction i i

| Energy Enthalpy h +0+Q+R(7 -T) 4,hg g g
j Liquid phase

Energy Enthalpy h + 4 + Q + k( T -T) Dh
g g

Gas phase

|
L

|
L

| 3. CONSERVATION EQUATIONS: QUASI-CONTINUUM

3.1 Flow Domain with Solid Objects

i
' he presence of solid objects in a flow domain has two effects on fluid-

flow. One is the geometrical ef fect; here the presence of solid objects in-

fluences the flow by reducing the available space. his ef fect is taken into

account by including volume porosity and surface permeabilities in the govern-

ing equations. W e second is the physical effect; here, the solid objects

| influence the momentum and heat transfer to fluid flow. % is effect is taken
into account by considering solid objects within a control voitune as distrib-

uted resistances to momentom transfer and distributed heat sources (or sinks)'

for heat transfer.

In applying the concept of volume porosity and surface permeability, we
are assuming that a real system containing numerous solid objects can be re-
placed by an idealized system having distributed solid objects such that both
systems have the same volumetric porosities, same surface permeabilities, and
same interactions [ momentum and heat transfer] between fluid and solid
surfaces.

3.2 Volume Porosity and Surface Permeability

We consider a fixed finite region of volume V in space with enveloping

surface A. Were are finite numbers of dispersed, fixed heat generating solids

| inside V; some may be cut through by A'as illustrated in Fig. 3.1. Clearly,

| V = Vg + V,, where Vg is tne total fluid volume and V, is the total solid vol-
[ ume. Only a fraction of the enveloping surface A is unobstructed to fluid
| flow.

We define y as the volume porosity, i.e. , the fraction of the local voltane in-y

side V that is occupied by the fluid. It may take on a value equal to or between
|

|
|

.- - - _ - - . .. - - - -
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0 and 1. If the volume under consideration is completely inside a dispersed
solid, yy = 0; if it is completely in-the fluid, yy = 1. If the volume is
partly in a . dispersed solid and partly in fluid, then 0 < yy < 1. Hen c e, in

general, O < yy < 1.

The surface permeability y, is defined as the fraction of the local *
surface in A that is unobstructed to fluid flow. It is easy to see that, in

general, O < y, < 1. We define the average volume porosity as:

h f f dv, (3.1)=y yy
v

and the average surface permeability as

I da (3.2)f i*i *i
=

y*i .

A
x A
i *i

Here,iy and ixi are the local volume porosity and local surface permeability
respectively, with their values equal to unity while in fluid and equal to zero
while in solid, and the subscript xi refers to the direction normal to the surface
area under consideration. Since the unobstructed area (A )xi that is availablef

for free fluid flow is

(A),,=f y,, da, (3.3)
g

1 A ig

it follows immediately that

=v A (3.4)(A )x .

f 'x X

Similarly,

V = y V. (3.5)
f

3.3 Continuity Equations

'Ihe formulations of the conservation equations for quasi-continutsu flow
domain are given in Ref. 7. We are presenting here only the final equations.

We consider a stationary volume element
.

AV = Axayaz, (3.6)

through which fluid is flowing (see Fig. 3.2). Its enveloping surface in I

Cartesian coordinates is

AA = 2( Ay Az + Az ax + Ax Ay) .

i

- - .- . ._ _ _ . _ . _ _
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A
va Total volume V (solid + fluid)

with enveloping surface A

i

k cA

'VidA
ng

Some of the dispersed
solids may be cut
through by A

Fig. 3.1. Dornain containing dispersed solid objects

; Z (w)
d

|
1

l'.c .

I
-t- = y(y )m:--

J, / /o
/ /

/

// /
7 Ay =<

X(u)

Fig. 3.2. Finite control volume in Cartesian coordinates

i

<

. --.
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The centroid of V is located at 0 (x,y,z). The velocity components in the x, y
'

and z directions are u, y, and w respectively. De phase continuity equation
is:

.

.A(peuy,) A(p0W ) A(p0w,)3(p0) y

f
T * * * "

*

s at Ax Ay Az v*
-

{ Here, 0 is the source per unit fluid volume and we define,
1

~

3 + Ax./2 x. - Ax /2x
]

AI) 1 3 3 (3.8)-
.Ax. Ax.,

J J
.

i 3.4 Momentum Equations

j N momenttas equation for liquid phase in the x direction is
i

2
: A[p0u , j ,[,,,,,j ,c,,,,)

| }rlp0uY,) + "(EeET)-Oy. .
Ax Ay Az xv x

4

A(OT Y) A(OT y) A(OT y)
+Y(u -u)-yR + y S,g.I + * + g yx y

1A Ay Az y g

| (3.9)
'

Here, R is the distributed frictional resistance per unit fluid volume in thex
| x direction. Equations for gas-phase and for other directions are similar.
!
:

j 3.5 Energy Equations

.

He energy et, '^ lon for the liquid phase is
,

i A(peuhy,) A(p0vhy ) A(p0why,) d(p0)3 y

| 77 Y)+ * * =Yy Ax Ay Az v dt
1

!

i A Oy A A Oy A
Y h , + 4 + 4 + R(T -I * + *+ ~

y E A hQ Ax Ay
,

! A(*.x *!)_. <3.1o).
. ,,

|
| Here, l} is the distribuced heat source per unit fluid volume and Q, is the rate

of heat transfer between fluid and dispersed solid objects per unit fluid volume.'

! he energy equation for the gas phase is similar.

|

|
|

| . . _ _ _ . _ . - . . _ _ . _ _ _ _ . _ _ _ _ . _ _ _ __ ._ _ .._._ _. _ _ _ - _ . _ _ , . _ . . . _ . _ . _ . . _

'
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4. CONSTITUTIVE EOUATIONS

The constitut ive equations that are currently incorporated in COMMIX-2,
are described here. Most of these constitutive equations are suitable only
for dispersed flow analysis. However, the subroutines are designed such that
one can modify any correlation or incorporate a new correlation with minimal
changes.

4.1 Phase Change Rates
f

The mass exchange rates between the phases, evaporation and condensation
rates, are determined in the subroutine BOIL using the following expressions.

*I= J,y,p - JcondO = -Og g

= AAp 5 @ g - T (! sat abs ' #gg sat t satevap

= 0, for T < T, (4.2)

g1(sat g( #cond " P
~

sat abs ' sat g

=0, for Tsat < T . (4.3)
g

Here,

A = (4wN/3)I!3 I , I < 0.5O
g

= (4nN/3) (1-E) , I } 0.5 (4.4)g g

= min 0.9999, max (0.0001,0 )f, (4.5)o
g

N is the number of bubbles, R is the gas constant (J/kg.K) and A is the con-

stant coefficient.

4.2 Interfacial Friction

In the subroutine KCOEF four different correlations are included for com-

puting the interfacial friction function K. These are:

Autruffe et al.8

K=A lu -ul (1-0)(1+75(1-o GMg g g i

Here, Dh is the hydraulic diameter and A is the constant coefficient.
3
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)

Harlow and Ansden9

3
-

"t g + 1
P

1K= C0 tdt D "g ~ "1 .7 *

. r

Here, r is the radius of a bubble and Cp is the drag coefficient.

Rexroth and Starkovich10

K= U + 0 ' D "g - "A *
5 2 t 1

0 r . t
g

Rivard and Torreyll

h(p #+p ) +CK= D "g ~ "A *

Here,

V= Ov +Ov, (4.10)gg gg

is the mixture kinematic viscosity,

{"/ { "3,8 < 1/2; A=0 ,9 > 1/2 (4.11)A=0
\ 3 g t \ gg

is the area of contact, and

! 1/3

r = (4nN
4xl!

,O < 1/2; r= ,6 > 1/2 (4.12)30 g 30 g
g g

is the radius of a bubble.

General Form

The general form of all of these correlations is

g!"1 ~ "g! * AA (4.13)K=A 1\ Og 23

where,

K = Interfacial friction coefficient, kg/m3.see

A = Constant coefficientg

A = Friction factor
2

A = Surface area per unit volume, 1/m
3

3kg/m .sec.A = Contribution corresponding to viscous drag; Stokes equation,g

|
i

i

I

I
<
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An option has been included to permit the use of constant input value for
interfacial drag coefficient K.

4.3 Interfacial Heat Transfer

The following model is used in subroutine RCOEF for computing interfacial
energy exchange.

A =R(T -T)= max (4 ,4 ) (4.14)gg

where,
t

4 =h A(T -T) (4.15)

is the energy exchange between liquid and interface,
|
|

RP(T sat) (4.16)| 4 =h A -T
EP g

is the energy exchange between interface and vapor,

h = 8.067 k /r, (4.17)g

is the vapor side heat transfer coefficient, k is the thermal conductivity of gas,g

-0.33
-

i 2|u -u 10.25 Pr
A 8 A +1 (4.18)h =k

1p A wa r
, g ,

is the convective heat transfer coefficient on the liquid side, r is the bub-

ble radius, a is the thermal diffusivity, and A is the interfacial surface
I area per unit volume.
|

| In addition, an option has been included so that one can specify a de-
sired value for interfacial heat transfer coefficient R.

4.4 Wall Friction

{ COMMIX-2 has the following two models for computing the effect of wall
friction. The resistive forces are calculated in the subroutine FRIC1W.

| Simplified Mode

F = 2fp 6 lw |w /D *
g gg g g h

and

= 2fo 6 |"g g!F *

g8 hg

i

.. . -
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isare resistive forces, f is the friction coefficient, and DhHere, Fg and Fg
the hydraulic diameter.

Rivard and TorreyII

F =O fp w e (2D)4, (4.21)
g ggg h

and

fpwe[(2D)4, (4.22)F =0 ggg hg

Here, friction factor f is given by

f=1.74-2 Log 10.(*! h} *' * *

the Reynolds ntraber

Re = (p0wD ! (4.24)h t,

the multiplier

=0{(p g)/p , (Dispersed flow)+p4 g

= 1/0 , ( Annular flow) (4.25)g

and c/Dh is the wall roughness.

L.5 Wall Heat Transfer

The following heat transfer correlations are provided for computing wall
heat transfer for dif ferent flow regimes.

4.5.1: Sodium

. 1. Single Phase Liquid 12
|
|
'

hb
(RePr)0.3 (for DePr > 150) (4. 26)

tNu = =F
1 L
.

LhNu = = 4.5 F (for RePr < 150) (4.26a)

| 2. Nucleate Boiling: Granziera and Kazimil2 (Modified Chen Correlation)
j

l 4" - F , * h,a , - T,) + hg(T -T ) (4. 2 7)y

!

-- _ _ _ _ _. _ _. _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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;

Here,

(k .79( c ) * ]g(ap)0.75
0

3 240s -Tp
h = 0.00122 ' 'g 0.5 0.29 h p

k fg g /o u g
,

FRe is the Reynolds number factor, F co, is the geometrical factor, and hg is
the single phase heat transfer coeff cient for liquid. Here, '

ap = psat(T,) - p '

sat t'

the suppression factor

(1+0.12Re 4) ; ReTP < 32.5

(4.30)f " ^(1 + 0.42Re0.78)-1; 32.5 < ReTP < 70
S

0.1; ReTP > 70,

the two phase Reynolds number

Re =F (0 ), D 10" , (4.31)
TP

-

, , 2.35 ( 0.213 + xtt -)
l \0.736

I * t t < 10 (4.32) .7
Re t

1; x t t > 10,
i

,,= -16.15 + 24.96(P/D) - 8.55(P/D) (4.33)F

(Equations 4.26-4.27), P/D is the pitch to diameter ratio, o is the surface

tension and xtt is the Martinelli parameter.

3. Film Boiling: Granziera and Kazimil2

h =hFg3+h. (4.34)
FB g

Here,

= F ,m (12 - 12. a, f ,o -

a.mF
1 y

and h is the single phase vapor heat transfer coefficient.g

,

o
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4. Single-phase Vapor: Dittus and Boelter13

0.023(Re)0.8(p,)0.4 (4.36)(Nu) =
g g g

5. Condensation:
! r

hF fro < 0.88' (4.37)
gh g

h =d
c nd hF +h for 0 > 0.88 (4.38)

,t1 g gi

4.5.2: Water

1. Forced Convection: Sieder and Tatel4 (Liquid or Vapor)

. 0.14
(Nu) = 0.023(Re) * (Pr) (4.39)*

w

Fluid properties at bulk fluid temperature, except p, at T,.

2. Free Convection: McAdans15 (Liquid or Vapor)

"2 3'1/3
p gS(T - T) PrD

"
(Nu) = 0.13 (4.40).2

U

Here,

S is the coefficient of thermal expansion, and is equal to 1/T f r vapor.'

E
Fluid properties are evaluated at fluid film temperature. Higher value of h

between (4.39) and (4.40) is used.;

3. Subcooled Boiling; Nucleate Boiling; Vaporization

4" = F ~ * ~
*

Re 1 w t NB w sat

Here, hg is obtained from equation (4.36) but with liquid properties and hNB'

from equation (4.28).

4. Critical Heat Fluxes

High Flow (G > G ): Biasi16
3

-1/6{1.468F
!2.764 x 10

G - x} (4.42)4' g-
2

| (100D)

q"HF 3(1 - x) (4.43)~

(100D)n

i

_

-

- _ _ _ _ - . . . . . _ _ . _ _ . . . - - - .
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Here,

~ ~

F = 0.7249 + 0.099p.10 exp(-0.032p.10 ), (4.44)
2

F = -1.159 + 0.149p.10 exp(-0.019p.10-5)-5
3

+ 9p.10-5 (10 + (p.10 )2)-1 (4.43),

and

0.4 for D > 0.01 mn= ,)

0.6 for D < 0.01 m

We use equation (4.43) for G < 300 kg/m2.see and use the larger of the two
values, equations (4.42) and (4.43), for G > 300.

Low Flow (G < 27): Modified Zuber17,18

8 )'*
og(p p O.25

A (4.46)q'fg, = 0.1310 o hggf 2
.

P g ,*

For 27 < G < G), we use linear interpolation between the Blasi and Modified
= 270 kg/m .see for p10-5 > 83 and x > 0.5,2Zuber correlations. Here G

3
2otherwise G = 1350 kg/m .sec.

3

5. Ministan Stable Film Boiling Teamperature: Berenson19

( p}1(A# ~ *MSFB " HN+(HN ~ 1T pw

Here,

'581.5 + 0.01876(P - 1.034 10 )0.5
5 (4.48)p4p

, 0
T

=<(630.39+0.004321(P-PHN
*

O O

= 68.95 x 10' Pa (4.50)P
O

Y(P) = 'O 'P > 4.826 10 Pa (4.51)
5

127.3 - 26.37 10~ P < 4.826 10 Pa (4.52)p

Note: (pke),abovereferstopropertiesofthewallitself,i.e.cladsur-p
face material properties.

,
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!

6. Transition Boili._1g

i

64{HF+-(l'~0)9NSFB (4. 53)h ~

TB T -T
w sat

'

Here,

2

6 = (T
MSFB ~ \w

I (4.54)-T
MSFB CHF)

We use the following Chen correlation for computing TCHF*
i

bHF g(CHF ~ t} + NB sat) (Psat(w)-P)' _4.55)(~ ~

CHF-
i

). As hNB (Eq. 4.28) is a function of wall temperature (TCHF), an iteration pro-
'

cedure is required.

7. Film Boiling (Eq. 5.7 of Groeneveld and Delonne20)
(High pressure; high flow)

b

=a(Pr)# Re x+ (1 - x)

d
A

1 - 0.1(1 - r) -1 (4.56)x

f

where i

! a = 0.052,

b = 0.688,

c = 1.26,

d = -1.06.
. (4. 57)

8. Low Pressure High-Flow Film Boiling: (Dougall and Rohsenow21)_'

0.8

0.023(Pr)* Re x+(Nu) (4.58)
(1 - x)/,

=

8 8
,

, 8\ o
'

g

9. Low-Flow Film Boiling: (Bjornard )19
i

j h=0 max {h ,hhf } + (1 - 0 ) h (4.59)g

|

Here h is the single phase heat transfer coefficient for vapor (Eq. 4.40), -
'

g
hhf is the high flow film heat transfer coefficient (Eq. 4.56) and hmB is the

' heat transfer coefficient obtained from the modified Bromley19 relation,

,

-

- , . . - - - - . - - -. - . _ -- . - . . . . _. _ _ . ._
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0.25g[p _p
E)gk p (p p )h' (4.60)g f

hMB = 0.62 ( ,

T,g )u J2n(T - -

y

h' =h +0.5C(T,-Tsat) (4.60s)fg g p

10. Horizontal Film Condensation: Chato22

3 1/4
g(p p )gh kp g gg

h = 0.296 (4.61)
Dpg(Tsat " w

11. Vertical Film Condensation: Co11ier23

3 1/4
g(p Ag)h k g cos 0P g g

h = 1.132
Dp (T -T,) (4.62)

12. Turbulent Film Condensation: Carpenter and Colburn24

1/2

h = 0.065 (Pr) t! , (4.63)**
U 1g

where the interfacial shear, ri, is '

0.Ch6 (P " 3
2

g i
~I

i (Re ) \ 2 / (4.63a)
8

Equation (4.63) replaces equations (4.61) or (4.62) whenever it yields higher
value.

.

13. When CHF Calculation is Bypassed

h = max (h ,,hturb) (4.64)y

Here, hlam and hturb are the laminar and turbulent heat transfer coefficients
given by the following relations.

k

h ,= 4.0 (4.65)y

" (Re,) * (Pr ) * (4.66)i h = 0.023b D
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' Here, the two phase mixture properties are defined by*

I (4.67)
4 '= x 1-x.>

mj

I @t
'

g

1
! The sodium and water wall heat transfer logics are presented in the form of- '

flow charts in Figs. 4.1 and 4.2. The regions of applications of these corre-

lations are shown in Figs. 4.3 and 4.4.
,

U
,
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:

9
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j
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O 5 0.03 =

! g
4.26'

;

1

U No
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i
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.
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5. PRELIMINARY CONSIDERATIONS

The numerical solution of the governing differential equations is accom-

plished by constructing a grid and obtaining the values of the dependent vari-
ables at the grid points. Although the principles used can be applied to a

grid in any coordinate system, only a Cartesian-coordinate grid is employed
here.

The finite-difference equations are derived by integrating the dif feren-

tial equation over a control volume surrounding each grid point. 'Ih u s , the
derivation process and the resulting equations have direct physical meaning,
and the consequent solution satisfies the conservation principles (such as the
conservation of mass, the conservation of momentum), over any group of control
volumes and, of course, over the whole calculation domain. This desirable
feature of the present . method exists for any number of grid points, and not
just in the limit of a very fine grid.

5 .1 construction of Control Volumes

The control volumes around the grid points can be defined in a number of
ways. In one practice, the control volume faces are located midway between
neighboring grid points. Figure 5.1 shows the grid points by dots and the

control-volume boundaries by dashed lines. Although only a two-dimensional
view is shown, the three-dimensional configuration can be easily imagined. It

is not necessary for the grid lines to be uniformly spaced.

In another practice, which COMMIX-2 uses, the locations of the control-
volume faces are selected first and then a grid point is placed in the geo-

metrical center of each control volume. Again, the control volumes can have

nonuni form sizes. This type of construction is shown in Fig. 5.2. The con-

vention used in COMMIX-2 for defining the neighboring control volumes and grid
positions is described in Table 5.1.

TABLE 5.1. Convention Used in COMMIX-2 for Defining
Neighboring Control Volumes or Crid Positions

Control Volume
or Crid Position

Subscript Relative to the One i,j,k x, y, z
4

Used under Consideration Notation Notation'

0 Under consideration i, j, k x, y, z

1 W'.st i - 1, j , k x - E, y, z

2 East i + 1, j , k x + E, y, z

3 South i, j-1,k x, y - Iy, z

4 North i, j + 1, k x, y + Tf, z

5 Bottom i, j, k - 1 x, y, z - U

6 Top i, j,k+1 x, y, a + E
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This may be a convenient place to remark on the use of nonuniform grids.
A misconception seems to prevail that the nonuniform grids lead to lower accu-
racy than do the uniform grids. This is simply not true. The grid spacing

'

should be directly linked to the way the dependent variable changes in the
domain. Obvict. sly, a fine grid is suf ficient where the changes are steep, and
a coarse grid in naf ficient where the changes are rather flat. Indeed, a non-
uniform grid cdables us to deploy the computing power in an effective way. For
most problems, it is desirable to compute exploratory coarse grid solutions,
from which useful guidance can be obtained for designing an appropriate non-<

unifonn grid.

