DOCKET NO. 3250

APPLICATION OF TEXAS ELECTRIC SERVICE COMPANY FOR AUTHORITY

 TO CHANGE RATESPUBLIC UTILITY COMMISSION
OF TEXAS

DIRECT TESTIMONY OF CHRISTOPHER CHILD ECONOMIC RESEARCH DIVISION FUBLIC UTILITY COMMISSION OF TEYAS

JULY, 1980
Q. Please state your name and business address.
A. My name is Christopher C. Child. My business address is 7800 Shoal Creek Boulevard, Austin, Texas.
Q. In what capacity are you employed by the Public Utility Commission of Texas?
A. I am employed in the Economic Research Division as a Senior Analyst. I am responsible for the determination of rate of return requirements and rate design for water and electric utilities regulated by this Cormission. In addition, I am also involved in various research projects of the Commission.
Q. Will you briefly describe your educational training and professional experience?
A. I received my B.S. degree in Advertising from the University of Texas at Austin in 1975. I have completed all coursework toward an MBA with a concentration in finance and accounting, and I will receive my degree in August 1980. From 1978 to 1980 I was employed by Gulf States Utilities Company as a Financial Analyst in its Financial Services and Financial Planning and Analysis Departments. I was involved in numerous conventional financings including the sales of common and preferred stock and first mortgage bonds, and I also participated in other unconventional types of utility finance transactions. I was also responsible for various SEC and FERC reporting requirements and worked on many of the company's presentations to the financial community. Additionally, I participated in GSU's 1978 and 1979 rate cases, including the prepara:* in of testimony, analyses, and exhibits, and worked closely in the development of a five-year forecasting model for the company. I have been employed by the Commission in my present capacity since January 1980.
Q. Have you previously testified before the Commission?
A. Yes, I have testified in previous rate cases.
Q. Would you please state the intent of your testimuny in Docket No. 3250 , Texas Electric Service Company, and describe the scope of your review and analysis in this case?
A. The purpose of this testimony is basically threefold. Initially, I will recommend a reasonable balance between the original cost of plant less depreciation and the current cost less an adjustment for present age and condition. This mix between net original and current cost is used by Ms. Jones to compute the adjusted value of Texas Electric Service Company's (TESCO's) invested capital devoted to providing utility service. Secondly, an analysis into the cost of equity to Texas Utilities Company will be conducted to estimate the return required by investors for the use of their funds as equity capital by the parent company. Using this return as a benchmark, a fair return on the equity invested in TESCO wili be determined which, in turn, will lead to my recommendation as to a fair composite raie of return on the original cost of invested capital. Finally, this testimony will evaluate the adequacy of the Staff's recommended revenue requirements in an effort to ensure that the proposed rates will be sufficient to maintain TESCO's financial integrity. To address these issues, this prepared testimony has been organized into seven sections:
I. Adjusted Value Mix
II. Cost of Equity to Texas Utilities
III. Market-to-Book Adjustment
IV. Return to Equity of TESCO
V. Composite Rate of Return
VI. Financial Integrity and Adequacy
VII. Conclusions and Summary of Recommendations

I. ADJUSTED VALUE MIX

Q. Would you please define the adjusted value of invested capital
A. The adjusted value of invested capital is the weighted average of the original cost of property used and useful in providing utility service, less depreciation, and the current cost of that property less an adjustment for age and condition, balanced within the limits prescribed by the Public Utility Regulatory Act. According to Section 41 of the Act, the adjusted value of invested capital must reflect a balance of between 60 and 75 percent net original cost and between 40 and 25 percent net current cost.
Q. Upon what basis have you determined the balance between net original cost and net current cost?
A. The balance between net original cost and net current cost has been developed under the assumption that more current cost should be included during periods of high inflation and deflation, and more original cost should be included during periods of low inflation and deflation. This approach takes into account two aspects of the adjusted value of invested capital. First, the impact of past inflation (deflation) on the Company is accounted for by means of trending the original cost of the Company's property. The resulting net current cost, as calculated by Mr. Saathoff, is directly determined by the age of the property and by the inflation (deflation) that has taken place up to the present. Second, the balance between net original and net current cost reflects the current annual rate of inflation or deflation. Thus, the
present state of the economy is used to weight the extent to which past inflation and deflation is taken into account.
Q. Have you accounted for the other factors that may be considered when arriving at the mix between net original cost and net current cost?
A. The issue of the quality of service being provided by TESCO is addressed by Mr. Saathoff. Since the Company's overall quality of service appears adequate, this factor does not seem to merit additional attention in the adjusted value mix. Similarly, because the growth rate in TESCO's service area does not appear abnormal - having historically averaged in the range of between four to six percent annually - neither does this item warrant special consideration. Finally, the issue of TESCO's need to attract capital will be addressed and accounted for later in my testimony; thus, it does not appear necessary to also consider this factor in determining the balance between net original cost and net current cost plant.
Q. Please explain, then, your derivation of the mix between net original cost and net current cost.
A. The mix between net current cost invasted capital and original cost invested capital has been determined so that the statutory limits for inclusion of net current cost coincide with historical experience of price level changes. Over the 3:-year period from 1947 to the present, the most extreme inflation or deflation rate as measured by the GNP Price Deflator was the 11.8 percent inflation in 1947 ; therefore, 12 percent has been selected as the outside limits. These boundaries have been linearly connected with the origin under the presumption that, in the absence of either inflation or deflation, the invested capital mix should reflect 25 percent net current cost and 75
percent net original cost. For each additional percent of inflation or deflation, an incremental 1.25 percent of net current cost should be included in the invested capital mix. The derivation of this relationship is shown in Schedule 1, page 1 of 2. Schedule 1, page 2 of 2 , shows the balance that would have been used in the past, based upon that relationship.
Q. What current inflation (deflation) rate has been used to arrive at the balance between net original and net current cost of invested capital for TESCO in this case?
A. As reported in National Economic Trends prepared by the Federal Reserve Bank of St. Louis, the seasonally adjusted annual inflation rate (based upon the Gross National Product Implicit Price Deflator) for the year ending March 31,1980, was 8.9 percent. This time period has been selected so as to conform as nearly as possible to the test year and be representative of the present state of the economy. Substituting the 8.9 percent in the equation developed in Schedule 1 , page 1 of 1 , produces a mix comprised of 36.125 percent net current cost and 63.875 percent net original cost investment. The use of this mix in computing the adjusted value of TESCO's invested capital is detailed in Ms. Jones Schedule I, page 1
II. COST OF EQUITY TO TEXAS UTILITIES
Q. Would you please explain the purpose of this portion of your testimony?
A. This section is intended to identify the cost of equity capital to Texas Utilities Company; or in other words, to estimate the minimum return that potential investors would require to induce them to purchase shares of common stock.
Q. Why have you initially focused on the cost of equity to Texas Utilities
rather than the minimun return required from TESCO?
A. TESCO is a wholly-owned subsidiary of Texas Utilities Company (along with Dallas Power and Light Company, Texas Power and Light Company, and several other companies), and all equity is financed through the Parent. While we are ultimately concerned with a fair return to the equity capital invested in TESCO, the logical starting point for determining the quantity is where the subsidiary effectively meets the investor directly - in the marketplace at the parent, or consolidated, level.
Q. Would you please elaborate on the cost of equity concept?
A. As indicated, the cost of equity is the minimum price that must be paid to investors for the use of their money. Equity capital is a resource which, like debt funds, labor, fuel, etc., has a cost, or rent, associated with its usage. By identifying the cost of this resource and allowing a utility the opportunity to earn at approximately this rate, consumers are essentially paying only for the actual cost of the money invested in plant and facilities. At the same time, however, because the price of equity $c:$ al is determined by its alternative uses, the expected return is commensurate with those of other investmenis of similar risk. If equity capital is authorized to earn its opportunity cost, the Company should experience little difficulty raising additional funds. In short, by allowing a utility company to earn its cost of equity, stockholders neither receive windfall gains nor is their investment confiscated; yet the return is sufficient to attract new capital so that service can be maintained and expandes as needed.
Q. Is the cost of equity the same as a fair return to equity?
A. Not necessarily; while the terms are often used synonymously, there can be a
difference between the two if there are other objectives that would cause the values to be different. One such objective might be to encourage a desired ratio of market price to book value. In any event, the cost of equity concept provides a rational basis upon which to develop a fair return to common equity.
Q. How is the cost of capital determined?
A. The cost of capital is a function of two things: the time value of money and the risk to which the capital will be exposed. In other words, the cost of all capital can be generally described as:

Cost of Capital $=$ Risk-Free Rate + Risk Premium
Thus, as the capital is put to riskier uses, the greater the return that is required. Virtually risk-free assets, e.g., U.S. Treasury Bonds, require only a minimum yield to account for the pure time value of money and longterm inflation expectations. As risk increases, the total required return rises as investors demand additional compensation for bearing additional risk. This is particularly evident in the case of bonds and preferred stocks where risk levels, as indicated by ratings, and required yields are fairly well-defined.

Two other items of significance should be $n c^{\prime}-d$. First, inflation has implicitly been taken into account by the marketplace. In other words, the current returns required by investors for the use of their money already reflect their expectations of inflation. They continually adjust returns for anticipated loss of purchasing power while their funds are loaned out. Secondly, the cost of capital is not a fixed function but moves over time as investors revise expectations of overall economic conditions.
Q. You have pinpointed the returns required for various fixed income securities in Schedule II; why not do the same for cormon equities?
A. Extrapolating from fixed income securities to common stock on the risk premium is imprecise in that risk and required returns for equities are not directly observable. Unlike bond and preferred stocks, the dividends and capital gains that common stockholders expect to receive from their investments are not directly observable. There is no stated or contractural rate on equity secur'ties; and consequently, it is impossible to compute the precise rate of return that investors require from a share of common stock. Further complicating the effort to determine the investors' minimum required return is the problem of specifying the risk level of different companies since a multitude of factors contribute to investors' perceptions of the risk of a particular share of common stock. Nevertheless, the risk-return tradeoff concept shown by bonds and preferred stocks undoubtedly extends to common equities as well. Thus, a lower expected return is required with lower risk equities, and increasing expected returns are required with higher risk equities.
Q. How, then, does one determine the investors' required return from or cost of equity for a particular company?
A. Obviously, this is a difficult task because the capital market line is not well defined past the point of fixed income securities. However, by analyzing information about a company and others judged to be of comparable risk, a reasonable estimate of a firm's cost of equity can be made. While various quantitative approaches are used as guides to investors' minimum required returns; in the final analysis, the cost of equity estimate is
largely judgemental, being based upon the information available to the analyst.
Q. How have you gone about estimating the cost of equity to Texas Utilities Company?
A. I have approached the issue of determining Texas Utilities' cost of equity in a variety of ways. Initially, the fundamental financial and operating characteristics of Texas Utilities have been evaluated and compared with those for the electric utility industry and the unregulated sector to gauge the Company's risk relative to other companies. Concurrently, today's market conditions have been contrasted with those in the near past and recent developments have been explored in an effort to better understand any changes in investor expectations, perceptions, and rezuirements. Secondly, a conventional discounted cash flow analysis has been performed which attempts to replicate market expectations and impute investors' required return from Texas Utilities given the Company's current market price. In connection with this, a variation of the traditional discounted cash flow model utilizing investment analysts' earnings forecasts has also been employed to estimate the Company's cost of equity. Thirdly, I have also analyzed a recently conducted survey of investors which inquired directly as to the return they require from an investment in the common stock of an electric utility company. Next, I have examined the equity returns realized by other firms to see what investors might expect from alternative investments. A final test has been to examine the risk premium, or additional return, that investors require for holding common stock instead of long-term bonds. Even though each of these methods is useful in that it is somewhat indicative of
investors' required returns, the results between methodologies may vary substantially. Because some tests are stronger than others, though, careful consideration must be given to the validity of each before arriving at a final cost of equity estimate to the Company.
Q. How does the risk of the electric utility industry compare with the unregulated sector?
A. Electric utilities have traditionally been considered one of the least risky groups of stocks available. This is in large part due to the essential nature of electric service and the market protection afforded by regulation. Beginning in the early and mid-1970s, regulatory iag in some jurisdictions, consumer militancy, fuel problems, economic uncertainties, and the industry's need to raise substantial amounts of external capital for growth, conversion and pollution control caused electric utilities to lose some of their market favor. Even during this period, though, electrics were still considered relatively safe investments since most nonregulated companies were facing similar problems with the energy crisis, inflation, and rising capital costs. During : 77 and 1978 , regulation generally improved nationwide, boiler fuel prices began to stabilize, and capital expenditures showed some promise of leveling out; hence, some of the historical stability returned to the industry.

