ARGONNE NATIONAL LABORATORY 9700 South Gas Avenue Argonne, Illinois 60439

COMMIX -2:
A STEADY/UNSTEADY SINGLE-PHASE/TWO-PHASE THREE-DIMENSIONAL COMPUTER PROGRAM FOR THERMAL-HYDRAULIC ANALYSIS OF REACTOR COMPONENTS

by

H. M. Domanus,* W. T. Sha,* V. L. Shah,* J. G. Bartzis, J. L. Krazinski, C. C. Miao, and R. C. Schmitt

Components Technology Division

October 1980

Prepared for the
U. S. NUCLEAR REGULATORY COMMISSION

Office ur Nuclear Regulatory Research Washington, D.C. 20555 under Interagency Agreement DOE 40-550-75

NRC FIN No. A2045

COMMIX-2:
A STEADY/UNSTEADY SINGLE-PHASE/TWO-PHASE THREE-DIMENSIONAL COMPUTRR PROGRAM

FOR THERMAL HYDRAULIC ANALYSIS
OF REACTOR COMPONENTS
by

H. M. Domanus, W. T. Sha, V. L. Shah, J. C. Bartzis, J. L. Krazinski, C. C. Miao, and R. C. Schmitt

ABSTRACT

This report describes the numerical procedure of COMMIX-2 for the calculation of steady/unsteady, single-phase/twophase, three-dimensional fluid flow and heat transfer. The procedur? is based on the control-volume approach, which enables the derivation of physically meaningful finitedifference equations. The conservation equations employed are based on a two-fluid model, and this permits the analyses of nonhomogeneous and nonequilibrium flow conditions. The conservacion equations of mass, momentum, and energy of each phase are solved as an elliptic system. In addition, the porous-medium formulation with concept of volume porosity, surface permeability, distributed resistance, and distributed heat source is employed and provides a greater range of applicability. The concept of surface permeability is new and greatly facilitates modeling of anisotropic flow and temperature fields.

TABLE OF CONTENTS

Page
ABSTRACT ii
NOMENCLATURE viii
EXECUTIVE SUMMARY xi

1. INTRODUCTION 1
2. DIFFERENTIAL EOUATIONS: CONTINUUM 5
2.1 Cont inuity Equations 5
2.2 Momentum Equations 5
2.3 Energy Equations 6
2.4 General Form 6
3. CONSERVATION EQUATIONS: OUASI-CONTINUUM 7
3.1 Flow Domain with Solid Objects 7
3.2 Volume Porosity and Surface Permeability 7
3.3 Continuity Equations 8
3.4 Momentum Equations 10
3.5 Energy Equations 10
4. CONSTITUTIVE EQUATIONS $!1$
4.1 Phase Change Rates 11
4.2 Interfacial Friction. 11
4.3 Interfacial Heat Transfer. 13
4.4 Wall Friction. 13
4.5 Wall Heat Transfer 14
5. PRELIMINARY CONSIDERATIONS 23
5.1 Construction of Control Volumes. 23
5.2 Unsteady Situations 25
5.3 Convection and Diffusion Terms 25

TABLE OF CONTENTS

Tage
5.4 Source Term 28
5.5 Unsteady Term 28
6. GENERAL FINI'EE-DIFFERENCE EQUATION 30
6.1 General Form 30
6.2 Formulations in i, j, k Notations 33
7. FINITE-DIFFERENCE FORM OF MOMENTUM EQUATIONS 37
7.1 Staggered Grid 37
7.2 The Momentum Control Volumes 37
7.3 The Finite-difference Equation for Momentum 37
7.4 Velocity-Pressure Relationships 41
7.5 Solution of the Momentum Equation 42
8. FINITE-DIFFERENCE FORMS OF THE CONTINUITY EOUATIONS 43
8.1 Phase Continuity Equation 43
8.2 Combined Continuity Equation 44
9. PRESSUKE AND PRESSURE-CORRECTION EQUATIONS 45
9.1 Pressure Equation 45
9.2 Pressure-correction Equation 1 46
9.3 Pressure-correction Equation 2. 47
10. INITIAL AND BOUNDARY CONDITIONS 50
10.1 Initial Conditions 50
10.2 Boundary Conditions 50
10.3 Boundary Conditions for Pressure and Pressure-correction Equations 51
10.4 Irregular Geometries 51

TABLE OF CONTENTS

Page
11. SOLUTION OF THE FINITE-DIFFERENCE EQUATIONS 55
11.1 Tri-Diagonal-Matrix Algorithm 55
11.2 Line-by-1ine Scheme 56
11.3 Traverse and Sweep Diractions 56
11.4 Optimization of the Equation-solving Effort 58
12. ITERATION SCHEME 59
12.1 Sequence of Operations 59
12.2 Under-relaxation 60
12.3 Linearization of the Source Term. 62
12.4 Distinction between Steady and Unsteady Situations 64
12.5 Performance of Integral Balances 64
13. FLOW CHARTS 68
13.1 Time-step and Iteration Loops 68
13.2 Iteration Sequence 68
14. CONCLUDING REMARKS 71
APPENDICES
A. Thermodynamic and Transport Properties 72
B. Thermal Structure Module. 84
C. Wire Wrap and Resistance Models 90
D. Input Description. 96
ACKNOWLEDGMENTS 116
REFERENCES 116

LIST OF FIGURES

No. Title Page
3.1. Domain containing dispersed solid objects. 9
3.2. Finite control volume in Cartesian coordinate. 9
4.1. Wall heat-transfer logic-sodium 20
4.2. Wall heat-transfer logic-water 21
4.3. Wall heat-transfer correlations and their regions of applications: sodium 22
4.4. Wall heat-transfer correlations and their regions of applications: water 22
5.1. Construction of control volumes (first practice) 24
5.2. Construction of control volumes (second practice) 24
5.3. Total flux across a control-volume face. 27
5.4. Effect of Peclet number on the variation of ϕ 27
5.5. Comparison of various finite-difference schemes for convection and diffusion terms 29
6.1. Control volume around point 0 31
6.2 Control volume around point 0 in $i j k$ notation 38
7.1. Staggered grid 38
7.2. Momentum control voiume in relation to the main control volumes 40
10.1. Near-boundary control volume 52
10.2. Design of control volumes for irregular geometry 54
11.1. Illustration of the line-by-line scheme 57
13.1. The overall flow chart 69
13.2. Iteration sequence 70
B.1. Cross section of a thermal-structure element 86
B.2. Energy balance of partition cell 86
B.3. Energy balance of cell adjacent to coolant 88
B.4. Cell surrounded by different materials with air gap between them 88
B.5. Cell with adiabatic boundery 88
C.1. Typical wire-wrap arrangement 93
C.2. Cross seczion of helical wire-wrap around a fuel pin. 93

LIST OF TABLES

No. Title Page
2.1. Source Terms for Continuity, Momentum, and Energy Equations...... 7
5.1. Convention Used in COMMIX-2 for Defining Neighboring Control Volumes or Grid Positions. 23

NOMENCLATURE

A
u, v, w Velocity components
Area
Pinite-difference coefficients

Defined in Eq. 6.3

Pressure coefficient, Eq. 7.4
Flow rate, Eq. 6.4

Latent heat
Enthalpy

Thermal conductivity
Interfacial drag coefficient
Nusselt number
Pressure
Pressure correction
Prandtl number

Source term, Eq. 2.6

Temperature
Time

Pseudo-velocities, Eq. 7.3
Viscous source term; volume

Finite-difference coefficients arising from the unsteady term
"Constant" term in the finite-difference method
Specific heat at constant pressure
Diffusion strength, Eq. 5.9; diameter

Grevitational acceleration in the jth direction
Heat-transfer coefficient; enthalpy

Total (convection + diffusion) flux

Heat generation per unit volume, Eq. 2.5
Interfacial heat transfer coefficient, Eq. 2.5;
the distributed frictional resistance per unit fluid volume

Parts of the linearized source term, Eq. 5.14
Positive and negative parts of S , Eq. 12.7

Thermal diffusivity; defined in Eq. 9.10

NOMENCLATURE

I	Diffusion coefficient, Eq. 2.6
Δt	Time step
$\Delta x, \Delta y, \Delta z$	Control-volume dimensions
λ	Thermal conductivity; coefficient in Eqs. 4.2 and 4.3
μ	Viscosity
ρ	Density
B	Defined in Eq. 9.10; coefficient of thermal expansion
\$	General dependent variable, Eq. 2.6
θ	Fluid volume fraction; angle between fuel-pin centerline and helical wire wrap centerline
γ_{v}	Volume porosity
$\gamma_{x}, \gamma_{y}, \gamma_{z}$	Surface permeability in x, y, and z directions
$\Omega, \Omega_{m}, \Omega_{h}$	Source due to phase change (evaporation or condensation) in the continuity, momentum, and energy equations
¢	Viscous dissipation, Eq. 2.5
v	Kinematic viscosity
σ	Surface tension

Superscripts

*	Last iteration value; guessed value
0	old values
w	Wire wrap
,	Correction to last iterated value
Subscripts	
0	Grid location under consideration; center of the control volume
1.	($\mathrm{i}-1, \mathrm{j}, \mathrm{k}$) location
2.	$(i+1, j, k)$ location
3.	(i, j-1, k) location
4.	(i, j+1, k) location
5.	(i, j, k-1) location
6.	(i, j, k+1) location
m	Momentum
h	Energy

This report describes the CCMMIX-2 computer program. The program is designed to analyze steady/unsteady, single-phase/two-phase, three-dimensional fluid flow with heat transfer in reactor components. It uses a two-fluid model to describe the conservation equations for two-phase flow. Consequently, one can analyze a wide spectrum: from homogeneous and equilibrium to nonhomogeneous and nonequilibrium flow conditions. The volume porosity, surface permeability, distributed resistance, and distributed heat source are included in the conservation equations to permit analyses of flow domain with so!id objects. The discretization equations are obtained by integrating the conservation equations over a control volume. The convective, diffusion, interfacial friction and interfacial heat-transfer terms are made implicit for more stable formulation. The final form of all discretization equations is such as to permit various solution schemes, e.g., cell by cell, line by line, etc.

At present, COMMIX-2 has two alternative forms of the pressure-correction equation. One form is derived from the combined continuity equation, and in the second procedure we make use of the condition.

Sum of fluid volume fraction $=1$.

At present, both fcrms are retained in the code, as not enough experimentation has been performed to determine the computational efficiency and suitability of these two forms of pressure-correction equation.

The COMMIX-2 code has a modular structure. It permits analysis of single-phase (gas or liquid) or two-phase flow problems. The code has also an option permitting us of either a sodium-property package or a water-property package.

The report describes in detail the formulation, solution procedures, iteration sequence, flow chart, and input instructions. It also includes the description of models used in COMMIX-2 for the following phenomena:

1. Interfacial mass, momentum, and energy exchange.
2. Wall-heat transfer and their regimes.
3. Distributed resistance due to internal structures.
4. Thermal interaction between structures and fluid.
5. Interaction due to the presence of wire wrap.

Even though the interfacial and wall heat transfer models for other flow regimes have been incorporated into the code, the current version of COMMIX -2 is geared specifically for dispersed flow analyses.

As two-phase flow is a very active and deveioping field, new and better physical models and constitutive relations are expected to emerge. COMMIX-2 will therefore rcmain a dynamic code. We will make all efforts to retain the same structure of the code while incorporating new developments in physical models and solution procedures. As we make modifications in the code, some changes are expected to occur in the input structure. Users of the code are therefore requested to follow the latest version of the input description.

1. INTRODUCTION

The present-generation computer speed and storage capacity, coupled with recent advances in numerical-solution techniques for systems of quasilinear partial differential equations, have made possible detailed numerical simulation of many engineering problems. With the anticipated improved pe:formance of the next generation of computers and further advances in numer cal-solution techniques, use of numerical simulation for solving engineering problems is expected to increase for many years to come.

Basically, numerical simulation in engitecring applications can be classified into two categories: the system computer program and the component computer program. Generally, the system computer progran consists of a number of components; therefore, it cannot afford to give a detailed numerical modeling of each component. In contrast, the component computer program deals with one component of interest; therefore, it can afford to provide a detailed numerical simulation. The work presented in this report is focused on the component computer program.

During loss of coolant or transient overpower accident situations, boiling of liquid coolant in a reactor core i expected due to high temperatures of fuel pins. The tluid mixture of liqu: d vapor, in such circumstances, is nonhomogeneous wita both phases being ... nonequilibrium thermodynamic states. It is, ther fore, desirable to develop a computer code for obtaining numerical solutions of three-dimensional, transient, two-phase (gas-liquid) flow system with nonequilibrium and nonhomogeneous conditions.

The COMMIX-2 code is a steady/unsteady, three-dimensional two-phase computer code for thermal hydraulic analysis of reactor components under normal and off-normal operating conditions. It uses the two-fluid model of Harlow and Amsden ${ }^{1}$ to describe the conservation equations of mass, momentum and energy. Consequently, we can analyze a wide spectrum of fiow conditions; i.e., from homogeneous and equilibrium to nonhomogeneous and nonequilibrium conditions. The interactions between two fluids are accounted for by incorporating the corresponding terms in all of the conservation equations. The staggered grid system is used to describe the field variables at the center of a cell and flow variables at the surface of a cell.

The structure of the code is similar to that of COMMIX-1A. ${ }^{2}$ The calculation procedure employed is an extension of the single-phase numerical procedure, ${ }^{3}$ known as SIMPLER (Semi-Implicit Method for Pressure Linked EquationRevised). In this procedure, we use the liquid phase continuity equation to obtain the void fractions, and use the combined continuity equation to derive the pressure and pressure correction equations.

The specific features of COMAIX-2 are the following:

1. To permit an analysis of a flow dumain with solid objects, the volume porosity, surface permeability, distributed resistance and distributed heat source are incorporated in the conservation equations.
2. An approximate form of Spalding's equation ${ }^{4}$ is used to derive the finite aifference formulation of the convective and diffusion terms. This equation is a function of the Peclet number and it combines the best features of botl; the central difference and upwind difference schemes.
3. The discretization equations are obtained by integrating the conservation equations over a control volume surrounding a grid point. Thus, the derivation process and the resulting equations have direct physical meaning, and the consequent solution satisfies the conservation principles.
4. The convective, diffusion, interfacial friction and interfacial heat transfer terms are made implicit for more stable formulation and to permit larger time steps.
5. The discretization equations are formulated with time step size appearing only in the denominator of all transient terms. With this arrangement, for a steady state calculation, all of the transient terms can be eliminated from computation by specifying a very large value of time step size.
6. The general forn of all discretization equations is

$$
a_{0} \hat{0}_{0}+\sum_{n b} a_{n b^{\prime} \phi_{n b}}=b_{0}
$$

Where, ϕ is a dependent variable and subscript nb stands for neighboring points. This general form of the discretization equation permits various solution schemes, e.g., cell by cell, line by line, plane by plane, block iterative, direct inversion etc.
7. The COMMIX-2 code is structured such as to permit solution of single phase (gas or liquid) as well as two-phase (gas and liquid) flow probıems. In addition, it permits 1D, 2D, or 3D calculation.
8. The COMMIX-2 code has modular structure. This permits rapid implementation of the latest available drag models, heat transfer models, boiling models etc.
9. The code has also an option permitting use of either sodium property package or water property package.
10. The program also contains
(i) A generalized resistance model to permit determination of resistance due to internal structures (fuel rods, wire wrap, baffles, grid spacers, etc.)
(ii) A generalized thermal structure formulation to model thermal interaction between structures (fuel rods, wire wraps, duct wall, baffles, etc.) and surrounding fluid, and
(iii) A local regional mass rebalancing scheme, such as plane by plane, for improving the convergence rate.

This report describes the COMMIX-2 program for the solution of the governing equations for three-dimensional, single-phase/two-phase, steady/ unsteady flow with heat transfer. The description here starts with the differential equations and deals with numerical method incorporated into a computer program. Section 2 is devoted to the set of governing equations for the situation considered. In Subsection 2.4, the general form of all the governing equations is recognized; this generalization facilitates a unified development of the numerical method and the construction of the computer program.

The conservation equations for quasi-continuum regime are presented in Section 3. We define the quasi-continum regime as a medium which contains finite, dispersed, stationary heat generating (or absorbing) solid objects. The effects of solid objects in a medium are accounted for by introducing volume porosity surface permeabilities, distributed resistance, and distributed heat sources. The physical models and constitutive equations used in COMMIX-2 for describing the mass, momentum and energy exchange phenomena are presented in Section 4.

In Section 5 we present some preliminary considerations before we start assembling the finite difference equations. The finite difference formulation of the general equation is presented in Section 6. As we use a staggered grid system, the control volumes for momentum equations are different and require special considerations. The special features of the finite-difference equations for momentum are discussed in Section 7. In Section 8 we have presented the finite difference forms of the continuity equations.

Section 9 contains the derivation of pressure and pressure correction equations. In the present program we have two alternative forms of pressure correction equation leading to two alternative solution procedures. The first procedure is an extension of the single-phase numerical procerfure, ${ }^{3}$ known as SIMPLER (Semi-Implicit Method for Pressure Linked Equation-Revised). In this procedure we use one of the two phase continuity equations to determine the liquid volume fractions, and use the combined continuity equation to derive the pressure correction equation. In the second procedure we use both of the phase continuity equations to determine the liquid volume fractions; the difference lies in the derivation of the pressure correction equation. In this procedure we differentiate the phase continuity equations and momentum equations and then combine them to obtain the pressure correction equation. This is analogous to the numerical procedure ${ }^{5}$ known as Inter Phase Slip Analyzer [IPSA].

Section 10 deals with the boundary conditions for the different dependent variables. A discussion of the ways of handling irregular geometries is included in Subsection 10,4. A line-by-line procedure for solving the finitedifference equations is presented in Section 11. For most of the problems analyzed, this procedure has been found to be superior to the usual point-bypoint procedure without rebalance technique. In Section 12, we take an overall view of the entire calculation sequence. The various steps in the iteration scheme are listed in Section 12.1, while the remainder of Section 12 is devoted to matters that enhance the chances of obtaining a converged solution. Section 13 describes the flow chart.

The thermodynamic and transport properties of sodiun and water are given in Appendix A. The thermal structure module is described in Appendix B. Appendix C contains the descriptions of the resistance and wire wrap models. The code input description and sample problems are given in Appendices D and E, respectively.
2. DIFFERENTIAL EQUATIONS: CONTINUUM

The governing equations for a single-phase/two-phase, three-dimensional, unsteady flow with heat transfer are given here in Cartesian tensor notation. For two phase flow, we use the two-fluid model of Harlow and Amsden ${ }^{1}$ to describe the conservation equations of mass, momentum and energy. The three coordinate directions, x, y, z, are denoted by x_{i}, and the three velocity components, u, v, and w are denoted by u_{i}. A repeated index implies the sum of three terms; that is:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{i}}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} \tag{2.1}
\end{equation*}
$$

The subscripts ℓ and g are used to denote liquid-phase and gas-phase respectively. However, when the formulation is applicable to both phases or when the formulation is for a specific phase, we have avoided the subscript ℓ or g.

2.1 Continuity Equations

The phese continuity equation:

$$
\begin{equation*}
\frac{\partial[\rho \theta]}{\partial t}+\frac{\partial}{\partial x_{i}}\left[\rho \theta u_{i}\right]=\Omega . \tag{2.2a}
\end{equation*}
$$

Here, Ω is the source term due to phase change [evaporation or condensation] and θ is the void fraction. By combining the two continuity equations, we eliminate the source terms, because $\Omega_{\ell}=-\Omega_{g}$, and obtain

$$
\begin{equation*}
\frac{\partial}{\partial t}\left[\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right]+\frac{\partial}{\partial x_{i}}\left[\rho_{\ell} \theta_{\ell} u_{\ell i}+\rho_{g} \theta_{g} u_{g i}\right]=0 . \tag{2.2b}
\end{equation*}
$$

2.2 Momentum Equations

For liquid-phase and for the j direction:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[\rho \theta u_{j}\right]+\frac{\partial}{\partial x_{i}}\left[\rho \theta u_{i} u_{j}\right]=-\theta \frac{\partial p}{\partial x_{j}}+\frac{\partial}{\partial x_{i}}\left(\mu \theta \frac{\partial u_{j}}{\partial x_{i}}\right)+\rho \theta g_{j}+v_{j} \\
& \quad+k\left[u_{g j}-u_{\ell j}\right]+s_{m \Omega} \tag{2.3}
\end{align*}
$$

The subscript j can take the value 1,2 , or 3 depending on the moment um direction chosen. The subscript i is a repeated index and implies the summation convention outlined in Eq. 2.1. The tern $\delta_{\mathrm{m} \Omega}$ is a source to the momentum field due to phase change and K is the interfacial drag coefficient. The viscous contribution to the momentum equation is expressed by two terms:

$$
\frac{\partial}{\partial x_{i}}\left[\mu \theta \frac{\partial u_{j}}{\partial x_{i}}\right],
$$

and v_{j}, which is given by

$$
\begin{equation*}
v_{j}=\frac{\partial}{\partial x_{i}}\left[\mu \theta\left(\frac{\partial u_{i}}{\partial x_{j}}\right)\right] . \tag{2,4}
\end{equation*}
$$

For turbulent flow, all quantities in Eqs. 2.3 and 2.4 are considered time averaged values and the viscosity μ is interpreted as the effective viscosity.

2.3 Energy Equations

For liquid-phase:

$$
\begin{equation*}
\frac{\partial}{\partial t}[\rho \theta h]+\frac{\partial}{\partial x_{i}}\left[\rho \theta u_{i} h\right]=\frac{\partial}{\partial x_{i}}\left(r_{h} \theta \frac{\partial h}{\partial x_{i}}\right)+\theta\left(\frac{\partial p}{\partial t}\right)+R\left[T_{g}-T_{\ell}\right]+\phi+Q+S_{h \Omega} \tag{2.5}
\end{equation*}
$$

Here, Γ_{h} stands for λ / c_{p}, where λ is the thermal conductivity, and c_{p} is the specific heat at constant pressure. The heat generation rate per unit volume, the source due to pitase change, the interfacial heat transfer coefficient, and viscous dissipation are denoted by Q, S_{h}, R, and Φ, respicctively. The term $\partial p / \partial t$ accounts for the fact that the internal energy [rather than enthalpyl is stored in a fluid.

For turbulent flow, Γ_{h} is interpreted as the effective transport coefficient for enthalpy. Calculation of the effective viscosity and the effective transport coefficient for the enthalpy often requires additional differential equations. One such proposal is the $K-\varepsilon-g$ model described in Ref. 6 .

2.4 General Form

Equations 2.2, 2.3, and 2.5 can be seen to possess a common form. If the general dependent variable is denoted by ϕ, the corresponding differential equation has the form:

$$
\begin{equation*}
\frac{\partial}{\partial t}[\rho \theta \phi]+\frac{\partial}{\partial x_{i}}\left[\rho \theta u_{i} \phi\right]=\frac{\partial}{\partial x_{i}}\left(r_{\phi} \theta \frac{\partial \phi}{\partial x_{i}}\right)+S_{\phi}+S_{\phi \Omega}, \tag{2.6}
\end{equation*}
$$

where the five terms can be referred to as: the unsteady term, the convection term, the diffusion term, the source term and the source term due to phase change. The density ρ and the velocity components u_{i} satisfy the continuity equation 2.2. The diffusion coefficient r_{ϕ} and the source tern S_{ϕ} are specific to each meaning of ϕ. Source terms for all conservation equations are given in Table 2.1. The recognition of this general form of the governing differential equations is important as much of the formulation described in the following sections is referenced to Eq. 2.6 alone.

TABLE 2.1. Lource Terms for Continuity, Momentum, and Energy Equations

Equation	Variatie	\$	Source Term s_{ϕ}	Source Term S_{6}
Cont inuity	Volume fraction (Liquid phase)	1	-	512
Monentum	Velocity Liquid phase; i-direction	U_{ℓ}	$\rho g_{x_{i}}+v_{x_{i}}+\mathrm{K}\left(\mathrm{U}_{\mathrm{g}}-\mathrm{v}_{\mathbf{i}}\right)-6 \frac{\partial p}{\partial \mathrm{x}_{i}}$	$-\Omega_{8} \mathrm{U}_{\ell}$
Momentum	Velocity Gas phase; i-direction	U_{8}	$\rho \theta g_{x_{i}}+v_{x_{i}}+k\left(v_{e}-U_{g}\right)-\theta \frac{\partial p}{\partial x_{i}}$	$\Omega_{g} \mathrm{U}_{\ell}$
Energy	Enthalpy Liquid phase	h_{ℓ}	$\theta \frac{\partial p}{\partial t}+\phi+Q+R_{(}\left(T_{g}-T_{\ell}\right)$	$-\Omega{ }_{g} h_{g}$
Energy	Enthalpy Gas phase	h_{g}	$\theta \frac{\partial p}{\partial t}+t+Q+i\left(T_{l}-T_{g}\right)$	$\Omega_{g} h_{g}$

3. CONSERVATION EQUATIONS: QUASI-CONTINUUM

3.1 Flow Domain with Solid Objects

The presence of solid objects in a flow domain has two effects on fluid flow. One is the geometrical effect; here the presence of solid objects influences the flow by reducing the available space. This effect is taken into account by including volume porosity and surface permeabilities in the governing equations. The second is the physical effect; here, the solid objects influence the momentum and heat transfer to fluid flow. This effect is taken into account by considering solid objects within a control volume as distributed resistances to momentum transfer and distributed heat sources (or sinks) for heat transfer.

In applying the concept of volume porosity and surface permeability, we are assuming that a real system containing numerous solid objects can be replaced by an idealized system having distributed solid objects such that both systems have the same volumetric porosities, same surface permeabilities, and same interactions [momentum and heat transfer] between fluid and solid surfaces.

3.2. Volume Porosity and Surface Permeability

We consider a fixed finite region of volume V in space with enveloping surface A. There are finite numbers of dispersed, fixed heat generating solids inside V; some may be cut through by A as illustrated in Fig. 3.1. Clearly, $V=V_{f}+V_{s}$, where V_{f} is the total fluid volume and V_{s} is the total solid volume. Only a fraction of the enveloping surface A is unobstructed to fluid flow.

We define γ_{v} as the volume porosity, i.e., the fraction of the local volume inside V that is occupied by the fluid. It may take on a value equal to or between

0 and 1. If the volume under consideration is completely inside a dispersed solid, $\gamma_{\mathrm{V}}=0$; if it is completely in the fluid, $\gamma_{\mathrm{v}}=1$. If the volume is partly in a dispersed solid and partly in fluid, then $0<\gamma_{v}<1$. Hence, in general, $0 \leqslant \gamma_{v} \leqslant 1$.

The surface permeability γ_{a} is defined as the fraction of the local surface in A that is unobstructed to fluid flow. It is easy to see that, in general, $0 \leqslant \gamma_{a} \leqslant 1$. We define the average volume porosity as:

$$
\begin{equation*}
\gamma_{v}=\frac{1}{v} \int_{v} \bar{\gamma}_{v} d v, \tag{3.1}
\end{equation*}
$$

and the average surface permeability as

$$
\begin{equation*}
\gamma_{x_{i}}=\frac{1}{A_{x}} \int_{A_{x_{i}}} \bar{\gamma}_{x_{i}} d a_{x_{i}} . \tag{3.2}
\end{equation*}
$$

Here, $\bar{\gamma}_{v}$ and $\bar{\gamma}_{x_{i}}$ are the local volume porosity and local surface permeability respectively, with their values equal to unity while in fluid and equal to zero while in solid, and the subscript x_{i} refers to the direction normal to the surface area under consideration. Since the unobstructed area $\left(A_{f}\right){ }_{x_{i}}$ that is available for free fluid flow is

$$
\begin{equation*}
\left(A_{f}\right)_{x_{i}}=\int_{A_{x i}} \gamma_{x_{i}} d a, \tag{3.3}
\end{equation*}
$$

it follows immediately that

$$
\begin{equation*}
\left(A_{f}\right)_{x_{i}}=\gamma_{x_{i}}{ }^{A} x_{i} . \tag{3.4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
v_{f}=\gamma_{v} v . \tag{3.5}
\end{equation*}
$$

3.3 Continuity Equations

The formulations of the conservation equations for quasi-continuum flow domain are given in Ref. 7. We are presenting here only the final equations.

> We consider a stationary volume element

$$
\begin{equation*}
\Delta V=\Delta x \Delta y \Delta z, \tag{3,6}
\end{equation*}
$$

through which fluid is flowing (see Fig. 3.2). Its enveloping surface in Cartesian coordinates is

$$
\Delta A=2(\Delta y \Delta z+\Delta z \Delta x+\Delta x \Delta y) .
$$

Some of the dispersed solids may be cut through by A

Fig. 3.1. Domain containing dispersed solid objects

Fig. 3.2. Finite control volume in Cartesian coordinates

The centroid of V is located at $0(x, y, z)$. The velocity components in the x, y and z directions are u, v, and w respectively. The phase continuity equation is :

$$
\begin{equation*}
\gamma_{v} \frac{\partial(\rho \theta)}{\partial t}+\frac{\Delta\left(\rho \theta u r_{x}\right)}{\Delta x}+\frac{\Delta\left(\rho \theta v r_{y}\right)}{\Delta y}+\frac{\Delta\left(\rho \theta w r_{z}\right)}{\Delta z}=\delta r_{v} . \tag{3.7}
\end{equation*}
$$

Here, Ω is the source per unit fluid volume and we define,

$$
\begin{equation*}
\frac{\Delta()}{\Delta x_{j}}=\frac{()_{x_{j}}+\Delta x_{j} / 2{ }^{-()} x_{j}-\Delta x_{j} / 2}{\Delta x_{j}} \tag{3.8}
\end{equation*}
$$

3.4 Momentum Equations

The momentum equation for liquid phase in the x direction is

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[\rho \theta u \gamma_{v}\right]+\frac{\Delta\left[\rho \theta u^{2} \gamma_{x}\right]}{\Delta x}+\frac{\Delta\left[\rho \theta u v \gamma_{y}\right]}{\Delta y}+\frac{\Delta\left(\rho \theta u w \gamma_{z}\right)}{\Delta z}=\left(\rho \theta g_{x} \gamma_{v}\right)-\theta \gamma_{x} \frac{\Delta p}{\Delta x} \\
& \quad+\frac{\Delta\left(\theta \tau_{x x} \gamma_{x}\right)}{\Delta x}+\frac{\Delta\left(\theta \tau_{x y} y^{\gamma}\right)}{\Delta y}+\frac{\Delta\left(\theta \tau_{x z^{Y}}\right)}{\Delta z}+\gamma_{v} k\left(u_{g}-u_{\ell}\right)-\gamma_{v}{ }^{R} x_{x}+\gamma_{v} S_{m \Omega} . \tag{3.9}
\end{align*}
$$

Here, R_{x} is the distributed frictional resistance per unit fluid volume in the x direction. Equations for gas-phase and for other directions are similar.

