System Analysis of Shallow Land Burial

Technical Background

Manuscript Completed: January 1981
Date Published: March 1981
Prepared by
D. Lester, D. Buckley, S. Donelson, V. Dura, M. Hecht, W. Horton,
T. Nakai, T. Pasternak, L. Robertson, R. Stula, J. Stoddard

Science Applications, Inc.
P.O. Box 2351

La Jolla, CA 92038
Prepared for
Division of Waste Management
Office of Nuclear Material Safety and Safeguards
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
NRC FIN No. B6428-9

ABSTRACT

This is volume two of a three volume set detailing the activities and results of the System Analysis of Shallow Land Burial Project. Activities under four project tasks are described: Task 1 - Identify Potential Radionuclide Release Pathways, Task 2 - Systems Model for Shallow Laid Burial of Low-Level Waste, Task 3 - Sensitivity and Optimization Study and Task 4 - Reference Facility Dose Assessment.

TABLE OF CONTENTS

Section Page
SUMMARY xiii
1 INTRODUCTION TO VOLUME 2 1-1
1.1 Background 1-1
1.2 Modeling Approach 1-2
1.3 Organization of Volume 2
SITE DESCRIPTIONS 2-1
2.1 Introduction 2-1
2.2 Maxey Flats. 2-2
2.3 Barnwell South Earolina 2-3
2.4 Beatty, Nevada (Industrial/Nuclear Disposal Site 2-5
2.5 Sheffield. 2-7
2.6 Richland/Hanford 2-8
2.7 West Valley. 2-10
3 DOSE PATHWFYS - GENERAL DISCUSSION 3-1
4 NUCLIDE SOURCE TERMS 4-1
4.1 General 4-1
4.2 Fuel Cycle Wastes. 4-2
4.3 Non-Fuel Cycle Wistes 4-8
4.4 Estimater Radionuclide Concentrations in Low-Level Waste. 4-9
4.5 Release Fractions (Source ierm Data Base) 4-17
5 RADIONUCLIDE RELEASE SCENARIOS 5-1
5.1 Radionuclide Pathway 5-1
5.2 Development of Scenarios 5-41
MODEL DESCRIPTION 6-1
6.1 Overview 6-1
6.2 Executive Program (EXEC) 6-2
6.3 Aquifer Transport Subprogram (AQIOFR) 6-2
6.4 Atmospheric Transport Subprogram (ATMOS) 6-10
6.5 EROSIO 6-20
6.6 Unsaturated Zone Transport Subprogram. 6-33
Section Page
6.7 Direct Exposure Model (DIRECT). 6-47
6.8 The Population Doset Subprogram (DOSET) 6-53
6.9 Data Sorting Subroutine (PREDOS). 6-71
7 SENSITIVITY STUDIES 7-1
7.1 Introduction. 7-1
7.2 Methodology 7-1
7.3 Independent Variables 7-2
7.4 Experimental Design 7-17
7.5 Results and Discussion. 7-37
7.6 Conclusions 7-56
8 REFERENCE FACILITY DOSE ASSĒSSMENT 8-1
8.1 Introduction. 8-1
8.2 Reference Sites 8-3
8.3 Results 8-14
9 REFERENCES $9-1$

LIST OF FIGURES

Figure Page
3-1 Comprehensive Pathways Model 3-2
3-2 External Exposure Pathways. 3-4
3-3 Internal Exposure Pathways 3-4
4-1 Projected Waste Volume Increases in Institutional Survey Population. (Andersen, et al. 1976). 4-10
5-1 Low-Level Waste Burial Operations 5-2
5-2 Low-Level Waste Burial Site Operations. 5-4
5-3 Schematic of Typical Combustion System. 5-11
5-4 System Flowsheet for the Bitumen Immobilization Facility. 5-16
5-5 System Flowsheet for the Cement Immobilization Facility. 5-17
5-6 Pathways of Radionuclides to the Environment from LLW Packaging and Handling Operations 5-19
5-7 Low-Level Waste Management Activity Phases. 5-43
5-8 Equivalenence of Event Trees and Event Tables 5-45
5-9 Variables Included in LLW Release Scenarios 5-46
5-10 Low-Level Waste Burial Operations 5-48
5-11 Low-Level Waste Burial Site Operations 5-50
6-1 Shallow Land Burial System Model Executive Program 6-4
6-2 A Typical Terminal Session in the Conversational Mode. The Underlined Data is User Supplied 6-5
6-3 Subporgram ATMOS Flow Diagram 6-19
6-4 Geometry Used to Find the Prevailing Wind Erosion Direction 6-25
6-5 Geometry Used to Compute Unsheltered Travel Distance. 6-27
6-6 UNSAT General Flow Chart. 6-35
j-7 Sketch of Head versus Moisture Content for Soil 6-41
6-8 Subprogram DIRECT Flow Diagram. 6-48
6-9 Flow Diagram for Subroutine DOSE 6-69
Table Page
1 Surmary of Demonstration Cases
(Population 41,000). xifi
4-1 Projected Low-Level Waste Activity for 1979 (Curies) 4-3
4-2 Projected Low-Level Waste Volume for 1979. 4-4
4-3 Low-Level Liquid Wastes Collected at Power Reactors 4-5
4-4 Estimated Institutional Radionuclides Shipped for Commercial Shallow Land Burial in 1975 (Activities in mCi)(Andersen et al. 1976) 4-11
4-5 Estimated Institutional Activity Concentrations of Wastes Shipped for Burial (Andersen et al. 1976) (mCi/m ${ }^{3}$). 4-12
4-6 Estimated Radionuclide Cocnetrations in Low-Level Waste. 4-13
4-7 Other Potential Radionuclides in Low-Level Waste Not in Table 3.6 4-15
4-8 Surmary of Representative Release Fractions. 4-18
5-1 Chemical Sulidification Systems for LLW. 5-14
5-2 Secondary Radioactive Waste Estimated to be Generated at the BIF and CIF 5-20
5-3 Radionuclide Release and Transport Mechanisms Due to Transportation of Waste 5-28
5-4 Radionuclide Release Paths - Burial Operations 5-29
5-5 Ranges of Values of Selected Properties of Trench Water Samples from Maxey Flats, Kentucky, Disposal Site, 1977 (Robertson 1979). 5-31
5-6 Occupational Exposure at Barnwel1, 1978 (Ebenback 1979) 5-33
5-7 Reference Site Subpathway Leading to Inhalation or Ingestion 5-42
Table Page
6-1 Plume Width Standard Deviations, rom XOQDOQ) 6-13
7-1 Key Variables Used in the Shallow sand Burial System Model 7-3
7-2 Variable Sets Used in Sensitivity Testing 7-5
7-3 Levels Used in Air Path Sensitivity. 7-7
7-4 Levels Used in Water Path Sensitivity. 7-13
7-5 Constant Values for Sensitivity Studies 7-16
7-6 $\quad 1 / 9$ Replicate of 3^{6} Factorial Design 7-19
7-7 $\quad 1 / 8$ Replicate of a 2^{6} Factorial Desiscn 7-22
7-8 Air Path Sensitivity Study Variable Definitions. 7-23
7-9 Sample Blocks for $1 / 9$ Replicate of 3^{6} Factorial. 7-24
7-19 Sample Blocks for $1 / 8$ Replicate of 2^{6} Factorial. 7-27
7-11 Air Path Sensitivity Study Cases 7-28
7-12 $\quad 1 / 3$ Replicate of a 3^{3} Factorial Design 7-38
7-13 1/4 Replicate of a 2^{6} Factorial Design 7-39
7-14 Water Path Sensitivity Study Variable Definition 7-40
7-15 Sample Blocks for $1 / 3$ Replicate of 3^{3} Factoriai. 7-41
7-16 Sample Blocks for $1 / 4$ Replicate of 2^{6} Factorial. 7-42
7-17 Water Path Sensitivity Study Cases 7-43
7-18 Analysis of Variance for Air Path Sensitivity Study. 7-46
7-19 Computational Formulas for Air Path ANOVA 7-48
7-20 Analysis of Variance Results for Air Path Sensitivity Study. 7-50
7-21 Analysis of Variance for Water Path Sensitivity Study. 7-52
7-22 Computational Formulas for Water Path ANOVA 7-53
7-23 Analysis of Variance Results for Water Path Sensitivity Study. 7-55
8-1 Wind Frequency Data for Semi-Arid Site (No. 1) 8-4
8-2 Distribution of Population Along Prevailing Wind Path for Site Nos. 1 and 2 8-6
Table Page
8-3 Nuclide Equilibrium Coefficients* in the Aquifer. 8-7
8-4 Composition of the Unsaturated Zone (Vadose) Above the Water Table 8-9
8-5 Nuclide Retardation Factors in Semi_Arid Site (No. 1) Unsaturated Zone. 8-10
8-6 Wind Frequency Data for Wet Site (No. 2). 8-11
8-7 Nuclide Retardation Factors in wet Site (No. 2) Unsaturated 8-13
8-8 Surmary of Cases Studied, Population: 41,000 8-16

This report volume details the activities and results cf the system Analysis of Shallow Land Burial Project. Activities under four project tasks are described: Task 1 - Identify Potential Radionuclide Release Pathways, Task 2 Systems Model for Shallow Land Burial of Low-level Waste, Task 3 - Sensitivity and Optimization Study and Task 4 - Reference Facility Dose Assessment.

Early in the project, information was gathered concerning jurial sites, waste packaging and transportation. This was tone through literature review, telephone conversations, and visits to various sites by study teams. Sites were classified into two categories: (1) wet sites characterized by high rainfall, nearby bodies of water, and a watertable near the surface, and (2) arid sites with very 10 w ground moisture content due to very 10 w rainfall and high evaporation, wind erosion and very deep aquifers (more than 100 meters).

Pathways result from two main categories of occurrences: (1) chronic occurrences of near unity probability, and (2) natural and anthropogenic events of low probability. Packaging and processing contain both types of releases as does the burial operation. Transportation tends to involve only the second type (probabilistic). Either category of events is potentially high-probability, the chronic events tend tu be low-consequence while the probablistic events tend to be of higher consequence. In either case, the risk (probability x consequence) is usually very low.

A large number of scenarios for transportation, packaging, burial operations, and post-operations phases was identified. For each scenario a data base is supplied which includes nuclide inventory, release fraction, and the pathway sequence. Since pathway sequence is input from the data base, any additional scenarios can be easily added to the model. The scenarios in the data base are developed from detailed event tree analysis similar to the approach used in WASH-1400.

The system model consists of a number of transport and the dose subprograms for one-dimensional unsaturated zone water seepage (UNSAT), saturated aquifer transDort (AQUIFR), atmosphere transport (ATMOS), a wind erosion
(EROSIO), and dose assessment (OOSET). Other subprograms handle input/output data base manipulation and subprogram interfacing. The model is run by a main driver executive program (EXEC) which interfaces the appropriate subprograms. Data input to the Systems Model is handled through a number of data packages for weather, surface geology, sub-surface geology, and demography. The user can use standard data sets or substitute site specific data when desirable. Output of the Systems Model is annual dose commitment by nuclide, organ group, age group, pathways, and various aggregate totals. This report gives overviews and detailed description of the model and its components.

In the sensitivity study, a large number of independent variables were grouped to reduce the total number of inputs to the sensitivity testing. While this reduces the resolution, an attempt was made to group things that naturally track together, such as wind and dryness, soil size and loft percent, cows per acre, and beef cattle per acre, and so forth. Other values were held constant when it was clear that the output would be proportional to those values (for example, total population). The result was a set of 16 variable groups. Using standard fractional factorial techniques and Analysis of Variance, a test matrix of 648 air path and 144 water path cases was used in the systems model and analyzed for main effects and significant interactions. Interactions represent significant effects observed for one variable at a high or low level of the other.

Some variables were found to act like switches in the model. At one level, they would reduce doses to zero while at a slightly different level would result in measurable results. These were adjusted to "turn on" the problem. In a range where such tariables "turned-on" the problem, the effect of their value was insignificant. In the water path switch-like variables were rainfall, aquifer K_{d}, aquifer water travel time (length divided by flowrate), soil column K_{d} and nuclide sollubility. In the air path switch-like variables were rainfall, nuclide solubility, site wind resistance (shelter and field angle to wind) and soil column K_{d}.

Some variables showed insensitivity. In the air path the layering of the soild column was found to be insignificant indicating that the geology of the soil column may not need to be defined in great detail but rather averaged properties could be used. Total colummn depth causes a pure delay in the output (with nuclide decay superimposed). The population distribution in distance was also relatively insignificant. That is, closeness to the site had little effect

Table 1. Summary of Demonstration Cases
(Population 41,000).

No.	Description	Cumulative Dose (man-rem)	Direct Shine (rem)
1	Release irom 100 ft incinerator stack with filtering, 560 hrs , Site No, 1 wind	2.4×10^{4}	
2	Release from 100 ft incinerator stack, no filtering, 1 hr , site No. 1 wind	7.8×10^{4}	
3	Release from $1 \mathrm{~m}^{3}$ of waste for 2 min , Site No. 1 wind (Inspection of packages)	6.6×10^{-6}	
4	Exposure to high intensity load at 3 m for 2 min with $\frac{3}{4}$ " steel shield (3000 Cf, Co-60)		7
5	Chronic exposure to a person 10 m from $2100 \mathrm{~m}^{3}$ of uncovered trench $2 \mathrm{~min}, 1 / 16^{\prime \prime}$ Aluminum shielding equipment		7.3×10^{-8}
6	Routine wind erosion Site No. 1, 10 yrs	0	
7	Routine wind erosion Site No. 2 , 10 yrs	0	
8	Routine water seepage Site No. 1, 10 yrs	0	
9	Routine water seepage Site No. 2, 10 yrs	0	
10	Truck accident/fire, 90 m of LWR operations waste, 30 min exposure site $\# 1$ wind	120	1.42×10^{-4}

for airborne transport. In the water path dispersion in the aquifer had $1\{t \neq 1 \mathrm{e}$ effect on the results. Since dispersion coefficients are dicficult to determine, this is fortuitous.

Significant variables of note included weather pattern (dryness, wetness, wind velocity) agriculture in the air path, nuclide quantity in the water path (held constant in the air path), and stack height in the air path.

Interactions in the air path included weather (wind and rain) with cap erodibilito (geometry of cap), soil size with burial depth, soil size with site wind resisuance, burial depth with site wind resistance, and burial depth with soil column retardation factor.

Water path sensitivity interactions were aquifer water travel time with nuclide solubility, aquifer water travel time with water body turnover flowrate and nuclide solubility with water body turnover flowrate. The interactions of solubility with travel time or water body turnover are very significant. It means that reasonable site resistance precludes any need to know solubility (nuclides could just as well be in solution) or also that high dilution rates in a water body destroys signficance of solubility. Perhaps, the need for better understanding of solubility is not zlways as necessary as might appear.

Ten cases were studied in the Reference Facility Dose Assessment. These included two incinerator stack releases, two routine on-site exposures, 0 high intensity load incident, wind/water chronic pathways for two sites and a major truck accident. Two sites were used to obtain comparison for a semi-aria site (No. 1) and a wet site (No. 2). The semi-arid site was patterned after the Hanford and Idaho Falls locations while the wet site was patterned after the Savannah River Plant (SRP). Detailed descriptions of the sites are given in Section 3 of this report.

Table 1 sumnirizes the cases studied and results obtained.
Using realis:ic meteorological and hydrological data, no dose from routine releases to air and water paths could be calculated since concentrations were too small. Detailed nuclide soil concentrations are gix... or one case to illustrate the binding of nuclides to the soil and decay of many nuclides as they are held-up due to sorption in the unsaturated zone (vadose) or aquifer.

1. INTRODUCTION TO VOLUME 2

This volume of the final report "Systems Model for Shallow Land Burial of Low-Level Waste" is intended to provide detailed technical information pertaining to development and implementation of the systems model. Volume 1 is a user manual containing sufficient information to run problems in the model assuming an active version is available to the user. Volume 3 is an appendix containing backup data for Volumes 1 and 2.

The information in this volume includes the technical detail on the model content and its development. Background information on the various phases of the project is detailed. The contents are essentially a compilation of individual task reports issued as drafts during the course of the project to develop the model.

1.1 BACKGROUND

This report is the culmination of a 15 -month project sponsored by the Nuclear Regulatory Comnission to develop a system model for assessment of population dose from shallow land burial disposal activities. The objective was to develop a relatively simple model which would facilitate development of licensing criteria by allowing comparison of relative merits of procedural and siting alternatives. The model is intended to be a tool for comparison as opposed to a comprehensive risk model. All phases of the system are considered: packaging, transportation, burial and post-burial. It will be integrated with other analytic capabilities at NRC for licensing support analysis.

The project was carried out in four steps marked by four district task areas. First. information was developed from literature and site visits to develop a aetailed description of all possible events and chronic release mechanisms which could be identified. This comprehensive pathways list formed the basis for developirg a catalog of scenarios resulting in a variety of initiating events and lonj-term releases. The catalog was developed using event tree analysis coupled with engineering judgement to consolidate sequences resulting in the same basic type of release. Some sequences were considered to
have small probability and/or very small consequences and were deleted. The results of this activity was a list of scenarios with source terms describing a representative catalog of releases to geosphere and biosphere pathways. These are the driving forces that are then carried through geosphere/biosphere attenuators and interpreted as dose to the population. The second step was to sevelop the transport and dose model to perform the calculations. Existing models were surveyed and gathered. Necessary modifications were made and the various sub-models were integrated into one code for dose assessmen: Then in a third step a sensitivity study was performed to determine the importance of certain variables and variable groups including main affects and, in some, cases interaction. A series of 792 runs were made as a fractional factorial design of variable groups. The fourth step was to perform demonstration test runs for selected scenarios using reference sites. A series of ten cases were studied in a wet reference site and semi-arid reference site. These cases are described in this report in detail and are provided in volume 1 as test cases for code checking.
1.2 MODELING APPROACH

In choosing and adapting existing models the principai guifance criteria were:

- Availability (quantity and quality) of data.
- Convenience of existing model application (e.g., machine compatibility, running time, core storage, etc.).
- Verification/validation means avaflable.
- Compatibility with other subprograms.
- Compatibility with objectives and scope of this project.

Emphasis in choosing models was on "sufficient" rather than "best". The seamch for the "best" model involves extensive search and exhaustive comparison of which many models may do the job needed. A sufficient model needs only to meet the dasic requirements and be reasonably efficient.

The availability of data is a large concern. Many existing models far exceed data availability and their complexity is wasted since many features are not used. Models used in this ztudy were chosen to maximize use of available data and avoid featues which could not be used at present or in the forseeable future because of lack of data. The type of data that would be supplied with license applications was visualized in formulating opinions on suitability of various models.

Flexibility was an importar consideration in the system model development. Modularization of subprograms and data have been employed to allow future changes and program trouble-shooting. The subprogram sequencing is done by a data base input to allow aadition of any scenario so long as a source term and sequence is identified. Thus, revision of the pathways sequencing is very simple. Approaches to the individual subprograms is discussed in detail in Section 6 and supporting Appendices (Volume 3). The models used for the subprograms are generally common in the industry and well established. Some alterations in original approaches have been necessary to meet the specific needs of the Shallow-Land Burial Model.

1.3

ORGANIZATION OF VOLUME 2
This volume is organized around the results of the four steps described above. A section on site description (Section 2) provides background information that was used in developing scenarios, model features and reference sites for the demonstration phase. Section 2 also is a record of the results of literature review and site visits made by various project teams early in the project (Trip reports from the project teams are included in Volume 3 as Appendix A). Section 3 is a brief discussion of the dose pathways problem as an orientation to Sections 4, 5, and 6 which describe the details of scenario and model development. Sections 4 and 5 describe the results of the activities during the first step in the project. The method of scenario and source tera development and results obtained are described. Detailed scenario and source term results are in Appendix B and C, Volume 3 and in Sections 4 and 7 , Volume 1 (the user manual). Section 6 is a detailed description of the System Nodel itself as it was developed during the second project step. Section 7 described the third step: sensitivity studies and Section 8 describes the fourth step: reference facility dose assessment.
2. SITC DESCRIPTIONS

2.1 INTRODUCTION

In this section, exisiting commercial shalluw land burial sites are cescribed as well as the DOE site at Richland. The locat on, topography, climate, geology, and hydrology of these sites were studied and the descriptions were generated to focus on factors of concern with respect to nuclide release and trans oort. The descriptions are not intended to be in great detail. Many detailed descriptions can be found in the literature (Papodopulos and Winograd, 1974; Morton, 1968; Adam, et al, 1978). Factors relevant to development of the systems model and the release pathways are emphe-ized in the sections that follow.

It became apparent during the study that two basic types of sites are encountered: (1) high-rainfall, high-watertable locations whete runoff, seepage, leaching, and groundwater transport are of paramount concern and (2) arid, very deed-watertable locations where only surface water (flash floods, snow melt) are of concern and airborne pathways predominate. In this study we will call tiese (1) "Wet" Sites and (2) "Arid" Sites. Categor ${ }_{j}$ (1) commercial sites include Maxey Flats, Sheffield, Barnwell, and West Valley and category (2) commercial sites include Beatty and Richland. Savannah River (SRL) and Oak Ridge (ORNL) fit category (1) while DOE sites at Hanford, LUS Alamos and Idaho (INEL) (with some exception) fit category (2).

2.2 MAXEY FLATS

2.2.1 Location

The low-level radioactive waste disposal site of Maxey Flats is located 16 kilometers northwest of the town of Morehead in Fleming County, northeastern Kentucky. The area of the site, which is owned by the State of Kentucky, is about 200 acres. In 1963, the Nuclear Engineering Company was issued a license
by the State of Kentucky to operate the disposal facility. In 1971, it was decided that additional studies were needed at Maxey flats to insure that precipitation which infiltrated the completed trenches would not result in contamination of the groundwater by radionuclides. In December, 1977, the disposal site was ordered shut down so that a two-year period of study on the safety factors of the waste disposal technique could ensue. Operations did not esume at the end of the two-year period.

2.2.2 Topography and Climate
 The topography of the region consists of gently rolling hills and

 valleys. Maxey Flats is situated on top of a broad mesa. Moderately steep valleys border the Maxey flats mesa on the eastern and southern margins. The area is drained by Rock Lick Creek.The climate at the Maxey flats site is humid, consisting of high rainfall and low evaporation. The mean annual precipitation amounts to about 1.1 meters per year, mostly in the form of heavy storms. There are sharp contrasts between winter and summer seasonal temperatures in the Maxey Flats region.
2.2.3 $\frac{\text { Geology and Hydrology }}{\text { The stratig.aphy of the Maxey Flats site consists of approximately } 4.5}$ meters of dry, firm and mist silty clay overburden. The Bordon formation, estimated at 20 meters in thickness, underlies the silty clay. There are two primary units in the Bordon Formation. The upper layer is the Nancy Member, about nine meters thick, consisting of alternating layers of soft, bluish-green to gray shale and hard, fine-grained, yellowish-brown sandstone. The 10.5 -meter thick Farmer Member which underlies the Nancy Member is comprised of alternating layers of sandstone and vertically jointed shale. The Henley Bed, about three meters in thickness, underlies the Farmer's Member and is characterized as a greenish-gray shale layor. The upper contact of the sudbury shale formation occurs at about the 27 -meter depth and is identified as a moderately hard, dark green wo black sha'e.

The uppermost watertable at the Maxey Flats site is a "perched" table located at a depth between $\cup .6-1.8$ meters below the surface and in the soil zone above the Nancy Member. The main watertable is located at deptr. of 10.5-15 meters below the surface and has an erratic slope gradient. Nearly all of the water which discharges from the Maxey Flats disposal site does so by means of one of several pathways. These flow paths include surface runoff, movement through cracks and joints in the bedrock, and movement through shallow soil zones,

The radioactive waste of Maxey Flats is stored in beried trenches with dimensions of 6 meters deep, 15 meters wide, and 90 meters long. The basal unit in the trenches is the tight, impermeable Famer Member of the Bordon Formation. The impervious nature of this layer creates a problem due to an accumulation of water which collects in the trenches, especially during periods of abundant rainfall. The excess water must then be pumped out of the trenches and processed in an evaporator facility on site.

2.3
 BARNWELL, SOUTH CAROLINA

2.3.1 Location

The comercial nuclear disposal site near Barnwell, South Carjlina is located about 10 kilometers west of the town of Barnwell in Barnwell County, west central South Carolina. Chem-Nuclear Systems, Inc. operates this comercial nuclear waste disposal facility on a 278-acre parcel of land which is owned by the State of South Carolina and leased to this firm for $99-y e a r$ term. The State of South Carolina and the NRC regulate the licensing requirements for the Barnwell waste disposal site.

Initially, the nuclear waste delivered to Barnwell was buried in trenches which were 6 meters deep, 15 meters wiot, and 150 meters long. Presently, the facility buries the incoming waste in trenches which are much larger in size than those originally used, with dimensions equal to 6 meters by 30 meters by 305 neters. Certain high specific activity shipments of radioactive waste are buried in narrow slit trenches having dimensions of 6 meters deep, 0.8-0.9 meters wide, and 305 meters long. After the trenches are filled with nuclear waste, a shield of two to three meters of clay is placed over the trench. A vibratory compactor compresses the clay to eliminate sectling. Finally, the
clay is capped by a sand layer, which is contoured to prevent surface water from seeping into the trench.

2.3.2 Topography and Climate

The Barnweil ared is part of the topographic region known as the Coastal Plains, an area of South Carolina characterized by gently rolling low-lying hills and flat, somewhat swampy meadows. The main river system draining the area around Barnwell is the Savannah River, which flows from northeast to southwest throigh wide valleys which are often bordered by swamplands.

The climate in this area is characterized as humid and subtropical with long summers and mild winters. The average annual precipitation in Barnwell County is 1.15 meters, which is a relatively high amount of rainfall.

2.3 .3

Geology and Hydrology
The uppermost layer of sediment near the su-face at the Barnwell site is a dense, reddish-brown clay known as the Haw,torne layer, which is approximately 1.2 meters in thickness. Underlying the Hawthorne clay is the Barnwell (sandstone) layer. In digging the waste burial trenches, the clay is removed and the trench is dug w a six-meter depth in the Barnwell sandstone.

The watertable lies relatively close to the surface at the Barnwell site in comparison to the depth to the watertable at Beatty, Nevada, fo: example. The depth to the watertable is about 15 to 18 meters below the surface. Between the floor of the waste trenches and the upper boundary of the watertable, the geology consists of clay with lenses of sandstone.

Due to the humid climate and the relatively shallow watertable which characterize the Barnwell waste site, radionuclides buried there are fore likely to be released and to migrate downward through the sediments into the groundwater than at the arid to semi-arid waste sites in Beatty and Richland. Therefore, test wells have been placed around the edge of each completed waste trench. These wells are sunk to the base of the trench to monitor the possible existence of water. Any water collected at the base of the trench may be pumped out to avoid contact with the buried waste.

2.4.1 Location

Nuclear Engineering Company (NECO) operates the waste disposal site located about 18 kilometers south-southeast of Beatty, Nevada, within the Amargos. Desert in Nye County. The Beatty site is licensed by the state of Nevada for the disposal of industrial waste and solid, low-level radioactive waste. Disposal of low-level radioactive wastes was begun in 1962. The wastes were buried in trenches with dimensions of 6 meters deep, 12 meters wide and 200 meters long. At the present time the waste trenches being filled are much larger in size, having dimens ons of 15 meters in depth, 37 meters in width and 245 meters in length. After the trenches are filled with waste, a one to two meter thick cap of soil is placed over the trenches to protect against exposure to the nuclear waste from soil erosion, runoff, etc.

2.4.2 Topography and Climate

The area in proximity to Beatty, Nevadd, is in a broad northwesterly trending valley in the Amargosa Desert. The valley is bounded by the Grapevine and Funeral Mountains on the southwest and Bare Mountain on the northeast. Average altitudes here range between $845-849$ meters above sea level. To the southeast of the nuclear waste disposal site the topography is characterized by a series of ridges which contrast somewhat from the 76 -meter-high smooth, sandy Big Dune located on the valley floor.

In general, the topography of the area surrounding the Beatty site is characterized by broad, flat valleys separated by rugged mountains. This is a typical landscape usually found in a basin and range province. The slope of the site is towards the southeast, ranging between 0.3 to 0.6 meters per hundred meters and providing for good drainage of the area.

Average precipitation in the Amargosa Desert near Beatty ranges betwee 64 to 127 mm per year. Yearly evaporation at the site averages about 2.5 meters per year which removes much of the near-surface moisture.

The surficial deposits in the Beatty area consist of poorly sorted mixtures of fine to course grained fanglomerate materials. These sediments are primarily semi-consolidated deposits of boulders, gravel, sand silt, and clay. The exact thickness of these sediments is not known, but it is estimated to be about 175 meters. Based upon a driller's log in the Beatty area, two aquifers were identified in the semi-consolidated sediments at the 99 -meter to 104 -meter level and at the 144 -meter to 147 -meter level.

The gravel and sand sediments are permeable and transmit water more readily than the clay fraction which is impermeable and transmits water very slowly or not at all. The aquifer materials identified above at 99-104 meters and $144-149$ meters consist of various-sized boulder with little clays. The permeability for the aquifer materials penetrated by the well ranges from 2440-20,300 1 iters/day per square meter.

The bedrock geology, which underlies the 175 meters of sediments described zjove, presumably consists of rocks which are similar to those exposed in the mountains that surround the valley. The rocks have been classified as the Nopah Formation, Stirling Quartzite, and Bonanza King Formation of Paleozoic Tertiary aqe. These units consist of structurally complex sedimentary and metamorphic limestones, dolomites, and marbles which have been fractured and faulted by recent tectonic activity. Although the Beatty site is in a seismically active area which is susceptible to severe earthquakes, it is not on an active fault zone. The only significant effacts of earthquakes upon water contamination by the buried waste would be those resulting from fissures in the earth which would permit the inflow of rainfall. However, the probability that an earthquake of sufficient magnitude to create fissures would occur is very remote.

The groundwater flow in the Beatty area parallels ? northwesterly trend of the valley. The piezometric surface has a computed hydraulic gradient sloping about 2.7 meters per kilometer with a direction of flow down-gradient to the southeast. As stated previously, the depth to the uppermost watertable is about 99-104 meters below the surface. It is clear from the meager annual rainfall in the Beatty area and the deeply-buried watertable that the downward migration of radionuclides through the soils to the aquife is very unlikely.

2.5.1 Location

The low-level solid radioactive waste burial site in Bureau County, Illinois, is located about 4.8 kilometers southwest of the rural town of Sheffield in north-central lllinois. The region is a sparsely populated agricultural area.

The Sheffield waste burial facility is owned by the State of Illinois and is operated by California Nuclear, Inc. The facility, which has a site area of nearly 27 acres, started operations in 1967. Burial operations were suspended in 1977. trenches at the site have dimensions of 6 meters deep, 12 meters wide, and 150 meters long. After the trenches were filled, they were backfilled, compacted, and mounded to lessen the infiltration of precipitation and subsequent leaching of buried wastes. Monitoring wells and drains to detect any water that might collect in the trenches have been employed at Sheffield.

2.5 .2

Top, graphy
The landform around the Sheffield waste burial site consists of east-west trending rolling hills with altitudes ranging from about 235 to 275 meters. The hills slope toward the south and merge with an intermittent drainage branch of the Lawson Creek. The surface flow of the Lawson Creek occurs only during, or subsequent to, periods of rainfall. At other times, the drainage is intermittent. The Lawson Creek drains to the north into the Green River Lowland at the northern portion of the Sheffield site.

2.5.3 Climate

The Sheffield site is located in an area of humid climate with relatively high rainfall and low evaporation. The annual precipitation is about 0.9 meters of rainfall. The rainfall is scattered througout the year with most of it falling in June and the least in February.

2.5.4 Geology and Hydrology

The surficial deposits of the Sheffield site are comprised of about 15 to 18 meters of Pleistocene aje, unconsolidated glacial silty-clay loess sediments on the hills in which the site is located. The sediments have relatively low permeability to percolating groundwater.

The bedrock geology of the site, which underlies the glacial sediments, consists primarily of Pennsylvanian shales. There are minor amounts of sandstone, clay, limestone, coal, and black slaty shale which are interbedded with shale. The maximum thickness of the shale bedrock in this area is about 125-150 meters. These shales are relatively impermeoble at the site, so that it is unlikely that water would migrate downward from the glacial sediments above to carry radionculides to these Pennsylvanian rocks. Some mining of coal had been carried out in the vicinity of the site some time ago.

The structural picture in the vicinity of the Sheffield site is rather stable. No major faults in the bedrock geology underlying the site are known to exist. The rocks have gentle dips in an east-southeasterly direction toward the Illinois coal basin.

Studies have indicated that a "perched" water body occurs in the glacial sediments which overlie the impermeable shale bedrock at the Sheffield site. This would appear to be the water body of main concern in the disposal of radioactive waste in the trenches.

In the nills of the southwestern and east-central parts of the site, the depth to the watertable is about 12 to 18 meters below the land surface. The groundwater gradient slopes northward over much of the site, however, so that the watertable appears to be within 7.5 meters of the land surface in the northeastern part of the site.

2.6 RICHLAND/HANFORD

2.6.1 Location

The commercial radioactive waste burial facility near Richland, Washington was opened in 1962. It is a 100 -acre site which is located about 40 kilometers North of Richland in Benton County, southcentral Washington. The cormercial Richland waste site is operated by the Nuclear Engineering Company
(NECO) and 1 icensed by the State of Washington. The Hanford-DOE 10w-level radioactive waste burial site is located in the 200 Area of the Hanford Reservation and is only several kilometers from the comercial NECO burial site.

The waste trenches at the commercial Richland site zre straight-walled trenches with dimensions of 7.5 meters deep, 24 meters wide, and 137 meters long. It requires about six to eight weeks to dig a trench of this magnitude. After the trench has been filled with wastes, 2.5 meters of fill is placed over the waste as a trench cap.

2.6.2 Topography and Climate

The Richland waste burial sites are located within the Columbia Plateau physiographic region of central washington. The area is characterized by moderate elevations, flat plateaus, gentle slopes, and rolling hills. To the northwest of Richland lies the Rattlesnake Hills, while the Horse Heaven Hills lie to the southwest of Richland. The irea is drained by the Columbia River, the Snake River, and the Yakima River.

The climate of the Richland area could be classified as arid. The annual precipitation ranges between $150-200 \mathrm{~mm}$. Dust storms may occur in parts of Eastern washington in the windier monthr, when the light surface of the soil is dry.

2.6.3 Geology and Hydrology

The surface material at the Richland sites is a silty sand, gravel, and clay mixture. The soil at the surface has the appearance of a beach sand. The sandy horizon extends from the surface to depths of between 45 to 91 meters. The bedrock which underlies the sediments and forms the hills around Richland consists of the Columbia River Basalts.

The depth to the watertable at the NECO and DOE (200 Areas) sites is between 70 and 110 meters below the surface of the soil. Due to the arid climate, the meager amount of rainfall, and the depth to the groundwater, no water collects in the trenches. Migration of the radionuclides from the buried waste to the hydrosphere appears to be an unlikely concern at the Richland radioactive waste burial sites.

2.7 WEST VALLEY

2.7.1 Location

The Western New York Nuclea.- Services Center is a low-level radioactive waste burial facility located at West Valley in Cattaraugus County, New York. This site, which began operations in 1963, was run by Nuclear Fuel Services, Inc. and licensed by the State of New York. The low-level radioactive waste on the over ten acre West Valley site was buried in trenches whose dimensions are 6 meters deep, 10.5 meters wide, and 214 meters long.

2.7.2 Topography and Climate

The West Valley site, which lies at an approximate elevation of 460 meters, is located within the physiographic area of the Appalachian Plateau. The topography consists of rounded ridges and hills which are cut by steep-sided ravines. There are several rivers and tributaries which are associated with the Appalachian Plateau province in the area near West Valley, including the Allegheny River, the Genesse River, and Cattaraugus Creek.
the climate around the West Valley site is humid with about one meter of precipitation annually. Most of the rain falls in the period from May through September. Average summer temperatures are about $18^{\circ} \mathrm{C}$, while mean winter temperatures are $2^{\circ} \mathrm{C}$.

2.7.3 Geology and Hydrology

The burial medium into which the waste burial trenches have been dug at the West Valley site is believed to be a lake deposit which has been reworked by glaciation. The soil consists i: glacial till horizons ranging from 7.5 to 52 meters in depth. The till has very low permeability, is gray in color, and consists of a dense mixture of clay, silt, sand, and gravel. Vertical shrinkage cracks in the till horizons have been observed in the upper 4.5 meters of soil.

Below the glacial till lies Paleozoic shale and sandstone bedrock. The shales have been shown to be largely impermeable and they extend to more than 600 meters in depth.

The fault..? activity rearest to the site is about 48 kilometers east in the north-south trending llarendon-Lindon fault. However, the fault appears to have been nactive for over 350 million years. The natural seismicity in Western New York is known to be low to moderate.

The depth to the watertable at Nest Valley is variable and slopes with the surface drainage. Due to the low permeability of the glacial till soil into which the trenches are dug and to the high amount of rainfall that characterizes the climate of west Valley, it is possible for rain to percolate downward into the trenches. The leaching of radionuclides into the groundwater is prevented by certain operational procedures. The moisture content in the floor of the waste trenches is monitored and the water is pumped out as it collects in order to prevent the migration of radionuclides from the buried waste to the water cable.

3. DOSE PATHWAYS - GENERAL DISCUSSION

The main objective of the burial of low-level waste at shallow land burial sites is to isolate the waste from the biosphere and prevent the exposure of the population to this waste. Generally, such isolation is not total and specific segments of the population may be exposed to the waste during the collecting, transporting, processing, and burying of the waste. It is also possible that release of radionuclides from the waste after burial may take place. Such releases could conceivably result in release to the biosphere. For these reasons, it is necessary to determine what pathways to humans exist and to determine the significance of tne pathways. Task 1 has as an objective the compilation of an exhaustive list of possible pathways to humans from all phases of the shallow land burial process. This section presents an overview of pathways to humans in a general discussion so that individual pathways identified can be placed in perspective

Figure 3-1 illustrates a comprehensive pathways model. The model is general since the event source is not defined. The event source can represent varied events such as transportation accidents, burial accidents, and simply normal or chronic releases. In all events, the released radionuclides need to be initially transported. This transport is generally via air or water. However, certain scenario-dependent transport mechanisms may take place, such as transport via truck tires, feet, etc. Direct gamma radiation exposure would also be covered by localized transport.

Once in the environment, a number of secondary transport mechanisms may act upon the radionuclides. The environment through which the radionuclides may be transported are air, terrestrial, and aquatic media. The terrestrial environment includes only the near-surface mechanisms. Transport via underground migration is included in the aquatic environment. As can be seen, the three media are coupled to one another via coupling mechanisms such as deposition, resuspension, and runoff.

Having been transported to the biosphere, the radionuclides may expose specific segments of the population during secondary transport. These exposure possibilities are listed as transfer mechanisms in Figure $3-1$. Exposure from the air environment is by either external exposure or via internal exposure due to inhalation or absorption of the radionuclides. Exposure from the terrestrial environment is by either external exposure or via food chain pathways. The aquatic environment exposures include external exposure, exposure via ingestion and absorption, and exposure via quatic food chains. Figure 3-2 illustrates the possible external exposure pathways. Figure 3-3 illustrates the possible internal exposure pathways.

In order to classify or categorize the possible dose or exposure pathways for the shallow land burial process, it is necessary to discuss the difference between chronic and acute or discrete terminology. Pathways that are considered chronic are pathways with continuous releases such as evaporation of trench water and migration of radionuclides away from the trenches. Discrete pathways include anthropogenic events such as tratisportation accidents and natural events such as floods, tornadoes, and earthquakes.

Discrete events or pathways are best described using a fault-tree-type approach. These events are probabilistic in nature and, therefore, have a probability associated with their occurrence. Their relative importance can be determined by considering the resulting consequences such as health effects times the probability of occurrence. The resulting calculation is essentially the risk associated with the discrete event. Chronic pathways, on the other hand, can be considered to have a probability of unity or near unity. Therefore, while discrete events or pathways occur rarely, chronic pathways are present for greater periods of time. Of course, because of the existance of radioactive decay, chronic pathways generally diminish in magnitude of consequences over a period of time.

Also important to the classification or categorization of pathways for shallow land burial are the various processes in the system. Exposure pathways may occur during all the processes including packaging, handling, transportation, burial, and maintenance of the site. It is anticipated that the chronic pathways for all processes up to and including the burial and covering of the waste would be mainly external exposure due to proximity to the waste and possibly some inhalation of radionuclides due to leakage.