5.2 Unsteady Situations

The solution for an unsteady situation is obtained by marching in time.
For every time step, the values of the dependent variables at the beginning
of the time step are supposed to be known, and those at the end of the step
are to be calculated. A fully implicit scheme is used in this report. This
means that the "new" values govern the entire time step, and the "old" values
appear only through the term 3 [p0$ ]/3 t. When the time step At is made very
large, the calculation procedure automatically reverts to the steady-state
formulat ion.

5.3 Convection and Diffusion Terms

If the sta of convection and diffusion flux of a given phase is expressed
by J :4

#(J )4 ,=p0u4 -P0 (5.1)g 4 3
,

1 1

the convection snd diffusion terms in Eq. 2.6 can be written as:

8 0* I[p0u.$] 3x. T0 (5.2)=
.3x. 1 4 3x. 3x.

1 1 . 1. 1

Integration of these terms over the control volume will lead to the balance of

! the total fluxes entering and leaving the control volume at its faces.

iFigure 5.3 shows a control-voltsne face between grid po .nts 0 and 2. The
face is normal to the x-direction and has an area Ax " Yx yaz. The expressionA

for the total flux J4 can be based on the exact solution for a one-dimensional
problem given in Ref. 4.

For a one-dimensional case

d d
'

d$p[p0u$] = dx $ dx
I0 (5.3),

with the boundary conditions

-- . . - -
_
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x = 0: 4=4'0

x = L: 4 = 4g , (5.4)

the solution is

4-4 0 exp[Pe x/L] - 1
"

4g - 4g exp[Pe] - 1 *

Here, Pe = (put/r ) is the Peclet number. Equation 5.5 leads to:g

(JA).1/2 2(4 ~4)+F4, (5.6)"8
0 2 20x

1+

where

~{F/(exp(F/D)-1)2, (5.7)a
2

F =(peuA) (5.8)2 x ,

and

Ax , i+1/ 2 (5.9)D2" 0.56x 0. 5 6x
.

.
T0

r@04
i i+1

Here, F is the flow rate across the control-volme face, A = (Yx yAz)ax
is the flow cross sectional area, and D represents the strength of diffusion.

The ratio F/D is the local Peclet neber. We can see from Fig. 5.4 that

Eq. 5.7 reduces to the central-difference scheme at low values of the Peclet

neber and progressively takes on an " upwind" character as the Peclet neber
is increased.

The definition of D, given in Eq. 5.9, is based on the model that the

value To prevails in control volme around point 0, and the value T rules the2
behavior in the control volme around 2. That this representation leads to

more realistic and accarate solutions has been shown in Ref. 25; also the for-

mulation makes it easy to handle irregular geometries or obstacles, as we
shall explain later.

Since the computation of the exponential in Eq. 5.7 is time-consuming, an
approximatico to the equatien has been devised, which, for all practical pur-

poses, perforns almost identically to Eq. 5.7. This approximation is:

(JA) =a(f -# * 8 *

2 0 2 2 0't+1/2
,

_ _ _ _ _ _ -_
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+4 Af*C = O yj Ar g y,
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Fig. 5.3. Total flux across a control-volume face
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Fig. 5.4. Effect of Peclet number on the variation of C
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Jor

(JA) =a(# -@2}* 0 *

2 2'0 0
1+1/2
,

where,

D |0,(1 - 0.llF /D |)S| + |-F ,0| , (5.12)a =
2 2 22

and

D '(~ D | + |F 'a = ** 2 2 20 2

Figure 5.5 shows conparison of various finite difference schemes for convec-
tion and diffusion terms. We can see that the approximation (Eq. 5.12) is
very close to the exact so lu t ion.

Here, the new operator | 1 is to be interpreted as lA,B] = the greater
of A and B. It should be noted that |A,B| is equivalent to AMAX1 [A,B] in the
computer language FORTRAN.

5.4 Source Term

For the finite-difference representation of the source term S in Fe,. 2.6,
it ia convenient to express S as:

S =S +S 4, (5.14)
0

w old be assumed to prevail over the con-where the quantities Se4, Sp4 and 40
trol volume surrounding point O. This "linearization" of the source term isj

an effective device for stability and convergence. The exact expressions for'

Sc4 and Sp4 do depend on the actual form of S . Here it may be noted that S4 p4

|
is always kept equal to or less than zero, or else instability, divergence or

isI physically unrealistic solutions would result. When the expression for S4
rather complicated, we set Sp4 equal to zero, and Sc4 equal to S . When the4

4 ~ 4 variation is nonlinear, and Sc4 and Sp4 are functions of 4p; we calcu-S

late them iteratively until convergence is achieved.

5.5 Unsteady Term

For the representation of the term 0[p04]/3t, we assume that the values
0 , and 4 Prevail over the control volume surrounding point O. The inte-p0, 0 0

gration of the unsteady term over the control volume would then give:
1

|p000 804 T axAyAz/At (5.15)[ B[p9$]/3t dx dy dz = 04 00 v
c.v.

where the superscript 0 denotes the known values at the beginning of the time
step.

,

|

|
_ _ - -___ _ - _ - ____- _____ _ _ - - - _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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6. GENERAL FINITE-DIFFERENCE EQUATION

6.1 General Form

The basic details outlined so far enable us to obtain the finite-
difference form of the general differential equation (2.6). Let us consider
the control volume shown in Fig. 6.1. It is constructed around point 0, which

has 2 and 1 as its east and west neighbors, 4 and 3 as the north and south

neighbors, and 6 and 5 as the top and bottom neighbors representing the z-
direction. The control-volume faces are denoted by e, w, n, s, t, and b.

The general finite-difference equation for variable & is arranged as:

55*86*6 * *04 *D (6.1)40 0 " *1 1 * "2 2 * "3*3 * 8 44 0 44*#a0 O

where

1 y + |F , 01, (6.2a)a =B
1

2 + |-F2, 0), (6.2b)a =B
2

3" 3 + |F ' 01, (6.2c)a
3

4 4 + |-F , 01, (6.2d)a =B 4

5" 5* 5, 01, N 2e)a

''6"B6+ - 6'a *

0
=, p 0 (Y AxA ya z)/A t , (6.2g)a

+ yz s +ve)b0" c 0 v

= (S +S - 04)(y (AxAyaz) (if G is -ve) (6.2h)g y

and

0 " *1 + a2+a3+a4*85*86** ~ (8 - Y AxAyaz) ( H G is +ve)a
p v

o
1.az.a3.a.as . a, . a - S,(x ,ixAyi.> uf n is -ve)=a

(6.2i)

__ _ _ _ _
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9

terms, the reason beingWe have two alternative equations for a0 *" 0;

that the convergence and stability are better if the a term is made larger and0
more dominant. This can be achieved by retaining the mass source term 0 (evap-
oration or condensation) in the left-hand side (in a0) if G is -ve and in the
right-hand side (in b ) if G is +ve.o

are defined in an identical manner.'Ihe quantities B , B , B ' te ' 5' 6y 2 3
For example:

= D |0, (1 - 0.1|F /D g)Sj , (6.3)B
2 2 22

where F and D are given by Eqs. 5.8 and 5.9. For any other face, appropriate
definitions of F and D are used, such as

F =(pewA) (6.4)
,

6 z

and

^
z , k+ 1/ 2 6.9

D6" 0.56z 0.56 z\
..

.

-
r,e;k+1.r,e

Therefore,

( ~ *B ~ *

6 6*6 6
i

The derivation of Eq. 6.2i is as follows. If we combine Eqs. 5.10, 6.2b
and 6.3, we get:

,

(JA) = fD -F,0|($ -*2 2* 00, (1 - 0.'1|F /D2|) + *

2 0x 2 2
1+1/2
,

From the definition of a (Eq. 6.2), we can now write Eq. 6.7 as:2

(JA,) = fB + |-F , 0|f(4 ~# * *

2 2 0 2 20
1+1/2
,

|

|

|

Similar expressions would hold for (J A )j+, /2 and (JzAz)k+1/2 For the fluxyy
crossing the west surf ace of the control v c ne, the expression is

y + |-F , 0|f($ -$)+F4g. (6.0(JA) B=

1 1 0 g

1-1/2
,

and $ DY 40 A furtherThis is obtained from Eq. 6.8 by replacing $ DY41 20
rearrangement gives:
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| F , 0| ($ g - $(JA) B +=<
g 01-1/2

,

|-F,0|-(F,0| ($ - $ * k . 6. W+
g 1 0 I l.

Noting that

|-F , 0| - | F , 0] = -F , (6.11)
1 g g

we obtain:

y + |F , 0| ($ g - $(J A ) 0 (6.12)B #=
10g 0

1-1/2
,

With a defined by Eq. 5.2a, we write:
3

x x) , 1/2 =a($ -$ +A
1* 0 (6.13)y 7 0

' 1-

Similar expressions can be written for (J 4 )jfaces,1/2 and (J A )k-1/2
With allyy g z

these flux expressions for the contrni volume and with the contributions
from Eqs. 5.14 and 5.15, the coefficients of $o can be written as

0 " *1 ~ 1 * "2 + 2 3 ~ 3 * "4 + 4 * "5 - 5 * "6 + 6*8a

- S (Y AxAyAz) + p * 7 *! * *

y 00 v

Substitution of Eq. 6.2g into this gives us

0 " *1 + 82*83 + "4 * "5 + 86*80 - 8(YaxAyAz)+{(p0 POa p v 00 O

(YAxAyAz/At)+(F -F)+(F - F)+(F - 5}}. 6. W.
y 2 1 4 3 6

The terms in the curly brackets .can be recognized as the discretized form
of the lef t-hand side of the continuity equation and hence can be regarded as
equal to the source term (G)(YvaxAyAz). With the contents of the curly brack-
ets in Eq. 6.15 set equal to the source term, we obtain Eq. 6.2i.

6.2 Fonnulations in i, j, k Notetians

Consider the control volume shown in Fig. 6.2. It is constructed around
grid point 0 (i,j ,k) which has 2 (i+1,j ,k) and 1 (i-1,j ,k) as its east and west
neighbors, 4 (i,j+1,k) and 3 (i,j-1,k) as the north and south neighbors, and 6
(i j ,k+1) and 5 (i,j ,k-1) as the top and bottom neighbors representing the z-
direction. The control volume is formed by six planes xi-1/2, xi+1/28 Yj-1/2s
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- -C 0 O i+1- -
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Fig. 6.2. Control volume around point 0 in ijk notation
|
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yj+1f ,2k 1/2, and z +1/2 For simplicity, two of the indices i, j, and kk
are suppressed. Therefore,

# +1/2 " # +1/2,j,k' #j+1 " *i,j+1',k * * "*
i i

The general finite difference equation can be arranged as

*ijk ijk " *i+1 i+1 + a(_g$ i-1# # # # # 4'j-1 j-1 * 'k+1 k+1"j+1 j+1

0 0
# (6.16)+ *k-1* k-1 + *ij k ij k + bijk

Here,
t

a g = B +1/2 + ~ i+1/2,0|, (6.17a)g i

i-1/2,0|, (6.17b)F*i-1 " i-1/2 +4

I

+ |-F j , 0|, (6.17c)a}=B jj

=B + 1vj-1/2,00. (6.17d)a _l j-1/2j

-F+1/2,0|, (6.17e)a =B
k+1 k+1/2 + k

k-1 k-1/2 * k-1/2,0], (6.17f)a
,

o
; a$jk - (p s )ijkb a*i Yj *k)/At, (6.17g)aA

v

AYj k), (if n is +ve)ijk " S * 8 (T a* ib o'

c 0 v

=(S +S -Q$)(YAxAyaz),(ifnis-ve) (6.17h)
c g y

'

1

and

+"ij k " "i+1 + *i-1 * "j+1 "j-1 "k+1 *k-1

0+a -S Y Ax ay azk (if n is -ve)| gj
,

i j

= a 1 + a ,3 + a ,3 + a)_g + ak+1 + ak-1t g j

+ (0 - S )(y AxAyAz) (if n is +ve) (6.171)+a j y

i

s

+

-- - .- - , - - --
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n qs. 6.Ha to 6.lR are denned in the'Ihe quantities B +1/2' i+1/2, e c.,
i

following manner:

B +1/2 i+1/2 0, (1 - 0.1|F +1/2 i+1/2* *

i i
*

' (Ay.Az )(y )
D ~

- Ax A ;*-*i+1/2 g
*

2p 0) F e, g,g g,g
LJ,,k _

and

F +1/2 ~(E8'##x).1/2 Ij *k = (p0uA )
(6.20)6'

.

i
t+ i+1/2

,

,

i

Similarly for other faces, e.g.

-1/2;)5),.B -1/2 -1/2|0, (1 - 0.llFk-1/2 .(6.21)=D /D:

Ax Ay (y }g j z
Dk-1/2 " ~

Az
*-'z _g

*
2(f 0) 2r , k-1 k- 1,,

- tjk . ,

and

F = (p0wy ) Ax Ay = (p0wA ) (6.23)k-1/2 g .
:.

; k-1/2 k-1/2

s

T

.

.

.. .. - -. .
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7. Tile FINITE-DIFFERENCE FORM OF NOMENTUM EQUATIONS

Since the momentum equations conform to the general 4 equation, no sepa-
rate derivation of their finite-dif ference form should be necessary. However,

because it is desirable to calculate the velocity components for " staggered"

locations, as will be explained shortly, some dif ferences of detail arise in

constructing the momentum finite-difference equations.

7.1 Staggered Grid

Although all dependent variables are calculated for the grid points, the

velocity components u, v, and w of both phases constitute an exception. They
are calculated for displaced or " staggered" locations, and not for the grid

points. The displaced locations of the velocity components are such that they

are placed on the faces of the control volumes. Thus, the x-direction veloc-

ity u is calculated at the faces that are normal to the x direction.

Figure 7.1 shows the locations of u and v, by short arrows, on a two-

dimensional grid; the three-dimensional counterpart can be easily imagined.
With respect to the grid points, the u locations are displaced only in the

x direction, the v locations only in the y direction, and so on. The location
for u thus lies on the x-direction link joining two adjacent grid points. It

is the pressure difference between these grid points that will be used to
" drive" the velocity u located between them. This is the main consequence of
the staggered grid.

Except for uniform grids cases, the staggered velocity locations will not

lie exactly midway between the adjacent grid points. The velocity components
are located on the control-volume faces, and as we are using the second prac-

tice outlined in Section 5.1 the velocity components may not be midway between

the grid points.

7.2 The Momentum Control Volumes

A direct consequence of the staggered grid is that the control volures to
be used for the conservation of the momentum must also be staggered. The con-

trol volumes shown in Figs. 5.1 and 5.2 will now be referred to as the main
control volumes. The control volumes for momentum will be staggered in the

direction of the momentum such that its faces normal to that direction pass

through the grid points (see Fig. 7.1). Thus, the pressures at these grid

points can be directly used for calculating the pressure force on the momentum
control volume. Figure 7.2 shows the control volumes for the x-direction

momentum.

7.3 The Finite-difference Equation for Momentum

All the basic concepts developed in Section 5 and implemented in Sec-
tion 6 will be applied to the ' staggered control volumes for momentum. The

,
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differences are mainly geometrical and involve the appropriate calculation of
the flow rates and dif fusion strengths for the faces of the momentum control

volume.

We consider the situation shown in Fig. 7.3. Let F and F denote theg 24
flow rates for the two main control volumes which contribute to the momentum
control volume around e. We assume that the calculation of F and F is al-g 24
ready performed. %e part of F that contributes to the y-direction flow rateq
at the upper face of the momentum control volume is:

F x (distance Oe)/(distance we) = F /24 4

|
Similarly, the contribution of F is:24

1

F x (distance e2)/(distance e-ee) = F /2,
24 24

|
|

| where ce is the point on the right side of 2 where an arrow is shown in

Fig. 7.3. hus, the total y-direction flow rate at the upper face of the

momentum control volume is:

h(F4+F24 *

The diffusion quantity for the same face is calculated from
|
t

, J (D4+D24/*s ance Oe stance a2 I+DD
4 distance we 24 distince e-ee 2i

! -

he evaluation of the main-control-volume dif fusion strengths D and D isq 24
performed in the manner stated in Eq. 5.9.

We x-direction flow rate entering the momentum control volume at 0 is
obtained by linear interpolation:

distance De distance w0 Ir
0 1, distance we 2 distance we 2 \pl , p ),,pp ,p , ,,

2

and hence calculated as:The diffusion strength at 0 is wholly governed by P&O

x 00 0* i* (7*I}O"(YAyaz)rD e

Re quantity (ph0h(y AxAyaz)] in Eq. 6.2g stands for the mass of fluidy

contained in the main control volume around point O. We corresponding quan-
tity for the momentum control volume shown in Fig. 7.3 is obtained by taking
the appropriate mass contributions from the control volumes surrounding points
0 and 2. In our case, it is

[o e (y AxAyAz)0 + o 0 (y AxAyaz)2] *y y
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With these details, the momentum finite-di fference counterpart of Eq. 6.1
is constructed. One additional feature, however, should now be introduced.
As seen from Eq. 2.3, the pressure gradient appears its the momentum equation,

i but the pressure field is neither known beforehand nor directly obtainable
from some sort of " conservation equation for pressure." Thus, pressure is
regarded as unknown and determined indirectly from the constraint that the
velocity field satisfies the continuity equation 2.2. For this reason, the

pressure-containing term in the finite-difference form of the momentum equa-
tion is displayed separately. '

From these considerations, we write the finite-difference equation for
the control volume shown in Fig. 7.3 as:

0
a "O ~ I* b"nb + a "O + b0'(Y0Ayaz)(p P ), (7.2)0 n 0 x 0 2

<

where the subscript nb denotes a neighbor u and the summation is taken over
the six neighbors surrounding u . The term aju arises from the unsteadyo

oterm in the differential equation; a is calculated similar to a0 defined in
Eq. 6.2g. The definitions of the neighbor coefficients a b and the center co-n
e f ficient a are identical to those in Eq. 6.2, with appropriate calculations0
of the flow rates F and dif fusion strength D.

; The contributions of the source term that enter a and b d n t contain
9 e

the pressure gradient; the ef fect of the pressure gradtent is expressed by the
(Tx yAz j is the area on which the pressure droplast term in Eq. 7.2, where A

(p P ) acts. The momentum equations for the y- and z-directions are ob-0 2
tained in a similar manner.

7.4 Velocity-Pressure Relationships

In order to convert.the indirect specification of pressure contained in

the continuity equation into a direct algorithm for calculating pressure, we
establish relationships between the velocity components and corresponding
pressure drops. For this purpose, we define a pseudo-velocity by:

00+b^

u E Ianb"nb + #0"O 0 !*0* (*0

This enables us to write Eq. 7.2 as:
A

0""O+d[P P }, (7.4)u O 0 2

where

d E T 0ayaz /a . (7.5)0 x 0

A A
Pseudo-velocities v and w are similarly obtained from the corresponding momen-
tum equations.,

t

.

- -
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We now imagine that the pressure changes from a guessed value p* to a new
value p. The corresponding change in the velocity is expressed as

0 ~ "O =d[(P Po) - (P Pj)) (7.6)u
O 0 2

A
where we have assumed that the change in u is unimportant. The change in

0
pressure is denoted by the " pressure correction" p', i.e.,

p = p* + p', (7.7)

and we derive a velocity-correction formula from Fq. 7.6 as:

0""O+d(P Pj). (7.8)u O 0

Here up is the value of u given by Eq. 7.2 when the guessed value p* is sub-0
stiteted for the pressure p.

The similarity between Eqs. 7.4 and 7.8 should be noted.