Last year, though, saw the improving trend disrupted by numerous events and conditions. The mandatory shutdown of several nuclear stations before and after the Three Mile Island incident shocked the industry. Recurring oil shortages coupled with a looming recession has caused investor wariness in the economy as a whole. Continued environmental concerns, recent abnormal
weather patterns, anti-nuclear demonstrations, and unparalleled inflation pushing up long-term interest rates to historical highs have also resulted in additional uncertainties, with the electric industry being particularly susceptible to the adverse financial consequences of these last items. Thus, the relative risk of the electric utility industry has been erratic of late and is currently deteriorating. The overall risk of the electric utility industry has undoubtedly increased somewhat from ten to fifteen years ago. While the last two years had shown a general decline in uncertainty, the events and circumstances through especially the last half of 1979 and the first half of 1980 have rekindled investor concern. Even in light of this, however, the industry is still typically viewed as being, by and large, no more risky than the unregulated sector and the market as a whole. As electricity becomes a more desirable source of energy to households and businesses because of its availability and reliability compared to direct consumption of fuels, the outlook for the industry, despite the near-term problems, still appears favorable with modest. growth being projected for many years into the future.
Q. How do investors view Texas Utilities as compared with other electrics?
A. As everyone is well aware, the Texas Utilities Companies are the only electric utilities with long-term bonds rated Triple A by both major bond rating agencies. The low risk reflected by this rating is a function of many factors. The Company's fundamental business position is enhanced by its location in the Sunbelt and, in particular, in Texas. Its service area is diversified geographically and its revenue composition is reasonably well balanced across customer classes (38\% residential, 28\% commercial, 24\%
industrial, 10% other). Texas Utilities' fuel conversion effort and its long-term access to lignite deposits provide the System with relatively low cost, reliable fuel supplies, even though there is some uncertainty as to whether Texans will fully enjoy these resources due to the Texas Interconnect controversy over forced interstate power pooling. Texas Utilities' involvement in the Comanche Peak Nuclear Units is a source of some concern, especially in the wake of Three Mile Island; but even with both units on-line in 1983, nuclear power will comprise only slightly in excess of ten percent of the System's generating capacity and should not significantly affect its overall risk. Recently, the use of fuel oil as a boiler fuel has become an important negative factor in investor assessment of risk. However, only 1.4\% of the total fuel requirements of the Company are supplied by fuel oil. As a large system, with assets of nearly $\$ 6$ billion and significant generating capacity reserve margins, the Company enjoys substantial financial flexibility. While thr Company has recently undergone a massive construction program, planned capital expenditures in the near future will level off. Each of Texas Utilities : operating subsidiaries falls under the jurisdiction of the Texas Public Utility Commission, either directly or indirectly, which is generally considered by investors to be a responsible and fair regulatory body. The business-oriented political and social climate in the State also makes the Company's service area a desirable environment in which to operate. The capital structure and conservative accounting policies, such as normalized income tax treatment and pot-of-dollars approach to determining AFUDC, of the Company are generally viewed favorably by investors. Finally, the management of the Texas Utilities System has proven itself to be an
efficient, progressive team quite capable of handling the affairs of the Company and generally well-respected by investors for their past accomplishments. Hence, even though some of the fundamental characteristics of the Texas Utilities System suggest that, in absolute terms, the Utility may have become more risky of late, the underlying causes tend to be almost entirely industry- and economy-wide factors common to all firms rather than company-specific changes. As a result, Texas Utilities' risk relative to other electric companies does not seem to have changed appreciably and the System still appears to be one of, if not the, least risky electric utilities in the country.
Q. What has been the recent experience in the capital markets for debt?
A. During the last year, the capital markets have undergone several significant silifts with interest rates and bond yields increasing, then decreasing in a dramatic and rapid fashion and stock prices generally remaining unchanged despite increased earnings and book values. The exact causes behind this are not clear but probabiy reflect a combination of forces including anticipation and eventual onset of the current recession, disillusionment with the Carter Administration's economic policies, persistent inflation, potential and realized oil shortages, and so on. The wide swings in the capital markets over the last 12 months and the impact on the electric utility industry can best be demonstrated with some selected financial indicators. Listed below are yields on public utility fixed income securities in July 1979, February 1980, and July 1980 (from Moody's News Report):

	July 1979	Feb. 1980	July 1980
Aaa Bonds	9.39\%	12.47\%	10.96\%
Aa Bonds	9.73\%	12.90\%	11.63\%
A Bonds	10.04\%	13.39\%	12.00\%
Baa Bonds	10.45\%	14.12\%	12.54\%
aa Preferred Stock	9.03\%	11.20\%	10.59\%
a Preferred Stock	9.55\%	12.27\%	10.97\%
baa Preferred Stock	10.49\%	13.09\%	12.05\%

As indicated, investors are requiring roughly $150-190$ basis points more now than a year ago to induce them to purchase fixed income securities of comparable risk. The progressive steps in this unparalleled increase and decrease in yields is illustrated in Schedule II. The schedule shows that for the first seven months of 1979 , the change in yields were not nearly as drastic as in the last five months. Similarily, the schedule also shows the rapid rise and fall in yields in the first half of 1980.
Q. What has been the recent experience in the capital markets for equity?
A. The experience of electric utilities in the equity markets shows a similar pattern. Below are some average selected financial measures for the 100 largest electric utilities in 1979 and 1980 (from Salomon Brothers' Stock Research; June 1, 1979, and June 3, 1980; book values are for the first quarter of 1979 and 1980, respectively):

	$\underline{1979}$	$\underline{1980}$	Dif.
Dividend Yield	10.07%	10.97%	0.90%
Price-Earnings Ratio	$7.3 \times$	$7.4 \times$	$0.1 \times$
Market-to-Book Ratio	86%	80%	-6.0%
Payout Ratio	74%	82%	8.0%
Return on Average			
Equity	12.2%	11.1%	-1.1%

Since this time a year ago, dividend yields have risen 90 basis points while price-earnings ratios improved marginally. Similarly, market prices have dropped from an average of 86 to 80 percent of book value. Probably most importantly, however, is that these declines in market prices have occurred during a period when payout ratios increased and realized return on equity declined. In all, these statistics present strong evidence thai over the last 12 months, there has been a increase in the returns required by investors.
Q. How have the changes in the capital markets affected the Texas Utilities companies?
A. The general changes in economic and financial market conditions have had a similar impact on the Texas Utilities System. The operating companies ' cost of borrowing has increased from slightly over 9.4 percent a year ago to approximately $11 . ?$ percent today. The more serious impact of current conditions has reen on the common equity of the system. For the first time in many years, iexas Utilities' common stock is consistently selling at below book value (currently at about 85-88\% of year-end 1979 book value) in the
marketplace. This indicates that the returns investors are expecting from Texas Utilities are no longer sufficient, to make them willing to pay a price for a share of the Company's stock equal to or greater than book value.
Q. Does this mean that the returns on equity authorized in the past were inadequate?
A. Not at all, the returns allowed by the Commission in previous cases were appropriate given the economic and financial conditions at the time. This is evidenced by the fact that Texas Utilities' market price consistently sold at or above book value. Only of late have market conditions changed and investors' required returns increased to the point where the level of returns historically authorized are no longer adequate. The implications of this recent experience seem fairly clear. If this Commission intends to encourage a market price equal to or greater than book value so as to prevent dilution of present stockholder's investment, then the returns authorized on equity must be revised upward to reflect changes in capital market conditions and increases in the rates of return demanded by investors.
Q. What tests have you performed to identify the level of investors' required returns from Texas Utilities?
A. First of all, I have used the traditional discounted cash flow (DCF) model to estimate Texas Utilities' cost of equity. The DCF method of gauging investors' required returns is derived from the familiar Gordon dividend growth model. This theory of valuation postulates that the price of a share of cormon stock is equal to the present value of all its future dividends. These dividends are assumed to grow at a constant rate into infinity and are discounted by a rate that is the minimum return required by investors given
the risk of the security:

$$
P_{0}=\frac{D_{0}(1+g)^{1}}{(1+k)^{1}}+\frac{D_{0}(1+g)^{2}}{(1+k)^{2}}+\ldots+\frac{D_{0}(1+g)^{00}}{(1+k)^{00}}
$$

This equation can be conveniently reduced to the more manageable form of:

$$
P_{0}=\frac{D_{1}}{k-g}
$$

and the company's cost of capital can be isolated by rearranging terms:

$$
k=\frac{D_{1}}{P_{0}}+g
$$

Essentially, the DCF model recognizes that the return to the stockholder consists of two parts: dividend yield and growth. Equity investors expect to receive a portion of their total required return in the form of current dividends and the remainder through price appreciation. The model is based upon two fundamental assumptions. Initially, it presumes that investors evaluate the risk and expected return of all securities in the capital markets. Secondly, given these expected returns, investors then adjust the price of each stock so that they are adequately compensated for the risks to which they are exposed. The use of the DCF model to estimate the cost of equity is essentially an attempt to replicate the market pricing mechanism described above. Since we can look to the market to determine what investors ${ }^{\circ}$ feel a share of Texas Utilities' common stock is worth, the rate of return required by investors can be imputed by approximating their expectations of future dividend growth.
Q. In your DCF analyses, what is the dividend yield of Texas Utilities Company?
A. When an investor purchases a share of stock, he is buying expected future dividends and price appreciation; he is not buying past dividends paid to someone else. Therefore, the dividend yield component of the DCF model should be computed by dividing the dividends expected to be received in the coming year $\left(D_{1}\right)$ by the current market price $\left(P_{0}\right)$. I have used $\$ 1.82$ per share in my calculations. This amount has been selected on the basis that investors anticipate Texas Utilities to raise dividends in 1981 in a manner consistent with 1979 and 1980 ; that is, a $\$ 0.12$ annual increase beginning in the first quarter, which will result in stockholders receiving a $\$ 0.44$ dividend per share in each of the last two quarters of 1980 and $\$ 0.47$ per share in the first two quarters of 1981. The market price of the Company's stock has hovered between $\$ 18.00$ and $\$ 19.00$ over the last few months so a price of $\$ 18.375$ has been used in this analysis. This recent average market price has been selected because the cost of equity is a current and forwardlooking concept, and a recent market price is a better indication of investors' present requirements than would be a historical point estimate or a long-run average. Based on these values, the market presently expects a dividend yield of approximately 9.9 percent from Texas Utilities.
Q. Please describe the growth (g) component of the DCF model.
A. In using the DCF model to estimate a company's cost of equity, we are not concerned with the rate at which the firm will actually grow (that is primarily a function of this Commission's decision, management prowess, weather, economic conditions, and chance); rather, at issue is the growth expectations which investors have embodied in the current price of the stock. Furthermore, the DCF model technically maintains that investors are
concerned with the expected increase in dividends into infinity; in other words, their emphasis is on average long-term growth rather than short-run growth. Consequently, in estimating the growth component of the DCF model, an attempt is made to determine what investors think long-term growth will be.
Q. How have you analyzed the growth expectations of Texas Utilities' investors?
A. Two approaches have been used to estimate the long-term growth that investors might expect from Texas Utilities. The first focuses on the Company's expected earnings retention ratio and earned returns on equity, and the second approach considers historical trends in growth. These methods taken together presumably examine, by and large, many of the same factors which investors evaluate when forming their long-term growth expectations and setting the price of a share of Texas Utilities' common stock.
Q. Please explain your first approach.
A. In general, a firm's internal growth results from the retention and reinvestment of earnings. In other words, any increase in a stockholder's interest in a utility company occurs primarily because some profits are retained by the firm and invested in additional assets upon which a return is earned. This being the case, investors would probably 10 to a company's retention ratio (1 - dividend payout ratio) and the expected returns to be earned on equity as an indication of what future growth is apt to be. Reviewing lexas Utilities' history (Schedule 111, page 1), the Company has in general maintained a payout ratio in the 50 to 60 percent range (or a retention rate of 40 to 50 percent), with more recent experience towards the upper (lower) end of this range, as dividends have increased without corresponding
improvements in earnings per share. The most recent four years between 1976 and 1979, however, have probably had a very significant effect on the formation of investor perceptions regarding Texas Utilities' prospects, as the investment community closely monitored the Company's performance under statewide regulation. During this period, Texas Utilities' retention rate has persistently declined each year to approximately 33 percent in 1979 and 31 percent for the test year. Meanwhile, the Company's realized return on equity during this four year period has ranged between 12.2 and 13.1 percent annually with a realized return of 12.0 percent for the test year. Complicating tilis further is the fact that Texas Utilities' stock is now selling at below book value, and investors recognize that any sales of additional equity to continue financing the System's construction program are apt to be dilutive and have a negative impact on future growth.