After the waste has been buried and covered, two time periods are assumed to follow. The first time period is an administrated storage period during which access to the burial site is controlled. The site will be monitored for possible radionuclide releases during this time. The second period involves public use. During this time, access to the burial site is unrestricted.

Chronic release pathways during the administrated storage period may include radionuclide migration to water supplies and airborne releases such as those from the evaporation of water in trenches. The anthropogenic events would include the digging up of waste by accident because of bad surveys, etc. The natural occurrences are probabilistic events not caused by humans.

During the unrestricted use period of the burial site, the chronic release pathways would be similar to those during the administrated storage period. The discrete events include anthropogenic and natural cccurrences. Though the natural occurrences would be similar to those identified in the administrated storsge period, the anthropogenic events would be drastically different. Use of the land by people would introduce new pathways because of actions which might include farming the land, digging localized wells, retrieving usable waste items such as tools, and in general, excavation of the 1 and for various reasons.

This section has given an overview of possible exposure pathways associated with the shallow land burial process. The variety of pathways appears to be very extensive and covers a range of possible consequences. The sections that follow deal with specific sites and pathways.

4. NUCLIDE SOURCE TERMS

4.1 GENERAL

To successfully analyze the shallow land burial process, it is important to understand the types of radionuclides buried, including amount and concsatration, and the forms of waste in which they are includid. The waste is referred to as "low-level radioactive waste." Historically, low-level waste was defined as all solid and liquid wastes not considered high-level. Such definition, of course, is rather general and leaves a lot to the imagination.

A more satisfying definition of low-level waste is all waste except: (1) that defined as high-level waste, (2) spent fuel, and (3) waste with more than ten nanocuries per gram of transuranic alpha-emitting radionuclides. Appendix F of 10 CFR Part 50 defines high-level radioactive waste as "those aqueous wastes resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated wastes from subsequent extraction cycles, or equivalent, in a facility for reprocessing irradiated reactor fuel."

The ten nanocuries per gram of transuranic alpha-emitting radionuciides 1 imit car best be described by quoting the report of an NRC Task Force (NRC Task Force Report, 1977):
"The AEC issued a proposed rule on September 12, 1974 which would have limited burial of transuranium wastes at conmercial sites. Following creation of the NRC and ERDA, ERDA withdrew the draft environmental statement needed to fulfill requirements of the National Environmental Policy Act (NEPA). Although the rule has not been implemented, all the commercial buritl sites except the Hanford site presently limit the burial of transuranium nuclides. Development of a rule and supporting anvironmental statement is still being pursued by NRC in concert with other reviews such as this one."

As is noted later in this report, the Hanford site will soon follow the proposed rule of ten nanocuries per gram. This was confirmed during conversations held
when staff members visited that site. The expected order of importance of the major generators of commercial low-level waste is (1) nuclear reactors, (2) institutions such as hospitals, clinics, and universities, (3) industry, and (4) government laboratories. Calcium fluoride waste from fuel fabrication plants is expected to be a possible major source of waste in the future. At present, Westinghouse is disposing of this type of waste at Barnwell.

Summaries of low-level waste buried at shallow land burial sites can be found in a number of references (Holcomb, 1978, and Smith, 1979). Of most concern in this report are on the types of radionuclides that may be placed at the sites in the future. The generators can be lumped into two categories: fuel cycle facilities and non-fuel cycle facilities. The fuel cycle facilities essentially consist of nuclear reactors, particularly PWRs. The non-fuel facilities include institutions, generators of depleted and natural uranium, thorium metal fabrication wastes, government laboratories, DOE research contractors, and industry such as the radiopharmaceutical industry. It is believed about 80 percent of non-fuel cycle waste is from institutions (Andersen, et al, 1978).

Recent work by the NRC (Smith, 1979) estimated the projected low-level waste activity and volune for 1979 on the basis of 1975-1977 data. Table 4-1 illustrates the breakdown of the waste by activity. Table 4-2 illustrates the breakdown by volume. A more detailed discussion is presented in the following sections.

4.2 FUEL CYCLE WASTES

The majority of low-level waste is generated by fuel cycle facilities, particularly at LWRs. This type of waste includes filters/filter backwash, filtered phase-separator decant liquid, evaporator b:ctoms, demineralizer waste, laundry wastes, general trash, and activated components. Table 4-3 illustrates typical liquid wastes which are processed and treated as low-level waste. In general most of the activity from LWR low-level waste is in a small portion of the total volume of the waste, namely highly-activated components. Such components include control ruds, fuel channels, poison curtains, etc.

In 1976, filter sludges, resins, filters, evaporator boctoms, and trash accounted for greater than 99 percent of the LWR low-level waste volume while activated components accounted for about 45 percent of the total activity. In

Table 4-1. Projected Low-Level Waste Activity for 1979. (Curies)

Table 4-2. Projected Low-Level Waste Volume For 1979.

SOURCE OF WASTE*	\% OF TOTAL
Fuel Cycle	
Dry Solids and Trash	30
Evaporation Sottoms	16
BWR Filter/Demineralizer Wastes	8
Resins	4
Miscellaneous	2
TOTAL	60
Non-Fuel Cycle	
Dry Solids and Trash	17
Liquid Scintillation Vials	15.4
Absorbed Liquids	4.2
Biowastes	
ToTAL	4.4

Table 4-3. Low-Level Liquid Wastes Collected at Power Reactors.

REACTOR TYPE	TYPE LIQUID WASTE	SOURCE	TREATMENT
Boiling-water reactor	High purity	Equipment drains; lowconductivity back-wash water	Filtration and ion exchange
Boiling-water and pressurized water reactors	Low purity	Floor drains; water from dewatering of slurry wastes	Filtration fon exchange or evaporation
Boiling-water and pressurized water reactors	Chemical wastes	Laboratory and nondetergent decontamination wastes; fon exchange resin regenerant solutions	Evaporation
	Detergent Wastes	Laundry wastes; deter-gent-type wastes from decontamination	iltration and/or everse osmosis or possibly evaporation
Pressurized water reactor	Miscellaneous	Floor drains, aerated systems and equipment drains, wastes from sampling and primary (boric acid) systems	Evaporation
	Secondary system waste;	Wastes from turbine building, steamgenerator blow-down (except for :onexchange regeneration)	Filtration and ion exchange

1977, activated components accounted for nearly 80 percent of the activity. It appears that activated ε aponents are easily the most significant sources of gross activity in LWR 10 : $-v e l$ waste. The breakdown of activated component activity by curies is assume to be:

Mn-54	5 percent
Co-58	10 percent
Co-60	30 percent
C $s-134$	15 percent
Cs-137	25 percent
Other	15 percent

The average specific activity for activated components was estimated to be 3000 $\mathrm{Ci} / \mathrm{m}^{3}$ in 1977. For, all other LWR low-level waste the estimated average was $1.3 \mathrm{ci} / \mathrm{m}^{3}$.

For comparison, if the Three Mile Island (TMI) cleanup waste from resins, filters, and sludge is between 200,000 and 500,000 curies, it is equal to about four to ten times the activity in resins, filters, sludge, and evaporator bottoms disposed of in 1977.

The estimated $7 \mathrm{u}-239$ and Pu-240 activity in LUR. waste in Table 4-1 was assumed to be 0.312 Ci per GWe-yr for BWRs and $0.155 \mathrm{Ci} / \mathrm{GWe}-\mathrm{yr}$ for PWRs. The generation numbers for 1979 we e 15 GWe-yr for BWRs and 30 GWe-yr for PWRs. The concentration estimates were taken from work by others. (Lapides, et al, 1978).

In generating the inventories, it was assumed that fuel cycle wastes are represented by the LWRs. These assumptions should be reviewed and updated periodically to include any significant changes. For example, in the future, calcium fluoride waste from the fuel fabrication plants could becom? a major waste in terms of volume.

It is convenient for the purpose of modeling to subdivide LWR wastes into (1) activated components, (2) LWR ooerational wastes, (3) waste from reactor decormissioning.

Highly activated LWR components represent a small volume of waste. Typically, in 1976 they omprised only about $C .04$ percent of the volume, but contained some 65 perient of the total activity. These wastes include control rods, fuel channels, and other activated materials. Their volume is expected to increase in the fu'ure. Highly activated wastes are assumed to be stainless stee? with cobalt-60 as the predominant element. These assumptions will need to be reviewed from time to time since, if the control rods comprise the majority of the activity, then the activation products of the neutron absorbing elements may
be more significant than cobalt-60. Average specific activity of these wastes is estimated at $3000 \mathrm{Ci} / \mathrm{m}^{3}$ and summarized in Volume 1.

The majority of LWR operational wastes by volume is comprised of low-level activity items such as filters, filter backwash, filtered phase-separator decant liquid, evaporator bottons, demineralizer wastes, laundry wastes and general trash. The estimated average activity for operational waste is $1.3 \mathrm{ci} / \mathrm{m}^{3}$. The isotopic co:-entrations are 11 sted in volume 1.

The method of deriving the isotopic concentrations together with various assumptions are discussed in Smith 1979. A key assumption is that the percentages of the 1 . .r major isotopes, Co-50, Cs-137, Mn-54 and Cs-134 which are typically found, and BWR and PYR evaporator bottoms and spent resin wastes may be applied to the total activity.

The conceritrations of addition padioisotopes were included on the following bases:

1. Selecting representative values from published data, when spread in data is very large.
2. Selecting maximum values, when only a few values are available.
3. Calculating the concentration from theoretical considerations or from combination of actual concentration data and theoretical extrapolations.

Radionuclide inventory for these wastes is summarized in Volume 1.

LWR decomissioning wastes are derived from activation of structural components and decontamination. Isoin =3 süniained in activated components are summarized in volume 1. They were dirived in A1\% 1976 and NRC 1977 on the basis of material composition and neutron fluxes in the reactor. The accuracy of predictions is expected to be good for the activation products of the major structural materials. The average specific activity was estimated at $3.8 \mathrm{Ci} \cdot \mathrm{m}^{3}$ with major contributors being $\mathrm{Co}-60, \mathrm{Ni}-63$ and $\mathrm{Fe}-55$. The remaining isotopes are listed in Volume 1.

The decontamination wastes in the LWR decomissioning models are assumed to have a similar composition to LWR operational wastes, listed in volume 1. However, an average specific activity is $32 \mathrm{ci} / \mathrm{m}^{3}$ which is considerably higher than $1.3 \mathrm{ci} / \mathrm{m}^{3}$ for operational wastes.
4.3 NON-FUEL CYCLE WASTES

In 1978, there were more than 16,000 licensees in the United States licensed for the use of radioactive materials by either individual states or the Nuclear Regulatory Commission (Andersen, et al, 1978). These licensees are the producers of non-fuel cycle wastes. It is estimated that 3 significant portion of the non-fuel cycle wastes is produced by a relatively small number of large medical and educational institutions and certain industrial 1 icensees.

4.3.1

Institutional Waste
A study was performed to characterize the wastes produced by a significant portion of institutions and shipped for comercial burial (Andersen, et al, 1976). The study was accomplished by the use of a survey of selected institutions and covered data for 1975. In 1975, it was estimated that 39 percent (by volume) of all low-level waste was from non-fuel cycle sources. The major results and conclusions are discussed in the following paragraphs.

The waste containers used for shipment were:

- 210-1iter (55 -galion) steel drums (6 ? percent).
- 115-1iter (30-gallon) steel drums (30 percent).
- Other containers (8 percent).

The other containers included fiberboard drums, cardboard boxes, wooden crates, paint cans, etc. The use of 115-1iter versus 210-1iter cans appeared to be strictly for ease of handling.

The physical forms (by volume) of the shipped waste were:

- Dry solid waste (42 percent).
- Scintillation vials (28 percent).
- Solidified and absorbed liquid waste (21 percent).
- Biological waste (9 percent).

Assuming at least 50 percent of the solidified and absorbed liquids consisted of expended scintillation cocktail, then nearly 40 percent if all waste by volume consisted of packaged scintillation cocktail o scintillation vials.

Table 4-4 lists the estimated radionuclides shipped in 1975 by category. The miscellaneous radionuclides included:

$\mathrm{Ca}-45$	$\mathrm{Xe}-133$	$\mathrm{Na}-22$
$\mathrm{Co}-57$	$\mathrm{Se}-75$	$\mathrm{Yb}-169$
$\mathrm{Cs}-137$	$\mathrm{Sr}-85$	$\mathrm{Mn}-54$
$\mathrm{Fe}-59$	$\mathrm{Co}-60$	$\mathrm{I}-123$
$\mathrm{In}-111$	$\mathrm{Rb}-86$	$\mathrm{Ir}-192$
$\mathrm{Hg}-203$	$\mathrm{Mg}-56$	$\mathrm{Ce}-14 \mathrm{l}$
$\mathrm{CC}-109$	$\mathrm{Ra}-226$	$\mathrm{An}-241$

Table 4-5 lists the estimated activity concentrations using the assumptions included with the table. Figure $4-1$ is Andersen's urojected volume of institutional waste for the years past 1975. Andersen noted that the volure trends given are likely to be conservative since the study based trends on : constant population. The average specific activitiesare summarized in Volume 1 , with the tritium activity adjusted to account for tritium accelerator targets. The isotopes for which concentrations are identified as "very small"were reported by the survey respondents, but the concentrations could not be projected because of insufficient sampling.

4.3.2 Other Non-Fuel Cycle Wastes

No breakdown on the other non-fuel cycle wastes was available. Therefore, institutional waste is currently assumed to be representative of all non-fuel cycle wastes. The inventories are summarized in volume 1.

```
4.4 ESTIMATED RADIONUCLIDE CONCENTRATIONS IN LON-LEVEL NASTE
    Table '-6 is a listing of estimated radionuclide concentrations in
low-level wast//: The data is taken from an NRC document (Smith, 1979). It was
assumed that no decay during transit to a site occurs. Nuclides with half-lives less than 50 ozys or for which only limited evidence of their existence was found were excluded. Table 4-7 1 ists these radionuclides.
```


Figure 4-1. Projected Waste Volume Increases in Institutional Survey Population. (Andersen, et al, 1976).

Table 4-4. Estimated Institutional Radionuclides Sh ped for Commercial Shallow Land Burial in 1975 (Activities in mCi) (Andersen et al, 1976).

NUCLIDE	CLINICAL HOSPITAL	TEACHING HOSPITAL	MEDICAL SCHOOL	UNIVERSITY/ COLLEGE	TOTAL
H-3*	1,313	13,788	46,659	23,516	85,276
C-14	214	1,523	19,585	4,788	26,114
P-32	41	2,085	11,256	2,024	15,407
S-35	0	360	4,426	1,149	5,935
Cr-51	113	438	3,495	612	4,658
Ga-67	21	264	33	0	318
TC-99m	9,021	76,614	4,813	0	90,448
I-125	174	4,998	22,564	2,816	10,342
I-131	105	15,324	1,310	561	17,300
Misc.	403	2,890	25,132	8,771	37,246

Tabie 4-5. Estimated Institutional Activity Concentrations of Wastes Shipped for Burial (Andersen et al, 1976) ($\mathrm{mC} 1 / \mathrm{m}^{3}$)

NUCLIDE	CLINICAL HOSPITALS	TEACHING HOSPITALS	MEDICAL SCHONLS	UNIVERSITIES/ COLLEGES	TOTAL POPU- LATION
H-3	4.48	8.72	10.97	31.99	12.43
C-14	0.74	0.96	4.61	6.51	3.81
P-32	0.14	1.32	2.65	2.75	2.25
S-35	0	0.23	1.04	1.56	0.36
Cr-51	0.39	0.28	0.82	0.83	0.68
Ga-67	0.13	0.32	0.01	0	0.07
TC-99m	57.09	91.42	1.78	0	21.26
$\mathrm{I}-125$	0.59	3.16	5.54	3.83	1.51
$\mathrm{I}-131$	0.66	18.29	0.49	1.14	4.07

Assumptions for Concentration Estimates:
${ }^{(1)}$ No radiopnarmaceutical nuclides in scintillation fluids.
(2) J : of solidified and adsorbed liquids are scintillation fluids.
(3) Remaining nuclides are uniformly distributed through waste.

Table 4-6. Estimated Radionuclide Concentrations in Low-Level Waste.

RADIONUCLIDE	CONCENTRATION $\left(\mathrm{Ci} / \mathrm{m}^{3}\right)$	SOURCE* *
H-3	$1.2-01$	1
C-14	$3.8-03$	1
S-35	$8.6-04$	1
Mn-54	$7.5-01$	2
Fe-55	$4.3-01$	2
Co-58	$4.3-01$	2
Co-60	$1.3+00$	3
Ni-59	$1.3-02$	2
N-6.3	$2.4-00$	3
Zn-65	$2.0-02$	2
Sr-90	$4.8-03$	2
Nb-94	$1.4-04$	3
Zr-95	$2.0-02$	2
Tc-99	$3.1-05$	2
Ru-105	$2.0-02$	2
St-124	$5.0-03$	2
Sb-125	$5.0-03$	2
I-125	$1.5-03$	2
I-129	$6.4-06$	2
Cs-134	$4.8-01$	2
Cs-135	$3.2-05$	2
Cs-137	$8.6-01$	2
Ce-144	$2.0-02$	2
Eu-152	$4.8-05$	2
Eu-154	$4.3-04$	2
Eu-155	$4.8-04$	2
Ra-266	$1.15-04$	2
Th-230	$7.3-05$	2
		2

Table 4-6. (Continued) Estimated Radionuclide Concentrations in LowLevel Waste.

RADIONUCLIDE	CONCENTRATION Th-232	SOURCE ${ }^{*}$
U-235	$8.4-06$	4
U-238	$3.2-05$	4
Np-237	$7.2-04$	4
Pu-238	$4.6-08$	2
Pu-239	$3.1-04$	2
Pu-240	$4.3-05$	2
Pu-241	$6.7-05$	2
Pu-242	$1.65-02$	2
Am-241	$2.4-07$	2
Am-242m	$3.0-05$	2
Am-243	$1.6-06$	2
Cm-242	$2.1-06$	2
Cm-243	$2.5-03$	2
Cm-244	$5.0-07$	2

* Source of waste:

1 - Non-Fuel Cycle
2 - LWR Operations
3 - LWR Decommissioning
4 - Non-Fuel Cycle (taken from actual site data
** $1.2-01=1.2 \times 10^{-1}$

Table 4-7. Other Potential Radionuclides in Low-Level Waste Not in Table 3.6

4.4.1

Composite Inventory
Composite wastes from different sources art placed in a single trench which might be 20 to 30 mi wide, 10 to 15 m deep and steval hundred meters long. After a period of time the packaging disintegrates and for the purpose si modelling, the wastes in the trench can be represented by a single characteristic composition. This representative inventory is summarize 4 in Volume 1. Only the parent isotopes of the decay chains are identified.

4.4.2 Physical Properties of Wastes

The pathways that the radionuclides can enter when released accidently from their containers are dependent on the physical properties of the waste materials, f.e.:

1. Wastes are solid, e.g., imbedded in concrete, asphalt or similar binder.
2. Wastes are liquids, e.g., contained in vials.
3. Wastes packages contain gases as for example from disintegration of packaged materials.
4. Wastes are soluble in water
5. Hastes are burnable, e. ., paper, rubber gloves, etc.
6. Wastes are dispersable by wind, e.g., powder, dust, light papers, etc.

4.4.3 Packaging of Wastes

The packaging provides containment and/or shielding of wastes during transportation and pre-burial operations. Sometimes after the burial, the packages disintegrate and do not provide either containment or shielding.

A large variety of packaging methods and containers are in use, ranging from heavily shielded casks to loosely bound bundles. These were described in detail in D. Lester (1979). To reduce this variability to manageable proportions, the following generic categorizations were adapted in the descriptions of release scenarios in Volume 3, Appendix C.

1. A heavy cask with shielding material encloses a removable liner containing wastes. This type of packaging is used for the shipments of highly activated LWR components, e.g., those with specific activities of several thousand curies per cubic meter of wastes. Typically, the
cask is large and is carried singly on the transport vehicle. Only the liner with the wastes is buried and the cask is released for reuse.
2. Wastes with low specific activities are packed in drums, wooden boxes, cartons, or in a variety of smaller containers such as paint cans, etc. Some are bound into bundles or packaged in plastic bags.
3. For transportation, the individual packages may be placed in overpacks which are then transported on trucks. The overpacks may be shiel ded.
4. Waste packages may be transportad loosly in a covered van. At the burial site, the individual packages are removed from the van or overpack for placement in the trench.

The potential accidents may involve a large number of packages such as burning of the total content of the transport vehicle or flooding of an unburied part of the trench; or may involve only individual packages such as rupture of a drum or a box during on-site handling.

4.5 RELEASE FRACTIONS (SOURCE TERM DATA BASE)

The inventories of radionuclides identifild are seldom released in their entirety. However, some guidance can br provided for the analysis of generic cases based on the evaluations of similar erents in the study of the Waste Isolation Pilot Plant (DOE, 1979) and the management of buried transuranic waste at the INEL (DOE, 1979). Estimates of relea:e fractions (GFs) which might be considered as representative examples are iummarized in Table 4-8 for all relevant initiating events. The assumptions made in the development of each specific value are described in the text. T'ic value of RF is defined as the ratio of quantity of radionuclides released to the pathway to the total content of the radionuclide in the inventory which is being allalyzed. For example, when considering fire in the overpack, during on-site arrival phase, the quantity involved is the content of the overpack. When considering the fire in unbiried trench, the quantity of waste involved will be the content of unburied trench.

With the exception of activated components, they are mostly in the form of particulate material adhering to cloth, glass, metal, plastic, etc. They may be contained in liquids, although this waste form is generally unacceptable unless present in very small quantities. More likely, they might be in a sludge-like form. One important class of wastes is those fixed in cement or in asphalt.

Table 4-8. Summary of Representative Release Fractions.

```
Chronic Release of Direct Radiation: 1-3 mr/hr
```

Chronic Contamination:
(a) Site
(b) Airborne
10^{-3} (of processed quantity)
10^{-5} (of processed quantity)
Container Rupture:
(a) Site
(b) Airborne
10^{-1} (of container contents)
10^{-3} (of container contents)
Wa ste Fire:
(a) Site
(b) Airborne
2×10^{-5} (of burned contents)
2×10^{-2} (of burned content)
Waste Explosion/Airborne:
10^{-3} (of exploded contents)
Rain/Flood:
(a) Site
(b) Airborne
$\begin{aligned} & 10^{-4} \\ & 3 \times 10^{-7} \text { (of flooded contents) } \\ & \text { (of flooded contents) }\end{aligned}$
sind:
2×10^{-1} (of affected contents)

Because of the large variations in the physical forms and properties of the wastes, the release fractions resulting from the accidental or chronic release must be determined on the basis of the specifics of the release. For example, a much smaller fraction of the radionuclides will be released from a rupture of the drum containing wastes fixed in asphalt or cement than from a similar rupture of waste package containing powder-like solids.

4.5.1 Chronic Release of Direct Radiation

It is expected that a number of measures will be taken to control these occupational hazards to within normally accepted levels. The radiation levels to which workers are exposed will be monitored by health-physics personnel; radiation doses will te held to levels as low as practicable by the requirement to follow specified procedures. The daily accumulated doses will be monitored. As an example of what values are to be expected, DOE estimates the radiation level at the surface of a drum to be about $3 \mathrm{mr} / \mathrm{hr}$ and at the surface of a box 1 $m r / h r$.

4.5.2 Chronic Contamination

To minimize the possibility of contamination, the site personnel will work in dust-tight enclosures, will wear protective clothing, and will be provided with respiratory protection as needed. Workers will be surveved frequently whenever the possibility of external contamination exists. Continuous air sampling and radiation monitoring instruments in the work areas will promptly detect and annunciate abnormal or accident conditions. Special procedures will be established for evacuating personnel, controlling spread of contamination and correcting accident conditions.

In DOE, 1979, it was assumed that an average 1 percent of the containers will be breached during handling. It was further assumed that 10 percent of the radionuclides will be released to the environnent with 1 percent of those released becoming resuspended. Based on these values, the release fraction to the soil is 10^{-3} and release fraction to the air is 10^{-5} of the quantity handled at the site.

4.5.3

Container Rupture and Waste Spill
Reference DOE, 1979 estimates the effects of possible releases from container rupture. According to the assumption made in the reference, 0.1 of the activity will be released to environment with 0.01 of the released radioactivity becoming resuspended. This results in an overall release fraction of 10^{-1} per container released to the soil and 10^{-3} per container becoming airborne which average release rate in $\mathrm{pCi} / \mathrm{sec}$ and maximum cumulative concentrations in soil ($\mathrm{nci} / \mathrm{m}^{2}$) for each isotope can be calculated from these values for quantities of wastes which are being analyzed.

Abstract

\subsection*{4.5.4 Waste Fires}

DOE's predecessor, ERDA, has performed studies of prolonged fires circa 1975 (DOE, 1979). In these studies release fractions to the atmosphere of 0.1 to 0.5 were assumed. Because typically about 20 percent of the waste is combustible, a release fraction to the atmosphere of 0.02 to 0.1 might be appropriate for the analysis of generic cases. Since flooding with water assumes a release fraction to soil of 10^{-4} the release fraction to soil for fires extinguished with water is 2×10^{-5}.

4.5.5 Waste Explosions
 Explosions have been studied by Mishima and others (DOE, 1979).

 Reference 7 assumed on this basis that 0.1 percent of the waste remains airborne and might be carried offsite. Consequently, for the analysis of generic cases, a release fraction of 10^{-3} may be used.
4.5.6 Rain/Flood

The flooding of buried wastes could cause a radiological hazard to the public by means of two pathways: (1) ingestion of contaminated drinking water, and (2) inhalation of airborne nuclides released via resuspension.

The ingestion pathway would include (1) infiltration of water into the waste buried in trenches, (2) leaching of radionuclides from buried waste, and contaminated solid, and (3) percolation of the leached radionuclides into the zquifer and subsequently into drinking wells.

In estimating the release fraction for this mechanism, it is assumed that the flood waters would percolate in a saturated flow li.e., at full flow capacity in porous media) toward the aquifer. Radionuclides migrating with percolating water would be in dissolved or colloidal suspension form. Some of the dissolved species may be chelated or otherwise complexed. Radionuclides that are sorbed or filtered would not have a flow pathway to reach the aquifer and the migration will be significantly retarded. In COE 't was assumed that less than 10 percent of the radionuclide inventory would be in appropriate dissolved, chelated or colloidal suspension form. At low concentrations, ion exchange and absorption mechanisms would be extremely effective. It may therefore te assumed that less than 0.1 percent of the migrating waste would reach an aquifer iccated several hundred meters away. A release fraction of 10^{-4} is therefore suggested for generic cases.

The resuspension pathway would include (1) scouring of waste via movement of soil from the waste trenches to a new area (assume 1 percent of the waste can be scoured), (2'subsiding of water level in the contaminated area leaving transportad waste in the top on inch of the sediment (assume 10 percent of transported waste), (3) drying of the mud and 10 fting particles less than 10 microns in diameter (assume fractio of particles smaller than 10 microns is 3×10^{-3}). This results in the release fraction for resuspension pathways of 3×10^{-7}.

4.5.7 Winds

These events are applicable to the sites which might be located in the high wind localiiles. An extensive study of tornadoes in the western United States was performed by Fujita, 1971. Based on this study, it is estimated that the average tornado will result in a damage zone of 0.01 square mile and would have a velocity of 100 mph . The clay protective cover over the waste will resist tornado winds during the short term and no radioactive releases would be expected. If the high winds should occur during the time when wastes are uncovered 20 percent - a number similar to that assumed as being combustible might be considered wind dispersable.

5. ADIONUCLIDE RELEASE SCENARIOS

5.1 RADIONUCLIDE PATHWAYS

5.1.1 $\frac{\text { Introduction }}{\text { In each aspect of the shallow land burial system there is a potential }}$ for release of radionuclide material to the population. Such release can occur througn a number of mechanisms many of which are very improbable. The system has been divided into five parts for the purpose of pathways analysis (1) packaging, (2) transportation, (3) burial operations, (4) administrated post-closure, and (5) limited oublic use.

While packaging and transportation are closely intertwined, it is possible 20 distinguish release pathways associated with each. In the pathways analysis, any pre-burial storage not on the actual burial site is considered part of packaging. Interim storage at the burial site (including parked trucks) is considered part of the burial operation. Transportation begins and ends at the boundary between public roads and private roads at the packaging/collection or burial location. Therefore, loading and unloading are not considered to be transportation operations. Packaging and transportation will be considered non-site-specific as it is possible to do a reasonable generic analysis based on a national system. Therefore, oniy one set of pathways will be describeo for transportation and for packaging.

The pathways assoc ated with burial operations and subsequent site activities can be highly site-specific. Therefore, in the following sections separate pathways are presented for each existing site and for reference sites.

5.1.1.1 Packaging and Transportation

Figure $5-1$ is a logic diagram of the interaction of packagi 3 , interim storage, and transportation of low-level waste. Although transportation and packaging can be interspersed, the release pathway scenarios for each can be

Figure 5-1. Low-Level Waste Burial Operations.
separated for the purpose of modeling. The diagram is presented to illustrate that the frequency associated with transportation pathways can be a variable dependent on waste gathering/packaging/transport logistics.

In many cases, brokers collect waste from a number of sources (two shown in Figure 5-1). Broker activities can include additional processing, imisediate shipment to the burial ground, on storage with subsequent shipment. Because of the nature of collection from several sources, there is some interim storage of at least a short duration.

5.1.2.2 Burial Operations

Pathways from burial operations can be highly site-dependent from the standpoints of (1) nature of the operation and (2) site characteristics. Figure 5-2 presents burial operation with variations normally encountered at existing sites and antic .ed to occur in the ícure. Depending on the path of operacion sequence through this diagram, there will be varying release pathway possibililies. The pathways analysis for the individual existing sites reflects this uniqueness. Reference site pathways analysis should attempt to generalize on all possible sequences in Figure 5-2.

Burial generation begins with arrival of waste on the site and includes all receiving and unloading operations in addition to burial activities. During receiving, the site personnel may have to deal with truck conca ination, package leakage, and other related problems. Decontamination procedures and subsequent unloading difficulties can potentially include a number of radionuclide release pathways, especially if sandblasting, steam cleaning, or overpacking activities are involved. Package problems encountered during unloading (such as rupture or leakage) can sometimes result in releases which depend heavily on the types of waste handled (intensity, type, and liquid content). One of the largest operational variables involves unloading procedures. These can vary from dumping to lowering to driving waste into trenches. The trench structure (depth, type of soil, etc.) cai also have a significant effect on potential releases during unloading. Subsequent operational practices, such as frequency of waste covering, affect emplacement release. However, it is during the post-emplacement, post-burial period, while the site is still in operation that site geologic/meteorologic characteristics dominate radionuclide release path scenarios.

Figure 5-2. Low-Level Waste Buriai site Operations.

5.1.1.3 Post-Closure - Administrative Period

During this period, the site is still under administrative control. Management of radionuclide releases can be exercised through groundwater management, surface runoff management, and leachate processing. In addition, access to the site and use of the land is under tight administrative control. Maxey Flats is an example of a site currently operating under such conditions. Release pathways during the post-closure period depend mainly on the as-buried condition of the waste, the geologic/hydrologic environment, and the nature of post-closure administration.

5.1.1.4 Limited Use Period

During this period, there is little or no site management activity. The land is released for public use which would be tailored for minimal disturbance of the burial areas (i.e., no significant excavation or drilling). An example of such use would be a park or golf course. Radionuclide release pathways will depend strongly on the as-buried condition of the waste and site geology/hydrology. Because of lack of administrative control, a fairly extensive list of event-type and chronic pathways is possible during this period. Examples of such pathways are human intrusion, animal intrusion, crop or plant absorption, and natural disruptions (flood, seismic activity, etc.).

[^0]Section 5.1.2.1 discusses low level waste (LLW) packaging forms and the types of facilities from which they originate. Section 5.1.2.2 describes various processes which may be used for volume reduction, imobilization, and increased safety for LLW. Finally, Section 5.2.2.3 lists and describes the various pathways by which radionuclides within the low-level waste could reach the environment in the course of the packaging and handling operations.

5.1.2.1 Packaging

The low-level waste packaging criteria are determined by the Department of Transportation (DOT) regulations as well as by the site regulations and state rules. DOT classifies waste as Low Specific Activity (LSA) iype A, Type B, or large quantities by a set of definitions in 49 CFR 170-199. LSA wastes do not require any more than strong, tight industrial packaging when shipped by a sole-use vehicle, but DOT-approved packaging must be used when they are shipped on a common carrier. Type A wastes are defined as those having a content of not more than 20 curies, but more hazardous nuclides have lower limits (e.g., 3 Ci for Co-60 and Cs-137 and significantly less for heavy metals with long half lives). Type 3 quantities are typically a factor of ten above Type A, and large quantities are those that exceed Type B quantities.

The dackaging for the shipment of Type A quantities must meet the DOT specification 7A for Type A general packaging, 49 CFR 178.350. Prior to 1976, a 1 arge variety of DOT-approved Type A containers were listed in 49 CFR 173.395 including metal and fiber drums and fiber and wooden boxes in a range of sizes. Specifications for each are given in 49 CFR 178. The specifications list size, configuration, types and thickness of materials of construction, type of closures, pre-use testing, limitation on contents, and external markincs. Other Type A packaging available includes steel and concrete bins and shielded containers. Beginning in 1376 , para raph 173.395 was modified to delete approval for specific containers and now gives approval only for containers meeting the gencral 7A specification. However, this paragraph had a large affect on the state-of-the-art of containers, particularly in the use of DOT Specification 17 H steel druins (Hol comb, 1978).

Type B quariities and large quantity shipments must use a DOT specification 6 if container or specially-approved Type B containers. Approval of
these containers and a Certificacion of Compliance may be received from the NRC by compliance with the regulations in 10 CRF 71.

The most common container used for packaging low-level wastes for disposal by shallow land burial is the steel drum. The 210-1iter drum is most common but $125-1$ iter and smaller drums are also used. These are usually painted or: all surfaces for corrosion resistance. For some applications, plastic bags or rigid liners are used for additional containment. Steel drums are relatively inexpensive, easy to load and handle, and have been acceptable for disposal at all burial grounds. DOT-approved steel drums serve as Type A packaging for the shipment of Type A quantities and LSA waste. The wastes can be loaded into the drums at the waste collection area, the drums can be shipped by common carrier to the disposal site, and the drummed waste can be placed directly into the burial trench. Where radiation levels must be reduced to meet OOT external dose rate requirements a concrete liner or other suitable shielding material may be placed in the drum within the weight limitation of the drum. Wet wastes which require solidification prior to aisposal are often mixed whth a solidifying agent, such as cement or urea formaldehyde resin, and cast directiy into a drum. Often the drum is used as a receptacle into which loose trash is compacted prior to disposal. Dewatered ion exchange resins and sludges are loaded directly into drums at some sites but these have not been acceptable for disposal at all burial grounds berause of their moisture content. For some highly mobile wastes, such as tritium, it is common practice to utilize a sealed inner metal or plastic liner, or a polymeric sealed concrete matrix within the outer metal drun as an additional barrier for the containment of the waste.

Steel drums are also utilized as packaging for lype B or larger quantities and high-radiation-level Type A quantities of radioactive wastes where the drum does not qualify as a shipping package. In this case, the drums are shipped in an overpack which serves as the approved shipping container. For example, unshielded Type 3 overpacks are availatle which can hold 42 drulls of 210-1iters each for transport by truck, rail, or cargo vessel. Shielded Type B overpacks are tyoically smaller in size and capacity so that the total weight does not exceed the 1 imits for truck shipments. When delivered to the burial ground, the drums are wl thdrawn from the Type B container and placed into the burial trench; the shipping container is returned for reuse.

Larger metal containers have found increased use where large volumes of waste products must be disposed of on a routine basis. It has been found more economical to use containers with ten or more times greater capacity than the 210-1iter drum. Waste packages of this size must be shipped in an overpack so the containers are designed as disposable liners for specific DOT-approved shipping containers. These large containers are commonly used for shipping used ion exchange resin from commercial power reactors. Low-activity resins may be shipped in 4.5 to $5.1 \mathrm{~m}^{3}$ liners in a overpack with shielding eq valent to 50 m of lead. Resins with a higher specific activity may qualify as Type c or large quantities and may be shipped in $2.0 \mathrm{~m}^{3}$ liners which require an overpack with shielding equivalent to 100 mm of lead. These large metal containers are made in a cylindrica! configuration of carbon steel with welded seams. The containers have a relatively thin (nomina'ly 5.4 mm) wall and are equipped with lifting lugs and fittings for filling, venting, and removing water.

5.1.2.2 Treatment Processes

The treatment of high-level waste prior to packaging is performed to reduce the volume required for storage and disposal, to increase the margin of safety in handling and storage operations, and to reduce the mobility of the wastes subsequent to burial operations.

Solid Wastes
Solid wastes consist of many materials discarded from a facility and contain both combustible and noncombustible materials (Cooley and Clark, 1976).

Combustible solids consist of a large variety of items, such as paper, rags, plastic sheeting, protective clothing, gloves, rubber shoes, wood, and filter cartridges, as well as some partially combustible items, such as HEPA filters encased in wooden frames. The actual constituents in combustible waste vary, depending on the location of operations generating the wastes.

The noncombustible fraction consists typically of metal and glassware, construction and insulation materials (concrete, mortar, etc.), metal-encased HEPA filters, and small discarded equipment, tools, metal filters, and other mechanical devices.

General trash almost always consists of both combustible and noncombustible materials, and pretreatiment operations are often required prior to primary treatments. Pretreatment of waste, that is, the physical or chemical processes necessary to prepare waste for primary treatment and/or storage, includes such operations as assay, sorting, shredding, and classification. In general, the technologies for pretreatment operations are readily available and have been used at DOE facilities and commercial sites.

Frequently, it is desirable to segregate solid wastes into combustible and noncombustible fractions. After suitable pretreatment, combustible wastes can be burned, decontaminated, compacted, or packaged. sinilarly, noncombustible materials can be decontaminated, compacted, melt-cast, dissolved, and/or packaged.

Shredding is used on potentially-combustible waste materials to produce small pieces for subsequent processing or storage. The principal types of shredding equipment are knife cutters, hammermills, or combinations of these devices.

Commercially-available knife cutters used for size reduction are grouped into three broad categories (1) fly knives mounted tangentially on a rotor to work against stationary bed knives, (2) finger knives mounted axially on a rotor to work against stationary anvils, and (3) finger knives mounted axially on two counterrotating rotors. Fly-knife cutters have che disadvantage of being susceptible to damage from tramp metal in the feed. The knives must be sharpened or replaced periodically.

Hammermills consist of pivoted or rigidly-mounted hammers on a vertical or horizontal shaft or rotor. The hammers may be rectangular or chisel-shaped. Crushing or shredding takes place by impact betwean the hamers and a oreaker plate. These shredders are more effective on brittle and noncombustible wastes. They are less useful for shredding plastics Lecause of the tendency of the se materials to bind the hammers.

Compaction is the simplest process for reducing the volume of trash for disposal. Compactors are widely used in the nuclear industry for reducing the volumes of general trash and combustible wastes. The technology is well established for commercial application. In compaction, the waste is compressed inside a container (such as a 210-1iter drum) which is then closed. Some wastes are also amenable to a baling peration in which the wastes are compressed and
then banded sc hat they cannot expand. The bale can be subsequently packaged for further disposition. For example, they are often packed in plywood boxes.

There are a variety of comoustion treatments :sed and under development for radioactive wastes. These include incineration, pyrolysis, acid digestion, and molten-salt combustion. Incineration involves the burning of combustible materials in air or in a sen-rich atmosphere. Pyrolysis is the heating of the wastes in an oxygen-deficient atmosphere and results in a gasification of part of the waste material. Acid digestion consists of oxidation by nitric acid in a concentrated sulfuric acid medium. Molten-salt combustion uses air oxidation in a molten-salt environment.

The application of combustion or incineration to the treatment of combustible solids requires the coupling of several processes or unit operations into a total waste-treatment iystem (Figure 5-3) that includes feeding, incineration, off-gas creatmest, and ash/residue packaging or imobilization. Some waste materials e.g., chlorinated rubbers or plastics) impose more stringent requirements on the design because of the generation of soot and because of corrosion by hydrochloric acid vapor produced during combustion. Special design features are required to contain the radioactivity and to provide ade, te personnel protection. The incineration of combustibles has been widely used as a radioactive waste treatment.

Liquid Waste Solidification Processes

Liquid wastes consist of aqueuus solutions and slurries, evaporator concentrates, spent demineralizer resins, filters and filter sludges, and organic oils and solvents. Technologies for solidifying these wastes include evaporation, reverse osmosis, combustion, ion exchange, chemical solidification, cement, and bitumen. The choice of the process depends on the type of waste, facility, volume, and costs. Although calcination and vitrification have been proposed for some wastes, especially TRU wastes generated at DOE facilities, the high cost and energy-intensive nature of these processes make them unattractive for most applications.