7.5 Solution of the Momentum Equation

There are two ways one can solve the momentum equation for velocity
field. One procedure is to use a set of equations (7.2) and solve them si-

multaneously by either line-by-line or plane-by plane solution procedure as
described in Section 11. This is a more implicit procedure as all the neigh-
boring velocities in Eq. 7.2 are considered unknown. The second procedure is

to use the velocity pressure relations, Eq. 7.4, after solving pressure equa-
tion derived in Section 9. This is an explicit procedure as all the neighbor-
ing velocities are considered to be known. The COMMIX-2 has, at present, a r.
option that permits the use of either of the above two described procedures.

I

|
|
|

i
.

|

|
|

|
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8. FINITE-DIFFERENCE FORMS OF THE CONTINUITY EOUATIONS

8 .1 Phase Continuity Equation

We can see that the phase continuity equation has the same form as the
general Eq. 2.6 without the diffusion term. We can therefore, make TO = 0 and
use the formulations described in Section 6. It may be noted here that due to

the absence of the diffusion term, the final finite-difference equations that

we obtain correspond to the equations that we obtain by upwind differencing.

The finite-dif ference equation fer fluid volume fraction 0 can be
,

arranged as:

0 0 " " leg +a02 2 * "3 3 + a 044+a055*80 06 6 * *00a 0' *

where

g = |F , 0|, (8.2a)a
3

=|-F,0], (8.2b)a
2- 2

3 - IF , 01, (8.2c)3

- I-F , 0 ], (8.2d)e
4 4

= IF , 01, (8.2e)a
3 3

=|-F,0|, (8.2 f)a
6 6

- [h Y )0(b*i y Ag )/At, (8.2g)Aa
y j

b0 " O(T a*i y azk), (8.2h)A jv

i = |-F , 0|, (8.2i)g g

S = F , 0|, (8.2j)
2 2

2 - |-F , 0], (8.2k)3 3

2 = F , 0], (8.21)4 4

- _ -
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=(-F,0], (8.2m)a
3 3

= [F ' (*"a '66

0=(pY,)0(Axayaz At, (8.2o)a
y g j k

and

0 y+a2*83+84*85 + "6 + "0 (8.2p)a =a

,

ne coefficients without overscore represent " inflows" while the coefficients
with overscore represent " outflows." It may be noted here that only one of
the two coefficients (with or without overscore) exists. %at is, if a exists,

3
then a is equal to zero or vice versa. % e quantities F appearing in Eq. 8.2g

are as defined previously but without fluid volume fraction. %us

2"(P"Y)ggj Ayaz)"(P
# )iH/2

(' }F j kx x

, 8.2 Combined. Continuity Equation

%e combined continuity equation, Eq. 2.2b is integrated over the control
volume as shown in Fig. 6.1 to yield:

(Aou +pg88)T ~

(P e uggg+pg 8"g}T (AyAz)ggg x x
,

(Pev gEg)T (Pev + p 8 v )Y (Azax)+ + p v ~

ggg tgg g
,

t

.(A o w g 8 g)Y .
. .

g g g + p e w )Y, t (AxAy)
* + p pew-

i

t

- ggg z ggg
-

,
-b

|

(p e, + p 8 ) - (# 0, + p e ) (YAxAyaz/At)=0 (8.4)+
g g8 1 gs y

We use one of the two phase continuity equations to compute the void
fractions, and the combined continuity equation (8.4) for determining thei

pressure correction. Since the pressure or the pressure correction does not
| appear here, further manipulation is needed to derive the finite-difference
I equations for p and p'.

. _ - . ,. . . - . - _ . _ _ . . , - . . . . _ _ - __ . _ - _ _ _ _ _ - _ -. _
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9. PRESSURE AND PRESSURE-CORRECTION EQUATIONS

As mentioned earlier, the pressure appearing in the momentum equation is
| unknown and has to be determined from the continuity equation. There are a

number of possible ways to derive pressure and pressure-correction equations
| from the continuity and momentum equations. An important thing is to note

that the equations derived must satis fy the following three eqt'stions.

Liquid continuity, (9.1)
l

i Cas continuity, (9.2)

and

1. (9.3)9 +O =
g g

In COMMIX-2, we have provided two alternative procedures for pressure-
correction equations. At present, we do not have enough testing and comparison
to favor any one of the two procedures. Further experimentation is planned to

( determine the computational ef ficiencies of these two procedures. Meantime, an
option has been included in the code to select either one of the two

procedures.

In procedure 1, we use the liquid continuity equation (9.1) to compute the

liquid volume fraction, Og+Og = 1 relation (9.3) to obtain gas volume fraction

and the combined continuity equation (sum of Eqs. 9.1 and 9.2) to obtain the
pressure-correction equation. In the alternative procedure 2, we have used the

liquid continuity equation (9.1) to obtain the liquid volume fraction and the

gas continuity equation (9.2) to obtain the gas volume fraction. We pressure
correction equation is derived from the constraint that the sum of Og and og
must be equal to unity (Eq. 9.3). He pressure equation for both procedures is

|

obtained from the combined continuity equation. He derivations of pressure
l and pressure-correction equations are given in the following sections.

| 9.1 Pressure Equation

Substitution of the velocity pressure relations such as Eq. 7.4 into
Eq. 8.4 leads to:

3 3 + a p4 + a P55+aP66+b, (9.4)aP00 =ap y+aP22+aPg 4 0

where

={(p ed +p0d )y,} ( AyAz), (9.5a)a
3 ggg gg

$(P0dttg+pedggg)T}(Ayaz), (9.5b)| a ~
2 x

|
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3 " ~ (P e dtgg+ peg s 8 }Ty ,(AxAz), (9.5c)8

(P e dt g g + p e d )y (Axaz), (9.5d)84" ggg y

Pedtgg+p Y (AxAy), (9.5 e )5"a
ggg z

a6" P,o dg g + p e d )Y, (AxAy), (9.5 f)gg8

0=at+a2+83+a4+a5+86, (9.5g)a

and

(P e utgg+peug g g)Tx,"[(P e utgg+oe0)y,)b0" ggg
e

+ ([(p ef, + o e,0,h ] - [(p ef, +:o e 0 )Y ) (Ax6z)g y, ggg y

A A -A

[(p e w, + o,e,A )v,1, - [Ca e,v, + p,e w h,1,( AxAy)+
t v, t g

+[(Pe + p e ) ~ (# e + g 8) (Y AxAyAz/At) _ 9.Sh)(gg Eg 11 y

9.2 Pressure-correction Equation 1

In this section we have derived the pressure-correction equation for two-
phase flow by extending the ' SIMPLER' procedure for single phase. If we
substitute Eq. 7.8 (and .similar velocity-correction formulas for v and w) into

| Eq. 8.4, we get the pressure-correction equation
|

| aP[)=ap{+aP2 2 + a p3 4j+aP55+.aPh+b0 (9*0)8 P 60 g 3
l

where at , a2, a3, a4, a5, a6. and a0 are given by Eqs. 9.Sa to 9.5g, and bo is
given by

.

0" (P e u +p ggg}Y ~ (P e,", # Aeu hx OYO*
b

tgg x, t ggg

+ ([ Ca e,v*, + p,e,v* h ) - [(o,e,v*, + o e v*h ] } (sxA=)t , y, gg y,

+ ([ Ca e *, + p 8,w h,1, - [(o ecr+pe,wh,1,}(AxAy)
* * *

tr , s ,

+ [ Ca,e, + p,e,) - (o,e, + p,e,)](v axAyA=/At). (9.7)v

- - - - - - - . - _ _ -- - - _ -. . . ..
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he similarity between Eqs. 9.5h and 9.7 should be noted. The only difference
between the two equations is that, whereas the b f r the pressure equation is0

) calculated in terms of u, 0, and 0, the corresponding quantity for the pressure
,

correction equation is obtained in terms of 8, $, and 8.

j 9.3 Pressure-correction Equation 2
1

1he pressure correction equation derived in this section is based on the
procedure very similar to the numerical procedure known as IPSA.5 In this
procedure we differentiate-the phase continuity equations and momer.tum
equations and combine them with the condition,

0g+O =1 (9.8)g

to obtain the pressure correction equation.

Let us assume that we have an estimated pressure field p*, We can then
solve the momenttan equations to obtain velocity fields uj, vy and wy for liquid
phase and u*, vj, and w for gas phase. These velocity fields can be used ing
the continuity equations to obtain fluid volume fractions Oy and 0*. As the
fluid volume fractions are based on estimated pressure field p*, they will, in
general, not add up to 1. We, therefore, require the corrections to fluid

volume fractions 0{andejsuchthat

(0*g+0{}+(?*+0')=1, (9.9):

or

0{+0[=1-0*g-0*S* (9*98}

Now from Eq. 8.1, the fluid volume fraction is given by

*
0 =0, (9.10)-

a

where,
*"

8=(T b g);, + a 0+ 0
e *a *

a=({anb)out O'
+a (9.10b)

'

'Ihe subscript nb refers to six neighboring points, "in" represents inflow, and
"out" represents out flow. From Eq. 9.10 we derive a fluid volume fraction
correction formula.

O' = "O' ~ 0"' (9.11)*2
a

I

_ _ ____ -_ _ _ _ _ _ _ _,
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or

*a(Ia;3n3). -8(Ii;b)e
*"e' = (9'II'}2

G

or

*(I=;bn3). - # (I a;b)e
*"0' = ". (9.11b)a

Here a' and I' are the changes in coefficients due to pressure correction p'.

In order to determine a' and I', we look at the coefficients a and 3
2 2

(Eq. 8.2) making note that the coefficients a b and Knb exist only for inflowsn
and outflows, respectively;

2 = |F !. "~Pi+1("*b).1/2
(9.12a)a

2 ,

in t+

and

= (F ) ~P i(u*A) (9.12b)a .y 2
out 1+1/2

,

Combining Eq. 9.12 with Eq. 7.8 we get

2"D+1(Ad),1/2(p{,3 pj),(in) (9.13a)a
i x

t+

and

aj=pg(Ad) (p{ py ), (out) (9.13b)
1+1/2
,

.

Equations for other neighboring coef ficients can be obtained in an identical
manner. We now substitute all these coefficients in Eqs. 9.9a and 9.11b.
After simplification we get

8'= (pad 6*)b(P -P')-(PO*)ijk nb(P' - P$b) , (9.14)^
n b

in out

i

. - - -- - . .
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and

<- s s
(p,Adeg t nb (pad 0)nb., , g gg{1-(0 +0}}= 4 +

1 g a a
A 8 .ins-

-(Ad
g)nb(P0)ijk* (Ad ) b (A o )ijk.

,

* *
*P11 a gg nba

.
g g ,out,

# * *
~ C a ^d 8 ) Ca^do)

.

|

t t 2 ,, g g g ,,
_ P,jk +

i a a
As in - 8 -

. (Ad g)b (Ad)
~,

n * 8

nb(a
*

| Co 0 ) " (9 25)
s g)tjk ,

+ + -

t
2 2

..k
a , ..

lj gout-

llere A represcnts the cross sectional area, e.g.,

A y = (Y ) (9.16a)Ay azksg x j.p

|

| ^i-1"(Y).. Ay; Az - (9.16b)
'

x k1-1/2

| Equation 9.15 is our final pressure correction equation. After solving for
pressure corrections (Eq. 9.15) we use Eqs. 9.14 for computing fluid volume
fraction corrections. The velocities and fluid volume fractions are then modi-
fied to account for these ccrrections.

l
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10. INITIAL AND BOUNDARY CONDITIONS

10.1 Initial Conditions ;

Generally, before the solution sequence can begin, all values of variables
must be assigned. H is can be accomplished by either continuing a previous run
via the restart capability or by specifying the initial temperature, pressure,
and velocity distribution throughout the interior points of the space under
consideration. When the initialization is not a restart, density and enthalpy

can be claculated from equations of state, using the specified pressures and
temperatures. The determinaticn of these distributions and their subsequent
input into the code are generally tedious. Options are provided in the code to
ease this initialization task. khen a steady-state solution is being sought,
an initialization as close as possible to the expected solution should be used
to reduce computer running time.

Pressure Initialization for Static Head

When gravity is acting along any one of the three principal coordinate axes
and there is either constant or one-dimensional temperature variation in that
same direction, an option has been provided to reduce the initialization task.
H is option is exercised by specifying a pressure at a point and either the
constant or one-dimensional temperature variation. De entire temperature

field can be generated from the input temperature information. Le density

field is then computed from the equation of state. With this density field and

the point pressure, a pressure field is generated to account for the static
head. From the pressure and temperature fields, the enthalpy is obtained, thus
completing this initialization option.

Pressure-drop Initialization

A linear variation or constant pressure gradient initialization option is

also provided as in COMMIX-1 (Ref. 2). Eis can bg used when the constant
pressure gradient is along any one of the three principal axes. It is accom-

plished by specifying the constant pressure gradient as either 3P/Bx, 3P/3y, or
3P/Bz, and a point pressure. %is option can be used along with the static-

head initialization. However, if the constant pressure gradient is along the

same axis as gravity, the pressure gradient due to gravity must be included in

the specification of the constant pressure gradient.

10.2 Boundary Conditions

The options are provided in the code for the following boundary conditions.

Velocity

1. No slip

2. Slip

3. Continuative velocity boundary
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4. Continuative momentum boundary
S. Constant or prescribed transient velocity boundary

Temperature

1. Constant or transient temperature boundary
2. Constant or transient heat flux boundary
3. Adiabatic surface

Pressure

1. Constant pressure boundary
2. Transient pressure boundary

10.3 Boundary Conditions for Pressure and Pressure-correction Equations

Since the continuity equation has been reformulated as the pressure equa-
tion and the p; essure-correction equation, special attention is given to the
boundary conditions for these equations. Normally, either the velocity normal
to the boundary is specified or the pressure at the boundary is given.

Given Normal Velocity at the Boundary

A control volume adjacent to a boundary is shown in Fig. 10.1. If the
; velocity up entering the control volume at the boundary face is known, then, in

the derivation of the pressure and
substituteuwintermsofuworuh; pressure-correctionequations,wedonotinstead we use the known value of uW-
Thus, p orpgdoesnotappearintheporp' equations. In other words, theg
coefficient g will be zero in these equations. Since this boundary coefficient
is zero, no information about the boundary pressure is needed.

'Ihe given velocity boundary condition occurs at walls, symmetry planes,
and inflow boundaries with known flow rate. Also the outflow boundaries can be
treated as known-velocity boundaries by specifying the normal velocity there by
reference to overall mass conservation. Only when the flow rates are unknown,
but the pressure drop is specified, do we turn to the given pressure boundary
condition. -

Given Pressure at the Boundary

When the pressure at the boundary point 1 in Fig. 10.1 is known, the situa-
tion is straightforward. For the pressure equation, the known value p is used

g

in the appropriate neighbor term. Further, if p{ is set equal to p , we haveg

pg = 0, which serves as the known boundary value for the pressure-correction
equation.

10.4 Irregular Geometries

When the actual boundaries of the calculation domain do not coincide with
the boundaries of the nominal (rectangular) domain, special treatment is needed
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to incorporate the " internal" boundaries. When the boundary is internal to the

nominal calculation domain, the grid should be so designed that the actual
boundary is suitab'uy approximated by a succession of control-volume faces.
Figure 10.2 illustrates this for a solid obstacle projecting into the nominal
calculation domain. The dashed lines indicate the control-volume faces, while
the shaded area denotes the obstacle.

The irregular boundaries can be treated through appropriate choice of the
r's as described in Re f. 25. When 4 stands for velocity, the corresponding
values of r for the control volumes that lie in the solid can be made very
large. This results in very small (essentially zero) values of velocity pre-
dicted for the solid region. A given value of 4, such as temperature, can also

,

be arranged at the internal boundary by making the r values for the solid large
and by specifying the given value of 4 at the nominal boundary adjacent to the
solid. An adiabatic surface, on the other hand, can be simulated by the use of

for the solid.a very low Th
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11. , SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS

The finite-difference equations derived for the general variable 4, for
the velocity components, for pressure, and for the pressure correction have a
common form. They all relate the value of the variable at 0 to the values at
the six neighbor points.

The form of the equation is such that it permits various numerica1 ' solu-
tion schemes, e.g., cell-by-cell, line-by-line, plane-by plane, block itera-
tive, direct inversion etc. The cell-by-cell procedure generally requires less
storage but takes a longer time to converge. The direct inversion procedure,

i at the other end, requires prohibitively large computer storage but provides
stability and efficiency. We have provided two solution procedure options in
the code. One is the cell-by-cell solution procedure with successive over-
relaxation and second is the line-by-line solution procedure. The line-by-line
solution procedure, for the solution of the algebraic equations of the general
form is described here.

.

Although the general finite-difference equation contains seven unknowns,
the equations for the near-boundary control volumes have fewer unknowns. This
results from the fact that either the boundary values are known or their in-
fluence has been set equal to zero through our boundary-condition practice.
Thus, we may always regard the boundary values as known for the purpose of
solving the equations.

11.1 Tri-Diagonal-Matrix Algorithm

The primary building block in the solution method is the Tri-Diagonal-
Matrix Algorithm (TDMA). It enables us to solve directly f .r all the values
along one line.

Let the system of equations be represented by

A 4; = B 4g,g + C 4;_g + D , (11.1)g g g g

for i = 2, 3, N, with 41 and 4 +1 being the known values...., _N

The first step is to calculate the transformed coefficients Pi and Qi from

P = B /A ' Q =(Ck2 1 + D )/A , (11.2)2 2 2 2 2 2

and, for i = 3, 4, ... N

g=B/(A -CP_g),P g t gg,

Qi=(D;+CQg_g)/(A -CP_g). (11.3)g g gg

The second and final step is the "back substitution," i.e. , the
calculation of 41 from

_ _
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$g = P $g, +Q. (11.4)'

g

for i = N, N - 1, N - 2, ..., 4, 3, 2:
,

This step gives the solution of the system of equations (11.1).

11.2 Line-by-line Scheme
.

1. The line-by-line procedure for solving the finite-difference equations in
| a logical extension of the Gauss-Seidel point-by point method. _Instead of

visiting a point and solving for the value there by the use of the available
values at the neighbor points, we cl aose a line and solve' for all the values
along it by the TDMA.

The procedure is schematically illustrated in Fig. 11.1. A grid line is

chosen for the application of the TDMA. In the finite-dif ference equations for

all the points along this line will appear the values of the variable along the

four neighboring lines (two of which are shown in Fig. 11.1; the other two

contain the z-direction neighbors). If these neighbor-line values are assumed

to be known, then the finite-difference equations along the chosen line will
,

take the form of Eq.11.1 and can be solved by the TDMA. The main advantage of
this procedure is that the boundary-condition information from the ends of the
line is at once transmitted to the interior of the domain, no matter how many

grid points lie on the line. In the point-by point procedure, on the other

j hand, the influences from the boundary travel only one grid interval per

iteration.

When all the lines in a given direction are visited, the basic operation

of the line-by-line procedure is complete.

11.3 Traverse and Sweep Directions

|

| The basic operation just mentioned does not, however, give the final solu-
! tion of the algebraic equations. The reason is that guessed values from neigh-

boring lines are used in the procedure. Only aftor many repetitions of the

| basic operation, do we get the correct solution of the equations. 'Of course, it

| is desirable to seek ways of reducing the number of required repetitions.
!

'

The direction of the line chosen for the TDMA is called the traverse di-

; rection. In many problems, geometrical and other factors result in a situation

I where the coefficients in a particular direction are much larger than those in

| other directions. In this situation, a TDMA traverse in the direction of large

coefficients is particularly effective; because the guessed values from the

neighboring lines enter with only weak coefficients. When such a preferred
; traverse direction is not available, it is best to conduct three successive

repetitions of the basic operation by choosing a new traverse direction each
time,

f Having chosen the direction ~ of traverse, we need to decide the sequence in
'

which the lines are visited. This will be called the sweep dirhetion. It is

- _ _ _ _ _ . _ _ _ _ _
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convenient to start at one end of the calculation domain and proceed to the

ott-r end, so that the boundary-condition influence is quickly brought in. If

thi 21uid flow in the domain has a predominant direction, it is very beneficial

to make the sweep direction the same as the predominant flow direction. Then
the upstream information rapidly gets conveyed to the downstream locations. In

the absence of a major flow direction, it is best to alternate the sweep direc-

tion in the successive repetitions of the algorithm.