Considering these factors, investors are likely anticipating Texas Utilities' future retention ratio to be around the 36 to 38 percent level and, based upon recent past experience, expect the Company's earned return to be in the 12.75 te 13.25 percent range. This would imply that the market expects a prospective growth rate for Texas Utilities of something in the vicinity of 4.6 to 5.0 percent annually on an ongoing basis, probabiy with some downward adjustment for possible dilutive effects. There are, of course, an infinite number of growth rates that can be computed depending upon the combination of the retention ratio and return on equity used (Schedule III, page 1), but growth rates around 4.6 to 5.0 percent seem most consistent with what investors would likely project based upon reasonable expectations of the Company's future retention ratio, earned return on
equity, and dilutive effects.
Q. What is involved in your second approach for estimating investor expectations of Texas Utilities' future growth?
A. Besides looking directly to those factors resulting in growth, investors probably also form their expectations of future growth by analyzing historical experience and trends as a guide to the direction which the company is heading, especially for a relatively stable firm such as Texas Utilities. Three factors which would seem most indicative of Texas Utilities' future dividend potential would be growth in net book value, earnings per share, and dividends per share. On page 2 of Schedule 111, the historical values for Texas Utilities' net book value (NBV), earnings per share (EPS), and dividends per share (DPS) are shown since the early 1960 s. For each of these variables, annual compound growth rates for the three periods, 1975-1979, 1970-1979, and 1965-1979, have been computed and are listed on page 5 of the same schedule. In addition, because compound growth rates are sensitive to beginning and ending values, I have also "smoothed" the NBV, EPS, and DPS values through linear regression models (pages 3 and 4 of schedule III). The annual compound growth rates using these normalized values for the same 5,10 , and 15 year periods are also shown in Schedule III, page 5 .
Q. What are the implications of these historical analyses?
A. As shown on page 5 of schedule 111, NBV and EPS growth trends are declining over time although there is an increasing trend in dividend growth. While this rising dividend trend might suggest high market growth expectations, investors recognize that such increases cannot be sustained without
corresponding growth in Texas Utilities' earnings per share and investment base (book value). In other words, the rising growth in dividends per share can largely be attributable to the Company increasing its payout ratio over the last few years; a practice which, of course, cannot be contifued indefinitely. Since the increased dividend payout ratio results in less earnings being retained and reinvested, investors are likely anticipating that the Company's growth will continue to subside somewhat more in coming years. This is further reinforced by the performance experienced since 1976 when the System became subject to more centralized regulation. The general decline in growth rates in the last three to four years relative to prior periods strongly suggests that Texas Utilities' heyday of high growth is past. Consequently, investors are beginning to view the Company as a potential income security instead of a growth stock.
Q. What does this analysis of historical trends suggest as to the long-term growth that investors are expecting from Texas Utilities?
A. The marked downward trend in racent earnings and net book value per share growth rates suggest that investors are not incorporating into Texas Utilities' stock price growth expectations corresponding to the growth rates experienced over the last 10 to 15 years. Texas Utilities is undoubtediy perceived as a maturing electric utility having growth prospects more similar to those of the industry as a whole than it has had in the past. However, its location in Texas and the Sunbelt still results in growth at the high end of the industry average. Thus, considering the trends and implications of the historical numbers he market's perception of the earnings level and consistency that will result from the more centralized regulatory process,
and the Company's apparent transition from a growth to income security, my analysis leads me to believe that investors project Texas Utilities' future long-term growth to be less than that generally indicated by the Company's historical growth but something in the upper end of the 3.0 to 5.0 percent range expected for the industry. Somewhere in the 4.7 to 5.5 percent range seems to be a reasonable growth estimate for Texas Utilities from an analysis of historic NBV, EPS and DPS.
Q. Would you briefly recap your growth analyses and state your conclusions?
A. As discussed previously, the intent of these growth analyses has been to estimate the long-term growth expectations that investors have embodied in the current price of Texas Utilities' stock. I have attempted to do this by replicating the thought processes of investors and how they might form their growth expectations for the Company. To do this, I have analyzed information which is presumably similar to that which the market would evaluate in assessing Texas Utilities' long-term growth prospects. Based upon these analyses and giving appropriate weight to the recent developments and experiences of the Company, I believe that investors expect Texas Utilities' future long-term growth to be in the 4.5 to 5.5 percent range with a more precise estimate being in the neighborhood of 4.7 to 5.0 percent.
Q. Please summarize your analysis of Texas Utilities ' cost of equity using the DCF approach.
A. The DCF model is a market oriented, forward-looking method of estimating a company's cost of equity which is based upon a reasonably sound theory of stock valuation. It is particularly applicable to a utility such as Texas Utilities, where investors expect a large portion of their total return to be
in the form of dividend yield. The advantages of the DCF model are that (1) it focuses solely on the firm in question, and (2) the company's relative risk is not of explicit concern since this is implicitly accounted for by investors when they set the stock price in the market. For Texas Utilities, my DCF analysis indicates that investors anticipate a dividend yield from the Company of approximately 9.9 percent and expect the Utility's future longterm growth to be in the 4.6 to 5.0 percent vicinity. Summing these two components of return, Texas Utilities cost of equity appears to be in the range of 14.5 to 14.9 percent.
Q. In what other ways have you estimated Texas Utilities' cost of equity?
A. Another approach to estimate Texas Utilities' cost of equity is through a variation of the DCF model which uses investment analysts' forecasts of the Company's earnings as its basis. Taking the discounted cash flow formula presented earlier:

$$
k=\frac{0_{1}}{P_{0}}+g
$$

the dividend $\left(D_{1}\right)$ and expected growth (g) components can be described as:

$$
k=\frac{E_{1}(1-b)}{P_{0}}+(b r+v s)
$$

In this reformulation, b represents the Company's expected earnings retention ratio, r is the expected realized return on book equity, and the vs term describes the dilution or accretion attributable to sales of new common stock at below or above book value (Schedule IV, page 1). What this equation says is that D_{1} will be equal to expected earnings per share in the coming period (E_{Z}) times the Company's payout ratio (1 - retention ratio) and growth
will be equal to the rate of retaining earnings times the return earned on equity adjusted for the effects of issuing new equity at a market price different from book. Like the DCF method discussed previously, this approach is an expectations model; in other words, proper implementation requires that its parameters (excapt price) be estimated as investors would forecast them.
Q. Where have you obtained values for implementating this approach?
A. The sources of data for this model have been taken from Texas Utilities' Annual Report; TESCO's Rate-Filing Package; Salomon Brothers Electric Utility Reguiation, Quality, Earnings; Value Line and Standard and Poor's Earnings Forecaster. This latter publication is a compilation of earnings projections made by various investment services, and while it does not include estimates from all analysts, the 51 firms contributing to the Earnings forecaster represent a fairly broad cross-section of the investment community (Schedule IV, page 2). The investment advisory service forecasts contained in this service have been used as surrogates for investor expectations of Texas Utilities' future earnings. As shown on page 2 of Schedule iv, those services projecting Texas Utilities' earnings are forecasting 1980 EPS of between $\$ 2.80$ and $\$ 3.00$, with an average estimate of $\$ 2.86$. From Schedule 111 , page 1 and the rate filing package, 1 have also obtained the following data for the last three years:

		1977	$\underline{1978}$	$\underline{1979}$	TY
b -	Earnings Retention Ratio	41.7\%	40.2\%	33.1\%	30.7\%
(1-b) -	Payout Ratio	58.3\%	59.8\%	66.9\%	69.3\%

r - Realized Return on
Equity $13.0 \% \quad 13.0 \% \quad 12.0 \% \quad 11.6 \%$

Based on this recent financial information, it seems reasonable to assume that investors would project a 1980 earnings retention rate of approximately 39 percent, a payout ratio of 61 percent, and a return on equity in the neighborhood of 13.0 percent. Finally, investor expectations of the effects of additional common equity sales on future growth can be approximated from data contained in TP\&L's Rate-Filing Package. As mentioned, the "vs" term in the equation reflects the increase (decrease) in expected growth attributable to selling new common stock at above (below) book value. To estimate the magnitude of this factor, some basic data is required. Texas Utilities has recently sold about $5,000,000$ shares of new common each year (in 1976 it sold 10 million shares), recently incurring flotation costs slightly over $\$ 0.65$ per share. As of the end of the test year, the Company's book value was $\$ 20.45$ per share for the 93 million plus shares outstanding. Now, if Texas Utilities were to issue five million shares of new stock at the current market price of $\$ 18.375$ per share, the Company would net about $\$ 17.73$ per share. Since this is less than book value, the " s " term in the equation would be 86.7 percent. Furthermore, existing stockholders would forfeit some of their ownership and earnings participation in the Company to the new shareholders. The " v " term in this case becomes -0.71 percent, and the product of these two values implies that existing owners' expected growth would be 0.62 percent less than it otherwise would have been. Put another way, the book value of the Company's stock would drop from $\$ 20.45$ before the sale to $\$ 20.31$ after, a decline in value of 0.68 percent. Thus, if investors anticipated five million new shares of common stock to be sold at current market prices to finance the Company's
construction program, they would also expect a reduction in the expected growth rate on the order of 0.62 percent. Of course, if more shares were likely to be sold, the negative impact on growth would be even greater.
Q. What, then, does this test suagest as to the cost of equity for Texas Utilities?
A. In schedule IV, page 1, the various computations discussed above are detafled. As shown there, combining investment analysts' forecasts of the Company's future earnings, reasonable estimates of an expected retention ratio and earned return on equity, and conservative external financing figures, this approach indicates that the cost of equity to Texas Utilities is approximately 14.0 percent.
Q. How else have you gone about estimating Texas Utilities' cost of equity?
A. The previous method measures a company's cost of equity indirectly; i.e., given various pieces of information about a company and current prices, investors' required returns are imputed. My second approach involves a direct query of investors as to the rate of return they require from a company or industry. In June 1980, the financial consulting firm of Mitchell, Hutchins, Inc. surveyed 158 institutional investors (with 115 responses) about their attitudes toward tra electric utility industry. One of the questions included in the survey inquired as to the total return expected from an investment in the common stock of electric utility companies. A summary of the responses to this question have been reproduced in Schedule V, page 1. As illustrated, the majority of the respondents (75 percent) indicated that a return between 15 and 18 percent would be attractive from this group.
Q. Are there any caveats regarding the interpretation of this survey?
A. There are several points meriting mention with respect to this direct measure of investor's required returns. First, it should be noted that this survey is the most currently available and thus is the most recent information available from investors. Also, the survey was conducted after this spring's wild gyrations in the money and credit markets and reflects the impact that this had on the perceived risk of the industry. Secondly, however, the standard upon which these expected returns are based is a utility of Double A risk. Since Texas Utilities Company is rated Triple-A and is generally considered to be a less risky investment than the average Double A utility, the Company's cost of equity is likely to be at the bottom of this range, even after an adjustment is made for the change in Double-A yields from 12.5 to the slightly lower yields of today. Finally, the 'results of this poll are subject to the limitations of any survey with respect to the truthfulness of responses, proper interpretation of the questions, sample size and representativeness, and so forth.
Q. Taking these factors into account, what does this survey imply as to Texas Utilities' cost of equity?
A. Adjusting the survey results for subsequent events, such as present inflation rates, accounting for risk differentials, and recognizing the study methodology, this test indicates that Texas Utilities' cost of equity would fall in the 14.50 to 15.00 percent range.
Q. What other methodology have you used to estimate Texas Utilities' cost of equity?
A. Another approach for estimating the Company's cost of equity has been to
examine the additional return that investors have demanded for holding Texas Utilities' common stock instead of its senior fixed securities. This bond yield/risk premium analysis is intended to reflect the effect of interest rate changes on investors' required returns and is an offshoot of the idea discussed earlier that expected returns are comprised of some time value of money plus a risk premium.
Q. Please explain this method.
A. This test has involved computing the spread (or risk premium) between the yield on Moody's Aaa bonds and the return required on the equity invested in Texas Utilities for each year between 1975 and 1979. Since we do not know what the cost of equity to the Company in each of these periods was, investors' required returns at the various points in time must te estimated. Using Texas Utilities' realized returns as a proxy for the cost of equity would be inappropriate since this would only maintain the status quo of the Company and would be circular. Therefore, I have used a DCF model to estimate investor requirements which assumes that investors formed their growth expectations based solely on historical experience. A mechanical growth estimation technique has been employed that averages the compound growth rates for the 5,10 , and 15 year periods prior to the year under examination. The net effect of this averaging method is to emphasize the most recent past (the preceding five years are weighted 50 percent, the preceding ten years are weighted 33 percent, and the preceding 15 years are weighted 17 percent) under the assumption that investors place greater emphasis on more current growth rates. The resulting growth estimates have then been summed with the dividend yield to obtain a cost of equity estimate
for each year. As shown in Schedule VI, page 1, using this approach to estimate the cost of equity indicates thet the risk premium for Texas Utilities common stock between 1975 and 1979 has ranged, on average, from between 4.3 percent and 6.3 percent above the Aaa bond yield. If this relationship is assumed to be relatively constant over time, then adding these risk premiums to the present Aaa bond yield of approximately 10.96 percent suggests that Texas Utilities' present cost of equity is between 15.2 and 17.2 percent.
Q. Do you have any reservations about this type of bond yield/risk premium methodology?
A. While this type of analysis has considerable appeal, difficulties implementing the concept require that the results be scrutinized carefully. Initially, the underlying assumptions that risk premiums are constant over time and independent of the level of interest rates may not be entirely correct. For example, the spreads between different quality bonds vary over time even though the risk differences between rating groups remain fairly constant. Presumably, the same phenomenon would be experienced between common stocks and bonds as economic conditions, interest rate levels, and investors' sensitivity tc relative levels of risk change. Probably the most severe limitation of this approach, however, lies in estimating investors' required returns at different points back in time. Blindly accepting mechanically determined growth estimates may overlook some important items and changes that have occurred or which investors are expecting. For example, in Texas Utilities' case, the growth estimates suggest that investors' expectations have remained virtually unchanged over the five year
study period, yet the rise in dividend yield from 6.4 to 9.3 percent (while interest rates only increased 90 basis points) would suggest that investors were anticipating Texas Utilities' transition from a growth stock to more of an income security. Because of this type of qualification, the results of this analysis must be interpreted judiciously.
Q. Have you performed any comparable earnings analyses?
A. Yes, as my last step in estimating Texas Utilities' cost of equity, the returns earned on common equity by other firms across a wide spectrum of the American economy have been evaluated. For this methodology to be useful in identifying investors' required returns, it must be assumed that other companies, on average, have earned their cost of equity on net book value no more and no less. My examination of these results indicates that there have been very wide variations in the returns earned by American industry in the period 1975-1979. For instance, in 1979 the mean return was 16.4 percent with a standard deviation of 4.05 percent. Similar results are found in analyses of other years.