Figure 5-3. Schematic of Typical Combustion System.

Evaporation is a process whereby a solution or slurry is concentrated by vaporizing or boiling away the solvent, normally water or mineral acid. Evaporators coupled to efficient deentrainment devices provide capability for a high degree of separation for most radioactive materials. The inherently high operating cost of evaporation limits the applications to those liquids that have a high concentration of dissolved solids and require high decontamination factors (Cooley and Clark, 1976).

An evaporator consists basically of a device to transfer heat to the solution and a device to separate the vapor and liquid phases. The principal element invclved in evaporator design are heat transfer, vapor-liquid separation, and energy utilization. Careful design of equipment is mandatory for the evaporation of waste liquids with potential for foaming, corrosion, or severe scaling. To resist corrosion and attack from acids, evaporators are usually constructed of stainless steel and are operated at as low a temperature as is practical. The noncorrosive acids may be neutralized prior to evaporation. Foaming can occur in evaporators due to traces of detergents, or surfactants, but this can be controlled by the use of foam breakers (devices inside the evaporator for raising and lowering the temperature of the foam), b: operating at low liquid levels, by the addition of antifoaming agents, or by sprajing water or steam jets on the foam surface. Scale is removed periodically by mecrianical scrapers, acid or alkali washing, and thermal shock.

Reverse osmosis is a purification method based on the phenomenon known as osmotic pressure. The process invoives the sepi tion of solutions of different solute conceritrations by a semipermeable membrane. When pressure is apolied to the more con.entrated solution in excess of its osmotic pressure, solvent will flow ac^{-}, ss the membrane to the less concentrated side.

Waste organic liquids can be burned by spraying into specialif-adapted oil burners or conventional incinerators used for combustible wastes. The special nature of spent solvents containing radioactivity and phosphorus imposes demanding requirements for off-gas treatmant. Although the technology is generally available for solvent incineration, it has not been fully reduces to operating practice. Current work at the Savannah River Plant and the Barnwell Nuclear Fuel Plant is expected to demonstrate such processes. Alternatively, evaporation of small volumes of volatile organic liquids is also a viable
decontamination option. More comnonly, because of their salall volume, liquids or semi-liquids have been absorbed on vermiculite or similar absorbents for disposal without further treatment (Cooley and Clark, 1976).

Ion-exchange methods have been widely used for removing dissolved radioactivity from low-level liquid wastes. The process involves the exunarge of fons between the liquid and a solid matrix containing ionizable polar jrouns. Both cation- and anion-exchange resins and zeolites are used. Wen the exchangers have become fully loaded, they are removed from service and treated as radioactive waste; alternatively, they may be regenerated by strong acids and strong bases thus yielding radioactive liquid wastes of high sal: content.

Solidification by chemical means was an alternitive developed because of some of the difficulties of solidification with cemen: The most common system is urea-formaldehyde (UF). The process consists of mixing UF and a catalyst (which are both liquids and stored separately) witt an in-line mixer, and pouring this solution into a container of waste. Volumetric packaging eificiencies are generally in the range of 55 to 65 percont.

The mobile radwaste solidification systeme operated by Chem Nuclear Systens, Inc., use urea-formaldehyde with in-container mixing. With this technique, air spargers are installed in the bortom of the disposable liner. The waste and UF are mixed in the liner using air. When thoroughly mixed, the acid catalyst is injected through the air sparger system to initiate solidification. It has been reported that the free water wi:h this technique is generally limited to two to four percent.

Urea-formal dehyde would probably be in general use today had not a number of problems been encountered in the solidification systems developed to use this agent. Urea-formaldehyde is a condensation polymer system. As such, it should have been realized that water would be produced as one of the by-products of the polymerization reaction. However, many of the other difficulties only became apparent in the operation of actual systems. As a result, a variety of other processes are being developed or ar, already commercially availabl?, albeit at significantly greater costs. These alternative processes are shown in Table 5-1.

Table 5-1. Chemical Solidification Systems for LLW.

Process

Generic Urea-Formaldehyde

HITTMAN POLYPAC

WSU Polyester

Key Features

Low viscosity permits use of in-line mixers
Low cost for solidification

High-quality product
Wide-waste adaptability
Moderate equipment cost
Reduction of free water Reduced matrix shrinkage
Direct replacement for UF
Three-part mixture added as two parts
High-quality product produced in laboratory tests

Limitations

Free-water produced during polymerization
Waste released due to shrinkage of matrix

Three-part mixture
Requires powered mixer
Cost about 6 to 7 times UF
Not conmercially avoilable

Cost about 3 to 4 times UF
Requires further systems development
Requires moderate shear mixing
Cost about 3 times UF

Bitumen immobilization is a one-step volume reduction and solidification process. It uses a screw extruder-evaporator to move free water, mix radioactive wastes with bitumen, and homogeneously disperse the wastes in a bitumen matrix. This waste solidification process is used to convert all particulate and wet wastes into a monolithic solid on a continuous processing basis. It is also used to encapsulate spent cartridge filters and similar small solid wastes that can be inserted into the waste containers prior to filling them with bitumenized wastes.

A facility has been conceptualized for the bitumen immobilization of fuel -oprocessing facility wet wastes (Voss, 1979). The flow diagram for the Bitumen Immobilization Facility (BIF) is sketched in Figure 5-4. The facility is designed to be entirely remote in operation. The BIF contains eight major subsystems:

- Waste feed system.
- Bitumen feed system.
- Screw extruder-evaporator.
- Filling and capping stations.
- Inspection and decontamination stations.
- Container transfer cart.
- Bridge cranes.
- Control module.

Cement immobilization is a multi-step solidification process. The Cement Immobilization Facility (CIF) has been conceptualized for the solidification of TRU wet wastes from the Fuel Coprocessing Facility (Voss, 1979). The reference system functions by metering dry cement powder, a mixing weight, dry radioactive solid (if available), radioactive liculds and/or nonradioactive water into a drum. The metering step is followed by mixing the constituents by drum tumbling. A double fill process is specified to achieve maximum fill. The process produces a monolithic solid waste form for all fuel coprocessing facility TRU wet wastes. The flow diagram for the CIF is sketched in Figure $5-5$. The facility is designed to be entirely remote in oper ation. The design uses concrete shield walls, four separate storage areas for segregating

Figure 5-4. System Fiowsheet for the Bitumen Immobilization Facility.

Figure 5-5. System Flowsheet for the Cement Imodilization Facility.
wastes according to radiation levels and TRU content, and an enclosed truck bay. The CIF contains six major subsystems:

- Cement filling station.
- Waste feed system.
- Drumming station.
- Inspection and labeling station.
- Bridge crane.
- Control console.

Volumes handled by BIF and CIF are given in Table 5-2.

Abstract

5.1.2.3 Pathways of Radionuclides to the Environment

Figure 5-6 shows 29 pathways which have been grouped into seven subclasses involving both the actual processing and interim starage operations. This section will elaborate on these pathways and provide specific examples when available.

Processing Accidents and Mishaps

As with all industrial processes, one can expect that low-level wasce handling operations will have their share of unexpected but routinely occurring problems. In the course of the moving of waste from generator's (especially institutions) to the burial site, several interim transfer and storage operations may occur. In the case of a university, transferring the wastes from laboratories to a central storage location and then on to final shipment may occur through a waste brokar. In the course of these operations, misrouting could occur, especially if the wastes are shipped on common carriers. This misrouting could ultimately result in these waste packages being stored in warehouses, storage yards, or other facilities for extended periods of time, and could result in the release of radionucludes from failed packaging or direct exposure to facility personnel.

Table 5-2. Secondary Radioactive Waste Estimated to be Generated at the BIF and CIF.

Secondary Radioactive Wastes Generated	Facility	
	BIF	CIF
General Trash, $\mathrm{m}^{3} / \mathrm{plant}$-year (a)	10	10
HEPA Filter, $\mathrm{m}^{3} / \mathrm{plant-year}{ }^{(b)}$	2	3.2
Wet Wastes, $\mathrm{m}^{3} /$ plant-year Concentrated ${ }^{(a)}$	1	1
Process Distillate ${ }^{(c)}$	560	
Scrap, $\mathrm{m}^{3} / \mathrm{plant-year}$	0.03	-

(a) Estimated on the basis of total drums processed and total operating time.
(b) Estimated on the basis of total drums processed.
(c) This distillate is routed to the general purpose concentrator and excess water vaporizer for evaporation.

Within compaction operations, the problems have been in the areas of equipment jamming due to either component failure or the loading of material unsuitable for compaction or shredding. The result of these failures is generally an increase in contamination of personnel. However, it is conceivable that during these operations, contaminants are dispersed to the environment.

Combustion and incineration could pose potentially far greater problems because of their potential to release off-gases to the environment. The necessary conditions for achieving complete combustion in any incinerator are adequate residence time, adequate temperature (to promote complete combustion), turbulence (to promote good mixing), and sufficient oxygen. Problem areas in the past have included spalling and warping of construction materials, incomolete combustions (leading to excessive carbon in the ash and creating problems for the off-gas cleanup system), clogging, fires outside the furnace chamber (including flashback in the feeder and soot fires in the off-gas cleanup system), inadequate ash-handiing and off-gas cleanup systems, and corrosion (particularly if sulfuror halogen-containing compounds are part of the waste). Experience with systems for the incineration of radioactive materials has shown a need for improved per formance.

Problens in early cement systems included difficulty in handling the slurry resulting in further spills and personne? contanination and exposure, and the spread of dry cement to floor drains, equipment, controls and instrumentation. Chemical solidification systems, specifically ureaformaldehyde, have problems associated with trie formation of excess water within the solidified barrel. This water is a byproduct of the polymerization and becomes contaminated with the waste product. Although urea-formaldehyde physically encapasulates the waste, it is not chemically bound and the matrix is subject to shrinkage. Liquids tied up in the matili can bc released during this shrinkage process and can in turn leak out causing excessive releases by means of contamination, evaporation, and excessive exposure to personnel. The solidified product is not of uniform quality. Differing viscosities and chemical properties as a result of aging of the polymer as well as the precise procedures for addition of the catalyst make the process difficult to control. Finally, the catalyst itself (an acid) will attack shipping container walls resulting in a leak.

Effluent Releases

Normal LLW processing plant effluents vary according to the process and throughput. However, a conceptual design study performed at Pacific Northwest Laboratory (Voss, 1979) did include estimates for a Cement Immobilization Facility (CIF) and a Bitumen Inmobiiization Facility (BIF).

Effluents fall into two categories: direct and indirect. Direct effluents are mainly airborne radionuclides resuiting from waste processing as well as secondary radioactive wastes such as miscellaneous decontamination solutions and contaminated scrap materials (metal, paper, etc). Indirect effluents include heat generated in waste processing which is typically dumped to the atmosphere via a secondary cooling system, and radioactive effluents from treating secondary radioactive wastes.

Direct airborne effluents of the BIF and CIF are estimated to be identical at 1×10^{-9} of the input radioactivity, except for tritium and iodine. An additional decontamination factor of 10^{4} is assumed for the particulate radionuclides prior to release because of at wheric protection system filtration. An estimated 1×10^{-4} of the radioiodine is released to the plant atmospheric protection systen from both processes. An equal fraction of tritium is estimated to be released in the CIF, while nearly 100 percent of the tritium is released in the form of evaporated water from the BIF.

In addition to gaseous effluents, volume reduction operations such as shredding or incineration may lead to the release of particulates, especially in the event of a partidl failure of the filtering systan (althougn this may be considered an accident rather than a routine release). Liquid effluents include those released to sewers by institutions as part of their normal disposal practice of very short-lived nuclides. Depending on the process, other liquid effluents may be released from LLW processing centers at fuel cycle facilities. Despite precautions at radiation facilities, it is possible that personnel ;ill track contamination out of the plant. This may also be true of venicles, especially if they have transported poorly-packaged waste. Exposure of plant personnel in the course of processing the waste inaterial will be dependent on the process used and the nature of the facility. In the case of a reactor (Buring and Gutwein, 1979), exposures on the order of 30 person-rens per year. Excessive exposures would occur in the event of inadequate shielding, equipment, clothing, or operating procedures.

A potential class of pathways from the LLH operations to the puolic is by reans of deliberate actions on the part of operating personnel. The most obvious of these is sabotage. There has already been an instance of sabotage-related activity at the Surry nuclear power station. A related activity is the theft of LLh from the site with malicious intent for political or other reasons.

A seemingly more innocuous activity is the scavenging of otherwise useful equipment from the waste site. Incidents have been reported where military radium-painted gauges have been removed from the Beatty site. Hisuse of contaminated plant equipment has also resulted in exposure to the public. In the case of the Beatty site, a cement mixer used for solidification of liquid radwaste was also used for pouring concrete for surrounding residential and public structures.

Preparation and Packaging Problems

In addition to process and personnel-related problems, there are those connectad to the quality control of the outer packages in which the wastes are stored. These include improper closing and sealing operations (which may be quite involved in the case of large quantity wastes), improper or inadequate storage conditions, or the lack of an adequate label which would prevent the package from being opened and result in release to the public.

Handling Problems
In the course of moving the radioactive material through the various interim storage locations between the point of generation and the final burial, numerous handling operations occur. Generally, these involve the use of cranes, forklifts, and other machines which can inflict considerable damage on the package and result in a potential for release. Thus, it is possible that the package will be overstressed due to improper handling or a bad storage configuration, dropped, crushed, speared, or punctured. It is also possible that vibration in the course of its movement through the various was'e handling facilities will cause package failure.

Material/Packaging Incompatibility
A poor choice of packaging material may result in a chemical interaction between it and the waste with a resultant leak or spill that could ultimately affect the general public. These interactions may consist of corrosion, the generation of gases, or other problems. Gases generated from the waste and internal heating must also be taken into account in the package design and can result in breaching packages in some circumstances. Subsequent to package failure, radionuclides can be released to the surrounding environment either during transportation or via the building HYAC system.

Environmental Degradation
 The storage of wastes in poor environmental conditions will result in their release from the packages. Should the waste, become submerged during their storage, or be in a fire, then it is probable that some of their radionuclide inventories will reach the surrounding envir,nment. There are more subtle pathways as well. In the event that these wastes are stored out of doors (as in the case of a Chem-Nuclear site at Arlington, Oregon), rainwater may cause some leaching and animal activity may cause significant transport of radionuclides.

5.1.3 $\frac{\text { Transportation Pathways }}{\text { To date, wastes have }}$

been shipped almost exclusively by truck with occasional shipment by rail. This will very likely continue to be the case for low-level waste, with the choice of transport mode dependent on convenience and econonic considerations. Some nuclear power plants are on navigable water, but burial grounds are usually not. However, it is possible that shipment part way by boat or barge will in some cases be economical. Truck transport is highly versatile, and the only significant potential problem now foreseen from the equipinent standpoint is providing adequate tiedown. It has been observed that heavy containers are sometimes not tied down securely enough to withstand bad road conditions or minor accidents. Tiedowns apparently must be several times stronger for railcars than for trucks, in relation to package or cask weignt, because of the large accelerations imparted to railcars during coupling operations.

The number of radioactive material shipments per annum is estimated to be about one million, of which 50,000 are Type 8 (McCluggage, Unpublished) (U.S.A.E.C., 1974). During the past few years there have been many more incidents involving packages damaged in handling or being run over at terminals than incidents involving vehicle accidents. Although many packages containing Type B amounts of radioactivity have been involved in accidents, none has as a result released a detected amount of radioactive material. There have, however, been a few cases of partial escape because of a faulty packaging procedure rather than accident. The possibility of a large release from Type B packages in very severe accidents is a matter of primary concern. There have so far been eight or ten accidents with Type 8 packages that might be considered severe, and no release or excessive external radiation level resulted.

Type A packages are not designed to withstand severe accidents and, therefore, occasional accidental release can be expected. At the same time, the amount of radioactive material is so small that no serious consequence is expected. Soft waste material generated at nuclear reactors and associated fuel cycle facilities, (e.g., contaminated paper and clothing) are compacted and typically placed in 210-1iter drums for shipment. Each drum may contain 230 kg of compacted material with up to one curie of activation and fission products. The low specific activity and low radiation levels allow the contaminated trash to be shipped without shielding. Because the radioactive contamination is bound on the compacted material, it is unlikely to be released in the event the drums are broken open by accident or criminal acts. Even if an entire truckload of 50 drums were to be consumed by fire, the amount of radionuclides that would become widely dispersed would be quite small. It has been estimated that as much as 99 percent of the 50 -curie inventory would remain in the ashes, and only one percent (primarily Cesium-137) would become airborne (U.S.A.E.C., 1972).

Liquid fuel cycle and reactor wastes such as contaminated resins and sludges are dewatered, consolidated by mixing with concrete (or other solidifying agents), and typically placed in 210-1iter drums. The majority of these drums contain less than 20 curies and are shipped as Type A packages. A small percentage contain up to 100 curies (20 curie average) and are shipped as Type B packages. The cemented, solidified form of the waste materials contributes significantly to the retention of the radioactive inventory in case of container failure. If each container of a 50 -drum Type A shipment of cemented wastes were broken open by acts of sabotage, the total activity released to the atmosphere
would be quite small. Approximately 2×10^{-3} curies of gaseous and volatile fission products would become airborne (U.S.A.L.C., 1972).

It would be extremely difficult to breach the Type B package to the extent of breaking open the inner container and exposing the solified wastes. In the unlikely event this were to occur, approximately 0.2 curie of fission products (primarily Cesium-134 and -137) would be released to the atmosphere for each 210-1iter druin ruptured (U.S.A.E.C., 1972). For a 42 -drum load, which would probably be the limit for a Type B truck shipment, the total activity released would be 8.4 curies. Because of the form of the material, it is unlikely that the presence of an open fire would significantly increase the activity that would become airborne. The breach of the Type B package and the exposure of the cemented wastes would contaminate the transport vehicle and nearby ground and produce a radiation field. However, the hazard would be limited to the vicinity of the vehicle.

Quantities of low-level radioactive waste exceeding Type A limits (high intensity) must be shipped in Type B packaging. Type B packaging must be designed to withstand normal transport conditions without loss of contents or shielding efficiency and to suffer no more than a specified loss of contents or shielding efficiency if subjected to the following specified sequence of accident-damage test conditions: impact, puncture, fire, and (for fissile material) immersion in water. Type 8 packages and large-quantity packages must survive a series of tests designed to simulate the damage that might be expected in a severe accident situation According to the regulation, survival means that (1) the shielding is not damaged in such a way as to allow radiation leakage of more than one rem/hr at a distance of 0.9 meters from the package and (2) no material is released from the packaga except for very limited amounts of gases and coolants.

There have been numerous collisions of trucks with private automobiles and derailment of railcars, which as it turned out posed no threat to the cargo. There has apparently been no accident that subjected a Type B container to the most severe impact that it is designed to resist, but there have been one or two fires approaching the design value. Because of the form of the materials and the relatively low levels of radioactivity, low-level wastes are considered unlikely targets for sabotage. Even if subjected to criminal acts, no major hazard would result.

Radionuclide release nechanisms as a result of transportation are depicted in Table $5-3$. As previously menticned, pernaps the most significant cause of accident is insufficient cargo tiedown resulting in vibration or loss of load. Transport mechanisms of released radionuclides are also shown in Table 5-3. While there are many potential release and transport mechanisms, the resultant hazards are not considered to be severe because of the relatively sinall amounts of radioactivity involved.

5.1.4 Maxey Flats Pathways

There are four general pathways that potentially could result in exposure of the public or the employees at the burial site to abnormally high radiation levels. These pathways include:

- Radioactive particles that may become airborne during receiving, processing, burial, or post-burial activities at the site.
- Radioactive materials that may be leached from the wastes during or after burial by the action of groundwater or by dispersion of the radioactive isotopes into underlying aquifers. These contaminated waters may then be used by people directly or be taken up by plants or animals that eventually become a portion of the food chain.
- Improperly or inadequately shielded radioactive materials resulting in direct exposure of the public to jonizing radiation, or more likely, exposure of burial ground operating personnel.
- Radioactive contamination off-site through release of improperly cleaned vehicles or by removal of salvageable materials from the burial ground during or subsequent to the active phase of the operations.
These pathways are shown in expanded form in Table 5-4.
The Maxey Flats burial site has been closed since 1977. The possibility of the site being reopened for acceptance of waste appears to be very slim. The site was closed because of controversy concerning its effects on the surrounding environment. As early as 1971, it was decided studies were needed to ensure that precipitation that infiltrated completed trenches would not result in contamination of the groundwater. The basic problem at Maxey Flats is that the basal unit of the trenches is the tight, impermeable Farmers Member of the Borden Formation. Because of the impervious nature of this layer, water that infiltrates the trenches will collect in the trenches. During periods of abundant rainfall, waste in the trenches may actually be surrounded by water. An

Table 5-3. Radionuclide Release and Transport Mechanisms Due to Transportation of Waste.

RELEASE MECHANISMS (TRUCK-TRAIN-BARGE)

(1) Accident - Driver error, mechanical oroblems, heavy load, poor road conditions (weather), poor tiedown (loss of load, vibration), collision with another vehicle or obstacle, barge sinking or grounding, train derailment
(2) Leaking - Inadaquate package or seal, excessive waste or package temperature or pressure, inadequate shielding, contaminated package or vehicle, fire, explosion
(3) Personnel - Sabotage, hijack, theft, neglect

TRANSPORT MECHANISMS

(1) Air Dispersal

- Wind, fire, explosion
(2) Water Dispersal - Groundwater transport, food cycle, immersion
(3) Personal Exposure - Direct radiation dose, ingestion, inhalation
(4) Environment - Absorption by soi1, flora and fauna, tood cycle

Table 5-4. Radionuclide Release Paths - Burial Operations.

OPERATIONAL ELEMENT	RELEASE MODE	PRINCIPAL PATHS TO BIOSPHERE/MAN
Package Acceptance	Leaking packages	Direct exposure, spread by vehicles/personnel
	Hot Load (mislabeled)	Direct exposure
Equipment	Contaminated venicle	Direct exposure, spread by vehicle/personnel
	Decontamination of vehicles	$\left\{\begin{array}{l} \text { Wind (suspension) } \\ \text { Direct exposure } \\ \text { Water contamination } \end{array}\right.$
Handling/Packaging	Package rupture due to: - procedure violations - operator error - equipment failure - sabotage - explosion	$\left\{\begin{array}{l} \text { Wind born } \\ \text { Water path } \\ \text { Direct exposure } \\ \text { (inhalation or injec- } \\ \text { tion) } \end{array}\right.$
Trench Emplacement	Crushing Compaction Gas venting High radiation level	Windborn Water Direct exposure (inhala- tion or injection) Direct exposure (shine)
Unce ared Waste	Fire Sabotage Theft Explosion Animal intrusion Wather	- Wind born - Direct exposure - Food chain - Water
Post-Burial Administrative	Water intrusion and leaching Corinsion Animal intrusion Earthquake Flood Storms Erosion	- Wind born - Water - Food chain - Direct Exposure
Post-Burial Limited Use	```Human intrusion (excavating) Corrosion Animal intrusion Earthquake Flood Storms Water intrusion & Leaching Erosion```	- Wind born - Water - Food cha in - Direct exposure

example of the properties of trench water samples taken at Maxey Flats is given in Table 5-5.

At present the water is pumped out of the trenches and processed via a continuous evaporation unit. The use of the evaporator at Maxey Flats releases small amounts of tritium into the atmosphere. Traces of other radionuciides may be released. Evaluation of the tritium release has shcon that acceptable doses are released to the general public. Any resulting residue from the process will be disposed of properly, most likely by burial.

Because of the suspension of commerical operation, the main pathways of radionuclide release are those shown in Table $5-4$ that are not related to the operating phase. The radionuclide release pathways of main concern are the release via the evaporator unit plume and the migration of radionuclides via the water. The second pathway is the most serious and by far the most complex. The potential mechanisms through which radionuclides may be released from Maxey Flats via water include (1) transport of dissolved nuclides to wells, gaining streams, or springs and (2) transport upward through the soil via capillary flow. Both mechanisms allow the transfer of radionuclides to the biosphere. The processes that control transport of solutes in hydrogeologic systems include (1) convection by a moving fluid, (2) hydrodynamic dispersion, which combines the effects of mechanical dispersion and molecular diffusion, and (3) chemical reactions which take place between various solutes, between solutes and the solid matrix of the system, and within the solute, such as radioactive decay.

The hydrogeology at Maxey Flats is poorly understood. A good discussion of the potential pathways of release via groundwater has been published (Papadolpulos and Winograd, 1974). The discussion will not be repeated rere and the reader is referred to the reference for more detail.

5.1.5 Barnwell

The Barnwell site, as is the case with all other operating sites, has the potential for exposing selected segments of the population via the pathways listed in Table 5-4. To date the impact of Barnwell on the surrounding environment has been undetectable from a radiological point of view. Potential impacts are discussed in the following paragraphs.

Table 5-5. Ranges of Values of Selected Properties of Trencil water Samples from Maxey Flats, Kentucky, Disposal Site, 1977 (Robertson 1973).

PROPERTY	RANGE OF MEASUREMENTS
pH	$2.2-12.4$
Specific Conductance (micromhos/cm at $25^{\circ} \mathrm{C}$)	$4.0 \times 10^{2}-3.9 \times 10^{4}$
Dissolved Organic Carbor. (mg/1)	$<1-5.8 \times 10^{3}$
Gross Alpha (pCi/1)	$<1 \times 10^{2}-6.4 \times 10^{5}$
Gross Beta (pCi/1)	$8.3 \times 10^{2}-5.7 \times 10^{7}$
Gross Gamma (relative cpm)	$<10-1.6 \times 10^{4}$
Tritium (pCi/1)	$2.5 \times 10^{5}-7.4 \times 10^{9}$
Am-241 (pCi/1) Cs-137 (pCi/1)	$<1.7 \times 10^{2}-4.7 \times 10^{3}$
Co-60 (pCi/1)	$<1.5 \times 10^{2}-9.2 \times 10^{4}$
Bacteria	$<20-8.4 \times 10^{5}$

The exposure of the working force at the site is monitored and, therefore, is the easiest pathway to discuss. Table 5-6 illustrates average occupational exposure at Barnwell during 1978. Exposure levels should remain the same in the future unless an unforseen event dealing with high exposure rate waste should take place.

A possible exposure pathway at Barnwell is from the sandblasting facility located in a trench. It is possible activity could be carried off-site given certain weather conditions. However, a permanent sandblasting facility is being built and this potential pathway will be eliminated.

Other potential pathways during operation include windblown activity from damaged waste packages. Also, weather occurrences could result in transport of radionuclides and waste forms off-site. An example is a tornado that hits the site and carries away exposed waste.

The potential pathways via goundwater transport are not similar to Maxey Flats because water does not tend to collect in the trenches except during periods of extremely heavy rains. Therefore, the potential for leaching nuclides is much lower than at Maxey Flats. Samples of trench water have generally had much lower concentrations of radionuclides.

In general, the pathways at Barnwell are simitar to those at other sites with the differences in local meteorology and geology being the differentiating factors for the site.

5.1.6 Beatty

The site specific operating and geophysical characteristics at the Beatty burial ground may influence the importance of the pathways shown in Table 5-4 in contributing to the potential exposure of operating personnel or the general public to radioactive materials. These site characteristics are discussed in the following paragraphs.

All shipments to the Beatty burial ground are made by vehicles operated and controlled by other parties. Consequently, the burial ground operating management has no direct control over the condition of shipments or waste containers that arrive at the site for disposal. The site is operated on the presumption that the vehicles and the waste containers have been properly handled and that the federal and state ordinances and regulations regarding the packaging and transport of radioactive materials have been satisfied. The site management

Table 5-6. Occupational Exposure at Barnwell, 1978 (Ebenback, 1979).

CATEGORY	NUMBER	EXPOSURE mR/month
'P. Techs.	4	198
Office, Mgm., Supv. (Includes Dispatcher, Janitor, Warehouseman)	9	26
Offloaders	15	4.74
Truck Orivers	8	21
Equipment Operators Maintenance Personnel (Mechanics, Welder, etc.)	6	176

does reserve the right to refuse delivery of materials or vehicles that do not satisfy the stated conditions. This -ight of refusal is seldom exercised as it is recognized that remedial actions to correct any deficiencies and to prepare the waste materials properly for burial are preferable to refusing delivery of a substandard shipment or package. If the shipment were refused, then a potentially hazardous shipment would be forced to travel considerable distances over the public roads before remedial actions could be undertaken. In those ins ances in which improper or damaged containers have been discovered during unloadini operations at the site, the radioactive materials have been repackaged by site personnel and than buried following standard disposal procedures. No other packaging or waste processing activities are normally performed at the Beatty site.

Only one burial trench is open at a time at the Beatty site. Eiaplaced waste is covered periodically with backfill depending on the rate of receipt of waste materials. The waste is covered on Friday afternoon prior to the normal weekend shutdown.

The waste burial procedures regarding depth of backfill and control of airborne ractioactivity have been devised such that no credit is taken in radioactive release calculations for the integrity of the waste packages or containers. Consequently, the procedure normally used for emplacing waste in the trench is to roll or tumble the waste containers down a ramp located at the active end of the burial trench. Very heavy or bulky containers can be hoisted into position at the bottom of the trench using a crane if the normal tumbling procedure is considered impractical. If waste packages or containers are breached during emplacement operations, then the waste is monitored. If the quantity exposed is higher than procedural limits, emplacement activities are discontinued and the exposed wastes are buried.

The practice followed at the Beatty site after unloading is to monitor each vehicle leaving the facility for traces of radioactivity. If a vehicle is found to have ionizing radiation levels in excess of natural background, the vehicle is decontaminated using high pressure steam. If the contamination cannot be removed by steam cleaning, then the affected portions are stripped from the vehicle and are buried at the site. This procedure is effective in preventing the inadvertent spread of radioactive materials when the vehicle is returned to service hauling general cargoes.

The Beatty burial ground is located in an extremely arid region that extends tens of kilmeters in all directions from the site. Because of the combination of lack of appreciable precipitation and specific soil characteristics, the probability is very low that radioactive isotopes would be leached from the buried wastes by intrusion of surface or ground waters into the wastes. Also, the lack of surface waters that could serve as a transport mechanism precludes migration of radioactivity from the waste trench to the aqui'er underlying the site at a depth of about 175 meters. These tentative conclusions are substantiated by the fact that no surface waters have been detected in any of the test wells on or surrounding the active portions of the burial site.

There is veiy iittle vegetation at the Beatty site. As a consequence, erosion of the ground surface by the wind after the waste is buried and the site is closed is a possible method for removing the soil cover and exposing the wastes. The soil material is a mixture of sand and gravel. When the surface is disturbed by the wind, the light sandy fraction becomes airborne. The gravel is too heavy to be displaced and the gravel fraction predominates at the exposed surface. This condition is termed "desert polish" and the material becomes stable when the light fraction has been removed from the top inch or two of the original surface soil. Further gross disturbance is necessary before more erosion could occur.

The Beatty site is typical of much of the land in the vicinity. The natural rainfall is not sufficient to allow the area to be used for farmins or grazing. Mining and mineral extraction are the only activities that are practiced within several kilometers of the site. These activities are not likely to occur at the Beatty burial ground. In developing the site, a well was drilled to bedrock about 175 meters below the surface. Well sample studies indicated that the mixture of sand, gravel, and clay persisted through the entire distance. No minerals were discovered that have commercial value or are not typical of the materials found a^{*} other sites in the visinity. It is considered improbable that the Beatty burial site or nearby area would be selected for any use other than a burial site in the forseeable future.

The characteristics of the Richlland shallow land burial sites (NECO/OOE sites) are generally favorable for safe burial of solid radioactive wastes. Factors which inake the sites favorabie include limited rainfall and high solar heat input which result in a high deficiency of soil moisture in the soils and sediments. Another favorable factor is the depth to the watertable. As a consequence, meteoric water doas not percolate to the watertable in most areas, but rather enters the ground to a maximum depth of two to four meters where the water is held by strong capillary forces. Moisture is then slowly returned to the atmosphere via evapotranspiration. In this environment, the potential for dissolution and transport of radionuclides from dry wastes by meteoric water is small especially since leaching is dependent on water volume. Under these conditions, surface runoff is negligibly small. Limited local runoff and ponding aay occur during periods of rapid snowmelt over frozen ground; however, deep erosion of burial grounds by this mechanism is unlikely (Gerger, et al, 1977).

Solid wastes contaminated with radioactivity have been disposed of by shallow land burial at the Richland-DOE site since 1944, and at the NECO site since 1965. Burial grounds in the 100 and 300 Areas (DOE) are relatively close to the Co:mbia Riven and are mainly underlain with permeable materials. Depth to watar varies from about five to 25 meters. Burial grounds located on the 200 Areas plateau are underlain by considerable thicknesses of low dermeability materials. Wastes buried here are 70 meters or more above the watertable. Vadose water movement beneath these burial grounds has virtually undetectable flow and the soil has a large capacity for ion exchange, which will remove and retain radionuclides. Since 1973, essentially all of the solid waste generated at Hanford has been stored or buried in the 200 Area.

In addition to possible groundwater transport of released radioactivity, there is linited potential for other radionuclide transport pathways as shown in Table $5-4$. The most broadly distributed vegetation type is sagebrush/cheatgrass. Deeply-rooted piants such as tumbleweed, cagebrush, and rabbitbrush accumulate and concentrate certain radionuclides. Deciduous shrubs and herbaceous plants provide valuable food and nest sites for game and sumner forage and cover for mule deer. The mule deer is the on? y oig game marmal normally found near the burial site, living mostly along the Columbia River with smaller concentrations near the 200 Areas. The cottontail rabbit is the nost abundant small game mamal with a small population scattered throughout the
entire area. Other mammals present in appreciabie numbers include the raccoon, beaver, muskrat, mink, porcupine, badger, and coyote. Small manmals are abundant, particularly the Great Basin pocket mouse. Deer mice, ground squirrels and pocket gophers are also abundant.

There is limited potential for animal intrusion into buried wastes. The ground squirrel digs a burrow up to one meter deep while the badger digs a burrow up to three meters deep. However, both animals are scarce in the 200 Area plateaus. Problems of radionuclide transport by other animals (birds, snakes, lizards) or insects could arise if deeply-rooted plants were permitted to grow or if the soil cover was so thin that grass roots could penetrate to a depth where contaminated sediments are present. Radionucliues could subsequently be carried to the surface, making them available in food supplies. This problem probably constitutes the greatest long-term threat of transporting radionuclides into the uncontrolled environment.

Less likely causes of radionuclide release and transport are natural phenomena. No credible natural forces event other than major flooding by the Columbia River can be postulated that will release a significant amount of radioactivity from the groundwater or ground storage sites. Forces such as those resulting from seismic activity, heavy rains, heavy snowmelt, tornadoes and high winds are considered to be inconsequential. Based on a ten-year record, an average of twelve fires per year have occurred over a median area of about six acres. The largest fires have originated from lightening strikes. Because of 1 imited vegetation and standard procedures for covering waste, the amount of combustible waste that might be ignited is 1 imited.

Other potential release/transport mechanisms of buried waste are those classified as human intrusion. Examples of such are drilling, exploration, farming, recreation, and exhumation. The remaining sources of radionuclide release and transport pertain to unburied waste and consist of facility operating procedures and practices. Radioactive waste packages may be "hot" (off-specification, mislabeled) or leaking upon arrival. In addition, equipment such as the truck or oth.e handling equipment may be contaminated. If decontamination is attempted, procedures may result in dispersal of radioactive materials. There are many instances in which rupture of the waste package could occur during handling activities. Examples of such are accidents due to operator error, procedures violations, equipment failure, sabotage, and explosion. For
exampie, at the Richland-DOE site, there is occasional above-ground release from filtor systems associated with the caisson method of disposal of TRU waste.

Since much of the handled waste material is very low-level waste, packaging may not be designed for containment after emplacement in the trench. Releases may occur during handling prior to emplacement or after emplacement and prior to or during the burial procedure. There are many mechanisms by which uncovered waste may be released. Examples of such include fire, sadotage, theft, explosion, and animal intrusion. In many cases, normal weather conditions will result in release and/or dispersion of radioactive nuclides. Crushing or compaction of waste packages during burial procedures will also result in significant radionuclide release.

5.1.8 West Valley

Comnercial burial operations were begun at West Valley, New York, in 1963, and voluntarily terminated in the spring of 1975, because of radioactively contaminated water seepage from two Durial trenches. Approximately $67,000 \mathrm{~m}^{3}$ of waste containing about 580,000 curies of radioactivity was buried. Burial operations consisted of the receipt, temporary storage, burial in trenches of packaged radioactive wastes, and continuous monitoring of the radioactive characteristics of the surrounding ground, air, and water. The packages were normally buried as received with no reprocessing or repackaging of the contents. In soine cases, the primary package containing the wastes was shipped in a reusable overpack or secondary container, and in these instances the primary package was removed from the reusable overpack before burial. The purpose of the packaging was to provide ease of handling. minimize personnel exposure, and prevent spread of the radioactive material to the environment prior to burial. Credit was not taken for containment provided by the packages once they were buried.

During 1973 and 1974, a study was undertaken to determine the extent of any migration of radionuclides from existing trenches (Jump, 1976). Based on measurements of soil ion exchange capacity prior to the commencement of operations, it was known that most radionuclides were sorbed by the soil. Therefore, tritium, which has no affinity for the soil, was chosen to determine the extent of migration. Resulis of the study showed sone evidence of tritium migration adjacent to trenches that contained water. Howevar, the concentrations
of tritium were very low. Trench water samples were found laden with various organic solutes, radionuclides, and other inorganic solutes. Laboratory studies of the soil revealed excellent sorption characteristics for many of the other radionuclides.

In isib, it was discovered that high water levels in burial trenches had resuited in formation of surface seeps. The state had noted increased levels of tritiun in water samples taken from on-site monitoring stations. The seepage resulted from the compaction of waste and the filling up of the trench with water and subsequent seepage through the low end of the trench. An investigation was begun to determine the extent and pattern of migration of waterborne radionuclides from trenches and to identify the geohydrologic characteristics that influenced such inigration. In the course of the investigation, two sources of accumulated water were identified (1) infiltration of precipitation through the trench soil cover and (2) to a much lesser extent, groundwater movement froin adjacent silty fill. As a result of this radionuclide migration, operation of the Nest Valley site was suspended until such time that requirements for operation of the site were met and agreed to by the state. To date, no agreement has been reached and the site remains closed.

In addition to the precipitation infiltration and groundwater mechanisms for radionuclide release and aigration, potential for other mechanisins existed as depicted in Table $5-4$. Typical operation at west valley upon receipt of a waste shipment included scanning of packages with a radiation survey meter, silear testing, if surface contamination was suspected, and special handling when necessary for safety. Trucks and major site equipment were monitored after each use that involved exposure to radioactive materials and were decontaminated, if necessary, before further use.

At humid disposal sites with relatively high rainfall and low evaporation, such as West Valley, infiltration of surface water can cause buried wastes to be completely submerged in extreme cases. The combination of high rainfall and impermeable soil make it necessary to be especially efficient in operational measures to exclude water from the trenches. Leaching of radionuclides from buried wastes may be caused by removal of inaterial from the surface of contaminated waste containers or, ultimately, by the soaking and dissolution of radioactive contents from inside the containers.

Commercial burial operations were begun at Sheffield, Illinois, in 1967, and terminated in 1977, when its licensed area became filled. Approximately $74,000 \mathrm{~m}^{3}$ of waste containing about 50,000 curies of radioactivity was buried. The burial site is located in a rural area utilized mainly for forage and pasture and adjacent to land previously strip-mined and returned to pasturage by a coal compan". The site itself was not disturbed by aining operations. Soil permeabi,ity is such that accumulation of water in waste-filled trenches is generally prevented, except during periods of heavy rainfall and rapid snow-melt such as happened in the spring of 1979. Groundwater gradients through the site are such that water leaving the site moves toward the adjacent strip-mined land at calculated rates of movement of three to $15 \mathrm{~mm} /$ day. At this rate, travel time to the closest surface-discharge point for groundwater is calculated to be $125-150$ years.

Of particular interest and difficulty at Sheffield is the analysis of unsaturated flow regimes from the trenches to the watertable. Water from wells up to 23 meters from the downhill side of trench 11 have shown gross beta activity and tritium concentrations well above background (up to $40,000 \mathrm{pCi} / 1$). A down-hole gamna spectrum \log run on a well within three meters of this trench indicated the presence of Co-60 in one zone. During excavation, elevated tritium activity was detected in samples collected directly beneath the trench within three meters of the trench floor.

As with all of the other comercial burial sites, various radionuclide release and migration mechanisms existed during all phases of operation at Sheffield. These general mechanisms are shown in Table 5-4.