Presently, the COMMIX-2 uses the following sequence of operations. The |

calculation starts at k = 1 (z plane) and proceeds to the other end, k = kmax |

plane. In each plane two alternate traverses and sweeps are performed, i.e., l

first x-traverse and y-sweep, and then y-traverse and x-sweep. This sequence I

of operation (sweeping of planes in the k-direction) can be repeated several
times. An input parameter has been provided for selecting the number of times I

this sweeping of planes in the k-direction is desired.

11.4 Optimization of the Equation-solving Effort

The equation-solving algorithm described so far is used for one variable

at a time. Further, it regards the finite-difference equations as linear. The
nonlinearity of the equations and the interlinkage between the variables are

handled by the iteration scheme outlined in the next section. During any given
iteration we have only tentative values of the coefficients in the finite-

difference equations. The coefficients must be recalculated for every iteration
to reflect the changes that have occurred in the relevant dependent variables.

Therefore, the repetitions of the line-by-line procedure, which is working on

merely the tentative values of the coefficients, need not be carried to ultimate

convergence. It is sufficient to obtain a reasonably good solution of the
algebraic equations before the coefficients are recalculate.l. The optimum
equation-solving ef fort should be determined by experience s;d experimentation,
but a simple rule is that the work required for calculating the coefficients

should be roughly comparable to the work involved in solving the equations.

.

|
|

|

|

- - - - _ _ _ __ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _
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12. ITERATION SCHEME

For every time step in an unsteady situation, a number of iterations must
be performed to account for the interlinkages and nonlinearities. Also, the
solution for a steady-state problem is achieved after a number of iterations.
A given iteration starts with a set of values of all the dependent variables
(obtained from an initial guess for the first iteration and from the previous
iterations for subsequent iterations) and proceeds to obtain a new set of
values. When subsequent iterations cease to produce any significant change in
the values, the iteration sequence is said to have reached convergence. The
COMMIX-2 has the following r.eanence of operations.

12.1 Sequence of Operations

a. Initialize all the dependent variables. This is performed either by
providing input data or reMing the values from the restart tape.

b.i Compute density field from the equations of state.

c.f t 'Ihe fluid volume fractions By and 0* are then obtained by

(i) solving the liquid continuity for Og and evaluating O fromg
the relation og + O = 1 (extended SIMPLER procedure),g

or

(ii) solving the two pha.,e continuity equations (similar to the
IPSA procedure),

d.i Compute coefficients and pseudovelocities (tz , v, and w) of the mo-"

mentum equations.

e. Set up and solve the pressure equation, using line-by-line or cell-

by-cell SOR procedures, to obtain new values of pressure p.

f. Using this pressure field p*, solve the momentum equations (7.2) or
(7.4) to yield u*, v*, and w*.

g. Set up and solve pressure correction equations (9.3) or (9.15) to
obtain the values of p'.

h.i Modify

(i) pressure field,

|
t

|
TLiquid phase. or vapor phase. or both phase variables are computed.

Ti for two-phase only.
|

;

,

g -- - s -- - a y -p.-.-__-~_ . . _ . _ w g,-- - -. c-,, , ,-, .4y_.,f -9.-w
-

. y ,- _.-- % -
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(ii) void fractions using the void fraction-correction formula

(Eq. 9.11) in IPSA type procedure, and

-(iii) velocity field using the velocity-correction formula (Eq. 7.8).

i. Modify pressure and velocity fields to satisfy plane-by plane inte-
gral mass balance (Section 12.5).

j.i Set up and solve the energy equation.

k. Return to step b with the new values obtained during this iteration

improved guesses and continue the procedure until convergence is achieved. )as

12.2 Under-relaxation

'Ihe finite-difference equations and the line-by-line scheme have been
constructed such that, if there were no interlinkages and nonlinearities,

convergence would be certain. However, because the equations of interest al- !

most always contain nonlinear and interlinked influences, care has to be taken I

to prevent divergence. One simple strategy is to slow down the changes in the
coefficients that would occur from iteration to iteration. This is accom- *

plished via under-relaxation.

Under-relaxation of the Dependent Variables

The general finite-difference equation, Eq. 6.1 is

a @0 " * b@nb + a @000+b, (12.O0
0 n O

where the subscript nb denotes the neighbor points. This equation can be
modified as follows : From Eq. 12.1 we can write

00

$0" @nb * a
0 0

Also, let
i

1

, 4" " w$0* ~ " @0' *

|

where$$denotesthelast iteration value of $ ' @0 denotes the value obtained0
directly if Eq. 12.1 is solved; and w is the under-relaxation factor. Substi-
tution of Eq. 12.la in Eq. 12.lb and rearrangement give

I
Liquid phase, or vapor phase, or both phase variables are computed.

|.
__ - --.--
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mv 00 *

(a!")*0 " E* b nb * *0 O 0 + (1 w)(a0*)*0 (12.2)i I #0 n

It is easy to see that, when 4 becomes equal to $* (i.e., the iterations con-0
verge), Eq. 12.2 becomes identical to Eq. 12.1. In the meantime, however,
Eq. 12.2 would have a tendency to keep the resulting 47" closer to $* (than
Eq. 12.1 would do) provided the relaxation factor w is less than 1. A value of
u close to zero would indicate a very heavy under-relaxation.

A value of w = 0.5 usually provides suf ficient under-relaxation for most

variables. For the velocity components, a value of w = 0.7 may be used. The
pressure equation may be under-relaxed by using w = 0.8. These values should
be regarded as only initial suggestions; a proper set of w values should be
obtained by actual experience for a given class of problems. In COMMIX-2,
input parameters OMEGAP, OMEGAV, OMEGAT and OMEGAE are provided for under-
relaxing pressure, velocity, fluid volume fraction and energy, respectively.

Under-relaxation of Auxiliary Quantities

In addition to under-relaxing the dependent variables, a number of other
quantities can be under-relaxed with advantage. For example, the density p and
the dif fusion coef ficient T can be calculated from

o = wo * ~
Pnew old'

~

T = wT + ~"
new old'

*

Of ten the source terms can be a cause of divergence. Under-relaxation of the

source terms in the form

S = wS + (1 - w)S (12.5)new old,

can be helpful to prevent divergence. Even some boundary values can be
introduced in a controlled manner via

$ B " "I ,given * B,old'
~" *

B

where 4B denotes a boundary value.

It should be obvious that the values of w appearing in Eqs. 12.2 to 12.6

can all be different; indeed, it is possible, though inconvenient, to choos a

separate value of w for each grid point. Further, the values of w can be

changed as the iterations proceed.

In order to minimize the number of input variables, we have not included

under-relaxation factors for auxiliary quantities. However, if one desires,

this can be incorporated in the code very easily.

|
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12.3 Linearization of the Source Term

In the derivation of the finite-difference equations, we have expressed

the source term S via Eq. 5.14 in a linearized form. This form is an attempt

to anticipate the change in S resulting from the change in the value of $ ' I"
0

order to obtain a diagonally dominant matrix, S in Eq. 5.14 is allowed top
become positive. This is achieved by linearizing the source term in the fol-'

lowing way.

Let S and S denote the positive and negative parts of the source termg 2
such that

3 2 (S1 > 0, S2 > 0). (12.7)S=S -S

according toWe then set SC and Sp

(S ~ *
C l'

and

=-(S/+*0), (12.9)S
2p

where 4 den tes the last-iteration value of 4 '0 0

Source due to Phase Change

For the source term due to phase change in the momentum equation we have
assumed that evaporating mass from liquid has a velocity equal to the liquid

velocity. Thu s , for x-momentum equations

i S =0u = -s''' u ' (12.10)
mQt tt evap l

and

S =0u = s''' u (12.11)
m0g gi evap 1

Similar expressions are assumed for y and z directions. With this assumption,

Eqs. 6.2h and 6.2i become:i

Liquid Momentum:
,

'

b0" axayaz) (12.12)c v

0 " *1 * *2 * "3 * 84 * "5 * 86 * "O ~ 8 b axAyaz) (12.13)a
p v

|
!

1
!

!
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:
i

<

l

CasMomentum(d''' >0)>

I evap

i
I

i

b0"(c+ ev p 1 (T axayAz) (12.14)4 v

0 g+a2 * '3 * 84+a5*86** ~(8 ~E vp)(YaxAyAz) (12.15)a =a
p v

GasMomentum(s''' <0)evap

0 " (8 *E evp(4 -&g))(Y,AxAyAz), (12.16)b
1c

0 " *1 * "2 + a3+a4+a5+a6** ~8(YaxAyaz) (12.17)a
p v

11ere 4 stands for u, y and a velocity components.

For the source term due to phase change in the energy equation, we have
i assumed that condensing mass from gas has enthalpy equal to gas enthalpy. With

this assumption, the source terms in the energy equations are
i

S =0h = -s''' h , (12.18)h01 1g evap g ;
'

i

:

i and

i
! S =0h = s''' h . (12.19)h0g gg evap g
,

i

| Thus, Eqs. 6.2h and 6.2i are:
;
'

Liquid: (ni' ' ' (=-n)<0)evap 1

0"(c ~ vbpg YAxAyAz) (12.20)b
;y

j ,

| 0 g+a2+a3 + '4 + a5*86** -(8 +E v p)(Y axAyaz) U2.21)a =a
p v

Liquid: (s''' (= -n ) > 0),

evap t
r

0"(8 ~ "ev p g t
- YaxAyaz) U2.22)b

c v

| g 1+a2+83+84+a5 * '6 * * ~8(TaxAyAz) U2.23)a =a
p v

:

i

i
; . i

4

i.-_y- ---~,.-_-,y a- 1,,_,r.-.r- - , _ _ . - - - - . . - - - - . ~ . - - + - , , , , . - _ ._- ------. - - 9 .m,- ,- ,t v
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Gas:
1

0" axAyaz) (12.24)b
c v

0 " "I + a2*83*"4*"5*"6** - 8 b axAyaz) (12.25)a
p v

12.4 Distinction between Steady and Unsteady Situations

The calculation method outlined in this report makes only a small dis-
tinction between the steady and unsteady problems. The suggested calculation
sequence for one time step in an unsteady situation is almoct identical to the

sequence for obtaining the steady-state solution. If the time step At is made

very large, our finite-dif ference equations for an unsteady problem reduce to
those for a steady problem.

The main dif ference between the two situations turns out to be in the
number of the required iterations. In an unsteady situation, the " initial"

values of 4 for any time step are either given or known from the previous time
step. If the value of At is reasonable, the 4 values do not change very dras-
tically within one time step. Thus, thevalues4@at the start of the time
step serve as good guesses for the new values $ , and therefore, only a few0
iterations may be sufficient to attain convergence for the time step. On the
other hand, if the guesses available for a steady-state problem are rather
" wild," then many iterations might be necessary before convergence is obtained.

12.5 Performance of Integral Balances

During the iterative process, because of partial convergence of the con-
tinuity equations, it is possible that the total (or individual phase) mass

flow out of a slab of cells (across a plane) is not equal to the known, cor-
rect value. In order to make the solution at subsequent slabs of cells more
accurate, it is advantageous to correct the velocity and pressure ficids to
satisfy the integral mass balance. 'Ihis section explains such a practice, and
describes its merits.

Consider first a flow in which there is a predominant flow direction
(e.g., pipe flow). For a pipe flow, we recognize that the total flow outwards

of any plane perpendicular to the pipe axis must be equal to the inflow at the

entrance of the pipe. Mathematically, this means

[[p..w..A..=m (12.26)
LJ 13 IJi j

where p is density, w is the axial velocity, and A is the area perpendicular
to the pipe axis. The summation is made over all cells in the cross-sectional

plane. Since the above equation is not always satisfied until convergence, we
wish *o correct wij by an amount Awij to meet this criteria. There are a few
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dif ferent ways to perforls the corrections to the w field and associated pres-
sure field; here two methods found of ten superior to others are described.
Only the first method described here is included in COMMIX-2.

Uniform Pressure Correction

Let Ap be a uniform correction (over the cross-section) to the pressure
affecting the w velocity at the given plane. Also, let D, be Sw/ Sp for each
cell. We can then write

Ap{[pgj(D) ,,A; AA, (12.27)=

1 J 13

where A6 is the error (required minus actual). 'Ihis leads to the relation for
Ap, as follows:

AsAp = (12.28),

AEji w .. gj
13

and

Av =(D) Ap. (12.29)gj ,

IJ

Note that the Ap correction is uniform, but Aw is dif ferent for each cell.

The above expressions can be extended to two phase flows, considering the
total mass flow as the quantity to be balanced. Thus,

1 1"t^ ij + P e w A)gj = a + n = d *# *ggg g g t

We can derive in a straightforward way, that
1

(E ~

t t
#*" *" "*

(12.31)Ap = . . ,

^ij0 A11v ggw
-

g,, g j-tj t

(Aw) = [D Ap, (12.32)g ,,
IJ \ l

iij

and

(Aw) = [D j Ap. (12.33)
E

ij \ "g/..
tj
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The Aw corrections are applied at the slab concerned, but the Ap correc-
tions are made to all downstream planes in the domain. This practice avoids

the creation of artificial pressure gradients at subsequeat planes.

Re COMMIX-2 has incorporated the uniform pressure correction approach.
The integral mass balance is checked across a z plane. The sweeping of z- ,

Iplanes begins at k = 1 and proceeds to k = kmax.

Unifonn Velocity Correction

Let Aw be a uniform correction (over the cross-section) to the axial ve-
locity at a given plane. We can then write

Aw[[p..A..=AA, (12.34)
LJ 13ij

or

Av = (12.35).

[[p..A..
LJ 13ij

11aving computed Aw, we can easily derive the relation for Apij .

0" (12.36)Ap.. = =

13 (D) (D) [[p..A..
" ij " ij ij IJ 1J

In this procedure, we have uniform Aw for all cells in a plane, but Ap is
different for each cell. We extend this procedure to two phase flows in the
following way. Let Adg and An be the errors in mass flow rates and Awg andg
Aw be the velocity corrections of liquid phase and gas phase, respectively.g
We then have

Ahg
( .12. 37 )Aw =

,

(*tt^t..0

1 3 1]
|

|

and

As*aw (12.38)=
-

E [[(p9A) ,

E88ij ij

The pressure correction Apij can be obtained by averaging the pressure correc-
tions required for balancing of each phase of the two phases. Thus

[

|

|
:

_ _ _ - _ _ . . _-_ _ - _ _ _ _ _
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- _

a a
f(Ap)) +(Ap)*.. =1 A E !Ap . = +g g

3 gj D [[(pea) D [[(p8A)! \ t ggg' , "ij i j ij "ij i j EEI ij,
(12.39)

The Aw corrections are applied at the slab concerned, but the Ap correc-
tions are made to all downstream planes in the domain.
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;

i

13. FLOW CHARTS
,

The calculation method of COMMIX-2 described so far can be visualized
through the flow charts presented in this section. It may be recognized that a
number of decisions taken while designing the computer program have some effect
on the details of the flow charts. The description here is given for an un-

i steady situation; the specialization to a steady-state problem has already been j

,
dealt with.

1

1 ,

; 13.1 Time-step and Iteration Loops

The main structure of the computer program can be seen from Fig. 13.1 We>

i begin by specifying the grid and, if desired, calculating a number of geometri-
cal quantities which are frequently needed in later work. This is done in>

4
subroutines HOWBIG, CEOM3D, BOX, QTRPIN, and FULPIN. The subroutines QTRPIN [

~

and FULPIN are specifics 11y designed for hexagonal fuel assemblies with desiredg

quarter pin partitioning and full pin partitioning respectively, while the sub- t

g routine BOX is for all other geometries. Next the initial value of all vari-
.

ables are specified or calculated. This is done in the subroutine INITAL. At
' - this stage, the subroutine OUTPUT is called to print initial values of all

desired variables. Boundary conditions are then specified. The iteration

i sequence, for which further details will be given below, is then repeated a
number of times until convergence is obtained. The subroutine TIMSTP deter-

|' mines the sequence of calling of all subroutines required during iteration.
When the convergence is achieved, we return to MAIN where we update all vari-

'

; ables and proceed to the next time step. When the required number of time
'

steps has been performed, or the required maximum computation time is reached,
the computation is terminated and, if requested, the restart data are written

en a tape.

| 13.2 Iteration Sequence

]
'

The details of the iteration sequence are shown in Fig. 13.2. They follow
I the steps listed in Section 12.1. The sequence presented here is for the two-

phase case. If a problem to be analyzed is single phase only (liquid or gas)4

then all the subroutines for the second phase (gas or liquid) are bypassed.

!

!,
!

|
:

i

'
t

! |

: .- - . - . . - - - - - -- . - - - . .-- - - - ..--- - - - - .- -- -
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i Start i

U

Specify grid

v

Initialization

(Give values of $ )
'

_

ir

"

1r
| _

Output
<

)P

Begin a time step.
'

Set $ =$ ; choose at.

l v
i

v

Iteration sequence

4 h (details in Fig. 13.2

No
1 Converged?,

Yes3,

.I Yes ore
'

- t time steps?

No *
3r

Stoo j

Fig.13.1. The overall now chan

. _ - . _ , - - - . . - . .
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1. Compute evaporation rate Q (BOIL)

2. Set up coef ficients of liquid volume fraction et equation (LVOID)
3. solve liquid continuity equation to get og (SOLVEF)
4 Obtain 0*

(1) Use og * Og = 1
or

(1) Coefficients of gas volume fraction o equation M 0!Mg

(ii) Solve gas continuity equation to get 0* (SOLV 3F)

5. Compute density (PROPTY)

6. Compute liquid somenttas source terms S and Sp (VSORCL)e

7. Set up coef ficients and compute pseudo velocities of the liquid momentum

equations (XMOM; YMOM; ZMOH)

8. Compute gas momentum source terme S and Sp (VSORCC)e

9. Set up coef ficients and compute pseudo velocities of the gas momentum equations (XMOM; YNOM; ZMoM)

Set up coef ficients of pressure equation (PEQN)

11. Solve pressure equation to get p* using either line-by-line (50LVEF) or cell-by-cell SOR (SOLVIT)
procedure

12. Solve momentum equations to get u*, v*, w*

Eq. 7.2 (VElit0M; SOLVEU; SOLVEV; SOLVEW)

or

Eq. 7.4 (MOMENT)

13. Update boundary flow values (BCFLOW)

14 Set up coefficients of pressure correction equation
.

Eq. 9.6 (PCEQN1) (SIMPLER Procedure)

or

Eq. 9.15 (PCEQN2) (IPSA Procedure)

15. Solve pressure correction equation to get p' (SOLVEF)

16. Modify pressure p = p* + p'

17. Modify liquid fractions (IP PCEQN2 is used) 0 = 0* + 0' (DELTAT)

15. Modify velocity u = u* + u' (DELTAV)

19. Perform integral balance (REBAL)

20. Compute density (PROPTY)

21. Compute source terme S and S of'the energy equation (ESORCE)e p

22. Set up coef ficients of the energy equation (ENERGY)

23. Solve energy equation to obtain h (SOLVEF)

24. Update temperature and density boundary values (BCTEMP) i,

25. Check the convergence

Fig.13.2. Iteration Scquence

|

|
t

,

i
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1

I 14. CONCLUDINC REMARKS

j This report has described the numerical procedure of COMMIX-2 for the
j solution of three-dimensional, single phase /two phase, steady / unsteady flow
i problems with heat transfer. The method is based on the control-volume ap-
| proach, which is easy to interpret in physical terms and which ensures overall
~

conservation. Calculation practices and iteration sequences, which have been
found to be accurate and efficient have been used in COMMIX-2. The structure !

'

j of the conputer program has been outlined by way of flow charts,
i

We have developed this code retaining similarity with COMMIX-1A. All
special features of COMMIX-1A have also been incorporated in the code.

j COMMIX-1A users will have, therefore, no dif ficulty in adopting COMMIX-2.