3.5 Energy Equations

The energy el ion for the liquid phase is

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[\rho \theta h \gamma_{v}\right]+\frac{\Delta\left(\rho \theta_{u h \gamma_{x}}\right)}{\Delta x}+\frac{\Delta(\rho \theta \text { vhy } y)}{\Delta y}+\frac{\Delta\left(\rho \theta_{\text {whi }}^{z}\right)}{\Delta z}=\gamma_{v} \frac{d(p \theta)}{d t} \\
& \quad+\gamma_{v}\left[\dot{Q}_{s}+\dot{Q}+\phi+R\left(T_{g}-T_{\ell}\right)+S_{h \Omega}\right]+\left[\frac{\Delta\left(\theta \gamma_{x} \lambda \frac{\partial T}{\partial x}\right)}{\Delta x}+\frac{\Delta\left(\theta \gamma_{y} \lambda \frac{\partial T}{\partial y}\right)}{\Delta y}-\right. \\
& \left.\quad+\frac{\Delta\left(\theta \gamma_{z} \lambda \frac{\partial T}{\partial z}\right)}{\Delta z}\right] . \tag{3.10}
\end{align*}
$$

Here, \dot{Q} is the distribuced heat source per unit fluid volume and \dot{Q}_{s} is the rate of heat transfer between fluid and dispersed solid objects per unit fluid volume. The energy quation for the gas phase is similar.

4. CONSTITUTIVE EQUATIONS

The constitutive equations that are currently incorporated in COMMIX-2, are described here. Most of these constitutive equations are suitable only for dispersed flow analysis. However, the subroutines are designed such that one can modify any correlation or incorporate a new correlation with minimal changes.

4.1 Phase Change Rates

The mass exchange rates between che phases, evaporation and condensation rates, are determined in the subroutine BOIL using the following expressions.

$$
\begin{align*}
& \Omega_{g}=-\Omega_{\ell}=J_{\text {evap }}-J_{\text {cond }} \tag{4.1}\\
& J_{\text {evap }}=\lambda A_{\ell} \bar{\theta}_{g}\left(T_{\ell}-T_{\text {sat }}\right)\left(R / T_{\text {sat abs }}\right)^{1 / 2}, T_{\ell}>T_{\text {sat }} \\
&=0, \text { for } T_{\ell}<T_{\text {sat }} \tag{4.2}\\
& J_{\text {cond }}=\lambda A_{g} \bar{\theta}_{\ell}\left(T_{\text {sat }}-T_{g}\right)\left(R / T_{\text {sat abs }}\right)^{1 / 2}, T_{\text {sat }}>T_{g} \\
&=0, \text { for } T_{\text {sat }}<T_{g} . \tag{4,3}
\end{align*}
$$

Here,

$$
\begin{align*}
\mathrm{A} & =(4 \pi \mathrm{~N} / 3)^{1 / 3} \bar{\theta}_{\mathrm{g}}^{2 / 3}, \bar{\theta}_{\mathrm{g}} \leqslant 0.5 \\
& =(4 \pi N / 3)^{1 / 3}\left(1-\bar{\theta}_{\mathrm{g}}\right)^{2 / 3}, \bar{\theta}_{\mathrm{g}}>0.5 \tag{4.4}\\
\bar{\theta}_{\mathrm{g}} & =\min \left\{0.9999, \max \left(0.0001, \theta_{\mathrm{g}}\right)\right\}, \tag{4.5}
\end{align*}
$$

N is the number of bubbles, R is the gas constant ($J / \mathrm{kg} \cdot \mathrm{K}$) and λ is the constant coefficient.

4.2 Interfacial Friction

In the subroutine KCOEF four different correlations are included for computing the interfacial friction function K. These are:

$$
\text { Autruffe et al. }{ }^{8}
$$

$$
\begin{equation*}
\mathrm{K}=\lambda_{1} \frac{1}{2} \frac{\rho_{\ell}}{D_{\mathrm{h}}}\left|\mathrm{u}_{\mathrm{g}}-\mathrm{u}_{\ell}\right|\left\{\left(1-\theta_{\mathrm{g}}\right)\left[1+75\left(1-\theta_{\mathrm{g}}\right)\right]\right\}^{0.95} \tag{4.6}
\end{equation*}
$$

Here, D_{h} is the hydraulic diameter and λ_{1} is the constant coffficient.

Harlow and Ansden ${ }^{9}$

$$
\begin{equation*}
K=\frac{3}{4} \theta_{g} \frac{1}{r}\left[\left.\frac{6 v_{\ell} \rho_{g}}{r}+\frac{1}{2} \rho_{\ell} C_{D} \|_{g}-u_{\ell} \right\rvert\,\right] \tag{4.7}
\end{equation*}
$$

Here, r is the radius of a bubble and C_{D} is the drag coefficient.

Rexroth and Starkovich 10

$$
\begin{equation*}
K=\frac{3}{4} \frac{{ }_{\ell}}{\theta_{g}^{5.7} r^{2}}\left[6 \frac{\rho_{g}}{\rho_{\ell}} \mu_{\ell}+\frac{1}{2} \rho_{\ell} r C_{D}\left|u_{g}-u_{\ell}\right|\right] \tag{4,8}
\end{equation*}
$$

Rivard and Torrey ${ }^{11}$

$$
\begin{equation*}
K=\frac{3}{8}\left(\rho_{g}+\rho_{\ell}\right)\left[\frac{12 v}{r}+c_{D}\left|u_{g}-u_{\ell}\right|\right] \frac{1}{r} \tag{4,9}
\end{equation*}
$$

Here,

$$
\begin{equation*}
v=\theta_{g} \nu_{g}+\theta_{\ell} \nu_{\ell}, \tag{4,10}
\end{equation*}
$$

is the mixture kinematic viscosity,
$A=\theta_{g}^{2 / 3}\left(\frac{4 \pi N}{3}\right)^{1 / 3}, \theta_{g} \leqslant 1 / 2 ; \quad A=\theta_{\ell}^{2 / 3}\left(\frac{4 \pi N}{3}\right)^{1 / 3}, \theta_{g}>1 / 2$
is the area of contact, and
$r=\left(\frac{4 \pi N}{3 \theta_{g}}\right)^{-1 / 3}, \theta_{g} \leqslant 1 / 2 ; \quad r=\left(\frac{4 \pi / i}{3 \theta_{\ell}}\right)^{-1 / 3}, \theta_{g}>1 / 2$
is the radius of a bubble.
General Form
The general form of all of these correlations is
$K=\lambda_{1}\left[\lambda_{2} \lambda_{3} \frac{1}{2} \rho_{g}\left|u_{\ell}-u_{g}\right|+\lambda_{4}\right]$
where,
$K=$ Interfacial friction coefficient, $\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{sec}$
$\lambda_{1}=$ Constant coefficient
$\lambda_{2}=$ Friction factor
$\lambda_{3}=$ Surface area per unit volume, $1 / \mathrm{m}$
$\lambda_{4}=$ Contribution corresponding to viscous drag; Stokes equation, $\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{sec}$.

An option has been included to permit the use of constant input value for interfacial drag coefficient K.

4.3 Interfacial Heat Transfer

The following model is used in subroutine RCOEF for computing interfacial energy exchange.

$$
\begin{equation*}
{Q_{g \ell}}=R\left(T_{g}-T_{\ell}\right)=\max \left(\dot{q}_{\ell p}, \dot{q}_{g p}\right) \tag{4.14}
\end{equation*}
$$

where,

$$
\begin{equation*}
\dot{q}_{\ell p}=h_{\ell p} A\left(T_{s a t}-T_{\ell}\right) \tag{4,15}
\end{equation*}
$$

is the energy exchange between liquid and interface,

$$
\begin{equation*}
\dot{q}_{g p}=h_{g p} A\left(T_{g}-T_{s a t}\right) \tag{4,16}
\end{equation*}
$$

is the energy exchange between interface and vapor,

$$
\begin{equation*}
h_{g p}=8.067 \mathrm{k}_{\mathrm{g}} / \mathrm{r} \tag{4.17}
\end{equation*}
$$

is the vapor side heat transfer coefficient, k_{g} is the thermal conductivity of gas,

$$
\begin{equation*}
\mathrm{h}_{\ell \mathrm{p}}=\mathrm{k}_{\ell}\left[\frac{2 / \mathrm{u}_{\ell}-\mathrm{u}_{\mathrm{g}} \mid 0.25 \mathrm{pr}_{\ell}^{-0.33}}{\pi \alpha_{\ell}}+\frac{1}{\mathrm{r}}\right] \tag{4.18}
\end{equation*}
$$

is the convective heat transfer coefficient on the liquid side, r is the bubble radius, α is the thermal diffusivity, and A is the interfacial surface area per unit volume.

In addition, an option has been included so that one can specify a desired value for interfacial heat transfer coefficient R.

4.4 Wall Friction

COMMIX-2 has the following two models for computing the effect of wall fricticn. The resistive forces are calculated in the subroutine FRICTW.

Simplified Mode

$$
\begin{equation*}
F_{\ell}=2 \mathrm{~F}_{\ell}{ }_{\ell} \theta_{\ell}\left|w_{\ell}\right| w_{\ell} / \mathrm{D}_{h} \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{F} g=2 f \rho_{g} \theta_{g} / w_{g} / w_{g} / D_{h} \tag{4.20}
\end{equation*}
$$

Here, F_{ℓ} and F_{f} are resistive forces, f is the friction coefficient, and D_{h} is the hydraulic diameter.

Rivard and Torrey ${ }^{11}$

$$
\begin{equation*}
F_{g}=\theta_{g}\left\{f_{\rho} \rho_{\ell} w_{\ell}^{2} \theta_{\ell}^{2} /\left(2 D_{h}\right)\right\} \phi^{2}, \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\ell}=\theta_{\ell}\left\{f_{p_{\ell}} w_{\ell}^{2} \theta_{\ell}^{2} /\left(2 D_{h}\right)\right\} \phi^{2} \tag{4.22}
\end{equation*}
$$

Here, friction factor f is given by

$$
\begin{equation*}
f=1.74-2 \log _{10}\left[2\left(\varepsilon / D_{h}\right)+18.7 f^{-1 / 2} / \operatorname{Re}\right] \tag{4.23}
\end{equation*}
$$

the Reynolds number

$$
\begin{equation*}
\operatorname{Re}=\left(\rho \hat{c o t} \hat{D}_{h} / \mu\right)_{\ell}, \tag{4,24}
\end{equation*}
$$

the multiplier

$$
\begin{align*}
\phi^{2} & =\theta_{\ell}^{-2}\left(\rho_{g}+\rho_{\ell}\right) / \rho_{\ell}, \text { (Dispersed flow) } \\
& =1 / \theta_{\ell}^{2}, \text { (Annular flow) } \tag{4.25}
\end{align*}
$$

and ε / D_{h} is the wall roughness.
$\therefore .5$ Wall Heat Transfer
The following heat transfer correlations are provided for computing wall heat transfer for different flow regimes.
4.5.1: Sodium

1. Single Phase Liquid ${ }^{12}$:
$N u=\frac{h_{\ell} D_{h}}{k_{\ell}}=F_{\text {geom }}(\operatorname{RePr})^{0.3}($ for $\operatorname{RePr}>150)$
$N u=\frac{h_{\ell} D_{h}}{k_{\ell}}=4.5 \mathrm{~F}_{\text {geom }}$ (for $\operatorname{RePr}<150$)
2. Nucleate Boiling: Granziera and Kazimil2 (Modified Chen Correlation)
$q^{\prime \prime}=F_{\operatorname{Re}}^{0.375} h_{\ell}\left(T_{w}-T_{\ell}\right)+h_{N B}\left(T_{w}-T_{\text {sat }}\right)$

Here,

$$
\begin{equation*}
\mathrm{h}_{\mathrm{NB}}=0.00122 \frac{\left[\mathrm{k}^{0.79}\left(\mathrm{oc}_{\mathrm{p}}\right)^{0.45}\right]_{\ell}(\Delta \mathrm{p})^{0.75} \mathrm{~s}_{\mathrm{f}}}{\sigma^{0.5} \mathrm{H}_{\ell}^{0.29}}\left(\frac{\mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\mathrm{sat}}}{\mathrm{~h}_{\mathrm{fg}_{\mathrm{g}}}}\right)^{0.24}, \tag{4.28}
\end{equation*}
$$

$F_{\text {Re }}$ is the Reynolds number factor, $F_{\text {geom }}$ is the geometrical factor, and h_{g} is the single phase heat transfer coefficient for liquid. Here,

$$
\begin{equation*}
\Delta p=p_{s a t}\left(T_{w}\right)-p_{s a t}\left(T_{\ell}\right), \tag{4.29}
\end{equation*}
$$

the suppression factor

$$
\mathrm{S}_{\mathrm{f}}=\left\{\begin{align*}
\left(1+0.12 \operatorname{Re}_{\mathrm{TP}}^{1.14}\right)^{-1} ; & \mathrm{Re}_{\mathrm{TP}}<32.5 \tag{4.30}\\
\left(1+0.42 \operatorname{Re}_{\mathrm{TP}}^{0.78}\right)^{-1} ; & 32.5<\mathrm{Re}_{\mathrm{TP}} \leqslant 70 \\
0.1 ; & \operatorname{Re}_{\mathrm{TP}}>70,
\end{align*}\right.
$$

the two-phase Reynolds number

$$
\begin{align*}
& \operatorname{Re}_{T P}=F_{\operatorname{Re}}^{1.25}\left(\frac{\rho \theta \mathrm{u}}{\mu}\right), D_{h} \cdot 10^{-4}, \tag{4.31}\\
& F_{R e}=\left\{\begin{array}{r}
2.35\left(0.213+\frac{1}{x_{t t}}\right)^{0.736} ; \quad x_{t t}<10 \\
1 ; x_{t t}>10,
\end{array}\right. \tag{4.32}\\
& F_{\text {geom }}=-16.15+24.96(P / D)-8.55(P / D)^{2} \tag{4.33}
\end{align*}
$$

(Equations $4.26-4.27$), P / D is the pitch to diameter ratio, σ is the surface tension and $x_{t t}$ is the Martinelli parameter.
3. Film Boiling: Granziera and Kazimi ${ }^{12}$

$$
\begin{equation*}
h_{F B}=h_{\ell} F_{1}+h_{g} . \tag{4.34}
\end{equation*}
$$

Here,

$$
\begin{equation*}
F_{1}=F_{\operatorname{Re}}^{0.375}\left(12-12.5 \theta_{\mathrm{g}}\right)^{3}, \tag{4.35}
\end{equation*}
$$

and h_{g} is the single phase vapor heat transfer coefficient.
4. Single-phase Vapor: Dittus and Boelter ${ }^{13}$
$(\mathrm{Nu})_{\mathrm{g}}=0.023(\mathrm{Re})_{\mathrm{g}}^{0.8}(\mathrm{Pr})_{\mathrm{g}}^{0.4}$
5. Condensation:
$h_{\text {cond }}=\left\{\begin{array}{l}h_{\ell} F_{R e} \text { for } \theta_{\mathrm{g}}<0.88 \\ \mathrm{~h}_{\ell} \mathrm{F}_{1}+\mathrm{h}_{\mathrm{g}} \text { for } \theta_{\mathrm{g}}>0.88\end{array}\right.$

4.5.2: Water

1. Forced Convection: Sieder and Tate ${ }^{14}$ (Liquid or Vapor)
$(\mathrm{Nu})=0.023(\mathrm{Re})^{0.8}(\mathrm{Pr})^{0.33\left(\frac{\mu}{\mu_{\mathrm{w}}}\right)^{0.14}}$
Fluid properties at bulk fluid temperature, except μ_{w} at T_{w}.
2. Free Convection: McAdams ${ }^{15}$ (Liquid or Vapor)
$(N u)=0.13\left\{\frac{\rho^{2} g B\left(T_{w}-T\right) \operatorname{PrD}}{\mu^{2}}\right\}^{1 / 3}$
Here,
B is the coefficient of thermal expansion, and is equal to $1 / \mathrm{T}$ gor vapor. Fluid properties are evaluated at fluid film temperature. Higher value of h between (4.39) and (4.40) is used.
3. Subcooled Boiling; Nucleate Boiling; Vaporization

$$
\begin{equation*}
\dot{q}^{\prime \prime}=F_{\operatorname{Re}_{\ell}}^{h_{\ell}}\left(T_{W}-T_{\ell}\right)+h_{N B}\left(T_{w}-T_{\text {sat }}\right) \tag{4.41}
\end{equation*}
$$

Here, h_{l} is obtained from equation (4.36) but with liquid properties and $h_{N B}$ from equation (4.28).
4. Critical Heat Fluxes

High Flow $\left(G>G_{1}\right)$: Biasi ${ }^{16}$
$\dot{\mathrm{q}}_{\mathrm{CHF}}^{\prime \prime}=\frac{2.764 \times 10^{7}}{(100 \mathrm{D})^{\mathrm{n}}} G^{-1 / 6}\left\{1.468 \mathrm{~F}_{2} G^{-1 / 6}-\mathrm{x}\right\}$
$\dot{\mathrm{q}}_{\mathrm{CHF}}^{\prime \prime}=\frac{7.086 \times 10^{7}}{(100 \mathrm{D})^{\mathrm{n}}} \mathrm{G}^{-0.6} \mathrm{~F}_{3}(1-\mathrm{x})$

Here,

$$
\begin{align*}
F_{2}= & 0.7249+0.099 p \cdot 10^{-5} \exp \left(-0.032 p \cdot 10^{-5}\right) \tag{4,44}\\
F_{3}= & -1.159+0.149 p \cdot 10^{-5} \exp \left(-0.019 p \cdot 10^{-5}\right) \\
& +9 p \cdot 10^{-5}\left(10+\left(p \cdot 10^{-5}\right)^{2}\right)^{-1} \tag{4.45}
\end{align*}
$$

and

$$
\mathrm{n}=\left\{\begin{array}{l}
0.4 \text { for } D>0.01 \mathrm{~m} \tag{4.46a}\\
0.6 \text { for } D<0.01 \mathrm{~m}
\end{array}\right.
$$

We use equation (4.43) for $G<300 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{sec}$ and use the larger of the two values, equations (4.42) and (4.43), for $G>300$.

Low Flow (G < 27): Modified Zuber ${ }^{17,18}$
$\dot{q}_{\mathrm{CHF}}^{\prime \prime}=0.131 \theta_{\ell^{\prime}} \rho_{g}{ }^{\mathrm{h}} \mathrm{fg}\left\{\frac{\sigma \mathrm{g}\left(\rho_{\ell}-\rho_{g}\right)}{\rho_{\mathrm{g}}^{2}}\right\}^{0.25}$.
For $27<G<G_{1}$, we use linear interpolation between the Biasi and Modified Zuber correlations. Here $\mathrm{G}_{1}=270 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{sec}$ for $\mathrm{plO}^{-5}>83$ and $\mathrm{x}>0.5$, otherwise $G_{1}=1350 \mathrm{~kg} / \mathrm{m}^{2}$. sec .
5. Minimum Stable Film Boiling Temperature: Berenson ${ }^{19}$

$$
\begin{equation*}
T_{M S F B}=T_{H N}+\left(T_{H N}-T_{\ell}\right)\left[\left(\mathrm{Nkc}_{\mathrm{p}}\right)_{\ell} /\left(\mathrm{\rho kc} \mathrm{p}_{\mathrm{P}}\right)_{\mathbf{w}}\right]^{0.5}-\psi(\mathrm{p}) \tag{4.47}
\end{equation*}
$$

Here,

$$
\begin{align*}
& \mathrm{T}_{\mathrm{HN}}= \begin{cases}581.5+0.01876\left(\mathrm{P}-1.034 \cdot 10^{5}\right)^{0.5}, & \mathrm{P}<\mathrm{P}_{0} \\
630.39+0.004321\left(\mathrm{P}-\mathrm{P}_{0}\right)^{0.5} & \mathrm{P}>\mathrm{P}_{0}\end{cases} \tag{4.48}\\
& \mathrm{P}_{0}=68.95 \times 10^{5} \mathrm{~Pa} \tag{4.50}\\
& \Psi(\mathrm{P})= \begin{cases}0 & \mathrm{P}>4.826 \cdot 10^{5} \mathrm{~Pa} \\
127.3-26.37 \cdot 10^{-5} \mathrm{P} & \mathrm{P}<4.826 \cdot 10^{5} \mathrm{~Pa}\end{cases}
\end{align*}
$$

Note: $\left(\rho k c_{p}\right)_{w}$ above refers to properties of the wall itself, i.e. clad surface material properties.
6. Transition Boili.ng

$$
\begin{equation*}
\mathrm{h}_{\mathrm{TB}}=\frac{\delta \dot{\mathrm{q}}_{\mathrm{CHF}}^{\prime \prime}+(1-\delta) \dot{\mathrm{q}}_{\mathrm{MSFB}}^{\prime \prime}}{\mathrm{T}_{\mathrm{w}}-\mathrm{T}_{\mathrm{sat}}} \tag{4.53}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\delta=\left(\frac{T_{\text {MSFB }}-T_{w}}{T_{M S F B}-T_{\text {CHF }}}\right)^{2} \tag{4.54}
\end{equation*}
$$

We use the following Chen correlation for computing $\mathrm{T}_{\mathrm{CHF}}$.

$$
\begin{equation*}
\dot{\mathrm{q}}_{\mathrm{CHF}}^{\prime \prime}=\mathrm{h}_{\ell}\left(\mathrm{T}_{\mathrm{CHF}}-\mathrm{T}_{\ell}\right)+\mathrm{h}_{\mathrm{NB}}\left(\mathrm{~T}_{\mathrm{CHF}}-\mathrm{T}_{\text {sat }}\right)^{1.24}\left(\mathrm{p}_{\text {sat }}\left(\mathrm{T}_{\mathrm{w}}\right)-\mathrm{p}\right)^{0.75} \tag{4.55}
\end{equation*}
$$

As $h_{N B}$ (Eq. 4.28) is a function of wall temperature ($\mathrm{T}_{\mathrm{CHF}}$), an iteration procedure is required.
7. Film Boiling (Eq. 5.7 of Groeneveld and Delorme ${ }^{20}$) (High pressure; high flow)

$$
\begin{align*}
\frac{h D}{k_{g}}= & a\left(\operatorname{Pr}_{g}\right)^{c}\left\{\operatorname{Re}_{g}\left(x+\frac{\rho_{g}}{\rho_{\ell}}(1-x)\right)\right\}^{b} \\
& \times\left\{1-0.1(1-x)^{0.4}\left(\frac{\rho_{\ell}}{\rho_{g}}-1\right)^{0.4}\right\}^{d} \tag{4.56}
\end{align*}
$$

where
$a=0.052$,
$\mathrm{b}=0.688$,
$c=1.26$,
$\mathrm{d}=-1.06$.
8. Low Pressure High-Flow Film Boiling: (Dougall and Rohsenow ${ }^{21}$)
$(\mathrm{Nu})_{\mathrm{g}}=0.023\left(\mathrm{Pr}_{\mathrm{g}}\right)^{0.4}\left[\operatorname{Re} \mathrm{~g}_{(}\left(\mathrm{x}+\frac{\rho_{\mathrm{g}}}{\rho_{\ell}}(1-x)\right)\right]^{0.8}$
9. Low-Flow Film Boiling: (Bjornard) 19
$h=\theta_{g} \max \left\{h_{g}, h_{h f}\right\}+\left(1-\theta_{g}\right) h_{m B}$
Here h_{g} is the single phase heat transfer coefficient for vapor (Eq. 4.40), $h_{h f}$ is the high flow film heat transfer coefficient (Eq. 4.56) and $h_{m B}$ is the heat transfer coefficient obtained from the modified Bromley ${ }^{19}$ relation,
$h_{M B}=0.62\left\{\frac{g{ }_{g}{ }_{g} \rho_{g}\left(\rho_{\ell}-\rho_{g}\right) h_{f g}^{\prime} \sqrt{\frac{g\left(\rho_{\ell}-\rho_{g}\right)}{\sigma}}}{2 \pi\left(T_{w}-T_{s a t}\right) \mu_{g}}\right\}^{0.25}$.
$h_{f g}^{\prime}=h_{f g}+0.5 C_{p}\left(T_{w}-T_{s a t}\right)$
10. Horizontal Film Condensation: Chato ${ }^{22}$
$h=0.296\left\{\frac{\rho_{\ell}\left(\rho_{\ell}-\rho_{g}\right) g_{f g} g_{\ell}^{k_{\ell}}}{D_{\mu_{\ell}}\left(T_{\text {sat }}-T_{w}\right)}\right\}^{1 / 4}$
11. Vertical Film Condensation: Collier ${ }^{23}$
$h=1.132\left\{\frac{\rho_{\ell}\left(\rho_{\ell}-\rho_{g}\right) h_{f g} k_{\ell}^{3} \cos \theta}{D_{\mu_{\ell}}\left(T_{s a t}-T_{w}\right)}\right\}^{1 / 4}$
12. Turbulent Film Condensation: Carpenter and Colburn ${ }^{24}$
$h=0.065 \frac{{ }^{k_{\ell}{ }^{\rho}{ }_{l}^{1 / 2}}}{\mu_{\ell}}(\mathrm{Pr})^{1 / 2} \tau_{i}^{1 / 2}$,
where the interfacial shear, τ_{i}, is

$$
\begin{equation*}
\tau_{i}=\frac{0 . C^{i h}}{\left(\operatorname{Re}_{g}\right)}\left(\frac{\rho_{g} u^{2}}{2}\right) \tag{4.63a}
\end{equation*}
$$

Equation (4.63) replaces equations (4.61) or (4.62) whenever it yields higher value.
13. When CHF Calculation is Bypassed

$$
\begin{equation*}
\mathrm{h}=\max \left(\mathrm{h}_{1 \mathrm{am}}, \mathrm{~h}_{\text {turb }}\right) \tag{4.64}
\end{equation*}
$$

Here, $h_{l a m}$ and $h_{\text {turb }}$ are the laminar and turbulent heat transfer coefficients given by the following relations.

$$
\begin{align*}
& \mathrm{h}_{1 \mathrm{am}}=4.0 \frac{\mathrm{k}_{\mathrm{m}}}{\mathrm{D}} \tag{4.65}\\
& \mathrm{~h}_{\text {turb }}=0.023 \frac{\mathrm{k}_{\mathrm{m}}^{\mathrm{D}}\left(\mathrm{Re}_{\mathrm{m}}\right)^{0.8}\left(\mathrm{Pr}_{\ell}\right)^{0.4}}{} . \tag{4.66}
\end{align*}
$$

Here, the two-phase mixture properties are defined by

$$
\begin{equation*}
\phi_{\mathrm{m}}=\frac{1}{\frac{\mathrm{x}}{\phi_{\mathrm{g}}}+\frac{1-\mathrm{x}}{\phi_{\ell}}} . \tag{4.67}
\end{equation*}
$$

The sodium and water wall heat transfer logics are presented in the form of flow charts in Figs. 4.1 and 4.2 . The regions of applications of these correlations are shown in Figs. 4.3 and 4.4.

Fig, 4.1. Wall Heat Transfer Logic-Selium

Fig. 4.2. Wall Heat Transfer Logic-Water

Fig. 4.3
Wall Heat Transfer Correlations and Their Regions of Applications: Sodium

Fig. 4.4
Wall Heat Transfer Correlations and Their Regions of Applications: Water

5. PRELIMINARY CONSIDERATIONS

The numerical solution of the governing differential equations is accomplished by constructing a grid and obtaining the values of the dependent variables at the grid points. Although the principles used can be applied to a grid in any coordinate system, only a Cartesian-coordinate grid is employed here.

The finite-difference equations are derived by integrating the differential equation over a control volume surrounding each grid point. Thus, the derivation process and the resulting equations have direct physical meaning, and the consequent solution satisfies the conservation principles (such as the conservation of mass, the conservation of momentum), over any group of control volumes and, of course, over the whole calculation domain. This desirable feature of the present method exists for any number of grid points, and not just in the limit of a very fine grid.

5.1 Construction of Control Volumes

The control volumes around the grid poirts can be defined in a number of ways. In one practice, the control volume faces are located midway between neighboring grid points. Figure 5.1 shows the grid points by dots and the control-volume boundaries by dashed lines. Although only a two-dimensional view is shown, the three-dimensional configuration can be easily imagined. It is not necessary for the grid lines to be uniformly spaced.

In another practice, which COMMIX-2 uses, the locations of the controlvolume faces are selected first and then a grid point is placed in the geometrical center of each control volume. Again, the control volumes can have nonuniform sizes. This type of construction is shown in Fig. 5.2. The convention used in COMMIX-2 for defining the neighboring control volumes and grid positions is described in Table 5.1.

TABLE 5.1. Convention Used in COMMIX-2 for Defining Neighboring Control Volumes or Grid Positions

Subscript Used	Control Volume or Grid Position Relative to the One under Consideration	$\mathrm{i}, \mathrm{j}, \mathrm{k}$ Notation	x, y, z Notation
0	Under consideration	i, j, k	x, y,
1	W. st	i $-1, \mathrm{j}, \mathrm{k}$	$x-\overline{\Delta x}, y, z$
2	East	$\mathrm{i}+1, \mathrm{j}, \mathrm{k}$	$x+\overline{\Delta x}, y, z$
3	South	i, j - 1, k	$x, y-\overline{\Delta y}, z$
4	North	i, $\mathrm{j}+1, \mathrm{k}$	$x, y+\overline{\Delta y}, z$
5	Bottom	i, j, k-1	$x, y, z-\overline{\Delta z}$
6	Top	i, $j, k+1$	$x, y, z+\overline{\Delta z}$

Fig. 5.1. Construction of control volumes (first practice)

Fig. 5.2. Construction of control volumes (second practice)

This may be a convenient place to remark on the use of nonuniform grids. A misconception seems to prevail that the nonuniform grids lead to lower accuracy than do the uniform grids. This is simply not true. The grid spacing should be directly linked to the way the dependent variable changes in the domain. Obvicusly, a fine grid is sufficient where the changes are steep, and a coarse grid is rafficient where the changes are rather flat. Indeed, a nonuniform grid criabies us to deploy the computing power in an effective way. For most probletms, it is desirable to compute exploratory coarse-grid solutions, from which useful guidance can be obtained for designing an appropriate nonuniform grid.

5.2 Unsteady Situations

The solution for an unsteady situation is obtained by marching in time. For every time step, the values of the dependent variables at the beginning of the time step are supposed to be known, and those at the end of the step are to be calculated. A fully implicit scheme is used in this report. This means that the "new" values govern the entire time step, and the "old" values appear only through the term $\partial[\rho \theta \phi] / \partial t$. When the time step Δt is made very large, the calculation procedure automatically reverts to the steady-state formulation.

5.3 Convection and Diffusion Terms

If the sum of convection and diffusion flux of a given phase is expressed by J_{ϕ} :

$$
\begin{equation*}
\left(J_{\phi}\right)_{i}=\rho \theta u_{i} \phi-\Gamma_{\phi} \theta\left(\frac{\partial \phi}{\partial x_{i}}\right) \tag{5.1}
\end{equation*}
$$

the convection and diffusion terms in Eq. 2.6 can be written as:

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left[\rho \theta u_{i} \phi\right]-\frac{\partial}{\partial x_{i}}\left[\Gamma_{\phi} \theta \frac{\partial \phi}{\partial x_{i}}\right]=\frac{\partial\left(J_{\phi}\right)_{i}}{\partial x_{i}} . \tag{5.2}
\end{equation*}
$$

Integration of these terms over the control volume will lead to the balance of the total fluxes entering and leaving the control volume at its faces.