However, while there are useful insights from this comparable earnings analysis, one must be careful accepting it as being truly representative of the sample firms' costs of equity. First, the basic assumption upon which it is founded; i.e., that on average companies realize their cost of equity on book value, must be seriously questioned. While in the theory of competitive markets this assumption holds; few, if any, companies in the U.S. economy operate in truly competitive markets. Firms that enjoy marketing, monopolistic, or patent advantages, such as most drug companies, some chemical companies, IBM, Coca-Cola, and so on, are likely to have realized
returns on book equity in excess of those required by investors at the market level. Meanwhile, other firms such as railroads, some electric utilities, etc. have undoubtedly earned less than their cost of equity on book values. Presuming that those earning more and those realizing less offset each other exactly is tenuous at best. Most importantly, relying on returns that have been earned in the past under varied financial and economic conditions fails to recognize the current nature and market orientation of investors' required rates of return. Whether realized returns bear little resemblance to the cost of equity is not clear; regardless, the validity of this, as with any comparable earnings test, must be questioned.
Q. What has been the major thrust of this portion of your testimony?
A. In this section, I have tried to identify the cost of a resource -equity capital to Texas Utilities Company -as the basis for making a recommendation as to a fair return on the equity invested in Texas Electric Service Company. Probably the most important conclusion to come out of my study has been that the cost of money to the Texas Utilities System, both debt and equity, has recently increased appreciably. This increase is largely due to the fact that the capital markets have undergone significant changes over the last 12 months and, unfortunately, Texas Utilities has not been immune. Not only are interest rates higher now than a year ago, but also the risks of the electric utility industry have increased. These industry-specific and other economywide factors have caused Texas Utilities common stock to now sell consistently below its book value. In light of this analysis, it seems clear that the equity return authorized in the past for the Texas Utilities companies is no longer adequate, and current economic conditions dictate that
it be revised accordingly.
Q. From your analysis, what do you feel the cost of equity is for Texas Utilities?
A. Despite the events discussed above, I continue to believe that the electric utility industry is generally no more risky than the nonregulated sector as a whole, and that within the industry, Texas Utilities Company is one of the least risky electric utilities in the country. Thus, the return required by investors from the Company is still less than that demanded from most other utilities in the industry and other firms in general. I have conducted various tests to locate the minimum return required by the Company's investors (Schedule VIII), and while each of these were useful, the resu?ting cost of equity estimates vary in magnitude and credib,ify (the first three being the stronger set). Consequently, my final conclusion, as that of every analyst, is one largely based upon judgement, giving consideration to the relative strengths and weaknesses of the different methodologies, but I feel that the evidence is clear that Texas Utilities' cost of equity is currently in the range of 14.50 to 14.90 percent.

111. MARKET-TO-BOOK ADJUSTMENT

Q. What is the purpose of this portion of your testimony?
A. As discussed earlier, the cost of equity provides a basis for determining a fair return to equity. Other considerations, however, might warrant an adjustment to this minimum rent for the use of capital in an effort to achieve other objectives deemed to be in the public interest.
Q. Please provide an example of such an adjustment.
A. It is generally preferable for the market price of a utility's stock to sell
above its book value so that the existing stockholders' equity in the company is not reduced on a per share basis in the event that additional common stock is sold. The importance of this is that a firm can only sell new stock at below book value for so long before it becomes nearly impossible to resume a growing earnings trend or before existing stockholders take action to block further dilutive sales of stock. Therefore, especially during periods of heavy construction expenditures and external equity financing, it seems desirable to improve the probability that the utility will not have to dilute existing stockholders' equity as the utility continues to meet its service obligations to its customers.
Q. Briefly explain the relationship between market price and book value.
A. The cost of equity is a market-oriented concept. Thus, if a market determined cost of equity is applied to an investment base valued at original cost, the market price of the utility's common stock will be driven towards book value (up if the existing market-to-book ratio is less than one and down if it is greater than unity). The reason for this is that if a company is authorized a level of earnings on book value that investors had expected on market value, they will adjust the equilibrium price so that the expected rate of return on market investment remains the same. Since regulatory authorities are constrained to allowing a return on booked values rather than market values, if an equal market-to-book relationship is to be avoided, the cost of equity needs to be adjusted.
Q. What can cause the market price to book value ratio to fall below unity?
A. A variety of factors can result in the market price falling to below book value. Other things being equal, allowing a return less than the cost of
equity will cause a market-to-book ratio of less than one. Similarly, if investors' required returns increase after rates have been set at the cost of equity, the market-to-book relationship will become less than equal. Theoretically, issuance and flotation costs incurred in connection with a new issue of common stock have a depressing effect on price. Finally, purported market pressure associated with the sale of additional equity could cause the market price to fall below book value.
Q. Please discuss the effects of flotation costs.
A. When a company sells new equity, flotation costs are incurred as a result of fees paid to investment bankers to handle the underwriting and distribution functions and other related issuance expenses. These costs reduce the net proceeds realized by the company from the additional securities. Typically, flotation and issuance costs amount to between three and five percent of the new issue, but the "dilutive effect" is infinitely smaller than these percentages would indicate. The reason for this is that the flotation costs are borne by all of the issuing company's stockholders; therefore, the dilution of existing equity is equal to the flotation costs di,ided by all shares outstanding. Schedule IX, page 1 shows these computations for three of Texas Utilities' latest stock offerings. As indicated, the dilution effect attributable to flotation costs has averaged about negative 0.54 percent. That is, investors that bought stock from those issues decreased the NBV per share for all stockholders by as much as $\$ 0.32$ per share. For TU, this dilution resulted in a 1.54 per-cent decrease in the NBV per share. Of course, negative dilution is possible only if the market-tobook is greater than 1.0 , a condition that no longer exists. For all of the
issues, the effects of all issuance expenses on NBV, are less than 1.0 percent and certainly not very significant.
Q. Please explain the market pressure argument.
A. Market pressure is the purported drop in price that occurs when new issues are placed in the market because of the sudden excess supply of a particular security. If this market pressure exists, the effect would be to push the market price below book value and the sale of additional shares would have a dilutive impact similar to that described previously. An extensive study (M. Scholes, "The Market for Securities: Substitution Versus Price Pressure and the Effects of Information of Share Prices," Journal of Business, April 1972) has indicated that any market pressure associated with the issuance of additional common stock is negligible, and that the security markets are capable of absorbing new securities without abnormal price responses.
Q. Since flotation costs and market pressure appear to be insignificant factors in diluting existing common equity, what reason is there for adjusting the cost of equity?
A. As mentioned, a market-to-book ratio less than one can be brought about by an increase in the cost of equity over time; or a'ternatively, by fluctuations in Texas Utilities' stock price attributable to changing interest rates and market movements in general. In order to reduce the likelihood (in light of Texas Utilities' recent experience, obviously not eliminate the possibility) of the Company having to issue new stock at below book value, a cushion to partially absorb market fluctuenions seems appropriate. This cssentially gives Texas Utilities son \& b-iter than an even chance to sell additional equity without dilu 'r, ing shareholders' interests a fair exchange

Since the Company is expected to continuously meet its service obligations to consumers.
Q. What is an appropriate market-to-book ratio?
A. While selecting any target market-to-book ratio is arbitrary, a ten percent cushion for a company such as Texas Utilities seems adequate. This means that the Company's market price must drop approximately ten percent before Texas Utilities is in a potential dilutive situation. Equally important, because Texas Ittilities' actual Beta - the responsiveness of its stock price to changes in the market as a whole - is approximately .80 on average it would take over a 12 percent decline in general market levels to cause the Company's market prise to fall below book. Considering the Texas Utilities System's financial strength, a ten percent market-to-book adjustment seems to be a sufficient cushion to provide additional financing flexibility and largely protect existing shareholders against possible dilutive effects resulting from new issues of common stock.
Q. How do you compute the amount of the adjustment necessary to achieve a target market-to-book ratio?
A. As explained earlier, if a market determined cost of equity is applied to accounting numbers, then price will be forced to book value. Assuming that the DCF model of valuation explained in the previous section is a fair description of the pricing mechanism for Texas Utilities' stock, then allowing the Company only its cost of equity, k, will result in market price (P) equalling book value (B) :

$$
P=B=\frac{D_{1}}{k-g}
$$

If market price is to be equal to some target multiple of book value (M / B), then the price of the stock can be expressed as:

$$
P=B(M / B)=\frac{D_{1}}{k^{*}-g}(M / B)
$$

Solving for k^{\star}, the return necessary to encourage a target market-to-book ratio, results in the following (details of this computation are shown on page 4 of Schedule IX):

$$
k^{*}=\frac{D_{1}}{p}(M / B)+g
$$

Therefore, the adjustment to the cost of equity required to encourage a target market-to-book ratio is equal to the company's dividend yield times the desired cushion.
Q. What adjustment, then, would be required to achieve a market-to-book ratio of 1.1 ?
A. Since the Company's dividend yield is currently expected to be about 9.9 percent, if it were deemed appropriate for Texas Utilities' market price to sell 10 percent above book value, increasing the cost of equity by 100 basis points should be sufficient to encourage a market-to-book ratio of approximately 1.1. The resulting recommended return on equity for TU is 15.50 to 15.90 percent.