!
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APPENDIX ~A

Thermodynanic and Transport Properties

The thermodynamic and transport properties of sodium are obtained from
Golden and Tokar26 and of water from Brookhaven National Laboratory.

r A.1 Sodium-Liquid Properties

Density (kg/m3)
,

p(T) = 9.50076E2 + T[-2.2976E-1

+ T(-1.46049E-5 4 5.63788E-9 T)}. (A.1)
f

Viscosity (pascal-second) or (Pa.s)

p(T) = 3.2419E-3 exp[5.0807E2/(T + 273.15)

! -0.4925 An(T + 273.15)] . (A.2)
f

| Specific Heat (J/kg.K)

,

| c (T) = 1.43605E3 + T(-5.802E-1 + 4.62506E-4 T). (A.3)p

Conductivity (W/m.K)

2k(T) = 92.948 - 5.809E-2 T + 1.1727E-5 T . (A.4)

In the above, T is temperature, in degrees Celsius.

Enthalpy (J/kg)

The enthalpy of liquid H(p,T) is calculated from the enthalpy of satu-
! rated liquid and the enthalpy change relation

IP
dH = K 1+-K t

-I dp. (A-5)
P Pt( K/t

_ p.

Here K is the ratio of gas constants in joulas/ pascal.m3, and T is the tem-g
perature i.4 kelvins.

Temperature (*C)

The temperature of sodium liquid T(H,p,T) is calculated using an iter-
ative procedure. Initially the liquid temperature T* is assumed. The

i enthalpy H*(T*,p) is calculated. If the enthalpy H* is not #.n agreement
:

i

|

|
I

. _ _ _ _ _ . _ . . _ _ _
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with the specified enthalpy H, then T* is modified. 'the procedure is repeated
until H*(T*,p) is in close agreement with the prescribed enthalpy.

Saturation Pressure (pascals)

j p, (T) = 1.01325ES 3.03266E6 ,-2.30733E4/T . (for TR < 2059.7) (A.6)R

\ /

sat (T) = 1.01325E5 /6.8817602E6) ,-22981.96/T . (for TR > 2059.7) (A.7)l Rp
i

T 1 61344 |0
I\\ R' /

Here, TR is the tenperature in degrees Rankine.

Saturation Enthalpy (J/kg)

sat (T) = 2.32444E3 {-29.02 + (TR(0.389352li

+T(-0.5529955E-4+0.113726E-7T)))}. (A.8)R R

| Saturation Temperature (*C)

The saturation temperature Tsat(P) is obtained by iterative solution of
Eqs. A.6 and A.7.

A.2. Sodium Vapor Properties

Specific Heat (J/kg.K)

2C (T) = 3821 - 1.952T + 6.347E-4 T . (A.9)p

Conductivity (W/m.K)

k(T)=1.72958{0.1639E-2+0.3977E-4Tp-0.9697E-8Ty}. (A.10)
!
.

Viscosity (Pa.sec)

p(T)=4.133789E-4[0.03427+8.176E-6Tp). (A.11)
!
! Density (kg/m3)

The density of sodium is calculated assuming that the vapor is made up of
the monomer, dimer and tetramer and that these are all perfect gases.

16.01846 Iip-

p(p,T) = (A.12)=
.

0.730229
R R

t
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H = M (Ng + 2N2 +.4N )'g 4

22.991(Ng + 2N2 + 4N ). . ( A.13)a
4

The mole fractions N , N and N are obtained by solvirg
3 2 g

+P ^* '

tm 4 atm 2 1 ~
"P '

2 2Pg, (A.15)N =k N

and

N =1.N -N. (A.16)4 g 2

The equilibrium constants are

,,(-9.95845+16588.3/T)* (A.17)k R
2

and

k =e (A.18)4

Here, patm is the pressure in atmospheres.

Enthalpy (J/kg)

H(p,T) = li + 2328.9 {716.54(B (P,,g) - B (P))g, sat 2 2

+811.85(B(Psat)~3(P))}. (A.19)4 4

Here,

i 2"2 (^'|
B
2"Ng + 2N2 + 4N4 '

i

i 4N4
(A.21)i B

4"Ng + 2N2 + 4N4 ,

and

|

li , sat is the saturation enthalpy.g

i

,

- - - - - - . , - . . .
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Temperature (*C)

The temperature of sodium vapor is calculated by an iterative procedure.
We start with assumed temperature T* and calculate the enthalpy H*(T*,p). If
H* is not in agreement with the specified enthalpy then the tenperature is
modi fied. The iterative procedure is continued until the calculated enthalpy
is in close agreement with the prescribed enthalpy.

I Saturation Enthalpy (J/kg)

| li , sat (T sat) = H. sat + hg , (A.22)r gg
1

l where

fg is the latent heat of vaporization.h

h = 2328.9 (N ally + N AH 2 + N AH ) . ( A.23)
f g 2 4 4

2
AH = 25980.7 - 2.21312TR + 7.06278E-4 T - 1.4526E7 T . (A.24)y R

AH = 2AH - 18304.0. (A.25)2 g

AH AH - 41478.0. (A.26)=
4 y

A.3 Water-Liquid Properties

Density

p(p,H) = 16.018463 1 + '2 R + "3H . (H < 6.4477E5) (A.27)Ha

(ag + a "R + "3 R f(Y)p(p,H) = 16.018463 H
2

l ( b
i + [1 - f(y)]! b\y+H '

-b
R 3

(6.4477E5 < H < 6.57793E5) (A.28)

p(p,H) = 16.018463 bl*H - 3R

i Here,

| g = 62.4 + 1.14E-4 pR, (A.30)a

|

| 2 = -8.73E-5 + 1.438E-9 pR,, -(A.31)a

- - - , -. . . .-. - . , , . . - - - -- .-. . . . . -
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= 2.32E-10 - 6.20E-15 pR, (A.32)a
3

b = 92.924 + 5. 761E-4 pR , (A.33) |
g

b = 3.94402E4 + 1.6386 pR, (A.34)
2

b = 1.37735E3 + 3.5704E-2 pR, (A.35)
3

H - 22
R,

(A.36)y= 2.8 ,

3 Sf(y) = h{8 - 15y + 10y _ 3y } , (A.37)

i H, = o2n226E-4 H, u.38)
,

p = 1.4503774E-4 p, (A.39)

H is the enthalpy in J/kg, and p is the pressure in pascals.

Viscosity (Pa.sec)

7 + a * * "3* 4* *"S*)p(p,H) = (a *8,

2

y+bn+bn2+bn)(p-6.8945753E5).-(b 2 3 4

4 (H > 2.76E5) ( A.40)

)u(P,H)=(e g+eH+eH 4+e'

2 3

fH)(p-6.8945753ES).+(fy + f H'+ f H +
42 3

| (2.76E5 < H < 3.94E5) (A.41)

S
u(P,H) = (d 7+d2 3 47 *d Y).(H>3.94ES) (A.42)7*d Y * 5

l

Here,

a = 1. 29947E-3, a = -9.2640321E-4,
g 2

a = 3.8104706E-4, a = -8.2194445E-5,
3 g

i a = 7.022438E-6, b = -6.5959E-12,
5 i

I b = 6.763E-12, b = 2.88825E-12,
2 3

b = 4.4525E-13, d g = 3.0260323E-4, ( A.43)y
" *

d = -1.8366069E-4, d = 7.5670758E-5,
2 3

. ._. .- ..
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d = -1.64 78789E-5, d = 1.4164576E-6, (Contd.)y 5

( A.43)1.4526053E-3, e = -6.9880085E-9,e =
g 2

1.5210230E-14, e = -1.2303195E-20,e =
3 y

f = -3.8063508E-11, f = 3.9285208E-16,
3 2

f = -1.2585799E-21, f '= 1.2860181E-273 g

I

x = H - 42658.84 (A.44),116532.6

n " 11 - 55358.8 (A.45)154213.8 ,
.

j and

Y " H - 401467.6 (A.46).

256953.22,

Specific Heat (J/kg.K)

-Ix
c (p,H) = . (H < 8.12ES) ( A.4 7 )x -

P 1 (H - 1.7556418E6)

-I
x

c (p,H) = - f(y)
P g

(H - 1.7556418E6)

g+Z"+Z" ll-ffY'l*+ z
2 3

,

(8.12E5 < H < 8.16ES) ( A.48)
.

c (p,H) = Z3+ZH+Z3 ^** *
2p

Here,

x = 2.4688303E-4 + 1.24419E-13 p,
3

j x = 1.8790464E7 - 5.634438E-2 p,
..

2
;

Z = 1.1964506E-5 + 6.291758E-12 p,
g

Z = 4.58929E-10 - 1.1980206E-17 p,
2

| Z = -2.5763436E-16 + 6.046356E-24 p, (A.50) i
3

:
t

*

-- . _ . - -
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3 Sf(y) = 16 {8-15y+10y -3y}, (A.51)

and

H - 8.14E5
(A.52)y=

2000 .

Conductivity (W/m.K)

x+ax2 + a x3 ~

-(A.53)k(H) = a3+a2 3 g

Here,

0.57373862, a = 0.25361036,a =
g 2

a = -0.14546827, a = 0.013874725,
3 g

and

x = H/5.815E5. (A.54)

Enthalpy: (J/kg)

The enthalpy H(p,T) is calculated iteratively. We start with an assumed
value of enthalpy. Liquid temperature is calculated. If the calculated

liquid temperature is not in agreement with the prescribed temperature then
enthalpy is modified. The modification is continued until the agreemene in'

temperatures is achieved.

Temperature (*C)

x
; T(p,H) = x y + x H + H - 1.7 56418E6 - 273.15. (H > 8.12ES) (A.55)2

T(p,H) = x3 + x H + H - 1.7 56418E6 (I2

g+ZH+ZH +ZH [1-f(y)] - 273.15.+ Z
2 3 4

| (8.12E5 < H < 8.16E5) (A.56)

T(p,H) = Zg+ZH+ZH +ZH - 273.15. (H > 8.16E5) (A.57)2 3 4
,

i

_
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Here,

g = 2.8378E2 - 2.752333E-7 p,x

= 2.4688303E-4 + 1.24419E-13 p,x
2

,

= 1.8790464E7 - 5.634438E-2 p,.x
3

Z = 3.49661E2 - 2.364921E-6 p,g

Z = 1.1964506E-5 + 6.291758E-12 p,2

Z = 2.294645E-10 - 5.990103E-18 p,3

Z = -8.587812E-17 + 2.015452E-24 p, (A.58)g

and y and f(y) are given by Eqs. A.51 and A.52 respectively.

Saturation Temperature (*C)

sat (P) = Cg+CP2R * P3R ~ 68 85 *p +
R

(p ^**

R

sat (P) " + "3 * '4* *T
a xy

(pR< 02) (A.60).

sat (P) = 1 8 * "3 - '4 * " YT
a x

3{bl.b,..b,.2.b.3.b,.4}(1.e,>>..
4

(43.4302 < pR< . 298) (A.60

T,,t(p) = fb i+bx+bx2+b* *
2 3 4 5* *

| (pR < 1069.2) (A.62)

_ _
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y+bx+bx +bx +b* (7 }T,,(p) = 8
b

2 3 4 5 1

1 2 226805
2 R * "3 R - + 768.8$ ( (I1.8 1*# P P# # ~

'p l-

R -

(1069.2 < pR< 0.8) (A.63)

Here,
1

| c = 588.994, c = 0.055386,
1 2

2 = -3.516E-16, a = 2634.7,
3 g

! a = 6.026, a = -367.486,
2 3

a = 4.484, b = 73.802,g g

4 b = 65.14, b = 24.859,
2 3

b = -4.3391, b = 1.6889, (A.64)g 5

pR = 1.4503774E-4 p, (A.65)

p - 44.98
Ry" (A.66),0.4498

| p - 080
R (A.67)71" 10.80 ,

|

and

f(y) is given by Eq. A.51.

| A.4. Steam-Vapor Properties

!
'

Specific Heat (J/kg+K)

c (p,H) = (A.68),

(b
P + P+b P)+(c0*#1P+cP)H0 I 2 2

Here,

b = -5.2568962E-4, b = -3.4405779E-11,
o g

b = 7.0081327E-19, c = 3.2441688E-10,
2 0

c = 3.734813E-18, c = -2.9133521E-26. (A.69)
2 2

and the enthalpy H is in J/kg and pressure p is in pascals.

|
L
l.

_ __ _ _. _ _ _ . . _ _ _ _ _ _ _
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Conductivity (W/m*k)

k(T,p) = xg& p x2* 2 (A.70)0 -

T J

Here,

g+aT+a3 +8T, (A.71)x =a
g 2 4

x =b +bT+b (A.72)2 2 3 ,

a = 1.76E-2, a = 5.87E-5,g 2

a = 1.04E-7, a = -4.51E-II,3 y

b = 1.0351E-4, b = 4.198E-7,g 2

b = -2.771E-11, (A.73); 3

p is the density in kg/m3 and T is the temperature in degree Celsius.

Viscosity (Pa=sec)

p(p,T) = v p{1.858E-7-5.9E-10T}. (T < 300) (A.74)1

g+fT+f[+fTp(p,T) = v1+p f
2 3 4

+ (8g+gT+g[+gT +(ag+a2 + "32 3 4

(300 < T < 375) (A.75)

p(p,T) = v1+p + a P + "3"a *

2

(T > 375) (A.76)

Here,

a = 3.'53E-8, a = 6.765E-II,g 2

a = 1.021E-14, f = -2.885E-6,
3 3

f = 2.427E-8, f = -6.789333E-II,2 3

f = 6.317037E-14, gg = 1.76E2,g

g2 = -1.60, g3 = 4. 80E-3,

g = -4. 7407407E-6, (A.77)g

|

:

. . _ _
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and

v = 8.04E-6 + 4.07E-8 T. (A.78)
3

3Density (kg/m )

P+ jH (A.79)p(p,H) = + by+b2g+ap+a .
7

Here,

1
a = -5.1026024E-5, a = 1.1208014E-10,

g 2

a = -4.4505598E5, b = -1.6893038E-10,
3 y

b = -3.3980179E-17, b = 2.3057608E-1. (A.80) !2 3

Enthalpy (J/kg)

The enthalpy of vapor H(p,T) is calculated iteratively. The enthalpy is
first assumed and temperature is calculated. If the calculated temperature is

not in agreement with the prescribed temperature, then, enthalpy is modified.
The procedure is repeated until the calculated and specified temperatures are
in close agreement.

Temperature (*C)

T(p,H)={-972+5.0E-4H}-273.15. (p < 1.0E4) (A.81)

T(p,H) = {(-930 + 4.88E-4 H) x1+(-972+5.0E-4H)(1-x)}g

- 273.15. (1.0E4 < p < 1.0E5) (A.82)

T(p,H) = (-930 + 4.88E-4 H)x2+ y+dH+dH (1-x)d
2 3 2

- 273.15. (1.0E5 < p < 1.0E6) (A.83)

T(p,H) = d + d H + d 11 - 273.15. (1.0E6 < p) (A.84)2 3

Here,

2dl""I+aP+aP,2 3

2d =by+b2P+b 3P,2

2
| d =c 3+cP+cP, (A.85)3 2 3

!
l

!
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I

,!, FO. i + 1.oE-5 g),i .x =
(A.86)1

!-

- 1. 0 + 1. 0E-5 p ) , (A.87)-x =

2
,

and

6.5658906E2, a 2 = 9.9065859E-5,a =
3

-2.1878607E-12, bi = -5.2568969E-4,a =
3

b -3.4405784E-II, b = 7.0081336E-19,=
; 2 3

{ 1.6220848E-10, c = 1.86704069E-18,c =
3 2

-1.4566764E-26. '< c =
3 .(A.88)

:
i
4

i

|
J

E

e

i

!

} -

_!
>

) .

. >

a

!
!

.

.

2

1

!

:

) *

4

;

}

|

}

}
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APPENDIX B

Thermal Structure Module

B.I. Introd uc t ion

The thermal structure module is designed to determine the heat transfer
interaction between an immersed structure and surrounding fluid. The follow- i

ing five subroutines form the thermal structure module. |
|

|
'

INPSTR: Input and computation of geometric variables.

HSTRUC: Determination of surface heat transfer coefficient

TSTRUC: Calculation of temperature distribution in structures

QSTRUC: Computation of heat transfer rate to cuerounding fluid

PSTRUC: Printing of variables.

It is assumed that the axial and angular conduction are negligible com-

pared to radial conduction. Only a one-dimensional (radial) heat-conduction
equation is, therefore, used to determine the temperature distribution in a
structure and heat transfer rate to the surrounding fluid. The numerical
model has the following features.

1. The model considers all internal axial structures. The input NSTRUC
determines the total number of structures.

2. Each structure is divided into a desired number of axial elements
NTSEL(N).

;

3. A set of discretization equations is obtained for each element using

the proper boundary conditions. The derivation of these equations is pre-

! sented in Section B.3. The equations are solved using the Tri-Diagonal
Algorithm.

4. Radial variation and temperature dependence of thecmal conductivity
and specific heat are incorporated.

5. The effect of gap between two material regions is also accounted for

in the model. The gap width and heat transfer coefficient across a gap are
I input parameters.
|

l 6. The heat source is included in the transient heat conduction equa-
tion for the structure element,

|
i

|

|
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B.2. Governing Equation
|

The transient, one-dimensional heat conduction equation is
!

kA + q''' (B.1)pc =

Here, p, e and k are the density, specific heat and conductivity of the ma-
terial, 4' ' is the heat source per unit volume and A is the cross sectional

area.

B.3. Finite Difference Formulation

; Figure B.1 shows the cross section of a typical structure element under
consideration. Each element is divided into a number of material regions

| (NTSMAT(N)), and each material region is divided into a ntanber of partitions
| (NMPAR(MR)). DRPAR(MR) = 6R is the partition size of the material region. Let

| t = NTSPAR(N) be the total number of thermal structure partition cells. For

i simplicity in calculations, the element height of 6z is taken cs unity,

i Cell Surrounded by the Cells of Same Material

Let us consider the energy balance of a partition cell i, as shown in
Fig. B.2. The integration of Eq. B.1 over the control volume of cell i gives,

i

p It+6t i-1 -T;) g - T;,3PC Y T
,

6t 7i ~ ' ~

i+1/2 6Ri-1/2 6R +9 *

(B.2)

Here A is the cross sectional area per unit height, V is the cell volume.

j Rearranging Eq. B.2, we get
!

(ag+b;+b;,g)T g = b T _g + b g g g + d;, (B.3)Tgg g

,

where,

g=(pcV/6t)g, (B.4)a
p

b; = (kA)i-1/2/6R, (B.5)

b ,y = (kA)i+1/2/6R, (B.6)y

!

Op = (q' ' 'V + pc VI / 6t ), (B.7)d
p

and T0 and T are the temperatures at time t and (t + 6t) respectively.

!
l

!
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Fig. B.1. Cross section of a thermal structure element
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q = Heat Source per Unit Volume

j fig. B.2. Energy balance of partition cell I
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Cell 1 Adjacent to Coolant

For the case of cell 1, adjacent to the fluid (coolant) (as shown in

Fig. B.3), after integrating the energy equation and simplifying we get

(ag+by+b)T1 y g +bT22+d. (B.8)=bT
2 y

liere a, b, and d have the same meaning, except that b now includes the convec-
g

tive contribution. Th e re fore ,

Ag
b (B.9)=

y 1 6R
.

cool 2k )g

Similarly, if the other end of the thermal structure, say cell 1, is in contact
with fluid, we obtain

(ag+bg+b_g)T = b _y g_g + d , (B.8a)Tg g g g

where

0d = { q ' ' 'v + pc VT / 6t + b T }

and

^2
b =

1 1 6R
*

,
h 2k
cool 1

Cell Surrounded by a Cell of Different Material

For the case of a cell surrounded by a different material cell, as shown
in Fig. B.4, we get

(a)+b j + b ,y)T) = b)T;_y + by g ),3 + d) (B.10)T

Equation B.10 is similar to Eq. B.3, except that the term bj+1 includes the gap
resistance. Thus,

u
U- b (*=

6R 1 6R, ,
2k . h 2k

j gap j+1

The End Cell with Adiabatic Boundary Condition

For the end cell, Fig. B.5, the second boundary condition option we have is
the adiabatic boundary condition. As we have no heat transfer, the resistance
is infinite, and the term b +3 goes to zero. The final equation, therefore is

i

(ag + b )T = b T _g + d (B.12)g

. . _ _
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Fig. B.3. Energy balance of cell 1 adjacent to coolant
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Fig. B.4. Cell surrounded by different materials with air gap between them
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B.4 Solution of the Discretization Equations

We see, from the above derivation that we have t number of equations for 1
(number of partitions) number of unknown temperatures. The general form of all
equations is

(ag + b; + b ,y)T; = b T _y + b g g,y + d . (B.13)Tg gg g g

We can transform this quation to

g g = b ,y g,g + A , (B.14)CT Tg g

where,

g + b A _g/C;_g, (B.15)Ag=d gg

and

2
C. = a. + b. + b. 1 - b /C. ( B .16 )
i i i 1+ 1 1-1

The first set of coef ficients are

I A =dl+bTg cool' (B 17)g

and

y g+by+b. (B.18)C =a
2

As,

b g = 0,g

we first get

T = A /C (B.19)g g g,

The rest of the temperatures are then computed using Eq. B.14.