Figure 5.3 shows a control-volume face between grid points 0 and 2 . The face is normal to the x-direction and has an area $A_{x}=\gamma_{x} \Delta y \Delta z$. The expression for the total flux $J_{\phi} c$ an be based on the exact solution for a one-dimensional problem given in Ref. 4.

For a one-dimensional case

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}[\rho \theta \mathrm{u} \phi]=\frac{\mathrm{d}}{\mathrm{dx}}\left[\Gamma_{\phi} \theta \frac{\mathrm{d} \phi}{\mathrm{dx}}\right], \tag{5,3}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& x=0: \phi=\phi_{0} \\
& x=L: \phi=\phi_{L} \tag{5.4}
\end{align*}
$$

the solution is

$$
\begin{equation*}
\frac{\phi-\phi_{0}}{\phi_{L}-\phi_{0}}=\frac{\exp [\mathrm{Pe} x / \mathrm{L}]-1}{\exp [\mathrm{Pe}]-1} \tag{5.5}
\end{equation*}
$$

Here, $\mathrm{Pe}=\left(\rho u L / r_{\phi}\right)$ is the Peclet number. Equation 5.5 leads to:

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i+1 / 2}=a_{2}\left(\phi_{0}-\phi_{2}\right)+F_{2} \phi_{0} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{2}=\{F /(\exp (F / D)-1)\}_{2} \tag{5.7}\\
& F_{2}=\left(\rho \theta u A_{x}\right)_{i+1 / 2} \tag{5.8}
\end{align*}
$$

and

$$
\begin{equation*}
D_{2}=\frac{A_{x, i+1 / 2}^{\left(\frac{0.5 \delta x}{\Gamma_{\phi}{ }^{\theta}}\right)_{i}+\left(\frac{0.5 \delta x}{\Gamma_{\phi}{ }^{\theta}}\right)_{i+1}}}{} \tag{5.9}
\end{equation*}
$$

Here, F is the flow rate across the control-volume face, $A_{x}=\left(\gamma_{x} \Delta y \Delta z\right)$ is the flow cross sectionai area, and D represents the strength of diffusion. The ratio F / D is the local Peclet number. We can see from Fig. 5.4 that Eq. 5.7 reduces to the central-difference scheme at low values of the Peclet number and progressively takes on an "upwind" character as the Peclet number is increased.

The definition of D, given in Eq. 5.9, is based on the model that the value r_{0} prevails in control volume around point 0 , and the value r_{2} rules the behavior in the control volume around 2. That this representation leads to more realistic and accurate solutions has been shown in Ref. 25; also the formulation makes it easy to handle irregular geometries or obstacles, as we shall explain later.

Since the computation of the exponential in Eq. 5.7 is time-consuming, an approximation to the equation has been devised, which, for all practical pur poses, performs almost identically to Eq. 5.7. This approximation is:

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i+1 / 2}=a_{2}\left(\phi_{0}-\phi_{2}\right)+F_{2} \phi_{0} \tag{5.10}
\end{equation*}
$$

Fig. 5.3. Total flux across a control-volume face

Fig. 5.4. Effect of Peclet number on the variation of ϕ
or

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i+1 / 2}=a_{0}\left(\phi_{0}-\phi_{2}\right)+F_{2} \phi_{2}, \tag{5.11}
\end{equation*}
$$

where,

$$
\begin{equation*}
a_{2}=\left\{D_{2}\left|0,\left(1-0.1\left|F_{2} / D_{2}\right|\right)^{5}\right|+\left|-F_{2}, 0\right|\right\}, \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{0}=\left\{D_{2}\left|0,\left(1-0.1\left|F_{2} / D_{2}\right|\right)^{5}\right|+\left|F_{2}, 0\right|\right\} . \tag{5.13}
\end{equation*}
$$

Figure 5.5 shows comparison of various finite difference schemes for convection and diffusion terms. We can see that the approximation (Eq. 5.12) is very close to the exact solution.

Here, the new operator $\mathbf{|} \mid$ is to be interpreted as $|A, B|=$ the greater of A and B. It should be noted that $|A, B|$ is equivalent to $A M A X 1[A, B]$ in the computer language FORTRAN.

5.4 Source Term

For the finite-difference representation of the source term S in Ec. 2.6, it is convenient to express S as:

$$
\begin{equation*}
S_{\phi}=S_{c \phi}+S_{p \phi} \phi_{0}, \tag{5.14}
\end{equation*}
$$

where the quantities $\mathrm{S}_{\mathrm{c} \phi}, \mathrm{S}_{\mathrm{p} \phi}$ and ϕ_{0} would be assumed to prevail over the control volume surrounding point 0 . This "linearization" of the source term is an effective device for stability and convergence. The exact expressions for $S_{c \phi}$ and $S_{p \phi}$ do depend on the actual form of S_{ϕ}. Here it may be noted that $S_{p \phi}$ is always kept equal to or less than zero, or else instability, divergence or physically unrealistic solutions would result. When the expression for S_{ϕ} is rather complicated, we set $S_{p \phi}$ equal to zero, and $S_{c \phi}$ equal to S_{ϕ}. When the $S_{\phi} \sim \phi$ variation is nonlinear, and $S_{c \phi}$ and $S_{p \phi}$ are functions of ϕ_{p}; we calculate them iteratively until convergence is achieved.

5.5 Unsteady Term

For the representation of the term $\partial[\rho \theta \phi] / \partial t$, we assume that the values ρ_{0}, θ_{0}, and ϕ_{0} prevail over the control volume surrounding point 0 . The integration of the unsteady term over the control volume would then give:

$$
\begin{equation*}
\int_{\text {c. } v .} \partial[\rho \theta \phi] / \partial t d x d y d z=\int_{\rho_{0}} \theta_{0} \phi_{0}-\rho_{0}^{0} \theta_{0}^{0} \phi_{0}^{0} \| r_{v} \Delta x \Delta y \Delta z / \Delta t \tag{5.15}
\end{equation*}
$$

where the superscript 0 denotes the known values at the beginning of the time step.

Fig. 5.5. Comparison of various finite difference schemes for convection and diffusion terms
6. GENERAL FINITE-DIFFERENCE EQUATION

6.1 General Form

The basic details outlined so far enable us to obtain the finitedifference form of the general differential equation (2.6). Let us consider the control volume shown in Fig. 6.1. It is constructed around point 0 , which has 2 and 1 as its east and west neighbors, 4 and 3 as the north and south neighbors, and 6 and 5 as the top and bottom neighbors representing the z direction. The control-volume faces are denoted by e, w, n, s, t, and b.

The general finite-difference equation for variable ϕ is arranged as:

$$
\begin{equation*}
a_{0} \phi_{0}=a_{1} \phi_{1}+a_{2} \phi_{2}+a_{3} \phi_{3}+a_{4} \phi_{4}+a_{5} \phi_{5}+a_{6} \phi_{6}+a_{0}^{0} \phi_{0}^{0}+b_{0} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{1}=B_{1}+\left|F_{1}, 0\right|, \tag{6.2a}\\
& a_{2}=B_{2}+\left|-F_{2}, 0\right|, \tag{6.2b}\\
& a_{3}=B_{3}+\left|F_{3}, 0\right|, \tag{6.2c}\\
& a_{4}=B_{4}+\left|-F_{4}, 0\right|, \tag{6.2d}\\
& a_{5}=B_{5}+\left|F_{5}, 0\right|, \tag{6.2e}\\
& a_{6}=B_{6}+\left|-F_{6}, 0\right|, \tag{6.2f}\\
& a_{0}^{0}=\rho_{0}^{0} \theta_{0}^{0}\left(\gamma_{v} \Delta x \Delta y \Delta z\right) / \Delta t, \tag{6.2~g}\\
& b_{0}=\left(S_{c}+S_{\Omega}\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right)(\text { if } \Omega \text { is +ve) } \\
& =\left(S_{c}+S_{\Omega}-\Omega \phi\right)(\gamma-(\Delta x \Delta y \Delta z) \text { (if } \Omega \text { is }-v e) \tag{6.2h}
\end{align*}
$$

and

$$
\begin{align*}
a_{0} & =a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-\left(S_{p}-\Omega\right)\left(y_{v} \Delta x \Delta y \Delta z\right) \text { (if } \Omega \text { is +ve) } \\
& =a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-S_{p}\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \quad \text { (if } \Omega \text { is -ve) } \tag{6.2i}
\end{align*}
$$

ig. 6.1. Control volume around point 0

We have two alternative equations for a_{0} and b_{0} terms, the reason being that the convergence and stability are better if the a_{0} term is made larger and more dominant. This can be achieved by retaining the mass source term Ω (evaporation or condensation) in the left-hand side (in a_{0}) if Ω is -ve and in the right-hand side (in b_{0}) if Ω is +ve.

The quantities $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ are defined in an identical manner. For example:

$$
\begin{equation*}
\mathrm{B}_{2}=\mathrm{D}_{2}\left|0,\left(1-0.1 i \mathrm{~F}_{2} / \mathrm{D}_{2} \mid\right)^{5}\right| \text {, } \tag{6.3}
\end{equation*}
$$

where F and D are given by Eqs. 5.8 and 5.9. For any other face, appropriate definitions of F and D are used, such as

$$
\begin{equation*}
F_{6}=\left(\rho \theta \omega A_{z}\right)_{k+1 / 2}, \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{6}=\frac{A_{z, k+1 / 2}}{\left[\left(\frac{0.5 \delta z}{\Gamma_{\phi}{ }^{\theta}}\right)_{k}+\left(\frac{0.5 \delta z}{\Gamma_{\phi} \theta}\right)_{k+1}\right]} . \tag{6.5}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
B_{6}=D_{6}\left\|0,\left(1-0.1\left|F_{6} / D_{6}\right|\right)^{5}\right\| \tag{6.6}
\end{equation*}
$$

The derivation of Eq. 6.2 i is as follows. If we combine Eqs. $5.10,6.2 \mathrm{~b}$ and 6.3 , we get:

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i+1 / 2}=\left\{D_{2}\left\|0,\left(1-0.1\left|F_{2} / D_{2}\right|\right)^{5} \rrbracket+\right\|-F_{2}, 0 \rrbracket\left(\phi_{0}-\phi_{2}\right)+F_{2} \phi_{0}\right\} \tag{6.7}
\end{equation*}
$$

From the definition of a_{2} (Eq. 6.2), we can now write Eq. 6.7 as:

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i+1 / 2}=\left\{B_{2}+\left\|-F_{2}, 0\right\|\right\}\left(\phi_{0}-\phi_{2}\right)+F_{2} \phi_{0} \tag{6.8}
\end{equation*}
$$

Similar expressions would hold for $\left(J_{y} A_{y}\right) j+1 / 2$ and $\left(J_{z} A_{z}\right)_{k+1 / 2}$. For the flux crossing the west surface of the control v . ne, the expression is

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i-1 / 2}=\left\{B_{1}+\left\|-F_{1}, \quad 0\right\|\right\}\left(\phi_{1}-\phi_{0}\right)+F_{1} \phi_{1} . \tag{6.9}
\end{equation*}
$$

This is obtained from Eq. 6.8 by replacing ϕ_{0} by ϕ_{1} and ϕ_{2} by ϕ_{0}. A further rearrangement gives:

$$
\begin{align*}
\left(J_{x} A_{x}\right)_{i-1 / 2} & =\left\{B_{1}+\left[F_{1}, 0 \|\right\}\left(\phi_{1}-\phi_{0}\right)\right. \\
& +\left\{\mid-F_{1}, 0 \|-\left[F_{1}, 0\right]\right\}\left(\phi_{1}-\phi_{0}\right)+F_{1} \phi_{1} . \tag{6.10}
\end{align*}
$$

Noting that

$$
\begin{equation*}
\left|-\mathrm{F}_{1}, 0\right|-\left|\mathrm{F}_{1}, 0\right|=-\mathrm{F}_{1}, \tag{6.11}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i-1 / 2}=\left\{B_{1}+\left\|F_{1}, 0\right\|\right\}\left(\phi_{1}-\phi_{0}\right)+F_{1} \phi_{0} . \tag{6.12}
\end{equation*}
$$

With a_{1} defined by Eq. 5.2a, we write:

$$
\begin{equation*}
\left(J_{x} A_{x}\right)_{i-1 / 2}=a_{1}\left(\phi_{1}-\phi_{0}\right)+F_{1} \phi_{0} . \tag{6.13}
\end{equation*}
$$

Similar expressions c an be written for $\left(J_{y} A_{y}\right)_{j-1 / 2}$ and $\left(J_{z} A_{z}\right)_{k-1 / 2}$. With all these flux expressions for the contr ~ 1 volume faces, and with the contributions from Eqs. 5.14 and 5.15 , the coefficients of ϕ_{0} can be written as

$$
\begin{align*}
a_{0} & =a_{1}-F_{1}+a_{2}+F_{2}+a_{3}-F_{3}+a_{4}+F_{4}+a_{5}-F_{5}+a_{6}+F_{6} \\
& -S_{p}\left(Y_{v} \Delta x \Delta y \Delta z\right)+\rho_{0} \theta_{0}\left(\gamma_{v} \Delta x \Delta y \Delta z / \Delta t\right) . \tag{6.14}
\end{align*}
$$

Substitution of Eq. 6.2 g into this gives us

$$
\begin{align*}
a_{0}= & a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-S_{p}\left(\gamma_{v} \Delta x \Delta y \Delta z\right)+\left\{\left(\rho_{0} \theta_{0}-\rho_{0}^{0} \theta_{0}^{0}\right)\right. \\
& \left.\cdot\left(\gamma_{v} \Delta x \Delta y \Delta z / \Delta t\right)+\left(F_{2}-F_{1}\right)+\left(F_{4}-F_{3}\right)+\left(F_{6}-F_{5}\right)\right\} . \tag{6.15}
\end{align*}
$$

The terms in the curly brackets can be recognized as the discretized form of the left-hand side of the continuity equation and hence can be regarded as equal to the source term $(\Omega)(\gamma \Delta \Delta x \Delta y \Delta z)$. With the contents of the curly brackets in Eq. 6.15 set equal to the source term, we obtain Eq. 6.2i.

6.2 Formulations in i, j, k Notatiuns

Consider the control volume shown in Fig. 6.2. It is constructed around grid point $0(\mathrm{i}, \mathrm{j}, \mathrm{k})$ which has $2(\mathrm{i}+1, \mathrm{j}, \mathrm{k})$ and $1(\mathrm{i}-1, \mathrm{j}, \mathrm{k})$ as its east and west neighbors, $4(i, j+1, k)$ and $3(i, j-1, k)$ as the north and south neighbors, and 6 $(i, j, k+1)$ and $5(i, j, k-1)$ as the top and bottom neighbors representing the z^{-} direction. The control volume is formed by six planes $x_{i-1 / 2}, x_{i+1 / 2}, y_{j-1 / 2}$,

Fig. 6.2. Control volume around point 0 in ijk notation
$y_{j+1 /}, z_{k^{-}-1 / 2}$, and $z_{k^{+} 1 / 2}$. For simplicity, two of the indices i, j, and k are suppressed. Therefore,

$$
\phi_{i+1 / 2}=\phi_{i+1 / 2, j, k} ; \phi_{j+1}=\phi_{i, j+1, k} \text { and so on. }
$$

The general finite difference equation can be arranged as

$$
\begin{align*}
a_{i j k} \phi_{i j k} & =a_{i+1}^{\phi} i+1 \\
& +a_{i-1} a_{i-1} \phi_{k-1}+a_{i j k}+a_{i j k}^{\dagger} \oint_{i j k}^{0}+b_{i j k} \tag{6.16}
\end{align*}
$$

Here,

$$
\begin{align*}
a_{i+1} & =B_{i+1 / 2}+\left|-F_{i+1 / 2}, 0\right|, \tag{6.17a}\\
a_{i-1} & =B_{i-1 / 2}+\left|F_{i-1 / 2}, 0\right|, \tag{6.17b}\\
a_{j+1} & =B_{i+1 / 2}+\left|-F_{j+1 / 2}, 0\right|, \tag{6.17c}\\
a_{j-1} & =B_{j-1 / 2}+\left|F_{j-1 / 2}, 0\right|, \tag{6.17d}\\
a_{k+1} & =B_{k+1 / 2}+\left[-F_{i k+1 / 2}, 0 \mid,\right. \tag{6.17e}\\
a_{k-1} & =B_{k-1 / 2}+\left[F_{k-1 / 2}, 0 \mid,\right. \tag{6.17f}\\
a_{i j k}^{0} & =\left(\rho_{0} 0_{\theta}\right)_{i j k}\left(Y_{v} \Delta x_{i} \Delta y_{j} \Delta z_{k}\right) / \Delta t, \tag{6.17~g}\\
b_{i j k} & =S_{c}+S_{\Omega}\left(Y_{v} \Delta x_{i} \Delta y_{j} \Delta z_{k}\right), \quad \text { if } \Omega \text { is +ve) } \\
& =\left(S_{c}+S_{\Omega}-\Omega \phi\right)\left(Y_{v} \Delta x \Delta y \Delta z\right), \quad \text { (if } \Omega \text { is -ve) } \tag{6.17h}
\end{align*}
$$

and

$$
\begin{align*}
a_{i j k} & =a_{i+1}+a_{i-1}+a_{j+1} a_{j-1}+a_{k+1}+a_{k-1} \\
& +a_{i j k}^{0}-S_{p} Y_{v} \Delta x_{i} \Delta y_{j} \Delta z_{k}(i f \Omega \text { is -ve) } \\
= & a_{i+1}+a_{i-1}+a_{j+1}+a_{j-1}+a_{k+1}+a_{k-1} \\
& +a_{i j k}^{0}+\left(\Omega-S_{p}\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \text { (if } \Omega \text { is +ve) } \tag{6.17i}
\end{align*}
$$

The quantities $B_{i+1 / 2}, F_{i+1 / 2}$, etc., in Eqs. 6.17a to 6.17f are defined in the following manner:

$$
\begin{align*}
& B_{i+1 / 2}=D_{i+1 / 2}\left[0,\left(1-0.1\left|F_{i+1 / 2} / D_{i+1 / 2}\right|\right)^{5}\right] \tag{6.18}\\
& D_{i+1 / 2}=\frac{\left(\Delta y_{j} \Delta z_{k}\right)\left(\gamma_{x}\right)_{i+1 / 2}}{\left[\frac{\Delta x_{i}}{2\left(\Gamma_{\phi}\right)_{i j k}}+\frac{\Delta x_{i+1}}{2 \Gamma_{\phi, i+1}{ }_{i+1}}\right]} \tag{6,19}
\end{align*}
$$

and

$$
\begin{equation*}
F_{i+1 / 2}=\left(\rho \theta u \gamma_{x}\right)_{i+1 / 2} \Delta y_{j} \Delta z_{k}=\left(\rho \theta u A_{x}\right)_{i+1 / 2} \tag{6.20}
\end{equation*}
$$

Similarly for other faces, e.g.

$$
\begin{align*}
& B_{k-1 / 2}=D_{k-1 / 2}\left[0,\left(1-0.1\left|F_{k-1 / 2} / D_{k-1 / 2}\right|\right)^{5}\right] \tag{6.21}\\
& \left.D_{k-1 / 2}=\frac{\Delta x_{i} \Delta y_{j}\left(\gamma_{z}\right)_{k-1 / 2}}{\left[\frac{\Delta z_{k}}{2\left(\Gamma_{\phi}^{\theta}\right)} i j k\right.}+\frac{\Delta z_{k-1}}{2 \Gamma_{\phi, k-1}{ }_{k-1}}\right] \tag{6.22}
\end{align*}
$$

and

$$
\begin{equation*}
F_{k-1 / 2}=\left(\rho \theta w \gamma_{z}\right)_{k-1 / 2} \Delta x_{i} \Delta y_{j}=\left(\rho \theta_{w A_{z}}\right)_{k-1 / 2} \tag{6.23}
\end{equation*}
$$

7. THE FINITE-DIFFERENCE FORM OF MOMENTUM EQUATIONS

Since the momentum equations conform to the general ϕ equation, no separate derivation of their finite-difference form should be necessary. However, because it is desirable to calculate the velocity components for "staggered" locations, as will be explained shortly, some differences of detail arise in constructing the momentum finite-difference equations.

7.1 Staggered Grid

Although all dependent variables are calculated for the grid points, the velocity components u, v, and w of both phases constitute an exception. They are calculated for displaced or "staggered" locations, and not for the grid points. The displaced locations of the velocity components are such that they are placed on the faces of the control volumes. Thus, the x-direction velocity u is calculated at the faces that are normal to the x direction.

Figure 7.1 shows the locations of u and v, by short arrows, on a twodimensional grid; the three-dimensional counterpart can be easily imagired. With respect to the grid points, the u locations are displaced only in the x direction, the v locations only in the y direction, and so on. The location for u thus lies on the x-direction link joining two adjacent grid points. It is the pressure difference between these grid points that will be used to "drive" the velocity u located between them. This is the main consequence of the staggered grid.

Except for uniform grids cases, the staggered velocity locations will not lie exactly midway between the adjacent grid points. The velocity components are located on the control-volume faces, and as we are using the second practice outlined in Section 5.1 the velocity components may not be midway between the grid points.

7.2 The Momentum Control Volumes

A direct consequence of the staggered grid is that the control volumes to be used for the conservation of the momentum must also be staggered. The control volumes shown in Figs. 5.1 and 5.2 will now be referred to as the main control volumes. The control volumes for momentum will be staggered in the direction of the momentum such that its faces normal to that direction pass through the grid points (see Fig. 7.1). Thus, the pressures at these grid points can be directly used for calculating the pressure force on the momentum control volume. Figure 7.2 shows the control volumes for the x-direction momentum.

7.3 The Finite-difference Equation for Momentum

All the basic concepts developed an Section 5 and implemented in Section 6 will be applied to the staggered control volumes for momentum. The

Fig. 7.1. Staggered Grid

Fig. 7.2. Momentum control volume in x-direction
differences are mainly geometrical and involve the appropriate calculation of the flow rates and diffusion strengths for the faces of the momentum control volume.

We consider the situation shown in Fig. 7.3. Let F_{4} and F_{24} denote the flow rates for the two main control volumes which contribute to the momentum control volume around e. We assume that the calculation of F_{4} and F_{24} is already performed. The part of F_{4} that contributes to the y-direction flow rate at the upper face of the momentum control volume is:

$$
\mathrm{F}_{4} \times(\text { distance } 0 \mathrm{e}) /(\text { distance we })=\mathrm{F}_{4} / 2
$$

Similarly, the contribution of F_{24} is:

$$
\mathrm{F}_{24} \times(\text { distance e2)/(distance e-ee })=E_{24} / 2,
$$

where ee is the point on the right side of 2 where an arrow is shown in Fig. 7.3. Thus, the total y-direction flow rate at the upper face of the momentum control volume is:

$$
\frac{1}{2}\left(F_{4}+F_{24}\right) .
$$

The diffusion quantity for the same face is calculated from

$$
D_{4} \cdot \frac{\text { distance } 0 e}{\text { distance be }}+D_{24} \cdot \frac{\text { dist ance } e^{2}}{\text { dist }}=\frac{1}{2}\left(D_{4}+D_{24}\right) .
$$

The evaluation of the main-control-volume diffusion strengths D_{4} and D_{24} is performed in the manner stated in Eq. 5.9.

The x-direction flow rate entering the momentum control volume at 0 is obtained by linear interpolation:

$$
F_{0}=F_{1} \cdot \frac{\text { distance }}{\text { distance }} \frac{0 e}{\text { we }}+F_{2} \cdot \frac{\text { distance } w 0}{\text { distance we }}=\frac{1}{2}\left(F_{1}+F_{2}\right) .
$$

The diffusion strength at 0 is wholly governed by $\Gamma_{\phi_{0}}$ and hence calculated as:

$$
\begin{equation*}
D_{0}=\left(\gamma_{x} \Delta y \Delta z\right) r_{\phi 0} \theta_{0} /(\delta x)_{i} . \tag{7.1}
\end{equation*}
$$

The quantity $\left[\rho_{0}^{0} \theta_{0}^{0}\left(\gamma_{v} \Delta x \Delta y \Delta z\right)\right]$ in Eq. 6.2 g stands for the mass of fluid contained in the main control volume around point 0 . The corresponding quantity for the momentum control volume shown in Fig. 7.3 is obtained by taking the appropriate mass contributions from the control volumes surrounding points 0 and 2. In our case, it is

$$
\frac{1}{2}\left[\rho^{0} \theta^{0}\left(\gamma_{v} \Delta x \Delta y \Delta z\right)_{0}+\rho^{0} \theta^{0}\left(\gamma_{v} \Delta x \Delta y \Delta z\right)_{2}\right] .
$$

With these details, the momentum finite-cifference counterpart of Eq. 6.1 is constructed. One adidional feature, however, shculd now be introduced. As seen from Eq. 2.3, the pressure gradient appears it the momentum equation, but the pressure field is neither known beforehand nor directly obtainable from some sort of "conservation equation for pressure." Thus, pressure is regarded as unknown and determined indirectly from the constraint that the velocity field satisfies the continuity equation 2.2 . For this reason, the pressure-containing term in the finite-difference form of the moment um equation is displayed separately.

From these considerations, we write the finite-difference equation for the control volume shown in Fig. 7.3 as:

$$
\begin{equation*}
a_{0} u_{0}=\Sigma a_{n b}{ }_{n b}+a_{0}^{0} u_{0}^{0}+b_{0}+\left(\gamma_{x} \theta \Delta y \Delta z\right)\left(p_{0}-p_{2}\right), \tag{7.2}
\end{equation*}
$$

where the subscript $n b$ denotes a neighbor u and the summation is taken over the six neighbors surrounding u_{0}. The term $a_{0}^{0} u_{0}^{0}$ arises from the unsteady term in the differential equation; a_{0}^{0} is calculated similar to a_{0}^{0} defined in Eq. 6.2 g . The definitions of the neighbor coefficients $a_{n b}$ and the center coefficient a_{0} are identical to those in Eq. 6.2 , with appropriate calculations of the flow rates F and diffusion strength D.

The contributions of the source term that enter a_{0} and b_{0} do not contain the pressure gradient; the effect of the pressure gradient is expressed by the last term in Eq. 7.2, where ($\gamma_{x} \Delta y \Delta z$) is the area on which the pressure drop ($p_{0}-p_{2}$) acts. The momentum equations for the y - and z-directions are obtained in a similar manner.

7.4 Velocity-Pressure Relationships

In order to convert the indirect specification of pressure contained in the continuity equation into a direct algorithm for calculating pressure, we establish relationships between the velocity components and corresponding pressure drops. For this purpose, we define a pseudo-velocity by:

$$
\begin{equation*}
\hat{\mathrm{u}}_{0} \equiv\left[\Sigma \mathrm{a}_{\mathrm{nb}}{ }_{\mathrm{u}}{ }_{\mathrm{nb}}+\mathrm{a}_{0}^{0} 0_{0}^{0}+\mathrm{b}_{0}\right] / \mathrm{a}_{0} . \tag{7.3}
\end{equation*}
$$

This enables us to write Eq. 2.2 as:

$$
\begin{equation*}
u_{0}=\hat{u}_{0}+d_{0}\left[p_{0}-p_{2}\right] \tag{7.4}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{0} \equiv\left[r_{x} \theta \Delta y \Delta z\right] / a_{0} \tag{7.5}
\end{equation*}
$$

Pseudo-velocities \hat{v} and \hat{w} are similarly obtained from the corresponding momentum equations.

We now imagine that the pressure changes from a guessed value p^{*} to a new value p. The corresponding change in the velocity is expressed as

$$
\begin{equation*}
u_{0}-u_{0}^{\star}=d_{0}\left[\left(p_{0}-p_{0}^{*}\right)-\left(p_{2}-p_{2}^{*}\right)\right] \tag{7.6}
\end{equation*}
$$

where we have assumed that the change in \hat{u}_{0} is unimportant. The change in pressure is denoted by the "pressure correction" p', i.e.,

$$
\begin{equation*}
p=p^{*}+p^{\prime}, \tag{7,7}
\end{equation*}
$$

and we derive a velocity-correction formula from Fq. 7.6 as:

$$
\begin{equation*}
u_{0}=u_{0}^{\prime}+d_{0}\left[p_{0}^{\prime}-p_{2}^{\prime}\right] . \tag{7.8}
\end{equation*}
$$

Here u_{0}^{*} is the value of u_{0} given by Eq. 7.2 when the guessed value p^{*} is substituted for the pressure p.

The similarit, between Eqs, 7.4 and 7.8 should be noted.

7.5 Solution of the Momentum Equation

There are two ways one can solve the momentum equation for velocity field. One procedure is to use a set of equations (7.2) and solve them simultaneously by either line-by-line or plane-by-plane solution procedure as described in Section 11. This is a more implicit procedure as all the neighboring velocities in Eq. 7.2 are considered unknown. The second procedure is to use the velocity-pressure relations, Eq. 7.4 , after solving pressure equation derived in Section 9. This is an explicit procedure as all the neighboring velocities are considered to be known. The COMMIX-2 has, at present, ar option that permits the use of either of the above two described procedures.
8. FINITE-DIFFERENCE FORMS OF THE CONTINUITY EOUATIONS

8.1 Phase Cont inuity Equation

We can see that the phase continuity equation has the same form as the general Eq. 2.6 without the diffusion term. We can therefore, make $\Gamma_{\theta}=0$ and use the formulations described in Section 6. It may be noted here that due to the absence of the diffusion term, the final finite-difference equations that we obtain correspond to the equations that we obtain by upwind differencing.