IV. RETURN TO EQUITY OF TEXAS ELECTRIC SERVICE COMPANY

Q. You have indicated that the cost of equity to the Texas Utilities system is in the 14.25 to 14.75 percent range. How does this range relate to Texas Electric Service Company's cost of equity?
A. So far, my analysis has only focused on identifying the average cost of
equity capital to the Texas Utilities System given the consolidated company's composite risk. It is important to recognize, however, that the total risk of Texas Utilities is comprised of the individual risks of the various parts of the system. In other words, when investors evaluate the risk of investing in Texas Utilities' stock, they look at the various components and activities included in the total holding company portfolio. After evaluating the level of risk attributable to each part of the System and weighing its relative proportion, an assessment of Texas Utilities' overall risk is made.
Q. Would you please elaborate on this?
A. The Texas Utilities System is essentially made up of eight parts: the three operating companies, Texas Electric Service Company, Dallas Power and Light Company, and Texas Power and Light Company; the three service companies, Texas Utilities Generating Company, Texas Utilities Service Inc., and Texas Utilities Fuel Company; and the two unregulated subsidiaries, Chaco Energy Company and Basic Resources, Inc. Many of the functions of these entities are similar and related, but each has different operating and financial characteristics and, consequently, varying levels of risk. For example, the risks of Chaco and Basic, which are involved in the development, acquisition, production, and delivery of fuels and alternative energy sources, are significantly greater than those of TUGCO, whose primary function is as an agent in the operation of jointly-owned generating stations. In the same vein, the three operating companies, DP\&L, TESCO, and TP\&L, each have different risks although not as extreme as those between Chaco/Basic and TUGCO. Nevertheless, the total risk of the Texas Utilities

System, which has been examined previously in the determination of an overall cost of equity, is a combination of the individual risks of these various components.
Q. How does this affect the cost of equity assigned to each component?
A. To the extent that the various parts of the Texas Utilities System have varying levels of risk, the cost of equity capital assigned to each component should be adjusted upward or downward from the System average according to the risk that it contributes to the holding company in total. This is consistent with the principle of identifying the costs of a resource, in this case, equity funds, used in providing service and allocating these correctly. The issue is not one of fairness to Texas Utilities but rather, one of equity among consumers. Ratepayers should be responsible for the costs incurred in serving them and should not subsidize or be subsidized by customers in other service areas or other parts of the System. Considering the amount of capital invested to serve each customer, this is a nontrivial matter.
Q. How do the relative risks of the various Texas Utilities subsidiaries compare?
A. TUGCO and TUFCO are nominally wholly debt-financed, and because TUSI is a service group, the equity investment in it verges on being inconst, intial. Moreover, at the present time, Chaco and Basic comprise only a relatively insignificant portion of the System's assets. Therefore, the real issue centers on the relative risks of the three operating companies, DP\&L, TESCO, and TP\&L. I am of the opinion that while the three operating subsidiaries' risks are somewhat similar, they are not identical. However, the differences
are not of a sufficient magnitude to warrant assigning different costs of equity to each company at this time.
Q. How did you arrive at this conclusion?
A. I have examined each of the three companies' operating traits, financial position, earnings history, service areas and customer mixes, construction programs, and so on to evaluate the subsidiaries' relative risks. Since the companies share many common characteristics through their ties to Texas Utilities, all three operate in essentially the same regulatory environment, and there are no overriding factors which create significant distinctions between the companies; I can find no reason to assign a cost of equity to any operating company.
Q. What, then, is your recommendation as to a fair return on the equity capital invested in Texas Electric Service Company?
A. Considering the fairly equal risk of TESCO to the entire Texas Utilities System, I believe that the Company's cost of equity is in the same range of 14.50 to 15.00 percent cost of equity range estimated for the Texas Utilities System as a whole. In light of the continuing construction program facing TESCO and the corresponding need to raise external equity through the Parent to finance these expenditures, I feel that an adjustment to encourage a market-to-book ratio greater than one is warranted. Because of the financial strength of TESCO and the flexibility afforded by its association with Texas Utilities, adjusting the cost of equity to encourage a market-to-book ratio of 110 percent should help provide protection against potential dilutive sales of new common stock. Consequently, combining a basis point market-to-book adjustment with the low end-range of my estimate
of Texas Utilities' cost of equity, 1 would recomend that a return of approximately 15.50 percent be authorized on the equity capital invested in Texas Electric Service Company.

v. COMPOSITE RATE OF RETURN

Q. Have you examined the test year capital structure proposed by TESCO?
A. Yes, 1 have. The Campany has proposed a capital structure composed essentially of 44.4 percent long-term debt, 13.5 percent preferred stock, and 42.1 percent common equity. This compares to a March 31, 1980, capitalization for Texas Utilities of 50.38 percent debt, 10.86 percent preferred stock, and 38.76 percent common equity. Thus, at the end of the test year, TESCO was strong in equity compared to the entire system, to TESCO's recent past (Schedule x, page 1 of 2), and to the 100 electric utilities shown in Schedule x, page 2 of 2 .
Q. Has the Company proposed any adjustments to the capital structure?
A. Yes, it has. First of all, the company has included the sale of $\$ 35$ million of preferred stock at an estimated dividend rate of $\$ 12.00$ per share. This sale was consummated in June 1980 at a di/idend rate of $\$ 10.12$ per share. Even though this sale occurred outside of the test year, the funds have already been received by the Company. Therefore, I have considered this adjustment to be properly classified as a known and measurable change and have included it in the final recomended capital structure.
Q. How have you approached the problem of assigning a return on TESCO's accumulated deferred investment tax credits?
A. In assigning a return to the cost-free funds, 1 have followed the past practices of the Comission and the ruling of the Internal Revenue Service.

The return for TESCO's accumulated deferred tax credits has been set at the composite cost of capital.
Q. Would you please summarize your recommended overall rate of return to texas Electric Service Company?
 applied to the original cost of TESCO's invested capital be 11.312 percent. This represents a return of 9.23 percent on the adjusted value of TESCO's invested capital.

VI. FINANCIAL INTEGRITY AND ADEQUACY

Q. Please explain the purpose of this section.
A. This section will examine various criteria which investors consider when evaluating a company's overall financial strength and position. The purpose of this discussion is to provide an indication of the levels of alternative adequacy measures necessary for a company to realize so as to maintain its financial integrity and investor appeal. Through this process, I have established some general guidelines applicable to the test year for Ms. Jones' use in making a determination as to the amount of construction work in progress (CWIP) to include in TESCO's rate base. Finally, the Staff's recommendation will be analyzed in an effort to ensure that TESCO's financial integrity can be maintained on a prospective basis.
Q. What types of things are usually evaluated by investors when they analyze the financial strength and position of a company?
A. A variety of factors are considered by investors - some quantifiable and others more judgemental - when they assess the financial position and prospects of a particular utility. While equity investors are typically
more concerned with some indicators and creditors more interested in others, all measures of adequacy are of some concern to both categories of investors since they are reflective of the general health of a company. As mentioned, many of the things that investors evaluate are nonquantifiable, such as me agement quality, regulatory climate, social and political environments, fuel supplies, etc., but there are a number of factors that can be reduced to numbers or ratios and are of ten quoted as being indicative of financial integrity or the lack of it. These typically include such ratios as the percent of common earnings attributable to allowance for funds used during construction (AFUDC), cash flow coverage of dividends, pre-tax interest coverage ratios (including and excluding AFUDC), and the percent of cash needs generated internally. Other measures of quality typically include the market-to-book ratio, capitalization ratios, return on equity, etc., which have been discussed elsewhere in this testimony and will not be dwelt upon again.
Q. What financial indicators do equity investors usually look at?
A. Besides the level of earnings as reflected in the return on equity, equity investors also focus heavily on the quality of a utility's earnings. In other words, investors are concerned not only with the magnitude of reported earnings but also with whether these profits are backed-up with adequate cash flow to pay current dividends and finance a part of the company's expansion needs. If a company's earnings are considered of poor quality (i.e., a significant portion is noncash, current expenses are deferred, depreciation rates are low, the relationship between actual and reported taxes is high, etc.), future returns are perceived to be less certain and
the company to be riskier; consequently, investors demand a higher rate of return and are more wary of purchasing shares. Those measures typically considered as being most reflective of a company's quality of earnings and its relative safety of dividends are internal cash generation as a percent of total cash needs, cash coverage of dividends, and AFUDC as a percent of income available for common.
Q. What are typical levels of internal cash generation and dividend coverage?
A. Schedule XII, page 1 , shows the level of internal cash generation for 100 clectric utilities projected for 1980 through 1982 as well as those companies' dividend coverages for 1978 and 1979. While the internal cash generation percentages will obviously vary widely among these utilities depending, in part, upon the size of each utility's construction budget relative to its existing capitalization and also its level and quality of earnings, the industry mean is projected to be in the vicinity of 49 percent. The median of the cash coverage of dividends for the 100 ut flities was approximately 2.8 times. This ratio is heavily influenced by the company's payout ratio and capital structure which cause the coverages to vary considerably.
Q. Please explain allowance for funds used during construction.
A. The practice of capitalizing interest - charging an allowance for funds used during construction to plant and crediting income for an equal amount results in a unique situation for public utility companies. The AFUDC credit does not give rise to present cash flows but, rather, a claim to future revenues. Consequently, many investors consider AFUDC earnings to be somewhat inferior to income from operating revenues. The certainty of the
investor receiving these earnings is somewhat diminished since they cannot be used to pay current dividends. While the exact extent to which common stockholders are concerned with the leve? of AFUDC in earnings is uncertain, the percentage of net income attributable to the noncash AFUDC can definitely become excessive. An additional element of risk is thereby introduced which will ultimately affect the company's cost of equity and may ultimately interfere with future sales of additional equity. In schedule x, the percentage of net income attributable to AFUDC for 100 electric utility companies during 1979 has been reproduced. Again, it is apparent that the ratio of noncash to total earnings varies significantly within this sample, but the median level is 45 percent. During major construction phases, 2 larger percentage of AFUDC to earnings tends to be acceptable since investors are aware that this is largely a temporary situation. That is, as construction tapers off so at expenditures level out in relation to capitalization and regulatory proceedings recognize plants coming in-line, these postponed AFUDC earnings will be realized as cash. The acceptable limiting percent of AFUDC to net income can vary from company to company depending upon other quality indicatcis, the overall strength of the utility in question, payout ratios, etc. before the utility's health is adversely affected. If the percentage begins to become too large, though, I believe that investors can become quite skeptical of the financial integrity of the company, especially if the company maintains a high dividend payout ratio. At this poinc, the utility's financial health begins to be questioned and, if the AFUDC level is not corrected, its financial integrity can become seriously jeopardized to the detriment of not only the investors but also
the customere in the long run.
Q. What 00 bondholders consider when analyzing a company?
A. Fixed income investors, like stockholders, consider many factors when evaluating the quality of a company's debt. However, the most visible and quantifiable measures that are typically cited as being indicative of creditworthiness are interest coverage ratios, or the margin of earnings (and associated taxes) in excess of what is needed to meet interest payments. The most frequently analyzed credit indicator is the pre-tax interest coverage ratio. The columns labeled (A) in Schedule XIII, illustrate this coverage ratio for most of the electric utilities in the country classified by bond ratings. As shown, the pre-tax coverages realized in the recent past have varied substantially within a rating class. A second measure of creditworthiness that has gained increased acceptance and importance is the pre-tax coverage ratio excluding AFUDC. Since the alizance for funds used during construction does not represent cash available to meet interest charges, this measure provides a better indication of the actual cash protection afforded bondholders. Schedule XIII also contains coverage ratios computed in this manner under the column heading (B). Again, there is substantial variability among companies within rating categories.
Q. Would you please summarize this discussion?
A. Investors consider many factors when evaluating the financial strength of a firm, many of which are nonquantifiable. For example, TESCO's policy of accounting for deferred taxes and investment tax credits on a normalized basis contributes to the quality of the Company's earnings as does its
relatively thick equity ratio. Moreover, the quality of management, the regulatory climate, and the economic-social-political environment within which TESCO operates favorably affect investors assessment of the financial health of the Company. Similarly, while TESCO's general level of return on equity may need improving somewhat and even in spite of its Parent's below market-to-book ratio, the Company still compares favorably with the industry and is viewed positively by investors. Besides these considerations, there are a variety of other ratios which are useful in analyzing TESCO's financial stature from both stockholders' and creditors' standpoints. This section has attempted to identify the most important of these which, in turn, provide a means by which the adequacy of the Staff's recomendation can be compared so as to ensure the maintenance of TESCO's financial integrity.
Q. What is the financial outlook for Texas Electric Service Company?
A. TESCO's financial prospects appear to be improving. The massive construction phase to convert to alternate fuels is largely behind the Company with annual capital expenditures projected for 1981 and 1982 being less than those experienced in the 1979 to 1980 period. Moreover, TESCO's need to raise external funds should become more manageable in the near term due to the scaling down of construction. Probably most important is that the Comanche Peak Unit No. 1 is a little more than one year away from coming on-line n Fall 1981. Because of the substantial investment in this generating station, I would expect the Company to return to the Commission for rate relief to include the nuclear unit in the rate base in the coming 10 to 14 months. Consequently, the rates authorized in this proceeding will,
in all likelihood, only need to be sufficient for that period of time. Furthermore, during this 10 to 14 month interval, no other extraordinary events are anticipated which merit special consideration.
Q. Ms. Jones has requested that you provide her with some guidelines upon which to base her construction work in progress (CWIP) decision. What have you provided her?
A. In response to Ms. Jones' request, I suggested that she consider those financial integrity factors most critically affected by the CWIP inclusionexclusion decision: pre-tax interest coverage excluding AFJDC, AFUDC as a percent of income available to common, and internal cash generation. In arriving at the guidelines to be used with test year data, I took into account TESCO's expected growth in sales, the magnitude of its construction program relative to the Company's size, and other factors. Based upon Texas Electric Service Company's present circumstances, I suggested the following test year parameters as guides to Ms. Jones for determining a level of CWIP:
a) AFUDC should be no more than 20 to 25 percent of income available to common.
b) Pre-tax interest coverage, excluding AFUDC should te in the range of 3.75 to 4.25 times.
c) Internally generated cash should be no less than 40 percent and no more than 60 percent.
Q. Are the test year guidelines that you have provided to Ms. Jones applicable to all companies?
A. Definitely not, financial integrity is a prospective concept unique to each company taking into account its outlook and future needs. The test year
guidelines that I have suggested for TESCO are company-specific and consider that particular utility's current financial and operating characteristics and trends. Because of differences in cervice areas, load requirements, construction plans, customer mix, etc., this set of guidelines is not appropriate for even all of the Texas Utilities Companies or much less for all electric utilities. In addition, I should stress that these guidelines are merely rules-of-thumb; The final determination of the recommended le el of CWIP is based on a judgemental analysis of prospective ratios.
Q. Based upon these guidelines, Ms. Jones has included 50 percent of TESCO's CWIP in the Company's rate base. Do you feel that this level is adequate to maintain the Company's financial integrity over the expected life of the rates?
A. Yes, I do. While I recognize that the test year indicators will deteriorate going forward, there seems to be an adequate cushion built into the Staff's recommended rates to account for this. The growth in KWH sales and revenues projected by the Company over the next two years should be sufficient to offset any increases in operation and maintenance expenses. In fact, assuming all other costs of service remain constant, a twelve percent increase in expenses can be offset by a 3.2 percent increase in base rate revenues and still produce the same dollars of return. Internal cash generation should be more than ample over the next 10 to 14 months. Finally, taking into account the construction programs for the remainder of 1980 and 1981, the level of AFUDC to net income does not appear to be so excessive so as to jeopardize the Company's financial health prior to the filing for additional rate relief. For these reasons, the Staff's
recommendation seems sufficient to maintain Texas Electric Service Company's financial integrity until rate relief is sought again.