5.1.10 Reference Site

There are three principal pathways through which radiological exposure may result from the shallow land disposal of low-level waste at a reference site. They are inhalation, ingestion, and direct exposure. The direct exposure pathway is of significance primarily to workers involved in the actual disposal and, to a lesser extent, the transportation of LLW. The inhalation and ingestion pathways may be of significance to both the general public and occupationally-exposed individuals. The events and subpathways that may lead to exposure through any of
the three principal pathways are numerous and varied, and were listed previously in Tables 5-4 and 5-7.

It should be noted that the pathways for the reference wet and dry sites are essentially the same. The major difference between the two sites is associated with the relative magnitude and significance of radionuclide leaching and soil movement resulting from interaction with water in the soil.

5.2

DEVELOPMENT OF SCENARIOS
This section contains the discussion of the methodology used in deriving release scenarios and source terms for these scenarios. Following the description of the methodology in Subsection 5.2.1, the phases of LLW management activities to which release scenarios apply are identified in Subsection 5.2.2. The initiating events (IEs) are the starting points for the development of release scenarios and are described in Subsection 5.2.3. The radionuclide content of various types of wastes, their packaging, and physical properties are important parameters in the calculations of the magnitude of release. They are described in Subsection 5.2.4. Finally, examples of representative release fractions (RFs) for chronic and accidental release scenarios are described in Subsection 5.2.5.

5.2.1 Scenario Development Methods

This subsection summarizes the methodology for the derivation of events that result in the release of radioactive isotopes from low-level waste (LLW) management activities. The isotopes released to the enviconment enter pathways which may lead directly or indirectly to the expcsure of site workers or the general public. The release events may occur during any activity in the various phases of the LLW management cycle (i.e., from generation, through burial and limited public use of the disposal site). The significant phases of the LLW management 1 ife cycle are illustrated in Figure 5-7 and described in Subsection 5.2.2.

The representative radionuclide release scenarios are summarizese Volume 3, Appendix C. These scenarios were derived using a modified version of the event tree methodology developed in the Rasmussen reactor safety study (NRC 1975). The event tree methodology was modified to matrix format to accomodate

Table 5-7. Reference Site Subpathway Leading to Inhalation or Ingestion.

```
1.0 Releases to Air
    - direct inhalation
    - cloud submersion
        plant foliar retention/ingastion
    - soil deposition
        resuspension/inhalation
        plant uptake/ingestion
    - surface water deposition
        drinking water/ingestion
        irrigation/ingestion
2.0 Releases to Soil
    - migration toward surface
        resuspension/inhalation
        plant uptake/ingestion
    * migration toward water
        drinking water/ingestion
        irrigation/ingestion
3.0 Releases to Water
    - drinking water/ingestion
    - irrigation/ingestion
```


Figure 5-7. Low-level Waste Management Activity Phases
the large number of variables which must be used to develop sequences leading to fully characterized release scenarios in LLW management. These variables include the following:

1. Both chronic and accidental releases must be considered.
2. Wastes can be found in many different locations; e.g., truck, trench, etc.
3. There are various types of waste; e.g., fuel cycle wastes, institutions? wastes, etc.
4. The wastes are in different quantities ranging from isolated small packages to large, filled trenches.
5. The piysical properties of the wastes such as solubility, flammability, volatility, etc., vary.

The large number of variables make it more convenient to structure the event trees in the form of matrices where "success" or occurrence of the event is identified as ($(+)$ and the "failure" or absence of the event is identified as (-). The equivalence between the Rasmussen style event tree and the event sequence matrix is illustrated in Figure 5-8.

The variables considered in the analysis of event sequences leading to the derivation of release scenarios are illustrated in Figure 5-9. The analysis is performed for each LLW activity phase, e.g., vehicle arrival, trench backfill, post-burial, limited site use, etc. Development of event matrices start with the identification of initiating events. These initiating events are then considered for each combination of packaģing, physical properties, and radionuclide contenc (source terms) that lead to the release of radioactivity. Illogical sequences are rejectec. For example, a reiase of radionuclides by flooding of wastes contained in a sealed steel drum would be cc sidered inadmissible although similar flooding of wastes contained in a carton wC Ald cause the release. Groups of events with similar consequences are indicated by a dominant scenario which is representative of the group. A detailed development of event matrices for an on-site waste handling activity is provided in Volume 3, Appendix $\mathrm{C}-2$ as an illustration of the application of event matrix methodology.

The consequence of each scenario is the entry of radionuclides to the release pathways, and eventual dose commitment to the site personnel or the public. The subprograms used for these dose calculations are described in

Note 2: Since there are 4 independent events, total number of sequences is $(4)^{2}=16$
The table is easily structured by alternating pluses 8 minuses as foilows: $+8 \quad-$ in column "E"
$(2)+8(2)-$ in column " D "
(4) $+8(4)$ - in column " C "
$(8)+8(8)$ - in column " B "
All + in column " A " (isitiating event)
I igure 5-8. Equivalence of Event Trees and Event Tables.

Figure 5-9. Variables Included in LLH Release Scenarios

Section 6 . The pathways which the radionuclides follow after being released from the source to migrate to the receiver are sequentially identified after each release scenario by the sequence of numbers which identify the sequence of subprograms used in the calculations. (See tables of release scenarios in Vc. ame 3, Appendix C. For example, in the case of fire in the waste in the overpack on the truck which is subsequently extinguished with water; some of the radionuclides are released directly to the atmosphere with the smoke and steam and some soak into the ground with the water. In the first case, the subprogram used in the calculation of the inhalation dose is ATMOS and is identified as a sequence with only the entry (1). In the second case, the radionuclides enter the unsaturated layer of the soil and can be transported to the population via the aquifer or blown into the atmophere by erosion. The appropriate sequences in which calculations will de made is by the use of subprograms UNSAT and AQUIFR (i.e., (9) and (1)) and UNSAT, EROSIO, and ATMOS (i.e., (2), (5), and (2)).

The sequence in which the subprograms are to be used are indicated for each release scenario in Volume 3, Appendix C.

5.2.2 LLW Management Activity Phases

The activities assuclated with the LLh management ecycle begin with generation and interim storage of wastes at the point of orig and may continue until the disposal site is returned to a limited public use. 1 LLW management activities have been divided into five distinctive phases. (1) packaging, (2) transportation, (3) burial operations, (4) administered pos closure, and (5) 1 imited public use. In this preliminary report only the ev ts associated with activities which begin with the waste arrival at the buri. site were considered. For completeness, however, all activity phases are discussc.

5.2.2.1 Packaging and Transportation

Packaging and transportation interactions are shown in the logic diagram of Figure 5-10. The accidental and chronic releases can occur at: (1) the sites where low-level wastes originate, (2) during LLW transport to waste broker, interim storage, process or packaging facility or to the burial site, (3) at the broker's location, (4) during interim storage, and (5) in the processing and packaging facility.

* BROKER COLLECTS FROM MANY GENERATORS

Fig re 5-10. Low-Level Waste Surial Operations.

In many cases, brokers collect waste from a number of sources. Broker activities can include additional processing, immediate shipment to a burial ground, or storage with subsequent shipment. Because of the nature of collection from several sources, there is some interim storage of at least a short duration.

5.2.2.2 Unloading and Burial
 The typical sequence of operations at the burial site is illustrated in

 Figure 5-11 and includes: (1) arrival and inspection of the shipment, (2) transit to the unloading station in or near the trench, (3) amplacement in the trench, (4) covering of the trench with backfill, (5) survei'lance of backfilled trenches, and (6) decontamination procedures.Releases of radioactivity may also occur during activities associated with decontamination of equipment or site areas; during repackaging of leaking or damaged containers; or during the period when the wastes remain uncovered in the trench prior to burial.

Typical procedures used during on-site burial operations are discussed below for the purposes of illustration.

Shipment Arrival and Inspection Phase
Typically, when the truck carrying wastes arrives at the site, it is parked in a specially designated receiving area and inspected to determine the following:

1. That radiation levels for the waste packages are known and are within the specifications set by the site for the particular type of waste.
2. There are no leakers that would contaminate the site (between the receiving station and the trench).
3. The vehicle is not externally contaminated.
4. The radiation levels at the vehicle perime ier are within the site specifications.
5. That it is known what kinds and the mix of packages are in the vehicle. These could be casks, drums, boxes, cartons or in some cases, the waste may be loose in the vehicle.

Figure 5-11. Low-Level Waste Burial Site Operations.

Upon successful completion of receiving inspection, the truck is allowed to enter the burial site and discharge its cargo.

Transit to the Unloading Station In or Neaz the Burial Trench
The first operation is to drive the vehicle to the unloading station in or near the trench. This can be done in several ways:

1. Drive the vehicie to the end of the trench in which waste is actively being placed.
2. Orive the vehicle into the trench by using a ramp at the end of the trench.
3. Drive the vehicle to the unloading point along one of the longitudinal sides of the trench.

Waste Emplacement in the Trench
When the vehicle is in any of the unloading positions, several methods can be used to unload the vehicle. Combinations of the methods can also be used.

1. For dump trucks - el avate the dump truck body and let the waste slide off into the trench.
2. Manually unload the vehicle letting the waste fall or roll into position in the trench.
3. Use a fork truck or payloader to $1 i \mathrm{ft}$ waste or waste packages from the vehicle and place or dump the waste into the trench.
4. Use a crane and slings to 1 ft waste packages from the vehicle into the trench.
5. Using rectangular waste packages, a wall is built across the trench at some distance from the covered face. The space behind the wall is filled with a mixture of irregular containers covered with soil.

For shielded caski, the following operations are necessary:

1. For casks, loosen or remove cask hold down bolts or devices to release the cask from the vehicle.
2. Use a crane and lifting asvices to lower a shieljed cask to a specially prepared and shielded unloaing area in or near the trench.
3. Remove cover bolts or cover hold down devices from the cask lid manually or by using remotely operated tools.
4. Lift the cask lid from the cask using a crane and handling slings or toois.
5. $\quad \mathrm{fft}$ the interior canister from the cask using the crane and renotely operated grapples.
6. Carry the canister to the desired point in the trench using the crane.
7. Put the canister down in the desired burial position and disengage the grapples.
8. Return the crane to the cask unloading station.
9. Lift the cover back onto the cask.
10. Reinstall cover bolts or cover hold down devices.
11. Lift the cask from cask unloading area and place into vehicle using the crane.
12. Install the cask hold down bolts or devices to secure the cask to the vehicle.
13. Inspect the cask for external contamination.

After a vehicle is unloaded, it is driven to the discharge inspection stat'on for clearance to leave the site.

After placement of wastes in the trench they remain uncovered for a length of time which varies depending on the radiation level surrounding the packages and the procedures followed at the burial site.
A. For the trenches containing low radiation level packages, the following procedures might be folloved:

1. Sections of partly filled trench, several meters in length are uncovered for a duration of several days or weeks.
2. Alternatively, all wastes are covered at the end of erch week.
3. Aiternatively, wastes in the trench are covered when site monitors indicate excessive radioactivity.
4. Site personnel do not come in direct contact with uncovered wastes.
5. Site personrel wear protective clothing and air breathing apparatus or work in prntective cabs when operating equipment in the vicinity of trenches or when unloading waste shipments.
B. For the trenches containing high radiation level canisters (these are buried in narrow trenches which are about 1 meter wide), the following procedures might be followed:
6. Containers are covered by soil immediately after placement in the trench.
7. Personnel procedures described in $A .4$ and $A .5$ above apply.

Covering of the Trench with Backfill

Bulldozers or earthmovers are used to cover the exposed wastes with the backfill. The compaction is accomplished by riding heavy machines over the backfill.

Surveillance of Backfilled Trenches

The trenches are monitored during and ofter operations for levels of radiation exceeding standards set forth in operating licenses. Failure to bury high intensity materials (like reactor poison curtains) deep enough or excessive exposure of other materials could result in chronic high levels in trench vicinity. Prior to covering a trench monitoring is used to protect workers from high exposure from uncovered waste. Standard monitoring equipment common to the industry is used. The instruments are maintained and checked by site health physics personnel.

Decontamination Procedures

A variety of items nay require decontamination because of the presence of radioactive materials on the exterior surfaces of vehi lles or equipment either on site or when being released to offsite. Containination may be present in interior surfaces of vehicles that are being released frr hauling general cargo. Radioactivity may also be present at points on the site external to the trench that may require decontamination. A number of procedures may be followed to perform decontamination of an area or object.

1. The vehicles or equipment can be decontaminated at the point where a survey for radioactivity indicates a problem, or the vehicle can be driven to a decontamination station. The decontamination station may be in the burial trench or may be a special location on the site surface.
2. The site can be decontaminated by scraping the affected area and removing the soil either by hand or using earth handling equipment; or the surface of the affected area can be coated by additional earth or a permanent coating such as asphalt or concrete.
3. The contaminated cloths can be disposed of by placing them in plastic bags and burying the bags in the waste trench. The condensate from steam cieaners can be collected in sumps or drains. The water can be filtered. If the filteres water is considered clean, it can be discarded without care. If the water is considered contaminated, then the contaminated solution can be solidified and buried in the waste trench.
4. Waste that does not meet the site specifications for control of the spread of contamination (leaking packages or packages with external contamination) or 1 imit the radiation levels at the package surface or at the vehicle boundary may be repackaged at the site before burial.

5.2.2.3 Post-Closure - Administrative Period

During this period, the site is still under administrative control. Release pathways during the post-closure period depend mainly on the as-buried condition of the waste, the geologic/hydrologic environment, and the nature of post-closure administration.

5.2.2.4 Inrestricted Use Period

During this period, there is no site management activity. The 1 and is released for public use which would be tailored for minimum disturbance of the burial areas (i.e., no significant excavation or drilling). An example of such use would be a park or golf course. Radionuclide release pathways will depend strongly on the as-buried condition of the waste and site geology/hydrology. Because of lack of administrative control, a fairly extensive list of event-type and chronic pathways is possible during this period. Examples of such pathways are human intrusion, animal intrusion, crop or plant absorption,, and natural disruptions (flood, seismic activity, etc.).

5.2.3

Initiating Eve:
The initiating events that lead to the release scenarios identified in Volume 3, Appendix C fall into tha following categories: (1) chronic releases, (2) natural events, (3) operational events, (4) intrusion events. The magnitude of the dose associated with these events will depend on the amount and composition of the released material (inventory and release fraction) and on various attenuating factors including use of remotely operated handling equipment, wearing of protective clothing or breathing apparatus, administrative control of entry etc. These variable factors will have been specified as an additional variable input to each release scenario.

5.2.3.1 Chronic Releases

The events of concern are as follows:

1. Chronic Release of Direct Radiation to Site workers - This may originate from activities associated with handling of wastes prior and during the burial or from inadequate shielding by trench coverage.
2. Chronic Release of Radionuclides to Atmosphere - These releases and their subsequent inhalation by site workers or the public may be caused by the outgassing of volatile substances, continuously or intermittently, from buried wastes or from on-site wastes handiing.
3. Chronic site Contamination - If the burial site is allowed to be contaminated it may cause a chronic contamination of site workers and eventual penetration to the public after the removal of administrative controls.

5.2.3.2 Natural Events

1. Rain/Flood - These events are of greatest significance to the post burial phases when containers are assumed to be ineffective. The magnitude of release will depend on the amount of water seepage through the trenches and the solubility of the radionuclides contained in wastes. A flood might be considered to be the limiting case of a heavy rain. The waterproofing qualities of packaging and the solubility of wastes will have to be specified in evaluating flooding accidents in pre-burial phases.
2. Wind - The events that might lead to the dispersal of radionuclide by strong winds are most likely to occur during the pre-burial phase when loosly bound packages of a light paper or powdery substance are in the uncovered trench awaiting burial.

5.2.3.3 Operational Events

1. Container Rupture - These events are of interest only during the pre-burial phases, e.g., transportation or on-site handling of the waste packages. After the burial, the containers are assumad to be disintegrated and do not provide containment of radionuciides. Whether the radionuclides are released in the event of container rupture depends on the size of the split and the properties of enclosed wastes. Obviously, volatile substance will escape most readily while solid waste imbedded in concrete or asphalt may not cause any significant contamination even in the event of container disintegration.
2. Waste Spills - Similar to the containe: ruptures, these events apply only to pre-burial phases. They may be caused by accidental openings of the packages or by activities of the personnel.
3. Waste Fires - Similar to the previous events, the fires are pertinent only to pre-burial activities. The waste can be involved in fires that are initiated and supported by external causes, e.g., truck fires or the waste material itself may support combustion and provide the source of energy as for example, in the case of fires in an unburied trench. The amount of radionuclides released in these events depends very strongly on the assumptions relative to the fire resistance of packaging and combustibility of wastes, e.g., presence of wooden boxes, bundled papers, etc.
4. Waste Explosions - The initiation of these events can be caused by the build up of significant gas pressures inside airtight containers, or by the presence of explosive materials among waste packages. Unlike the previous events, the explosions can occur during pre-burial as well as post-burial phases. The force of the explosion will have to be specified for the analysis when evaluating a specific circumstance.

5.2.3.4 Intrusion Events

1. Theft of Usable Items - The events of concern are the ft by site workers of items such as toois, instruments or items containing valuable materials from the waste consigned to burial. These stolen items may cause direct irradiation or contamination of site personnel or the public.
2. Animal Intrusion - These events describe the possibilities of small animals such as rabbits, gophers, etc., burrowing into the trenches containing wastes. They may become contaminated and become carriers to the pathways resulting in the dose to humans.
3. Human Intrusion - These events are concerned with the use of the site after its return to 1 limited use. The activities of humans associated with the use of the land include farming, forestry, recreation, etc. In very long periods of tities, e.g., on the order of 10^{3} years, habitation and digging for artifacts may occur.

6. MODEL DESCRIPTION

6.1 OVERVIEW

6.1.1 Objectives
 The Shallow-Land Burial (SLB) Systems Model is being developed to

 provide a means of evaluating licensing alternatives in terms of site and operational parameters. The objective is to provide a user-oriented code which makes efficient use of available data to perform dose assessments of various assumed scenarios. The SLB Model is designed from existing models and codes so that it is composed of previous established methodologies. The SLB Systems $\mathrm{N}_{2} 1$ is not intended to be a risk model in the sense that all possibilities re considered and the most rigorous calculation made. The SLB Model is rather directed toward making comparisons of situations to weigh alternatives. A set of scenarios is being provided with the SLB Model. These have been developed from detailed event-tree type analysis and are considered to be a reasonably complete list of major initiating events which have been condensed from a larger list. The SLB Model is programmed so that additional scenarios can be analyzed by supplying a source term and a pathways calling sequence.
6.1.2 Assumptions

Detailed assumptions involved in the individual transport and dose submodels are discussed in the appropriate parts of section 6. Assumptions stated here are major overall system assumptions. The SLB Systems Model is composed of a series of pathways subprograms which view the environment as a system including a seepage column with waste at the surface or at a subsurface location which communicates with a saturated aquifar which then connects with surface water bodies. In addition, the land surface communicates with the atmosphere. The key assumptions are:

- Waste in trenches is homogeneous in nuclide distribution and package type distribution.
* The seepage column is a vertical column with properties and events uniform horizontally.
- The effect of discharge to the aquifer on the soil column is coupled.
- Daughter ;roducts are not calculated from initial inventory but decay is applied to nuclides in all paths.
- The aquifer is a one-dimensional "pipe" direct to a surface body of concern.
- The effect of loss of nuclides from the soil surface is not coupled to the seepage subprogram.
- The atmospheric path is one-dimensional sector-ayeraged and direct to the population of concern.

2 Air and water concentrations are carried through food chain and exposure paths as viewed by standard dose assessment procedures.

The analysis begins with a scenario as an initiating event and carries the source term through appropriate paths or series of paths to obtain air and water concentrations which are converted to dose commitments using standard dose assessment methods (see Section 6.8).

6.2 EXECUTIVE PROGRAM (EXEC)

The executive program integrates the transport and dose calculation subprograms. The reading of input data, writing of output data, sorting and data preparation, and calling sequence of subprograms are handled by the executive program. The executive program draws from a number of data bases:

- Dose factor and nuclide data prepared by PREDOS from the master data base.
- Weather data (input by user).
- Geologic data (input by user).
- Scenario source term (internal data base).
- Scenario calling sequence (internal data base).
- Demographic data (input by user).
- Miscellaneous options switches (input by user).
- Miscellaneous other input data.

Prior to running the executive program, all the necessary data is supplied by an input deck (for batch mode) or on a system disc file (interactive mode).

A logic flow of the executive program is diagrammed in Figure $6-1$, in an interactive terminal mode. After typing a title banner on the terminal, the executive program calls subprogram INPUT which requests the user to supply key information defining the run (i.e., program parameters and input file names). A data checking routine then applies predetermined criteria to test for completeness and consistency of the input. The executive program calls the nuclide transport (ATMOS) and dose (DOSET) subprograms according to the pathways sequence read from the release scenario file. After each pathway is completed subprogram OUTPUT is called to write dose results to the output file. The executive program returns for an additional case, if appropriate. The "conversation" scheme is repesented in Figure 6-2.

6.3 AQUIFER TRANSPORT SUBPROGRAM (AQUIFR)

This subprogram, called "AQUIFR", calculates radionuclide transport through a flowing aquifer and ultimate discharge rate to a body of water. The program starts with a band release boundary condition defined by time of initial release, duration of release and magnitude (for each nuclide). The subprogram returns a history of $\mathrm{Ci} / \mathrm{yr}$ discharge rate to a body of water some distance from the discharge point.

6.3.1 Basis for Subprogram

This subprogram is a simplified version of the GETOUT code. GETOUT has been used internationally and appears in many variations. The version used is the documented Pacific Northwest Laboratory (PNL) version "GETOO5" as described in PNL-2970 (De Mier et al., 1979).

Fig̣ure 6-1. Shallow Land Surial System Model Executive Program.

Figure 6-2. A Typical Terminal Session in the Conversational Mode. The Underlined Data is User Supplied.

LGO.

```
WHAT SCENARIO ARE YOU RUNNING?
```

10
WHAT IS THE EXPOSURE TIME? (HRS)
.5
WHAT IS THE VOLUME OF THE BOX DR PACKAGE INVOLVED IN THIS SCENARIO?
1.

WHAT IS THE VELOCITY OF THE WIND AT THE ACCIDENT? (M/SEC)
1.

WHAT IS THE DIAMETER IN METERS OF THE DUST CLOUD RELEASED IN THIS SCENARIO?
10.

SCENARIO: 10 COMPLETED
DO YOU WISH TO RUN ANOTHER SCENAR:O?
NO
GOOD BYE FROM SHALLOW LAND
STOP
END OF EXECUTION
CPU TIME: 6.17 ELAPSED TIME: $1: 27.00$

The main differences between AQUIFR and GET005 are the deletion of input/output file manipulation, changes in method of input band description, and deletion of daughter product chain calculations. The first two changes are necessary to accomodate the role of this subprogram in the Shallow Land Burial Systems Model. Deletion of daughter products is justified by the lack of significant amounts of nuclides which present daughter product concern in the Shallow Land Burial System. Calculation of daughter product transport requires tremendous increase in program size and complexity. GETOO5 is four separate programs running several hundred pages, deletion of daughter product calculations reduces the size by more than 75 percent.

The key assumptions for the model are:

- One-dimensional flow and transport (conservative)
- Axial dispersion (constant dispersion coefficient)
- Equilibrium adsorption on the soil
- Constant water velocity in the aquifer
- No "discharge effect" - the aquifer is assumed infinite in length with no feed back to transport within the aquifer as a result of type of discharge. This assumption is valid for reasonable aquifer length; if dispersion length is short compared to aquifer length (Oston, 1979).

6.3.2 Discussion

The discharge point of a subsurface, partially saturated soil column (see Subsection 6.6) is assumed to be connected by a one-dimensional aquifer "pipe" to a surface body of water. The input to the aquifer is described as a band of constant magnitude beginning and ending at a specified time. The water flows at a constant rate through the aquifer to the surface body (or well). The dissolved radionuclides are in sorption equlibrium with the soil at all points and undergo decay. Trace concentrations of the dissolved nuclides are assumed so that the sorption equilibrium constants are independent of concentration. A constant axial dispersion coefficient is assumed.

In terms of a rectangular coordinate system stationary at the aquifer inlet, the migration of a nuclide is described by (Lester et al., 1975).

$$
\begin{equation*}
0 \frac{\partial^{2} N}{\partial z^{2}}-V \frac{\partial N}{\partial Z}-K \frac{\partial N}{\partial t}-K \lambda N=0 \tag{1}
\end{equation*}
$$

where

```
0 = disperison coefficient (cm}\mp@subsup{}{}{2}/\textrm{yr}
N = discharge rate (Ci/yr)
v = water velocity (cm/yr)
z = a q u i f e r ~ l e n g t h ~ ( c m )
K = sorption equilibrium constant (no units)
\lambda}=\mathrm{ nuclide decay constant (yr-1)
t = time (yr)
```

The sorption equilibrium constant is related to the distribution coefficient (K_{d}) by

$$
\begin{equation*}
k=1+\frac{K_{d}}{\varepsilon} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& x_{d}=\text { distribution coefficient } \\
& 0=\text { solid bulk density } \\
& \varepsilon=\text { void fraction of solid }
\end{aligned}
$$

As defined, th: equilibrium constant (K) relates relative nuclide and water velocity (without dispersion) as:

$$
\begin{equation*}
k=\frac{\text { water velocity }}{\text { nuclide velocity }} \tag{3}
\end{equation*}
$$

For a band release of duration T, the inlet boundary condition is given by:

$$
N=\frac{N^{0}}{T} \exp (-\lambda t) \quad \text { at }\left\{\begin{array}{l}
0 t T \tag{4}\\
z=0
\end{array}\right.
$$

where N^{0} is the total amount of radionuclide discharged over time period T. Note that decay at the input source is accounted for in the inlet condition (Equation 4). The other boundary conditions are:

$$
\begin{array}{llll}
N=0 & \text { at } & t=0 & 0 \leq Z<\infty \tag{5}\\
N=\text { finite } & \text { at } & t>0 & Z=\infty
\end{array}
$$

This equation has been solved analytically by Laplace transform techniques (Lester, et al., 1975). The solution for curies discharged at the end of the aquifer is:

$$
\begin{aligned}
N= & \left.\frac{N^{0}}{2 T}\right)^{\exp (-R \theta)}\left[\operatorname{erfc}\left(\sqrt{\frac{K P}{4 \theta}}-\sqrt{\frac{P \theta}{4 K}}\right)\right. \\
& \left.+\exp (P) \operatorname{erfc}\left(\sqrt{\frac{K P}{4 \theta}}+\sqrt{\frac{P G}{4 K}}\right)\right] \\
& -\exp \left[-R\left(\theta-\theta_{T}\right)\right]\left[\operatorname{erfc}\left(\sqrt{\frac{K P}{4\left(\theta-\theta_{T}\right)}}-\sqrt{\frac{P\left(\theta-\theta_{T}\right)}{4 K}}\right)\right. \\
& \left.+\exp (P) \operatorname{erfc}\left(\sqrt{\frac{K P}{4(\theta-\theta T)}}+\sqrt{\frac{P(\theta-\theta T)}{4 K}}\right)\right]
\end{aligned}
$$

where $R=\frac{\lambda L}{V}=$ dimensionless decay number
$\theta=\frac{t V}{L}=$ dimensionless time
$\theta_{T}=\frac{-V}{D}=$ dimensionless release time
$P=\frac{T V}{L}=$ Peclet number
$\mathrm{L}=$ aquifer length
$T=$ time of release duration
$\lambda=$ radioactive decay constant

While the calculation of discharge rate for any given time using Equation (6) is a relatively simple operation, there are several special features which support the calculation. First, for most problems of interest one encounters severe accuracy problems which can result in total loss of the results in machine error. This is because error function complement (erfc) values for very large arguments are often required. The result is often a very small number which can cause machine underflow. Most machines then assign a zero value thus eliminating the time results. Usually the very small number (say, 10^{-50}) is multiplied by an exponential which is very large (say 10^{48}) resulting in a reasonable answer $\left(10^{-2}\right)$. This problem is handled in a special subroutine "FERRNT" which is taken from the literature and incorporated into "GETOO5" (and therefore "AQUIFR"). FERRNT calculates accurate (exp)x(erfc) products in asymptotic regions using sealing of arguments prior to execution. Some machine dependent factors involving binary word length, and machine overflow are used by FERRNT. Second, there is a general accuracy problem which is handled by running the entire code in double precision; this is a necessity. Third, the code carries most numbers as exponents until the final result is obtained; this helps avoid machine numerical overflow. Fourth, AQUIFR incorporates a peak conditioning routine so that well proportioned time scans of nuclide discharge peaks are produced. AQUIFR was tested against an unmodified GET005 test run obtained from PNL.

6.3 .3

Interfaces
AQUIFR is called by the executive program (BURYIT) in situztions where nuclides have been discharged to the aquifer. The following input is required:

- Number of nuclides and their labels.
- Sorption equilibrium coefficients for each nuclide.
- Aquifer water velocity.
- Dispersion coefficient.
- Length of aquifer.
- Input band information, inventory discharged, band input period, and width of band.

In the Shallow-Land Burial Systems Model, the band width and inventory are calculated by UNSAT, the unsaturated zone transport code. The aquifer lies at the bottom of the soil column. UNSAT calculates population behavior and determines discharge amounts and time by nuclide over a prescribed time for a given nuclide inventory.

Subroutine AQUIFR returns discharge rates to a body of water as $\mathrm{Ci} / \mathrm{yr}$ over an appropriate time period (as determined by the peak conditioning routine) for each nuclide. The discharge rates are converted through the executive program and the DOSE subprogram into dose from ingestion and other water related pathways.
6.4
6.4.1 Basis for Subprogram

The fur ". on of subprogram AMMOS and its subroutines SIGMAZ and DINT is to calculate the eion of radionuclides released to the atmospiere. Bisic inputs to the subpi gram are quantity of radionuclides released anit weather data; the basic output is the spatial-dependent air and ground concertrations of the various radionuclides.

The baiic approach to the atmospheric transport subprogram is the Gaussian plume mocel as described in "Slade, D. H. $\quad(1268)$," and as used in a number of compute programs such as XOQOOQ (J. R. Sagendorf and J. T.GO11 1976).

In the Gaussian plume model, advantage is taken of the fact that natural "iffusion in the atmosphere leads to a known (Gaussian) distribution of pollutants in the atmosphere. This Gaussian plume model is combined with available formulations for plume rise, deposition and cloud depletion to complete the atmospheric transport model.

6.4.2 Discussion

Gaussian Plume Model Chi (x) over Q
The Gaussian plume model gives the atmospheric density of a contaminant, X, as a function of location downwind from a source of strength, Q, and as a function of other parameters such a release height, crossrange distance from plue centerline, and weather conditions. There are several Gaussian plume formulations for different release conditions and for different use applications. One formulation gives the time-dependent X^{\prime} / Q following an instanteous "puff" release; another gives the time steady-state x / Q for a continuous steady-state release. Some formulations give the total x, y, z location dependence of x / Q, while other formulations give the plume centerline (maximum) or the sector-averaged X / Q.

One X / Q desired is the time-integrated value as seen by a stationary observer who experiences the cumulated effect of the passing debris cloud from a puff release. The time-dependent formula for a puff release is:

$$
\begin{align*}
x^{\prime}(x, y, z, n, t)= & \frac{Q_{n} F}{(2 \cdot t)^{3 / 2} \sigma_{x} y^{\prime} z} \exp \left\{-\left[\frac { (x - u t) ^ { 2 } } { 2 \sigma _ { x } ^ { 2 } } | _ { | } ^ { \prime } \operatorname { e x p } \left\{\left.-\frac{y^{2}}{2 \sigma y^{2}} \right\rvert\,\right.\right.\right. \\
& x\left\{\left.\exp \left[-\frac{(z-h)^{2}}{2 \sigma_{z}^{2}}\right]+\exp \left[-\frac{(z+h)^{2}}{2 \sigma_{z}^{2}}\right] \right\rvert\,\right. \tag{1}
\end{align*}
$$

where (using mks units)

$$
\begin{aligned}
& x^{\prime} \text { is cloud concentration, } \mathrm{Ci} / \mathrm{m}^{3} ; \\
& Q_{0} \text { is initial release quantity, curies; } \\
& F_{d} \text { is a depletion factor, dimensionless; } \\
& x \text { is downwind coordinate, meters; } \\
& y \text { is crosswind coordinate, meters; } \\
& z \text { is elevation coordinate, meters; }
\end{aligned}
$$

h is release height, meters;
u is wind velocity, meters/second;
t is time after puff release, seconds;
$\sigma_{x}, \sigma_{y}, \sigma_{z}$ are x-dependent plume width standard deviations for the downwind, crosswind and vertical directions, respectively (meters).

Expressions for σ_{y} and σ_{z} from Sagendorf and Goll (1976) are given in Table 5-1. Integration of Equation 1 over the time of the cloud passage yields

$$
\begin{align*}
x(x, y, z, n)= & \left.\left.\frac{0_{0}{ }^{5} d}{2 \pi \sigma_{y} z^{u}} \exp ,-\frac{y^{2}}{2 \sigma} \frac{y}{y}\right\}\right\}^{\exp }-\left[\frac{(z-h)^{2}}{2 \sigma_{z}^{2}}\right] \\
& +\exp \left[-\frac{(z+n)^{2}}{2 \sigma_{z}^{2}}\right] \tag{2}
\end{align*}
$$

where is the time-integrated cloud concentration at location (x, y, z) with units of $\mathrm{Ci}-\mathrm{sec} / \mathrm{m}^{3}$.

For cloud concentrations at the ground level $(z=0)$, Equation 2 reduces to

$$
\begin{equation*}
x(x, y, 0, h)=\frac{Q_{0} F_{d}}{\pi \sigma_{y} z^{u}} \exp \left\{-\left[\frac{y^{2}}{2 \sigma_{y}^{2}}+\frac{n^{2}}{2 \sigma_{z}^{2}}\right]\right\} \tag{3}
\end{equation*}
$$

The sector averaged x / Q is obtained by integrating (3) over y and dividing by the sector width $2+x / n$ at downwind distance x. For $n=16$ sectors, this is

$$
\begin{equation*}
\bar{x}(x, 0, h)=\frac{2.0318 Q_{0} F_{d}}{\sigma_{z} u x} \exp \left[-\frac{h^{2}}{2 \sigma_{z}^{2}}\right] \tag{4}
\end{equation*}
$$

The time integrated formulas (Equations 2, 3 and 4) are identical with the Gaussian plume expressions for steady-state cloud concentrations for a steady-state release. Except for the inclusion of the depletion factor, F_{d}, Equations 2 and 3 are identical to Equations 3.115 and 3.116 in Slade 1968. When applied to steady-state releases, however, Q_{0} in Equations 2, 3 and 4 is the release rate (e.g., $\mathrm{Ci} / \mathrm{sec}$ ond) and x is the cloud concentration in $\mathrm{Ci} / \mathrm{m}^{3}$.

Equations 3 and 4 (with $y=0$ in the former) are the Gaussian plume expressions used in this study. For a puff release, e.g., with the release term Q_{0} expressed in curies, the resulting value of is the time-integrated

Table 6-1. Plume Width Standard Deviations (from XOQDOQ)
Crossrange standard deviation:

$$
\begin{aligned}
& \sigma_{y}=a x^{b}, \text { meters } \\
& a=\left\{\begin{array}{lr}
0.3658 & \text { Stability Class A } \\
J .2751 & B \\
0.2089 & C \\
0.1471 & D \\
0.1046 & E \\
0.0722 & F \\
0.0498 & G \\
0.9031
\end{array}\right. \\
& b=\text { down wind distance, meters }
\end{aligned}
$$

Vertical standard deviation:

$$
\sigma_{z}=a x^{b}+c, \text { meters }
$$

$\left\{\begin{array}{lllllll}\frac{A}{0.192} & \frac{B}{0.156} & \frac{C}{0.116} & \frac{D}{0.079} & \frac{E}{0.063} & \frac{F}{0.053} & x<100 \text { meters } \\ 0.00066 & 0.0382 & 0.113 & 0.222 & 0.211 & 0.986 & 100 \leq x<1000 \\ 0.00024 & 0.055 & 0.113 & 1.26 & 6.73 & 18.05 & 1000 \leq x\end{array}\right.$
$b\left\{\begin{array}{lllllll}0.936 & 0.922 & 0.905 & 0.881 & 0.871 & 0.814 & x<100 \\ 1.941 & 1.149 & 0.911 & 0.725 & 0.678 & 0.74 & 100 \leq x<1000 \\ 2.094 & 1.098 & 0.911 & 0.516 & 0.305 & 0.18 & 1000 \leq x\end{array}\right.$
c $\left\{\begin{array}{lllcccl}0 & 0 & 0 & 0 & 0 & 0 & x<100 \\ 9.27 & 3.3 & 0 & -1.7 & -1.3 & -0.35 & 100 \leq x<1000 \\ -9.6 & 2 & 0 & -13 & -34 & -48 & 1000 \leq x\end{array}\right.$
For stability class $\mathrm{G}: \sigma_{G}=\sigma_{F}^{2} / \sigma_{E}$
air-ground interface concentration in $C i-s e c / m^{3}$. When x is multipled by a breathing rate $\mathrm{in}^{3} / \mathrm{sec}$, the result is the number of curies inhaled. When multiplied by cloud shine dose factor in Rem/hour per $\mathrm{Ci} / \mathrm{m}^{3}$ and a conve -sion factor of 1 hour $/ 3600 \mathrm{sec}$, the result is c.oud shine dose in Rem. For a steady-state release e.g., with the release term Q_{0} expressed in $\mathrm{Ci} / \mathrm{sec}$, the resulting value of is the steady-state air-ground interface concentration in $\mathrm{Ci} / \mathrm{m}^{3}$. When x is multiplied by a breathing rate $\mathrm{in}^{3} / \mathrm{sec}$ and an exposure time in seconds, the result is curies inhaled. When x is multiplied by the cloud shine dose factor and an exposure time, the result is cloud shine dose in Rem.

Dry-Deposition and Depletion
The method for calculating the w., ?etion factor, F_{d}, sy ground deposition was not described in the above discussion. Also, the deposition of plume material onto the cround is of interest because it is the deposited material from this deposition which results in ground exposure. Deposition is of two types, dry or wet, depending on the absence or presence of precipitation. The method for calculating dry deposition and depletion, discussed below, is the methou described in Section 5-3.2 of Slade 1968.

The deposition of plume material onto the ground is related to the concentration in the air at ground level by an effective velocity, v_{d}.

$$
\begin{equation*}
D(x, y)=v_{d} x(x, y, 0) \tag{5}
\end{equation*}
$$

For a puff release, the units of x were $\mathrm{Ci}-\mathrm{sec} / \mathrm{m}^{3}$; thus, with velocity units of meters per second, the units of D are $C i / \mathrm{m}^{2}$. For a steady-state release, O is the deposition rate in curies $/ \mathrm{m}^{2}$ per second.

The deposition velocity, v_{d}, is discussed in Section 5-3.2.3 of slade 1908. The deposition velocity is about $0.002-0.01 \mathrm{~m} / \mathrm{sec}$ for small particles and about the gravitation settling velocity for larger particles. A value of zero is usually used for noble gases Kr , Xe, and Rn .

The dry depletion factor, F_{d}, results from plume depletion by deposition of plume material onto the ground. The quantity of plume material, Q_{x}, passing a point at distance x from the source is reduced with distance from the source as follows:

$$
\begin{aligned}
\frac{d Q x}{d x} & =-\int_{-\infty}^{\infty} D(x, y) d y \\
& =-\sqrt{2 / \pi} \frac{v_{d} x}{u \sigma_{z}} \exp \left(-\frac{n^{2}}{2 \sigma_{z}^{2}}\right)
\end{aligned}
$$

The total depletion from the source to point x is determined as follows:

$$
\int_{0}^{x} \frac{d Q_{x}}{Q_{x}}=-\sqrt{2 / \pi} \frac{v_{d}}{u} \int_{0}^{x} \frac{d x}{\sigma_{z} \exp \left(h^{2} / 2 \sigma_{z}^{2}\right)}
$$

or

$$
\begin{equation*}
F_{d}=\frac{Q^{x}}{Q_{0}}=\exp \left\{-\sqrt{2 / \pi} \frac{v_{d}}{u} \int_{0}^{x} \frac{d x}{\sigma_{z} \exp \left(n^{2} / 2 \sigma_{z}^{2}\right)}\right\} \tag{6}
\end{equation*}
$$

Equation 6 is equivalent to Equation 5.48 in Slade 1968.
Unfortunately, the integral in Equation 6 does not have an analytic solution for practical expressions of $\sigma_{z}(x)$, and accurate nunierical solution is time consuming. The integral has therefore been evaluated numerically for an array of values of x, h and stability category. Values of this depletion integral are derived by fouble interpolation ($n \mathrm{x}$ and h) of the stored values.