The finite-difference equation for fluid volume fraction θ can be arranged as:

$$
\begin{equation*}
a_{0} \theta_{0}=a_{1} \theta_{1}+a_{2} \theta_{2}+a_{3} \theta_{3}+a_{4} \theta_{4}+a_{5} \theta_{5}+a_{6} \theta_{6}+a_{0}^{0} \theta_{0}^{0}+b_{0}, \tag{8,1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}=\left\|F_{1}, 0\right\|, \tag{8.2a}
\end{equation*}
$$

$a_{2}=\left|-F_{2}, 0\right|$,
$a_{3}=\left|F_{3}, 0\right|$,
$a_{4}=\left|-F_{4}, 0\right|$,
$\left.a_{5}=\| F_{5}, 0\right\}$,
$a_{6}=\left\|-F_{6}, 0\right\|$,
$a_{0}^{0}=\left[\rho^{0} Y_{v}\right]_{0}\left[\Delta x_{i} \Delta y_{j} \Delta z_{k}\right] / \Delta t$,
$b_{0}=\Omega\left(Y_{v} \Delta x_{i} \Delta y_{j} \Delta z_{k}\right)$,
$\bar{a}_{1}=\left\|-F_{1}, 0\right\|$,
$\bar{a}_{2}=\left\|\mathrm{F}_{2}, 0\right\|$,
$\bar{a}_{3}=\left|-F_{3}, 0\right|$,

$$
\begin{equation*}
\bar{a}_{4}=\left\{F_{4}, 0 \|,\right. \tag{8.21}
\end{equation*}
$$

$$
\begin{align*}
& \bar{a}_{5}=\left[-F_{5}, 0\right] \tag{8.2~m}\\
& \bar{a}_{6}=\left[F_{6}, 0\right] \tag{8.2n}\\
& \bar{a}_{0}^{-0}=\left(\rho_{v} \gamma_{v}\right)_{0}\left(\Delta x_{i} \Delta y_{j} \Delta z_{k}\right) / \Delta t, \tag{8.20}
\end{align*}
$$

and

$$
\begin{equation*}
a_{0}=\bar{a}_{1}+\bar{a}_{2}+\bar{a}_{3}+\bar{a}_{4}+\bar{a}_{5}+\bar{a}_{6}+\bar{a}_{0} \tag{8.2p}
\end{equation*}
$$

The coefficients without overscore represent "inflows" while the coefficients with overscore represent "outflows." It may be noted here that only one of the two coefficients (with or without overscore) exists. That is, if a exists, then \bar{a}_{1} is equal co zero or vice versa. The quantities F appearing in Eq. 8,2 are as defined previously but without fluid volume fraction. Thus

$$
\begin{equation*}
F_{2}=\left(\rho u \gamma_{x}\right)_{i+1 / 2}\left(\Delta y_{j} \Delta z_{k}\right)=\left(\rho u A_{x}\right)_{i+1 / 2} \tag{8.3}
\end{equation*}
$$

8.2 Combined Continuity Equation

The combined continuity equation, Eq. 2.2 b is integrated over the control volume as shown in Fig. 6.1 to yield:

$$
\begin{align*}
& \left\{\left[\left(\rho_{\ell} \theta_{\ell} \ell_{\ell}+\rho_{g} \hat{\theta}_{g} g_{g}\right) \gamma_{x}\right]_{w}-\left[\left(\rho_{\ell} \theta_{\ell} \ell_{\ell}+\rho_{g} \theta_{g} g_{g}\right) \gamma_{x}\right]_{\mathrm{e}}\right\}(\Delta y \Delta z) \\
& + \\
& +\left\{\left[\left(\rho_{\ell} \theta_{\ell}{ }^{v} \ell+\rho_{g} \theta_{g} g_{g}\right) \gamma_{y}\right]_{s}-\left[\left(\rho_{\ell} \theta_{\ell} v_{\ell}+\rho_{g} \theta_{g} g_{g}\right) \gamma_{y}\right]_{n}\right\}(\Delta z \Delta x) \\
& + \tag{8,4}\\
& \left.+\left\{\left[\rho_{\ell} \rho_{\ell} w_{\ell}+\rho_{g} \theta_{g} w_{g}\right) \gamma_{z}\right]_{b}-\left[\left(\rho_{\ell} \theta_{\ell} w_{\ell}+\rho_{g} \theta_{g} g_{g}\right) \gamma_{z}\right]_{\ell}\right\}(\Delta x \Delta y) \\
& \\
& +\left[\left(\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right)^{0}-\left(\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right)\right]\left(\gamma_{v} \Delta x \Delta y \Delta z / \Delta t\right)=0
\end{align*}
$$

We use one of the two phase continuity equations to compute the void fractions, and the combined continuity equation (8.4) for determining the pressure correction. Since the pressure or the pressure correction does not appear here, further manipulation is needed to derive the finite-difference equations for p and p^{\prime}.

9. PRESSURE AND PRESSURE-CORRECTION EQUATIONS

As mentioned earlier, the pressure appearing in the momentum equation is unknown and has to be determined from the continuity equation. There are a number of possible ways to derive pressure and pressure-correction equations from the continuity and momentum equations. An important thing is to note that the equations derived must satisfy the following three equations.

$$
\begin{align*}
& \text { Liquid continuity, } \tag{9.1}\\
& \text { Gas continuity, } \tag{9,2}
\end{align*}
$$

and

$$
\begin{equation*}
\theta_{\ell}+\theta_{\mathrm{g}}=1 . \tag{9,3}
\end{equation*}
$$

In COMMIX-2, we have provided two alternative procedures for pressurecorrection equations. At present, we do not have enough testing and comparison to favor any one of the two procedures. Further experimentation is planned to determine the computational efficiencies of these two procedures. Meantime, an option has been included in the code to select either one of the two procedures.

In procedure 1, we use the liquid continuity equation (9.1) to compute the liquid volume fraction, $\theta_{\ell}+\theta_{g}=1$ relation (9.3) to obtain gas volume fraction and the combined continuity equation (sum of Eqs. 9.1 and 9.2) to obtain the pressure-correction equation. In the alternative procedure 2 , we have used the liquid continuity equation (9.1) to obtain the liquid volume fraction and the gas continuity equation (9.2) to obtain the gas volume fraction. The pressure correction equation is derived from the constraint that the sum of θ_{ℓ} and θ_{g} must be equal to unity (Eq. 9.3). The pressure equation for both procedures is obtained from the combined continuity equation. The derivations of pressure and pressure-correction equations are given in the following sections.

9.1 Pressure Equation

Substitution of the velocity-pressure relations such as Eq. 7.4 into
Eq. 8.4 leads to:

$$
\begin{equation*}
a_{0} p_{0}=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}+a_{4} p_{4}+a_{5} p_{5}+a_{6} p_{6}+b_{0}, \tag{9.4}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{1}=\left\{\left(\rho_{\ell} \theta_{\ell} d_{\ell}+\rho_{g} \theta_{g} d_{g}\right) \gamma_{x}\right\}_{w}(\Delta y \Delta z), \tag{9.5a}\\
& a_{2}=\left\{\left(\rho_{\ell} \theta_{\ell} d_{\ell}+\rho_{g} \theta_{g} d_{g}\right) \gamma_{x}\right\}(\Delta y \Delta z), \tag{9.5b}
\end{align*}
$$

$$
\begin{align*}
& a_{3}=\left\{\left(\rho_{\ell} \theta_{\ell}{ }^{d} \ell+\rho_{g} \theta_{g} d_{g}\right) \gamma_{y}\right\}_{s}(\Delta x \Delta z), \tag{9.5c}\\
& a_{4}=\left\{\left(\rho_{\ell} \theta_{\ell}{ }^{d} \ell+\rho_{g} \theta_{g} d_{g}\right) \gamma_{y}\right\}_{n}(\Delta x \Delta z), \tag{9.5d}\\
& a_{5}=\left\{\left(\rho_{\ell} \ell_{\ell}{ }^{d} \ell+\rho_{g} \theta_{g} d_{g}\right) \gamma_{z}\right\}_{t}(\Delta x \Delta y) \tag{9.5e}\\
& a_{6}=\left\{\left(\rho_{\ell} \rho_{\ell}{ }^{d} \ell+\rho_{g} \theta_{g} d_{g}\right) \gamma_{z}\right\}_{b}(\Delta x \Delta y) \tag{9.5f}\\
& a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}, \tag{9.5~g}
\end{align*}
$$

and

$$
\begin{align*}
b_{0} & =\left\{\left[\left(\rho_{\ell} \theta_{\ell} \hat{u}_{\ell}+\rho_{g} \theta_{g} \hat{u}_{g}\right) r_{x}\right]_{w}-\left[\left(\rho_{\ell} \theta_{\ell} \hat{\bar{u}}_{\ell}+\rho_{g} \theta_{g} \hat{u}_{g}\right) r_{x}\right]\right\}(\Delta y \Delta z) \\
& +\left\{\left[\left(\rho_{\ell} \theta_{\ell} \hat{v}_{\ell}+\rho_{g} \theta_{g} \hat{v}_{g}\right) r_{y}\right]_{w}-\left[\left(\rho_{\ell} \theta_{\ell} \hat{v}_{\ell}+\rho_{g} \theta_{g} \hat{v}_{g}\right) r_{y}\right]_{n}\right\}(\Delta x \Delta z) \\
& +\left\{\left[\left(\rho_{\ell} \theta_{\ell} \hat{w}_{\ell}+\rho_{g} \theta_{g} \hat{w}_{g}\right) r_{z}\right]_{b}-\left[\left(\rho_{\ell} \theta_{\ell} \hat{w}_{\ell}+\rho_{g} \theta_{g} \hat{w}_{g}\right) r_{z}\right]_{t}\right\}(\Delta x \Delta y) \\
& +\left[\left(\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right)^{0}-\left(\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right)\right]\left(\gamma_{v} \Delta x \Delta y \Delta z / \Delta t\right) \tag{9.5h}
\end{align*}
$$

9.2 Pressure-correction Equation 1

In this section we have derived the pressure-correction equation for twophase flow by extending the 'SIMPLER' procedure for single phase. If we substitute Eq. 7.8 (and similar velocity-correction formulas for v and w) into Eq. 8.4, we get the pressure-correction equation

$$
\begin{equation*}
a_{0} p_{0}^{\prime}=a_{1} p_{1}^{\prime}+a_{2} p_{2}^{\prime}+a_{3} p_{3}^{\prime} a_{4} p_{4}^{\prime}+a_{5} p_{5}^{\prime}+a_{6} p_{6}^{\prime}+b_{0} \tag{9.6}
\end{equation*}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$, and a_{0} are given by Eqs. 9.5 a to 9.5 g , and b_{0} is given by

$$
\begin{align*}
& b_{0}=\left\{\left[\left(\rho_{\ell} \theta_{\ell} u_{\ell}^{u^{*}}+\rho_{g} \theta_{g} u_{g}^{*}\right) \gamma_{x}\right]_{w}-\left[\left(\rho_{\ell} \ell_{\ell} \ell_{\ell}^{*}+\rho_{g} g_{g} u_{g}^{*}\right) \gamma_{x}\right]_{e}\right\}(\Delta y \Delta z) \\
& +\left\{\left[\left(\rho_{\ell} \theta_{\ell} \ell^{v^{*}}{ }^{*}+\rho_{g} \theta_{g} v_{g}^{*}\right) y_{y}\right]_{s}-\left[\left(\rho_{\ell} \theta_{\ell} v^{v^{*}}+\rho_{g} \theta_{g} v_{g}^{*}\right) y_{y}\right]_{n}\right\}(1 x \Delta z) \\
& +\left\{\left[\left(\rho_{\ell} \theta_{\ell}{ }^{w^{*}} \ell^{+} \rho_{g} \theta_{g} w_{g}^{*}\right) \gamma_{z}\right]_{b}-\left[\left(\rho_{\ell} \theta_{\ell} \ell^{w^{*}}+\rho_{g} g_{g} w_{g}^{*}\right) \gamma_{z}\right]_{t}\right\}(\Delta x \Delta y) \\
& +\left[\left(\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right)^{0}-\left(\rho_{\ell} \theta_{\ell}+\rho_{g} \theta_{g}\right)\right]\left(\gamma_{v} \Delta x \Delta y \Delta z / \Delta t\right) . \tag{9.7}
\end{align*}
$$

The similarity between Eqs. 9.5h and 9.7 should be noted. The only difference between the two equations is that, whereas the b_{0} for the pressure equation is calculated in terms of \hat{u}, \hat{v}, and \hat{Q}, the corresponding quantity for the pressure correction equation is obtained in terms of $\mathbb{\star}, *$, and \star.

9.3 Pressure-correction Equation 2

The pressure correction equation derived in this section is based on the procedure very similar to the numerical procedure known as IPSA. ${ }^{5}$ In this procedure we differeatiate the phase continuity equations and momentum equations and combine them with the condition

$$
\begin{equation*}
\theta_{\ell}+\theta_{\mathrm{g}}=1 \tag{9.8}
\end{equation*}
$$

to obtain the pressure correction equation.
Let us assume that we have an estimated pressure field p^{*}. We can then solve the momentum equations to obtain velocity fields u_{l}^{*}, v_{l}^{\star} and w_{l}^{\star} for liquid phase and u_{g}^{*}, v_{g}^{*}, and w_{g}^{*} for gas phase. These velocity fields can be used in the continuity equations to obtain fluid volume fractions θ_{l}^{\star} and θ_{g}^{*}. As the fluid volume fractions are based on estimated pressure field p^{*}, they will, in general, not add up to 1 . We, therefore, require the corrections to fluid volume fractions θ_{l}^{\prime} and θ_{g}^{\prime} such that

$$
\begin{equation*}
\left(\theta_{\ell}^{*}+\theta_{\ell}^{\prime}\right)+\left(9_{g}^{*}+\theta_{g}^{\prime}\right)=1, \tag{9.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{l}^{\prime}+\theta_{g}^{\prime}=1-\theta_{l}^{\star}-\theta_{g}^{\star} . \tag{9.9a}
\end{equation*}
$$

Now from Eq. 8.1, the fluid volume fraction is given by

$$
\begin{equation*}
\theta^{*}=\frac{\beta}{\alpha}, \tag{9.10}
\end{equation*}
$$

where,

$$
\begin{align*}
& s=\left(\Gamma \varepsilon_{n b} \theta_{\mathrm{nb}}^{*}\right)_{\text {in }}+a_{0}^{0} \theta_{0}^{0}+b_{0} \tag{9.10a}\\
& a=\left(\sum \bar{a}_{\mathrm{nb}}\right)_{\text {out }}+\bar{a}_{0} \tag{9.10b}
\end{align*}
$$

The subscript $n b$ refers to six neighboring points, "in" represents inflow, and "out" represents outflow. From Eq. 9.10 we derive a fluid volume fraction correction formula.

$$
\begin{equation*}
\theta^{\prime}=\frac{\alpha \beta^{\prime}-\beta \alpha^{\prime}}{\alpha^{2}} \tag{9.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta^{\prime}=\frac{\alpha\left(\sum a_{n b}^{\prime} \theta_{n b}^{\star}\right)_{\text {in }}-\beta\left(\sum \bar{a}_{n b}^{\prime}\right)_{\text {out }}}{a^{2}}, \tag{9.11a}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta^{\prime}=\frac{\left(\sum a_{n b}^{\prime} \theta_{n b}^{*}\right)_{\text {in }}-\theta^{\star}\left(\sum \bar{a}_{\mathrm{nb}}^{\prime}\right)_{\text {out }}}{\alpha} . \tag{9.11b}
\end{equation*}
$$

Here a^{\prime} and \bar{a}^{\prime} are the changes in coefficients due to pressure correction p^{\prime}.
In order to determine a^{\prime} and \bar{a}^{\prime}, we look at the coefficients a_{2} and \bar{a}_{2} (Eq. 8.2) making note that the coefficients $a_{n b}$ and $\bar{a}_{n b}$ exist only for inflows and out flows, respectively;

$$
\begin{equation*}
a_{2}=\left|F_{2}\right|_{\text {in }}=-\rho_{i+1}\left(u^{*} A_{x}\right)_{i+1 / 2}, \tag{9.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{a}_{2}=\left(F_{2}\right)_{\text {out }}=\rho_{i}\left(u^{*} A_{x}\right)_{i+1 / 2} . \tag{9.12b}
\end{equation*}
$$

Combining Eq. 9.12 with Eq. 7.8 we get

$$
\begin{equation*}
a_{2}^{\prime}=\rho_{i+1}\left(A_{x}\right)_{i+1 / 2}\left(p_{i+1}^{\prime}-p_{i}^{\prime}\right),(i n) \tag{9.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{a}_{2}^{\prime}=\rho_{i}\left(A_{x} d\right)_{i+1 / 2}\left(p_{i}^{\prime}-p_{i+1}^{\prime}\right), \text { (out) } \tag{9.13b}
\end{equation*}
$$

Equations for other neighboring coefficients c an be obtained in an identical manner. We now substitute all these coefficients in Eqs. 9.9a and 9.11b. After simplification we get

$$
\begin{equation*}
\theta^{\prime}=\frac{1}{\alpha}\left\{\sum_{i n}\left(\rho A d \theta^{*}\right)_{n b}\left(p_{n b}^{\prime}-p_{p}^{\prime}\right)-\left(\rho \theta^{*}\right)_{i j k} \sum_{\text {out }}(A d)_{n b}\left(p_{p}^{\prime}-p_{n b}^{\prime}\right)\right\}, \tag{9.14}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\{1-\left(\theta_{\ell}^{*}+\theta_{g}^{*}\right)\right\}=\sum\left\{\left[\frac{\left(\rho_{\ell}{ }^{\mathrm{Ad}} \ell_{\ell}^{\theta_{\ell}^{*}}\right)_{\mathrm{nb}}}{\alpha_{\ell}}+\frac{\left(\rho_{g} \mathrm{Ad}_{g} \theta_{g}^{*}\right)_{\mathrm{nb}}}{\alpha_{g}}\right]_{\text {in }}\right. \\
& \left.+\left[\frac{\left(\mathrm{Ad}_{\ell}\right)_{n b}}{\alpha_{\ell}}\left(\rho_{\ell} \theta_{\ell}^{\theta^{*}}\right)_{i j k}+\frac{\left(\mathrm{Ad}_{g}\right)_{n b}}{\alpha_{g}}\left(\rho_{g} \theta_{g}^{*}\right)_{i j k}\right]_{\text {out }}\right\} P_{n b}^{\prime} \\
& -p_{i j k}^{\prime}\left\{\sum_{i n}\left[\frac{\left(\rho_{\ell}{ }^{A_{d}}{ }_{\ell} \theta_{\ell}^{*}\right)_{n b}}{\alpha_{\ell}}+\frac{\left(\rho_{g}{ }^{A_{g}}{ }_{g} \theta_{g}^{*}\right)_{n b}}{\alpha_{g}}\right]\right. \\
& \left.+\sum_{\text {out }}\left[\frac{\left(\mathrm{Ad}_{\ell}\right)_{n b}}{\alpha_{\ell}}\left(\rho_{\ell} \theta_{\ell}^{*}\right)_{i j k}+\frac{\left(\mathrm{Ad}_{\mathrm{g}}\right)_{\mathrm{nb}}}{\alpha_{g}}\left(\rho_{g} \theta_{g}^{*}\right)_{i j k}\right]\right\} \text {. } \tag{9.15}
\end{align*}
$$

Here A represcnts the cross sectional area, e.g.,

$$
\begin{align*}
& A_{i+1}=\left(\gamma_{x}\right)_{i+1 / 2} \Delta y_{j} \Delta z_{k}, \tag{9.16a}\\
& A_{i-1}=\left(\gamma_{x}\right)_{i-1 / 2} \Delta y_{j} \Delta z_{k} . \tag{9.16b}
\end{align*}
$$

Equation 9.15 is our final pressure correction equation. After solving for pressure corrections (Eq. 9.15) we use Eqs. 9.14 for computing fluid volume fraction corrections. The velocities and fluid volume fractions are then modified to account for these crrreitions.

10. INITIAL AND BOUNDARY CONDITIONS

10.1 Initial Conditions

Generally, before the solution sequence can begin, all values of variables must be assigned. This can be accomplished by either continuing a previous run via the restart capability or by specifying the initial temperature, pressure, and velocity distribution throughout the interior points of the space under consideration. When the initialization is not a restart, density and enthalpy can be claculated from equations of state, using the specified pressures and temperatures. The determination of these distributions and their subsequent input into the code are generally tedious. Options are provided in the code to ease this initialization task. When a steady-state solution is being sought, an initialization as close as possible to the expected solution should be used to reduce computer running time.

Pressure Initialization for Static Head

When gravity is acting along any one of the three principal coordinate axes and there is either constant or one-dimensional temperature variation in that same direction, an option has been provided to reduce the initialization task. This option is exercised by specifying a pressure at a point and either the constant or one-dimensional temperature variation. The entire temperature field can be generated from the input temperature information. The density field is then computed from the equation of state. With this density field and the point pressure, a pressure field is generated to account for the static head. From the pressure and temperature fields, the enthalpy is obtained, thus completing this initialization option.

Pressure-drop Initialization

A linear variation or constant-pressure-gradient initialization option is also provided as in COMMIX-1 (Ref. 2). This can bę used when the constant pressure gradient is along any one of the three principal axes. It is accomplished by specifying the constant pressure gradient as either $\partial P / \partial x, \partial P / \partial y$, or $\partial P / \partial z$, and a point pressure. This option can be used along with the statichead initialization. However, if the constant pressure gradient is along the same axis as gravity, the pressure gradient due to gravity must be included in the specification of the constant pressure gradient.

10.2 Boundary Conditions

The options are provided in the code for the following boundary conditions.

Velocity

1. No slip
2. Slip
3. Continuative velocity boundary
4. Cont inuative momentum boundary
5. Constant or prescribed transient velocity boundary

Temperature

1. Constant or transient temperature boundary
2. Constant or transient heat flux boundary
3. Adiabatic surface

Pressure

1. Constant pressure boundary
2. Transient pressure boundary

10.3 Boundary Conditions for Pressure and Pressure-correction Equations

Since the continuity equation has been reformulated as the pressure equation and the pressure-correction equation, special attention is given to the boundary conditions for these equations. Normally, either the velocity normal to the boundary is specified or the pressure at the boundary is given.

Given Normal Velocity at the Boundary

A control volume adjacent to a boundary is shown in Fig. 10.1. If the velocity t_{W} entering the control volume at the boundary face is known, then, in the derivation of the pressure and pressure-correction equations, we do not substitute u_{W} in terms of \hat{u}_{W} or u_{W}^{\star}; instead we use the known value of u_{W}. Thus, P_{W} or P_{W}^{\prime} does not appear in the P or P^{\prime} equations. In other words, the coefficient q_{w} will be zero in these equations. Since this boundary coefficient is zero, no information about the boundary pressure is needed.

The given velocity boundary condition occurs at walls, symmetry planes, and inflow boundaries with known flow rate. Also the out flow boundaries can be treated as known-velocity boundaries by specifying the normal velocity there by reference to overall mass conservation. Only when the flow rates are unknown, but the pressure drop is specified, do we turn to the given-pressure boundary condition.

Given Pressure at the Boundary

When the pressure at the boundary point 1 in Fig. 10.1 is known, the situation is straightforward. For the pressure equation, the known value p_{1} is used in the appropriate neighbor term. Further, if p_{1}^{*} is set equal to p_{1}, we have $P_{1}=0$, which serves as the known boundary value for the pressure-correction equation.

10.4 Irregular Geometries

When the actual boundaries of the calculation domain do not coincide with the boundaries of the nominal (rectangular) domain, special treatment is needed

Fig. 10.1. Near-boundary control volume
to incorporate the "internal" boundaries. When the boundary is internal to the nominal calculation domain, the grid should be so designed that the actual boundary is suitabiy approximated by a succession of control-volume faces. Figure 10.2 illustrates this for a solid obstacle projecting into the nominal calculation domain. The dashed lines indicate the control-volume faces, while the shaded area denotes the obstacle.

The irregular boundaries can be treated through appropriate choice of the r^{\prime} s as described in Ref. 25. When ϕ stands for velocity, the corresponding values of r for the control volumes that lie in the solid c an be made very large. This results in very small (essentially zero) values of velocity predicted for the solid region. A given value of ϕ, such as temperature, can also be arranged at the internal boundary by making the I values for the solid large and by specifying the given value of ϕ at the nominal boundary adjacent to the solid. An adiabatic surface, on the other hand, can be simulated by the use of a very low Γ_{h} for the solid.

Fig. 10.2. Design of control volumes for irregular geometry

The finite-difference equations derived for the general variable ϕ, for the velocity components, for pressure, and for the pressure correction have a common form. They all relate the value of the variable at 0 to the values at the six neighbor points.

The form of the equation is such that it permits various numerical solution schemes, e.g., cell-by-cell, line-by-line, plane-by-plane, block iterative, direct inversion etc. The cell-by-cell procedure generally requires less storage but takes a longer time to converge. The direct inversion procedure, at the other end, requires prohibitively large computer storage but provides stability and efficiency. We have provided two solution procedure options in the code. One is the cell-by-cell solution procedure with successive overrelaxation and second is the line-by-line solution procedure. The line-by-line solution procedure, for the solution of the algebraic equations of the general form is described here.

Although the general finite-difference equat ion contains seven unknowns, the equations for the near-boundary control volumes have fewer unknowns. This results from the fact that either the boundary values are known or their influence has been set equal to zero through our boundary-condition practice. Thus, we may always regard the boundary values as known for the purpose of solving the equations.

11.1 Tri-Diagonal-Matrix Algorithm

The primary building block in the solution method is the Tri-DiagonalMatrix Algorithm (TDMA). It enables us to solve directly f.rr all the values along one line.

Let the system of equations be represented by

$$
\begin{equation*}
A_{i} \phi_{i}=B_{i} \phi_{i+1}+C_{i} \phi_{i-1}+D_{i} \tag{11.1}
\end{equation*}
$$

for $i=2,3, \ldots, N$, with ϕ_{1} and ϕ_{N+1} being the known values.
The first step is to calculate the transformed coefficients P_{i} and Q_{i} from

$$
\begin{equation*}
P_{2}=B_{2} / A_{2}, Q_{2}=\left(C_{2} \phi_{1}+D_{2}\right) / A_{2}, \tag{11.2}
\end{equation*}
$$

and, for $i=3,4, \ldots, N$

$$
\begin{align*}
& P_{i}=B_{i} /\left(A_{i}-c_{i} P_{i-1}\right) \\
& Q_{i}=\left(D_{i}+c_{i} Q_{i-1}\right) /\left(A_{i}-c_{i} P_{i-1}\right) \tag{11.3}
\end{align*}
$$

The second and final step is the "back substitution," i.e., the calculation of ϕ_{i} from

$$
\begin{equation*}
\phi_{i}=P_{i} \phi_{i+1}+Q_{i} \tag{11.4}
\end{equation*}
$$

for $i=N, N-1, N-2, \ldots, 4,3,2:$
This step gives the solution of the system of equations ('1.1),

11.2 Line-by-line Scheme

The line-by-line procedure for solving the finite-difference equations is a logical extension of the Gauss-Seidel point-by-point method. Instead of visiting a point and solving for ti. value there by the use of the available values at the neighbor points, we cl vose a line and solve for all the values along it by the TDMA.

The procedure is schematically illustrated in Fig. 11.1. A grid line is chosen for the application of the TDMA. In the finite-difference equations for all the points along this line will appear the values of the variable along the four neighboring lines (two of which are shown in Fig. 11.1; the other two contain the z-direction neighbors). If these neighbor-line values are assumed to be known, then the finite-difference equations along the chosen line will take the form of Eq. 11.1 and can be solved by the TDMA. The main advantage of this procedure is that the boundary-condition information from the ends of the line is at once transmitted to the interior of the domain, no matter how many grid points lie on the line. In the point-by-point procedure, on the other hand, the influences from the boundary travel only one grid interval per iteration.

When all the lines in a given direction are visited, the basic operation of the line-by-line procedure is complete.

11.3 Traverse and Sweep Directions

The basic operation just mentioned does not, however, give the final solution of the algebraic equations. The reason is that guessed values from neighboring lines are used in the procedure. Only aftir many repetitions of the basic operation, do we get the correct solution of the equations. Of course, it is desirable to seek ways of reducing the number of required repetitions.

The direction of the line chosen for the TDMA is called the traverse direction. In many problems, geometrical and other factors result in a situation where the coefficients in a particular direction are much larger than those in other directions. In this situation, a TDMA traverse in the direction of large coefficients is particularly effective; because the guessed values from the neighboring lines enter with only weak coefficients. When such a preferred traverse direction is not available, it is best to conduct three successive repetitions of the basic operation by choosing a new traverse direction each time.

Having chosen the direction of traverse, we need to decide the sequence in which the lines are visited. This will be called the sweep direction. It is

Fig. 11.1. Illustration of the line-by-line scheme
convenient to start at one end of the calculation domain and proceed to the ottor end, so that the boundary-condition influence is quickly brought in. If t : luid flow ia the domain has a predominant direction, it is very beneficial to make the sweep direction the same as the predominant flow direction. Then the upstream information rapidly gets conveyed to the downstream locations. In the absence of a major flow direction, it is best to slternate the sweep direction in the successive repetitions of the algorithm.

Presently, the COMMIX-2 uses the following sequence of operations. The calculation starts at $k=1$ (z-plane) and proceeds to the other end, $k=k m a x$ plane. In each plane two alternate traverses and sweeps are performed, i.e., first x-traverse and y-sweep, and then y-traverse and x-sweep. This sequence of operation (sweeping of planes in the k-direction) can be repeated several times. An input parameter has been provided for selecting the number of times this sweeping of planes in the k-direction is desired.

11.4 Optimization of the Equation-solving Effort

The equation-solving algorithm described so far is used for one variable at a time. Further, it regards the finite-difference equations as linear. The nonlinearity of the equations and the interlinkage between the variables are handled by the iteration scheme outlined in the next section. During any given iteration we have only tentative values of the coefficients in the finitedifference equations. The coefficients must be recalculated for every iteration to reflect the changes that have occurred in the relevant dependent variables. Therefore, the repetitions of the line-by-line procedure, which is working on merely the tentative values of the coefficients, need not be carried to ultimate convergence. It is sufficient to obtain a reasonably good solution of the algebraic equations before the coefficients are recalculatei. The optimum equation-solving effort should be determined by experience $\mathrm{d}_{\text {e }}$ experimentation, but a simple rule is that the work required for calculating the coefficients should be roughly comparable to the work involved in solving the equations.

12. ITERATION SCHEME

For every time step in an unsteady situation, a number of iterations must be performed to account for the interlinkages and nonlinearities. Also, the solution for a steady-state problem is achieved after a number of iterations. A given iteration starts with a set of values of all the dependent variables (obtained from an initial guess for the first iteration and from the previous iterations for subsequent iterations) and proceeds to obtain a new set of values. When subsequent iterations cease to produce any significant change in the values, the iteration sequence is said to have reached convergence. The COMMIX-2 has the following reanence of operations.

12.1 Sequence of Operations

a. Initialize all the dependent variables. This is performed either by providing input data or reating the values from the restart tape.
b. ${ }^{\dagger}$ Compute density field from the equations of state.
c. ${ }^{\dagger \dagger}$ The fluid volume fractions θ_{l}^{\star} and θ_{g}^{*} are then obtained by
(i) solving the liquid continuity for θ_{ℓ} and evaluating θ_{g} from the relation $\theta_{\ell}+\theta_{g}=1$ (extended SIMPLER procedure),
or
(ii) solving the two-phace continuity equations (similar to the IPSA procedure).
d. ${ }^{\dagger}$ Compute coefficients and pseudovelocities (\hat{u}, \hat{v}, and \hat{w}) of the momentum equations.
e. Set up and solve the pressure equation, using line-by-line or cell-by-cell SOR procedures, to obtain new values of pressure p.
f. Using this pressure field p^{*}, solve the momentum equations (7.2) or (7.4) to yield u^{*}, v^{*}, and w^{*}.
g. Set up and solve pressure correction equations (9.3) or (9.15) to obtain the values of p^{\prime}.
h. ${ }^{\dagger}$ Modify
(i) pressure field,

[^0](ii) void fractions using the void fraction-correction formula (Eq. 9.11) in IPSA type procedure, and
(iii) velocity field using the velocity-correction formula (Eq. 7.8).
i. Modify pressure and velocity fields to satisfy plane-by-plane integral mass balance (Section 12.5).
j. ${ }^{\dagger}$ Set up and solve the energy equation.
k. Return to step b with the new values obtained during this iteration as improved guesses and continue the procedure until convergence is achieved.