VII. CONCLUSIOIIS AND SUMMARY OF RECOMMENDATIONS

Q. Would you briefly recapitulate the major points discussed in your testimony?
A. The major issues in my testimony have centered around specifying a fair value mix, determining a fair rate of return on Texas Electric Service Company's invested equity capital, computing a composite rate of return, and evaluating the adequacy of the Staff's proposed cost of service. The conclusions that I have reached on the various issues are summarized below:
-A fair mix upon which to determine the adjusted value of invested capital 36.125 percent net current cost and 63.875 percent net original cost.
-The capital markets have undergone significant shifts over the last 12 months with investors requiring higher yields to induce them to make investments. The net effect of this on the Texas Utilities System has been that the market price of the Company's common stock is now consistently selling below its book value. In light of this, it seems apparent that the returns authorized the Texas Utilities System in the past are no longer adequate, and they must be revised to reflect current economic conditions.
-Because Texas Utilities continues to be one of the least risky electric utilities in the country, the return required by investors from the Company is less than that demanded from most other companies in the industry and other firms in general. Based upon my analysis, I believe Texas Utilities ' cost of equity to now be between 14.25 and 14.75 percent.
-If a market-to-book ratio greater than one is to be sought, only the dividend yield portion of total return need be adjusted. Thus, to encourage Texas Utilities' common stock to sell at approximately 110 percent of book value, a 100 basis point upward adjustment to the cost of equity is appropriate.
-In light of the continuing construction program facing TESCO and the corresponding probability of having to raise

```
additional equity capital, I feel that a market-to-book
adjustment of }110\mathrm{ percent is warranted. Combining the }10
basis point market-to-book adjustment with the estimated
cost of equity to the Company of }14.5\mathrm{ percent results in a
fair rate of return to the equity invested in TESCO of
approximately }15.50\mathrm{ percent.
```

-Based upon a return to equity of 15.50 percent, I feel that
a composite rate of return of 11.312 percent should be
applied to TESCO's invested capital. This represents an
9.23 percent return on the adjusted value of the Company's
invested capital.
-Based upon an analysis of the financial circumstances
facing TESCO between now and when the Company will likely
seek rate relief again, I believe that the Staff's proposed
revenue requirements are sufficient to maintain the
financial health of TESCO and that the Company's financial
integrity will not be jeopardized.
Q. Does this conclude your direct testimony in this case?
A. Yes, it does.

TEXAS ELECTRIC SERVICE COMPANY DERIVATION OF IHE RELATIONSHIP BETWEEN ANNUAL INFLATION AND DEFLATION RATES AND PROPORTION OF NET CURRENT COST INVESTED CAPITAL

The mix between net current cost invested capital and original cost invested capital has been determined so that the statutory limits for inclusion of net current cost coincides with historical experience. Over the 33 -year period from 1947 to 1979, the most extreme inflation or deflation rate was the 11.8 percent inflation in 1947; therefore, 12 percent has been selected as the outside limits. These boundaries have been linearly connected with the origin under the presumption that, in the absence of either inflation or deflation, the invested capital mix should reflect 25 percent net current cost and 75 percent net original cost. For each additional percent of inflation or deflation, an incremental 1.25 percent of net current cost should be included in the invested capital mix.

The relationship between the proportion of net current cost ivestment included in the mix and the annual inflation/deflation rate can be expre ...d as:

$$
Y=0.25+1.25 X
$$

where: $\quad Y=$ proportion of net current cost investment

$$
x=\text { annual inflation/deflation rate }
$$

Schedule 1
TEXAS ELECTRIC SERVICE COMPANY MIX OF NET ORIGINAL COST AND NET CURRENT COST OF INVESTED CAPITAL FOR EACH YEAR SINCE 1947

Year	Annual Percentage Change (a)	$\begin{aligned} & \text { Proportion } \\ & \text { of Net } \\ & \text { Current Cost } \\ & \hline \end{aligned}$	Proportion of Net Original Cost
1980	8.9\%	36.125\%	63.875\%
1979	8.9\%	36.125\%	63.875\%
1978	8.3\%	35.375\%	64.625\%
1977	6.1\%	32.625\%	67.375\%
1976	4.7\%	30.875\%	69.125\%
1975	7.5\%	34.375\%	65.625\%
1974	11.0\%	38.750\%	61.250\%
1973	7.5\%	34.375\%	65.625\%
1972	3.2\%	29.000\%	71.000\%
1971	4.7\%	30.875\%	69.125\%
1970	5.5\%	31.875\%	68.125\%
1969	4.8\%	31.000\%	69.000\%
1968	4.0\%	30.000\%	70.000\%
1967	3.2\%	29.000\%	71.000\%
1966	2.7\%	28.375\%	71.625\%
1965	1.9\%	27.250\%	72.750%
1964	1.4\%	26.750\%	73.250%
1963	1. 3%	26.625\%	73.37545
1962	1.1\%	26.375\%	73.625\%
1961	1.3\%	26.625\%	73.375\%
1960	1.7\%	27.125\%	72.875\%
1959	1.6\%	27.000\%	73.000\%
1958	2.6\%	28.250\%	71.750\%
1957	3.7\%	29.625\%	70.375\%
1956	3.4\%	29.250\%	70.750\%
1955	1.5\%	26.875\%	73.125\%
1954	1.5\%	26.875\%	73.125\%
1953	0.9\%	26.125\%	73.875\%
1952	2.2\%	27.750\%	72.250\%
1951	6.7\%	33.375\%	66.625\%
1950	1.4\%	26.750\%	73.250\%
1949	-0.6\%	25.750\%	74.250\%
1948	6.7\%	33.375\%	66.625\%
1947	11.8\%	39.750\%	60.250\%

(a) Source for 1946-1972: Gross National Product Implicit Price Deflator as reported in the U.S. Department of Commerce's Survey of Current Business.
Source for 1973-1979: Gross National Produce Implicit Price Deflator for Year Ended December 31, 1979, as reported in the Federal Reserve Bank of St. Louis' National Economic Trends.
(b) For the year ended March 31, 1980.

Schedule II

PLBLIC UTILITY CORMSSION OF TEXAS

TEXAS POWER \& I.IGIIT COMPANY
YIELDS ON LONG-TERM FED:RAL, AND PUBLIC UTIIITY SECURITIES (1)

Line	Date	Federal Securities(2)	AAA Bonds (3)	A Bonds (3)	A Bonds (3)	Baa Bonds (3)	$\begin{aligned} & \text { aa } \\ & \text { Pre I. Stock (2) } \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { Pref. Stock (2) } \end{aligned}$	baa Pref. Stock (2)
A	7/30/79	8.88	9.44	9.71	10.08	10.52	896	9.49	10.34
B	2/15/79	8.96	9.53	9.74	9.81	10.22	9.03	9.52	10.32
c	9/27/79	9.18	9.72	10.06	10.42	11.05	9.60	10.34	10.97
D	12/17/79	10.08	10.99	11.56	11.91	12.62	10.68	11.42	12.63
E	2/13/80	11.76	12.47	12.90	13. 39	14.12	11.20	12.27	13.09
F	6/27/80	7.65	10.96	11.63	12.00	12.54	10.59	10.97	12.05

(1) Weekly average for week containing the date.
(2) Federal Reserve Bank of St. Louls, U.S. Financial Data.
(3) Moody's Utility News Report.

IEXAS ELECTRIC SERUICE COAPANY

IHFLIED GROWTH RATES[A]
 87/11/80

	1979	1978	1977	1976	1975	1974	1973	1972	1971	1970	1969	1968	1967	1966	1965	1964
RETENTION RATE(Z)	33.06	48.16	41.67	42.36	38.61	48.62	48.26	48.72	44.83	45.78	44.37	40.74	42.42	41.46	40.87	40.74
RETURN OH EQUITY(z)	11.97	12.95	12.91	13.03	12.11	13.89	14.11	15.69	14.73	15.37	15.28	14.88	15.48	15.38	15.31	15.63
IMPLIED GROWTH RATES(z)[B]	3.96	5.20	5.38	5.52	4.67	6.75	6.81	7.35	6.60	7.04	6.78	6.86	6.57	6.38	6.26	6.37

REALIZED RATE OF RETURN (Z)

[A] VALUES TAKEN FROH TEXAS UTILITY'S ANNUAL REPORTS
EARNINGS RETENTION RATIO COHPUTED AS $10 \% \%$ LESS "DIVIDENDS DECLARED ON COHMON STOCK, PERCENT OF NET INCOME" AND REALIZED RETURN ON EQUITY BASED ON EARNINGS ON AVERAGE BOOK VALUE.
[B] PRODUCT OF EARNINGS RETENTION RAIID AHD REALIZED RETURN ON EQUITY.

TEXAS ELECTRIC SERUICE COAPANY

[A] TEXAS UTILIIY'S ANNUAL REPORTS

PUBLIC UTILITY COANISSION OF TEXAS

PAGE 3 OF 5
Schedule III

IEXAS ELECTRIC SERUICE COMPANY

LIAEAR REGRESSION VALUES[A]

87/11/89

	EQUATION INTERCEPT	$\begin{array}{r} \text { EQUATION } \\ \text { SLOPE } \end{array}$	1979	1978	1977	1976	1975	1974	1973	1972	1971
NBV											
5 YEARS	16.19	. 95	29.94	19.99	19.64	18.69	17.14	16.19	. 69	. 80	. 68
10 YEARS	18.41	1.08	21.24	26.15	19.97	17.99	16.98	15.82	14.74	13.65	12.57
15 YEARS	4.95	1.01	20.06	19.85	18.65	17.64	16.83	15.93	14.82	13.81	12.08
EFS											
5 YEARS	2.01	.11	2.56	2.45	2.34	2.23	2.12	2.81	. 86	. 08	. 98
10 YEARS	1.69	.09	2.55	2.46	2.36	2.27	2.17	2.08	1.98	1.89	1.79
15 YEARS	1.08	.18	2.63	2.53	2.42	2.32	2.22	2.11	2.61	1.91	1.80
DPS											
5 YEARS	1.12	.18	1.62	1.52	1.42	1.32	1.22	1.12	.89	.08	. 66
10 YEARS	. 76	. 38	1.58	1.50	1.42	1.34	1.26	1.17	1.99	1.81	. 93
15 YEARS	. 53	. 67	1.53	1.46	1.39	1.33	1.26	1.19	1.13	1.06	1.00

[A] BASED ON VALUES AS REPORTED IN TEXAS UTILIIY'S ANHUAL REPORTS.