Wet Deposition and Depletion

The deposition of plume inaterial onto the ground during periods of precipitation is related to the total quantity of material in the plume by a washout coefficient \AA (Equation 5.63 in Slade 1968).

$$
\begin{equation*}
D(x, y)=A \int_{0}^{\infty} x(x, y, z) d z \tag{7}
\end{equation*}
$$

Typical units of : are $\sec ^{-1}$. Integration of the above expression using $x(x, y, z)$ from Equation 2 yields

$$
\begin{equation*}
D(x, y)=\frac{\Lambda_{0}}{\sqrt{2 \pi u \sigma_{y}}} \exp \left(-\frac{y^{2}}{2 \sigma y^{2}}\right) \tag{8}
\end{equation*}
$$

The sector averaged $D(x)$ is, for a $16-$ sector polar grid,

$$
\begin{equation*}
\bar{D}(x)=\frac{2.5465 \wedge Q_{0}}{u x} \tag{9}
\end{equation*}
$$

The cloud depletion factor for wet deposition is derived in a manner similar to the dry dipletion factor,

$$
\begin{aligned}
\frac{\partial Q x}{\partial x} & =-\int_{-\infty}^{\infty} D(x, y) d y \\
& =-\frac{Q^{x} \Lambda}{u} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} /\left(2 \sigma y^{2}\right)} d\left(\frac{y}{\partial y}\right) \\
& =-\frac{Q^{2}}{u}
\end{aligned}
$$

Thus

$$
\begin{align*}
\frac{\partial Q_{x}}{Q_{x}} & =-\frac{A}{u} \partial x \\
\int_{0}^{x} \frac{\partial Q_{x}}{Q_{x}} & =\int_{0}^{x}-\frac{\Lambda}{u} \partial x \\
F_{d}=\frac{Q_{x}}{Q_{0}} & =\exp \left(-\frac{\Delta x}{u}\right) \tag{10}
\end{align*}
$$

The washout factor Λ is discussed in Slade 1968, Section 5-4.5 through 5-4.9. It is clearly a function of rainfall rate and plume particle characteristics. For a reasonable particle size (e.g., density $5 \mathrm{~g} / \mathrm{cm}^{3}$ and diameter of 3 microns), Acan be calculated from the following:

$$
\begin{equation*}
A=0.00016(R R) \cdot 85 \sec ^{-1} \tag{11}
\end{equation*}
$$

where $R R$ is the rainfall rate in millimeters per hour. For an annual rainfall of RF meters per year and an effective fraction of time that it is raining, $F R$, the washout coefficient, based on the average rainfall rate, is

$$
\begin{equation*}
A=2.35 \times 10^{-5}(R F / F R) \cdot 85 \tag{12}
\end{equation*}
$$

Applications

The Gaussian plume model just described can be applied for either puff release conditions or for long-term releases. For puff releases, the weatner is usually regarded as fixed, i.e., having a specific wind direction, stability class and velocity. It will either be raining or will not be raining. For long-term releases, a mixture of weather conditions will apply. The corresponding disperson is usally called "annual average."

Both conditions may be solved using the same formulas. The air concentration is given by

$$
\begin{align*}
A C(I, J, K)= & Q_{0}(I) *(1-F R) * \sum_{L, M} F_{\text {dry }}(I, J, L, M) * \frac{X}{Q_{0}}(J, L, M) * F(K, L, M) \\
& +Q_{0}(I) * F R * \sum_{L, M} F_{\text {wet }}(K, J, L) * \frac{X}{Q_{0}}(J, L, M) * F(K, L, M) \tag{13}
\end{align*}
$$

and the ground concentration is given by

$$
\begin{align*}
G C(I, J, K)= & Q_{0}(I) *(1-F R) \star V_{d}(I) * \sum_{L, M} F_{d r y}(I, J, L, M) * \frac{X}{Q_{0}}(J, L, M) * F(K, L, M) \\
& \frac{2.5465 * Q_{0}(I) * F R * A(I)}{X(J)} \sum_{L, M} \frac{F(K, L, M)}{U(L)} \tag{14}
\end{align*}
$$

In the above, I, J, K, L, M are indices on isotope, distance, direction, wind speed, and stability category, respectively; $F R$ is the fraction of the time that it rains; $F_{\text {wet }}$ and $F_{\text {dry }}$ are the wet and dry depletion factors (Equations 10 and 6 , respectively); and $F(K, L, M)$ is the weather frequency array giving the fraction of the time that the wind blows in direction K with speed L and stability category M.

While Equations 13 and 14 ari structured for a long-term release, they can be used for a puff release by simply summing over one term, i.e., $F(K, L, M)$ of unity for the K, L, M of interest and zero elsewhere, and with $F R$ having a value of zero (if not raining) or 1.0 (if raining at the time of the puff release). For either puff or long-term releases, the total release in curies is entered as Q_{0} (not release rate incuries/second). For a chronic, long-term release, Q_{0} is the total release over a time period of interest. The corresponding air concentration result, $A C$, is the time integrated air concentration for that time period, in units of curies $-\mathrm{sec} / \mathrm{m}^{3}$. The corresponding "ground concentration," GC, is the cumulated ground deposition in curies $/ \mathrm{m}^{2}$ for that time period instead of a true ground concentration.

This procedure has been programed in the ATMOS module, c.f., flow diagram in Figure 6-3. The plume rise, X / Q, wet and dry depletion, and deposition are calculated in subprogram ATMOS. The subroutines SIGMAZ and DINT of ATMOS evaluate σ_{z} and the dry depletion integral (the integral in Equation 6), respectively. Two simplifications have been made in ATMOS. First, air transport in only one direction is considered. Thus, the wind always blows from the hypothetical source to the hypothetical exposed population. Second, all nuclides, with exceptions, must have the same deposition velocity. The exceptions are nuclides, like noble gases, which have a zero deposition velocity. Also, nuclides with a zero deposition velocity are assumed to have a zero washout coefficient, while nuclides with a non-zero deposition velocity are assumed to have the washout coefficient given by Equation 12.

6.4.4 Interfaces

> Subprogram ATMOS requires the following input data:

NI - number of isotopes, maximum 54
CI - array giving source for each isotope, curies
VD - deposition velocity for each isotope, meters/second
FR - fraction of time that it rains
TF - annual rainfall, meters
NU - number of wind speed categories, maximum 10
NS - number of stability cateogies, maximum 7
KS - stability category number Enter $K S=0$ for all NS categories
Enter $1<K S<7$ for category KS only
u - array of wind speeds, meters/second
F - double dimensioned array of wind frequencies, dimensionless, sum normalized to 1.0

Figure 6-3. Subprogram ATMOS Flow Diagram

```
NR - number of radial distances, maximum}2
    RM - array of radial distances, meters
    SH - release (or stack) heignit, meters
    SQ - stack energy release rate, calories/second
```

The following are output by ATMOS

GC - double dimensioned array (isotope, radial distance) of cumulative ground deposition, $\mathrm{Ci} / \mathrm{m}^{2}$.
$A C$ - double dimensioned array (isotope, radial distance) of time integrated air concentration, $\mathrm{Ci} \mathrm{sec}-/ \mathrm{m}^{3}$.
6.5 EROSIO

6.5.1 Introduction
 The ERODE subprogram calculates the amount of radioactivity blown from the repository fields due to the erosive action of the w^{i} nd. The program is essentlally a modification of the WEROS (Wind Erosion) program developed by the U. S. Department of Agriculture to predict potential soil loss from the great plains region of the U. S. (Moodruff, N. D., and Siddoway, F. H. 1965). The program is the integrated result of using 30 years of soil loss data and the theoretical factors that enter into a predictive calculation. Therefore, the program has sufficient experimental base to predict reliable soil loss figures.

The original WEROS program calculates the soil loss based on the evaluation of five factors that relate to the soll and its local environment. The five factors are (see Subsection 6.5 .2 for definition):

- Soil erodibility (I)
- Soil-ridge roughness (K)
- Climate (C)
- The unsheltered travel distance across the field (L)
- Vegetation (V)

The influence of these factors on soil loss can be expressed in a functional form and were originally read from tables. With the development of a computer program the tables are stored as data arrays in the program itself. The soil loss is computed by an equation of the form:

$$
E=1 * k * C * f_{1}(L) * f_{2}(V)
$$

The soil loss, E in tons/acre/year, is then multiplied (with appropriate dimensional factors) by the duration of the wind (years), area of the field (m^{2}), percentage of soil lofted (dimensionless), and nuclide concentration (uCi/gram of soil) from UNSAT, to obtain the amount of radioactivity by niclide type that is used as input to ATMOS. Since the main purpose the EROSIO is to act as a transport path for radioactive dust into the atnosphere, the amount of radioartivity that becomes airborne from the soil loss nust be detemined. Unforcunately, this is not a vell understood phenomenon. Estimates of the fraction lofted from blown soil range between 3 and 40 percent (Chepil, W. S.,
1945). In the program, this number is lefi as an input that ranges from 0 to 100 percent but it is suggested that numbers greater than 40 percent not be used. The use of 100 percent would be conservative since it indicates that all of the blown soll becomes airborne which overestimates the quantity of radioactive particulate in the air. The output of the ERODE subprogram in microcuries by nuclide type is then used as input to the ATMOS subprogram.

6.5.? Theory of Soil Loss by Wind Erosion

Soil erosion by wind forces is a complicated phenomenon depending on a variety of factors mentioned in the introduction. These five factors are the main influences affecting soil erosion by wind. The role that each of these factors play in soil erosion are discussed below.

The soil erodibility (1) is a quantity which relates to the crustiness of the soil and is also dependent on the size of aggregates in the surface soil. From field experience (Chepil, W. S., 1945), it has been discovered that aggregate sizes greater than 0.84 mm diameter do not greatly contribute to soil loss. By measuring the percent of dry soil not passing through a 20 mesh screen, the percentage of aggregates greater than 0.84 mm can be determined. This percentage is used to find the value (from a table) of the soil erodibility in tons/acre. If the field has a slope facing the dominant wind direction erosion is accelerated. This wind and knoll effect is taken into account by multiplying the erodibility factor by a number greater than or equal to 12 . For slope greater than 500 ft , the accelerated erosion is so slight that a value of unity is used. For slopes shorter than 500 ft , the value of the slope measured at the midpoint is used to determine the knoll slope effect. The value is obtained by using a curve empirically developed by woodruff and Siddoway (1965) to account for the windward knoll slope effect. This value is multiplied by the erodibility ractor to give a modified erodibility factor used in the soil loss equation.

Thn soil-ridge roughness factor (K) is a measure of the roughness factor (K) of the soil surface due to ridges. The value of the roughness is determined by measuring the height of roughness elements on the soil surface.

The value of the roughness (K) is less than or equal to 1 and is obtained from an empirically determined curve relating ridge height to sofl roughness.

To account for the local climatic conditions, a factor relating to mean annual temperature, mean annual precipitation and mean average wind speed have been included. The climatic factor (C) is expressed by the equation:

$$
\begin{equation*}
C=34.483 V^{3} / P E^{2} \text { where } \tag{1}
\end{equation*}
$$

$V=$ mean monthly wind velocity at a height of 30 feet above ground surface for all winds in excess of $12 \mathrm{mph}(5.36 \mathrm{~m} / \mathrm{sec})$. $P E=$ Thornthwaite's (1931) precipitation effectiveness index given by

$$
\begin{equation*}
P E=115(P / T-10)^{10 / 9} \text {, where } \tag{2}
\end{equation*}
$$

$P=$ mean annual precipitation (millimeters of rain) and $T=$ mean annual temperature $\left({ }^{\circ} \mathrm{C}\right)$. The value of C was derived from continental weather observations over a number of years.

The unshielded travel distance of the wind across the fizld is defined as the distance parallel to the preponderant wind direction in excess of the shielded distance. To find the preponderant wind direction, the wind erceion forces must be known first. The magnitude of the wind erosion vector symbolized by r_{j} is defined to be:

$$
\begin{equation*}
r_{j}=\sum_{i=1}^{n} \bar{U}_{i}^{3} G_{i j} \tag{3}
\end{equation*}
$$

$U_{i}=$ mean annual windspeed ($>12 \mathrm{mph}$) within the ith speed group. $\mathcal{S}_{i}=$ duration factor expressing the percentage of time that the wind blows in the $j^{\text {th }}$ direction within the ith speed group. The subscript i refers to the various speed groups used in climatalogical records. The subscript j, which runs from 0 to 16 , refers
to the 16 orincipal compass directions with $j=0$ corresponding to due east. Normally the $G_{i j}$ are normalized to unity so that:

$$
\begin{equation*}
\sum_{i, j} G_{i j}=1 \tag{4}
\end{equation*}
$$

The prevailing wind erosion direction is obtained by considering an imagingty line p in a polar coordinate system with θ corresponding to the angle between due east (θ degrees) and p. The wind erosion force for each principal direction parallel and perpendicular to p is given by:

$$
\begin{align*}
& F_{\|}=\sum_{j=0}^{15} r_{j}\left|\cos \phi_{j}\right| \tag{5}\\
& F_{L}=\sum_{j=0}^{15} r_{j}\left|\sin \phi_{j}\right|
\end{align*}
$$

$F_{11}=$ wind erosion force parallel to p.
$F=$ wind erosion force perpendicular to p.
$r_{j}=$ wind erosion vector defined above in the $j^{\text {th }}$ direction.
$\sigma_{j}=$ angle between p and r_{j}.

The values of the trigonometric functions are always taken as positive to prevent wind erosion force vectors in opposite directions cancelling each other. Figure 6-4 is a diagram of the geometry for determining prevailing wind direction. Since the subscript j refers to a principal direction r_{j} must be at angle of $22.5 j$ degrees from due east. (Principal directions are separated by 22.5 degrees). The angle between the wind erosion force vector r_{j} and the ray p dencted by ${ }_{j}$ is $22.5 j-\theta$. The preponderance is defined as the ratio of parallel wind forces to perpendicular wind forces and is denoted by R: (Skidmor, 1965):

Figure 6-4. Geometry Used to Find the Prevailing wind Erosion Direction.

$$
\begin{equation*}
R=\frac{F_{1}}{F_{\perp}} \tag{7}
\end{equation*}
$$

By orienting the ray p through various angles θ, R may be made a maximum. The value of θ that makes R a maximum ($R_{\max }$) is the prevailing wind erosion direction. This value of $R_{\max }$ has maximum wind erosion forces parallel to p and miniaum wind forces perpendicular to p. A value of 1.0 for $R_{\max }$ indicates that there is no prevailing wind erosion direction. A value of 2.0 for $R_{\max }$ indicates that parallel wind erosion forces are twice as great as the perpendicular wind erosion forces in the prevailing wind erosion directions. To establish the unsheltered travel distance across the field from this data, it is necessary to know the distance across the field along the direction of wind erosion force vectors. The distance depends on the angle of deviation of the wind erosion force vectors from rights to the field strip. Thifs can be visualized by representing a field strip as two parallel lines with a wind force vector r_{j} passing across the field (USDA 1968). The unsheltered travel distance for each wind erosion rose r_{j} is:

$$
\begin{equation*}
D_{j}=W \sec \left(A_{j}\right) \tag{8}
\end{equation*}
$$

where

```
W= fie'd width and
```

$A_{j}=$ angle of deviation of wind force vector from right
angles to field strip. As shown in Figure 6-5.

As shown in Figure 6-5.

Figure 6-5. Geometry Used to Compute Unsneitered Travel Distance
A_{j} is related to the field direction and wind force angle by:

$$
\begin{equation*}
\theta_{F}+90-A_{j}=22.5 j \tag{9}
\end{equation*}
$$

The angle between the right anģle to field direction and prevailing wind erosion direction is A. This was ori al input to the WEROS program. A is related to the field direction and preva. 1 wind direction by:

$$
\begin{equation*}
A=90+\theta_{F}-\theta_{R} \tag{10}
\end{equation*}
$$

Combining the two angular equations give the angle of deviation of the wind force vectors at right angles to the field strip as:

$$
\begin{equation*}
A_{j}=\theta_{R}+A-22.5 j \tag{11}
\end{equation*}
$$

If the θ_{R} is clockwise and counterclockwise to right angles to the field strip, A is subtracted and added, spectively in the above equation. Combining the last equation with the equation for O_{j} gives the unshel tered distance across the field width in the di action of the wind cosion force as:

$$
\begin{equation*}
D_{j}=w \sec \left(22.5 j-\theta_{R}=A\right) \tag{12}
\end{equation*}
$$

By multiplying the distance by the duration of each wind erosion vector, a distribution of wind erosion forces traveling various distances to traverse the field is obtained. This distribution is then plotted as to give the percent of wind erosion forces that travel some specified multiple k of field width as a function of preponderance ($R_{\max }$) and angle of deviation (A). The value of k for which the percentage is 50 is the median of the distribution for all wind force
vectors across the field. The value of $k\left(k_{50}\right)$ is then multiplied by the field width (x) to obtain the median unsheltered travel distance. If there are any barriers present, the median unsheltered travel distance ($\mathrm{k}_{50} \omega$) is reduced by an amount 10 times the barrier height and this value is then used as the median unsheltered travel distance (USDA 1968).

The vegetative factor (V) includes the amount of vegetative cover as well as the type of vegetative cover. The curve is empirically determined using the vegetative cover as a type of roughness factor. Two curves are employed in the theory depending on whether the vegetation is flat or standing. Standing vegetation is more effective than flat vegetation in reducing soil loss since monentum is delivered from the wind to move the standing vegetation and less momentum is available for soil movement.

The output of the wEROS program is in tons/acre-year of soil loss. The ERODE program uses this output and with other data generates as an output the curies released by nuclide type by the following formula:

$$
C_{i}=(E)(A)(t)(y)\left(X_{i}\right)
$$

where
$E=$ soil loss calculated from NEROS
$A=$ area of field
$t=$ duration of erosive wind
$y=$ percentage of soil loss into suspension
$x_{i}=$ radioactivity Der gram of ith nuclide in the surface soil
$C_{i}=$ radioactivity blown into atmosphere of ith nuclide

The percentage of soil loss that actually becomes suspended in the air for transport is included since not all soll loss results in suspended particles. Mrst of the soil loss results from saltation and creep. Few mea surements of the
fraction of total soil loss that actually becomes suspended have been made so that the percentage y, is uncertain. However, most researchers feel that the percentage is less than 40%. For this analysis, the percentage of soil that becomes airborne is left unspecified as a user input.

6.5.3 Computer Solution of EROSIO

The computational structure of EROSIO follows the WEROS program very closely since the soil lass computation forms the basis for the EROSIO output. Parameters specific to the wind erosion problem are read in the first step in the program. These input data are listed in the appendix in section C-5. Parameters pertinent to the original WEROS subprogram are converted from SI units to English units since the soil loss program was written for English units. The next portion of the subproaran calculates the double sum (labelled SUM) of the wind speeds over each speed group greater than 12 mph and over principal directions multiplied by the duration factor:

$$
\begin{equation*}
\text { SUM }=\sum_{i, j} U_{j} G_{i j} \tag{13}
\end{equation*}
$$

```
where \(U=\) wind speed
    \(G=\) duration factor
    \(i=\) direction index, 0 through 15
    \(j=\) speed group index, 0 through number of groups chosen.
```

 A similar sum (labelled SUMG) is also performed for the duration
 factor:

$$
\begin{equation*}
\text { SUMG }=\sum_{i, j} G_{i j} \tag{14}
\end{equation*}
$$

The previous expressions are used to calculate the climactic factor as shown below. In addition, another quantity (labelled SUM1) is generated by summing over speed groups to create a direction dependent variable used to compute the prevailing wind direction:

$$
\begin{equation*}
\operatorname{SUM1}_{i}=\sum_{j} U_{j}^{3} G_{i j} \tag{15}
\end{equation*}
$$

The quantity (SUM/ZUMG) ${ }^{3}$ represents the cube of the annual average of wind speeds greater than 12 mph for all directions and durations. This factor and the mean annual precipitation and temperature are then used to calculate the climactic factor (labelled CFCT) in the program. The original WEROS calculation of climactic factor required the use of 12 geographical maps which displayed iso-climactic factors for monthly average wind speeds temperature and precipitation. The monthly climactic factor was read from the map by noting location. The 12 monthly factors were then added to generate the yearly climactic factor which was then used as input data to the WEROS program (USDA, $1968 \mathrm{c})^{\text {ref }}$ The present calculation takes advantage of atmospheric data that exists as part of the total burial package calculation to disperse $w^{\text {t }}$ th the cumbersome and time consuming graphical procedure for obtaining the climactic factor. Values for the mean annual precipitation and temperature must be greater than 0 mm and $10^{\circ} \mathrm{C}$, respectively to avoid overflow errors in the program.

The next portion of EROSIO calculates parallel ($F_{\text {// }}$) and perpendicular (F,) wind forces (latelled WNDPAR and WNDPER respectively) as a function of principal direction and a quantity labelled THSUBR. By performing a DO loop 72 times the wind forces may be calculated as a function of THSUBR in increments of 5° to generate a complete wind force pattern. Further accuracy is unjustified since the principal directions are in 22.5° increments and field strip orientation is usually not known this accurately.

By choosing the maximum value of WNDPAR from its 72 values, the maximum parallel wind force has been calculated to 5° accuracy. This is done in the next portion of the subprogram. The value of THSUBR which produces the maximum value for WNDPAR (labelled MAXPAR) also produces the minimum value of WNDPER (labelled MINPER) and is the prevailing wind direction. The preponderence
(labelled WNDFRC) of wind forces in the prevailing wind direction is then calculated as the ratio of MAXPAR to MINPER.

The next portion of the subprogram calculates the angle of deviation of the prevailing wind erosion direction from right angles to the field strip. In the WEROS program, this is an input parameter. In EROSIO, the computed angle of the prevailing wind is used to generate the angle of deviation using the field strip angle (labelled ANGL.). The field strip angle is measured from due east as 0°. The right angle values (labelled RANGLL and RAliGL2) are measured 90° from either side of the field strip. The difference (DIFF1 and DIFF2) between either right angle and prevailing wind angle is then computed. The smaller difference is chosen since only deviation angles up to 50° has been correlated with wind erosion forces. Deviation angles greater than 50° will produce an error message. The smaller difference is then used as the angle of deviation (ANG) to compute the unshielded travel distance.

At this point in the computer program, the data necessary to compute soil loss using WEROS has been generated. The WEROS subprogram calculates soil erodibility factor, roughness factor and multiplies these two values to produce an intermediate soil loss quantity (E2). E2 is then aultiplied by the climactic factor to generate another intermediate quantity (E3). Next, the unshielded travel distance factor is calculated. Using the value obtained from the travel distance, E2, and E3, the soil loss is calculated from a bare, smooth field with no vegetative cover. After the various checks for vegetation types have been made, the subroutine which calculates vegetative factor is run to compute the soil loss in tons/acre/year as the WEROS output.

All tables and graphs discussed in Section 5.4.1 are included as data arrays within the EROSIO subprogram and the subprogram also has its own interpolation subroutines for input data not in the data arrays.

After the soil loss has been calculated, further modifications of the WEROS output are performed. The next calculation computes a maximum time (MAXTIM) that the wind can erode the field. This is necessary since the potential soil loss from a field can not continue indefinitely. This is accomplished by requiring the erosive depth to be less than 2.52 mm which is 30 times the height of the smallest unmoved particle of 0.84 mm . The distancs is converted to time by the following calculation:

```
        tmax}=\frac{(2.52)(0)(1-x)}{(0.224)(E)
p = \text { density of surface soil (g/cc)}
x = \text { percentage of aggregates greater than 84 mm}
E soil loss (tons/acre-yr)
0.224 = conversion factor
```

This maximum time has the dimension of years and is compared to the duration time given by the user. If the maximum time is greater (less) than the user specified time, the former (latter) is used to calculate the radioactivity released to the a tiosphere.

The radioactivity released to the atmosphere (XNCOUT) is then performed as explained in subsection 5.4.2 where the factor for time is chosen as described above. The ATMOS subprogram then reads this outp t from the common block to use as an input source to calculate atmospheric dispersal of radioactivity.

6.6 UNSATURATED ZONE TRANSPORT SUBPROGRAM

The unsaturated zone transport subprogram, UNSAT, is used for calculation of nuclide distribution in the $s 0^{* 1}$ and discharge to the aquifer resulting from seepage of leachates from trenches or from other surface/near surface sources. The subprogram calculates transport resulting from leaching, water movement, and sorption/desorption. Concentration profiles of nuclides in a one-dimensional soil column are calculated. Also calculated are discharge versus time to an aquifer at the bottom of the soil column.

6.6.1 Basis for Model

UNSAT is a version of the HYDRO code developed by SAI (Amirijafari and Cheney, 1979) for calculation of transuranic (TRU) waste transport in government reservations. The code is an adaptation of an irrigation control model developed for the USEPA (King and Hanks, 1973) and later modified by Childs and Hanks (no publication).

No modifications in the problem solution method were made. Changes made were deletion of unused code sections and options and necessary changes to adopt from CDC-ssecific language characteristics to DEC-10 acceptable language. Note that programs which run on the DEC system will run on CDC (except for file statements) but the reverse is not generally true.

6.6.2 Discussion

This model simulates the flow of water in an unatirated formation as a result of gravity head and capillary forces in a one-dimensional vertical heterogeneous column. The multi-layered column consists of k layers, each having its own hydraulic conductivity, soil density, thickness, and nuclide sorption characteristics. The transport of the radionuclides is based upon the flow of water. The individual nuclides can be injected into any of the K layers by dissolving each nuclide (depending on its solubility) in the water passing through the injection layer. The nuclide movement is corrected for radioactive decay as a function of elapsed time, and for retardation depending on the sorption of the nuclides on the particular rock matrix.

The general structure of the model is shown in Figure 6-6. The calculation boxes are actually loops which complete the calculation individually for each layer of the column.

The model solves for the time-dependent flow of water by stepping through time in discrete increments. The value of time and the length of the time steps are both important to the program. The important time variables are TIME, DELT, and DETT.

> TIME is the actual time, starting with zero, and is the sum of all elapsed time steps. It is calculated near the end of the program.

DELT is the length of the current time step. For instance, the amount of water flowing through any layer can be calculited by the (flux times DELT). 'ELT can be varied by the program to satisfy a Timit on the amount of change in any time step. CONQ is the limit.

DETT is a fixed value used to set DELT. DELT begins as OETT, then is decreased to satisfy the CONQ condi.ion or increased to speed calculations along if the water saturation happens to be changing slowly. DETT is calculatid for each riew flux period as the length of the entire flux pe, iod divided by TIMINC, an input variable.

Pressure and Moisture Content

The problem solved by the code is a one-dimensional soil column partially saturated with flux boundary conditions at the surface and a saturation moisture content at the bottom (i.e., at an aquifer). The general flow equation is taken from Hanks, Klute, and Bresler (1969).

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{\partial}{\partial z}\left(K(\theta) \frac{\partial H}{\partial z}\right) \tag{1}
\end{equation*}
$$

where

```
0 = volumetric water content (fraction)
t = time (hrs)
z= depth (feet)
K = hydraulic conductivity (no units)
```

The head, H, is

$$
h=h+z
$$

where $h=$ pressure head (feet).

Equation (1) is the result of combining Darcy's law for flow in an unsaturated soll with the continuity equation. The assumptions innerent in the nodel are:

```
- The fluid of interest, water, is continuously connected throughout the flow region and is incompressible.
- Inertial forces are not significan : as compared to viscous forces.
- Flow is isothermal, vertical, and one-dimensional.
- Biological phenomena have no effect on soil water flow.
- Air freely and instantaneous? y escapes from the system is water accumulates in it.
Equation (1) is transformed to one variable by a method developed oy Richards (1931). Define
```

$$
\begin{equation*}
C(\theta)=\frac{\partial \theta}{\partial n} \tag{2}
\end{equation*}
$$

```
as a soll-water differential capacity. By the chain rule of calculus
```

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{\partial \theta}{\partial n} \frac{\partial h}{\partial t}=C(\theta) \frac{\partial h}{\partial t} \tag{3}
\end{equation*}
$$

Suostitution of Equation (3) into Equation (1) gives

$$
\begin{equation*}
C(a) \frac{\partial h}{\partial t}=\frac{\partial}{\partial z}\left(K(\theta) \frac{\partial H}{\partial z}\right) \tag{4}
\end{equation*}
$$

where the hydraulic nead $(H=n+z)$ is the only dependent variable.

The finite-different form of the left-hand side term of Equation (4) is

$$
\begin{equation*}
C(\theta) \frac{\partial h}{\partial t}=\left(\frac{c_{i}^{j}+c_{i}^{j-1}}{2}-\right)\left(\frac{n_{i}^{j}-n_{i}^{j-1}}{\Delta T}\right)=c_{i}^{j-1 / 2}\left(\frac{n_{i}^{j}-n_{i}^{j-1}}{\Delta t}\right) \tag{5}
\end{equation*}
$$

where the subscript i epresents the depth of a node, and the superscript j represents time.

The first step in finite differencing the first term on the rignt side of Equation (4) is:

$$
\begin{equation*}
\frac{\partial}{\partial z}\left(K(\theta) \frac{\partial H}{\partial z}\right)=\frac{1}{\Delta Z_{3}}\left(\left.K \frac{\partial H}{\partial z}\right|_{1}-\left.K \frac{\partial H}{\partial z}\right|_{2}\right) \tag{6}
\end{equation*}
$$

where the identifier 1 is the mesh increment between nodes $i-1$ and i, the identifier 2 is the mesh increment between nodes i and $i+1$, and the identifier 3 is the mesh increment between nodes $i-1$ and $i+1$. Solving for the second and third term on the right-hand side of Equation (6) yeelds:

$$
\begin{align*}
& \left.K \frac{\partial H}{\partial z}\right|_{1}=\left(\frac{K_{1}}{\Delta z_{1}}\right)\left(\frac{H_{i-1}^{j-1}+H_{i}^{j}-1}{2}-\frac{H_{i}^{j-1}+H_{i}^{j}}{2}\right) \\
& \left.K \frac{\partial H}{\partial z}\right|_{2}=\left(\frac{K_{2}}{\Delta z_{2}}\right)\left(\frac{H_{i}^{j-1}+H_{i}^{j}}{2} \cdot \frac{H_{j+1}^{j-1}+H_{i}^{j}}{2}-1\right) \tag{7}
\end{align*}
$$

where K_{1} is the average of the K values corresponding to the values at nodes $(i-1, j-1),(i-1, j),(i, j-1)$ and (i, j), and k_{2} is sigilarly a ssociated with
nodes $(i, j-1),(i, j),(i+1, j-1)$ and $(i+1, j)$. Another way of defining K_{1} and K_{2} that has been used is:

$$
\begin{equation*}
k_{1}=k_{i-1 / 2}^{j-1 / 2} \text { and } k_{2}=k_{i-1 / 2}^{j-1 / 2} \tag{8}
\end{equation*}
$$

The substitution of Equations (7) bid (8) into Equation (6) yields:

$$
\begin{align*}
\frac{\partial}{\partial z}\left(K \frac{\partial H}{\partial z}\right)= & \frac{1}{\Delta z_{3}}\left[\left(\frac{H_{i-1}^{j-1}+H_{i-1}^{j}}{2}-\frac{H_{i}^{j-1}+H_{i}^{j}}{2}\right) \frac{K_{i-1 / 2}^{j-1 / 2}}{\Delta z_{1}}\right. \\
& \left.-\left(\frac{H_{i}^{j-1}+H_{i}^{j}}{2}-\frac{H_{i+1}^{j-1}+H_{i+1}^{j}}{2}\right) \frac{K_{i+1 / 2}^{j-1 / 2}}{\Delta z_{2}}\right] \tag{9}
\end{align*}
$$

Hanks and Bowers (1962), and Hanks, Klute and Bresler (1969) assumed constant depth increments, therefore, having:

$$
\Delta z_{1}=\Delta z_{2}=\Delta z_{3}
$$

In this model variable depth increments are considered, hence, z_{1}, z_{2}, and z_{3} are not equal and are defined by:

$$
\begin{equation*}
\Delta z_{1}=z_{i}-z_{i-1} ; \Delta z_{2}=z_{i+1}-z_{1} ; \Delta z_{3}=\left(z_{i+1}-z_{i-1}\right) / 2 \tag{10}
\end{equation*}
$$

Substituting Equations (5) and (9) into Equation (4) and substituting for $H=h+z$, yields:

$$
\begin{align*}
& \left(\frac{n_{i}^{j}-n^{j-1}}{\Delta t}\right) c_{i}^{j-1 / 2}=\frac{1}{\Delta z_{2}}\left(\frac{n_{i-1}^{j-1}+n_{i-1}^{j}-n_{i}^{j-1}-n_{i}^{j}+2 z}{2 \Delta z i}\right) k_{i-1 / 2}^{j-1 / 2} \tag{11}\\
& -\left(\frac{n_{i}^{j-1}+n_{i}^{j}-n_{i+1}^{j-1}-n_{i+1}^{j}+2}{2 \Delta z_{2}}\right) k_{i+1 / 2}^{j-1 / 2}
\end{align*}
$$

Equation (11) is the basic equation used in the interaction scheme of the model for obtaining head and moisture content p, filies.

The model works with a pressure versus moisture content characteristic typical of sofls and sketched in Figure 5.7 . To avoid problems or asymptotes, cut-off values at the high and low end of the scale are defined and logic in the program represents the curve as a constant at either end (see figure 1). The curve is stored as a table and is the basis for generating $C(\theta)$. Also stored is a conductivity versus moisture content characteristic cur: 2. Individual layer conductivities are calculated by multiplying a c-nductivity factor times the characteristic. The factors are input for each layer as a part of the soil column data.

Calculation of Q
Water flux, Q, through layers within the column, is calculzted after the tridiagonal matrix solution yielding the head values, H, for each layer. The formula used is:

$$
\begin{equation*}
Q=C \frac{\Delta H}{\Delta d} \cdot t \tag{12}
\end{equation*}
$$

where C is conduc:ivity, H is head (pressure head plus gravity head in feet, d is distance in feet, and t is length of the time step in hours. In particular, Q (J), the flux at any layer, J, is always the flow between layer J-1 and layer J. Positive Q is flow downward from $\mathrm{J}-1$ to J ; negative Q is flow from J to $\mathrm{J}-1$. C is an average conductivity defined as:

$$
\begin{equation*}
c=\frac{c_{J-1}+c_{J}}{2} \tag{13}
\end{equation*}
$$

H and d are differences define: as:

$$
\begin{aligned}
& \Delta H=H_{J-1}-H_{J} \\
& \Delta d=D_{J}-D_{J-1}
\end{aligned}
$$

and t is equal to DELT. The boundary condition, Q at the top, Q (1), is calculated as:

$$
Q(1)=E O R \cdot t
$$

where EOR is the water flow rate at the surface calculated in the conductivity section of the program. The flux through the bottom, $Q(K K)$, is zero until the two bottom layers are saturated. After the two bottom layers are saturated, $Q(K K)$ depends on the gravity head, $H(K)$, only.

Injection of Nuclides
At each time step, the buried nuclides are allowed to dissolve to their solubility limit in the water in the specified injection layer. The solubilities of the several nuclides are adjusted to partial fractions of the total solubilities of all nuclides remaining undissolved up to the start of the time step:

$$
\begin{equation*}
P_{i}=\frac{S_{i}}{\sum_{i=1}^{N} S_{i}} \tag{17}
\end{equation*}
$$

where P_{i} is the partial solubility (fraction), S_{i} is an individual solubility
$\left(\mathrm{Cf} / \mathrm{ft}^{3}\right)$, and n is the number of nuclides pite t at that time. The amount of a nuclide injected into the column is:
$S_{\text {enter }}=P_{i} \cdot W \cdot d-$ RAW
where $S_{\text {enter }}$ is the amount of nuclide iniected ($C i$), W is the water saturation in the injection layer (fraction), d is the thickness of th. layer, and RAW is the amount of nuclide already in the water in that layer $\left(\mathrm{ft}^{3}\right)$. If Senter is greater than the amount of undissolved nuclide available, it is set equal to that amount. Finally, Senter is subtracted from the undissolved nuclide to give the new amount of undissolved material.

Nuclide Decay

A decay factor (DEC) is calculated for each nuclide by:

$$
\begin{equation*}
D E C=2^{-T / t} \tag{19}
\end{equation*}
$$

Nuciide Idsorption

The adsorption routine assumes that in each time step, the $t i+a l$ nuclide in each layer distributes itself between the water and the solid, and i: able to reach an equilibrium throughout the layer. This assumption is most reasonable for long time steps. Short time steps will give results erring conservatively (toward farther migration).

Two nuclide transport simulations are used. One, called short-time model, is used in the shorter runs (up to 1000 years. DELT up to 24 hours) the other in the longer runs (up to 250,000 years [DELT greater than 24 hours]). In the snort-time simulation, at each time step, the model calculates the concentration of unadsorbed nuclide in each layer, then allows fluxes within the column to carry amounts of nuclide from one layer to an adjacent layer. In this way, the nuclide "front" can advance only one layer per time step. In the long-time model, the calculations of unadsorbed nuclide are repeated within each time step as the nuclide is passed from layer to layer, allowing the "front" to pass through the entire column in one time step. The choice of short or
long-term model is made on the basis of length of time step and layer thickness depending on conductivity.

For each nuclide an adsorption equilibrium constant is given for each layer of the column as input data. The distribution coefficient, K_{d}, is defined as:

RAS
$K d=$ its
RAW
v_{w}
where RAS is the nuclide sorbed to the solid in curies, wt is the weight of the solid (in grams), and V_{w} is the volume of the water (in milliliters). Since the nuclide in water, plus the nuclide on the solid, is the total nuclide in the layer, RAW, and RAS can be found independently:

$$
\begin{equation*}
\text { RAW }=\frac{\text { RNCLD } \cdot K \mathrm{Kd}}{\frac{W_{i S}}{V_{W}}}+1 \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\text { RAS }=\frac{\text { RNCLD }}{1+\left(\frac{1}{K d} \cdot \frac{w t s}{V_{w}}\right)} \tag{22}
\end{equation*}
$$

where RNCLD is the total nuclide in the layer.
In this model the nuclides are not adsorbed permanently. It is assumed that the nuclides will be desorbed from the rock. Equations (21) and (22) allow both adsorption and desorption, but the rate of desorption may not be the same as adsorption, so another variable SORPFC is read as input data and is used to specify the amount of RAS which is unavailable for desorption:

$$
\begin{equation*}
\text { RAW }=\frac{(\text { RNCLD }-(1-\text { SORPFC }) \cdot R A S) \cdot K d}{\frac{W t S}{W}}+1 \tag{23}
\end{equation*}
$$

I

So a $S O R D F C=1$ means all sorbed material can be desorbed, and is available for new K_{d} distribution, and SORPFC $=0$ means all sorbed material is permanently bonded to the solid and cannot be desorbed.

After RAW is found, RAWCON, the concentration of nuclide in water, is calculated by dividing RAW by V_{w}. This RANCON is inultiplied by Q to determine the amount of nuclide carried by water from layer $\mathrm{J}-1$ to J . Once the amount is determined, RNCLD(J) and RNCLD(J-1) are adjusted by that amount te keep the bookkeeping correct on RNCLD. Obvious limits are imposed; no more nuclide can be taken from a layer than is there in the layer to begin with. RAWCON as a layer can be calculated with each passing step for long time calculations. The frequency of RAWCON calculations affects the rate of movement of the nuclide front.

6.6.3 Interfaces

6.6.3.1 input

A large amount of input data is required by this subprogran. This is primarily due to the complexity of the problem it solves. The input can be classified under: Geological Data, Meteorological Data, Nuclide Jata, and Program Control Data.

The soil column is described as a series of layers which can differ in density, porosity, initial moisture content, and moisture conductivity factor. The conducivity factor, CONCOF, is a multiple of the mazer conductivities calculated in the program. So, if an interbed of material is half as conductive as the rest of the column, the layers corresponding to the interbed are given a CONCOF of 0.5 and the rest of the layers are assigned a CONCOF of 1.0 .

Meteorological Data

Meteorological data consists of the precipitation, flooding, and evaporation history for the case in quastion. Surface water flux can be represented in three ways:
(1) Given a depth of a standing pool and surface permeability inflow rate is calculated (this is the flood scenario).
(2) Rainfall (in meters) can be given as occurring in a fixed cycle of alternating wet and dry periods. The subprogram then calculates surface moisture flux (the "v" matrix) versus time for the entire problem time length.
(3) The entire flux history (meters of rain, meters of evaporation) can be input as a time, flux matrix (i.e., read the V matrix).