12.2 Under-relaxation

The finite-difference equations and the line-by-line scheme have been constructed such that, if there were no interlinkages and nonlinearities, convergence would be certain. However, because the equations of interest almost always contain nonlinear and interlinked influences, care has to be taken to prevent divergence. One simple strategy is to slow down the changes in the coefficients that would occur from iteration to iteration. This is accomplished via under-relaxation.

Under-relaxation of the Dependent Variables

The general finite-difference equation, Eq. 6.1 is

$$
\begin{equation*}
a_{0} \phi_{0}=\sum a_{n b} \phi_{n b}+a_{0}^{0} \phi_{0}^{0}+b_{0}, \tag{12.1}
\end{equation*}
$$

where the subscript nb denotes the neighbor points. This equation c an be modified as follows: From Eq. 12.1 we can write

$$
\begin{equation*}
\phi_{0}=\sum \frac{a_{n b}}{a_{0}} \phi_{n b}+\frac{{ }^{a_{0}^{0} \phi_{0}^{0}}}{a_{0}}+b_{0} / a_{0} . \tag{12,1a}
\end{equation*}
$$

Also, let

$$
\begin{equation*}
\phi_{0}^{\text {new }}-\omega \phi_{0}+(1-\omega) \phi_{0}^{*}, \tag{12.1b}
\end{equation*}
$$

where ϕ_{0}^{*} denotes the last iteration value of ϕ_{0}, ϕ_{0} denotes the value obtained directly if Eq. 12.1 is solved; and ω is the under-relaxation factor. Substitution of Eq. 12.1a in Eq. 12.1 b and rearrangement give

[^1]\[

$$
\begin{equation*}
\left(a_{0} / \omega\right) \phi_{0}^{\text {new }}=\Sigma a_{n b} \phi_{n b}+a_{0}^{0} \phi_{0}^{0}+b_{0}+(1-\omega)\left(a_{0} / \omega\right) \phi_{0}^{*} \text {. } \tag{12.2}
\end{equation*}
$$

\]

It is easy to see that, when ϕ_{0} becomes equal to ϕ_{0}^{*} (i.e., the iterations converge), Eq. 12.2 becomes identical to Eq. 12.1 . In the meantime, however, Eq. 12.2 would have a tendency to keep the resulting $\phi_{0}^{\text {new }}$ closer to ϕ_{0}^{*} (than Eq. 12.1 would do) provided the relaxation factor ω is less than 1 . A value of ω close to zero would indicate a very heavy under-relaxation.

A value of $\omega=0.5$ usually provides sufficient under-relaxation for most variables. For the velocity components, a value of $\omega=0.7$ may be used. The pressure equation may be under-relaxed by using $\omega=0.8$. These values should be regarded as only initial suggestions; a proper set of ω values should be obtained by actual experience for a given class of problems. In COMMIX-2, input parameters OMEGAP, OMEGAV, OMEGAT and OMEGAE are provided for underrelaxing pressure, velocity, fluid volume fraction and energy, respectively.

Under-relaxation of Auxiliary Quantities

In addition to under-relaxing the dependent variables, a number of other quantities can be under-relaxed with advantage. For example, the density ρ and the diffusion coefficient Γ can be calculated from

$$
\begin{align*}
& \rho=\omega \rho_{\text {new }}+(1-\omega) \rho_{\text {old }} \tag{12.3}\\
& r=\omega \Gamma_{\text {new }}+(1-\omega) r_{\text {old }} \tag{12.4}
\end{align*}
$$

Often the source terms can be a cause of divergence. Under-relaxation of the source terms in the form

$$
\begin{equation*}
S=\omega S_{\text {new }}+(1-\omega) S_{\text {old }} \tag{12.5}
\end{equation*}
$$

can be helpful to prevent divergence. Even some boundary values can be introduced in a controlled manner via

$$
\begin{equation*}
\phi_{\mathrm{B}}=\omega \phi_{\mathrm{B}, \text { given }}+(1-\omega) \phi_{\mathrm{B}, \text { old }}, \tag{12.6}
\end{equation*}
$$

where ϕ_{B} denotes a boundary value.
It should be obvious that the values of ω appearing in Eqs. 12.2 to 12.6 can all be different; indeed, it is possible, though inconvenient, to choos a separate value of ω for each grid point. Further, the values of ω can be changed as the iterations proceed.

In order to minimize the number of input variables, we have not included under-relaxation factors for auxiliary quantities. However, if one desires, this can be incorporated in the code very easily.

12.3 Linearization of the Source Term

In the derivation of the finite-difference equations, we have expressed the snurce term S via Eq. 5.14 in a linearized form. This form is an attempt to anticipate the change in S resulting from the change in the value of ϕ_{0}. In order to obtain a diagonally dominant matrix, S_{p} in Eq. 5.14 is allowed to become positive. This is achieved by linearizing the source term in the following way.

Let S_{1} and S_{2} denote the positive and negative parts of the source term such that

$$
\begin{equation*}
\mathrm{s}=\mathrm{s}_{1}-\mathrm{s}_{2}\left(\mathrm{~s}_{1}>0, \mathrm{~s}_{2}>0\right) . \tag{12.7}
\end{equation*}
$$

We then set S_{C} and S_{p} according to

$$
\begin{equation*}
S_{C}=s_{1}, \tag{12.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{p}=-\left(s_{2} / \phi_{0}^{*}\right), \tag{12.9}
\end{equation*}
$$

where ϕ_{0} denotes the last-iteration value of ϕ_{0}.

Source due to Phase Change

For the source term due to phase change in the momentum equation we have assumed that evaporating mass from liquid has a velocity equal to the liquid velocity. Thus, for x-momentum equations

$$
\begin{equation*}
\mathrm{S}_{\mathrm{m} \Omega \ell}=\Omega_{\ell}{ }^{\mathrm{u}} \ell=-\dot{m}_{\text {evap }}{ }^{\prime} \ell^{\prime}, \tag{12.10}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{m \Omega g}=\Omega_{g}^{u}{ }_{\ell}=\dot{m}_{\text {evap }^{\prime}}{ }_{\ell} \tag{12.11}
\end{equation*}
$$

Similar expressions are assumed for y and z directions. With this assumption, Eqs. 6.2 h and 6.2 i become:

Liquid Momentum:

$$
\begin{align*}
& b_{0}=S_{c}\left(Y_{v} \Delta x \Delta y \Delta z\right) \tag{12.12}\\
& a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-S_{p}\left(y_{v} \Delta x \Delta y \Delta z\right) \tag{12.13}
\end{align*}
$$

$$
\begin{align*}
& \text { Gas Momentum }\left(\text { 由' }_{\text {evap }}^{\prime \prime \prime}>0\right) \\
& b_{0}=\left(S_{c}+\dot{m}_{\text {evap }}^{\prime \prime \prime} \phi_{\ell}\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.14}\\
& a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-\left(S_{p}-\dot{m}_{\text {evap }}^{\prime \prime \prime}\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.15}\\
& \underline{\text { Gas Momentum }}\left(\dot{m}_{\text {evap }}^{\prime \prime \prime}<0\right) \\
& b_{0}=\left[s_{c}+\dot{m}_{\text {evap }}^{\prime \prime \prime}\left(\phi_{\ell}-\phi_{g}\right)\right]\left(\gamma_{v} \Delta x \Delta y \Delta z\right), \tag{12.16}\\
& a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-S_{p}\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.17}
\end{align*}
$$

Here ϕ stands for u, v and ω velocity components.
For the source term due to phase change in the energy equation, we have assumed that condensing mass from gas has enthalpy equal to gas enthalpy. With this assumption, the source terms in the energy equations are

$$
\begin{equation*}
S_{\mathrm{h} \Omega \ell}=\Omega_{\ell} \mathrm{h} g=-\dot{m}_{\text {evap }^{\prime \prime}} \mathrm{g}^{\prime}, \tag{12.18}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\mathrm{h} \Omega \mathrm{~g}}=\Omega_{\mathrm{g}}^{\mathrm{h}} \mathrm{~g}=\dot{\text { mevap }}^{\prime \prime} \mathrm{evg}_{\mathrm{g}} . \tag{12.19}
\end{equation*}
$$

Thus, Eqs. 6.2 h and 6.2 i are:

$$
\begin{align*}
& \text { Liquid: }\left(\dot{m}_{\text {evap }}^{\prime \prime \prime}\left(=-\Omega_{\ell}\right)<0\right) \\
& b_{0}=\left(S_{c}-\dot{\text { m}}^{\prime \prime} \text { evap }^{h}{ }_{g}\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.20}\\
& a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-\left(S_{p}+\dot{\text { mevap }}^{\prime \prime \prime}\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.21}
\end{align*}
$$

Liquid: (minap $^{\prime \prime}\left(=-\Omega_{\ell}\right)>0$)

$$
\begin{equation*}
b_{0}=\left(s_{c}-\dot{\text { minevap }}_{\text {evap }}^{\prime \prime}\left(h_{g}-h_{\ell}\right)\right)\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.22}
\end{equation*}
$$

$$
\begin{equation*}
a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-S_{p}\left(\gamma_{v} \Delta x \Delta y \Delta z\right) \tag{12.23}
\end{equation*}
$$

Gas:

$$
\begin{align*}
& b_{0}=s_{c}\left(Y_{v} \Delta x \Delta y \Delta z\right) \tag{12.24}\\
& a_{0}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{0}^{0}-s_{p}\left(Y_{v} \Delta x \Delta y \Delta z\right) \tag{12.25}
\end{align*}
$$

12.4 Distinction between Steady and Unsteady Situations

The calculation method outlined in this report makes only a small distinction between the steady and unsteady problems. The suggested calculation sequence for one time step in an unsteady situation is almost identical to the sequence for obtaining the steady-state solution. If the time step Δt is made very large, our finite-difference equations for an unsteady problem reduce to those for a steady problem.

The main difference between the two situations turns out to be in the number of the required iterations. In an unsteady situation, the "initial" values of ϕ for any time step are either given or known from the previous time step. If the value of Δt is reasonable, the ϕ values do not change very drastically within one time step. Thus, the values ϕ_{0}^{0} at the start of the time step serve as good guesses for the new values ϕ_{0}; and therefore, only a few iterations may be sufficient to attain convergence for the time step. On the other hand, if the guesses available for a steady-state problem are rather "wild," then many iterations might be necessary before convergence is obtained.

12.5 Performance of Integral Balances

During the iterative process, because of partial convergence of the continuity equations, it is possible that the total (or individual phase) mass flow out of a slab of cells (across a plane) is not equal to the known, correct value. In order to make the solution at subsequent slabs of cells more accurate, it is advantageous to correct the velocity and pressure fields to satisfy the integral mass balance. This section explains such a practice, and describes its merits.

Consider first a flow in which there is a predominant flow direction (e.g., pipe flow). For a pipe flow, we recognize that the total flow outwards of any plane perpendicular to the pipe axis must be equal to the inflow at the entrance of the pipe. Mathematically, this means

$$
\begin{equation*}
\sum_{i} \sum_{j} \rho_{i j} W_{i j} A_{i j}=\dot{m} \tag{12.26}
\end{equation*}
$$

where ρ is density, w is the axial velocity, and A is the area perpendicular to the pipe axis. The summation is made over all cells in the cross-sectional plane. Since the above equation is not always satisfied until convergence, we wish to correct $w_{i j}$ by an amount $\Delta w_{i j}$ to meet this criteria. There are a few
different ways to perform the corrections to the w field and associated pressure field; here two methods found often superior to others are described. Only the first method described here is included in Commix-2.

Uniform Pressure Correction

Let Δp be a uniform correction (over the cross-section) to the pressure affecting the w velocity at the given plane. Also, let D_{w} be $\partial w / \partial p$ for each cell. We can then write

$$
\begin{equation*}
\Delta p \sum_{i} \sum_{j} \rho_{i j}\left(D_{w}\right)_{i j} A_{i j}=\Delta \dot{m}, \tag{12.27}
\end{equation*}
$$

where $\Delta \dot{m}$ is the error (required minus actual). This leads to the relation for $\Delta \mathrm{p}$, as follows:

$$
\begin{equation*}
\Delta p=\frac{\Delta \dot{m}}{\sum \sum \rho_{i j}\left(D_{w}\right)_{i j} A_{i j}}, \tag{12.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta w_{i j}=\left(D_{w}\right)_{i j} \Delta p . \tag{12.29}
\end{equation*}
$$

Note that the Δp correction is uniform, but Δw is different for each cell.
The above expressions can be extended to two-phase flows, considering the total mass flow as the quantity to be balanced. Thus,

$$
\begin{equation*}
\sum_{i} \sum_{j}\left(\rho_{\ell} \ell_{\ell}{ }^{w} \ell^{A}\right)_{i j}+\sum_{i} \sum_{j}\left(\rho_{g} \theta_{g} g_{g}^{A}\right)_{i j}=\dot{m}_{\ell}+\dot{m}_{g}=\dot{m}_{t} . \tag{12.30}
\end{equation*}
$$

We can derive in a straightforward way, that

$$
\begin{align*}
& \Delta p=\frac{\left(\dot{m}_{t}\right)_{r e q}-\left(\dot{m}_{t}\right)_{\text {actual }}}{\sum_{i} \sum_{j}\left[\left(\theta_{\ell} \rho_{\ell} D_{w_{\ell}}\right)_{i j}+\left(\theta_{g} \rho_{g}{ }^{D} w_{g}\right)_{i j}\right] A_{i j}}, \tag{12.31}\\
& \left(\Delta w_{\ell}\right)_{i j}=\left({ }^{D} w_{\ell}\right)_{i j} \Delta p, \tag{12.32}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\Delta w_{g}\right)_{i j}=\left(D_{w_{g}}\right)_{i j} \Delta p . \tag{12.33}
\end{equation*}
$$

The Δw corrections are applied at the slab concerned, but the Δp corrections are made to all downstream planes in the domain. This practice avoids the creation of artificial pressure gradients at subsequeat planes.

The COMMIX-2 has incorporated the uniform pressure correction approach. The integral mass balance is checked across a z plane. The sweeping of z planes begins at $\mathrm{k}=1$ and proceeds to $\mathrm{k}=\mathrm{kmax}$.

Uniform Velocity Correction

Let Δw be a uniforn correction (over the cross-section) to the axial velocity at a given plane. We can then write

$$
\begin{equation*}
\Delta w \sum_{i} \sum_{j} \rho_{i j}{ }^{A_{i j}}=\Delta m, \tag{12.34}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta w=\frac{\Delta \dot{m}}{\sum_{i} \sum_{j} \rho_{i j} A_{i j}} . \tag{12.35}
\end{equation*}
$$

Having computed Δw, we can easily derive the relation for $\Delta p_{i j}$.

$$
\begin{equation*}
\Delta p_{i j}=\frac{\Delta w}{\left(D_{w}\right)_{i j}}=\frac{1}{\left(D_{w}\right)_{i j}} \frac{\Delta \dot{m}}{\sum_{i j} \sum_{i j} \rho_{i j} A_{i j}} \tag{12.36}
\end{equation*}
$$

In this procedure, we have uniform Δw for all cells in a plane, but Δp is different for each cell. We extend this procedure to two phase flows in the following way. Let $\Delta \dot{m}_{\ell}$ and $\Delta \dot{m}_{g}$ be the errors in mass flow rates and Δw_{ℓ} and Δw_{g} be the velocity corrections of liquid phase and gas phase, respectively. We then have

$$
\begin{equation*}
\Delta w_{\ell}=\frac{\Delta \dot{m}_{\ell}}{\sum_{i} \sum_{j}\left(\rho_{\ell} \theta_{\ell} A_{\ell}\right)_{i j}}, \tag{12,37}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta w_{g}=\frac{\Delta \dot{m}_{g}}{\sum_{i} \sum_{j}\left(\rho_{g} g_{g} A_{g}\right)_{i j}} \tag{12.38}
\end{equation*}
$$

The pressure correction $\Delta p_{i j}$ can be obtained by averaging the pressure corrections required for balancing of each phase of the two phases. Thus

$$
\Delta p_{i j}=\frac{1}{2}\left(\left(\Delta p_{i j}\right)_{\ell}+(\Delta p)_{i j}\right)=\frac{1}{2}\left[\frac{\Delta \dot{m}_{\ell}}{D_{w_{i j}} \sum_{i} \sum_{j}\left(\rho_{\ell} \theta_{\ell} A_{\ell}\right)_{i j}}+\frac{\Delta \dot{m}_{g}}{D_{w_{i j}} \sum_{i} \sum_{j}\left(p_{g} \theta_{g} A_{g}\right)}{ }_{i j}\right]
$$

The Δw corrections are applied at the slab concerned, but the Δp corrections are made to all downstream planes in the domain.

13. FLOW CHASTS

The calculation method of COMMIX-2 describad so far can be visualized through the flow charts presented in this section. It may be recognized that a number of decisions taken while designing the computer program have some effect on the details of the flow charts. The description here is given for an unsteady situation; the specialization to a steady-state problem has already been dealt with.

13.1 Time-step and Iteration Loops

The main structure of the computer program can be seen from Fig. 13.1 We begin by specifying the grid and, if desired, calculating a number of geometrical quantities which are frequently needed in later work. This is done in subroutines HOWBIG, GEOM3D, BOX, QTRPIN, and FULPIN. The subroutines QTRPIN and FULPIN are specifically designed for hexagonal fuel assemblies with desired quarter pin partitioning and full pin partitioning respectively, while the subroutine BOX is for all other geometries. Next the initial value of all variables are specified or calculated. This is done in the subroutine INITAL. At this stage, the subroutine OUTPUT is called to print initial values of all desired variables. Boundary conditions are then specified. The iteration sequence, for which further details will be given below, is then repeated a number of times until convergence is obtained. The subroutine TIMSTP determines the sequence of calling of all subroutines required during iteration. When the convergence is achieved, we return to MAIN where we update all variables and proceed to the next time step. When the required number of time steps has been performed, or the required maximum computation time is reached, the computation is terminated and, if requested, the restart data are written a a tape.

13.2 Iteration Sequence

The details of the iteration sequence are shown in Fig. 13.2. They follow the steps listed in Section 12.1 . The sequence presented here is for the twophase case. If a problem to be analyzed is single-phase only (liquid or gas) then all the subroutines for the second phase (gas or liquid) are bypassed.

Fig. 13.1. The overall flow chart

1. Compute evaporation rate a (BO1L)
2. Set up coefficients of liquid volume fraction θ_{2} equation (LVOIB)
3. Solve liquid continuity equation to get dot (sotver)
4. Obtain θ_{g}^{*}
(i) Use $\theta_{g}+\theta_{l}=1$
or
(1) Coefficients of gas volume fraction θ_{g} equation (GVOID)
(ii) Solve gas continuity equation to get g_{g}^{*} (sOLUYF)
5. Compute density (PROPTY)
6. Compute liquid momentum source terms s_{c} and s_{p} (VSORCL)
7. Set up coefficients and compute psendo velocities of the liquid momentum equations (XMOM; YMOM; ZMOM)
8. Compute gas momentim source Eerms S_{c} and S_{p} (VSORCG)
9. Set up coefficients and compute poeude velocities of the gas momentum equations (XMOM; Yhom; 2 (om) Set up coefficients of pressure equation (PEQN)
10. Solve pressure equation to get p* using either 1ine-by-1ine (SOLVEF) or cell-by-cell SOR (SOLVIT) procedure
11. Solve momentum equations to get u^{*}, v^{*}, w*

Eq. 7.2 (VELMOM; SOLVEU; SOLVEV; SOLVEW)
or
Eq. 7.4 (MOMENT)
13. Update boundary flow values (BCFLOW)
15. Set up coefficients of pressure correction equation

Eq. 9.6 (PCEQNI) (SIMPLER Procedure)
or
Eq. 9.15 (PCEQN2) (IPSA Procedure)
15. Solve pressure correction equation to get $p^{\text { }}$ (SOLVEF)
16. Modity pressure $p=p^{*}+p^{*}$
17. Modify liquid fractions (TF PCEQN2 is used) $\theta=\theta^{*}+\theta^{\prime}$ (DELTAT)
18. Modify velocity $u=u^{*}+u^{\prime}$ (DELTAV)
19. Perform integral balance (REBAL)
20. Compute density (PROPTY)
21. Compute source terme S_{c} and S_{p} of the energy equation (ESORCE)
22. Set up coefficients of the energy equation (ENERGY)
23. Solve energy equation to obtain h (SOLVEF)
24. Update temperature and density boundary values (BCTEMP)
25. Greck the convergence

Fig. 13.2. Iteration Svquence
14. CONCLUDING REMARKS

This report has described the numerical procedure of COMMIX-2 for the solution of three-dimensional, single-phase/two-phase, steady/unsteady flow problems with heat transfer. The method is based on the control-volume approach, which is easy to interpret in physical terms and which ensures overall conservation. Calculation practices and iteration sequences, which have been found to be accurate and efficient have been used in COMMIX-2. The structure of the computer program has been outlined by way of flow charts.

We have developed this code retaining similarity with CommiX-1A. All special features of COMMIX-1A have also been incorporated in the code. COMMIX-1A users will have, therefore, no difficulty in adopting COMMIX-2.

APPENDIX A

Thermodynamic and Transport Properties

The thermodynamic and transport properties of sodium are obtained from Golden and Tokar 26 and of water from Brookhaven National Laboratory.
A. 1 Sodium-Liquid Properties

Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho(T)=9.500^{7} 6 \mathrm{E} 2+T[-2.2976 \mathrm{E}-1$
$+\mathrm{T}(-1.46049 \mathrm{E}-5+5.63788 \mathrm{E}-9 \mathrm{~T})]$.

Viscosity (pascal-second) or (Pa•s)
$\mu(T)=3.2419 E-3 \exp [5.0807 E 2 /(T+273.15)$
$-0.4925 \ln (T+273.15)]$.

Specific Heat $(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})$
$c_{p}(T)=1.43605 \mathrm{E} 3+T(-5.802 \mathrm{E}-1+4.62506 \mathrm{E}-4 \mathrm{~T})$.
Conductivity ($\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$)
$k(T)=92.948-5.809 \mathrm{E}-2 \mathrm{~T}+1.1727 \mathrm{E}-5 \mathrm{~T}^{2}$.

In the above, T is temperature, in degrees Celsius.

Enthalpy ($\mathrm{J} / \mathrm{kg)}$

The enthalpy of liquid $H(p, T)$ is calculated from the enthalpy of saturated liquid and the enthalpy change relation

$$
d H=\frac{K}{\rho_{\ell}}\left[1+\frac{T_{K}}{\rho_{\ell}}\left(\frac{\partial \rho_{\ell}}{\partial T_{K}}\right)_{p}\right] d \mathrm{dp} .
$$

Here K is the ratio of gas constants in joules/pascal $\cdot \mathrm{m}^{3}$, and T_{K} is the temperature i: keivins.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$

The temperature of sodium liquid $T(H, p, T)$ is calculated using an iterative procedure. Initially the liquid temperature T^{*} is assumed. The enthalpy $H^{*}\left(T^{*}, p\right)$ is calculated. If the enthalpy H^{*} is not in agreement
with the specified enthalpy H, then $T *$ is modified. The procedure is repeated until $H^{*}\left(T^{*}, p\right)$ is in close agreement with the prescribed enthalpy.

Saturation Pressure (pascals)
$P_{\text {sat }}(T)=1.01325 E 5\left(\frac{3.03266 \mathrm{E} 6}{\sqrt{T_{R}}}\right) e^{-2.30733 E 4 / T_{R} \text {. (for } T_{R} \leqslant 2059.7 \text {) (A.6) }}$
$P_{\text {sat }}(T)=1.01325 E 5\left(\frac{6.8817602 \mathrm{E} 6}{\left(T_{R}\right)^{0.61344}}\right) e^{-22981.96 / T_{R} . \quad\left(\text { for } T_{R}>2059.7\right) \quad \text { (A.7) }}$

Here, T_{R} is the temperature in degrees Rankine.
Saturation Entialpy (J / kg)
$H_{\text {sat }}(T)=2.32444 \mathrm{E} 3\left\{-29.02+\left(T_{R}(0.389352\right.\right.$

$$
\begin{equation*}
\left.\left.\left.+\mathrm{T}_{\mathrm{R}}\left(-0.5529955 \mathrm{E}-4+0.113726 \mathrm{E}-7 \mathrm{~T}_{\mathrm{R}}\right)\right)\right)\right\} \tag{A.8}
\end{equation*}
$$

Saturation Temperature (${ }^{\circ} \mathrm{C}$)
The saturation temperature $T_{s a t}(p)$ is obtained by iterative solution of Eqs. A. 6 and A. 7.
A.2. Sodium Vapor Properties

Specific Heat $(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})$
$C_{p}(T)=3821-1.952 T+6.347 \mathrm{E}-4 \mathrm{~T}^{2}$.
Conductivity ($\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$)
$k(T)=1.72958\left\{0.1639 E-2+0.3977 E-4 T_{F}-0.9697 E-8 T_{F}^{2}\right\}$.
Viscosity (Pa•sec)
$\mu(T)=4.133789 \mathrm{E}-4\left[\begin{array}{ll}{[0.03427} & \left.8.176 \mathrm{E}-6 \mathrm{~T}_{\mathrm{F}}\right] .\end{array}\right.$
Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
The density of sodium is calculated assuming that the vapor is made up of the monomer, dimer and tetramer and that these are all perfect gases.

$$
\begin{align*}
M & =M_{1}\left(N_{1}+2 N_{2}+4 N_{4}\right), \\
& =22.991\left(N_{1}+2 N_{2}+4 N_{4}\right) . \tag{A.13}
\end{align*}
$$

The mole fractions N_{1}, N_{2} and N_{4} are obtained by solving

$$
\begin{align*}
& P_{a t m}^{3} k_{4} N_{1}^{4}+p_{a t m} k_{2} N_{1}^{2}+N_{1}-1=0, \tag{A.14}\\
& N_{2}=k_{2} p N_{1}^{2}, \tag{A.15}
\end{align*}
$$

and

$$
\begin{equation*}
N_{4}=1-N_{1}-N_{2} . \tag{A,16}
\end{equation*}
$$

The equilibrium constants are

$$
\begin{equation*}
k_{2}=e^{\left[-9.95845+16588.3 / T_{R}\right]} \tag{A.17}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{4}=e^{\left[-24.59115+37589.7 / T_{R}\right]} . \tag{A.18}
\end{equation*}
$$

Here, $\mathrm{P}_{\text {atm }}$ is the pressure in atmospheres.

Enthalpy (J / kg)

$$
\begin{align*}
H(p, T)= & H_{g, s a t}+2328.9\left\{716.54\left(B_{2}\left(p_{\text {sat }}\right)-B_{2}(p)\right)\right. \\
& \left.+811.85\left(B_{4}\left(p_{\text {sat }}\right)-B_{4}(p)\right)\right\} . \tag{A.19}
\end{align*}
$$

Here,

$$
\begin{align*}
& B_{2}=\frac{2 N_{2}}{N_{1}+2 N_{2}+4 N_{4}}, \tag{A.20}\\
& B_{4}=\frac{4 N_{4}}{N_{1}+2 N_{2}+4 N_{4}}, \tag{A.21}
\end{align*}
$$

and

$$
\mathrm{H}_{\mathrm{g}, \text { sat }} \text { is the saturation enthalpy. }
$$

Temperature (${ }^{\circ} \mathrm{C}$)

The temperature of sodium vapor is calculated by an iterative procedure. We start with assumed temperature T^{*} and calculate the enthalpy $H^{*}\left(T^{*}, \rho\right)$. If H* is not in agreement with the specified enthalpy then the temperature is modified. The iterative procedure is continued until the calculated enthalpy is in close agreement with the prescribed enthalpy.