B.S. Heat Transfer to Coolant

Once the temperature distribution in a structure element is computed, the
heat transfer rate to surrounding fluid is computed from

4[oog=b(Ty g ,y). (B.20)-T

Here q' is the heat transfer rate in W/ meter, because the cross sectional area
in term b is per unit height of the element. The volumetric heat source isy
then computed using

4j[jg = 4|ggy/(6x6y). (B.21)

The computation of heat transfer rate is carried out in the subroutine
QSTRUC.

. _- ._
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APPEND 1X C

Wire Wrap and Resistance Models

iC.I . Introduction

The presence of helical wire wrapping around a fuel pin has two effects on

fluid flow. One is the geometrical effect; here the presence of wire wrap l

influences the fluid flow by reducing the available flow space. This ef fect is

accounted for by modifying the volume porosities and surface permeabilities.
The second is the physical effect; here the presence of wire produces additional
drag on the fluid flow. This effect is accounted for by it :1uding additional

resistance terms in the momentum equation.

There are four subroutines related to wire wrap models. These are

1. INTWIR: This subroutine modifies volume porosities and surface perme-
abilities; locates positions of wire wraps through subroutine WIRE; and computes,

through subroutine CETWIR, the wire drag coefficients for x, y, and z '#.rections.

2. WIRVOL: This subroutine computes volume occupied by wire wrap in a
computational cell.

3. WIRE: This subroutine determines wire wrap locations, axial areas

and blocked lengths along cell edges.

4. GETWIR: This subroutine computes wire wrap drag coef ficients for
wire wrap model No. 4. Four wire wrap models were developed. The model No. 4
was found to be the most satisfactory, predicting results in agreement with the

experimental measurements.

The flag IWIRE is used for the wire wrap model.

IWIRE = 0: No wire wrap option.
= 1: Smeared wire option; geometrical effects are accounted approxi-

mately; physical effects are neglected.

= 4: Geometrical effects are calculated locally and in detail;

physical effects are accounted for by incorporating wire

wrap force Model No. 4.

C.2. Smeared Wire Option

'

In this model, the volume pocosities and surface permeabilities are modi-

fied uniformly across che section. This is done by distributing total wire

volume equally over all cells and total wire wrap cross-sectional area equally
over all cells in each axial plane. Physical effects are neglected.

|

__ .-_ __ _
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!
.

C.3 Wire Wrap Model

C.3.1. Geometrical Effects.

The geccetrical effects due to the presence of wire wrap are accounted for
by modifying volume porosities and surface permeabilities. This is done using
the following relations,

z

y"v = y - (Axayaz) fz A"6z, (C.1)v z
y

w I *2 w
T ,i+(1/2) " T ,i+(1/2) ~ (Ayaz) !z 6Ax,i+(1/2)

*x x
1

1 2
T"y,j+(1/2) = Y ,j+(1/2) ~ ( Axaz) fz 6A" j+(1/2)

|
(C.3) .

y y y,

A" k+(1/2)w . z, .(*Y ,k+(1/2) " Y ,k+(1/2) ~ ( Ax Ay)z z

Here, superscript w refers to wire wrap and A is the cross-sectional area of
wire wrap. The right-hand sides of equations (C.1-C.3) are integrated numer-
ically. At each axial position, Aw is computed by determining its proper
location in a cell. The step size for numerical integration is taken to be

'

equal to three degrees of angular rotation, i.e.

6z = Wire Pitch (C.5)120

C.3.2. Wire Drag Model
.

The resistance force due to wire wrap is modeled as

+ +

. colwlw^ (C.6)y
w (AxAyaz)

Here,

+ + + +
F =fi+fj+fk (C.7)

w x y z

is the resistance force per unit volume,

;|

|
:\
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+ + + +
c-= c i + c j + c k (C.8)

x y z

is the drag coefficient, and

+ + + +
A=Ai+Ai+Ak (C.9)

x y- z
!

I is the projected area of wire wrap. The calculation of -is briefly described

here.

Figure C.1 shows a typical wire wrap arrangement. Let us consider the
,

wire wrap as a spiral ring of width d attached to the fuel pin and located at '|
'

y

position 0 (x,y,z) as shown in Fig. C.2. 'Ihe projected area is' |
|

+ + +
dA = dS x d n

w

)

+ + + + +

] = (dxi + dyj + dzk) x d (i cos a + j sin a), (C.10)
w

d

where,
.

1

+ + +
n .= i cos a + j sin a (C.ll)

!

: is the unit normal vector,

+ + + +

S = (xi + yj + zk)
.

+ + + " W (C.12)= ir cos a + jr sin a + k zO+ 2n p
.

P P
i

is the wire wrap position vector, r is the radius of fuel pin and W is thep p
! wire pitch. Differentiating and substituting Eq. C.12 into Eq. C.10, we get,

after simplification,

+ Nd + + +pydA = (i(-sin a) + j cos a - k tan 0)da. (C.13)
2w

Here,

2wr
| _1

0 = tan (C.14)y
: P
,

t

1

- .- ,. - _ . . - . ,
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Typical Wire wrap Arrangement
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Fig. C.2. Cross Section of Helical Wire Wrap Around a Fuel Pin
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,

is the angle between wire wrap centerline and fuel pin centerline. Integrating

Eq. C.13 between two z planes (k - (1/2) and k + (1/2)) for a given cell, we
obtain

Wd . . .. p
*"l)+j(sina ~*i""l)-k(a ~"l) tan 0}.A= {i(# * "2 ~#

2 2h

(C.15)
1

Here, j
;

2n(z - z 0
a= (c.16) ],y

P i

i

.
"2 ~ "I (*k+(1/2) ~ *k-(1/ 2) )' (*~

P

and z0 is the axial location, when wire wrap position is on x axis passing
through the centerline of a fuel pin. The projected wire wrap areas A , Ax y
and A are named in COMMIX-2 as UWIRE, VWIRE and WWIRE respectively, and arez
computed in subroutine CETWIR.

, .-

C.4. Resistance Model

We model the distributed resistance forces defined in Eq. 3.9 in the

following way.
i
'

1 1 2
- f pu . (C.18)R =
2 xx y

y

Here, R is the resistatce force per unit volume, f is the friction factorx x

per unit length, and subscript x r,efers to x-direction.

When a rod bundle is aligned along the z axis, the crossflow friction
| factor, f , is given by2x

- 2

f =2 "i_ P (C.19),
* 2_* lul 1-d

y
, _ _

where,

W = wetted perimeter per unit cross-sectional area,p

d = rod diameter,

P = pitch in y direction,y

and
i

i = the largest of the following three expressions:x

. - ,
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-2-

P -d
Y = 3Re (C.20)x x P 0.93d .,

- y -

0.118 -0.15i = 0.6 0.25 + Re (C.21)d1
( (P /d - 1)1.08

.

,

and

4

2- -1g
~ * *

x P 0.93d * *x P dp,gg
- .

j In these expressions,

j plulP yy
Re (C.23) <=

x y

and

pluldy* y
Re (C.24)=

1 - d/P J .y

Analogous expressions are used for . f , replacing u by v and P by P in they y x
i above definitions.

; The axial friction factor, f, is given byg
1
,

W (aRe +c), (C.25) .j f, = 2 gyg p

I
i where

p|w|D
h

Re (C.26)=
,z u,

Dh = equivalent hydraulic diameter,
,

and the constants a, b, and c are:

a b c Re g

j 8 -1 0 <940

0.07 -0.32 0.0007 >940

i

!
1

, . . ,. . - - - . ,. , , . . - - . . _ , -
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APPENDIX D

Input Description

***********************************
***********************************
***********************************
***********************************
***** *****
**** ****
*** COMMII-2 ***
** **
** **

. ** A Three-Dimensional, T ransient, Two Phase **
** Computer Program for Thermal Hydraulic Analysis **

' ** **
** **
** **
** developed by **
** **
** Analytical Modelling Section **

l** Components Technology Division **
** Argonne National Laboratory **
** **
** ** |

** under sponsorship of **
** **
** United States Nuclear Regulatory Commission **
** **
** **,

l ** **
** contact phone **
** **
** H. M. Domanus 312-972-5931 **
** B. C. Schnitt 312-972-5914 **
** W. T. Sha 312-972-5910 **
** V. L. Shah 312-972-8049 **
** **
** at **
** **
** Building 308 **
** Argonne National Laboratory **
** 9700 South Cass Avenue **
** Argonne, Illinois 60439 **
** **
** **
** version 7.0 January 30, 1981 **
** **
** **
*** ***
**** ****
***********************************
***********************************

1 *********************************** ,

***********************************
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Input for COMMIX-2 can be described in one of two ways:
1. Box gecnetry: IGEOM=0 or IGEOM=-1
2. Hex gecaetry: IGEOM>0

The Box geometry option allows the user to describe the
geometry in terms of the cells formed by the X, Y, and Z
grid planes. In this case the input structure is as follows:

|

Two problem description cards.
|

NAMEIIST / GEOM / I

Surface identification cards.
NAMELIST / DATA /
NAMELIST / FLAG /
NAMELIST /INPUTQ/ (Optional)
NAMELIST /STRUCT/ (optional)
Structure specification cards. (Optional)
Boundary iritialization cards. (Optional)
Internal cell initialization cards. (optional)

The her geometry option is used when analyzing hexagonal
fuel assemblies only. Several conventions must be noted:

1. Axial length is along the Z-direction and one her
flat lies on the I-axis.

2. IMAX, JMAX, DI(I) , and DY(J) are automatically
determined by quarter pin and full pin
partitioning.

3. Surfaces have the following locations:
Surface Surface

number location
1 Lower lef t diagonal in X-Y plane.
2 Upper left diagonal in X-Y plane.
3 Lower right diagon al in I-Y plane.
4 Upper right diagonal in I-Y plane.
5 Lower flat along I-axis.
6 Upper flat.
7 Entrance plane (Z= 0. 0) .
8 Exit pla n e.

The input structure for this option is as follows:
Two problem description cards.
NAMELIST / GEOM /
N AMELIST / DATA /
NAMELIST /INPUTQ/
NAMELIST /STRUCT/
Structure specification cards (optional)
Boundary initialization cards (optional)
Internal cell initialization cards (optional)

Default values are indicated either by an asterisk
or a value in parentheses a fter the variable description.
Arrays are indicated by the use of a subscript following
the variable name. The range of the subscripts are indicated

/
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in the tatle below.

Index Fange

I IMAX
J JMAI
K KMAX
N NSURF ,

NM NMATER |
FH NHEATC 1

NS NSTRUC |
IND IMAI*JMAX I N D=I + (J- 1) * IM AX

**************
* NAMELIST /OSOM/ *
**************

The restart option used two Argonne system routines
called TLEFT and LCCF. TLEFT returns the amount of time
left in the current run in units of 0.01 seconds.
LOCF returns the absoluta address of the variable passed
as the argument. Minor modifications are probably necessary
to implement this on other systems.

IFRES 0--New case with no restart written. (*)
1--New case wit h restart written to t ape 10.
2--Bestart of previous run read from tape 9 with

no restart written.
3--Pestart of previous run read from tape C with

restart written to tape 10.
IGE 05 0--Begular box geometry option. (*)

-1--Cylindrical geometry option using tox geometry input.
>0--Her geometry option. Set IGEOM to the number of pins

*
in the hexagonal fuel assembly. The following values
are acceptable: 7,19,37,61,91,127,169,217,271.

LM ER NT 0--Cell and surface number arrays are not printed. ( *)
1--Cell n umber array is printed .
2--Cell and surface number arrays are printed.

The following variables must be input when IGE 05 = 0.

IMAX The marinua number of cells in the X-direction.
JMAI The maxiana number of cells in the Y-direction.
KMAI The maximum number of cells in the Z-direction.
NSUEF The number of unique surfaces on the figure. Unique

surfaces are determined by a unique combination of the
f ollowing three characteristics:

1. Velocity boundary condition
2. Temperature boundary condition
3. Unit normal vector to the surface

DI (I) The calculational cell sizes along the I-axis, s.
DY (J) The calculational cell sizes along the Y-axis, a or rad.
DZ (K) The calculational cell sizes along the Z-axis, n.

|

|
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The ucit rormal vectors referred to by the following three
variatles are those pointing into the configuration.

IN OR M L (N) The X-component of the unit toraal vector to surface N.
INCP M L (F) The Y-component of the unit normal vector to surface N.
Z NOE M L (N) The Z-component o f the unit normal vector to surface N.

The following variables must be input when 1GECM > 0. j

CLADOD f uel nin diameter, n.
PITCH Distance between pin centers, n.
WALLCL Wall clearance or distance between pin wall and

duct wall, s. |
W ODI N Wire wrap outside diameter (O. D. ) for all wire wraps '

except those next to the duct wall, s.
|

WOCOUT Wire wrap O.D. of wire wraps next to the duct wall, s.
| KM41 The maximum number of cells in the Z-direction.

DZ (K) The calculational cell sizes along the 2-axis, n.
IEIRE 0--No wire wrap option used. (*)

1--Sneared wire wrap option used. This option is
suggested for low B eynolds number cases. The total
wire wrap area and total vetted perimeter over an
axial cross section are distributed over the cross
section such that there are two mean hydraulic
diameters, one for cells not adjacent to a side wall
and one for cells adiacent to side walls. The effect
of wire wrap induced Clow is ignored.

4--Wire wrap torce model used.
5--Wire wrap force model used and force distributions

printed.
CWIBEI Scal' N^ tor for wire wrap force model for cells not

adj to a side wall.
CWIREC Sca. sactor for wire wrap force model for cells

adjacent to a side wall.

In the following three variables the index IJ is computed
from the following relationship: IJ=I+ (I-1) *IM AX.

ALIN (IJ) Surf ace porosity adjustment subtracted for irregularities
in her in the I-direction.

ALIN (IJ) Surface porosity adjustment sultracted for irregularities
in her in the Y-direction.

AL ZN (IJ) Surf ace porosity adjustment subtracted for irregularities
in hex in the 2-direction.

For pictorial representation of the following variable see
figures C.1 and C.2 in the COMMII-2 report.

IPART 0--Quarter pir partitioning is used. ( *)
1--Pull pin partitioning is used. (Inoperative 1/81 PCS)

ZATO Axial (Z) height where wire wrap is positioned alon g
the pcsitive I-axis relative to the rod center, n.

WIREP Wire wran pitch, n. Positive WIREP indicates counter-
clockwise rotation when looking in the negative Z
direction. Negative WIREP indicates clockwise

.

J
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rctatics.

** ** **************
* SUEFACE IDENTIFICATION CARDS *

** ** **************

This set cf input is required only if IGEOM=0 or -1.
When present its purpose is as follows:

1. Identify each surf ace eierent.
2. Conditionally give the area of eaca surface element.
3. Idertify the surface number correspondina to each

surface element.
Each surf ace identification card contairs t he follovira
variatles using FORMAT (A 4,F 10. 3,7I 4) .

NAME BEG Ihe surface element (s) identified lie on a regular
surface.

IEEG The surf ace elemen t (s) identified lie on an irregular
surface.

AREL .LT.0--Fither DI*DY, DY*DZ, or DI*DY, whichever is
appropriate is used for tie area of the surface
elamen t (s) i den t ified .

.GE.0--The value in put is used for the area of the surface
eleme nt (s) identified.

The tollowing six variables derive a rectangalar solid
composed cf one or more cells. 7he rectanaular solid
required sust be totally interior to and adjacent to or
partially interior to and containing the sur' ace element (s)
under consideration.

IB,IE The beginning and ending I-index limits.
JB,JE The beginning and ending J-index limits.

,

l KB,KE The beginning and ending K-index limits.
N The surface nur ber.

All surfaces with the sans combination of the following three
items can te assigned the same surface number:

1. Velocity boundary condition.
2. Temperature ho'mdary condition.
3. Unit normal vector to the surface.

Note. It is pcssible for two surface elements to lie in the
same surface and have either the same or different surface
numbers as well as for two surface elements to lie in
different surfaces and have the same or different surface
numbers. The order of the surface identification cards must
ne as follows:

1. All IREG cards must precede all PEG cards.
2. The surface numbers, N, of all IPE3 cards and all REG

cards must be in order or increasing value.

**************
* NAMELIST / DATA / *

| ************ **
i

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The f ollcwing variables allow easy specification of
uniform property values at boundaries. Non unifora
distributions can also be specified with the boundary
array initialization cards.

VELOCL (N) Initial liquid velocity normal t o surf ace N in the
direction indicated by XNORML (N) , YNORML(N) , ZWOP EL (N) .
(0.0 m/s)

VE LOCG (W) Initial gas velocity normal to surface N in the
|

directica indicated by INORML(N), Y NOEML (N) , ZFO RML (D) .'

TEMP (N) Inital temperature at surf ace N, C. (0.0)|

EP ES (N) Inital pressure at surface N, Pa.

The following three variables are used to initialize a
pressure gradient along an axis to speed convergerce.
Only cne value is allowed to be nonzero.

DPDX Pressure drop along the I-1xis Pa/a. (0.0)e

| DPDY Pressure drop along the Y-axis, Pa/a. (0. 0 )

|
DPDZ Pressure drop along the Z-axis, Pa/a. (0. 0)

l
Steady State is reached unen the following conditions are
set:

1. H A1(SESIDUE) /DCONV < 1.0
where DCONV=EPS1* (UV WHAId EFS2) and

UVWMAI is computed in SUBROUTINE CUTOFF.
2. The change of the U-velocity componert divided by

the maximur velocity magnitude in the entire field
is less than EPS3.

3. The change of the V-velocity component divided by
the maximum velocity magnitude in the entire field
is less than EPS3.

4. The change of the W-velocity component divided by
the mariana velocity magnitude in the entire field
is less than EPS3.

5. M AI(EH/H) < EPS 3
where H is the current enthalpy and

DH is the change in enthalpy over two
consecutive time steps.

EPS1 Convergence critaria parameter. (0.0001)
EPS2 Convergence criteria parameter. (0.000001)
EPS3 Convergence criteria parameter. (0.00001)

All transient driving f unctions are input into the following
three variables. Each function is defined by a user
specified set of points. Cubic spline fit coefficients
are then cenerated in SUBROUTINE FITIT. Fifty equally spaced
values are printed to allow the user to check the adequacy of
the input distribution. Ten to fifteen values with points
concentrated at rapidly changing Y-values si.ould be adequate.

TVAL The independent variable (usually time) for the transient
functions.

FV4L The dependent variable for the transient f unctions. The
first value of the second function immediately follows

|

|

|
|
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the last value of the first function. The same pattern !

must be f ollcwed f or all subsequent f unctions. The |
endpcirts, or teyond, of the range of valaes used ir the

,

transient functions must be input as the fitting routine '

does not ertrapolate. Discontinuities are indicated by.
specif yingthe same X-coordinate twice with the same or
different Y-coordinate values.

NEND (NF) The nuater of points in the NFt h transient function.

NTIME Time step number at beginning of current run.
TIME Time at beginning of current run.
NTMAX Maximum number of time steps allowed in this run. (99999)
TIMAX Maxirur time allowed in this run, s. (3. 6E +6)
TFFST Time allowed to write restart tape, s. This variable is

used in conj unction with the ANL TLEFT routine.
DT (1) Time step size until time DTSET is reached.
DT (2) Time step size after time DTSFT is reached.
DTSET Time at which time step size changes from DT(1) to DT (2) .