PUBLIC UTILITY CONHISSION OF TEXAS

PAGE 4 OF 5
Schedule III

TEXAS ELECTRIC SERUICE COMPANY

LINEAR REGRESSION VALUES[A]

97/11/80

	1970	1969	1968	1967	1966	1965	1964
NBV							
5 YEARS	. 68	. 08	. 80	.08	.98	. 89	. 98
10 YEARS	11.49	16.41	. 86	. 69	. 60	. 08	. 98
15 YEARS	11.80	9.99	8.98	7.98	6.97	5.96	4.95
EPS							
5 YEARS	. 08	. 90	. 89	.60	.96	.86	. 08
10 YEARS	1.70	1.60	. 80	. 88	. 00	. 98	. 68
15 YEARS	1.70	1.59	1.49	1.39	1.28	1.18	1.68
DPS							
5 YEARS	. 60	. 08	. 88	.08	. 08	.00	.09
16 YEARS	. 84	. 76	. 88	.88	. 98	. 68	. 68
15 YEARS	. 93	. 86	. 80	. 73	.67	. 60	. 53

PAGE 5 OF 5
Schedule III

texas electric service conpany

SUMMARY OF COHFOUND GROUTH RATES[A]

97/11/80

1979-75
1979-76
1979-65

ACTUAL ($\%$)	5.90	7.16	7.26
REGRESSION(Z)	5.29	7.39	9.78
EARNINGS PER SHARE			
ACTUAL (z)	2.36	4.96	5.62
REGRESSION(X)	5.68	4.76	6.13
DIVIDENDS PER SHARE			
ACTUAL (2)	7.93	6.92	6.48
REGRESSION(\%)	7.64	7.58	7.26

[A] COMPOUND GROUTH RATES CALCULATED FRON CCC-3 PAGES 2,3,4.

TEXAS ELECTRIC SERVICE COMPANY EARNINGS PROJECTIONS

$$
k=\frac{E_{1}(1-b)}{P}+(b r+v s)
$$

```
where, k = cost of equity
    E
    b = expected earnings retention ratio
    P = market price of common stock
    r = expected realized return on common equity
    v = percent of funds from sale of new stock accruing to existing stockholders
    s = ratio of proceeds from new stock to existing book value
                    TEXAS UTILITIES COMPANY
                        k= \frac{E (1-b)}{P}+(br+vs)
                k=\frac{$2.86(.61)}{$18.375}+(0.39\times0.130)+(-0.0071\times0.867)
                        k=0.095 + 0.045
                k=0.140 or 14.0%
E
b = .39 Extrapolation from Schedule III, page 2 of 5.
P}=$18.375 Text of testimony
r = .130 Extrapolation from Schedule III, page 2 of 5.
v = -.0071 Net Proceeds ($17.73) less Book Value ($20.45) times New Shares
    (5,000,000) equals Total Dilution ( }$13,600,000)\mathrm{ divided by product
    of Existing Shares (93,518,685) and Book Value ( }$20.45)\mathrm{ equals
    Percent Dilution of Existing Shares ( }-0.71%)\mathrm{ )
s = .867 Proceeds New Stock ($17.73) divided by Book Value ($20.45).
```

TEXAS ELECTRIC SERVICE OMPANY
Bache Halsey Stuart Shields $\$ 3.00$
Rauscher Pierce Securities Corporation $\$ 2.60$
Shearson Hayden Stone Inc. \$2.65
Moore \& Schley, Cameron \& Co. $\$ 2.90$
Standard and Poor's Corporation $\$ 2.90$
Thompson McKinnon $\$ 3.00$
Value Line $\$ 2.85$
Salomon Bros. $\$ 3.00$
AVERAGE $\$ 2.86$

[^0]Salomon Brother's Electric Utility Regulation, Quality and Earnings Value Line

PUBLIC UTILITY COMMLSSION OF TEXAS

TEXAS ELECTRIC SERVICE COMPANY
SURVEY OF INVESTORS INQUIRING AS TO THEIR
REQUIRED RATE OF RETURN

Assuming that a "AA", long-term utility bond currently yields about 12.5%, the utility common stock for the same company would be attractive to you relative to the bond if its expected total return was at least:

Total Return	$\frac{\text { Indicated Risk Premium }}{\text { (basis points) }}$
over 22%	over 900
$21-22$	900
$20-21$	800
$19-20$	700
$18-19$	600
$17-18$	500
$16-17$	400
$15-16$	300
$14-14$	200
under 14	under 200

MOST INVESTORS WOULD REQUIRE A 15 TO 18\% TOTAL RETURN OR 423 BASIS POINTS OVER THE BOND ALTERNATIVE . . .

Total Return	$\begin{gathered} \text { Risk } \\ \text { Premium } \end{gathered}$	Percent of Respondents*	Weighted Average Risk Premium
over 22\%	over 900	1\%	9 basis points
21-22	900	2\%	18
20-21	800	3\%	24
19-20	700	2\%	14
18-19	600	7\%	42
17-18	500	23\%	115
16-17	400	25\%	100
15-16	300	27\%	81
14-15	200	7\%	14
under 14	under 200	3\%	6
			423 basis points

*May not add due to rounding.

TEXAS ELECIRIC SERVICE COMPANY

RISK PREMIUN ANALYSIS-EXPECTED RETURN HODEL

$07 / 14 / 80$

DIVIDEND YIELD $(X)[A]$	9.30	8.10	7.30	7.18	6.49		
COMPGUND GROWTH RATES(Z)[B]							
NET BOOK VALUE	6.47	7.24	7.77	7.94	8.31		
EARNINGS [rR SHARE	4.31	5.86	5.67	6.38	5.45		
DIVIDENDS FER SHARE	7.11	6.97	6.52	6.46	6.45		
COST OF EQUITY(z)[C]							
NET BOOK VALUE	15.77	15.34	15.97	15.84	14.71		
EARNINGS PER SHARE	13.61	13.96	12.97	13.48	11.85		
DIVIDENDS PER SHARE	16.41	15.07	13.82	13.56	12.85		
MOODY'S PUBLIC UTILITY							
BOND YIELD(Z)[D]	9.90	8.90	8.20	8.68	9.60	10.96	
RISK PREHIUM ($\%$) [E]							
NET BOOK VALUE	5.87	6.44	6.87	6.44	5.71		6.27
EARNINGS PER SHARE	3.71	5.86	4.77	4.88	2.85		4.26
DIVIDENDS PER SHARE	6.51	6.17	5.62	4.96	3.85		5.42
CURRENT COST OF EQUITY(z)[G]							
NET BOOK VALUE							17.23
EARNINGS PER SHARE							15.22
DIVIDENDS PER SHARE							16.38

PUBLIC UTILITY COMMISSION OF TEXAS
TEXAS ELECTRIC SERVICE COMPANY

SCHEDULE VI
Page 2 of 2

RISK PRENIUH ANALYSIS-EXPECTED RETURN MODEL. CONTINUEES

```
FOOTNOTES
###=##ニ=#
```

[A] COMPUTED AS DIUIDEND IN YEAR T+1 DIVIDED BY AVERAGE PRICE IN YEAR T FROH SCHEDULE H-2 OF RATE FILING FACKAGE [B] GROUTH COHPUTED AS THE AUERAGE OF THE COMPOUND GROUTH RATES FOR PRECEDING FIVE,TEN,AND FIFTEEN YEAR PERIODS FOR NBU, EPS, BPS.
[C] SUN OF DIVIDEND YIELD AND COHPOUND GROWTH RATES.
[D] YIELD FOR T AS REFORTED BY HOODY'S INUESTORS SERVICE, INC.
[E] DIFFERENCE BETWEEN COST OF EQUITY AND MOONY'S PUBLIC UTILITY BOND YIELD.
[F] HOGDY'S UTILITY NEMS REPORT; SSFOT BOND DATE:.
[G] SUM OF AVERAGE PREMIUM [E] AND SPOT FOND YIELD [F].

Schedule VII Page 1 of 1

Texas Electric Service Company Composice Returns on Common Equity 1975-1979

Industry Uroup	1975	1976	1977	1978	1979
Aerospace	21.97	13.97	15.37	20.37	21.7%
Airlines	-1.8	8.0	13.4	20.0	6.8
Appliances	5.7	16.0	18.5	15.7	9.3
Automocive	6.5	17.2	19.1	16.8	11.3
Banks \% Bank Holding Cos.	12.4	11.7	12.2	14.3	15.2
Beverages	13.6	18.2	17.5	13.2	14.6
Buildins Materials	9.6	14.0	14.6	16.9	15.8
Chemicals	14.9	16.6	13.5	14.4	17.1
Congloserates	11.3	13.2	12.9	13.5	18.0
Containers	12.0	12.7	11.9	12.1	13.4
Drugs	18.9	17.8	18.2	20.4	20.8
Electrictl, Electronics	12.3	18.1	18.2	18.6	19.7
Food Processing	14.8	14.9	14.2	14.3	15.4
Food 6 Lodging	11.6	15.1	15.7	18.1	17.1
General Machinery	13.1	14.3	14.2	15.3	15.9
Instruments	14.4	14.9	14.8	15.3	15.9
Leisure Tine Industifes	12.9	14.6	15.5	18.8	18.0
Metals 5 Mining	7.1	7.7	6.3	10.0	19.4
Miscellaneous Manufacturing	11.0	14.1	14.8	16.0	19.3
Natural Resources (Fuel) (1)	13.1	14.4	13.4	13.9	21.5
Nonbank Financial	11.4	13.1	16.1	18.8	27.1
Office Equipment, Computers	16.4	17.9	19.0	20.4	19.8
011 Service 5 Supply	21.8	24.0	21.0	20.5	20.6
Paper and Forest Products	13.7	15.6	14.3	15.5	17.7
Personal Care Prcducts	17.8	19.5	19.2	20.0	18.2
Publishing	12.6	13.1	18.6	19.4	20.6
Radio s TV Broadzasting	14.7	20.0	21.7	22.3	22.0
Railroads	6.4	8.0	8.9	9.3	12.9
Real Estate 6 Housing	3.2	10.1	14.0	18.4	21.0
Retailing (Food)	7.4	11.7	11.7	15.4	15.5
Retailing (Sonfood)	9.1	13.2	14.6	14.9	14.5
Savings and Loan	9.8	13.6	17.2	18.4	15.4
Service Industries	15.3	16.0	16.3	18.2	19.3
Special Machinery	17.4	18.7	18.6	18.4	16.5
Steel	9.5	7.6	0.8	7.8	5.4
Textiles 5 Apparel	7.2	12.1	11.9	12.7	13.5
Tite s Rubler	7.9	7.7	10.2	5.4	7.8
Tobaceo	17.3	16.6	N A	19.7	0.5
Tzuckinz	N. A	22.2	21.6	21.4	16.9
Utilities	11.2	11.9	12.4	12.7	12.8
Ail Industry Composite	11.8	14.0	14.1	15.1	16.6
(1) 011 companies only					

Cost of Equity
Estimate
Discounted Cash Flow
a. Retention Growth $14.5 \%-14.9 \%$
b. Adjusted Historical Trend $14.4 \%-15.5 \%$
Projected Earnings
a. Investment Analyst Forecasts 14.0%
Direct Inquiry
a. Mitchel Hutchins Survey $14.0-17.0 \%$
Bond Yield/Risk Premium
a. Expectations Model $15.2-17.2 \%$
Comparable Earnings
Judgemental Conclusion $14.50-15.00 \%$

PUBLIC UTILITY COMMISSION OF TEXAS Schedule IX TEXAS EIECTRIC SERVICE COMPANY. Page 1 of 2 TEXAS ELECTRIC SERVICE COMPANY DILUTION EFFECTS OF STOCK ISSUES