Saturation Enthalpy (J / kg)

$$
\begin{equation*}
\mathrm{H}_{\mathrm{g}, \mathrm{sat}}\left(\mathrm{~T}_{\text {sat }}\right)=\mathrm{H}_{\ell \mathrm{sat}}+\mathrm{h}_{\mathrm{fg}} \text {, } \tag{A.22}
\end{equation*}
$$

where
$h_{f g}$ is the latent heat of vaporization.
$h_{f g}=2328.9\left\{\frac{1.8}{\bar{M}}\left[\mathrm{~N}_{1} \Delta \mathrm{H}_{1}+\mathrm{N}_{2} \Delta \mathrm{H}_{2}+\mathrm{N}_{4} \Delta \mathrm{H}_{4}\right]\right\}$.
$\Delta \mathrm{H}_{1}=25980.7-2.21312 \mathrm{~T}_{\mathrm{R}}+7.06278 \mathrm{E}-4 \mathrm{~T}_{\mathrm{R}}^{2}-1.4526 \mathrm{E} 7 \mathrm{~T}_{\mathrm{R}}^{3}$.
$\Delta H_{2}=2 \Delta H_{1}-18304.0$.
$\Delta H_{4}=4 \Delta H_{1}-41478.0$.
A. 3 Water-Liquid Properties

Density

$$
\begin{align*}
\rho(p, H)= & 16.018463\left\{a_{1}+a_{2} H_{R}^{2}+a_{3} H_{R}^{4}\right\} .(H<6.4477 E 5) \tag{A.27}\\
\rho(p, H)= & 16.018463\left\{\left(a_{1}+a_{2} H_{R}^{2}+a_{3} H_{R}^{4}\right) f(y)\right. \\
& \left.+[1-f(y)]\left(b_{1}+\frac{b_{2}}{H_{R}-b_{3}}\right)\right\} . \\
& (6.4477 E 5<H<6.57793 E 5) \tag{A.28}\\
\rho(p, H)= & 16.018463\left\{b_{1}+\frac{b_{2}}{H_{R}-b_{3}}\right\} .(H>6.57793 E 5) . \tag{A.29}
\end{align*}
$$

Here,

$$
\begin{align*}
& a_{1}=62.4+i .14 \mathrm{E}-4 \mathrm{P}_{\mathrm{R}}, \tag{A.30}\\
& a_{2}=-8.73 \mathrm{E}-5+1.438 \mathrm{E}-9 \mathrm{P}_{\mathrm{R}},, \tag{A.31}
\end{align*}
$$

$$
\begin{align*}
& a_{3}=2.32 \mathrm{E}-10-6.20 \mathrm{E}-15 \mathrm{P}_{\mathrm{R}} \tag{A.32}\\
& \mathrm{~b}_{1}=92.924+5.761 \mathrm{E}-4 \mathrm{P}_{\mathrm{R}}, \tag{A.33}\\
& \mathrm{~b}_{2}=3.94402 \mathrm{E} 4+1.6386 \mathrm{P}_{\mathrm{R}}, \tag{A.34}\\
& \mathrm{~b}_{3}=1.37735 \mathrm{E} 3+3.5704 \mathrm{E}-2 \mathrm{P}_{\mathrm{R}}, \tag{A.35}\\
& \mathrm{y}=\frac{H_{R}-280}{2.8}, \tag{A.36}\\
& \mathrm{f}(\mathrm{y})=\frac{1}{16}\left\{8-15 \mathrm{y}+10 \mathrm{y}^{3}-3 \mathrm{y}^{5}\right\}, \tag{A.37}\\
& H_{R}=4.299226 \mathrm{E}-4 \mathrm{H}, \tag{A.38}\\
& \mathrm{P}_{\mathrm{R}}=1.4503774 \mathrm{E}-4 \mathrm{p}, \tag{A.39}
\end{align*}
$$

H is the enthalpy in J / kg, and p is the pressure in pascals.
$\underline{\text { Viscosity (Pa•sec) }}$

$$
\begin{align*}
\mu(p, H)= & \left(a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}+a_{5} x^{4}\right) \\
& -\left(b_{1}+b_{2} n+b_{3} n^{2}+b_{4} n^{3}\right)(p-6.8945753 E 5) \tag{A.40}
\end{align*}
$$

($\mathrm{H} \geqslant 2.76 \mathrm{E} 5$)

$$
\mu(p, H)=\left(e_{1}+e_{2} H+e_{3} H^{2}+e_{4} H^{3}\right)
$$

$$
+\left(f_{1}+f_{2} H+f_{3} H^{2}+f_{4} H^{3}\right)(p-6.8945753 E 5)
$$

$$
\begin{equation*}
(2.76 \mathrm{E} 5<\mathrm{H}<3.94 \mathrm{E} 5) \tag{A.41}
\end{equation*}
$$

$\mu(p, H)=\left(d_{1}+d_{2} y+d_{3} y^{2}+d_{4} y^{3}+d_{5} y^{5}\right) .(H>3.94 E 5)$

Here,

$$
\begin{array}{ll}
a_{1}=1.29947 \mathrm{E}-3, & a_{2}=-9.2640321 \mathrm{E}-4, \\
a_{3}=3.8104706 \mathrm{E}-4, & a_{4}=-8.2194445 \mathrm{E}-5, \\
a_{5}=7.022438 \mathrm{E}-6, & b_{1}=-6.5959 \mathrm{E}-12, \\
b_{2}=6.763 \mathrm{E}-12, & b_{3}=2.88825 \mathrm{E}-12, \\
b_{4}=4.4525 \mathrm{E}-13, & d_{1}=3.0260323 \mathrm{E}-4, \\
d_{2}=-1.8366069 \mathrm{E}-4, & d_{3}=7.5670758 \mathrm{E}-5,
\end{array}
$$

$$
\begin{array}{ll}
d_{4}=-1.6478789 \mathrm{E}-5, & d_{5}=1.4164576 \mathrm{E}-6, \\
e_{1}=1.4526053 \mathrm{E}-3, & e_{2}=-6.9880085 \mathrm{E}-9, \\
e_{3}=1.5210230 \mathrm{E}-14, & e_{4}=-1.2303195 \mathrm{E}-20, \\
f_{1}=-3.8063508 \mathrm{E}-11, & f_{2}=3.9285208 \mathrm{E}-16, \\
f_{3}=-1.2585799 \mathrm{E}-21, & f_{4}=1.2860181 \mathrm{E}-27 \\
x=\frac{H-42658.84}{116532.6}, \\
n=\frac{H-55358.8}{154213.8}, \tag{A.45}
\end{array}
$$

and
$y=\frac{H-401467.6}{256953.22}$.

Specific Heat $(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})$

$$
\begin{equation*}
c_{p}(p, H)=\left\{x_{1}-\frac{x_{2}}{(H-1.7556418 E 6)^{2}}\right\}^{-1} \cdot(H<8.12 E 5) \tag{A.47}
\end{equation*}
$$

$c_{p}(p, H)=\left\{x_{1}-\frac{x_{2}}{(H-1.7556418 E 6)^{2}}\right\}^{-1} f(y)$ $+\left\{Z_{1}+z_{2} H+z_{3} H^{2}\right\}^{-1}\{1-f(y)\}$.

$$
\begin{equation*}
(8.12 \mathrm{E} 5<\mathrm{H}<8.16 \mathrm{E} 5) \tag{A.48}
\end{equation*}
$$

$$
\begin{equation*}
c_{p}(p, H)=\left\{Z_{1}+Z_{2} H+Z_{3} H^{2}\right\}^{-1} \cdot(H>8.16 E 5) \tag{A.49}
\end{equation*}
$$

Here,

$$
\begin{align*}
& \mathrm{x}_{1}=2.4688303 \mathrm{E}-4+1.24419 \mathrm{E}-13 \mathrm{p} \\
& \mathrm{x}_{2}=1.8790464 \mathrm{E} 7-5.634438 \mathrm{E}-2 \mathrm{p} \\
& \mathrm{z}_{1}=1.1964506 \mathrm{E}-5+6.291758 \mathrm{E}-12 \mathrm{p} \\
& \mathrm{Z}_{2}=4.58929 \mathrm{E}-10-1.1980206 \mathrm{E}-17 \mathrm{p} \\
& \mathrm{Z}_{3}=-2.5763436 \mathrm{E}-16+6.046356 \mathrm{E}-24 \mathrm{p} \tag{A.50}
\end{align*}
$$

$$
\begin{equation*}
f(y)=\frac{1}{16}\left\{8-15 y+10 y^{3}-3 y^{5}\right\} \tag{A.51}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{H-8.14 \mathrm{E} 5}{2000} \tag{A.52}
\end{equation*}
$$

Conductivity ($\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$)

$$
\begin{equation*}
k(H)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} . \tag{A.53}
\end{equation*}
$$

Here,

$$
\begin{array}{ll}
a_{1}=0.57373862, & a_{2}=0.25361036 \\
a_{3}=-0.14546827, & a_{4}=0.013874725
\end{array}
$$

and

$$
\begin{equation*}
x=H / 5.815 E 5 . \tag{A.54}
\end{equation*}
$$

Enthalpy: (J / kg)
The enthalpy $H(p, T)$ is calculated iteratively. We start with an as sumed value of enthalpy. Liquid temperature is calculated. If the calculated liquid temperature is not in agreement with the prescribed temperature then enthalpy is modified. The modification is continued until the agreemen, in temperatures is achieved.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$

$$
\begin{equation*}
T(p, H)=x_{1}+x_{2} H+\frac{x_{3}}{H-1.7556418 \mathrm{E} 6}-273.15 . \quad(H>8.12 \mathrm{E} 5) \tag{A.55}
\end{equation*}
$$

$$
T(p, H)=\left\{x_{1}+x_{2} H+\frac{x_{3}}{H-1.7556418 E 6}\right\} f(y)
$$

$$
+\left\{z_{1}+z_{2} H+z_{3} H^{2}+z_{4} H^{3}\right\}[1-f(y)]-273.15
$$

$$
\begin{equation*}
(8.12 \mathrm{E} 5<\mathrm{H}<8.16 \mathrm{E} 5) \tag{A.56}
\end{equation*}
$$

$$
\begin{equation*}
T(p, H)=\left\{Z_{1}+Z_{2} H+Z_{3} H^{2}+Z_{4} H^{3}\right\}-273.15 . \quad(H>8.16 \mathrm{E} 5) \tag{A.57}
\end{equation*}
$$

Here,

$$
\begin{align*}
& x_{1}=2.8378 \mathrm{E} 2-2.752333 \mathrm{E}-7 \mathrm{p} \\
& \mathrm{x}_{2}=2.4688303 \mathrm{E}-4+1.24419 \mathrm{E}-13 \mathrm{p} \\
& \mathrm{x}_{3}=1.8790464 \mathrm{E} 7-5.634438 \mathrm{E}-2 \mathrm{p} \\
& \mathrm{z}_{1}=3.49661 \mathrm{E} 2-2.364921 \mathrm{E}-6 \mathrm{p} \\
& \mathrm{z}_{2}=1.1964506 \mathrm{E}-5+6.291758 \mathrm{E}-12 \mathrm{p} \\
& \mathrm{z}_{3}=2.294645 \mathrm{E}-10-5.990103 \mathrm{E}-18 \mathrm{p} \\
& \mathrm{z}_{4}=-8.587812 \mathrm{E}-17+2.015452 \mathrm{E}-24 \mathrm{p} \tag{A.58}
\end{align*}
$$

and y and $f(y)$ are given by Eqs. A. 51 and A. 52 respectively.

Saturation Temperature $\left({ }^{\circ} \mathrm{C}\right)$

$$
\begin{align*}
\mathrm{T}_{\mathrm{sat}}(\mathrm{p})= & \frac{1}{1.8}\left\{\mathrm{C}_{1}+\mathrm{c}_{2} \mathrm{p}_{\mathrm{R}}+\mathrm{c}_{3} \mathrm{p}_{\mathrm{R}}^{2}-\frac{226805}{\mathrm{p}_{\mathrm{R}}+768.85}\right\} . \\
& \left(\mathrm{p}_{\mathrm{R}}>1090.8\right) \tag{A.59}
\end{align*}
$$

$$
T_{\text {sat }}(p)=\frac{1}{1.8}\left\{\frac{a_{1}}{a_{2}-x}+a_{3}+a_{4} x\right\}
$$

$$
\begin{equation*}
\left(p_{R} \leqslant 43.4302\right) \tag{A.60}
\end{equation*}
$$

$$
T_{\text {sat }}(p)=\frac{1}{1.8}\left\{\frac{a_{1}}{a_{2}-x}+a_{3}-a_{4} x\right\} f(y)
$$

$$
+\frac{1}{1.8}\left\{b_{1}+b_{2} x+b_{3} x^{2}+b_{4} x^{3}+b_{5} x^{4}\right\}(1-f(y)) .
$$

$$
\begin{equation*}
\left(43.4302<p_{R} \leqslant 45.4298\right) \tag{A.61}
\end{equation*}
$$

$$
T_{s a t}(p)=\frac{1}{1.8}\left\{b_{1}+b_{2} x+b_{3} x^{2}+b_{4} x^{3}+b_{5} x^{4}\right\} .
$$

$$
\begin{equation*}
\left(p_{R}<1069.2\right) \tag{A.62}
\end{equation*}
$$

$$
\begin{align*}
T_{s a t}(p)= & \frac{1}{1.8}\left\{b_{1}+b_{2} x+b_{3} x^{2}+b_{4} x^{3}+b_{5} x^{4}\right\} f\left(y_{1}\right) \\
& +\frac{1}{1.8}\left\{c_{1}+c_{2} p_{R}+c_{3} p_{R}^{2}-\frac{226805}{p_{R}+768.85}\right\}\left(i-f\left(y_{1}\right)\right) \\
& \left(1069.2<p_{R} \leqslant 1090.8\right) \tag{A.63}
\end{align*}
$$

Here,

$$
\begin{array}{ll}
c_{1}=588.994, & c_{2}=0.05538, \\
z_{3}=-3.516 \mathrm{E}-16, & a_{1}=2634.7, \\
a_{2}=6.026, & a_{3}=-367.486, \\
a_{4}=4.484, & b_{1}=73.802, \\
b_{2}=65.14, & b_{3}=24.859, \\
b_{4}=-4.3391, & b_{5}=1.6889, \\
p_{R}=1.4503774 \mathrm{E}-4, p \\
y=\frac{p_{R}-44.98}{0.4498}, & p_{R}-1080 \\
y_{1}=\frac{10.80}{}, \tag{A.67}
\end{array}
$$

and
$f(y)$ is given by Eq. A. 51 .
A.4. Steam-Vapor Properties

Specific Heat $(\mathrm{J} / \mathrm{kg} \cdot \mathrm{K})$

$$
\begin{equation*}
c_{p}(p, H)=\frac{1}{\left(b_{0}+b_{1} p+b_{2} p^{2}\right)+\left(c_{0}+c_{1} p+c_{2} p^{2}\right) H} \tag{A.68}
\end{equation*}
$$

Here,

$$
\begin{array}{ll}
b_{0}=-5.2568962 \mathrm{E}-4, & b_{1}=-3.4405779 \mathrm{E}-11, \\
b_{2}=7.0081327 \mathrm{E}-19, & c_{0}=3.2441688 \mathrm{E}-10, \\
c_{2}=3.734813 \mathrm{E}-18, & c_{2}=-2.9133521 \mathrm{E}-26 . \tag{A.69}
\end{array}
$$

and the enthalpy H is in J / kg and pressure p is in pascals.

Conductivity ($\mathrm{W} / \mathrm{m} \cdot \mathrm{k}$)

$$
\begin{equation*}
k(T, \rho)=x_{1}+\rho\left\{x_{2}+\frac{2 \cdot 1482 E 5}{T^{4 \cdot 2}} \rho\right\} \tag{A.70}
\end{equation*}
$$

Here,

$$
\begin{align*}
& x_{1}=a_{1}+a_{2} T+a_{3} T^{2}+a_{4} T^{3}, \tag{A.71}\\
& x_{2}=b_{1}+b_{2} T+b_{3} T^{2}, \tag{A.72}\\
& a_{1}=1.76 \mathrm{E}-2, \\
& a_{3}=1.04 \mathrm{E}-7, \\
& b_{1}=1.0351 \mathrm{E}-4, \\
& b_{3}=-2.771 \mathrm{E}-11, \tag{A.73}
\end{align*} \quad a_{2}=5.87 \mathrm{E}-5,0-4.51 \mathrm{E}-11, \quad b_{2}=4.198 \mathrm{E}-7,7
$$

ρ is the density in $\mathrm{kg} / \mathrm{m}^{3}$ and T is the temperature in degree Celsius.

$$
\begin{aligned}
& \text { Viscosity }(P a \cdot s e c) \\
& \mu(\rho, T)= v_{1}-\rho\{1.858 \mathrm{E}-7-5.9 \mathrm{E}-10 \mathrm{~T}\} . \quad(\mathrm{T}<300) \\
& \mu(\rho, T)= v_{1}+\rho\left\{\left(\mathrm{f}_{1}+\mathrm{f}_{2} \mathrm{~T}+\mathrm{f}_{3} \mathrm{~T}^{2}+\mathrm{f}_{4} \mathrm{~T}^{3}\right)\right. \\
&\left.+\left(g_{1}+g_{2} T+g_{3} \mathrm{~T}^{2}+g_{4} \mathrm{~T}^{3}\right)+\left(\mathrm{a}_{1}+\mathrm{a}_{2} \mathrm{~T}+\mathrm{a}_{3} \mathrm{~T}^{2}\right)\right\} . \\
&(300<\mathrm{T}<375) \\
& \mu(\rho, T)= v_{1}+\rho\left\{a_{1}+a_{2} \rho+a_{3} \rho^{2}\right\} . \\
&(T \geqslant 375)
\end{aligned}
$$

Here,

$$
\begin{array}{ll}
a_{1}=3.53 \mathrm{E}-8, & a_{2}=6.765 \mathrm{E}-11, \\
a_{3}=1.021 \mathrm{E}-14, & f_{1}=-2.885 \mathrm{E}-6, \\
f_{2}=2.427 \mathrm{E}-8, & f_{3}=-6.789333 \mathrm{E}-11, \\
f_{4}=6.317037 \mathrm{E}-14, & g_{1}=1.76 \mathrm{E} 2, \\
g_{2}=-1.60, & g_{3}=4.80 \mathrm{E}-3, \\
g_{4}=-4.7407407 \mathrm{E}-6, & \tag{A.77}
\end{array}
$$

and

$$
\mathrm{v}_{1}=8.04 \mathrm{E}-6+4.07 \mathrm{E}-8 \mathrm{~T}
$$

Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

$$
\begin{equation*}
\rho(p, H)=\left\{\left(a_{1}+a_{2} p+\frac{a_{3}}{p}\right)+\left(b_{1}+b_{2} p+\frac{b_{3}}{p}\right) H\right\}^{-1} . \tag{A.79}
\end{equation*}
$$

Here,

$$
\begin{array}{ll}
a_{1}=-5.1026024 \mathrm{E}-5, & a_{2}=1.1208014 \mathrm{E}-10, \\
a_{3}=-4.4505598 \mathrm{E} 5, & b_{1}=-1.6893038 \mathrm{E}-10, \\
b_{2}=-3.3980179 \mathrm{E}-17, & b_{3}=2.3057608 \mathrm{E}-1 . \tag{A.80}
\end{array}
$$

Enthalpy (J / kg)

The enthalpy of vapor $H(p, T)$ is calculated iteratively. The enthalpy is first assumed and temperature is calculated. If the calculated temperature is not in agreement with the prescribed temperature, then, enthalpy is modified. The procudure is repeated until the calculated and specified temperatures are in close agreement.

Temperature (${ }^{\circ} \mathrm{C}$)

$$
\begin{align*}
T(p, H)= & \{-972+5.0 \mathrm{E}-4 \mathrm{H}\}-273.15 . \quad(\mathrm{p}<1.0 \mathrm{E} 4) \tag{A.81}\\
T(p, H)= & \left\{(-930+4.88 \mathrm{E}-4 \mathrm{H}) \mathrm{x}_{1}+(-972+5.0 \mathrm{E}-4 \mathrm{H})\left(1-\mathrm{x}_{1}\right)\right\} \\
& -273.15 . \quad(1.0 \mathrm{E} 4<\mathrm{p}<1.0 \mathrm{E} 5) \tag{A.82}\\
T(p, H)= & \left\{(-930+4.88 \mathrm{E}-4 \mathrm{H}) \mathrm{x}_{2}+\left(\mathrm{d}_{1}+\mathrm{d}_{2} \mathrm{H}+\mathrm{d}_{3} \mathrm{H}^{2}\right)\left(1-\mathrm{x}_{2}\right)\right\} \\
& -273.15 . \quad(1.0 \mathrm{E} 5 \leqslant \mathrm{p}<1.0 \mathrm{E} 6) \tag{A.83}\\
T(p, H)= & \left\{d_{1}+d_{2} H+d_{3} H^{2}\right\}-273.15 . \quad(1.0 \mathrm{E} 6 \leqslant p) \tag{A.84}
\end{align*}
$$

Here,

$$
\begin{align*}
& d_{1}=a_{1}+a_{2} p+a_{3} p^{2}, \\
& d_{2}=b_{1}+b_{2} p+b_{3} p^{2}, \\
& d_{3}=c_{1}+c_{2} p+c_{3} p^{2}, \tag{A.85}
\end{align*}
$$

$$
\begin{align*}
& x_{1}=\frac{1}{0.9}[-0.1+1.0 \mathrm{E}-5 \mathrm{p}] \tag{A.86}\\
& \mathrm{x}_{2}=\frac{1}{9.0}[-1.0+1.0 \mathrm{E}-5 \mathrm{p}]
\end{align*}
$$

(A.87)
and

$$
\begin{array}{ll}
a_{1}=6.5658906 \mathrm{E} 2, & a_{2}=9.9065859 \mathrm{E}-5, \\
a_{3}=-2.1878607 \mathrm{E}-12, & b_{1}=-5.2568969 \mathrm{E}-4, \\
b_{2}=-3.4405784 \mathrm{E}-11, & b_{3}=7.0081336 \mathrm{E}-19, \\
c_{1}=1.6220848 \mathrm{E}-10, & c_{2}=1.86704069 \mathrm{E}-18, \\
c_{3}=-1.4566764 \mathrm{E}-26 . & \tag{A.88}
\end{array}
$$

APPENDIX B

Thermal Structure Module

B.1. Introduction

The thermal structure module is designed to determine the heat transfer interaction between an immersed structure and surrounding fluid. The following five subroutines form the thermal structure module.

INPSTR: Input and computation of geometric variables.
HSTRUC: Determination of surface heat transfer coefficient
TSTRUC: Calculation of temperature distribution in structures
QSTRUC: Computation of heat transfer rate to arrrounding fluid
PSTRUC: Printing of variables.

It is assumed that the axial and angular conduction are negligible compared to radial conduction. Only a one-dimensional (radial) heat-conduction equation is, therefore, used to determine the temperature distribution in a structure and heat transfer rate to the surrounding fluid. The numerical model has the following features.

1. The model considers all internal axial structures. The input NSTRUC determines the total number of structures.
2. Each structure is divided into a desired number of axial elements NTSEL (N).
3. A set of discretization equations is obtained for each element using the proper boundary conditions. The derivation of these equations is presented in Section B.3. The equations are solved using the $\operatorname{Tr} i-D i a g o n a l$ Algorithm.
4. Radial variation and temperature dependence of thermal conductivity and specific heat are incorporated.
5. The effect of gap between two material regions is also accounted for in the model. The gap width and heat transfer coefficient across a gap are input parameters.
6. The heat source is included in the transient heat conduction equation for the structure element.

B.2. Governing Equation

The transient, one-dimensional heat conduction equation is
$p c_{p} \frac{\partial T}{\partial r}=\frac{1}{A} \frac{\partial}{\partial r}\left(k A \frac{\partial T}{\partial r}\right)+\dot{q} \cdot \prime$
Here, p, c_{p} and k are the density, specific heat and conductivity of the material, $\dot{q}^{\prime \prime \prime}$ is the heat source per unit volume and A is the cross sectional area.

B.3. Finite Difference Formulation

Figure B.l shows the cross section of a typical structure element under consideration. Each element is divided into a number of material regions ($\operatorname{NTSMAT}(N)$), and each material region is divided into a number of partitions $(\operatorname{MMPAR}(M R)) . \quad \operatorname{DRPAR}(M R)=\delta R$ is the partition size of the material region. Let $\ell=\operatorname{NTSPAR}(N)$ be the total number of thermal structure partition cells. For simplicity in calculations, the element height of δz is taken as unity.

Cell Surrounded by the Cells of Same Material

Let us consider the energy balance of a partition cell i, as shown in Fig. B.2. The integration of Eq. B.l over the control volume of cell i gives,

$$
\begin{equation*}
\left(\frac{\rho c_{p}^{V}}{\delta t}\right)\left\{T_{i}^{t+\delta t}-T_{i}^{t}\right\}=(k A)_{i-1 / 2} \frac{\left(T_{i-1}-T_{i}\right)}{\delta R}-(k A)_{i+1 / 2}\left\{\frac{T_{i}-T_{i+1}}{\delta R}\right\}+\dot{q}^{\prime \prime \prime} \cdot V . \tag{B.2}
\end{equation*}
$$

Here A is the cross sectional area per unit height, V is the cell volume. Rearranging Eq. B.2, we get

$$
\begin{equation*}
\left(a_{i}+b_{i}+b_{i+1}\right) T_{i}=b_{i} T_{i-1}+b_{i+1} T_{i+1}+d_{i}, \tag{B.3}
\end{equation*}
$$

where,

$$
\begin{align*}
a_{i} & =\left(\rho c_{p} v / \delta t\right)_{i} \tag{B.4}\\
b_{i} & =(k A)_{i-1 / 2} / \delta R, \tag{в.5}\\
b_{i+1} & =(k A)_{i+1 / 2} / \delta R, \tag{B.6}\\
d_{i} & =\left(\dot{q}^{\prime}{ }^{\prime} v+\rho c_{p} v T^{0} / \delta t\right), \tag{B.7}
\end{align*}
$$

and T^{0} and T are the temperatures at t ime t and $(t+\delta t)$ respectively.

Fig. B.1. Cross section of a thermal structure element

Fig. B.2. Energy balance of partition cell i

Cell 1 Adjacent to Coolant

For the case of cell 1, adjacent to the fluid (coolant) (as shown in Fig. B.3), after integrating the energy equation and simplifying we get

$$
\begin{equation*}
\left(a_{1}+b_{1}+b_{2}\right) T_{1}=b_{1} T_{\text {cool }}+b_{2} T_{2}+d_{1} . \tag{B.8}
\end{equation*}
$$

Here a, b, and d have the same meaning, except that b_{1} now includes the convective contribution. Therefore,

$$
\begin{equation*}
b_{1}=\frac{A_{1}}{\left\{\frac{1}{h_{\operatorname{coo} 1}}+\frac{\delta R_{1}}{2 k_{1}}\right\}} \tag{B,g}
\end{equation*}
$$

Similarly, if the other end of the thermal structure, say cell ℓ, is in contact with fluid, we obtain

$$
\begin{equation*}
\left(\mathrm{a}_{\ell}+\mathrm{b}_{\ell}+\mathrm{b}_{\ell-1}\right) \mathrm{T}_{\ell}=\mathrm{b}_{\ell-1} \mathrm{~T}_{\ell-1}+\mathrm{d}_{\ell}, \tag{B.8a}
\end{equation*}
$$

where

$$
d_{\ell}=\left\{\dot{q}^{\prime \prime \prime}{ }^{\prime}+\rho c_{p} v T^{0} / \delta t+b_{\ell}^{T}{ }_{c o o l}\right\}
$$

and

$$
b_{\ell}=\frac{A_{\ell}}{\frac{1}{h_{c o o l}}+\frac{\delta R}{2 k_{\ell}}} .
$$

Cell Surrounded by a Cell of Different Material
For the case of a cell surrounded by a different material cell, as shown in Fig. B.4, we get

$$
\begin{equation*}
\left(a_{j}+b_{j}+b_{j+1}\right) T_{j}=b_{j} T_{j-1}+b_{j+1} T_{j+1}+d_{j} \tag{B.10}
\end{equation*}
$$

Equation B. 10 is similar to Eq. B.3, except that the term b_{j+1} includes the gap resistance. Thus,

$$
\begin{equation*}
b_{j+1}=\frac{A}{\left\{\left(\frac{\delta R}{2 k}\right)_{j}+\frac{1}{h_{g a p}}+\left(\frac{\delta R}{2 k}\right)_{j+1}\right\}} \tag{B.11}
\end{equation*}
$$

The End Cell with Adiabatic Boundary Condition
For the end cell, Fig. B.5, the second boundary condition option we have is the adiabatic boundary condition. As we have no heat transfer, the resistance is infinite, and the term b_{i+1} goes to zero. The final equation, therefore is

$$
\begin{equation*}
\left(\mathrm{a}_{\ell}+\mathrm{b}_{\ell}\right)_{\ell}=\mathrm{T}_{\ell} \mathrm{T}_{\ell-1}+\mathrm{d}_{\ell} \tag{B.12}
\end{equation*}
$$

Fig. B.3. Energy balance of cell 1 adjacent to coola at

Fig. B.4. Cell surrounded by different materials with air gap between them

Fig. B. 5
Cell with adiabatic boundary

$$
\underbrace{T_{L-1}} \sim \sim_{R=\infty}^{T_{L}} \underset{\sim}{q}=0
$$

B. 4 Solution of the Discretization Equations.

We see, from the above derivation that we have ℓ number of equations for ℓ (number of partitions) number of unknown temperatures. The general form of all equations is

$$
\begin{equation*}
\left(a_{i}+b_{i}+b_{i+1}\right) T_{i}=b_{i} T_{i-1}+b_{i+1} T_{i+1}+d_{i} \tag{B.13}
\end{equation*}
$$

We can transform this quation to

$$
\begin{equation*}
c_{i} T_{i}=b_{i+1} T_{i+1}+A_{i} \tag{B.14}
\end{equation*}
$$

where,

$$
\begin{equation*}
A_{i}=d_{i}+b_{i} A_{i-1} / c_{i-1}, \tag{B.15}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i}=a_{i}+b_{i}+b_{i+1}-b_{i}^{2} / c_{i-1} \tag{B.16}
\end{equation*}
$$

The first set of coefficients are

$$
\begin{equation*}
A_{1}=d_{1}+b_{1} T_{\text {cool }}, \tag{B.17}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1}=a_{1}+b_{1}+b_{2} . \tag{B.18}
\end{equation*}
$$

As,

$$
b_{\ell+1}=0,
$$

we first get

$$
\begin{equation*}
\mathrm{T}_{\ell}=\mathrm{A}_{\ell} / \mathrm{C}_{\ell}, \tag{B.19}
\end{equation*}
$$

The rest of the temperatures are then computed using Eq. B. 14 .
B.5. Heat Transfer to Coolant

Once the temperature distribution in a structure element is computed, the heat transfer rate to surrounding fluid is computed from

$$
\begin{equation*}
\dot{\mathrm{q}}_{\mathrm{cool}}^{\prime}=\mathrm{b}_{1}\left(\mathrm{~T}_{1}-\mathrm{T}_{\operatorname{cool}}\right) \text {. } \tag{B.20}
\end{equation*}
$$

Here ' ${ }^{\prime}$ ' is the heat transfer rate in W/meter, because the cross sectional area in term b_{1} is per unit height of the element. The volumetric heat source is then computed using

$$
\begin{equation*}
\dot{q}_{\operatorname{cool}}^{\prime \prime \prime}=\dot{q}_{\operatorname{cool}}^{\prime} /(\delta x \delta y) . \tag{B.21}
\end{equation*}
$$

The computation of heat transfer rate is carried out in the subroutine QSTRUC.

APPENDIX C
 Wire Wrap and Resistance Models

C.1. Introduction

The presence of helical wire wrapping around a fuel pin has two effects on fluid flow. One is the geometrical effect; here the presence of wire wrap influences the fluid flow by reducing the available flow space. This effect is accounted for by modifying the volume porosities and surface permeabilities. The second is the physical effect; here the presence of wire produces additional drag on the fluid flow. This effect is accounted for by it sluding additional resistance terms in the momentum equation.

There are four subroutines related to wire wrap models. These are

1. INTWIR: This subroutine modifies volume porosities and surface permeabilities; locates positions of wire wraps through subroutine WIRE; and computes, through subroutine GETWIR, the wire drag coefficients for x, y, and z "rections.
2. WIRVOL: This subroutine computes volume occupied by wire wrap in a computational cell.
3. WIRE: This subroutine determines wire wrap locations, axial areas and blocked lengths along cell edges.
4. GETWIR: This subroutine computes wire wrap drag coefficients for wire wrap model No. 4. Four wire wrap models were developed. The model No. 4 was found to be the most satisfactory, predicting results in agreement with the experimental measurements.

The flag IWIRE is used for the wire wrap model.

```
IWIRE = 0: No wire wrap option.
    = 1: Smeared wire option; geometrical effects are accounted approxi-
            mately; physicai effects are neglected.
    = 4: Geometrical effects are calculated locally and in detail;
                physical effects are accounted for by incorporating wire
                wrap force Model No. 4.
```


C.2. Smeared Wire Opt ion

In this model, the volume po.osities and surface permeabilities are modified uniformly across he section. This is done by distributing total wire volume equally over all cells and total wire wrap cross-sectional area equally over all cells in each axial plane. Physical effects are neglected.

C.3. Wire Wrap Model

C.3.1. Geometrical Effects.