(10000.0)
IT (1) Number of iterations per time 9t ep until time step ITSET

is reached.
IT (2) Number cf iterations per time step after tire step ITSET

is reached.
IT3ET Time step number at which number of iterations per time

step changes from IT (1) to IT (2) . (10000)
ITMATE Number of iterations in SOP solution tectnique for energy

equation. (1)
IT1AIT Number of iterations in SOR solution technique for the

void fraction. ( 1)
ITHASI Number of iterations in SOR solution technique for the

outer rass loop. (1)
ITVOID Number of iterations in SOR solution technique for the

outer void fraction loop. (1)
CIFF Interfacial friction constant zultiplier. ( 1. 0)
BFLAXE Relaxation parameter in SOR solution technique for the

energy. It PEI AXE =0.0, the line-by-line solution
technique is used. (0. 0 )

REttXT Belaxation parameter in SOR solution technique for the
void fraction. If BELAXT=0.0, the line-by-line solution
technique is used. (0. 0)

PBESO The inital pressure at point 'O'. (1. 013 53 E +5)
IFFESO The X-coorainate of point '0', m. (0. 0)
YFBE30 The Y-coordinate of point 'O', m. 0( .0)
ZPBESO The 2-ccordinate o f point 80', m. (0.0)
9AD Pressure value added to pressure array when computirg

properties. (iO . 0) Note. By setting PAD =0.0, the
absolute value of pressure is used throughout. One can
use relative pressures for solution of the momentum
equation by setting the initial pressure near zero and
PAD near the pressure required f or the problem.

TEMPO Initial temperature of internal cells, C.
VGASOF Cutoff v.tlue of gas void fraction (THG) for bypassing

the gas momentum equation. ( 1. 0 E- 10)

_ _
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GF4VI Gravity vector component in X-directicn, n/s**2. (0.0)
GRAVY Gravity vector component in Y-direction, a/s**2. (0.0)
GBAVZ Gravit y vector componer t in Z-direction, a/s**2. (- 9 . 8)
TURBV1 Turbulent viscosity for liquid, Pa*s. (0. 0 )
TUBBVG Turbulert Viscosity for gas, Pa*s. (0. 0)

Turbulent conductivition can be irput either directly by
specifying TURBCL and TUBBCG, or by specifying non7ero
values for CHAERE, CHA RTL, and CH AETG.

.

TUBBCI Turbulent conductivity for liquid, W/(m*C) . (0.0)
TUBBCG Turbulent con ductivity f or cas, W/(m*C) . (0.0)
CHARRE Characteristic Beynolds number. ( 0. 0)
CHARTI Characteristic temperature for liquid, C. (0.0)
CHAPTG Characteristic temperature for gas, C. (0.0)

CWIREX Coefficient of wire force in X-direction. (0.5)
CWIREY Coef ticient of wire force in Y-direction. (0.5)
CWIPE2 Coef ficient of wire force in Z-direction. (0. 5)

Ihe following variables define the thermal conductivity
specific heat, and density of materials other than the
coolant. These variables are indexed by values of M ATWAL
and MATERL.

NMATEB Total nurber of materials.
C0K (N M) Coefficients for thermal conductivity of material NM.
C1K(NH) CON E UC TIVITY=C0K (NM) + TC* (C 1 K (NM) +TC*C2K ( NM) )
C2 K (N M) J/ (s * r* C)
COCP (NM) Coefficients for specific heat of material FM.
C1CP (NM) SPECIFIC HEAT =COCP (N M) +TC * (C1C P (NM) +TC*C2CP (NM) )
C2CP (N M) J/ ( k g *C)
CO B0 (NM) Coefficients for density of material NM.
C1BO (NM) DENSITY =COBO (N M) +TC* (C1RO (NM) +TC*C2RO (NM))
C2 50 (NM) kg/e**3

Tne followirq variables define heat transfer coef ficient
corelations. These variables are indexed by values of
IHTWAL and IHTSTR.

NHE%TC Number of heat transfer coef ficient corelations. (1)
H E ATC 1 (N H) Constarts used in heat transfer coefficient corelations.
HE ATC 2 (NH) N 0=HE ATC1 (N B) +H EATC2 (NH) *RE**HE ATC3 (NH) *
HE ATC3 (NH) F F ** (H E ATC4 (N H) )
BE ATC4 (N H) where NU is the Nusselt number,

PE is the Peynolds number, and
PR is the Prandtl number.
(5. 0, 0. 2 5,0. 8,0. 8)

buct wall acdelling uses the following variables.
W ALLDI(N) Duct wall thickness, m. (1.' )0
W ALLQS (N) Duct wall volumetric heat source, W/a**3. (0. 0)
HYDW A L (N) Hydraulic diameter or characteristic length.
M ATW A1(N) Material number. See input for NMATEE.
IH'i W A L (N) Heat transfer coef ficient corelation number.

See input for NHEATC.

!

I
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HY DI N Hydraulic diameter of cells adjacent to walls when
IGEOM is greater than zero otherwise hydraulic diameter
of cells, s.

HIDOUT Hydraulic diameter of cells not adjacent to walls when
IGEOM is greater than zero otherwise hydraulic diameter
of cells, s.

OMEGAC ???. (1.0)
OMEGAE Relaxation factor for energy and energy correction. (0. 5)
CMdGAP Eelaxation factor for pressure. (0.8)
09EGA5 Relaxation factor for density. (0.0)
OMEGAT Felaxation factor for void fraction and void fraction j

correction. (0. 5) j
OMEGAV Belaxation f actor for velocity and velocity correction.

(0.7) !

OMEGA 0 Pelaxation f actor for d (BO) /d(P) and d (BO) /d(B) teres.
(0.2)

REL Interf acial heat transf er coef ficient. (0. 0)
RKVL Interf acial friction coefficient.

The followirg section of variables are used to specify
i the beat distribution.

IQ 0--Uniform axial heat flux distribution. (*)
1--Axial cosine heat flux distributior.
2-- Axial M U* SIN (MU) heat flux distribution skewed toward

the top of the core.
3-- Axial MU* SIN (MU) heat flux distribution skewed toward

the bottom of the core.
FNZ Arial nuclear hot chanLel f actor used when ID=1,2, or 3.

(1.0)
KLHS Lowest heated F-plane. (1)
KHHS Hichest heated K-plane. (KM AI)
QIJ (IND) Normalized radial heat flux distribction. (1. 0)
QK (K) Normalized axial heat flux distribution. (1.0)
CTcTAL Total power, W.

Array output is done in subroutine OUTPUT which is called
once af ter initialization and according to the array TPPNT.

TPRNT (1) >0.0--TPBNT can contain up to 50 values of time at which
OUTPUT is to be called.

| =0.0--00TPUT is called after initialization and before
'

taraination (*).
I <0.0--TPPNT (1) is the print frequency in seconds.

TPPNT (2) is the initial print time.

The arrays which are printed out at the calls to OUT PUT are
coded into the values of ISTPR and NTHPR.

ISTPR Up to 50 coded values which specify the arrays to be
, printed in the first call to OUTPUT.
| NTHPR Up to 50 coded values which specify the arrays to be

printed a f ter the first call to OUTPUT.

|
!
l

|
|

__ .
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Each value cf ISTPP and NTHPh is a signed five digit
integer of the form 'SVVPIL' which is coded according to
the following rules:

,

S + Only the plane or surface specified by 'YYPLL' is
printed. Plus is assumed and need not be specif3-4.
All planes or surfaces (LL) retteen 'VVPLL8 and tre-

next 'VVPLL' specified in ISTPB or NTHPB are printed.
VV Values between 01 and 50 are for interior arrays.

Values tetween 51 and 99 are for arface arrays.
01--UL: U-component of liquid ve. , city.
02--VI: V-component of liquid velocity.
03--WL: F-component of liquid velocity.
04--HL: liquid enthalpy.
05--TL: Liquid temperature.
06--VCEII: cell fluid volume.
07--PLT: Liquid density.
08--PT: Pressure.
09--DL: Fesidual mass.,
10--ABFAX: X-direction flow area.
11-- AR E AY: Y-dir ection flow area.
12--ARE42: 7-direction flow area.
13--OS00b: Volumetric heat source.
14--UG: U-component of vapor vel ocity.
15--VG: V-component of vapor velocity.
16--WG: h-conponent of vapor velocity.
17--HG: vapor enthalpy.
16--TG: vapor temperature.
19--PGT: Vapor density.
20--GAMPA=THLT*EVAP: Boiling source ters.
21--THL: Liquid void fraction.
22--THG: Vapor void fraction.
23--THLT: Liquid void fraction.
24--TUGT: vapor void fra ction .
51--VELLEN: Surface liquid velocity
52--VFIGEN: Surface gns velocity.
53--QLBN: Surface liquid heat flux.
54--QGBN: Surface gas heat flux.
55--5B: Adjacent internal cell number.
56--HIB: Surf ace liquid enthalpy.
57--BGB: Surface gas enthalpy.
58--TLB: Surface liquid temperature.
59--TGB: Surface gas temperature.
60--AREA: Surface element area.
61--BLB: Surf ace liquid density.
62--BGB: Surf ace gas density.
63--PE: Surface pressure.
6 4- -I J K : Location of adjacent internal cell.
65--The liquid heat transfer coef ficient from coolant

to vall as used in the transient duct vall model
(KTEPP (N) =500) is computed and printed.

66--The gas heat transfer coef ficient from coolant
to wall as ased in the transient duct vall model

1

__
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(KTEMP (M) =500) is computed and printed.

p 0--A surface array is printed.
1--An I plane of an internal array is printed.
2--A J plane of an internal array is printed.

; 3-- A K place of an internal array is printed.
It Specific plane or surf ace to be printed. If S is +, only

one plane or surtace is irdicated. If S is , the 'IL'
values in the current and next values of ISTPR or NTHPR
indicste the range of planes or surfaces to be printed.,

!
'

**************
* NABELIST /F1.AG/ *j
e * ******** ** **,

ITN&tP Number of iterations in SOR solution technique for
pressure equation. (1)

IWALL 1--Simplified model of G. B. Wallis used to compute wall
resistance.

2--Bivard and Torrey (Dispersed flow) aodel used to
coepute wall resistance.,

i 3--Rivard and Torrey (Annular flow) sodel used to computa
vall resistance.

4--COMMIX-1 A model for hexagonal fuel assembly used to
ccepute wall resista nce. (*)

IF PC EQ 0--Bypass pressure corr ection calculation.:

I
1--Use SIMPLE procedure for pressure correction.
2--Use SIMPLER procedure for pressure correction.
3--Use IPSA procedure for pressure correctior.,

4 IFENEB 0--Bypass srargy calculation.
1--Per fora energy calculation.

| NSWEEP Mumber of iterations for line-by-line procedure in
! SOLVE subroutires. (1)
' ITENSI Number of iterations for solution of energy equation. (1)

ITMOME Number of iterations for solution of scaentur and pressure
equations. ( 1)

IFLAG6 Debug flag whose value causes on of four levels of
debugging information for be printed. (0)

IREBIT Hass rebalancing is performed inside the pressure
correction SOR loop (ITH AIP) when:

MCD (Iteration number,IREEIT) =0.
KFLAGS 0--Solve the complete momentum equation to obtain the

velocity.
1--Use the algebraic relation between pressure and

velocity to obtain velocity.
ITHIPC Number of iterations in live-by-line solution procedure

for pressure correction equation. (1)
i IFSOR 0--Solve pressure equation by using the 1tne-by-line
| solution technique.

-1--Solve pressure equation by using the 50F solution
technique sweeping in the Y- and E-directions.

-2--Solve pressure equation by using the SOP solution

.- _ _ - - - _ - - - .
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technique sweeping in t he Z- and X-directions.
| -3--Solve pressure equation by using the S35 solution

technique sweeping in the X- and Y-directions.
NFLAG1 0--Two fluid model used for two-phase modal.

| 2--Homogeneous model used for two phase model.
| NFLAG2 0--No rebalanciLg in mass conservation calculation.

| 1--Rebalancing performed in mass conservation calculation.
| IPPOP1 Interf acial friction using model by:
| 1--Autruffe et al. '

| 2--Harlow and Ausden.
3--Perroth and Starkovich.
4--Bivard and Torrey.
5--constant input from RKVL.
6--G. B. Wallis.
7--RKVI*THIT*THGT

NBCIL Evaporation due to boiling computed using:
| 1--Nignatulin model with evaporation only.
'

2--Nignatulin model with Autruf fe equation for A.
3--Nignatulin medel with condensation.
4--Niquatulin model with condensation plus Autruffe

,

' equation for A.
VAB9 Relaxation f actor for pressure reaction in PCEQN1. (1.0)
v4510 Felaxation f actor for pressure correction in TINSTP. 11 . 01
COEF1 Boiling correlation coe fficiert.
BUBLEN Number of gas rubbles per cubic meter.
SGAS Gas constant, J/(kg-deg K) . (361.0)

Use 361.0 for sodium and 462.0 for water.
IDEODI 0--Variation of density with respect to pressure is

neglected.
1--Variation of density with respect t o pressure is

accounted for in the transient ters or the
continuity equation.

IDDDP 0--Use marinum DD/DP f or mass-somentum iteration.
1--Use cellwise DD/DP f or mass-nomentum iteration.

IDBAG 0--Viscous f orce only.
1--Viscous and nceinal drag forces for bezagonal

fuel assembly calculations included.
IFROD 0--No fuel rods are included. (*),

! 1--Fuel rods are included but no default initialization

| is done. NAMELIST /INPUTQ/ is required in input.
2--Euel rods are included and a default initialization'

is done. This initialization sets pressure,
temperature, density, enthalpy, and the Z-con nonen t

. of velocity from a solution of the coupled mass,
I soment and energy equations assuming no transverse

|
velocities.

IST&TE 0--In itia l-s tat e: Boundary conditions and iritial
conditions are specified from input. Other values

| are zero.
1--Uns t ea d y-st at e: Any state between initial-state and

steady-state.
2--Steady-state: Converged-state or solution based or

both specified boundary corditions and inital-state.

-- _ _ _
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3--Transient-state: Any state af ter steady-state.
ISTRUC 0--No thermal structure present. NARELIST /SSEUCT/ not

included in input file.
1--Thermal structures are present. NAdELIST /STPUCT/

aust be included in input data.

Ile following three variables spacity the boundary condition
types for all surfaces.

KFLOW (N) Type of velocity boundary.
-5--Continuative mass flow outlet.

! -3--Free slip wall.

| -2--Continuative velocity outlet.
; -1--Continuative acaentum outlet.
! 1--Unif era constant velocity boun dary wit h normal velocity

set f rom VELCCL(H) and/or VELOCG(N) and tangential
velocity set to zero. (*)

!, 100+NF--Uniform transient velocit y boundary vita normal valocity
| set from the NFth tra nsient f unction.

: KTEd P (N) Type of temperature / heat flux boundary.
1--Uniform constant temperature boundary with temperature

set f rom TEMP (N) . (*)
100+NF--Unifora transient temperature boundary with temperature

set from the NFtb transient function.
200+N --Unifora constant heat flux boundary with normal heat

flux set from TEM P(N) .
300+NF--Uniform transient heat flux toundary with rormal beat

flur set from the NFth transient f unction.,

! 400 --Adiabatic heat flux boundary, i.e., heat flux equal to

zero.
500 --Transient duct wall boundary. ???

K PRES (N) Type of pressure boundary condition.
0--???
1--Constant backbround pressure, Pt. (*)

100+Nr--Transient background pressure with pressure set from the
NFth transient function.

IFLIQ 0--No liquid phase present. Dimensions of liquid phase
variables can be set to 1.

1--Liquid phase may be present. (*)
IFGAS 0--No vapor phase present. Dimensions of vapor phase

'
variables can be set to 1. (*)

1--Vapor phase may be present.
IFPLOT -1--No plottape is writ t en. (*)

0--Only the first and last time steps are written to the
plot file oc tape 11.

F--Every Nth tire step is written to the plottape on
tape 11.

IFHEAD 0--No geometry header is written to plottape. This option
is used when adding plotting data to a previously
existing plottape.

1-- A cecnetry header is written to the plottape. (*)

l

.- -_ _ -_ --
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* NAMELIST INPUIQ *
************ee*****

SEVEBAL OF THE FOLLOWING YARI ABLES MUST BE INPUT IFTO A ONE
| DIMENSIONAL APR AY 10 OBTAIN THE INDFI, IND, OF THE ONE DIMENSIONAL

APRAY PRCM THI CELL NUMBER (I,J) THF FOLLOWING RELATIONSHIP IS USED:
IND = I+IM AI* (J-1) .

!

WHEN IGECM > C AI L CELL FLOW AREAS, CFLL WETTED PERIMETE55 AND
FEACTION OF PIN IN CELLS ARE INITIALLY SET TO VALUES COMEUTED FROM A
STANDAbr HEI AGON AL EUEL BUNDLE GEOMETRY. IF THE USEF IS CONSIDEPING A
C ASE WHICH CEVIATES FFOM THIS DEFAULT ANY OF ALL OF THESE PAhA1EIEPS
C AN BE FESFT EY USING THE FOLLONING THREE V ARIABLPS:

FLO W 4 (IJ) : ILOW APEA 0F CELLS OF TYPE IJ WHERE IJ = IJTYPE (IND) ,
t

l PETER * (-1.0)
IJT YPE (I ND) : CELL TYPE. CELL TYPES ARE POSITIVE INTEGERS LESS THAM 51

ARE USED AS INDICES OF THE FOILOWING THLEE V ATI ABLES. IF
BON NEGATIVE VALUE IS GIVEN TO AbY OF THE FOLLOWIN3 THREE
V ARIS BLES THEN THE COPPESPONDING FAEAMETER WIL?. BE SET TO
VALUE IF ALL CELLS OF THAT TYPF.

d ET LN (IJ) : EETTED PERIMETER OF CEIS OF TYPE IJ WHEFE IJ =
IJTYE E (I ND) , (-1.0)

| AN EIAMPLE MIGHT HEIP TO CLAFIFY THE INPUT FOP IHE THPEE PBEVIOUS
VABIABLES. CCNSIDER A C ASE WITH IM AX = JMAX = 10.

YJTYPE = 15*1,10*2,. : C E LLS (1,1) ThEOUGH (5,2) AR E GIVEN TYPE 1 AND
CELLS (6,2) THROUGH (5,3) ARE GIVEN TYPE 2.

: CELLS OF TYPE 2 ARE ASSIGNED YLCh AREAS OF J.928PLC d A (2) = 0.0 2P, . . .

Wh1LF CFLLS OF TYPE 1 R ET AIN T HEIE DEF AULT VALUES.
CELLS OF TYPE 1 AbD 2 ALSO RETAIN THEIL DEFAULT
WETTED PERIMFTER.

HYDIN : INSIDE HYDRAULIC DIAMETER OVERRIDE (METER)
HYDCUT : OUTSIEE HYDRAULIC DIAMETEF OVEBRIDE (METEE)

THE FOLLOWING THEEE VARI ABLES APE UNNECESSARY WHEN IGEOM > 3.

CLAD 0D : CL AD OUTSIDE DIA METER, METER.
PITCHI : FITCd IN I DIRECTION, METER.

l PITCHI : PITCH IN Y DIRECTION, METER.

**************************
* NAMELIST STRUCT *

,

**************************'

NST50C : NUMPPE OF THERMAL STRUCTURES (0)
NTSEL (N) : NUMBEE OF ELEMENTS OF THEPMAL STRUCTURE N (0)
N I S M A I (N) : NUMBEL OF M ATFBI AL REGION OF THERM AL STRUCTURE N (0)
SOUTEP (N) : OUTTEF RADIUS OF THERMAL STEUCTURE N (0.0 METER)
BINNEE : INNER R ADIUS OF THEP H AL STBUCTURE N (0.0 MET ER)
RODPR(N) : RCD FFACTION OF T.S.4N (E.G. .25 INDIC ATED QU ARTER PIN)

!
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I HTSTR (N) : NUMBEF OF HEAT TRANSFE9 COEFFICIENT COPRAIATION FOR
THEP M AL STRUCTUPE N. (SFF HF AT T9 ANSFER COEFFICIENT
CORRELATIONS IN NAMELIST 6 DATA).