January 1980 Offering	January 1979	March 1978 Offering

Pre-Issue
NBV/Share
Post-Issue
NBV/Share
$\$ 20.80$
$\$ 20.14$
$\$ 19.10$

Dilution
per Share
$\$ 0.32$
$\$ 0.06$
$\$(0.04)$
\% Dilution per Share
1.54%
0.30%
(0.21) \%

Cost of
Issue
4.48\%
3.06\%
2.98\%
$\mathrm{P}=$ market price of common share
$B=$ book value of common share
$M / B=$ target market price to book value ratio
$k=\operatorname{cost}$ of equity
$k^{*}=$ cost of equity adjusted to encourage a target market-to-book ratio
$D_{1}=$ expected dividend per share in next period
$\mathrm{g}=$ expected long-term growth

$$
\begin{gathered}
P=B=\frac{D_{1}}{k-g} \\
P=B(M / B)=\frac{D_{1}}{k^{*}-g}(M / B) \\
P=\frac{D_{1}}{k^{*}-g}(M / B) \\
\frac{P}{(M / B)}=\frac{D_{1}}{k^{*}-g} \\
P k^{*}-P g=D_{1}(M / B) \\
P k^{*}=D_{1}(M / B)+P g_{g} \\
k^{*}=\frac{D_{1}(M / B)+P g}{P} \\
k^{*}=\frac{D_{1}}{P}(M / B)+g
\end{gathered}
$$

PUBLIC UTILITY CUMMISSIUN OF IEXAS
TEXAS ELECTRIC SERVICE COMPANY LAP ITALILATIUN AIVALYSIS OF ILSCO (\$000s)

	December 31, 1977			December 31, 1978			December 31, 1979			March 31, 1980		
Long-Term Dedt	\$	$\frac{\text { Amount }}{554,942}$	$\frac{\text { Percent }}{4 / .2 \%}$	\$	$\frac{\text { Amount }}{554,9<5}$	$\frac{\text { Percent }}{43 . \angle \%}$	\$	$\frac{\text { Amount }}{618,405}$	$\frac{\text { Percent }}{44.4 \%}$	\$	Amount 640, 136	Percent 44.4\%
Preferred Stock		145,330	12.3\%		174,991	13.6\%		174,991	12.5\%		209,624	13.5\%
Common Equity		477,953	40.5\%		553,850	43.2\%		600,402	43.1\%		653,739	42.1\%
TOTAL		178,251	100.0\%		,283,766	100.0\%		,393,7y8	100.0\%		,553,619	100.0\%

Important Quality Measurements of 100 Electric Utilities: $12 / 31 / 79$

		Bond Ratings			$12 / 31 / 79$ Pre-7ax Interest Coverage	$\begin{aligned} & 12 / 31 / 79 \\ & \text { Capital Ratios } \end{aligned}$			$\begin{aligned} & 12 / 31 / 79 \\ & \mathrm{~s}-\mathrm{T} \text { Dex } \\ & 1 \text { of } \\ & 1-7 \text { Cap. } \end{aligned}$	$\begin{aligned} & 12 / 31 / 79 \\ & \text { NPC Iof } \\ & \text { Net Earn. } \end{aligned}$	$12 / 31,79$ Effective Inc. Tax Rate		$12 / 31 / 79$Return on comon Equity			
		moocy's		$\underline{56}$	$\frac{\text { Coverage }}{(A)(B)}$	Debt	pfd.	Com.								
	NLISEHDNY PCher					,		2.5/2.3	53	11	36	3	301	364	438	10.94
	nerican Elige pur				2.1/1.9	54	10	36	5	35	25	32	10.8			
	Anlzan public sxe	A	A-	7	2.4/1.8	49	12	39	2	63	11	20	12.7			
	ATANTIC CITY ELEC	Ns	A+	4	3.6/3.3	45	13	42	6	22	35	40	11.0			
	baiticre cis 6 EL	Ao	M-	3	3.3/3.1	50	12	38	-0-	16	36	39	11.4			
	BOSTON EDISON	sad	B88	?	2.6/2.2	54	13	33	5	59	43	57	11.5			
	CNROLIM PER 4 LT	A	A	5	3.0/2.2	51	13	36	3	80	37	63	12.3			
	CDITMAL HUDEON GSE	A	A-	6	2.3/1.9	50	15	35	11	46	18	26	12.3			
	CENTHAL ILL LICHT	\wedge	${ }^{\text {A+ }}$	4	3.8/3.7	50	16	34	4	10	47	49	12.3			
10	CDV ILL PUB SKC	从4	M	4	3.2/2.8	50	12	38	5	39	40	49	12.7			
	CEITRAL MAINE PWR	\wedge	888+	7	2.9/2.6	47	13	40	11	25	36	42	12.1			
	CEMTML SOUTM MEST				3.7/2.9	48	9	43	6	50	38	53	14.2			
	CETTM VI PUB SVC	Bas	BBB		3.6/3.0	44	14	42	9	39	32	41	13.1			
	cinchmat! gas	Ao	M-	4	2.7/2.1	53	12	35	5	53	20	31	12.7			
	Clevelan el tllu	Na	M-	5	2.7/2.1	47	15	38	4	53	20	30	12.1			
	COL + SO OHTO ELEC	${ }^{\text {A }}$	B6ar	?	2.4/2.1	52	13	35	4	41	27	35	10.9			
	COMCWicalit id	A	M-	4	2,0/1.4	54	14	32	5	103	14	39	8.6			
	covinity ple suc	A	A		2.4/2.4	52	10	38	13	1	39	39	10.2			
19	COnSOLIDATED ED	A	A	$?$	3.6/3.6	44	12	44	-0-	2	31	31	10.6			
	calswizs paner	A	A-	8	2.2/1.6	50	15	35	7	74	12	23	11.5			
	SAYTON PChER 6 Lf	A	\wedge	,	2.6/1.9	51	15	34	-0-	72	18	33	10.8			
	DELMARVA P6R 6 LT	A	A	?	3.0/2.6	51	12	37	2	38	31	39	12.1			
	DETROLT EDISCN	Bas	B6s	9	2.3/1.9	53	13	34	4	61	26	39	10.2			
24	DukE PThis	A	A^{+}	4	3.0/2.1	49	14	37	2	73	26	46	13.4			
	DUOUESNE LIGHT	A	M-	6	2.8/2.4	51	16	33	1	45	37	46	9.3			
	EL. PASO ELactric	A	$\mathrm{M}-$	6	3.0/2.1	45	17	38	13	84	34	63	14.2			
	EMPIRE DIST ELIC	A	A	5	2.8/2.3	52	12	36	-0-	45	29	4.	11.8			
	FLORIDA PCWER CORP	${ }^{\text {A }}$	${ }^{\text {A }}$	3	3.4/3.4	48	15	37	12	2	48	48	11.7			
29	flortich Phin 4 LT	\star	A+	3	3.3/2.9	51	12	37	1	34	43	52	12.9			
	GENETL PLO UTILS				2.1/1.8	53	13	34	4	45	31	40	6.9			
	GULE STATES UTILS	${ }^{\text {a }}$	A	8	2.4/1.8	54	11	35	5	78	31	55				
	hamaithe elsctric	A	A	4	3.3/3.1	51	12	37	1	16	41	45	12.9			
	howston naustries	As	A	2	3.6/3.1	51	8	41	-0-	29	37	45	14.3			
34	ILAMO PCEER	A	\wedge	5	1.9/2.5	57	7	36	3	62	20	35	8.5			
	ILLDNOLS PWER	Ad	M	3	3.2/2.6	50	12	38	2	51	35	48	12.3			
	tndinnollis pbl	A	M	3	4.2/4.0	48	13	39	2	13	46	48	15.2			
	INTESSTATE POnER	A	A	7	3.0/2.8	54	14	32	3	25	41	46	12.2			
	Tont ELEC LT 6 Path	λ	A	6	2.6/2.3	50	15	35	2	32	35	42	11.2			
39	IGA-TLL CAS 6 EL	no	M	3	4.1/3.8	48	14	38	-0-	24	43	48	13.4			
	tona resources	40	A	5	3.4/3.1	49	11	40	9	22	40	45	13.6			
	Ioma prolic sve	\wedge	M	4	3.1/2.5	51	13	36	-0-	49	35	47	12.9			
	Iona soumieres utti.	no	${ }^{\text {a }}$		3.1/2.5	51	10	39	2	43	30	42	12.8			
	KNWSAS CITY PbL	No	A	6	2.1/1.3	53	13	34	4	117	18	65	9.3			
	ransas Cas + ELDC	Bos	в8в	6	2.0/1.3	So	15	35	5	123	20	68	8.2			
	KANSAS PCWER ¢ LT	${ }^{*}$	${ }_{\text {A }}$	4	3.2/2.6	45	14	41	1	48	33	46	12.0			
	kamuoxy utilities	A	M	3	2.8/2.8	51	13	36	6	-a	47	47	10.4			
	lanc isund ITM	A	${ }^{\text {A- }}$	7	2.5/1.8	45	16	39	-0-	62	1	7	12.2			
	Loutsutlee caE	Asa	${ }^{M}$	1	3.3/3.3	48	17	35	9	-0-	47	47	9.1			
	modison cas e Elec	N	M		4.3/4.3	43	14	43	2	-0-	52	52	10.0			
	midour soum utils				1.7/0.9	59	10	31	5	117	(-)		11.5			

TEXAS ELECTRIC SERVICE COMPANY

Notes: (1) * Holding Company
(2) (A) Total APTC included in pre-tax income
(3) (B) Total AFDC exclused
(4) Copyright 1980, Duff b plelps, Inc, and published with its permission
(5) No iong-term debt publicly outstanding

Component		Amount	Percent of Total	Component Percentage \qquad	Component Weighted Average Cost
Long-Term Debt ${ }^{(a)}$	\$	690,195,916	41.78\%	8.324\%	3.478\%
Notes Payable ${ }^{(\mathrm{b})}$		859,097	0.05\%	6.189\%	0.003
Preferred Stock ${ }^{\text {(c) }}$		209,623,859	12.69	8.110\%	1.029
Common Equity ${ }^{(d)}$		653,798,504	39.58	15.500\%	6.135
Accumulated Deferred Investment Tax Credits		97,352,327.	5.90	11.312\%	0.667
TOTAL	\$	$\underline{1,651,829,703}$	100.00\%		11.312\%
Schedule H-6, page 1 of 1					
Schedule H-5, page 2 of 4 of Rate-Filing Package.					
Schedule H-4, page 1 of 1 of Rate-Filing Package as adjusted.					
Schedule H, page 2 of 2 of Rate Filing Package.					
Schedule H, page 2 of 2 of Rate-Filing Package.					

PUBLIC UTILITY COMMISSION OF TEXAS TEXAS ELECTRIC SERVICE COMPANY

Electric Utility Interes: Coverage Ratios Classified by Bond Rating Groups

Netes: (1) (A) Total AFDC included in previax income.
(B) Total aprc exciudec froe the calculations.
(2) Parent Oxpany Spmiols:

```
AYP - Niapneny Pover Syster
Amp Nampicany lower Systam
CSN- Central & South lest
GPU - General Pablic Utilities
mSU - middie South velilties
```

(3) N.A. - Net available due to inter in restaterent.
4) Copytignt 1986, Duff t Phelps, Inc. and publishat with its permission.

PUBLIC UTILITY COMISSION OF TEXAS

Schedule XIV Page 1 of 2
TEXAS ELECTRIC SERVICE COMPANY
FINANCIAL ADEQUACY MEASURES AT 50% CWIP

INTEREST COVERAGE TNCLUDIMG AFUDC

Return	$\$ 155,405$
FIT	86,658
AFUDC	21,586
Total Available	$\$ 263,58$
Interest	57,503
Coverage	$\underline{4.58 x}$

TEXAS ELECTRIC SERVICE COMPANT
(a) Jones Schedule I
(b) Schedule H , Page 2 of 2
(c) Schedule H, Page 2 of 2 , as adjusted
(d) Sum of (a), (b), (c) and (d) times 61% payout ratio.
(e) Jones Schedule I
(f) Jones, Accounting Division
(g) Jones, Accounting Division
(h) Jones, Accounting Division
(i) Jones, Accounting Division
(j) Jones, Acccunting Division
(k) TESCO Rate Package
(1) Jones, Accounting Division
(m) Jones Schedule I

[^0]: Sources: Standard and Poor's Earnings Forecaster