Nucl ide Data
Nuclide data includes half-lives, nuclide labels, and distribution coefficients for each nuclide and soil layer. The distribution coefficient is defined in Equation (20). Also included is an initial inventory that was deposited.

Program Control Data

Other data includes various parameters to activate various options and the maximum calculation time. These are defined in the code listing and will be contrciled by BURYIT.
6.6.3.2 Output. Two types of output from UNSAT are used in the systems mode 1: (1) surface soil concentrations of nuclide; as a function of time and (2) discharge rate to the aquifer as a function of time. Output type (1) is used by ERODE to calculate wind loft sources and possibly by DOSE to calculate ground shine. Output type (2) is processed by the executive routine to form input for AQUIFR.

6.7 DIRECT EXPOSURE MODEL (DIRECT)

6.7 .1
$\frac{\text { Basis far Model }}{\text { The function of }}$
The function of subprogram DIRECT is to calculate the external gamma dose resulting from direct exposure to undispersed waste. Example dose situations include dose to a person approaching a waste container accidently dropped from a truck, de ee from a canister on a truck (with, perhaps, the container containing rore than the normal quantity of radioactive material), and dose to a per. in standing near an open waste disposal pit.

A fairly simple approach using point kernels, exponential shielding and dose bulldup factors was chosen. Three source geometries (point, line and volume) were included using, as a basis, primarily formulas from Rockwell (1956) and Foderaro (1976). It is assumed that gamma exposure predominates. This will normally be true for external dose if the source and receiver are separated by a nodest distance or shield.
6.7.2 Discussion

Subprogram DIRECT incorporates separate formulations for each of the three source geometries. A computed "GO TO" statement in the subroutine directs the logic flow to the appropriate dose formation. A flow diagram is shown in Figure 6-8.

Figure 6-8. Subprogram DIRECT Flow Diagram

Point Source Formula

Foderaro gives the dose rate, D_{u}, for uncollided photons from a rsint source with a slab shield between the source and nceiver,

$$
\begin{equation*}
g_{u}=K(E) E S_{0} \frac{e^{-b_{1}}}{4 \pi a^{2}} \tag{1}
\end{equation*}
$$

where E is the source photon energy, MeV;
$K(E)$ is the energy flux to dose rate conversion factor $/ R / \mathrm{hr}$ per $\mathrm{MeV} / \mathrm{ma}^{2} \mathrm{sec}$);
S_{0} is the source emission rate, photons/sec;
a is the distance between source and receiver, cm; and
b_{1} is the ootical thickness of the shield.
In the above, the quantity $S_{0} /\left(4 \pi a^{2}\right)$ is the photon flux at distance a for an unshielded point source, the quantity $\left(E S_{0}\right) /\left(4 \pi a^{2}\right)$ is obviously the proton energy flux at distance a for an unshielded point source, and the quantity $\left(K(E) E S_{0}\right) /\left(4 \pi a^{2}\right)$ is the dose at distance a for an unshielded point source. The attenuation factor is $e^{-b} 1$, where b_{1} is:

$$
\begin{equation*}
b_{1}=\sum_{j} x_{j}{ }_{j} \tag{2}
\end{equation*}
$$

where

$$
x_{j} \text { is the thickness of the } j \text {-th shield, } \mathrm{cm} \text { : and }
$$

μ_{j} is the linear attenuation coefficient of the shield material
Foderaro gives the total dose rate as

$$
\begin{equation*}
\dot{i}=3 K(E) E S_{0} \frac{e^{-b_{1}}}{4 \pi a^{2}}=\frac{K(E) E S_{0}}{4 \pi a^{2}} \sum_{i=1}^{2} A i e^{-b} 1 i, \tag{3}
\end{equation*}
$$

where the coefficients A_{i} and $b_{1 i}$ result from a Taylor-form expansion of the buildup factor B,

$$
\begin{equation*}
B=A_{1} e^{-\alpha_{1} b_{1}}+A_{2} e^{-\alpha_{2} b_{1}} \tag{3a}
\end{equation*}
$$

In the above, A_{i} and a_{i} are Taylor-form expansion coefficients, with $A_{2}=1-A_{1}$.

Foderaro (1976) and Rockwell (1956) both give a formula for the dose rate from a line source with a slab shield parallel to the line. This shield geometry, which is not necessarily applicable here. introduces computational complexity in the form of the integral

$$
\begin{equation*}
k\left(\theta, b_{i}\right)=e^{b_{1}} \int_{0}^{\theta_{1}} e^{-b_{1} \sec u} d u \tag{3b}
\end{equation*}
$$

which must either be evaluated numerically, or stored as a two-dimensional array. An equally likely shielding geometry, and one much easier to solve, has the receiver (exjosed person) inside a wrap-around shields, that the same shield thickness applies for all angles of radiation incidence.

Foderaro (1976) gives the uncollided dose rate from a line source with shield parallel to the line,

$$
\begin{equation*}
\dot{b}_{u}=\frac{K(E) E S_{2}}{4 \pi a} e^{-b_{1}}\left[K\left(\theta_{1}, b_{1}\right)+K\left(\theta_{2}, b_{1}\right)\right] \tag{4}
\end{equation*}
$$

where S_{ℓ} is the line source strength, photons per second per unit length of source.

$$
\text { For no shield, i.e., } b_{1}=0 \text {, this reduces to the line kernel } k(E) E S
$$

$\left(\theta_{1}+\theta_{2}\right) / 4 \pi a$. Choosing a urst-case geometry in which the receiver is at distance a from the center of the line source, and specifying the length of the line source as 2 L , gives

$$
\begin{equation*}
\theta_{1}=\theta_{2}=\arctan \left(\frac{l}{a}\right) \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{i}=\frac{S_{0}}{2 L} . \tag{4b}
\end{equation*}
$$

Adding the wrap-around shield factor, $\sum_{i=1}^{2} A_{i} e^{-b l i}$, which is the same as for the point source, gives the line source formulab

$$
\begin{equation*}
b=\frac{K(E) E S_{0}}{4 \pi a L} \arctan \left(\frac{L}{a}\right) \sum_{i=1}^{2} A_{i} e^{-b_{1 i}} \tag{5}
\end{equation*}
$$

Volume Source Formula

Description of the dose from all possible shapes of volumetric souces and all possible source versus receiver configurations would require an infinite number of highly complicated, if derivable, formulas. Therefore, a formula was derived based on a simple, compact source geometry. The geomety is that of a cylindrical source of length 2 L and diameter 2 L . An analytical integration of the photon flux is possible for a receiver on an extension of the cylinder axis and at distance a from the cylinder center. The result is

$$
\begin{equation*}
\phi=\frac{S_{Q}}{4 \pi a^{2}} F v\left(\frac{a}{L}\right) \tag{5a}
\end{equation*}
$$

where

$$
\begin{align*}
F v(x)= & x^{2}\left\{\left[\tan ^{-1}(1-x)+\tan ^{-1}(1+x)\right]+0.5(1-x) \ln \left[1+\left(\frac{1}{1-x}\right)^{2}\right]\right. \\
& +0.5(1+x) \ln \left[1+\left(\frac{1}{1+x}\right)^{2} 1\right\} \tag{6}
\end{align*}
$$

The volume source dose with wrap-around shield is thus, by analogy with the point source formula,

$$
\begin{equation*}
O=\frac{K(E) E S_{2}}{4 \pi a^{2}} F v\left(\frac{a}{L}\right) \sum_{i=1}^{2} A_{i} e^{-b_{1} i} \tag{7}
\end{equation*}
$$

The above point, line and vilume dose formulas must, of course, be evaluated and the results summed for each of the nuclide contributors and, for those nuclides with multiple gammemissions, for each different garma energy. To reduce the data requirements and computation effort, the gamma energy treatment is performed for ciscrete energy groups. Ten gamma energy groups are used, with garma energios in the respective ranges 0-0.02, 0.02-0.065,
$0.065-0.15, \quad 0.15-0.35,0.35-0.75,0.75-1.5,1.5-2.5,2.5-3.5,3.5-4.5$, and >4.5 MeV. Corresponding data for $K(E), 4, A_{i}$, and a_{i} are for the respective midooint energies $0.01,0.03,0.1,0.2,0.5,1 ., 2 ., 3 ., 4$. and $5 . \mathrm{MeV}$.

Data for five shielding materials (plus air) are included. These are aluminum, fron, lead, ordinary concrete and water. Air is assumed to occupy all spuce between the source and receiver not occupled by another specified shielaing materia?, and need not be specified as a "shielding material."

A few words about nuclide treatment is in order. The quantity EK(E)So has been divided into the parts

$$
\begin{align*}
E K(E) S_{0} & =\left(E K(E) \frac{S_{2}}{C_{i}}\right) C_{i} \\
& =\left(3.7 \times 10^{10} E K(E) f\right) C_{i} \tag{7a}
\end{align*}
$$

where C_{i} is the total number of curies of the nuclide in the source and f is the photon emission fraction for the photon of encrgy E. The quantity $3.7 \times 10^{1.0} \mathrm{EK}(\mathrm{E})$ has been evaluated for each gamma, then summed for the garmas in each energy group. This sum is stored for each energy gronn and nuclide in the Ewo-dimensional array GE.
6.7 .3

Interfaces

Subprogram DIRECT requires the following input data:
IS - source type, $1=$ point, $2=1$ ine, $3=$ vol ume;
2 - distance from source, meters;
A - source dimension, meters (point source - not used; line souce line half length; volume source - characteristic radius);
NS - number of shielding materials, maximum of 5 ;
MAT - array of shielding io numbers ($1=$ aluminum, 2 =iron, $3=1$ ead, $4=0$ rdinary concrete, $5=$ water);
THK - array of shielding thicknesses, meters;
T - exposure time;
NI - number of radionuclides;
C: - array giving curies of each;
GE - double-dimensional array giving the quantity 3.7×10^{10} EK(E)f for each isotope and energy group (read from dose file along with other dose factors for DOSE routine).

Subprogram OIRECT gives the following output:
DOSE - whole body dose in Roentgens.

6.8.1 Basis for Subprogram

The population and maximum individual doses fro ? radionuclides released to the environment are calculated in subprogram DOSLT, and the results are cumulated and printed in subroutine SUMDOS. Basic input to OOSET includes the radiofsotope releases in terms of the time-integrated plume air concentration, the cumulated ground deposition, and the quancity of radionuclides, eleased to the source of water. Other inputs include tie population, age distribution, and food production rate (for beef cattle, milk, eafy vegetables, and other food products).

Four major dose pathways are considered, direct exposure to the radioactive cloud, direct exposure to ground contamination, inhalation (both of the cloud and resuspended particles), and ingestion of contaminated food and drink.

The DOSE subprogram is based partly on the methodology and data in NRC Regulatory Guide 1.109 (NRC 1977), partly on the methodology and data in WASH-1400 (NRC 1975), and partly on independent derivations. The method used here for calculating population dose has two major features: (1) the methodology, unlike that in Reg. Guide 1.109 , is not based on a continuing steady-state radionuclide release but is instead based on a uniform release rate oier time T where T may be long or short. (2) Unlike the methodolgy in Reg. Guide 1.109 and WASH-1400, the ingestion dose model for population dose is based on the production (not consumption) of contaminated foods.

Dose models are usually based on one of two release-time dependencies. The WASH-1400 model, for example, is based on a puff release while the Reg. Guide 1.109 and AIRDOS (Moore 1979) models are based on a steady-state release. The release from a shallow-land burial (SLB) site for the scenarios here may be of a very short or a very long duration. Thus, neither the puff-release model nor the steady-state release model is entirely satisfactory.

In a steady-state environment, however, the total effect of a radionuclide r lease is not a function of the time dependence of the release. That is, if the population is constant (neither growing nor moving), if there are no seasonal or diurnal effects, and if only the latent dose is of interest, then the total time-integrated population or maximum individual dose will not be a
function of the time dependence of the release. Each curie released will have a certain effect independent of when it was released.

In this effort, two release-time dependencies were considered (1) a puff release and (2) a steady-state release over time T. Formulas for two doses are derived, (1) the total dose (integrated over infinite time and therefore independent of the release time) and (2) the first year dose. (DOSET currently calculates only the total dose). This approach is, thus, more similar to that in WASH-1400 than to that in Reg. Guide 1.109; however, the food ingestion doses in WASH-1400 were developed for only a few principal radionuclides from a reactor release. While this may be sufficient for the spectrum of nuclides in a nuclear reactor, it is not adequate for analysis of SLB events, where the WASH-1400 principal isotopes might not even be present. Therefore, the methodology developed here is similar in sume respects to that in WASH-1400, but uses the more extensive radionuclides data in Reg. Guide 1.109.

Most population dose calculation procedures, including those in Reg. Guide 1.109 and WASH-1400, are consumption oriented in the sense that population doses for the ingestion pathway are calculated as the product of (1) the number of people in the local area, (2) the per-capita ingestion of food stuffs, (3) the concentration of radionuclides in locally grown foods, and (4) appropriate ingestion dose factors. This approach yields incorrect population doses when contaminated foods are exported and eaten elsewhere and when the consumption of uncontamifiated imported foods is not considered.

A simpler and more consistently correct approach to the calculation of total population ingestion dose is the production oriented model used here. In this model, the population dose for the ingestion pathway is the product of (1) the quantity of food produced locally (and thus contaminated), (2) the concentration of radioisotopes in this food, and (3) the appropriate dose factors. In the production model approach, it is assumed that all foods grown are consumed by humans. The correct population ingestion doses are thus calculated regardless of local population, per capita consumption, or food export/import situations.

6.8 .2

Discussion of Method
As mentioned above, doses for four major pathways are calculated. These include external dose from the contaminated grouis, inhalation dose, and ingestion dose. Inhalation dose from inhalation of both particles in the radioactive plume and resuspended particles is calculated. The ingestion dose includes dose from drinking water, milk, leafy vegetables, meat (beef), and otier foods (grain, root crops, fruit and nuts). The dose from leafy vegetables results from the deposition of contamination onto the plant leaves, while the dose from "other foods" results primarily from root uptake of radionuclides.

The dose formulas for the above pathways are described in the following paragraphs.
6.8.2.1 Exterial Dose from the Radioactive Cloud. The ATMOS routine provided the time-integrated radionuclide concentration in the air, $A C$, in units of curie-sec $/ m^{3}$. The cloud shine total time-integrated population dose for organ L is give by,

$$
\begin{equation*}
\operatorname{CDOSET}(L)=\sum_{1, j} A C(1, J) * P(J) * \operatorname{OFC}(I, L) \tag{1}
\end{equation*}
$$

where CDOSET is the dose in Rem, P is the population at distance J, and $D F C$ is the dose factor in Rem-m $m^{3} / C i-s e c$. If the duration of the radiological release, T, exceeds one year, the znnual cloud shine dose is the above divided by T (in years).

Formula 1 may also be used to calculate maximum individual dose. However, for maximum individual dose, the sumation is taken only over : (not J), $P(J))$ is 2.0 , and the plume centerline $A C$ is used.
6.8.2.2 External Dose from Contaminated Ground. The ATMOS routine provided the cumulated ground deposition of radionuclides, σ, in $\mathrm{Ci} / \mathrm{m}^{2}$. Note that this is not ground concentration, but is, as stated, the time-integrated deposition, i.e., the number of curies of isotope 1 deposited per square meter during some period of time.

Two deposition formats are considered, an instantaneous deposition of $\omega, C i / m^{2}$, and a constant deposition rate of $\omega / T, C i / m^{2}$ year for some time T (years). For the instantaneous deposition rate, the ground concentration as a function of time is equal to $G C e^{-\lambda} E^{t}$ where the decay constant ${ }^{\lambda} E$ includes leaching as well as radioactive decay. The relationship of time-integrated population dose to time t is

$$
\begin{equation*}
\operatorname{cosET}(L)=\sum_{1, J} \frac{\left(1-e^{-\lambda} E^{t}\right)}{\lambda_{E}}(\cdot C(1, J) * P(J) * \operatorname{DFG}(1, L) \tag{2}
\end{equation*}
$$

The first year dose and total dose (for infinite time) can be calculated from the above.

For the constant deposition rate of $\sigma / T \mathrm{Ci} / \mathrm{m}^{2}$ year, the deposition rate $g(t)$ can be written

$$
g(t)= \begin{cases}G C / T & 0<t<T \\ 0 & T<t\end{cases}
$$

The time dependent ground concentration G is then given by the differential equation,

$$
\frac{d G}{d t}=g(t)-\lambda E^{G}
$$

For time $t \leq T$, with $g(t)=G C / T$, this yields the result

$$
\begin{equation*}
G(t)=\frac{G c}{\lambda E}\left[1-e^{-\lambda E^{t}}\right] \tag{3}
\end{equation*}
$$

For time $t>=T$ The ground concentration is

$$
G(t)=\frac{G c}{E}\left[1-e^{-\lambda} E^{T}\right] e^{-\lambda} E(t-T)
$$

The corresponding time integrated dose to time t is

Equations 2 and 5 both reduce to the following for total dose integrated to infinite time:

$$
\begin{equation*}
\operatorname{GOSET}(L)=\sum_{1, J} \frac{G C(1, J)}{{ }^{\lambda} E} * P(J) * \operatorname{DFG}(1, L) \tag{6}
\end{equation*}
$$

These equations, with $P(J)=1$ and summed over I but not a give maximum individual dose.
6.8.2.3 Inhalation Dose. There are two sources of inhalation dose, one from radionuclides in the atmospheric transport plume and one from resuspended particles. The total dose from inhalation of plume particles is given by the following:

$$
\begin{equation*}
B \operatorname{DOSET}(1)=\frac{B R}{3!536000} \sum_{1, j} A C(I, j) * P(J) * D F B(I, L) \tag{7}
\end{equation*}
$$

where
BR
DFB
$A C \quad$ is the time-integrated air concentration, curie \sec / m^{3}
P is the population
$31,536,000$ is the number of seconds per year

In the above, I, J, and L refer to isotope location and organ, respectively. If the duration of the release, T, exceeds one year, the annual direct inhalation dose is the above divided by T (in years).

WASH-1400 (Appendix VI, DD 8-9, et. seq.) defines a resuspension factor K as the ratio of the air concentration $\left(\mathrm{Ci} / \mathrm{m}^{3}\right)$ to the ground concentration ($\mathrm{Cl} / \mathrm{m}^{3}$),

$$
\begin{equation*}
k=10^{-5} \exp (-0.677 * t)+10^{-9} \mathrm{~m}^{-1} \tag{8}
\end{equation*}
$$

where t is time in years after deposition.
For a puff release, the time-integrated resusperision population dose is
$\operatorname{RDOSET}(L)=B R \times \sum_{1, j}\left\{\frac{10^{-5}}{\lambda E}\left[1-e^{-\lambda} E^{t}\right]\right.$
$\left.+\frac{10^{-9}\left[1-e^{-\lambda_{i} t}\right]}{1}\right\} G C(1, J) * P(J) * D F B(1, L)$
where $\lambda_{E}=\lambda_{1}+0.677$ years $^{-1}$
For a constant deposition rate over time T, with the ground concentration given by Equations 3 and 4, the resuspension population dose is given by

$$
\begin{equation*}
\operatorname{RDOSET}(L)=B R^{*} \sum_{I, J} X(I, T, t) * G C(I, J) * P(J) * D F B(I, L) \tag{10}
\end{equation*}
$$

where

$$
x(i, T, t) \equiv\left\{\begin{array}{l}
\frac{10^{-5}\left[t-\frac{1}{\lambda_{E}}\left(1-e^{-\lambda_{2} t}\right)\right]}{\lambda_{E} T}+\frac{10^{-9}\left[t-\frac{1}{\lambda_{1}}\left(1-e^{-\lambda_{1} t}\right)\right]}{\lambda_{1}^{T} T} \\
\frac{10^{-5}\left[T-\frac{1}{\lambda_{E}}\left(e^{-\lambda^{t}(t-T)}-e^{-\lambda^{t} t}\right)\right]}{\lambda_{E}^{T}}+\frac{10^{-9}\left[T-\frac{1}{\lambda_{1}}\left(e^{-\lambda_{1}(t-T)}-e^{-\lambda_{1} t}\right)\right]}{\lambda_{1} T} \text { for } t \leq T
\end{array}\right.
$$

For infinite t, Equations 9 and 10 both reduce to the following:

$$
\begin{equation*}
\operatorname{RDOSET}(L)=B R \sum_{1, J}\left(\frac{10^{-5}}{\lambda_{E}}+\frac{10^{-9}}{\lambda_{1}}\right) G C(I, J) * P(J) * D F B(J, L) \tag{11}
\end{equation*}
$$

These equations, with $P(J)=1$ and summed over I but not J, are used for calculating the maximum individual dose.
6.8.2.4 Ingestion Dose. As described in Subsection 6.8.1, calculations of the population dose will be based on the production of contaminated fools rather than local consumption. Food and drink pathways considered are water, vegetables and produce, milk, and beef.

Wa ter
If curies, Ci , are added to a stream (above ground or below ground) of flow rate F liters/year, and P people each consume U liters/year of water from this stream, $C i * p * U / F$ curies will be consumed. The population dose is thus (dose factor OFI)

$$
\begin{equation*}
\operatorname{DOSETW}(L)=\sum_{I, J} \frac{C_{i}(I, J) * P(J) * D F I(I, L) * U}{F} \tag{12}
\end{equation*}
$$

If the release time T exceeds one year, the first year dose is the above result divided by T in years. This formula, with $P(J)=1$ and summed over I but not J, gives maximum individual dose.

Leafy Vegetables

The ATMOS subprogram provides the cumulated ground deposition, GC, in $\mathrm{Ci} / \mathrm{m}^{2}$. If a fraction R (Reg. Guide $1.109, \mathrm{p} .68$) is deposited on crops, of which area $A\left(m^{2}\right)$ is planted, a total of $G C^{\star} R * A$ curies $w 11$ be deposited onto the leaves of crops. If the crop is consumed at time t after contamination, $C(t)=G C^{*} R^{*} A^{*} \exp \left(-\lambda E^{t}\right)$ curies would be ingerted. But if there is a uniformiy random time of deposition relative to harvest time, an average of

$$
\begin{equation*}
\bar{C}\left(t^{\prime}\right)=\frac{\int_{0}^{t^{\prime}} C(t) d t}{\int_{0}^{t^{\prime}} d t}=\frac{G C * R * A}{\lambda E^{t^{*}}}\left[1-e^{\left.-\lambda E^{t^{\prime}}\right]}\right] \tag{13}
\end{equation*}
$$

curies would be consumed, where t^{\prime} is the crop duration, i.e., $1 / \mathrm{N}$ years with M being the number of crops per year. Thus

$$
\begin{equation*}
\bar{c}=\frac{N G C R A}{\lambda_{E}}\left[1-e^{-\lambda} E / N\right] \tag{14}
\end{equation*}
$$

and

$$
\operatorname{DoseLV}(L)=N \sum_{1, J} \frac{G C(1, J) * R(1) * \operatorname{DFI}(J, L) * A(J)}{\lambda_{E}}\left(1-e^{-E^{-N}}\right)
$$

Equation 14 gives both the first year and total population dose for a puff release.

For a uniform deposition rate of $G C / T \mathrm{Ci} / \mathrm{m}^{2}$ yr over time period $T, C(t)$ is given by the differential equation

$$
\frac{d C}{d t}=\frac{G C * R * A}{T}-\lambda_{E} C
$$

with the solution, at harvest time $t=1 / \mathrm{N}$

$$
\begin{equation*}
C=\frac{G C * R \star A}{T \lambda E}\left[1-e^{-\lambda E / N}\right] \tag{15}
\end{equation*}
$$

For $T=1 / \mathbb{N}$, Equations 13 and 15 are the same, so Equation 14 applies. For $T<$ $1 / \mathrm{N}$, Equations 13 and 15 bracket the situation, so Equation 14 also applies. For $T>1 / \mathrm{N}$, say $T=M / \mathrm{N}, \mathrm{C}$ in Equation 15 is $1 / \mathrm{M}$ times that for Equation 13 , but dose is cumulated over M growing seasons for the same total result. The first year dose, however, for $M>N(T>1$ year) is N / M (i.e., $1 / T$) times that given by Equation 14.

Data per Reg. Guide 1.109 gives $R=0.2$ for all nuclides except iodine, for which $R=1.0$. Reg. Guide 1.109 also gives $\lambda_{E}=\lambda_{i}\left(y r^{-1}\right)+18.4$. For $N \leq 5$, $1-\exp \left(-\lambda E^{-N}\right)=1.0$. Aduing a decay factor $e^{-\lambda} i^{t} b$ with $t_{y}=24$ hours for delay between harvest and consumption gives

$$
\begin{align*}
\operatorname{DOSELV}(L)= & N \sum_{I, J} G C(I, J) * R(I) * A(J) * D F I(I, L) \\
& * \frac{\left(1-\exp \left(-\lambda_{E} / N\right)\right) * \exp \left(-24^{*} \lambda_{E}\right)}{\lambda_{E}} \tag{16}
\end{align*}
$$

The annual population dose is given by Equation 16 for $T \leq 1$ year or by $1 / T$ times Equation 16 for $T>1$ year.

The above expressions for population dose are based in the population eating all of the contaminated foods. The maximum dose individual eats a fraction $V L /\left(C L D V^{*} N^{*} A\right)$ of the total foods produced, where

> VL is the maximum individual leafy vegetabl? food consumption in

kg/year

CLDV is the crop density, kg / m

A is the area planted to crops, m^{2}, and
N is the number of crops per year.

The maximum individual dose may be found by evaluating the above population dose formulas (except taking the summation, over only 1 , not J) and multiplying by this fraction.

Fruits, Nuts, Grains, and Root Crops

One source of contamination in all crops results from root uptake.
This is the primary source of contamination for fruits, nuts, grains, and root crops. For a puff release of $G C \mathrm{Ci} / \mathrm{m}^{2}$ and a soil pool areal density $P\left(240 \mathrm{~kg} / \mathrm{m}^{2}\right.$ per Reg. Guide 1.109), the time-dependent soil concentration is $G C \exp \left(-1 s^{t}\right) / P$ $\mathrm{Ci} / \mathrm{kg}$. As crop growth progresses, minerals (and the contamination) are drawn into the plant and used to forin the fruit. Reg. Guide 1.109 gives a concentration factor, $\mathrm{B}_{\mathrm{iv}}, \mathrm{Ci} / \mathrm{kg}$ per $\mathrm{Ci} / \mathrm{kg}$, relating the concentration in the crop to concentration in the ground. It is assumed that, as the crop grows, the inciremental growth will reflect the ground concentration at the time of growth. Hence, for a growth rate of $\times \mathrm{kg} /$ year of crop, the total curies incorporated into the crop in time t^{\prime} is

$$
\begin{equation*}
\int_{0}^{t^{\prime}} \frac{x G C B_{i v}}{P} \exp \left(-\lambda_{s} t\right) d t=\frac{x G C B_{i v}}{\lambda_{s} P}\left[1-e^{-\lambda_{s} t^{\prime}}\right] \text { curies } \tag{17}
\end{equation*}
$$

The decay constant, i_{s}, is the radioisotopic decay constant plus a soil sink decay constant. WASH-1400 gives 10 percent per year for Sr and 61 percent per year for Cesium. Data for other elements are needed. It is assumed here that $\lambda_{s}=0.2$ year $^{-1}$.
F.r a constant denosition rate of $G C / T \mathrm{Ci} / \mathrm{m}^{2}$ year for some time T in years, the ground concentration $\left(\mathrm{Ci} / \mathrm{m}^{\mathbf{6}}\right)$ is (from Equations 3 and 4).

$$
G(t)= \begin{cases}\frac{3 C}{T T}\left[1-e^{-\lambda} s^{t}\right] & t \leq T \tag{18}\\ \left.\frac{G C}{\lambda_{s}^{T}} 1-e^{-\lambda} s^{T}\right] e^{-\lambda} E(t-T) & t>T\end{cases}
$$

The corresponding time integral has the solution

$$
\int_{0}^{t} \frac{x G(t) B_{i v}}{p} d t=\left\{\begin{array}{l}
\frac{x B_{i v} G c}{P v_{s} T}\left[t-\frac{1}{\lambda_{s}}\left(1-e^{-\lambda_{s} t}\right)\right] \tag{19}\\
\frac{x B_{i v} G C}{P_{\lambda /} T}\left[7-\frac{1}{\lambda_{s}}\left(e^{-\lambda_{s}(t-T)} \cdot e^{-\lambda_{s} t}\right)\right] \quad \text { curies }
\end{array}\right.
$$

Defining the quantity in the appropriate integral (Equations 17 or 19), to be Q, the population dose is

$$
\begin{equation*}
\operatorname{DOSERC}(L)=\sum_{I, J} Q(I, J) * \operatorname{DFI}(I, L) * \operatorname{EXP}\left(-\lambda_{i} t_{b}\right) \tag{20}
\end{equation*}
$$

where the term $\exp \left(-\lambda_{i} t_{b}\right)$ accounts for decay between harvest and consumption. Reg. Guide 1.109 gives a value of 14 days or 0.038 years for t_{b}.

The above expressions for eipulation dose are based on the population eating all the contaminated produce. The maximum dose individual eats a fraction FVG/X of the total produced, where FVG is the maximum individual produce consumption rate and x is the annual crop growth rate. The maximum individual dose may be found by evaluating the above population dose formulas (except summing only over I, not J) and multiplying by this fraction.

Milk
The population dose from milk is dependent on the quantity of contaminated milk produced, which is, in turn, dependent on the number of cows in contaminated areas. It is conservatively assumed that all milk produced is consumed as milk after a short deldy time between dairy and consumer. Actually, some fraction of the milk will be used to make cheese, candy, condensed milk, etc., thereby increasing the decay time between production and consumption.

The concentration of radioisotopes on grass, as a function of time after a puff release deposition, is

$$
C(t)=\frac{G C R g}{y} e^{-\lambda} E^{t} \quad \text { curies } / \mathrm{kg}
$$

where Rg is the deposition fraction on grass (as given by Reg. Guide 1.109) and y is the areal grass density $\left(0.7 \mathrm{~kg} / \mathrm{m}^{2}\right.$ per Reg. Guide 1.109).

Assume each cow eats $Q_{f} \mathrm{~kg} /$ day ($50 \mathrm{~kg} /$ day per 1.109). Per 1.109 , a fraction fin (with dimensions of days/liter) appears in milk, so that $C_{f} Q_{f} \mathrm{~m}$ ci/liter results. With X cows each producing Q_{m} liters per year, this becomes C $Q_{f} f m Q_{m} \times$ curies per year.

The total curies appearing in time t^{\prime} is thus

$$
\begin{equation*}
\int_{0}^{t^{\prime}} c(t) Q_{f} f m Q_{m} x d t=\frac{G C R g Q_{f} f m Q_{m} x}{g \lambda_{E}}\left[1-e^{-\lambda} E^{t^{1}}\right] \text { curies } \tag{21}
\end{equation*}
$$

with E in years ${ }^{-1}$.
Similarly, for a steady-state release over time T, with the ground concentration given by Equation 18, the total curies by integration over time is

$$
\begin{align*}
& \frac{R_{g} Q_{f} \ln Q_{m} x G C}{y \lambda_{E} T}\left[t-\frac{1}{\lambda_{E}}\left(1-e^{-E^{t}}\right)\right] \quad t \leq T \tag{22}\\
& \frac{R_{g} Q_{f} f m Q_{m} x G C}{y_{A} E^{T}}\left[T-\frac{1}{\lambda_{E}}\left(e^{-\lambda} E^{(t-T)}-e^{-\lambda E^{T}}\right)\right] \quad t>T
\end{align*}
$$

Calling the quantity in the appropriate integral (Equations 21 or 22), Q, the population dose is

$$
\begin{equation*}
\operatorname{DOSETM}(L)=\sum_{1, j} Q(1, j) * \operatorname{DF} 1(1, L) * \operatorname{EXP}\left(-\lambda_{1} \hbar_{b}\right) \tag{23}
\end{equation*}
$$

Where t_{b} is the delay time between dairy and consumption (four days or 0.011 years per Reg. Guide 1.109).

The above expressions for population dose from milk are based on the population consuming all the contaminated milk. The maximum dose individual drinks a fraction XMILK/(XQm) of the total milk produced, where XMILK is his milk consumption in liters per year, X is the number of cows in the local area and Q is the production rate (liters/year) per cow. The maximun individual dose from ailk can be found by evaluating the above population dose formulas (except sumning over I, not J) and multiplying by this fraction.

The results from Equation 21 were compared with results published in WASH 1400 (Appendix VI, page $E-30$). Data used mere $\Theta=1 \mathrm{Ci} / \mathrm{m}^{2}$ (basis), $\mathrm{Rg}=0.5$, $Q_{f}=50, Q_{m}=12, \quad X=1, \quad Y=0.7, t^{\prime}=$ infinity. A decay factor of $\operatorname{EXP}\left(=-i=E^{* 3}\right.$ days) was used with $\lambda E^{=0.0504+\lambda_{i}}$ days $^{-1}$. This yields curies per cow based on a one $\mathrm{Cl}_{\mathrm{l}} / \mathrm{m}^{2}$ deposition. Dividing the respective results by 12 liters/day (cow output) and multiplying by 0.7 liters/day (WASH-1400 maximum individual consumption rate) jave the following results.

Nucl ide	Calculated Value	WASH-1400 Value	Ratio
1-131	0.848	0.692	1.2
1-133	0.016	0.0042	6.8
Sr-89	0.299	0.402	0.74
Sr-90	0.396	0.588	0.67
Cs-134	5.85	4.22	1.4
Cs-136	2.48	1.42	1.7
Cs-137	5.94	4.22	1.4

Beef

The population dose from beef is dependent on the quantity of beef produced in contaminated areas. In practice, beef cattle for slaughter are often "finished" on grain in dry feed lots. It is conservatively assumed that all beef is raised on pasture grass.

As derived for milk cows, the concentration of radionuclides on grass as a function of time after a puff release is

$$
C(t)=\frac{G C R g}{y} e^{-\lambda E^{t}} \quad \text { curies } / \mathrm{kg}
$$

Assume a steer of weight $W \mathrm{~kg}$ eats $Q_{f} \mathrm{~kg} /$ day of wet grass ($50 \mathrm{~kg} /$ day per 1.109). If fraction F is absorbed into his flesh, the concentration $x(C i / k g)$ in his flesh is given by the differential equation

$$
\begin{equation*}
\frac{d x}{d t}=\frac{F Q_{f} C(t)}{W}-\lambda e^{x} \quad \frac{\text { curies } / k g}{d a y} \tag{24}
\end{equation*}
$$

where λ_{e} is a biological decay constant. Solution of this differential equation with the boundary condition that $x=0$ at $t=0$ gives

$$
\left.x(t)=\frac{F \eta_{f} G C R g}{W y(\lambda} e^{-\lambda} E\right)\left[e^{-\lambda} E^{t}-e^{-\lambda} e^{t}\right] \quad \text { curies } / \mathrm{kg}
$$

If there are H animals in the herd, each of weight W, with dressout fraction f_{d} and slaughter fraction f_{s} per year, there will be HWf $f_{s} \mathrm{~kg} / y e a r$ beef produced. The total contamination consumed as a result of the puff release is then

$$
\begin{equation*}
\int_{0}^{\infty} H W f_{d} f_{s} x(t) d t=\frac{H f_{d} f_{s}{ }^{\prime} Q_{f} G C R g}{y^{\lambda} e^{\lambda} E} \text { curies } \tag{25}
\end{equation*}
$$

Data for the above are as follows: herd size H is input, dressout fraction is about 0.5 kg meat per kg steer; slaughter fraction is about 33 periant per year or 0.1 percent per day hased on an average 1 ife of two years for steer or heifer, an average life of nine years for calving cow (with seven calves per cow), and a little bull. Q_{f} is, as stated earlier, $50 \mathrm{~kg} /$ day, $G C$ is input from ATMOS, Rg is element dependent from Reg. Guide 1.109 , y is $0.7 \mathrm{~kg} / \mathrm{m}^{2}$ (from 1.109), and ${ }^{\mathrm{E}} \mathrm{E}$ is $\lambda_{i}+18.4$ year $^{-1}$.

To determine F / λ_{e} (in years), the solution for a steady-state problem may be derived and compared with the result and data in Reg. Guide 1.109. If there is a steady-state concentration, C , of $\mathrm{Ci} / \mathrm{kg}$ in grass and a steer of weight W eats $Q_{f} \mathrm{~kg} /$ day, with fraction F absorbed into flesh, the time steady-state concentration will be given by

$$
\frac{d X}{d t}=\frac{F C Q_{f}}{w}-\lambda_{e} x=0,
$$

i.e.,

$$
x=\frac{F Q_{f} C}{\lambda^{W}}
$$

sing the approach used in Reg. Guide 1.109 , the concentration in meat is

$$
x=F_{f} C Q_{F}
$$

Thus, equating values for x,

$$
F / \lambda e=F_{f} H
$$

The element-dependent values of F_{f}, in days $/ \mathrm{kg}$, are giyen in Reg. Guide 1.109. Defining the quantity of the integral (in Equation 25) Q, the population dose from beef is

$$
\begin{equation*}
\operatorname{DOSEBF}(L)=\sum_{I, J} Q(I, J) * \operatorname{DFI}(I, L) * E X P\left(-\lambda_{i} t_{b}\right) \tag{26}
\end{equation*}
$$

where t_{b} is the delay time from slaughter to consumption (20 days or 0.055 year per Reg. Guide 1.109).

For a steady-state release over time T, the differential equation (Equation 24) can be solved with $C(t)$ given by $R g G(t) / y$ where $G(t)$ is given by Equations 3 and 4. The result is a lengthy expression with ${ }^{\text {a }}$. appearing separately. Equation 26 will give the correct dose integrated over infinite time after a step function release. The first year dose (for $T>1$ year) can be estimated by multiplying that result by $1 / T$.

The above expressions for population dose from beef are based on the population eating all the beef produced. The maximum dose individual eats a fraction XBEEF/($\mathrm{H} \quad \mathrm{fd}$ Wfs) of the total beef produced, where XBEEF is his beef consumption in kg per year. The maximum individual dose from beef can be found by evaluating the above population dose formulas (except summing over only I, not J) and multiplying by this fraction.

6.8.3 Application

The above methodology has been programmed in Subprogram DOSET, with cumulations over isotope, distance, pathway, organ and age group performed in Subroutine SUMDOS. Figure $6-9$ is a flow diagram for DOSET. Except for a Do loop on isotope, the flow of the program is largely once-through, with the various pathways treated sequentially.

6.8.4 Interfaces
 Subprogram DOSET requires the following input:

$A C(I, J) \quad$ - Time-integrated air concentration $\mathrm{Ci}-\mathrm{sec} / \mathrm{m}^{3}$
AREA(J) - Area associated with each radial increment, km^{2}
BEEF - Number of beef cattle per km^{2}
BIV(I) - Food concentration factor, dimensionless
COWS - Number of cows $/ \mathrm{km}^{2}$
DC(1) - Nuclide decay constant, year ${ }^{-1}$

Figure 6-9. Flow Diagram for Subroutine DOSE

Subroutine SUMDOS cumulates the following for printing:

```
DOSEI(I) - Sum of total dose by isotope
DOSEJ(J) - Sum of total dose by distance
DOSEK(K) - Sum of total dose by pathway
DOSEL(L) - Sum of total dose by organ
DOSEM(M) - Sum of total dose by age group
DOSET - Cumulated population dose
```

All above doses are in Rem.
6.9

DATA SORTING SUBROUTINE (PREDOS)
PREDOS is a preliminary data handling code that is called as soon as a release scenario has been generated. Data arrays are processed that will be needed in other subroutines. Those data arrays are

IIO	- isotope identification integer
NUC:AM	- alphanumeric isotope identification
GE	- gama exposure constaris
DC	- decay constants
CS	- number of curies in source
C	- number of curies in operation of interest
VD	- dry deposition coefficient
DOSFAC	- dose conversion factor
BIV	- stable element transfer constant for vegatation
FM	- stable element transfer constant for cow's milk
FF	- stable element transfer constant for meat

PREDOS requires access to several data file and interaction with the executive progran BURYIT to fill those data arrays wi.n the required information. The executive program will provide PREDOS with the list of nuclides that have been identified in the selected release scenario. From this information PREDOS searches extensive data files to fill common block arrays that are to be used in other subroutines. PREDOS has been written to process large amounts of data in the most efficient manner possible.

6.9.1 Dose Table Construction

Dose equivalence factors are stored on a large disk file, NUCDAT.FIL. The dose infomation is in a three-dimensional array. This data base contains dose equivalence factors for 350 nuclides in each of 8 seperate subfiles. Additionaly there are gamma exposure constants and decay constants listed for each nuclide in the first subfile.