HYDR AD (N) : PYDPAULIC DI AMETER 08 CHAR ACTFBISTIC LENGTH USED IN
PFAT ?RANSFEL COEFFICIENT CCPR EL ATION (M P TER)

IIY7(N) : FLAq POE AIIAL ALLIGNMENT Of THERMAL STRUCTUPE N I.E. i

1 : F-DIPECTION |

7: Y- DIB ECTION
3: 2-DISECTICN

NTS AD O (N) : NUMBEE AF ADJACENT COOLANT CELLS INTERACTING WITH THE 03TER
SUEF 8CE OF AN FLEMENT OF THFBd AL STRUCTURF NUMBER N (1)

NTS ADI (N) : NUMBYP OF ADJACENT COOLANT CEILS INTEPACTING WITH THE INNER
SUR74CF OF AN PLPMENT OF THFFMAL STRUCTUPE NUMBER N ())

1 ATERIAL REGTCNS ARE COUNTFD SEQUENTIALLY BEGINNING FPOM THE FIRST...

TH EPM AL STRUCTUE E H AVING NTSMAT(1) SATERIALS. FOR EXAMPLE :
3 3 THERM AL STRUCTURESNSTPUC = ...

N TSM AT (1) = 4,3,2, T. S . #1 HAS 4 MATERIAL REJIOhS,...

T.S. 82 B AS 3 FATERI AL BEGIONS,
T.S. #3 HAS 2 M ATERI AL PEGIONS

THEN M ATERI AI BEGION (M.P.) 85 IS THF FIRST EEGION OF T.S. 87 AND
M.B. 89 BFFE9S TC THE LAST M.F. OF T.S. 83
NOTE : M ATFBI AL PEGIONS AFE COUNTED FF01 THE 00fSIDE IN...

M ATEEL (MR) : M AT* PIAL TYPE OF M.R . CMP
NMP AR (MB) : NUMBEP OF P AFTITIONS OF M.B. #MR

DBP AE (MB) : PAPTITION SI7E OF M.E. #MR (METEP)
QSP AP (MB) : VOIUMFTPIC HFAT SOURCE FOR M.R. #MB (J / ( S EC- M * * 3 ) )

GAFS BEThFFN 9 ATEPI AI PEGIONS ARF COUNTED SIMIII AP TO M ATEBI AL REGIONS...

HOWEVER, FCP L THERMAL STUCTURE HAVING NMR NU5BER OP n ATERI AL PE3 IONS
,
' THEPE APE NMP-1 NUMBE5 0F GAPS

FOLLOWING THE ABOVE EXAMPLE GAP #3 RFFERS IO THE GAP PETWEEN M.R#3 AND
M.B.84 0F T.S.#1 AND GAPS 5 REFEBS TO THE GAP SETWEEN M.R.86 LND
M.B.87 IN T.S.82

NGAPTY : TOTA 1 NUMBES OF TYPES OF GAP
SGAP(N) : SIZE OF G AP TYoF#N
HGAP(N) : HE AT TB ANSFEB COEFFICIFNT ACEOSS G AP TYPE #N ( W/ ( M** 2-C) )
IG A P (N G) : GAP TYPE FOR GAP NUMBER NG

..** +...*...........................*...
* THFP MAL STRUCTURE EFECIFICATION CAPDS *
.****************************************

.

THESE CAPES SPECIFY THE COOLANT CELLS TH AT INTER ACT WITH THE T.S. ELEMENTS...

FIBST SET OF C AEDS ARE 109 OUTER SUFF ACE AND NEIT SET OF C APDS ARE
FOR INNER SURF ACE OF THERMAI STPUCTURE ELEMENT.

BEAD (5,200) N,I B ,IE , J B, JE, K B , KE
200 FORM AT (7I4)

- _ _ _ _ _ - _ - _ _ - - - . _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
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WHERE : N T.S. NUMBEP=

IP = BEGINNING I
IF = ENDING I
JP = BEGIFNING J
JF = ENDING J
KL = BEGINNING K
FE = ENDING K

C **************************************
* INTERN AL CFLL INITI ALI7 ATION CAEDS *
**************************************

THE PUBPOSE OF THIS SET Of INPUT C ARDS IF 20 INITIALIZE THE PPYSICAL
PROPERTIES IISTED EELCW INSIDE THE POLY HEDF ON. THE END CAPD IS BE0UIR ED
EVEN 17 NO CAPDS IF TPIS GE00P AR E PPESENT. EACH CARD OF THIS SECTIOh
CONTAINS THE FOLICWING VAPI ABLES IN THE F0E M AT ( A4,110.3,614):

| NAME PVAL IF IE JB JE KP KE
| WAME AL : VOLUME POBOSITY t THE DIMENSIONLFSS B ATIO OF FLUID
| VOLUME IN A CELL TO TOTAL CELL VOLUME . (1. 0)

ALI : SURF ACE POPOSITY ; THE DIMENSIOhLZSS PATIO OF FEEE FIOW
ARE A TO THE TOTAL AP EA CP IHE SUEF ACE BETWEEN CPLL
(I, J, F) AND CELL (I+ 1,J , F) , (1.3) .

ALI : SUFFACE POBOSITY OF THE SUBE LCF BETWEFN CFL1 (I,J,K) AND
CELL (I , J+ 1, K) , (1.0).,

| AI Z : SUFFACE POROSITY OF THL SUFF ACE BETWEEN CELL (I, J, K) nND
CEII (I, J , K+ 1) , (1.0).

P : FBESSURE, PASCAL. (101. 35 E +3)
TG : IEMPEFATUBE, CFLSIUS. (0.0)
THG : GAS VOLUME FRACTION.
THL : LIQUID VOLUME FR ACTION.
TI : TEMPERATUFF, CELSIUS. (0.0)
UG : X-DIREC7 ION VELOCITY COMPONENT, MBrhP/SEC. (0.0)
JL : X- DIP ECT ICN VELOCITY COMPONENT, METEP/SEC. (0. 0 )
VG : Y-DIRECTICN VFLOCITY COMPONENT, METih/SEC. (0.0)
VL : Y-DIRECTION VELOCITY COMPONENT, METFB/SEC. (0.0)
WG : Z- DIR ECTION VELOCITY COMPONENT, METEE/SEC. (0.0)
WL : Z-DIRECTICN VELOCITY COMPONENT, MFTEP/SFC. (0.0)

i OSOU : VOLUMETPIC HEAT SOURCE PFE COMPUTATIONAL CELL
l VOLUME DI*DY*DZ (F/M**3) (0.0)

| RYAL : THF V ALUE TO BB ASSIGNED TO THE V ARIABLE NAME.
IE,IE : PEGINNING AND ENDING I-IN DEI LIMIIS .
JB,JE : EEGINNING AND ENDING J-INDEI IIMITS.
KB,KE : EEGINNING AND ENDING K-INDEI LIMITS.

*********************************
* BOUNDARY INITI ALIZATION C ARDS- *
*********************************

THE FURPOSE Of THIS SET OF INPUT C ARDS IS TO INITI ALIZE BOUNDAFY V ALUES OF
LNY OF THE ABPAYS LISTED PELOW. UNIFORM TEMPERATURE AND YELOCITY BOUNDARY
CONDITIONS CAN BE PORE EASILY SPECIFIED USING THE VARIALBES ' TEMP' ,

'VELOCL' AND 'VELOCG' IN NAMELIST SDATA. THE END CARD IS PE0UIBED EVEN IF
NO OTHER C ARD IN THIS GBOUP IS PhESENT. EACH CARD OF THIS SECTION
CONTAINS THE FOLL0h1NG VAPI ABLES IN THE FOBM AT ( A4, F 10. 3,714)

NAME RVAL IB IE JB JE KB KE N

|
|
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N49E : PB : f?ESSUhE, PASCAL.
RGB : EENSITY, KG/M**3.
BLE : EENSITY, KG/M**3.
THGE : GAS VOLUME FBACTION.
THIB : LIQUID VOLUME FR ACTION.
TGB : GAS TEMPERATUPF, CELSIUS.
TLB : IIQUID T!MPEP ATU RF, CFISIUS.
VEGE : MAGNITUDE OF THE GAS VFLOCITY NOPMAL TO THP SUFFACE, 1

FETFB/SEC. |

VELE : FAGNITUDE OF THE LIOUID VELOCITY NOSMAL TO THE SURF ACE, 1

METES /SEC.

RV7L : THE VALUE TO BE ASSIGUED TO THE VARIABLE NAMFD.
| IE,IE : BEGINNING AND ENDING I-INDEI LIMITS.
' JB,JE : EEGINNING A ND ENDING J-INDEI LIMITS.

KB,KE : BEGINNING A ND ENDING K-INDEI LIMITS.
1 : THE SUhT ACF NUMBER OF TPF BOUNEAFY BEING SEI.

***********************************************
****** SOME A DDITION A L INFOEM ATION ******
***o****************************ese****eseseees

Tad FOLLOWING IS THE DESCRIPTION OF SOME OF THF IMEOET4 hT V 4FI ABLES.
fHE VAFIABLES THAT AEE PREVIOUSLY DESCPIBED ABE NOT h f FEFED FFFF.

****** A. CELL INFOEM ATION ******

I;J;K : CELL POSITION IN I, Y, AN D Z DIFICTION RESPECTIVELY.
IJK (M) : (I,J,K) LOCATICN OF CELI M OF THE FOEM IIJJFF.
M : CUMMY COUNTER TO IDENTIFY INTEENAI CFLLS.
NM : TCTAL NUMBE5 OF IRREGULAS CELLS.
NM1 : TCTAL NUMBEE OF CELIS.
I;Y;Z : CCOFDINATES.
ME(L) : IFTEEN AL CELL NUdBER ADJACENT TO SURFACE AREA L.
M IM (M) : CELL NUMPER ADJACENT TO CELL M IN -I DIP?CTION (I-1 CELL) .
MIP (M) : CELL NUMBFR ADJACENT TO CELL M IN +I DIRECTION (I+ 1 C ELL) .
HJF(M) : CELL NUMBEP ADJACENT TO CELL M IN +Y DIEFCTION (J + 1 C ELL) .
MJM(M) : CELL NUMBEF ADJACENT TO CELL M IN -Y DIFECTION (J-1 CELLI.
M F M (M) : CELL NUMBER ADJACENT TO CELL M IN -Z DIF FC TIC T (K-1 CELL) ..

M KF (M) : CELL NUMBER ADJACENT TO CFLL M IN +Z IIFFCTION (K +1 CELL) .I

M S (I,J , K) : CELL NUMBFF AT (I,J,K) IOCATION

NOTE : NEG A'IIVE VALUE OF THE ABOVE 6 ARP AYS INDICATE TH AT ADJACEST
| IS & SUPFACE. FOB EI AMPLE : MIP (20) -43 ME ANS THAT NEIT TO=

| CELL NUMBEh 20 IN +I DIRECTION IS A SURFACE. MIP (M) =0
| INDICATES THAT NO CELL AND NO REGULAP SUBFALF IS ADJACENT

TO CELL IN +I DIEECTION.

****** B. OVERALL SUBFACP INF0FMATION ******

N : CUMMY COUNTER USED FOR SUEF ACES.
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NSURP : TCTAI NUMBER OF SUEF4CES.
INORML (N) : CCOFDINATES OF UNIT SUhPACE NORMAL YECTOS POIKTING INTO
Y NORML (b) : ECMAIN OF INTEEFST PROM SURFACE N.
Z NCRML (N) : SEE ABOVF.

NOTE: EACH SnEFACF IS EFSOLVED BY THE rARTITIONING DESCRIBFD ABOVE
i AND IS SIICED UP INTO SM ALL AF E AS WHICH COV EP EAC H SUFFAC2. IF

TiiE PAPTITIONED AREA IS NOT NOPMAL TO ANY AIIS, IT IS TERMED
IRPFGUL AP AND IS COUNTED SEP AP ATELY AIONG WITH ITS ASSOCIATED
INTERNAL CELL.

I : DU1MY OUNTER USED TO IDENTIFY PABTITIONED SUSF ACE %BEA.
LCI ( N) : NUMEER OF LAST IPREGUL AR St'PF ACE AREA fBOM SURFACE N.
LCI(N) : NUMPhR OF LAST SUkFACE AREA NORMAL TO I AIIS FROM SURF ACE N.
LCY (N) : NUMEEP OF I AST SUPP ACE AR A NORM AL TO Y AIIS FEOM St1EFAC E N.
LCZ(N) : N9MEER OF L AST SURF ACE AEEA NOBMAL 70 2 AIIS FFOM SURFACE N.
NL : TOTAL FUMBEP OF IRE EG4L AP SURF ACE AR EAS.
NL1 : TOTAL NUMBEE OF SURFACE AREAS.

****** C. PARTITIONED SURFACE INFOLMATION ******

ITH FARTITICNEP SURFACE ELEMENT : SUFFACE NUMBEF 1

(1. LE . L . L F . LCI (1) ) IS 4N IBREGUL AR SUF F AC E PLEMEN7
(LCI(1) L E.L.LE.LCI(1)) IS A SUEFACE AREA NORM AL TO I-AIIS.
(ICI (1) +1. LP.L .LI .LCY (1) ) IS A SUffACE AREA EDEMAL TO Y-AIIS.
(LCY (1) + 1.L E.L. LE.LCZ (1) ) IS & SUEFACE ARFA NCRMAL TO Z-AIIS.

LTH 9 ARTITIONEC SURFACE ELE 9ENT : SUFF)CE NUMBEP H

(LC I (N- 1) + 1. L E . I . LF . LCI (N) ) IS AN IPPEGULAE SUEF ACE AEEA
(LCZ (N-1) + 1. LE. L. LE. LCI (N) ) IS A SURFACE ARE A NORM AL TO I- AIIS
(LC I(N) + 1. L E . L . LE.LCY (N) ) IS A SUEFACE ABEA NORMAL TO Y AIIS
(LCY (N) + 1. IE. L. LE . LCZ (N) ) IS A SUFFACE ARFA NORMAL TO Z-AIIS

A P E A (L) AFE7 OF LTH PABTITIONED AREA (a**2)
ISU F F (L) SUEFACE NUMBER OF LTP PAFTITIONFD AREA

****** D. POROSITIES ******

AL (M) : GEOMETRIC VOLUME FBACTION OF CELL M ; VOLUHF OCCUPIED
FLUID / CELI VOLUME

ALI(M) : SUFFACE PERMEABILITY IN 1-DIRECTIOM; GEOMETRIC ABEA
FR ACTION OF SURF ACE BETWEEN CELL M AND CELL MIP (M)

ALY iM) : SUFFACE PEP 9EABILITY IN Y-DIRECTION; GEONETEIC AREA
1RACTION OF SURFACE BETWEEN CELL M AND CELL MJP(M) .

4LZ (M) : SUFFACE PEEMEABILITY IN Z-DIRECTIOR; GEOMETPIC ARE%
FRACTION OF SURFACE BETWEEN CELL M AND CELL EKP(M) .

EIAMPLE: CPOSF SECTIONAL FLOW AEEA OF SURFACE BETWEEN CELL M AND
CELL MIP(M) IS DY (J) *DZ (K) * ALI (M)

****** E. PHYSICAI YARIABLES ******
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SUBSCRIPTS
\

B : EOUND4RY. ;

G : GAS.
L : LIQUID.
1 : UPDATEb V AIDE.
0 : CELL I,J,K
1 : Cell I-1,J,K
2 : CELL I+1,J,K
3 : CELL I,J-1,h
4 : LELL I,J + 1,K
5 : CELL I,J,K-1
6 : CELL I,J,K+1
CLD : VALUES AT PPEVIOUS TIMSTEP

CEIL CENTESED V ABIABLES

HG;HGT : GAS ENTH ALPY. (JOULES /KG)
HI;HLT : LIQUID FNTHALPY. (JOULES /FG)
P;PT : FE BSSURF, UPDATED PE ESSUP E. (P ASCALS)
SG;BGT : GAS DENSITY. (KG/M**3)
EL;blT : IIOUID DENSITY. (KG/M**3)
T HL ;THG : VOID FB ACTION. (DIMEkSIONL ESS)
IHLT;THGT : UPDATED YOID FR ACTIOD. (LIMENSIONI ESS)
II;TG : LIQUID TEMPEPATURE; GAS TEMPSF ATUR8. (DEGh EE CLNTIGR ADE)
PC : PRESSUEE COPPECTION

VAFTABLAS DEFINED AT TPE SUEFACE OF A CFLI:

UG;VG;WG : CAS VELOCITIES IN I,Y, AN D Z DIBFCTIOE. (M/SEC)
UL;VL;WL : IIQUID VELOCITIES IN I,Y, AND Z DIE ECTIGWS. (M/SEC)

BOUhDAR Y SURFACE VAFI ABLES:

HLB;HGB : ENTH ALPY . (JOULES /KG)
CLBN;QGSN : FORM A L HP AT FLUI . (JOUI ES/M**2)
ELB;PGP : EENSIT Y. (KG/M** 3)
PB : FR ESS UR E. (P A SC ALS)
1HLP;THGP : VOID FRCTION. (DIMFNSINI.ESS)
TL B ;TGB : TEM PER ATURF. (DEGREE CENTIGRADE)
VELLBN : SURF ACE NORM AL YELOCITY. (M/SEC)
VELGBN : SURF ACE NCRMAL VELOCITY. (M/SEC)

****** F. SOME ADDITIONAI VARI 4BLES ******
|

ACCFO :
AC0F1 : COEFFICIENTS OF A DISCBETIZED F00ATION OF THE FORM
ACOF2 :
ACOFi : A0* PHI (M) = Al* PHI (M1) + A2* PHI (M2) + A3 * PHI (M3)
ACOF4 : + A 4* PHI (34) + AS* PHI (MS) + A6* PHI (M6) + B0

| AC0FS :
ACOF6 :
BC0F0 :

|
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UHAIL :
VHATL : PSEUC0 VELCCITY IN THE ALGEBB AIC FORM OF THE MOMENTUM '

'dH4TL : EQUATICF. FCE FIAMPLE :
UNATG :
Vti ATG : UL (M) U H AT L ( M) + DUOL(M) * (PT (M) - PT (M 2))=

WHATG :

DUOL :
DV OI : CCEFFICIEhI IN THE ABOVE ALGEPP AIC FOEM OF ThE MOPENTUM
DW3L : EQUA7 ION
DUOG :
Dv0G :
DWOG :

II WIP E :
VWIEE : THE PPOJECTED WISE WPAP ABEAS
WWIPE :

HSTREO : HEAT TRANSFEP COEFFICIFhT F05 COMPUTING HEAT IFANSFEB
HSTREI : PE05 THE SUFF ACES OF A THEPMAL STEUCTUDE

DULMAI :
DVLMAX : MA%IMUM CH ANGE IN THE M AGNATUDF OF A V AhIABLE IN THE ENTIRE
DdLPAX : FIELD EIVIDED BY THE MAIIMUM MAGNITUDE OF THF YAPIABLE TN
DOGFAI : THE FNTIRE FIh1D
DVGMAI :

i D '4 G M AI :
DHCP :

FCX1 :
FC12 :
FCX3 : COEFFICIENTS USED IN THE SIRE WP AP BESISI ANCE MODEL
PCI4 :
FC(5 :
FCY1 :
PCY2 :
FCY3 :
FCY4 :
PCYS :

ASEAX :
AREA! : CBOSS SECTIONAL FLOW AREA IN I Y Z DIPECTION
ABEAZ :
VCELL : VOLUME CF CELL OCCUPIED BY THE ELUID

1 SINGLE PHASE ; =NPHASE : = 2 TWO PHASE
DIIME : TIME STEP SIZE
DCONV : CONVIDGENCE PARAMETEB

EPS1* (EPS2 + MAI(U/DI + V/DY + W/DZ))i =

EVAP : RATE OF EVAP0hATION
QUAL : MASS PkACTION OF VAPOP PHASE

|
i
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