The geometrical effects due to the presence of wire wrap are accounted for by modifying volume porosities and surface permeabilities. This is done using the following relations.

$$
\begin{align*}
& \gamma_{v}^{w}=\gamma_{v}-\frac{1}{(\Delta x \Delta y \Delta z)} \int_{z}^{z} A_{z}^{w} \delta z, \tag{c.1}\\
& \gamma_{x, i+(1 / 2)}^{w}=\gamma_{x, i+(1 / 2)}-\frac{1}{(\Delta y \Delta z)} \int_{z_{1}}^{z} \delta A_{x, i+(1 / 2)}^{w} \tag{c.2}\\
& \gamma_{y, j+(1 / 2)}^{w}=\gamma_{y, j+(1 / 2)}-\frac{1}{(\Delta x \Delta z)} \int_{z_{1}}^{z_{2}} \delta A_{y, j+(1 / 2)}^{w} \tag{c.3}\\
& \gamma_{z, k+(1 / 2)}^{w}=\gamma_{z, k+(1 / 2)}-\frac{A_{z, k+(1 / 2)}^{w}}{(\Delta x \Delta y)} \tag{c.4}
\end{align*}
$$

Here, superscript w refers to wire wrap and A is the cross-sectional area of wire wrap. The right-hand sides of equations (C.1-C.3) are integrated numerically. At each axial position, A^{W} is computed by determining its proper location in a cell. The step size for numerical integration is taken to be equal to three degrees of angular rotation, i.e.

$$
\begin{equation*}
\delta z=\frac{\text { Wire Pitch }}{120} \tag{c.5}
\end{equation*}
$$

C.3.2. Wire Drag Model

The resistance force due to wire wrap is modeled as

$$
\begin{equation*}
\vec{F}_{w}=\frac{\vec{c}^{c}|w| w \vec{A}}{(\Delta x \Delta y \Delta z)} \tag{c.6}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\vec{F}_{w}=f_{x} \vec{i}+f_{y} \vec{j}+f_{z} \vec{k} \tag{c.7}
\end{equation*}
$$

is the resistance force per unit volume,

$$
\begin{equation*}
\vec{c}=c_{x} \vec{i}+c_{y} \vec{j}+c_{z} \vec{k} \tag{c.8}
\end{equation*}
$$

is the drag coefficient, and

$$
\begin{equation*}
\vec{A}=A_{x} \vec{i}+A_{y} \vec{j}+A_{z} \vec{k} \tag{c.9}
\end{equation*}
$$

is the projected area of wire wrap. The calculation of \vec{A} is briefly described here.

Figure C. 1 shows a typical wire wrap arrangement. Let us consider the wire wrap as a spiral ring of width d_{w} attached to the fuel pir and located at position $0(x, y, z)$ as shown in Fig. C.2. The projected area is

$$
\begin{align*}
d \vec{A} & =d \vec{S} \times d_{w} \vec{n} \\
& =(d x \vec{i}+d y \vec{j}+d z \vec{k}) \times d_{w}(\vec{i} \cos \alpha+\vec{j} \sin \alpha), \tag{C.10}
\end{align*}
$$

where,

$$
\begin{equation*}
\vec{n}=\vec{i} \cos \alpha+\vec{j} \sin \alpha \tag{c.11}
\end{equation*}
$$

is the unit normal vector,

$$
\begin{align*}
\vec{S} & =(x \vec{i}+y \vec{j}+z \vec{k}) \\
& =\overrightarrow{i r}_{p} \cos \alpha+\vec{j} r_{p} \sin \alpha+\vec{k}\left(z_{0}+\frac{\alpha}{2 \pi} w_{p}\right) . \tag{c.12}
\end{align*}
$$

is the wire wrap position vector, r_{p} is the radius of fuel pin and W_{p} is the wire pitch. Differentiating and substituting Eq. C. 12 into Eq. C.10, we get, after simplification,

$$
\begin{equation*}
\mathrm{d} \vec{A}=\frac{W_{p} d_{w}}{2 \pi}(\vec{i}(-\sin \alpha)+\vec{j} \cos \alpha-\vec{k} \tan \theta) d \alpha . \tag{c.13}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{2 \pi r}{W_{p}}\right) \tag{c.14}
\end{equation*}
$$

Fig. C. 1
Typical Wire Wrap Arrangement

Fig. C.2. Cross Section of Helical Wire Wrap Around a Fuel Pin
is the angle between wire wrap centerline and fuel pin centerline. Integrating Eq. C. 13 between two z-planes $(k-(1 / 2)$ and $k+(1 / 2)$) for a given cell, we obtain

$$
\begin{equation*}
\vec{A}=\frac{W_{p} d_{w}}{2 \pi}\left\{\vec{i}\left(\cos \alpha_{2}-\cos \alpha_{1}\right)+\vec{j}\left(\sin \alpha_{2}-\sin \alpha_{1}\right)-\vec{k}\left(\alpha_{2}-\alpha_{1}\right) \tan \theta\right\} \tag{c.15}
\end{equation*}
$$

Here,

$$
\begin{align*}
& \alpha=\frac{2 \pi\left(z-z_{0}\right.}{W_{P}}, \tag{c.16}\\
& \alpha_{2}-\alpha_{1}=\frac{2 \pi}{W_{p}}\left(z_{k+(1 / 2)}-z_{k-(1 / 2)}\right), \tag{c.17}
\end{align*}
$$

and z_{0} is the axial location, when wire wrap position is on x axis passing through the centerline of a fuel pin. The projected wire wrap areas A_{x}, A_{y} and A_{z} are named in COMMIX-2 as UWIRE, VWIRE and WWIRE respectively, and are computed in subroutine GETWIR.

C.4. Resistance Model

We model the distributed resistance forces defined in Eq. 3.9 in the following way.

$$
\begin{equation*}
R_{x}=\frac{1}{\gamma_{v}} \frac{1}{2} f_{x} \rho u^{2} . \tag{c.18}
\end{equation*}
$$

Here, R_{X} is the resistarce force per unit volume, f_{x} is the friction factor per unit length, and subscript x refers to x-direction.

When a rod bundle is aligned along the z axis, the crossflow friction factor, f_{x}, is given by ${ }^{2}$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{x}}=2 \frac{\mathrm{u}}{|\mathrm{u}|} \bar{f}_{\mathrm{x}} \frac{\gamma_{V}^{2} \mathrm{~W}}{\left[1-\left(\frac{d}{P_{y}}\right)^{2}\right]}, \tag{c.19}
\end{equation*}
$$

where,

$$
\begin{aligned}
W_{p} & =\text { wetted perimeter per unit cross-sectional area, } \\
d & =\text { rod diameter }, \\
P_{y} & =\text { pitch in } y \text { direction },
\end{aligned}
$$

and

$$
\overline{\mathrm{f}}_{\mathrm{x}}=\text { the largest of the following three expressions: }
$$

$$
\begin{align*}
& \bar{f}_{x}=3 \operatorname{Re}_{x}^{-1}\left[\frac{P_{y}-d}{P_{y}-0.93 d}\right]^{2}, \tag{c.20}\\
& \bar{f}_{x}=0.6 \frac{P}{d}\left(0.25+\frac{0.118}{\left(P_{y} / d-1\right)^{1.08}}\right) \operatorname{Re}_{x}^{\star-0.15}, \tag{c.21}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{f}_{x}=3\left(\frac{P_{y}-d}{P_{y}-0.93 d}\right)^{2}\left[\frac{\mu}{\mu_{e f f}} \operatorname{Re}_{x}\left(1+\frac{2.16 d}{P_{y}-d}\right)\right]^{-1} . \tag{c.22}
\end{equation*}
$$

In these expressions,

$$
\begin{equation*}
R e_{x}=\frac{\rho \sum_{u} P_{y} y^{\gamma} V}{u} \tag{c.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}_{x}^{*}=\frac{\rho|u| d \gamma_{V}}{\mu(1-d / P} \tag{c.24}
\end{equation*}
$$

Analogous expressions are used for f_{y}, replacing u by v and P_{y} by P_{x} in the above definitions.

$$
\text { The axial friction factor, } f_{z} \text {, is given by }
$$

$$
\begin{equation*}
f_{z}=2 \frac{w}{|w|} w_{p}\left(a \operatorname{Re}_{z}^{b}+c\right), \tag{c.25}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{z}=\frac{\rho|w| D_{h}}{\mu} \tag{C.26}
\end{equation*}
$$

$$
D_{h}=\text { equivalent hydraulic diameter }
$$

and the constants a, b, and c are:

a	b	c	$\mathrm{Re}_{\mathbf{z}}$
8	-1	0	<940
0.07	-0.32	0.0007	>940

APPENDIX D

Input Description

Input for COMMIX-2 can be described in ont of two ways: 1. Box gecmetry: IGROM=0 or IGBOM=-1
2. Hex gecmetry: IGEOM>0

The Box geometry option allows the user to describe the geometry in terms of the cells formed by the X, Y, and Z grid planes. In this case the input structure is as follows:

Two frobles description cards.
NAMEIIST /GBOM/
Surface identification cards.
NAMELIST/DATA/
NAMELIST/FLAG/
NAMEIIST /INPUTQ/ (Optional)
NAMRLIST /STRUCT/ (Optional)
Structure specification cards. (Optional)
Boundary iritialization cards. (Optional)
Internal cell initialization cards. (Optional)
The hex geometry option is used when analyzing hexagonal fuel assemblies only. Several conventions must be noted:

1. Axial length is along the z-direction and one hex flat lies on the x-axis.
2. IMAX, JMAX, DX(I), and DY(J) are automatically determined by quarter pin and full pin partitioning.
3. Surfaces have the following locations: Surface Surface number location

1	Lower left diagonal in X-Y plane.
2	Upper left diagonal in X-Y plane.
3	Lower right diaqonal in X-Y plane,
4	Opper right diagonal in X Y plane.
5	Lower flat along X-axis.
6	Upper flat.
7	Entrance plane $(Z=0.0)$.
8	Exit plane.

The infut structure for this option is as follows:
Two problew description cards.
NAMELIST/GEOM/
AAMELIST /DATA/
NAMBLIST /INPOTQ/
NAMELIST /STRUCT/
Structure specification cards (Optional)
Boundary initialization cards (Optional)
Internal cell initialization cards (Optional)

Default values are indicated either by an asterisk or a value in parentheses after the variable description. Arrays are indicated by the use of a subscript following the variable name. The range of the subscripts are indicated
in the tatle below.

Index	Range	
I	IMAX	
J	JMAX	
K	KMAX	
N	NSURF	
NM	NMATBR	
NB	NHEATC	
NS	NSTRUC	
IND	IMAX*JMAX	IND=I+(J-1)*IMAX

NAMELIST

The restart option used two Argonne system routines called TLEFT and LCCE. TLEFT returns the amount of time left in the current run in units of 0.01 seconds. LOCF returns the absolute address of the variable passed as the arqument. Minor modifications are probably necessary to implement this on other systems.
$0--N e w$ case with no restart written. (*)
$1--N e w$ case with restart written to tape 10 .
2--Restart of previous run read frow tape 9 with ถo restart written.
3--Pestart of previous run read from tape with restart wriften to tape 10.
Igbom $0-$-Regular box geometry option. (*)
$-1-$ Cylindrical geometry option usinq tox geometry input.
$>0--H e x$ geometry option. Set IGEOM to the D umber of pins in the bexagonal fuel assembly. The following values are acceptatle: $7,19,37,61,91,127,169,217,271$.
LMERNT
$0-$ Cell and surface number arrays are not printed. (*)
$1--$ Cell $n u m b e r$ array is printed.
2--Cell and surface number arrays are printed.
The following variables must be input when $I G B O M=0$.
IMax The maximup number of cells in the x-direction.
JMax The maximum number of cells in the F -direction.
KMAX The maximum number of cells in the z-direction.
NSURF The Dumber of unique surfaces on the figure. Unique surfaces are determined by a unique combination of the following three characteristics:

1. Velocity boundary condition
2. Temperature boundary condition
3. Unit Durmal vector to the surface

DX (I)
DY (J)
DZ (K)
The calculational cell sizes along the \mathbb{x}-axis, m. The calculational cell sizes along the y -axis, \mathbf{i} or rad. The calculational cell sizes along the z-axis, m.

The urit rormal vectors referred to by the following three variatles are those pointing into the configuration.
\&NOBML (N) The X-component of the unit rormal vector to surface N. YMCPML (N) The \mathbb{I}-component of the unit normal vector to surface N. ZNOAML (N) The Z-component of the unit normal vector to surface \mathbb{N}.

The following variables wust be input when IGEOM>0.

In the following three variables the index IJ is computed from the following relationship: $\quad \mathrm{JJ}=\mathrm{I}+(\mathrm{I}-1) * \mathrm{Im}$ ax.
ALXN(IJ) Surface porosity adjustment subtracted for irregularities in hex in the x-direction.
ALYN(IJ) Surface porosity adjustment sultracted for irregularities in hex in the y -direction.
AI $2 N$ (IJ) Surface porosity adjustment subtracted for irregularities in hex in the 2 -direction.

For pictorial representation of the following variable see figures C. 1 and C. 2 in the COMMX-2 report.

0--Quarter pin partitioning is used. (*)
1--Pull pin partitioninq is used. (Inoperative $1 / 81$ RCS)
zato Axial (Z) height where wire wrap is positioned along the pcsitive x-axis relative to the rod center, m. WIREP Wire wrad pitch, \mathbb{m}. Positive WIREP indicates counterclockwise rotation when looking in the negative z direction. Negative WIREP indicates clockwise
rotation.

This set cf input is required only if IGEOM=0 or $\mathbf{- 1}$. When fresent its purpose is as follows:

1. Identify each surface elerent.
2. Conditionally qive the arfa of each surface elewent.
3. Idertify the surface number corresponding to each surface element.
Each surface identification card contains the following variables usicq PCRMAT (A4,F10.3.714).

NA MR

AREA

BEG The surface element(s) identified lie on a reqular surface.
IFBG The surface element (s) identified lie on an irregular surface.
.IT.C--Fitber DX*DY, DY*Dz, or DX*DY, whictever is appropriat ϵ is used for the area of the surface element(s) identified.
. GE. O-- The value input is used for the area of the surface elemert (s) identified.
The tollowing six variables detine a rectarqulai solid composed of one or more cells. The rectanaular solid required wust be totally interior to and adjacent to or partially interior to and containing the surface element (s) under consideration.

The beginning and ending I-index limits.
Tbe beqinning and ending J-incex liwits.
The beqinning and ending $k-i n d e x$ limits.
The surface nurber.
All surfaces with the sam combination of the following three items can te assigned the same surface number:

1. Velocity boundary cundition.
2. Temperature bonndary condition.
3. Unit normal vector to the surface.

Note. It is possible for two surface elements to lie in the same surface and have either the same or different surface numbers as well as for two surface elements to lie in different surfaces and have the same or different surface numbers. The order of the surface identification cards must De as follows:

1. All IREG cards must precede all PEG cards.
2. The surface numbers, N, of all IREG cards and all REG cards must be in order or increasing value.

The follcwing variables allow easy specification of uniform property values at boundaries. Non uniform distributions can also be specified with the boundary array initialization cards.

VELOCL(N) Initial liquid velocity normal to surface \mathbb{N} in the direction indicated by XNOBML (N), YNORAL(N), 2NOBEL(N). ($0.0 \mathrm{~m} / \mathrm{s}$)
VELOCG(N) Initial gas valocity normal to surface N in the direction indicated by XNORML (N), YNCFML (N), 2FOKHL(N).
TBMP (N) Inital temperature at surface \mathbb{N}, C. (0.0)
PRES (N)
IDital fressure at surface \mathbb{N}, Pa .
The following three variables are used to initialize a pressure gradient along an axis to speed convergerce. only cne value is allowed to be nonzero.

DPDX
DPDY
DPDZ

BPS 1
BPS2
BP 53

TVAL
PVAL

Pressure drop along the x-axis, Pa / m. (0.0)
pressure drop along the $\mathrm{Y}-\mathrm{axis}, \mathrm{Pa} / \mathrm{m}$. (0.0)
Pressure drop along the z-axis, Pa / m. (0.0)
Steady State is reached when the following conditions are met:

1. $A A X(E E S I D U B) / D C O N V<1.0$
where DCONV=EPS 1* (UVMMAX+EFS2) and
UVWAAX is computed in SUBROUTINL CUTOFF.
 the raximum velocity megnitude in the entire field is less than EPS3.
2. The change of the ∇-velocity component divided by the maximum velocity aagnitude in the entire fieid is less than ERS3.
3. The change of the W-velocity component divided by the maximum velocity magnitude in the entire ficld is less than EPS3.
4. MAX (DH/H) < EPS 3
where H is the current enthalpy and
DH is the change in enthalpy over two consecutive time steps.
Convergence criteria parameter. (0.0001)
Convergence criteria parameter. (0.000001)
Converqence critaria parameter. (0.00001)
All transient driving functions are input into the folloving three variables. Each function is defined by a user specified set of points. Culic spline fit coefficients are then qenerated in SUBROUTINE FITIT. Fifty equally spaced values are printed to allow the user to check the adequacy of the input distribution. Ten to fifteen values vith points concentrated at rapidly changing Y-values should be adequate. The indeperdent variable (usually time) for the transient functions.
The defendent variable for the transient functions. The first value of the second function immediately follows

NEND (NF)

STIME

TIME
NTMAX
TIMAX
TEEST
DT (1)
DT (2)
DTSET
IT (1)
IT (2)
ITSET Time step number at which number of iterations per time step cbanges from IT (1) to IT (2). (10000)
ITMAXE Number of iterations in SOP solution tecnnique for energy equation. (1)
ITAAXI Number of iterations in SOR solution technique for the void fraction. (1)
ITHASX Number of iterations in SOR solution techaique for the outer \mathbb{T} ass loop. (1)
ITVOID Number of iterations in SOR solution technique for the outer void fraction loop. (1)
CIFF Interfacial friction constart wultiplier. (1.0)
BPLAXE
aEIMXT

PRESO
XEFESO
TFAESO
ZPRESO
PAD

TEMPO
VGASOF
The number of points in the NFth transient function.
Time step number at beginning of current run.
Time at beginnirg of current run.
Maximum number of time steps allowed in this run. (c9999)
Maximur time allowed in this rur, s. $(3,6 \mathrm{E}+6)$
Time allowed to wite restart tafe, s. This variable is used in conjunction with the ANL TLEFT routine.
Time step size until time DTSET is reached.
Time step size after time DTSFT is reached.
Time at which time step size ctanges from DT(1) to DT (2). (100C2.0)
Number of iterations per time tep until time step ITSET is reached.
Number cf iterations per time step after tige step ITSET is reacted.

Relaxation parameter in SOR solution technique for the energy. It $\operatorname{REIAXP}=0,0$, the line-by-line solution technique is used. (0.0)
Belaxation parameter in SOR solution techaique for the void fraction. If RELAXT=0.0, the line-by-line solution technique is used. (0.0)
The inital pressure at point '0'. (1.01353E+5)
The x-coorainate of point ${ }^{\prime} 0 \prime, m$. (0.0)
The q-coordinate of point $10 \%, \mathbb{m}(0.0)$
The z-coordinate of point ${ }^{\prime} 0 ', \mathbb{T}$. (0.0)
Fressure value added to pressure array when computing properties. (0.0) Note. By settinq PAD=0.0, the absolute value of pressure is used throughout. One can use relative pressures for solution of the momentum equation by setting the initial pressure near zero and PAD near the pressure required for the probliv. Initial temperature of internal cells, C. Cutoff vilue of gas void fraction (THG) for bypassing
the last value of the first function. The same pattern wust te followed for all subseguent functions. The endpcirts, or teyond, of the range of values used in the transient functions must be input as the fitting routine does not eytrapolate. Discostinuities are indicated by specifyingthe same X-coordinate twice with the same or different Y-coordinate values. the gas mowentum equation. (1.0E-10)

GFAVX GRAVY GBAVZ TUBBVI TUBB VG

Gravity vector component in x-direction, $\mathbb{m} / \mathrm{s} * * 2$. (0.0)
Gravity vector component in Y-direction, $\mathbb{m} / s^{* *}$. (0.0)
Gravity vector componert in z-direction, $\mathbb{m} / \mathrm{s}^{* *} 2$. $(-5,8)$ Turbulent viscosity for liquid, Pa*s. (0.0) Turbulert viscosity for gas, Pa*s. (0.0)

Turbulent conductivities can be input either directly by specifying TURBCL and TUBBCG, or by specifying nonzero values for CHAFEE, CHARTL, and CHARTG.
TUBBCI Turtuledt conductivity for liquid, w; ($\mathbb{Z}^{*} C$). (C.C)

CHARRE
CHARTI
CHABTG
Characteristic Reynolds number. (0.0)
Characteristic temperature for liquid, C. (0.0)
Characteristic temperature for qas, C. (0.0)
CWIBEX
CWIREY
CWIPEZ
The following variables define the thermal conductivity specific beat, and density of materials other than the coolant. These variabies are indexed by values of MATWAL and Materl.
NMATEE Total number of materials.
COK (NM) Coefficients for thermal conductivity of material NM.
$\operatorname{C1K}(N M) \quad \operatorname{CONLUCTIVITY}=\operatorname{COK}(N H)+\operatorname{TC} *(C 1 K(N M)+T C * C 2 K(N \mathbb{N}))$
C2 2 (NM) J/(s*m*C)
$\operatorname{COCP}(\mathbb{N M})$ Coefficients for specific heat of material $N M$.
C1CP (NM) SPECIFIC BEAT $=\operatorname{COCP}(N M)+T C *(C 1 C P(N M)+T C * C 2 C P(N M))$
$C 25 P$ ($\mathrm{B} 日) \quad \mathrm{J})(\mathrm{kq*C})$
COBO (NM) Coefficients for density of material NM.
$\mathrm{C} 1 \mathrm{RO}(\mathrm{NH}) \quad \mathrm{DENSITY}=\mathrm{COBO}(\mathrm{N}(\mathrm{H})+\mathrm{TC} *(\mathrm{C} 1 \mathrm{RO}(\mathrm{NH})+$ TC*C2RO(NM))
C2BO (NM) $\mathrm{kg} / \mathrm{T}^{*} * 3$
The $\mathcal{C o l l o w i r g ~ v a r i a b l e s ~ d e f i n e ~ h e a t ~ t r a n s f e r ~ c o e f f i c i e n t ~}$ corelations. These variables are indexed by values of IHTHAL and IHTSTR.
NHBATC Number of heat transfer coefficient corelations. (1)
HBATC1(NH) Constarts used in heat transfer coefficient corelations.
HEATC 2 (NH) NO=FEATC1 (NH) + EEATC2 (NH) *RE**HEATC3 (NH)*
EEATC3 (NH) FB** (HEATC4 (NH))
geatcu (NH) where N is the Nusselt number,
FE is the peynolds number, and
FR is the Prandtl number. $(5.0,0.25,0.8,0.8)$

Duct wall modelling uses the following variables.
WALLDX(N) Duct wall thickness, m_{o} (1.0)
WALLQS (N) Duct wall volumetric heat source, W/m**3. (0.0)
HYDWAL(N) Bydraulic diameter or characteristic length.
yatwai (N) Baterial number. See input for Nmatrp.
IHANAL (N) Heat transfer coefficient corelation Dumber. See input for NHEATC.

HYDI	Hydraulic diameter of cells adjacent to walls when
	IGEOM is greater than zero otherwise hydraulic diameter of cells, \mathbb{m}.
AYDOUT	Hydraulic diameter of cells not adjacent to walls when
	IGPOM is greater than zero otherwise hydraulic diameter
	of cells, m.
OMEGAC	???. (1.0$)$
OMEGAE	Relaxation factor for energy and energy correction. (0.5)
CHEGAF	Eelaxation factor for pressure. (0,8)
OMEGAF	Relaxation factor for density. (0.0)
OMEGAT	Felaxation factor for void fraction aud void fraction
	correction. (0.5)
OMEGAV	Belaxation factor for velocity and velocity correction. (0.7)
CMEGAO	Felaxation factor for $d(B O) / d(P)$ and $d(B O) / d(B)$ ters. (0.2)
BEL	Interfacial heat transfar coefficient. (0.0)
BKVL	Interfacial friction coefficient.
The che	followirg section of variables are used to specify beat distribution.
IQ	0--Unitorm axial beat flux distribution. (*)
	1--axial cosine heat flux distribution.
	2--Axial MO*SIN (MU) heac flux distribution skewed toward the top of the core. 3--Axial MU*SIN(MU) heat flux distribution skewed toward the rottom of the core.
FNZ	Axial nuclear bot chantel factor used when $I Q=1,2$, or 3 . (1.C)
RLHS	Lowest heated $\mathrm{k}-\mathrm{plane}$. (1)
KHHS	Hichest beated $K-p l a n e . ~(K M A X)$
QIJ (IND)	Normalized radial heat flux distribution. (1.0)
QK (K)	Normalized axial heat flux distribution. (1,C)
CTCTAI.	Total power, W

Array output is done in subroutine oUTPUT which is called once after initialization and according to the array TPRNT.

TPRNT (1) >0.0--TPRNT can contain up to 50 values of time at which OUTPJT is to be called.
$=0.0--001 P U T$ is called after initialization and before termination (*).
<0.0--TPRNT (1) is the print frequency in seconds. TPRNT (2) is the initial print time.

The arrays whicb are printed out at the calls to OUTPUT are coded into the values of ISTPR and $N T H P R$.

ISTPR Up to 50 coded values which specify the arrays to be printed in the first call to OUTPUT.
NTHPR Op to 50 coded values shich specify the arrays to be printed after the first call to ootpot.

Each value cf ISTPF and NTHPE is a signed five digit integer of the form 'SVVPII' whicb is coded according to the following rules:

+ Only the plare or surface specified by 'vvpll' is printed. Plus is assumed and nred not be specifion.
- All planes or surfaces (LL) ret reen 'VVPLL' and tpe next 'VVPLL' specified in ISTPB or NTBPR are printed.
Values between 01 and 50 are for ivterior arrays.
Values tetween 51 and 99 are for arface arravs.
01--0I: U-component of liquid ve city.
02--VI: v-component of liquid $v \in l o c i t y$.
03--WL: V-componert of liquid velocity.
04--HL: Iiquid enthalpy.
05--TL: Iiquid $\tau \in \mathbb{p}$ perature.
06--VCRII: Cell fluid volume.
गフ--RLT: Liquid density.
08--PT: Pressure.
09--DL: Fesidual mass..
10--ABPAX: X-direction flow area.
11--AREAY: Y-direction flow area.
12--ARBAZ: Z-direction flow area.
13--QSOUb: Volufetric heat source.
14--UG: U-component of vapor velocity.
15--VG: V-component of vapor velocity.
16--WG: W-conponent of vapor velocity.
17--HG: vapor enthalpy.
18--TG: vapor temperature.
19--BGT: Vapor density.
20--GAMMA=THLT*EVAP: Boiling source term.
21--THL: Liguid void fraction.
22--THG: Vapor void fraction.
23--THIT: Liquid void fraction.
24--THGT: Vapor void fraction.
51--VELIEN: Surface liquid velocity
52--VFIGPN: Surtace gas velocity.
53--QLBN: Surface liquid heat flux.
54--OGBN: Surface gas heat flux.
55--4E: Adjacent internal cell number.
56-- $31 B$: Surface liquid enthaloy.
57--HGB: Surface gas enthalpy.
58--TLB: Surface liquid temperature.
59--TGB: Surface gas temperature.
60--AREA: Surface element area.
61--FLE: Surface liquid densitv.
62--RGE: Surface gas density.
63--PE: Surface pressure.
64--IJK: Location of adjacent internal cell.
65--The liguid heat transfer coefficient from coolant to wall as used in the transient duct vall model (KTEMP $(\mathbb{N})=50 \mathrm{C}$) is computed and printed.
66- The gas heat transfer coefficient from coolant to wall as used in the transient duct wall model
(KTEMP (4) $=5(0)$ is computed and printed.

F

Lt

IFENE
NSWEBE
ITBNMX ITMOME

IFLAG6
IREBIT

KFIAG5

IT:XPC
IFSOR
$0--A$ surface array is printed.
1--An I plane of an internal array is printed.
2--A J plane of an internal array is printed. $3--A K$ plane of an internal array is printed. Specific plane or surface to be printed. If S is + , only one plane or surface is indicated. If S is -, the 'IL' values in the current and next values of ISTPR or NTHPR indicate the range of planes or surfaces to te printed.