Any oarticular dose equivalence factor is defined by

$$
\begin{aligned}
& i=\text { the nuclide index } \\
& j=\text { the pathway index } \\
& k=\text { the organ index } \\
& a=\text { age group index }
\end{aligned}
$$

6.9.1.1 Nuclide Indexing (i). Every set of dose equivalence factors is indexed by nuclide name, and accompanying ID number. The number is composed of the atomic numi.er, Z, the isotope number, and a metastable flag. The metastable flag is a zero for ground state isotopes and unity for metastable isotopes. Ali of the isotopes are listed sequentially by theif ID number.
6.9.1.2 Organ Indexing (k). For every pathway and every nuclide, the oase. equivalence factors are given for the total body and eight organs. The organs are bur., liver, kidney, gonad, lung, GI tract, thyroid and skin. Not evey isotor z and pathway will result in a dose to every organ. In a case that no dose to a persicular organ is recorded, the dose factor is zero. For some pathways, there is no dose from a certain nuclide. In those instances, the dose equivalence column has been left blank.

$\frac{k}{1}$	$\frac{\text { organ }}{\text { total body }}$
2	bone
3	liver
4	kidney
5	gonad
6	lung
7	Gi tract
8	thyroid
9	skin

6.9.1.3 Pathway and Age Group Indexing (j). Data for eight specific patnways in included in NUCDAT.FIL. Two cases of external exposure are defined: surface skin and closed imersion. Two cases of internal exposure are defined, inhalation and ingestion. Three age groups are also defined to account for the difference in doses ave to age.

$\frac{j}{1}$	$\frac{\text { pathway }}{\text { cloud immersion }}$	$\frac{a}{1}$	$\frac{\text { age group }}{\text { child }}$
2	surface shine	2	teen
3	inhalation	3	adult
4	ingestion		

It should be understood that when the dose arises from an external pathway, the resulting dose is age independent.
6.9.1.4 Sequential Ordering. Data in the disk file NUCDAT.FIL are in sequential order to meet possible computer system compatibility regirements. In the event tha c the disk file is altered in a way that disturbs the sequential ordering, erroneous results could be produced without any warning. To prevent this, a sequeatial checking routine is included in PREDOS. In the event that a nuclide becomes disordered in any of the pathway subfiles, error flags will occur.

To check the sequential order of a recently-altered file, a job 1 control (JC) index can be set to pr te a sequential scan of the nuclide lists. At the present time, the $J C$ index set with a NAMELIST instruction, but this may be modified.

6.9.2 Information Base

The external pathway dose equivalents were compiled from a listing in the Light Jater Breeder Reactor Program EIS (ERDA 1976). These factors are included in Table IX. H-4 of Volume 4, and were generated from the EXREM III code. Internal pathway dose equivalents were compiled from Hoenes and soldat, "Age-Specific Radiation Dose Factors for a One-Year Chronic Intake," (nuREG 1977). This data was calculated according to the ICRP 2 model of ingestion pathways.

Gama exposure constants are interpolated for every given energy vilue, based upon the figures given in Foderaro (1977). Gama exposure constants are used to calculate the energy constant GE value, for analysis of direct exposure pa thways.

Other data arrays are based on information in the event scenario.
6.9.2.1 Methodology for External Exposure Pathways. Data included for pathways 1 and 2 are generated from the EXREM 111 computer program. For each radionuclide, the code considers exposure from beta, positron, electron, X - and garma radiation.

Air Immersion Pathway. Additional information is included for nuclides not listed in the EXREM III data bank. The dose to the total body from radiation when measured at the body surface can be calculated using:

$$
\begin{align*}
& 0=\left(\frac{3600}{2}\right)\left(\frac{K_{0} K_{1}}{K_{2} d_{a}}\right) \sum_{i=1}^{N_{r}} f_{i} E_{i} x_{i} \tag{1}\\
& K_{0}=3.7 \times 10^{10} \mathrm{dis} / \mathrm{sec} \\
& K_{1}=1.6 \times 10^{-6} \mathrm{ergs} / \mathrm{MeV} \\
& \mathrm{~K}_{2}=100 \mathrm{ergs} / \mathrm{gm} / \mathrm{rad} \\
& d_{a}=\text { density of air }=1293 \mathrm{gms} / \mathrm{m}^{3} \\
& \mathrm{~N}_{r}=\text { photons emitted per dis } \\
& \mathrm{f}_{i}=\text { probability of emission of } i-\mathrm{th} \text { photon } \\
& E_{i}=\text { energy of } i-\text { th photon } \\
& x_{i}=\text { concentration of nuclide } \mathrm{Ci} / \mathrm{m}^{3} \\
& 3600=\text { seconds per hour } \\
& 1 / 2=1 / 2 \text { sphere }
\end{align*}
$$

This formula makes several assumptions that will over estimate the external dose received, resulting in a conservative estimate of the actual gama dose.

1. Assuming an infinite cloud volume biases the gamma dose upwards,
2. A uniform density cloud is seldom encountered,
3. The dose at the body surface is considerably higher than the dose to the critical organs.

To obtain a skin cose, the additional exposure due to beta particles must be added to the gamma dose. The beta skin dose can be calculated using:

$$
\begin{align*}
& D=3600 \alpha D_{\infty} *\left[c^{2}\left(3-\exp \left(\frac{1-v d}{c}\right)\right)-\frac{v d}{c}\left(2+\ln \left(\frac{c}{v d}\right)\right)+\exp (1-v d)\right] \tag{2}\\
& \text { c }=\text { energy dependent parameter } \\
& =\text { nomalizing constant } \\
& \mathrm{D}_{8}=\text { dose rate to surface body from beta emitters in an infinite cloud } \\
& \text { (rem/sec) } \\
& v \quad=\text { absorption coefficient }\left(\mathrm{cm}^{2} / \mathrm{gm}\right) \\
& d=\text { depth from surface, expressed in }\left(\mathrm{mg} / \mathrm{cm}^{2}\right) \\
& \text { (assumed to be } 4 \mathrm{mg} / \mathrm{cm}^{2} \text { to correspond to the inart layer of skin) } \\
& \text { (Salde 1968) } \\
& \alpha=\frac{1}{3 c^{2}-\left(c^{2}-1\right) e} \tag{3}\\
& D_{\infty}=0.13 \bar{E}_{B^{X}} \tag{4}\\
& V=\frac{37.2}{\left(E_{0}-0.036\right)^{1.37}} \tag{5}\\
& c \quad=\text { energy dependent parameter } \\
& \mathrm{D}_{8}=\text { dose rate to surface body from beta emitters in an infinite cloud }
\end{align*}
$$

energy parameters

$$
\begin{array}{ll}
c=3.0 & \quad E_{0}<0.17 \\
c=2.0 & 0.17 \leq E_{0} \leq 0.5 \\
c=10.5 & 0.5 \leq E_{0} \leq 10.5 \\
c=1.0 & 1.5 \leq E_{0}
\end{array}
$$

(Trubey 1977)

$$
\left.\begin{array}{rl}
E_{0} & =\text { maximum beta energy } \\
x & =\text { concentration of beta-enitters in cloud }\left(\mathrm{Ci}, \mathrm{~m}^{3}\right)
\end{array}\right\} \begin{aligned}
& \text { Average } \\
& \bar{E}_{B}=\begin{array}{l}
\text { Beta } \\
\text { Energy }
\end{array}=\left\{\begin{array}{l}
0 \text { if } E_{0} \leq 0.036 \mathrm{MeV} \\
1 / 3 \mathrm{E}_{0}(1-0.02 \mathrm{z})\left(1 _0.25 \mathrm{E}_{0}\right) \text { if } \mathrm{E}_{0}>0.036 \mathrm{MeV}
\end{array}\right\}
\end{aligned}
$$

The skin dose, the total body dose from gamma exposure was assumed to be the dose to other organs except the skin dose.

Dose from Surface Contamination Pathways.
The dose rate from a surface deposit of gama-emitting nuclides is calculated from a plane source formula

$$
\begin{equation*}
D=\frac{K_{0} c}{10^{4}} \sum_{i=1}^{N_{i}} f_{i} c_{i} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{K}_{0}= & 3.7 \times 10^{10} \text { dis/sec }-\mathrm{Ci} \\
\mathrm{~N}_{r}= & \text { number of photons per disintegration } \\
\mathrm{f}_{\mathrm{i}}= & \text { probability of } i-\mathrm{th} \text { photon being omitted } \\
\mathrm{C}_{\mathrm{m}}= & \text { concentration of the surface deposit } \\
10^{4}= & \text { conversion factor of } \mathrm{cm}^{2} \text { to } \mathrm{m}^{2} \\
\mathrm{R}_{\mathrm{i}}= & \text { energy-dependent conversion factor rel. ting the dose rate from } \\
& \text { a photon of a particular energy being omitted from an infinite } \\
& \text { plume source (rem } / \mathrm{hr} / \mathrm{r} / \mathrm{cm}^{2} \mathrm{sec} \text {) }
\end{aligned}
$$

R_{i} is calculated using

$$
\begin{equation*}
R_{i}=\frac{K_{1}}{2} E_{1}\left(\nu_{a}+\rho_{a} S\right) \tag{7}
\end{equation*}
$$

where $\quad k_{1}=$ dose rate conversion defining rem/hr from two photon of energy E_{1} person/ cm^{2}

$$
\begin{equation*}
E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t \tag{8}
\end{equation*}
$$

$E_{1}=$ unshielded flux from a unit surface source $\left(\mathrm{cm}^{2} \mathrm{sec}\right)$
$u_{a i}=$ absorption coefficient of photon with given energy $\left(\mathrm{cm}^{2} / \mathrm{gm}\right)$
$=$ density of air $1.293 \times 10^{-3} \mathrm{gm} / \mathrm{cc}$
$\mathrm{S}=$ perpendicular distance from surface deposit (taken to be 100 cm)
(Rockwell 1956)
6.9.2.2 Methodology for Internal Dose Pathways. Dose factors for internal dose pathways were sotained from Hoenes and Soldat (1977) with the exception of the dose factors for the gonad dose. These factors are important because of the genetic consequences. Gonad doses were obtained from ICRP 30 and are summarized in the last chapter of this section.

General Format.

$$
\begin{equation*}
D_{a i p j}=K_{i p j} P_{a i p j} \sum_{a} P_{a i p j} \tag{9}
\end{equation*}
$$

```
0. = dose commitment factor
a = age group index
i = nuclide index
p = pathway
j = organ index
Kipj = age independent constant
    Paipj = portion of dose comraitment factor which is dependent on age group (a)
        nuclide (i), pathway (p), and organ (j).
```

(Hoenes 1977)

There are different dose commitment formulas used to calculate the dose to the GI tract, and for cases involving noble gases. These two special cases are described in Subsections on GI Tract and Nobel Gases.

Ingestion Pathway

$$
\begin{equation*}
k_{i 4 j}=\left[18.7 * f_{u} /\left(T_{1} * \lambda_{e}^{0}\right)^{2}\right]_{i j} \tag{10}
\end{equation*}
$$

$f_{u}=$ fraction of ingested nuclide reaching the organ of interest
$T_{1}=$ time of intake (given as 1 year)
$\lambda_{e}^{0} \quad=$ effective decay constant (1/day) for the organ of interest
$18.7=(22.2 \mathrm{dpm} / \mathrm{pci})\left(5.26 \times 10^{5} \mathrm{~min} / \mathrm{y}\right)\left(1.602 \times 10^{-8}(\mathrm{~s}-\mathrm{rad}) / \mathrm{Mev}\right)\left(10^{3} \mathrm{mRem} / \mathrm{Rem}\right)$
4 = ingestion pathway index

Inhalation Pathway for Soluble Nuclides

$$
\begin{align*}
k_{i 3 j} & =\left[18.7 * f_{a} /\left(T_{1} * \lambda_{e}^{0}\right)^{2}\right]_{i j} \tag{11}\\
f_{a} & =\text { fraction of inhaled nuclide reaching the organ of interest } \\
i & =\text { soluble nuclide index } \\
3 & =\text { inhalation pathway index } \\
j & =\text { organ index }
\end{align*}
$$

Inhalation Pathway for Insoluble Nuclides
$K_{i-3 j}=\left[\frac{0.0064 \lambda_{B}^{L} f_{2}^{\prime}}{T_{1}\left(e^{0}-e^{L}\right)}\right]_{i^{\prime} j}$
$f^{\prime} \quad=$ fraction of inhaled nuclide transferred from blood to organ of interest
λ_{B}^{L}
λ_{e}^{L}
= biological decay constant for the lung
$=$ effective decay crastant for the lung
$0.7064=(2.22 \mathrm{dpm} / \mathrm{pCi})\left(1.44 \times 10^{3} \mathrm{~min} / \mathrm{d}\right)\left(1.602 \times 10^{-8} \mathrm{~s}\right.$ rate $\left./ \mathrm{MeV}\right)$ $\left(10^{3}\right.$ mRem $/$ Rem $)(1 / 8)$ fraction remaining in lung

```
\lambdae
i}==\mathrm{ insoluble nuclide index
3 = inhalation ;athway index
j = organ index
```

(hivenes 1977)

Age-dependent Constants. For computational purposes the total population is partitioned into three distinct age groups. Dose commitments are calculated for the times during which an individual is a child, a teen, and an adult, and the results are summed. A complete discussion of the methodology is given in Hoenes and Soldat (1977).

If the intake occurs when the individual is an adult, the dose commitment during infancy, childhood and during the teens is zerc. For ingestion and inhalation of soluble nuclides,

$$
\begin{aligned}
& P_{3 i p j}=\left[\frac{E}{m}\left[T_{1}+e_{e}^{0}-\exp \left(-\left(T_{A}-T_{1}\right) \lambda_{e}^{3}\right)+\exp \left(T_{A} \lambda_{e}^{0}\right)\right]\right]_{i p j} \\
& (E / m)_{3}= \\
& \\
& \\
& \\
& \quad \text { ratio of interest for an adult } \\
& =
\end{aligned}
$$

(Hoenes 1977)

For inhalation of inc "noble nuclides,

$$
\left.\left.\left.\begin{array}{rl}
P_{3 i \cdot p j}= & \left(\frac{E}{m}\right)_{A}\left[T_{1} \cdot \lambda_{e}^{L}-\exp \left[-\left(T_{A}-T_{1}\right) \cdot \lambda_{e}^{L}\right]+\exp \left[-T_{A} \cdot \lambda_{e}^{L}\right]\right] /\left(\lambda_{e}^{L}\right)^{2} \tag{14}\\
& -\left[T_{1} \cdot \lambda_{e}^{0}-\exp \left[-\left(T_{A}-T_{1}\right) \cdot \lambda_{e}^{0}\right]+\exp \left[-T_{A} \cdot 0\right.\right. \\
e
\end{array}\right]\right] /\left(\lambda_{e}^{0}\right)^{2}\right)
$$

$3^{3} \quad=$ index for adults
$i^{\prime} \quad=$ index for insolubie nuclides
$\quad=3$ or 4 for inhalation or ingestion

Noble Gases. Dose to the lung from inhalation of noble gases

$$
\begin{equation*}
D_{a i 3,6}=\left(G_{a i o} E_{a i}\right)_{3,6} \tag{15}
\end{equation*}
$$

$\mathrm{E}_{\mathrm{ai}}=$ energy for disintegration absorbed in lung (MeV) for age-group a and nuclide i
$G_{a i}=$ constant deternined by age-specific biological parameter's, listed in Hoenes ard Soldat (1977)
3 = inhalation pathway index
$6=$ organ index for lung

Dose to the GI Tract.

Ingestion

$$
\begin{equation*}
D_{a i 4,7}=0.0256 Y_{a}^{\prime} f^{\star}\left(\frac{E}{N}\right)_{a} \exp \left(-\lambda_{R_{a}^{\prime}}^{t_{a}^{\prime}}\right) \tag{16}
\end{equation*}
$$

Inhalation

```
\(D_{a i 3,7}=0.0256 t_{a}^{\prime} f^{*} f_{a}\left(\frac{E}{M}\right) \quad \exp \left(-\lambda_{R} t_{a}^{\prime}\right)\)
\(Y_{\text {' }} \quad=\) days of travel time in LLI for age group a
\((E / m)_{a} \quad=\) ratio of effective absorbed energy to mass of the
                                    constants of LLI for age group a
                            = radiological decay constant
                            = travel time to LLI for age group a
                            \(=1-f_{1}=\) fraction of radionuclide remaining at entrance to LLI
\(f_{d} \quad=\) fraction of inhaled nuclide reaching the LLI
7 = organ index for GI tract
3 = inhalation pathway index
```

Daughter products may contribute significantly to the dose received and were included in the calculations. For a more detailed discussion see Hoenes and Soldat (1977).

Dose to the Gonads.. The age dependent dose committment to the gonads was not calculated. Instead, the recent ICRP Report \#30 was used to provide a cormitted dose equivalent to various target organs for every nuclide. The comitted dose equivalents have been transformed from sieverts/becquerel to rem/pCi. For a discussion of the method used in the calculation of the committed dose equivalents refer to ICRP 30 (1978).
6.9.2.3 Gamma Exposure Constants. Gamma exposure constants loaded in the gamma exposure (GE) array are calculated by

$$
G E=k(E)(\text { Energy })(\text { Yield })\left(3.7 \times 10^{10}\right)
$$

Values of $k(E)$ were obtained from Foderaro (1976). These constants were calculated as fillows:

$$
\begin{aligned}
& D(R / h r)=6.57 \times 10^{-5}\left(\frac{\mu}{\rho}\right) \text { air } E \phi(E) \\
& \text { E in MaV } \\
& \text { Q (E) in } \mathrm{cm}(-2) \sec (-1) \\
& (\mu / \rho) \text { air in } \mathrm{cm}^{2} \mathrm{gm}^{-1}
\end{aligned}
$$

GE values are grouped into ten energy-dependent levels and used in the DIRECT subprogram.
6.9.2.4 Stable Element Transfer Constants. To calculate the dose to humans from the release of radionuclides into the environment, the elemental intake of various elements is required. These intakes are assigned in subroutine STABLE as Stable Element Transfer Functions. These values are obtained from NR̂C Regulatory Guide 1.109 (19 :7).
6.9.2.5 Decay Constants. Decay constants for every radionuclide are stored in the first subfile of NUCDAT.FIL. The decay constant array $D C(I)$ is filled along with the dose factor array DOSFAC(I) by subroutine DSSFAC. The decay constants are 1 isted in terms of years ${ }^{-1}$, and were compiled from many sources, including the Knolls Atomic Power Labratory Chart of the Nuclides.

6.9.3 Interfaces

6.9.3.1 Interfaces with Data Base. All of the nuclide data is contained in the large disk file NUCDAT.FIL. There are eight dose pathway subfiles, corresponding to the eight pathways listed in section 6.2.1.3. In each subfile, information is listed with the correct nuclide identifiers, IID and NUCNAM. The nuclides are listed sequentially in each of the subfiles according to the 110 number. Non-pathway dependant informstion is listed only in the first subfile, to prevent wasteful duplication of cpu time. The array filling routires are set up to read non-pa thway dependant information only from the first subfile.
6.9.3.2 Comon Block Data. The function of PREDOS is to fill data arrays that are needed in other subprograms. Because of the large amount of data required from each nuclide, it is not practical to store this information internally or to fill up the core memory with data from every possible nuclide. In order to be as efficient as possible, the required data must be selectivly obtained from the data base for only the nuclides identified in the particular release scenario being run.
6.9.3.3 Output. PREDOS outputs a number of common block data arrays.

```
IID(I) I sotope identification number ( }6\mathrm{ -place integer)
Columns 1 2 Atomic Number 2
Columns 3-5 Isotope Number
Column 5 Metastable Flag (O or 1)
NUCNAM(I) Alphanumeric isotope identification number
    (This is input array fommatted 2.A3)
UOSFAC(I,J,K) Dose conve, sion factors formatted 1PE9.2
I Nuclide infex
J Pathway index
k Organ index
GE(I,E) Gamma exposure constants
I Nuclide index
E Energy grouping index
DC(I) Decay constant
VD(I) Dry deposition coefficient
CS(I) Number curies in source
C(I) Number curies in operation
BIV(IEL) Transfer constant for vegetation
FM(IEL) Transfer constant for cow's milk
FF(IEL) Transfer constant for meat
```


7. SENSITIVITY STUDIES

7.1 INTRODUCTION

The main objective of the sensitivity studies in this task is to provide information on the relative importance of various independent variables in the model and the relative importance of key independent variable interactions. Subsidiary objectives are to guide the final form of the shallow land burial systems model in terms of required input and output and the calculational approach.

With a model of the size and complexity of the systems model, it is not fasible to exercise every single independent variable of which there are hundreds. Whatever statistical sample one uses, no significant results can be generated for hundreds of variables without running thousands of computer cases. Part of the objective is then to determine a reasonable number of independent variables or sets of variables which should comprise a sensitivity study sufficient to meet the needs of shallow land burial systems analysis. Of key importance is to examine variables for which accurate data may be difficult to obtain.

7.2
 METHODOLOGY

Due to the large number of variables involved in the Systems Model, initial efforts were made to truncate the number of inputs to only include vatiables that were believed to be important in the medel. This truncatior was done sased on past experience with the codes, engineering judgenent, and prel iminary test runs of the codes.

Following the reduction, common variables were grouped to form categories such as weather, geology, etc. These categories were treated as single variables rather than as the multiple variables of which they are composed. Additionally, portions of the model and analyses which have no interaction were separated to reduce the size of the sensitivity study due to the individual rather than combined analysis of each piece.

Additional reduction of the size of the sensitivity study was made by employing statistical design of experiments techniques. Fractional factorial designs were developed which significantly reduced the numbor of required runs. These designs were analyzed using standard analysis of variance techniques. The results of this evaluation indicated which variables and interactions have signficant impact on the Systems Model results.

7.3 INDEPENDENT VARIABLES

In order to carry out a comprehensive sensitivity study on the Systems Model it was necessary to identify independent variables to be exercised. The key input variables normally used in the Systems Model are listed in Table 7-1. While the code uses many other variables they are generally utility flags for code control or problem mode θ_{0} are insignificant to variations expected in. shallow land burial system. Table $7-1$ contains a rather large number of variables. Even a small fraction sample of a two level factorial design would require thousands of computer runs. This was impractical from a cost and schedule standpoint. Furthermore, such fine-structure in sensitivity results was judged too voluminous to be usable and far beyond expected analytical needs.

Two things were done to reduce the necessary cases in the sensitivity study (1) the variables were grouped into 16 variable sets, each set then being treated as one independent variable and (2) water path and air path sensitivity were separated resulting in addition of two case sets rather than multiplication.

7.3.1 Variable Groupings

Table 7-2 shows the variable groups used in the study. The combination of variables was carried out with logical groupings in mind. For instance, rain-fall, evapo-transporation and wind speed/stability frequency function were combined to form a weather group. Groupings for agriculture, geology, and others were similarly made. In other cases two or more variables were used in the model as a unit grouping because they never have an individual role. For exanple. in aquifer transport the problem is solved in terms of water travel time which is aquifer length divided by aquifer velocity. Thus, travel time was used as a variable group.

> Key Variables Used in the Shallow Land Burial System Model

Name	Description	Units
ORIENT	Nuclide quantity in trench (by nuclide)	$\mathrm{Ci} / \mathrm{ft}^{2}$
RAIN	Rainfall over normal wet period	$\mathrm{ft} / \mathrm{hr}$
ORY	Evapotranspiration in dry period	$\mathrm{ft} / \mathrm{hr}$
TIMNET	Duration of wet period	hr
TIM ${ }^{\text {a }}$	Duration of dry period	hr
F	Frequency array of wind speeds and stabilities	--
MAT	Mean annual temperature	${ }^{\circ} \mathrm{C}$
IP	Population - distance array	\# of people
SH	Stack height	m
SQ	Heat release (fires, etc)	cal/sec
FLOWR	Water turnover rate in water body	1/yr
PRODUC	Crop production	$\mathrm{kg} / \mathrm{km}^{2}-\mathrm{yr}$
FVA	Fraction of 1 and area with crops	--
NCPY	Number of harvests in a year	\#/yr
BEEF	Number of cattle jer km	\#/kin
COWS	Number of dairy cows per km	\#/km
$x z$	Length of aquifer	in
VZ	Velocity of aquifer water	$\mathrm{m} / \mathrm{sec}$
E1	Dispersion coefficient in aquifer	$\mathrm{cm}^{2} / \mathrm{sec}$
RNWV	Reciprocal equilibrium constant for nuclide sorption in the aquifer	--
JK	Number of layers in soil column under the trench	--
OD(JK)	Array of distances to soil layers from ground	

Table 7-2.
Variable Sets Used in Sensitivity Testing.

Number	Nane
1	INVENTORY
2	WEATHER
3	DEMOGRAPIHY
4	STACK
5	WATER BODY TURNOVER
6	AGRICULTURE
7	AQUIFER TRAVEL TIME
8	AQUIFER DI SPERSION
9	AQUIFER SORPTIOM
10	SOIL COLUMN GEOLOGY
11	SOIL COLUMN SORPTIUN
12	NUCLIDE SOLUBIITY
13	BURIAL DEPTH
14	SITE WIND RESISTANCE
15	SURFACE GEOLOGY
16	SOIL SUSPENSION CHARAC

$\frac{\text { Variables in }}{\text { Set }}$
set
ORIENT
RAIN, DRY, TIMWET, TIMDRY F, MAT

IP
SH, SQ
FLOWR
PRODUC, FVA, NCPY, BEEF, COWS
$X Z, V Z$
E1
RNWV
JK, OD(JK), CONCOF
KD(JK)
SOLFAC
LYR
HT3R, ANGWND, AMGL, Fid, FL, R

KLSP, RDCHT, RDGSP, RDGRGH

PAG34, SAIR

The air and water fath were separated because there is no coupling between them in the model. With no coupling no cross-effects or interactions between the two were expected. Of course, the effect of unsaturated flow is still important since the soil column behavior is largely responsible for wind erosion inputs. The aquifer transoort, however, is unimportant because of veak dependence of soil surface concentration on the amount of nuclides lost to the aqui fer.

Table 7-3 lists the variable groups required for air path sensitivity and the levels used in the sensitivity tests. Note that all sensitivity testing was carried out with one nuclide. Soce variables had two levels (high-low or "best-worst") and some had thres. Three levels were specified where non-linear response was considered probable or where the variables were especially if .ortant.

7.3.3 Water Transport Variables

Variable groups and their levels for water transport sensitivity are listed in Table 7-4. In some cases a different number of levels were used for sone variables that were also used in the air transport sensitivity. This was because of different estimated response characteristics.

7.3.4 Default Variables and Constants
 For the sensitivity tudies some variables were held at a constant value or were returned to a default value when not specified. These values are given in Table 7-5.

Table 7-3. Levels Used in Air Path Sensitivity.

Variable Set No.	Variade	Units	Values		
			Level 1	Level ?	Level 3
1	ORICNT	$61 / \mathrm{ft}^{2}$	$1.0 \mathrm{E}+0$	-	1.0E+0
2	RAIN	$\mathrm{ft} / \mathrm{hr}$	1.0E-7	6.OE-6	4. OE-5
	ORY	$\mathrm{ft} / \mathrm{hr}$	5.OE-3	5.0E-4	1.OE-4
	TIMWET	hr	$3.02+3$	5.OE+3	7. $3 \mathrm{E}+3$
	TIMDRY	hr	$3.05+3$	$3.8 \mathrm{E}+3$	$1.5 \mathrm{E}+3$
	F	*	See Taole 3-3a		
	MAT	${ }^{9} \mathrm{C}$	$1.5 E+1$	$1.5 \mathrm{E}+1$	$1.5 E+1$
3	19	-	See Taule 3-3b		
4	SH	m	$0.0 E+0$	-	$1.5 \hat{c}+2$
	SQ	cal/sec	$0.0 \mathrm{E}+0$	-	$0.0 E * 0$
6	proouc	$\mathrm{kg} / \mathrm{Km}^{2}-\mathrm{yr}$	1.0E+2	1.0E+4	1.0E-5
	FVA	-	5.0E-4	5.0E-2	5.0E-1
	NCPY	yr^{-1}	1.2E+0	2.0E-0	$3.0 E-2$
	BEEF	Km^{-2}	$0.0 E+0$	$5.0 E+1$	$1.08+2$
	COWS	km^{-2}	$0.0 \mathrm{E}+0$	1.0E-	$2.0 \mathrm{E}+1$
10	JK	-	10	15	20
	OO(JK)	-	See Taole 3-3c		
	CCHCOF	-	See Table 3-3d		
11	K0	m1/gm	See Table 3-3d		
12	SOLFAC	gm/cc	$1.0 \mathrm{E}+1$	-	5.CE+1
13	LYR	-	5	-	; 0
14	HT3R	π	1.0E+1	-	$0.0 \mathrm{E}+0$
	ANGIND	deg	$0.0 \mathrm{E}+0$	*	5.0E+1
	ANGL	deg	9.0§+1	-	2.0E+1
	FW	π	1.0E+2	-	$5.05+2$
	$F 1$	π	1.0E+2	-	$5.08-2$
	R	$\mathrm{kg} / \mathrm{m}^{2}$	2.3E-2	-	$2.38-3$
15	KLS?	5	0.CE-0	5.0E*0	$1.08+1$
	ROGHT	\%	5.0E-2	5.CE-2	$0.65+0$
	20GS?	π	1.3E-1	1.3E-1	$0.08+0$
	ROGRGir	π	9.0E-2	5.0E+1	1.0E-1
16	P4G34	\%	1.0E+1	4.5E+1	$1.0 E+1$
	SAIR	:	5.0E+0	$2.5 \mathrm{E}+1$	$5.0 \mathrm{E}-1$

Table 7-3a. Weather Frequency Array F(I, J) for Air Path Sensitivity

Level 1

Velocity m/sec	0.35	1.11	2.0	2.89	4.25	6.72
Stability class						
A	0.	0.00128	0.00432	0.00397	0.00304	0.
B	0.	0.00794	0.02744	0.01214	0.00385	0.00012
C	0.	0.00899	0.00230	0.00864	0.00269	0.
O	0.01693	0.13031	0.09633	0.05126	0.04075	0.00339
E	0.10426	0.09727	0.02300	0.0308	0.00420	0.00035
F	0.12085	0.01857	0.00175	0.00012	0.00012	0.
G	0.16371	0.00724	0.02023	0.	0.0	0.

Level ?

Velocity m/sec	0.75	2.25	4.0	6.5	9.2
Stability class					
A	0.0103	0.0915	0.11	0.0473	0.00021
B	0.0021	0.0154	0.0112	0.001	0.
C	0.001	0.0154	0.0082	0.	0.
D	0.0195	0.0586	0.0370	0.0164	0.0010
E	0.0057	0.0832	0.0740	0.0257	0.0010
F	0.0430	0.0627	0.0164	0.0	0.
G	0.1132	0.0987	0.00 .31	0.0	0.

Table 7-3a. (continued)

Level 3

Elocity m/sec	0.67	2.46	4.47	6.93	9.61	12
Stability class						
A	0.17	0.0361	0.021	0.0135	0.0071	0.0052
B	0.17	0.0361	0.021	0.0136	0.0071	0.0052
C	0.171	0.0362	0.0211	0.0136	0.0071	0.0053
D	0.0487	0.0294	0.0226	0.0194	0.0117	0.0095
E	0.0277	0.0304	0.0429	0.0602	0.0327	0.0167
F	0.0393	0.0503	0.0597	0.0506	0.0182	0.0085
G	0.0254	0.0351	0.0382	0.0205	0.0019	0.0002

Table 7-3b. Population - Distance Array for
Air Path Sensitivity.

IP(NR)				
Distance Index	Distance (m)	Level 1	Level 2	LEvel 3
1	$4 E+2$	$5.0 E+1$	$2.0 E+1$	$1.0 E+1$
2	$1 E+3$	$5.5 E+2$	$1.8 E+2$	$9.0 E+1$
3	$2 E+3$	$1.0 E+4$	$3.0 E+2$	$0.0 E+0$
4	$8 E+3$	$1.0 E+4$	$0.0 E+0$	$0.0 E+0$
5	$1 E+4$	$5.0 E+4$	$2.0 E+4$	$9.0 E+2$
7	$1.5 E+4$	$2.4 E+4$	$2.0 E+4$	$5.0 E+3$
7	$2.5 E+4$	$5.4 E+3$	$4.0 E+4$	$1.0 E+4$
9	$5 E+4$	$0.0 E+0$	$1.0 E+4$	$2.4 E+4$
10	$6 E+4$	$0.0 E+0$	$9.5 E+3$	$5.0 E+4$
8	$8 E+4$	$0.0 E+0$	$0.0 E+0$	$1.0 E+4$

$$
\begin{aligned}
& \text { Table 7-3c. Locations of Layers for Air Path } \\
& \text { Sensitivity. }
\end{aligned}
$$

DD (JK)
Layer
Index
Level
1
Level
Level
3
$\left.\begin{array}{rl}1 & 5.0 E-1 \\ 2 & 1.0 E+0 \\ 3 & 2.0 E+0 \\ 4 & 8.0 E+0 \\ 5 & 1.0 E+1 \\ 6 & 1.5 E+1 \\ 7 & 2.0 E+1 \\ 8 & 2.5 E+1 \\ 9 & 2.7 E+1 \\ 10 & 3.0 E+1\end{array}\right\}$

11
12
13
14
15
16
17
18
19
20

$6.0 \mathrm{E}+1$
7.OE+?
8. $0 \mathrm{E}+1$
9.0E+1
$9.5 \varepsilon+1$

Table 7-3d. Conductivity and KD Arrays in Air Path Sensitivity

	LEVEL 1		LEVEL 2		1 EVEL. 3	
LAYER INDEX	CONCOF	KD	CONCOF	KD	COROJ	KD
1	1.0E+0	$5.0 \mathrm{E}+0$	1.0E+0	$2.0 \mathrm{E}+1$	5.0E-1	$5.0 \mathrm{E}+1$
2	1	1				
3	8.0E-1	$1.0 \mathrm{E}+1$				
4						
5			1	1		
6	1	1	$3.0 \mathrm{E}-1$	2.0E+2	1	
7	6.0E-1	5.0E+1			2.0E-1	3. $\mathrm{OE}+2$
8						
9	1	1				
10	1.0E+0	5.0E+0	1			
11			5.0E-1	1.0E+2	\%	1
12					1.0E-1	5.0E+2
13			1	1		
14			1. $0 \mathrm{E}+0$	$2.0 \mathrm{E}+1$		
15					1	1
16					6.0E-1	$7.0 \mathrm{E}+2$
17						
18						
19						
20					1	1

```
Table 7-4. Levels Used in Water Path Sensitivity
```

Variable Set No.	Variable	Units	Level 1	Values Level 2	Level 3
1	ORICNT	$\mathrm{Ci} / \mathrm{ft}{ }^{2}$	5.0E-3		$1.0 \mathrm{E}+0$
2	Rist	$\mathrm{ft} / \mathrm{hr}$	1.OE-2	6.0E-1	4.0E+0
	DRY	$\mathrm{ft} / \mathrm{hr}$	1.OE-3	5.0E-4	1.OE-5
	TIMNET	$\mathrm{ft} / \mathrm{hr}$		$3.0 \mathrm{E}+3$	$7.3 E+3$
	TIMDRY	$\mathrm{ft} / \mathrm{hr}$	$3.0 E+3$	$3.8 E+3$	$1.5 E+3$
5	FLOWR	e/yr	1.0E+12		1.0E+14
7	$x Z$	m	$4.0 \mathrm{E}+1$		$2.0 E+2$
	VZ	$\mathrm{m} / \mathrm{sec}$	5.0E-2		5.OE-3
8	E1	$\mathrm{cm}^{2} / \mathrm{sec}$	1.0E-3		1.OE-5
9	RNWV	-	$1.0 \mathrm{E}+0$	5.OE-1	$1.0 \mathrm{E}-1$
10	JK	-	10	15	20
	OD(JK)		(see	Table 3-3c)	
	CONCOF		(see	Table 3-4a)	
11	KD(JK)		(see	Table 3-4b)	
12	SOLFAC	$\mathrm{gm} / \mathrm{cc}$	1.OE+1		$5.0 E+2$

Table 7-4a. Water Flow Conductivity Array for Water Path Sensitivity.

LAYER INDEX	CONCOF		
	1 EVEL 1	LEVEL 2	LEVEL 3
1	1.0E+0	1.0E+0	5.0E-1
2	1		
3	8.UE-1		
4			
5		1	
6	1	$3.0 E-1$	1
7	6.0E-1		2.0E-1
8			
9	1		
10	1.OE+O	1	
11		5.0E-1	1
12			1.OE-1
13		1	
14		1.0E-0	
15		1	1
16			6.0E-1
17			
18			
19			
20			1

Table 7-4b. KD Array for Water Path Sensitivity.
Layer Index
Level 1
Level 3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Table 7-5. Constant Values for Sensitivity Studies.

Constants

```
NR = No. of population vs distance grid points = 10
PAGE = Age distribution fractions
    Child, Teen, Adult = 0.25, 0.15, 0.60
ONSTY = Soil density }=1.8\mathrm{ all layers
```


7.4

EXPERIMENTAL DESIGN

The number of cases to be run in the Systems Model sensitivity study is potentially overwhelming from a cost, time, and data standpoint. Despite the reductions discussed in Section 7.3 , a significani number of possible combinations of variable values remain that could be evaluated. If all possible combinations were to be considered in the water path sensitivity study, the number of Systems Model runs required would be $3^{3} \times 2^{6}$ or 1728 . For the air path sensitivity study, the number of combinations would equal $3^{6} \times 2^{6}$ or 46,656 . Thus, further reduction was necessary in order to keep the sensitivity study at a reasonable ievel.

7.4.1 Approach

No reductions could be made at this point by eliminating variables, reducing the number of levels, or by additional splitting of variable groups wi hout losing significant information. Therefore, the miethod chosen for further reduction in this case was the application of statistical techniques from experimental design methodology. Specificaliy, fractional factorial designs were developet for both the air and the water path sensitivity studies. This methodilogy reduces the size of the study to a manageable level.

Factorial experimental designs look at all combinations of levels of the input variables. Information gained this echnique can be used to evaluate the effect that the mair mbles and all their interactions have on the res. ${ }^{+=}$by reducing statistical information dealing with interaction effects which are felt to be insignificant, the sample size of the experiment can be reduced. The information that is lost is confounded or blended with the remaining information in a manner which prevents extraction using statistical techniques. Thus if an interaction effect, which was felt to be of little importance, is confounded with a main variable effect, the statistical effect of the main variable is really the effect of either the main variable, or the interaction, or both. No statistical test can separate the confounded pair.

In experiments where high order interactions are thought to be insignificant, sample sizes can be greatly rediced. The effects of high order interactions are confounded with the effects of the main variables. Sample sizes
are reduced by fractions equal to powers of the number of levels of the variables. In experiments where the variables have nultiple prime levels, as is the cases in both the air and water path sensitivity studies, the fractional factorial designs are developed by grouping variables of equal levels. The total design is simply a factorial combination of the separate designs.

A fractional factorial design is developed by equating a number of high order interactions of the variables with an identity effect. Rules are applied to develop the remaining portion of the defining contrast. Once the contrast is known, the remaining aliases of the variables and interactions can be found by a simple overlap technique. A discussion of the details of this development is found in design of experiments texts (Anderson, 1974). Some details are provided in the following sections.

7.4.2 $\frac{\text { Air Path Experimental Design }}{\text { The air path sensitivity study }}$

The air path sensitivity study has a total of twelve variables of which six have three levels and six have two leveis. Thus, there is a potential of $3^{6} \times 2^{6}$ or 46,656 tests of the Systems Hodel as stated earlier. This experiment is divided into two parts for the purpose of developing the design. The six three level variables were hancled separately from the six two level variables. The design was a $1 / 72$ repl cate of the total factorial. This was defined by forming a $1 / 9$ replicate of the 3^{6} factorial and a $1 / 8$ replicate of the 2^{6} factorial designs. The final sample size consisted of 648 out of the 46,656 possible samples.

The six three level variables were covered first. Table 7-6 presents the design of a $1 / 9$ replicate of the 3^{6} factorial. The letters A through F represent the six variables. The superscript on the letter indicates the level with zero being the lowest level.

To define the contrast, two interactions nust be chosen since the design is a $(1 / 3)^{2}$ replicate. The interactions selected were $A B C D$ and CDEF. The remainder of the contrast is found by finding the following interactions. First is the interaction of the two orimary interactions and second is the interaction of the first primary interaction with the square of the second prisary interaction. The remainder of the interactions are just the squares of the previous interactions. It should be noted that $A B^{2}$ is equivalent to $A^{2} B$ in this

Table 7-6. 1/9 Replicate of 3^{6} Factorial Design.