Number of iterations in $S O R$ solution technique for pressure equation. (1)
$1--$ simplified model of G. B. Wallis used to coupute wall resistance.
2--Eivard and Torrey (Dispersed flow) model used to compute wall resistance.
3--Eivard and Torrey (Annular flow) rodel used to compute wall resistance.
4--COMAIX-1A model for hexagonal fuel assembly used to compute wall resistance. (*)
IPPCBQ 0--Bypass pressure correction calculation. i--Use SIMPIE procedure for pressure correction. 2--0se SIMPLER procedure for pressure correction. 3--Use IPSA procedure for pressure colrectior. $0--$ Bypass : grgy calculation. $^{\text {a }}$ 1--Perform energy calculation. Number of iterations for line-by-line procedure in SOLVE subroutires. (1)
Number of iterations for solution of energy equation. (1) Number of iterations for solution of rementur and pressure equations. (1)
detugging information for be printed. (0)
Mass rebalancing is performed inside the pressure correction SOR loop (ITMAXP) when:

MOD (Iteration number, IREEIT) $=0$.
0--Solve the complete momentum equation to obtain the velocity.
1--Use the algebraic relation between pressure and velocity to obtain velocity.
Number of iterations in line-by-line solution procedure for pressure correction equation. (1)
$0--S o l v e$ pressure equation by using the line-by-line solution technique.
$-1--S o l v \epsilon$ pressure equation by using the SOB solution technique sweeping in the Y - and Z-directions.
-2--Solve pressure equation by using the $S O R$ solution

AFLAG1	technique sweeping in the Z - and X-directions. techilque sweeping in the X - and Y-directions. $0--T w o$ fluid model used for two-phase mod \exists l. 2--Homogeneous model used for two-phase wodel.
NFIAG2	0--No rebalancirg in mass conservation calculation.
	1--Rebalancing performed in mass conservation calculation.
IFPOPI	Interfacial friction using model by:
	1--Autruffe et al. 2--Harlow and Amsden.
	3--Bexroth and Starkovich.
	4--Bivard and Torrey.
	$5--$ constant input from RKVL.
	6--G. B. Wallis.
	7--RKVI*THIT*THGT
NBCIL	Evaporation due to boiling computed using:
	1--Nignatulin model with evaporation only.
	$2-$ Niqnatulin model with Autruffe equation for A.
	3--Nigmatulin model with condersation.
	4--Niquatulin model with condensation plus autruffe equation for a.
VAR9	Relaxation factor for pressure reaction in PCEQN1. (1.0)
VA 610	Felaxation factor for pressure correction in TIMSTP, 11.0)
COEF 1	Eoiling correlation coefficiert.
bublen	Number of gas rubbles per cubic meter.
gGas	Gas constant, J/(kg-deg K). (361.0)
	0se 361.0 for sodium and 462.0 for water.
IDROD T	neglected.
	1--Variation of density with respect to oressure is accounted for in the transient term or the continuity equation.
IDDDE	$0--$ Use maximum $D \geqslant / D P$ for mass-momentum iteration.
	1--Use cellwise D / dP $^{\text {for mass-momentum iteration. }}$
IDEAG	$0--\mathrm{Vi}$ scous force only.
	1--Viscous and Dowinal drag forces for bexagonal fuel assembly calculations included.
IF ROD	$0-$ No fuel rods are included. (*)
	1--Fuel rods are included but no default initialization is done. NAMELIST /INPUTQ/ is required in input.
	2--Fuel rods are included and a default initialization
	is done. This initialization sets pressure,
	temperature, density, enthalpy, and the z-componeut
	of velocity from a solution of the coupled mass,
	凹oment and energy equations assuming no transverse velocities.
ISTATE	
	conditions are specified trom input. Other values
	are zero.
	```1--Dnsteady-state: Any state between initial-state and steady-state.```
	2--Steady-state: Converged-state or solution based or both specified boundary corditions and inital-state.

3--Transient-state: ARy state after steady-state.
ISTROC O--No thermal structure present. NABELIST/STEUCT/ not included in input file.
1--Thermal structures are present. NAMBIIST/STPOCT/ must be included in inpat data.

I' e following three variables spacify the boundary condition
types for all surfaces.
KPLOW (N) Type of velocity boundary. $-5--$ continuative wass flow outlet.
-3--Free slif wall.
-2--Continuative velocity outlet.
-1--Continuative womentum outlet.
1-- Uniform constant velocity boundary with normal velocity set from VELCCL(N) and/or VELOCG(N) and tangential velocity set to zero. (*)
$100+\mathrm{NF}--$ Oriform transient velocity boundary witn normal velocity set from the NFth transient function.

KTEAP (N) Type of temperature/heat flux boundary.
1--Uniform constant temperature boundary with temperature set from TEMP (N). (*)
$100+N F--$ Oniform transient temperature boundary witb temperature set from the NFth transien function.
$200+N=-$ oniform constant beat flux houndary with normal heat flux set from TBMP(N).
$300+N F=-U n i f o r n$ transient heat flux roundary with rormal beat flux set from the NFth transient function.
400 -- adiabatic heat flux boundary, i.e., heat flux equal to zero.
500 - Transient duct wall boundary. ???
KPRBS (N) Type of pressure boundary condition. 0--?? ?
1--Constant backbround pressure, Pa. (*)
$100+\mathrm{Nr}--\operatorname{Transient}$ background pressure with pressure set froil the NFth transient function.

IFLIQ $0--$ No liquid phase present. Dimensions of liquid phase variables can be set to 1.
1--Liquid phase may be present. (*)
IPGAS $0--N O$ vapor phase present. Dimensions of vapor phase variables can be sei to 1. (*)
1--Vapor phase may be present.
IFPIOT $-1--N o$ plottape is written, (*)
$0--0 n l y$ the first and last time steps are writien to the plot file on tape 11.
N --Every Nth time step is written to the plotape on tape 11.
IPHBAD $0-$ No qeometry header is written to plottape. This option is used when adding plotting data to a previously existing plottape.
1--A qeometry beader is written to the plottape. (*)

SEVBBAL OF THE FOLLOWING VAEIABLES MUST BE INPUT IETC A ONE DIMBNSIUNAI ABRAY TO OBTAIN THE INDEX, IND, OF THE ONE DIMENSIOVAL ABEAY FRCM THE CELL NUMBER $(I, J)$ THE FOLIOWING REIATJONSHIP IS USED: IND $=I+I M A X *(J-1)$.

WHEN IGFCM $>C$ AIL CELL FLOW AREAS, CFLL WETTED PEEIMRTEES AND FBACTION OF PIN IN CEILS AEE INITIALLY SET TO VALUES COMEOTED FROM A STANDAEL HEXAGONAL FUEL BUNDLE GEOMETRY. IF THE USES IS CONSIDBPING A CASE WHICH LEVIATES FFOM THIS DEFAULI ANY OF ALL OF THESE PAhAyETERS CAN BZ EBSET PY USING THE FOLLONING THREE VABIABIPS:

FLCNA (IJ)	FLOW AREA OP CELLS OF TYPE IJ WHERE IJ = IJTYPE(IND), VETER* (-1.0)
IJTYPE (IXD)	: CELI TYPE. CELL TYPES ARE POSITIVE INTEGERS LESS TEAN 51
	$A R E$ USEL AS INDICES OF THS FOILOWING THEBE VAEIABLBS. IF
	NON NEGATIVE VALUE IS GIVEN TO ANY OF TBE POLIOWIN3 THREE
	VARIABLES THEN THE COEFESPONDING FAFAMETER WIL' BE SET TO
	VALUE IA ALL CELLS OF THAI TYPE.
*ETLN(IJ)	*ETTED PERIMETER OF CEIS OF TYPE IJ WHEFR IJ =
	IJTYEE (IND) , (-1.0)
AN EXAMPLE	MIGHT HEIP TO CLAEIPY THE INPUT FOR THE THREE PEEVIOUS
VAEIABLES	CCNSIDBE A CASE WITH IMAX $=$ JMAX $=10$.
IJTYPE $=15 * 1$,	(2, . : CELLS $(1,1)$ THEOUGH $(5,2)$ ARE GIVEN TYPE 1 AND
PLONA (2) $=0.028$	. . CELLS OF TYPE 2 ARE ASSIGNED FLCW AREAS OF 0.228
	WHILP CPLLS OF TYPE 1 EETAIN I FEIF DEFAULT VALUES.
	CELLS OF TYPE 1 AND 2 ALSO GETAIN THEIE DEFAULT
	WETTED PERIMFTER.


| HYDIN | : INSIDE HYDRAUIIC DIAMBTER OVERRIDE (METBE) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| HYDCUT | OUISIDE HYDRAULIC DIAMETEF OVEFRIDE (METBE) |

THE FOLLOWING TBEEE VARIABLES AEE UNNECESSAEY WHEN IGEOM $>$ O.
CLADOD : CLAD OUTSIDE DIAMETER, METBR.
PITCHX : EITCH IN X DIRECTION, METER.
PITCHY : PITCB IN Y DIRECTION, METER.



```
IHTSTR(N) : NUMBEF OF HEAT TRANSFER CORFFICIENT COERAIATION POB
 THBFMAL STRUCTUPE N. (SFR HFAT TSANSFER COEFFICIENT
 CORBEIATIONS IN NAMELIST EDATA).
HYDRAD(N) : PYDRAULIC DIAMETER OE CHARACTFRISTIC IBNGTH OSBD IN
 HFAT TRANSFES COEFFICIENT CCRBELATION (MFTER)
IXYZ(N) : FLAG FOE AXIAL ALLIGNMENT OF THERMAL STRUCTUPE N I.E.
 1: \-DIR&CTION
 ? : Y-DIEECTION
 3: Z-DIEBCTICN
NTSADO(N) : NUMBEE AF ADJACENT CCOLANT CELLS INTERACTING WITH THE OUTER
 SURFBCE OF AN FLEMENT OF THFRAAL STRUCTURE NUMBEF N (0)
NTSADT (N) : NUMEFP OF ADJACENT COOLANT CEILS INTEPACTING RITH THE INNER
 SURFACE OF AN ELPMENT OF THPFMAL STRUCTOFE NUMBER N (O)
... MATERIAL REGTCNS ABE COUNTFD SEQUENTIALLY BEGINNING FFOM THE FIRST
 THEPMAL STRUCTUES HAVING NTSMAT(1) AATERIALS. FOR EXAMPIE:
 NSTAUC = 3 ... 3 THERAAL STROCTURES
 NTSMAT}(1)=4,3,2, \ldots..T.S. #1 HAS 4 MATERIAL BESIONS,
 T.S. *2 HAS 3 MATEBIAL BEGIONS,
 T.S. #3 HAS 2 MATRRIAL FEGIONS
 THEN MATERIAI BEGION (M.P.) *5 IS THF FIRST EEGION OF T.S. *? AND
 M.B. *9 BPFEVS TC THP LAST M.E, OF T.S. #3
...NOTE : MATFFIAL PEGIONS APE COUNTED FFOM THB OUPSIDE IN
MATEEL(MR) : MATPRIAL TYPF OF M.R. EMF
NMPAR (MB) : NUMPEF OF PAETITICNS OF M, R, #MR
DFPAE (MB) : PARTITION SIZE OF M.B. #ME (METRR)
QSPAR (MR) : VOTUMPTRIC HFAT SOHBCB FOR M.B. #MB (J/(SEC-(4**3))
... GAFS BETWFEN MATERIAI EEGIONS ARE COUNTED SIMIIIAR TO MATEBIAL REGIONS HOWEVER, FCP A THERMAI STUCTURE HAVING NMR NUMBER OF MATBRIAL REGIONS THEFE APE NMP-1 NTMBEF OF GAPS FOLLOWING THE ABOVR EXAMPLE GAP \#3 RFFERS TO THE GAP PETHESN A.R\#3 AND M. B, * 4 OF T, S. \#1 AND GAP 55 RRFEFS TO THE GAP BETWEEN M,R. \# 6 AND M. F. \(\# 7\) IN T.S. \(* 2\)
NGAPTY : TOTAI NUMBEE OF TYPES OF GAP
SGAP(N) : SIZECF GAP TYOR\#N
HGAP(N) : HEAT TBANSPER COBFFICIFNT ACKOSS GAP TYPE\&N (W/(M**2-C))
IGAP(NG) : GAP TYPE FOB GAP NUMBER NG
```

```
* THFBMAL STROCTUBR SFBCIPICATION CABDS *
```


... THESE CARDS SPECIPY THE COOLANT CELLS THAT INTERACT WITH THE T.S. ELEABNTS FIFST SET OF CAEDS ARE FOR OUTER SURFACE ANO NEXT SET OF CABDS ARE FOR INNER SURFACE OF THERMAI STBUCTIBE ELEMBNT,

READ $(5,200) \mathrm{N}, \mathrm{IB}, \mathrm{IB}, \mathrm{JB}, \mathrm{JE}, \mathrm{KB}, \mathrm{KE}$
200
FCRMAT (7I4)

WHERE: $\mathrm{N}=$ T.S. NUMBEF
IP $=$ REGINNINGI
$I F=E N D I N G I$
$J P=$ BEGINNING J
$J F=E N D I N G J$
$K B=$ BEGINNING K
$K E=E N D I N G K$

THE PUEPOSE OF THIS SET OF INPUT CAEDS IS IO INITIALI 2E THE PHYSICAL PROPRRTIES IISTED EELCW INSIDE THE PCIYBBDFON. THE END CARD IS BEQUIB BD RVEN IF NO CARDS IN THIS GEOUP ARE PPESENT. EACH CARD OF TBIS SECTION CONTAINS THE POLICWING VAPIABLES IN THE FOEMAT (A4, F10.3, 6I4):

NAME FVAL IE IE JB JE KP KE
AAME AL : VOLUME POROSITY ; THE OIMENSIONLESS BATIO OF PLUID VOLUME IN A CELI TO TOTAL CELL VOLO*E . (1.0)
ALX: SURFACE POBOSITY ; THE DIMENSIONLZSS PATIO OF FERE FIOW AREA TC THE TOTAL AFEA CF THE SUEFACE BETWREN CPLL ( $I, J, K$ ) AND CELL $(I+\uparrow, J, K),(1, J)$.
ALY: SURFACE FOGOSITY OF THE SURFACF BETMEFN CPLI $(I, J, K)$ AND CEIL $(I, J+1, K),(1,0)$.
$A I Z$ : SURFACE POROSITY OF THE SURFACF EEPWEEN CBIL (I, J,K) AND
CEII $(1, J, K+1),(1,0)$.
P : FBESSURE, PASCAL. ( $101.35 \mathrm{E}+3$ )
TG: TEMPEFATUEE, CPLSIUS. ( $(C .0)$
THG : GAS VOIUME PRACTION.
THL : IIQUID VOLUME FRACTION.
TI: TEMPERATUPE, CELSIUS. ( 0.0 )
TGG: $\quad X$-DIRECTION VELGCITY CCMPONENT, AETEE/SEC. ( 0.0$)$
UL : X-DIFECTICN VELOCITY COMPONENI, METEB/SEC. (C.O)
VG : Y-DIRECTICN VELOCITY COMPONENT, METEK/SEC. (0.0)
VI : Y-DIRECTION VELOCITY COMPONENT, METER/SEC, (0.0)
WG : Z-DIRECTION VELOCITY COMPONENT, METEE/SEC, (0.0)
WL : Z-DIRECTICN VELOCITY CONPONENT, MPTER/SFC, (C.0)
QSOU : VOLUMETFIC HEAT SOURCE PFE COMEATAIIONAI CELL VOIUME DX*DY*DZ (V/M**3) (0.0)

RVAL
IE, IE
JB, JB
KB,KE
: THF VALCE TO BB ASSIGNED TO THE VA氏IABLE NABE.
: PBGINNING AND ENDING I-INDEX LIMIIS.
: EEGINNING AND BNDING J-INDEX IIMITS.
: EEGINNING AND ENDING K-INDEX LIMI?
*********************************

* BOUNDARY INITIALIZATION CARDS *
*********************************
THE KUBPOSE OF THIS SET OF INPUT CARDS IS TO INITIAIIZE BOUNDAEY VALUES OF ANY OF THE ABEAYS LISTBD RELOW, UNIFORM TEMPERATUEE AND VELOCITY BOUNDARY CONDITIONS CAN BE MORE EASIIY SPECIFIED USING THE VARIALBES 'TEMP',
'VELOCL' AND 'VELOCG' IN NAMELIST EDATA. THE RND CARD IS BEQUIBED EVEN IP NO OTHER CARD IN THIS GROUP IS PAESENT. EACH CARD OP THIS SBCTION
CONTAINS THE FOLLOWING VAFIABLES IN THE POFMAT (A4, F10.3,714)

$$
\begin{array}{llllllll}
N A B E & \text { RVAL } & I B & I E & J B & J E & K B & K E
\end{array}
$$

```
NAME : PB : EABSSURE, PASCAL.
 RGB : [E#SITY, KG/M**3.
 RLE : [ENSITY, KG/M**3.
 THGE : GAS VOLUME PBACTION.
 THIB : IIQUID VOIUME FFACTION.
 TGB : GAS TBHPEFATORP, CELSIUS.
 TLB: IIQUID TYMPRRATURP, CFISIUS.
 VEGE: MAGNITUDE OF THE GAS VFLOCITY NOBMAL TO IHD STRFACB,
 METFR/SEC.
VELE : MAGNITUDE OP THE LIOUID VELOCITY NOGMAL TO THE SURFACE,
 METER/SEC.
RVAL : THE VALUE TO BB ASSIGEED TO THE VARIABLE NAMFD,
TE,IE
JB, JE
KB, KE
v
 : BEGINNING AND ENDING I-INDEX LIMITS.
 : ERGINNING ENL ENDING J-INDEX IIMITS.
 : EEGINNING AND ENDING K-INDEX LIMIT3.
: THE SUKFACF NOMBER OF THE BOUNDAFY BEING SET.

TAE FOLLOWING IS THE DBSCRIPTION OF SOME OP THE IMEOETANT VAFIABLES. IHE VAFIABLES THAT ARE PREVIOUSIY DESCPIBFD ABE NOT KFFEBED FEFF.
I;J;K : CELL POSITION IN \(X, Y\), AND Z DIFECTICN RESPRCTIVRLY.
IJK (M) : (I, J, K) LOCATICN OF CELI OF THE ZOEM IIJJKK.
\(M\) : DUMMY COUNTER TO IDENTIFY INTEFNAI CPLLS.
NM : TCTAI NUMBEE OF IRREGULAF CELLS.
NM1 : TCTAI NUMBEE OF CELIS.
\(X ; Y ; Z\) : CCOFDINATES.
YE(L) : INTEFNAL CELL NUABER ADJACBNT TO SURFACE AREA L.
MIM(M) : CELL NUMPER ADJACBNT TO CELL Y IN -X DIPPCTION (I-1 CBLL).
MIP(M) : CELI NUMBFR ADJACENT TO CELL M IN + X DIRECTION (+1 (\(\mathcal{Y}\) (EL).
MJF (M) : CELI NUMBEB ADJACENT TO CELL M IN + Y DIBECTION (J +1 (ELL).
MJM(M) : CELL NUMBER ADJACENT TO CELL M IN -Y DIFECTION (J-1 CELL).
MKM (4) : CELL NUMBEF ADJACENT TO CELL M IN -Z DIFECTICE (K-1 CELL).
MKP (M) : CELL NUMBER ADJACENT TO CPLL M IN + Z EIFPCTION (K +1 CBLL).
MS \((I, J, K)\) : CELL NUABFB AT \((I, J, K)\) IOCATION
```

NOTE : NEGAIIVE VALUE OF THE ABOVE 6 ARBAYS INDICATB THAT ADJACBNT
IS A SUPFACE, FOB EXAMPLE : MIP(2C) = - 43 MEANS THAT NEXT TO
CELI NUMBEK 2O IN +X DIRECTION IS A SURFACE. MIP (M) = 0
INDICATES THAT NO CELL AND NO REGULAF SURFACE IS ADJACBNT
TC CELL IN +X DIEECMION.
B. OVERALL SURPACE INFOFMATION
: IUMMY COUNTER USED FOR SUBFACES.

```
N

NSURP : TCTAL NUMBRR OF SUEFACES.
XNOEML (N) : CCOFDINATES OF UNIT SUKFACE NORMAL VECTOB POINTING INTO YNORML (B) : [CMAIN OF INTEEEST FRCM SURFACE N.
ZNCBML (N) : SEE ABOVF.
NOTE: EACH SHFFACP IS FFSOLVED BY THE ESRTITIONING DESCRIBPD ABOVB \(A N D\) IS SIICED UP INTO SMALI AFEAS WHICH CCVER EACE SUBFACZ. IP THE PAPTITIONED AREA IS NOT NOBMAL TO ANY AXIS, IT IS TERMED IBEEGOLAF AND IS COUNTED SEPABATELY AIONG WITH ITS ASSOCTATED INTERNAI CEIL.

****** C. PARTITIONED SURFACE INFCEMATION
ITH FAETYTICNET SURFACE ELEMENT : SUPFACB NOMBEF 1 (1.LE,L,LE,LCI (1)) IS AN IBBEGULAR SUFFACE PLEMENT (LCI(1).LE.L.LE.LCX(1)) IS A SUFFACE AREA NORMAL TO X-AXIS. (ICX(1) +1. LP.L.LE,LCY(1)) IS A SUFFACE AKEA KOEVAI TO Y-AXIS. (LCY(1) \(+1, I E, L, L E . L C 2(1))\) IS A SUGFACE ARFA NCRSAI TO Z-AXIS.

LTH PAFTITIONEE SUAFACE EIBMPNT: SUFFACE NUMBER N
(LCI \((\mathbb{N}-1)+1\), LE.I.LP.LCI (N)) IS AN IPPEGOLAE SURFACE ALBA
(LCZ \((N-1)+1\).LF, L. LE, ICX \((N))\) IS A SURFACE AREA NORYAL TO X-AXIS
(LCX(N) + 1.LE.L.LE.ICY(N)) IS A SUEPACE AFEA NORMAL TO Y AXIS
(LCY (N) + 1.IE.L.LE.LCZ(N)) IS A SUFFACE AREA NORMAL TO Z-AXIS
```

AFEA(L) ABEA OF LTH PABTITIONED ABEA (㖀*2)
ISUBF(L) SUEFACE NOABER OF LTH PAFTITIONFD AREA

```
 FLOID /CELI VCLUME
ALX (M) : SURFACE PEEMEABILITY IN X-DIFBCTTCN; GEOMETRIC ABEA FRACTION OF SUFFACE BETWEEN CFLL M AND CELL MIP (M)
\(A L Y\) (M) : SURFACE PERMEABILITY IN Y-DIRECTION; GEOMETEIC AREA FRACTION OF SURFACE BETWEEN CELL M AND CELL MJP (Y).
ALZ (H) : SUFPACE PEFMEABILITY IN Z-DIRECTION: GEGMETRIC AREA FRACTION OF SURFACE BETWEEN CBLL M AND CELL MKP(M).

EXAMPLE: CEOSS SECTIONAI FLOW AREA OF SURFACE BETHEEN CELI M AND CELL MIP(M) IS DY(J)*DZ (K) *ALX (M)
```

B

```


VAFIABLZS DLFINED AT THR SUFFACE OF A CFLI:

\section*{BOUNDAFY SURFACE VAEIABLES:}
\begin{tabular}{|c|c|c|}
\hline HLB; HGB & & ENTHALPY , (JOULES/KG) \\
\hline Q2. BN; QGBN \(^{\text {a }}\) & . & RORMAL HFAT FLUX, (JOULES/M**2) \\
\hline ELB; PGP & : & LENSITY. (KG/W**3) \\
\hline PB & : & FRESSURE. (FASCAIS) \\
\hline THLE;THGE & & VOID FRCTION, (DIMPNSINI ESS) \\
\hline TLB;TGE & & TEMPEAATURE. (DEGREE CENTIGRADE) \\
\hline VELIBN & & SUPFACE NORMAL VELOCITY. (M/SEC) \\
\hline VELGBN & & SURFACE NCRMAL VELOCITY. (M/SEC) \\
\hline
\end{tabular}
F. SOME ADDITIONAI VARIABLES

ACCFO:
ACOF1: COEFFICIENTS OF A DISCEETIZED FQUATIUN OF THE FORM
ACCF2 :
ACOF: :
ACOF4 :
ACDF5:
ACOF 6 :
AO*PHI (M) =A1*PHI (M1) +A2*RHI(M2) +A3*PHI (M3)
\(+A 4 * \operatorname{PHI}(94)+A 5 * \operatorname{PHI}(M 5)+A 6 * P H I(M 6)+B 0\)
```

UHAIL :
VHATL :
WHATL :
OHATG :
VaATG :
WHATG :
DOOL :
DVCI :
DW)I :
DUOG :
DVOG :
DWOG :
UNIBE :
VWIEE :
**IRE :
HSTREO :
HSTREI :
DOLMAX :
DVLMAX :
DALMAX :
DUGMAX :
DVGMAX :
DQGMAX :
DHCF :
FCX1 :
FCX2 :
FCXs:
FCX4 :
FC\times5 :
PCY1 ;
FCY2 :
FCY3 :
FCY4 :
FCY5 :
AEEAX:
AREAY:
AREAZ ;
VCELL :
NPHASE :
DIIAE : TIME STFP SIZE
DCONV : CONVERGENCE PARAMETEE
EVAF : BATE OF EVAPOLATION
QOAL : MASS FHACTION OF VAPOP PHASE

```
```

PSEUDO VELCCITY IN THE ALGEBEAIC FORM OF THE MOAENTUM

```
PSEUDO VELCCITY IN THE ALGEBEAIC FORM OF THE MOAENTUM
EQUAIICN, FCR FXAMPLE:
EQUAIICN, FCR FXAMPLE:
 UL}(M)=\operatorname{UHATL}(M)+\operatorname{DOOL}(M)*(PT(M)-\operatorname{PT}(\Delta2)
 UL}(M)=\operatorname{UHATL}(M)+\operatorname{DOOL}(M)*(PT(M)-\operatorname{PT}(\Delta2)
CCEFFICIENI IN THE ABOVE ALGEPPAIC FOEM OF TEE MONENTUM
EQUATICN
THE PPOJECTED WIEE WRAP ABEAS
GBAT TRANSFEF COEFFICIEAT FOS COMPJTING HEAT TFANSFER
FEO& THE SUFFACES OF A THRPMAL STRUCTURE
MAXIMUM CHANGE IN TEE MAGNITODF OF A VAKIABLE IN THE ENTIRE
FIFLD IIVIDED BY THE MAXIMOM MAGNITODE OF THF VABIABLE TN
THE FNTIRE FIEID
COEFFICIENTS USED IN THE WIRE WPAP BESISIANCB MODEL
VOIUME CF CELL OCCUPIED EY TEE FLUID
 = 1 SINGLE PHASE : = 2 TWO PHASE
 = EPS价(EPS2 + MAX (O/DX + V/DY + W/DZ))
```


## ACKNOWLEDGMENTS

We are indebted to Prof. S. L. Soo and Prof. B. T. Chao, University of Illinois, Urbana, Prof. S. V. Patankar, University of Minnesota and our colleagues, Drs. W. Baumann, Y. S. Cha, B. C-J. Chen, S. P. Vanka, and C. I. Yang for stimulating discussions and their constructive comments; to Drs. R. T. Curtis, C. N. Kelber, and P. M. Wood of the United States Nuclear Regulatory Commission for their support, without which this work would not have been possible.

## REFERENCES

1. F. H. Harlow and A. A. Ansden, Plow of Interpenetrating Material Phases, J. Comp. Phys. 18, p. 440 (1975).
2. W. T. Sha, H. M. Domanus, R. C. Schmitt, J. J. Oras, and E. I. H. Lin, COMMIX-1: A Three Dimensional Transient Single-Phase Component Computer Program for Thermal Hydraulic Analysis, MIREG-CR-0415; ANL-77-96 (Sept 1978).
3. S. V. Patankar, Numerical Heat Tranafer and Pluid Plow, Numerical Heat Transfer, Vol. 2, McGraw-Hill, New York (1979).
4. D. B. Spalding, A Novel Pinite-difference Formilation for Differential Expressions Involving Both First and Second Derivatives, Int. J. Num. Methods in Eng., Vol. 4, p. 551 (1972).
5. D. B. Spalding, The Calculation of Free-convection Phenomena in Galiquid Mixture, Imperial College, Heat Transfer Section Report, HTS, 76/11 (1976).
6. W. T. Sha and B. E. Launder, A General Model for Turbulent Momentum aid Heat Traneport in Liquid Metals, Argonne National Laboratory Report, ANL-77-78 (Mar 1979).
7. W. T. Sha et al., Conservation Equations for Pinite-Control Volume Containing Finite, Dispersed, Fixed Heat Generating (or Absorbing) Solids, Argonne National Laboratory Components Technology Division Report (to be published).
8. M. I. Autruffe, G. J. Wilson, B. Stewart, and M. S. Kazimi, A proposed Momentw Exchange Coefficient for Two-Phase Modeling of Sodium Boiling, personal communication.
9. F. H. Harlow and A. A. Amsden, Numerical Calculation of Multiphase Fluid Flow, J. Comp. Phys. 17, 19 (1975).
10. P. E. Rexroth and V. Starkovich, Two-Phase Momentum Exchange Experiment and Analysis, Trans. Am. Nuci. Soc. 28, 445 (1977).
11. W. C. Rivard and M. D. Torrcy, Numerical Calculation of Flashing from Long Pipes Using a Two-Fluid Model, Los Alamos Scientific Laboratory Report LA-6104-MS (Nov 1975).
12. M. R. Granziera and M. S. Kazimi, A Two-Dimensicnal, Two-fluid Model for Sodium Boiling in LMPRR Fuel Assemblies, Energy Laboratory Report No. MIT-EL-80-011, MIT (May 1980).
13. F. W. Dittus and L. M. K. Boelier, Heat Tmansfer in Automobile Radiatorg of the Tubular Type, Publications in Engineering, University of Calif., Berkeley 2, pp. 443-461 (1930).
14. E. N. Sieder and G. E. Tate, Heat Transfer and Prese.re Drop of Liquids in Tuhes, Industrial Engineering Chemistry, Vol. 28, No. 12, pp. 1429-1435 (1936).
15. W. H. McAdams, Heat Transfer, New York, McGraw-Hill Book Company, Inc., 1967.
16. L. Biasi, et al., Studies on Bumout, Part 3, Energia Nucleare 14(9), pp. 530-536 (1967).
17. N. Zuber, et al., The Hydrodynamic Crisis in Pool Boiling of Saturated and Suboooled Liquide, International Developments in Heat Transfer, Part 2, No. 27, 1961 Int. Heat Transfer Conf., Boulder, Colorado, pp. 230-236.
18. F. H. Lienhard and V. K. Dhir, Hydrodynamic Prediction of Peak PootBoiling Heat Fluxes from Finite Bodies, Journal of Heat Transf., Vol. 95, No. 2, pp. 152-158 (1973).
19. T. A. Bjornard, Ptowdown Heat Transfer in a Pressurized Waten Reactor, PHD-Thesis, Massachusetts Institute of Technology, (Aug 1977).
20. D. C. Groeneveld and S. G. J. Delorme, Prediction of Thermat NonEquilibrium in Post Dryout Regime, AECL-5260 (1976).
21. R. L. Dougall and W. M. Rohsenow, Eilit Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities, MIT-TR-9079-26 (1963).
22. F. C. Chato, Laminar Condensation Inside Horizontal and Inclined Tubes, A.S.H.R.A.E. Journal 4, 52-60 (1962).
23. J. G. Collier, Convective Boiling and Condensation, McGraw-Hil1, (1972).
24. E. F. Carpenter and A. P. Colburn, The Effect of Vapor Velocity on Laminar and Turbulent Film Condeneation, Trans. ASME 78, 1637-1643 (1956).
25. S. V. Patankar, A Numemical Method for Conduction in Composite Matemials, Flow in Irreguiar Geometries and Conjugate Heat Transfer, Proceedings of the Sixth Int. Heat Transfer Conference, Toronto, Vol. 3, p. 297 (1978).
26. G. H. Golden and J. V. Tokar, Thermophysical Properties of Sodium, ANL-7323 (Aug 1967).

## Distribution for NUREG/CR-1807 (ANL-81-10)

## Internal:

E. S. Beckjord
W. T. Sha (5)
V. L. Shah (5)
W. L. Baumann
C. E. Till
Y. W. Shin
R. C. Schmitt
R. S. Zeno
M. Weber
L. W. Deitrich
J. G. Bartzis
S. P. Vanka
H. M. Domanus
B. C-J. Chen
D. H. Cho
M. Ishii
P. L. Garner
D. R. Ferguson
J. J. Lorenz
D. P. Weber
R. M. Singer
G. K, Leaf
P. B. Abramson
H. H. Hurmel
J. E. Sanecki
ANL Contract File
ANL Libraries (2)

TIS Files (3)

## External:

USNRC, Washington, for distribution per R7 (380)
DOE-TIC (2)
Manager, Chicago Operations and Regional Office, DOE
Chief, Office of Patent Counsel, DOE-CORO
President, Argonne Universities Association, Argonne, Ill.
Components Technology Division Review Committee:
F. W. Buckman, Consumers Power Co., Jackson, Mich. 49201
R. A. Greenkorn, Purdue U., West Lafayette, Ind. 47907
W. M. Jacobi, Westinghouse Electric Corp., Pittsburgh, Pa. 15230
M. A. Schultz, North Palm Beach, Fla. 33408
J. Weisman, U. Cincinnati, Cincinnati, 0. 45221
P. M. Wood, USNRC, Silver Spring, Md. 20910
S. L. Soo, U. Illinois, Urbana, I11. 61801
B. T. Chao, U. Illinois, Urbana, I11. 61801
J. C. Slattery, Northwestern U., Evanston, I11. 60201
N. E. Todreas, Massachusetts Inst. Technology, Cambridge, Mass. 03129
A. A. Bishop, U. Pittsburgh, Pittsburgh, Pa. 15261
M. S. Kazimi, Massachusetts Inst. Technology, Cambridge, Mass. 03129


[^0]:    $\dagger_{\text {Liquid }}$ phase, or vapor phase, or both phase variables are computed.
    ${ }^{\dagger}$ For two-phase only.

[^1]:    ${ }^{7}$ Liquid phase, or vapor phase, or both phase variables are computed.