Defining Contrast $1=A B C D=C D E F=A B C^{2} D^{2} E F=A B E^{2} F^{2}=[A B C D]^{2}=[C D E F]^{2}=\left[A B C^{2} D^{2} E F\right]^{2}-\left[A B E^{2} F^{2}\right)^{2}$
Aliases or confounding scheme

Table 7-6. 1/9 Replicate of 3^{6} Factorial Design (Continued).

methodology. That is $A B^{2}=\left(A B^{2}\right)^{2}$. Hone of the interactions displayed are shown with a squared first variable by convention.

The result of Table $7-1$ is developed by finding the interaction of variables and interactions that have not been involved in previous parts of the table with the defining contrast. Looking at the first row with the main variable A, the development proceeds as follows. A's interaction with the identity, I, is simply A. The interaction with $A B C E$ is initially $A^{2} B C D$. By convention this is squared to find the interaction without a squared first term. The square of $A^{2} B C D$ equals $A^{4} B^{2} C^{2} D^{2}$ which in mor 3 equals $A B^{2} C^{2} D^{2}$ as shown in the table. Another example is the last term in the first row. A's interaction with $\left(A B E^{2} F^{2}\right)^{2}$ or with $A^{2} B^{2} E^{4} F^{4}$ equals $A^{3} B^{2} E^{4} F^{4}$ which in MOD 3 equals $B^{2} E F$ which by convention equals $B E^{2} F^{2}$. The development continues in this manner until all interactions are covered.

Note that the main vimiables are not confounded with any two factor interactions. Some two factor interactions are confounded with other two factor interactions, however.

Table 7-7 is the development for the six two level variables. In this case, the design is a $(1 / 2)^{3}$ replicate which indicates that three interactions must be confounded with the identity. The variables run from G through L and the three defining interactions are GHI, JKL, and GHKL. Note that one of the resultant interactions in the defining contrast is iJ, a two factor interaction. Also note that the variable I is confounded with the variable J and that many two factor interactions are confounded with the main variables.

It was then possible to assign the actual model parameters to the experimental design variables. The result of this assignient is shown in Table 7-8. The parameters were assigned in a manner to allow the maximun information to be gained on two factor interactions which were felt to be significant. The parameter, nuclide quantity, is confounded with the parameter, stack height. Thus, one of these parameters was set constant in order to gain any information at al about the other parameter. Since nuclide quantity was a parameter in the water path sensitivity study, it was set to a constant value in this design. Interactions evaluated were as follows: $A C, A D, A E, A F, A G, A K, A L, C E, C F, C G, C H, C L, E F, E G, E K, F G, F K, G K$, and $G L$. All other interactions are felt to be insignificant or are confounded with evaluated effects.

Table 7-7. 1/8 Replicate of a 2^{6} Factorial Design.

> Defining Contrast $I=G H I=J K L=G H I J K L=G H K L=I K L=G H J=I J$ Aliases or Confounding Scheme


```
Table 7-8. Air Path Sensitivity Study
    Variable Definitions.
Variable
    Variable Name
\begin{tabular}{ll} 
A & Weather \\
B & Agriculture \\
C & Layers in soil column \\
D & Demography \\
E & Cap characteristics \\
F & Soil size \\
G & Surial decth \\
H & Nuclide solubility \\
I & Nuclide quantity \\
J & Stack \\
K & Site wind resistance \\
L & Retardation factor
\end{tabular}
```

Table 7-9. Sample Blocks for $1 / 9$ Replicate of 3^{6} Factorial.

Defining Esuations									
CDEF :									
Levels of ABCD:	0	0	0	1	1	1	2	2	2
levels of CDEF:	0	1	2	0	1	2	0	1	2
1	000000	000001	000002	000102	000100	000101	000201	000202	000200
2	000012	cooolo	000011	000111	000112	000110	000210	000211	000212
3	000021	000022	000020	000120	000121	000122	000222	000220	000221
4	001200	001201	001202	001002	001000	001001	001101	001102	001100
5	001212	001210	001211	001011	001012	001010	001110	001111	001112
6	001221	001222	001220	001020	001021	001022	001122	001120	001121
1	002100	002101	002102	002202	002200	002201	002001	002002	002000
3	002112	002110	002111	002211	002212	002210	002010	002011	002012
9	002121	002122	002120	002220	002221	002222	002022	002020	002021
10	010201	010202	010200	010000	010001	010002	010102	010100	010101
11	010210	010211	010212	010012	010010	010011	010111	010112	010110
12	010222	010220	0:0221	010021	010022	010020	010120	010121	010122
13	011101	011102	011100	011200	011201	011202	011002	011000	011001
14	011110	011111	011112	011212	011210	071211	011011	011012	011010
15	011122	011120	011121	011221	011222	011220	011020	011021	01.022
16	012001	012002	012000	012100	012101	012102	012202	012200	012201
17	012010	012011	012012	012112	012110	012111	012211	012212	012210
18	012022	012020	012021	012121	012122	012120	012220	012221	012222
19	020102	020100	020101	020201	020202	020200	020000	020001	020002
20	020112	020112	020110	020210	$0202: 1$	020212	020012	020010	020011
21	020120	020121	020122	020222	020220	020221	020021	020022	C20020
22	021002	021000	021001	021101	021102	021100	$02: 200$	021201	021202
23	021011	021012	021010	021110	021111	021112	021212	02:210	021211
24	021020	021021	021022	021122	021120	021121	021221	021222	021220
25	022202	022200	022201	022001	022002	022000	022:00	022101	022102

Table 7-9. Sample Blocks for $1 / 9$ Replicate of 2^{6} Factorial (Continued).

Levels of ABCD:	0	0	0	1	1	1	2	2	2
Levels of CDEF:	0	1	2	0	1	2	0	1	2
26	022211	022212	022210	022010	022011	022012	022112	022110	022111
27	022220	022221	022222	022022	022020	022021	022121	022122	022120
28	100201	100202	100270	100000	100001	100002	100102	100100	100101
29	100210	100211	100212	100012	100010	100011	100112	100112	100110
30	100222	100220	100221	100021	100022	100020	100120	100121	100122
31	101101	:01102	101100	101200	101201	101202	101002	101000	101001
32	101110	101111	101112	101212	101220	101211	101011	101012	101010
31	101122	101120	101121	101221	101222	101220	101020	101021	101022
34	102001	102002	102000	102100	102101	102102	102202	102200	102201
35	102010	102011	102012	102112	102110	102111	102211	102212	102210
36	102022	102020	102021	102121	102122	102120	102220	102221	102222
37	110102	110100	110101	110201	110202	110200	110000	110001	110002
38	110111	110112	110110	110210	110211	110212	110012	110010	110011
39	110120	110121	110122	110222	110220	110221	110021	110022	110020
40	111002	111000	111001	121101	111102	111100	111200	111201	111202
41	111011	111012	111010	111110	111111	1111:2	111212	111210	111215
42	111020	111021	111022	111122	111120	111121	11122?	111222	111220
43	112202	112200	112201	112001	112002	112000	112100	112101	112102
44	112211	112212	112210	112010	112011	112012	112:12	112110	112111
45	112220	112221	112222	112022	112020	112021	112121	112122	112120
46	120000	120001	120002	120102	120100	120101	120201	120202	120200
4)	120012	120010	120011	120111	120112	120110	120210	120211	120212
48	120021	120022	120020	120120	120121	120122	120222	120220	120221
49	121200	122201	121202	121002	121000	12.1.0:	121101	$12: 101$	121100
50	121212	121210	121211	121011	121012	12.410	121110	121114	121112
51	121221	121222	121220	121020	121021	$12: 022$	121122	121120	121121
52	122100	$122: 01$	122:02	122202	122200	122201	122001	122002	122000
53	122112	122110	122114	122211	12221 ?	122210	122010	122011	122012

Table 7-9. Sample Blocks for $1 / 9$ Replicate of 3^{6} Factorial (Continued).

Levels of AsCD:	0	0	0	1	:	1	2	2	2
Levels of DEF:	0	1	2	0	1	2	0	1	2
54	122121	122122	122120	122220	122221	122222	122022	122020	122021
55	200102	200100	200101	200201	200202	200200	200000	200001	200002
56	200111	200112	200110	200210	200211	200212	200012	200010	200011
57	200120	200121	200122	200222	200220	200221	20002 :	200022	200020
58	201002	201000	201001	201101	201102	201100	201200	201201	201202
59	201011	201012	201010	201110	201111	201112	201212	201210	201211
60	201020	201021	201022	201122	201120	201121	201221	201222	$20: 220$
61	202202	202250	202201	202001	202002	202000	202100	202101	202102
62	202211	202212	202210	202010	202011	202012	202112	202110	202111
${ }^{63}$	202220	202221	202222	202022	202020	202021	202121	202122	202120
64	210000	210001	210002	210102	210100	210101	210201	210202	210200
65	210012	210010	210011	210151	210112	210110	210210	210211	210212
66	210021	210022	210020	210120	210121	210122	210222	210220	210221
67	211200	211201	211202	211002	21.000	211001	211101	211102	211100
68	211212	211210	211211	211011	211012	21.010	211110	211111	211112
69	211221	21.222	211221	211020	211021	211022	211122	211120	211121
70	212100	212101	212102	212202	212200	212201	212001	212002	212000
11	212112	212110	212112	212211	212212	212210	212010	212011	212012
72	212121	212122	212120	$2: 2220$	212221	212222	213022	212020	212021
13	220201	220202	220200	220000	220002	225002	220102	220100	220101
74	220210	220211	220212	220012	220010	220011	220112	220112	220110
15	220222	220220	220221	22002 :	220022	220020	220120	220121	220122
76	221101	221102	221100	221200	221201	221202	22:002	221000	221001
77	221110	221111	221112	221212	22:2:0	2212:5	$22: 011$	$22: 012$	221010
78	221122	221120	221121	221221	221222	221220	221020	221021	$22: 022$
79	222001	222002	222000	222100	222101	222102	222202	222200	222201
30	222010	222011	222012	222112	222110	222151	222211	222212	$2222: 0$
81	222022	222020	222021	222121	222122	222120	222220	22222.	222222

Table 7-10. Sample Blocks for $1 / 8$ Replicate of 2^{6} Factorial.
Defining Equations

$$
\begin{array}{rlrl}
\text { GHI: } & x_{7}+x_{8}+x_{9} & =0,1, M 002 \\
\text { JKL: } & & x_{10}+x_{11}+x_{12} & =0,1, M 002 \\
\text { GHKL: } & x_{7}+x_{3}+r & x_{11}+x_{12} & =0,1, M 002
\end{array}
$$

Levels of GHI:	0	0	0	0	1	1	1	1
Levels of JKL:	0	0	1	1	0	0	1	1
Levels of GHKL:	0	1	0	1	0	1	0	1

1	000000	000101	000100	000001	001000	001101	001100	001001
2	000011	000110	000111	000010	001011	001110	001111	001010
3	011101	011000	011001	011100	010101	010000	010001	010100
4	011110	011011	011010	011111	010110	010011	010010	010111
5	101101	101000	101001	101100	100101	100000	100001	100100
6	101110	101011	101010	101111	100110	100011	100010	100111
7	110000	110101	110100	110001	111000	111101	111100	111001
8	110011	110110	110111	110010	111011	111110	111111	111010

Table 7-11. Air Path Sensitivity Study Cases.

Variable	A	B	C	D	E	F	G	H	I	J	K	L
No. of levels	3	3	3	3	3	3	2	2	2	2	2	2

$1 / 72$ replicate of a $2^{6} \times 3^{6}$ factorial

Case No.	Variable Level	Case io.	Variable Level	Case No.	Variable Level
1	111311111311	25	133213111311	49	232211111311
2	111323111311	26	133222111311	50	232223111311
3	111332111311	27	133231111311	51	232232111311
4	112211111311	28	211212111311	52	233111111311
5	112223111311	29	211221111311	53	233123111311
6	112232111311	30	211233111311	54	231132111311
7	113111111311	31	212112111311	55	$31: 113111311$
8	113123111311	32	212121111311	56	311122111311
9	113132111311	33	212133111311	57	311131111311
10	121212111311	34	213312111311	58	312313111311
11	121221111311	35	213321111311	59	312322111311
12	121233111311	36	213333111311	60	312331111311
13	122112111311	37	221113111311	61	313213111311
14	122121111311	38	221122111311	62	313222111311
15	122133111311	39	221131111311	63	313231111311
16	123312111311	40	222313111311	64	32.311111311
17	123321111311	41	222322111311	65	321323111311
18	123333111311	42	222331111311	66	321332111311
19	131113111311	43	223213111311	57	3222111111311
20	131122111311	44	223222111311	68	322223111311
21	131131111311	45	223231111311	69	322232111311
22	132313111311	46	231311111311	70	323111111311
23	132322111311	47	231323111311	71	323123111311
24	132331111311	48	231332111311	72	323132111311

Table 7-11. Air Path Sensitivity Study Cases (Continued).

Case No.	Variatle Level	Case No.	Variable Level	Case No.	Variable Level
73	331212111311	103	132313111333	133	233111111333
74	3312211111311	104	132322111333	134	233123111333
75	331233111311	103	: 32331111333	135	233132111333
76	332112111311	106	133213111333	136	311113111333
77	332121111311	107	133222111333	137	311122111333
78	332133111311	108	133231111333	138	311131111333
79	333312111311	109	211212111333	139	312313111333
80	333321111311	110	211221111333	140	312322111333
81	333333111311	111	211233111333	141	312331111333
82	111311111333	112	212112111333	142	313213111333
83	111323111333	113	212121111333	143	313222111333
84	111332111333	114	212133111333	144	313231111333
85	112211111333	115	213312111333	145	321311111333
86	112223111333	116	213321111333	146	321323111333
87	112232111333	117	213333111333	147	321332111333
88	113111111333	118	221113111333	148	322211111333
89	113123111333	119	221122111333	149	322223111333
90	113132111333	120	221131111333	150	322232111333
91	$12.21211^{\prime} 333$	121	222313111333	151	323111111333
92	121221111333	122	222322111333	152	323123111333
93	121233111333	123	222331111333	153	323132111333
94	122112111333	124	223213111333	154	331212111333
95	122121111333	125	223222111333	155	331221111333
96	122133111333	126	223231111333	156	331233111333
97	123312111333	127	231311111333	157	332112111333
98	123321111333	128	231323111333	158	332121111333
99	123333111333	129	231332111333	159	332133111333
100	131113111333	130	232211111333	160	333312111333
101	131122111333	131	232223111333	161	333321111333
102	131131111333	132	232232111333	162	333333111333

Table 7-11. Air Path Sensitivity Study Cases (Continued).

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
163	111311133113	193	212112133113	223	313213133113
164	111323133113	194	212121133113	224	313222133113
165	111332133113	195	212133133113	225	313231133113
166	112211133113	196	213312133113	226	321311133113
167	112223133113	197	213521133113	227	321323133113
168	112232133113	198	213333133113	228	321332133113
169	113111133113	199	221113133113	229	322211133113
170	113123133113	200	221122133113	230	322223133113
171	113132133113	201	221131133113	231	322232133113
172	121212133113	202	222313133113	232	323111133113
173	121221133113	203	222322133113	233	323123133113
174	121233133113	294	222331133113	234	323132133113
175	122112133113	205	223213133113	235	331212133113
176	122121133113	206	223222133113	236	331221133113
177	122133133113	207	223231133113	237	331233133113
178	123312133113	208	231311133113	238	332112133113
179	123321133113	209	231323133113	239	332121133113
180	12333133113	210	231332133113	240	332133133113
181	131113133113	211	232211133113	241	333312133113
182	131122133113	212	232223133113	242	333321133113
183	131131133113	213	232232133113	243	333333133113
184	132313133113	214	233111133113	244	111311133131
185	132322133113	215	233123133113	245	111323133131
186	132331133113	216	233132133113	246	$11133213313:$
187	133213133113	217	311113133113	247	112211133131
188	133222133113	218	311122133113	248	112223133131
189	133231133113	219	311131133113	249	112232133131
190	211212133113	220	312313133113	250	113111133131
191	211221133113	221	312322133113	251	113123133131
192	211233133113	222	312331133113	252	113132133131
173					

Table 7-11. Air Path Sensitivity Study Cases (Continued).

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
253	121212133131	283	222313133131	313	323111133131
254	121221133131	284	222322133131	314	323123133131
255	121273133131	285	222331133131	315	323132133131
256	122112133131	286	223213133131	316	331212133131
257	122121133131	287	223222133131	317	331221133131
258	122133133131	288	223231133131	318	331233133131
259	¢23312133131	289	231311133131	319	332112133131
260	123321133131	290	231323133131	320	332121133131
261	123333133131	291	231332133131	321	332133133131
252	131113133131	292	$23221: 133131$	322	333312133131
253	131122133131	293	232223133131	323	333321133131
264	131131133131	294	232232133131	324	333333113131
265	132313133131	? 295	223111133131	325	111311313113
266	132322133131	296	233123133131	326	111323313113
267	132331133131	297	233132133131	327	111332313113
268	133213133131	298	311113133131	328	112211313113
265	133222133131	299	311122133131	329	112223313113
270	133231133131	300	311131133131	330	112232313113
271	211212133131	301	312313133131	331	113132313113
272	211221133131	302	312322133131	332	113111313113
273	211233133131	303	312331133131	333	113132313113
274	212112133131	304	313213133131	334	121212313113
275	212121133131	305	313222133131	335	121221313113
276	212133133131	306	313231133131	336	121233313113
277	213312133131	307	3213:1133131	337	122112313113
278	213321133131	308	321323133131	338	122121313113
279	213333133131	309	321332133131	339	122133313113
280	221113133131	310	322211133131	340	123312313113
281	221122133131	311	322223133131	341	123321313113
282	221131133131	312	322232133131	342	123333313113

Tabla 7-11. Air Path Sensitivity Study Cases (Continued).

Case No.	Variable Leve?	Case No.	Variable Level	Case No.	Variable Level
343	131113313113	373	232211313113	403	333312313113
344	131122313113	374	232223313113	404	333321313113
345	131131313113	375	232232313113	405	333333313113
346	132313313113	376	233111313113	406	111311313131
347	132322313113	377	233123313113	407	111323313131
348	132331313113	378	233132313113	408	111332313131
349	1. 3213313113	379	311113313113	409	112211313131
350	133222313113	380	311122313113	410	112223313131
351	133231313113	381	311131313113	411	112232313131
352	211212313113	382	312313313113	412	11.3111313131
353	211221313113	383	312322313113	413	113123313131
354	211233313113	384	312331313113	414	113132313131
355	212112313113	385	313213313113	415	121212313131
356	212121313113	386	313222313113	416	12122131313:
357	212133313113	387	313231313113	417	121233313131
358	213312313113	388	321311313113	418	122112313131
359	213321313113	389	321323313113	419	122121313131
360	213333313113	390	321332313113	420	122133313131
361	221113313113	391	322211313113	421	123312313131
362	221122313113	392	322223313113	422	123321313131
363	221131313113	393	322232313: 13	423	123333313131
364	222313313113	394	$3231113131: 3$	424	131113313131
365	222322313113	395	323123313113	425	131122313131
366	222331313113	396	323132313113	426	13113131313:
367	223213313113	397	331212313113	427	i32313313131
368	223222313113	398	331221313113	428	132322313131
369	223231313113	399	331233313113	429	132331313131
370	231311313113	400	332112313113	430	133213313131
37.	231323313113	401	332121313113	431	133222313131
372	231332313113	402	332133313113	432	133231313131

Tatle 7-11. Air Path sensitivity Study Cases (Continued).

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
433	211212313131	463	312313313131	493	113111331311
434	211221313131	464	312322313131	494	113123331311
435	211233313131	465	312331313131	495	113132331311
436	212112313131	466	313213313131	496	12121.331311
437	212121313131	467	313222313131	497	121221331311
438	212133313131	468	313231313131	498	121233331311
439	213312313131	469	321311313131	$4 ? 9$	122112331311
440	213321313131	470	321323313131	500	122121331311
441	213333313131	471	321332313131	501	122133331311
442	221113313131	472	322211313131	502	123312331311
443	221122313131	473	322223313131	503	123321331311
444	221131313131	474	322232313131	504	123333331311
445	222313313131	475	323111313131	505	131113331311
446	222322313131	476	323123313131	506	131122331311
447	222331313131	477	323132313131	507	131131331311
448	223213313131	478	331212313131	508	132313331311
449	223222313131	479	331221313131	509	132322331311
450	223231313131	480	331233313131	510	132331331311
451	231311313131	481	332112313131	511	133213331311
452	231323313131	482	332121313131	512	133222331311
453	231332313131	483	332133313131	513	133231331311
454	232211313131	484	333312313131	514	211212331311
455	232223313131	485	333321313131	515	211221331311
456	232232313131	486	$3333333313: 31$	516	211233331311
457	233111313131	487	111311331311	517	212112331311
458	233123313131	488	111323331311	518	212121331311
459	233132313131	489	111332331311	519	212133331311
450	311113313131	490	112211331311	520	213312331311
461	311122313131	491	112223331311	521	213321331311
462	311131313131	492	112232331311	\%22	21333333131

Table 7-11. Air Path Sensitivity Study Cases (Continued).

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
523	221113331311	553	322211331311	583	123312331333
524	221122331311	554	322223331311	584	123321331333
525	221131331311	555	322232331311	585	123333331333
526	222313331311	556	323111331311	586	131113331333
527	222322331311	557	323123331311	587	131122331333
528	222331331311	558	323132331311	588	131131331333
529	223213331311	559	331212331311	589	132313331333
530	223222331311	560	331221331311	590	132322331333
531	223231331311	561	331233331311	59.	132331331333
532	231311331311	562	332112331311	592	133213331333
533	231323331311	563	332121331311	593	133222331333
534	231332331311	564	332133331311	594	133231331333
535	232211331311	565	333312331311	595	211212331333
536	232223331311	566	333321331311	596	211221331333
537	232232331311	567	333333331311	597	211233331333
538	233111331311	568	111311331333	595	212112331333
539	233123331311	569	111323331333	599	212121331333
540	233132331311	570	111332331333	600	212133331333
541	31113331311	571	112211331333	601	213312331333
542	311122331311	572	112223331333	602	213321331333
543	311131331311	573	112232331333	603	213333331333
544	312313331311	574	113111331333	604	221113331333
545	312322331311	575	113123331333	605	221122331333
546	312331331311	576	113132331333	606	221131331333
547	313213331311	577	121212331333	607	222313331333
548	313222331311	578	121221331333	608	222322331333
549	313231331311	579	121233331333	609	222331331333
550	321311331311	580	122112331333	610	223213331333
551	321323331311	581	122121331333	611	2232223313333
552	321332331311	582	122133331333	612	223231331333
54					
50					

Table 7-11. Air Path Sensitivity Study iases (Continued).

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
613	231311331333	625	312313331333	637	323111331333
614	231323331333	626	312322331333	638	323123331333
615	231332331333	627	312331331333	639	323132331333
616	232211331333	628	313213331333	640	331212331333
617	232223331333	629	313222331333	641	331221331333
618	232232331333	630	313231331333	642	331233331333
619	233111331333	631	321311331333	643	332112331333
620	233123331333	632	321323331333	644	332121331333
621	233132331333	633	321332331333	645	332133331333
622	311113331333	634	322211331333	646	333312331333
623	311122331333	635	322223331333	647	333321331333
624	311131331333	636	322232331333	648	333333331333

The actual cases to be run for the sensitivity study design are found in the following manner. The interactions used in the contrast definition equation are used as defining equations to determine the sample blocks of the design. Tables 7-9 and 7-10 show the blocks for the design for each of the 3^{6} and 2^{6} factorials. Looking at Table 7-9, the two interactions ABCD and CDEF are the drivers for the defining equations. Since the design is a $1 / 9$ replicate, nine blocks are shown. One block will be chosen randomly to be used as the actual test case definition. The six digit numbers in the table represent levels of each of the variables A through F. In Table 7-10, the six digit numbers correspond to levels of the variables G through L.

An example of the methodology used in generating the tables is as follows. In Table $7-9$, row 17, 4 th column ($A B C D=1, C D E F=0$) is the sequence 012112. Substituting this sequence into the defining equations at the top of the table yields:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=0+1+2+1=4=1 \quad(4003) \\
& x_{3}+x_{4}+x_{5}+x_{6}=2+1+1+2=6=0(4003)
\end{aligned}
$$

Thus, the sequence 012112 should appear in the column for $A B C D$ level equal to 1 and CDEF level equal to 0 . The remainder of the table is filled using the defining equations in this manner.

Randomly selecting blocks from Tables 7-9 and 7-10 and then combining the blocks yields Table 7-11. Note that the numbers used in Table 7.11 are modified to allow easier coding of the input. A number one is equivalent to the number zero in the previous tables. Two is equivalent to one in Table 7-9, and three is equivalent to two in Table 7-9 and one in Table 7-10. The corbined design has 648 tests as shown.

7.4.3 Water Path Experimental Design

The water path sensitivity study had a total of nine variables of which three had three levels and six had two levels. Thus, there was a potential of $3^{3} \times 2^{6}$ or 1728 tests of the Systems Model. This experiment was also divided into two parts for the purpose of developing the design. The three variables with three levels were handled separately from the six variables with cwo levels. The design was a $1 / 12$ replicate of the total factorial. This was defined by
forming a $1 / 3$ replicate of the 33 factorial and $1 / 4$ replicate of the 26 factorial designs. The final sample size was 144 out of the 1728 possible samples.

Table 7-12 presents the design of a $1 / 3$ replicate of the 33 factorial. Since the design was a $(1 / 3) 1$ replicate, only one interaction was confounded with the identity. The defining interaction was ABC. Note that the main variables were confounded with two factor interactions.

Table 7-13 presents the design of a $1 / 4$ replicate of the 26 factorial. Two interactions were confounded with the identity since the design was a (1/2)2 replicate. No main variables were confounded with two factor interactions in this design. The defining interactions were DEFG and FGHI.

Based on the above two designs, the parameters of the model were assigned to the variables in the design as shown in Table 7-14. Interactions were evaluated as foliows: AF, BF, CE, UF, CH, EF, EI, FH, and HI. All other interactions were assumed to have insignificant effects in the Systems Model or are confounded with effects of interest.

Sample blocks for the two designs are shown in Tables 7-15 and 7-16. Table 7-17 shows the actual test cases based on a combination of random blocks from Tables 7-15 and 7-16. Final tests numbered 144 out of the 1728 possible tests.
7.5. RESULTS AND DISCUSSION

This section discusses the methodology for evaluation of the test runs and the results obtained. Hany runs where made prior to the sensitivity study runs. These tests were necessary to define ranges for the input variables which would yield results that could be evaluated. In many cases, realistic values for some variables gave zero outputs which tended to degrade the sensitivity study information. This aspect of the study wlll be discussed further in the following sections. Actual data from the Systems iodel runs is shown in the Appendix of this report.

$$
\text { Table 7-12. 1/3 Replicate of a } 3^{3} \text { Factorial Design. }
$$

Defining contrast $\quad I=A B C=[A B C]^{2}$

Aliases or confounding scheme

$$
\begin{aligned}
A & =A B^{2} C^{2} \\
B & =A C \\
B B^{2} C & =A C \\
C & =A B C^{2}=A B \\
A B^{2} & =A C^{2}=B C^{2}
\end{aligned}
$$

$$
\text { Table 7-13. } 1 / 4 \text { Replicate of a } 2^{6} \text { Factorial Design. }
$$

Defining contrast $\quad I=$ DEG $=$ FGHI $=$ DELI
Aliases or confounding scheme

$$
\begin{aligned}
& D=E F G \\
& E=D F G H I=E H I \\
& F=D F G G=D H I \\
& G=D E F I=D E F H I \\
& H=D E F G H=F G I=D E G H I \\
& I=D E F G I=F G H=D E I \\
& D E=F G=D E F G H I=H I \\
& D F=E G=D G H I=E F H I \\
& D G=E F=D F H I=E G H I \\
& D H=E F G H=D F G I=E I \\
& D I=E F G I=D F G H=E H \\
& F H=D E G H=G I=D E F I \\
& F I=D E G I=G H=D E F H \\
& D F H=E G H=D G I=E F I \\
& D F I=E G I=D G H=E F H
\end{aligned}
$$

Table 7-14. Water Path Sensitivity Study Variable Definition.

Variable	Variable Name
A	Weather
B	Layers in soil column
C	Equilibrium constant
D	Nuclide quantity
E	Water travel time
F	Retardation factor
G	Aquifer dispersion
H	Naclide solubility
I	Water body flow

Table 7-15. Sample Blocks for $1 / 3$ Replicate of 3^{3} Factorial.

Defining equation
ABC: $x_{1}+{ }^{+}+x_{3}=0,1,2, \operatorname{Mod} 3$

Levels of ABC:	0	1	2
1	000	001	002
2	012	010	020
3	102	100	200
4	120	022	122
5	021	202	212
6	201	220	221
7	210	211	011
8	111	121	101
9	222	112	110

$$
\text { Table } 7-16 \text {. Sample } 3 \text { locks for } 1 / 4 \text { Replicate of } 2^{6} \text { Factorial. }
$$

Defining equations

| DEFG: $x_{4}+x_{5}+x_{6}+x_{7}$ | $=0,1$, MOD 2 | |
| ---: | :--- | ---: | :--- |
| FGHI: | $x_{6}+x_{7}+x_{8}+x_{9}$ | $=0,1$, MOD 2 |

Levols of DEFG:	0	0	1	1
Levels of FGHI:	0	1	0	1

1	000000	000001	000101	000100
2	000011	000010	000110	000111
3	001100	001101	001001	001000
4	001111	001110	001010	001011
5	010101	010100	010000	010001
6	010110	010111	010011	010010
7	011001	011000	011100	011101
8	011010	011011	011111	011110
9	100101	100100	100000	100001
10	100110	100111	100011	100010
11	101001	101000	101100	101101
12	101010	101011	101111	101110
13	$1100 c 0$	110001	110101	110100
14	110011	110010	110110	110111
15	111100	111101	111001	111000
16	111111	111110	111010	111011

Table 7-17. Water Path Sensitivity Study Cases.

Variable	A	B	C	D	E	F	G	H	I
No. of levels	3	3	3	2	2	2	2	2	2

$1 / 12$ replicate of a $2^{6} \times 3^{3}$ factorial

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
1	113111113	25	122113313	49	233131333
2	131111113	26	212113313	50	323131333
3	311111113	27	221113313	51	332131333
4	233111113	28	113113331	52	122131333
5	323111113	29	131113331	53	212131333
6	332111113	30	311113331	54	221131333
7	122111113	31	233113331	55	113133111
8	212111113	32	323113331	56	131133111
9	221111113	33	332113331	57	311133111
10	113111131	34	122113331	58	233133111
11	131111131	35	212113331	59	323133111
12	311111131	36	221113331	60	332133111
13	233111131	37	113131311	51	122133111
14	323111131	38	131131311	62	212133111
15	332111131	39	$311 ; 31311$	63	221133111
16	122111131	40	235,31311	64	113133133
17	212111131	41	323131311	65	131133133
18	221111131	42	332131311	66	311133133
19	113113313	43	122131311	67	233133133
20	131113313	44	212131311	68	323133133
21	311113313	45	221131311	69	332133133
22	233113313	46	113131333	70	122133133
23	323113313	47	131131333	71	212132133
24	332113313	48	311131333	72	221133133

Table 7-17. Water Path Sensitivity Study Cases (Continuted).

Case No.	Variable Level	Case No.	Variable Level	Case No.	Variable Level
73	113311311	97	122313111	121	233331131
74	131311311	98	212313111	122	323331131
75	311311311	99	221313111	123	332331131
76	233311311	100	113313133	124	122331131
77	323311311	101	131313133	125	313331131
78	722311311	102	311313133	126	221331131
79	122311311	103	233313133	127	113333313
80	212311311	104	323313133	128	131333313
81	221311311	105	332313133	129	311333313
82	113311333	106	122313133	130	233333313
83	131311333	107	212313133	131	323333313
84	311311333	108	221313133	132	332333313
85	233311333	109	113331113	133	122333313
86	323311333	110	131331113	134	212333313
87	332311333	111	311331113	135	221333313
88	122311333	112	233331113	136	113333331
89	212311333	113	323331113	137	131333331
90	221311333	114	332331113	138	311333331
91	113313111	115	122331113	139	233333331
92	131313111	116	212331113	140	323333331
93	311313111	117	221331113	141	332333331
94	233313111	118	113331131	142	122333331
96	323313111	119	131331131	143	212333331
9313111	120	311331131	144	221333331	

7.5.1 Evaluation Aoproach

A standard Analysis of Variance approach was used for the evaluation of fractional factorial designs. In the air and water path sensitivity studies, variables which were felt to have significant effects in the Systems Hodel were evaluated in the analysis. The model for the two studies are random rather than fixed models due to the large ranges that exist for most parameters. The Expected Mean Squares for the variables were derived based on the above two statements. The error terms in the analysis or variance were composed of all interactions which were felt to be insignificant.

7.5.2 Air Path Results

Table 7-18 presents the model assumptions for the air path analysis of variance. Thirty variables and interactions were chosen to be evaluated as shown. Based on this selection, the error term was defined as listed in the table. Using a random model analysis format, the E(MS) or Expected Mean Squares column of the table was determined. These $E(M S)$'s are important in determining what the test statistics should be for each variable. Variables in Table 7-18 are defined in Table 7-8.

The equations in Table 7-19 are the Sum of Squares (SS) computational formulas for the analysis. Note that variable I is equivalent to variable J due to the design. Thus, a $S S$, does not exist in Table 7-19 due to the appearance of S_{I}.

The results of the Systems Model runs for the air path sensitivity study are shown in Table 7-20. This table is presented in a standard analysis of variance format. Variables of interest are listed along with their corresponding degrees of freedom (d.f.). The sum of the degrees of freedom of the variables and error equals the total degrees of freedc.n. The column labeled SS is the sum of squares associated with each variable based on the formulas in Table 7-20. The ISS colunin is the mean square for each variables and is found by dividing SS by d.f. The FTEST column is a ratio of mean squares and is used to indicate if the effect of the variable is significant. The $F=.1$ colunn is the value which indicates if $F_{\text {TEST }}$ is significant. These values come from a table of the F distribution. The F^{\prime} columns are tests using a pooled error estimate found by combining all insignificant interactions with the old error estimate.

> Table 7-18. Analysis of Variance for Air Path Sensitivity Study.

> Table 7-18. Analysis of Variance for Air Path Sensitivity Study. (Continued)

Error term is composed of the following interactions which are assumed to be zero
$E R R O R=A B^{2}, A M, A I, B C^{2}, B D^{2}, B E, B F, B G, B H$
$B 1, B K, B L, C D^{2}, C K, C K, O E^{2}, O F^{2}, D G$,
$\mathrm{OH}, \mathrm{OI}, \mathrm{OK}, \mathrm{DL}, \mathrm{EH}, \mathrm{E}, \mathrm{EL}, \mathrm{FH}, \mathrm{FI}$,

FL , $A B^{2} G, \quad A B^{2} H, \quad A B^{2} \mathrm{I}, \quad A B^{2} \mathrm{~K}, \quad A B^{2} \mathrm{~L}, \quad A C E$ $A C E^{2}, \quad A C^{2} E, \quad A C^{2} E^{2}, \quad A C F, \quad A C F^{2}, \quad A C^{2} F, \quad A C^{2} F^{2}$, ACG , $A C^{2} G, A C H, A C^{2} H, A C!, A C^{2}: A C K$, $A C^{2} K, \quad A C L, \quad A C^{2} L, \quad A D E^{2}, \quad A D^{2} E, \quad A D F^{2}, \quad A D^{2} F$, $A D G, A D^{2} G, A D H, A D D^{2} H, A D 1, A D^{2}!$, $A D K$, $A D^{2} \mathrm{~K}, \quad A D L, A D^{2} L, A E G, A E^{2} G, A E H, A E^{2} H$, $A E I, A E^{2} I, A E K, A E^{2} K$, $A E L, A E^{2} L, A F G$, $A F^{2} \hat{G}, A F H, A F^{2} H, A F I, A F^{2} I, A F K, A F^{2} K$, $A F L, A E^{2} L, A G K, A G L, \quad B C^{2} G, \quad B C^{2} H, \quad B C^{2}$ l $B C^{2} \mathrm{~K}, \quad B C^{2} \mathrm{~L}, \quad 3 D^{2} G, \quad B D^{2} \mathrm{H}, \quad B D^{2} \mathrm{I}, \quad 3 D^{2} \mathrm{~K}, \quad 3 D^{2} \mathrm{~L}$, BEG , BEH, BE! , BEK, BEL, BFG, BFH, SFI, BFK, BFL , BGK, BGL, $C^{2} G$, $C D^{2} H$, $C D^{2} \mathrm{I}, \quad C D^{2} \mathrm{~K}, \quad C D^{2} \mathrm{~L}, \quad C E G, \quad C E^{2} G, \quad C E H, \quad C E^{2} H$, CEI , CE 2 I , CEK, CE ${ }^{2} K$, CEL, CE 2 C , CFG , $C F^{2} G, \quad C F H, \quad C F^{2} H, C F I, \quad C F^{2} 1$, CFK, $C F^{2} K$, $C F L, \quad C F^{2} L, \quad G K, \quad C G L, \quad O E^{2} G, \quad D E^{2} H, D E^{2}:$, $D E^{2} K, \quad D E^{2} L, \quad O F^{2} G, \quad D F^{2} H, \quad O F^{2} T, \quad O F^{2} K, \quad O F^{2} L$, $D G K, \quad D G L, E F G, E F^{2} G, E F H, E F^{2} H$, EF: $E F^{2} \mathrm{I}, E F K, E F^{2} \mathrm{~K}, E F L, E F^{2} \mathrm{~L}, E G K, E G L$, $F G K, F G L, A B^{2} G K, A B^{2} G L$, $A C E G, A C E^{2} G, A C^{2} E G$, $A C^{2} E^{2} G$, $A C E H$, $A C E^{2} H$, $A C^{2} E H$, $A C^{2} E^{2} H$, $A C E 1, A C E^{2} I$, $A C^{2} E 1$, $A C^{2} E^{2} I$, $A C E K$, $A C E^{2} K$, $A C^{2} E K$, $A C^{2} E^{2} K$, ACEL, $A C E^{2} L, A C^{2} E L, A C C^{2} E^{2} L$, $A C F G$, $A C F^{2} G, A C^{2} F G, A C^{2} F^{2} G$, $A C F H, A D F^{2} H, A C^{2} F H, A C^{2} F^{2} H$, $A C F:, A C F^{2}:, A C^{2} F i$, $A C^{2} F^{2} I, A C F K, A C F^{2} K, A C^{2} F K$, $A C^{2} F^{2} K, A C F L, A C F^{2} L$, $A C^{2} F L, A C^{2} F^{2} L, A C G K, A C^{2} G K, A C G L, A C Z L, A D E^{2}$, , $A D^{2} E G, A D E^{2} H, A D^{2} E H, A D E^{2} I, A D^{2} E!, A D E^{2} K, A D^{2} E K$, $A D E^{2} L, A D^{2} E L, A D F^{2} G, A D^{2} F G, A D F^{2} H, A O^{2} F H, A D$, $A D^{2} F I, A D F^{2} K, A D^{2} F K, A D F^{2} G, A D^{2} F L, A D G K, A D^{2-K}$,
$A D G L, A O^{2} G L, A E G K, A E^{2} G K, A E G L, A E^{2} G L, A F G K$,
$A F^{2} G K$, $A F G L$, $A F^{2} G L$, $B C^{2} G K, B C^{2} G L, B D^{2} G K$, $B C^{2} G L$,

$O E^{2} G K$, $O E^{2} G L$, $O F^{2} G K$, $O F^{2} G L$, $E F_{G K}, \quad E F^{2} G K$, EFGL ,
$E F^{2} G L$, $A C E G K$, $A C E^{2} G K$, $A C^{2} E G K$, $A C^{2} E^{2} G K$, ACEGL
$A C E^{2} G L$, $A C^{2} E G L$, $A C^{2} E^{2} G L$, $A C F G K$, $A C F F^{2} G K, \quad A C^{2} F G K$
$A C^{2} F^{2} G X$, $A C F G L$, $A C F^{2} G L$. $A C^{2} F G L$. $A C^{2} F^{2} G L$. $A D E^{2} G X$.
$A D^{2} E G K, A D E^{2} G L$, $A D^{2} E G L, A D F^{2} G K, A D^{2} F G K, A D F^{2} G L$,
$A D^{2}{ }_{F} G L$.

> Table 7-19. Computational Formulas for Air Path miiova.

> Table 7-19. Computational Formulas for Air Path ANOVA. (Continued)

${ }^{5 S} \mathrm{CL}$.	$)^{2 / 216} \cdot \frac{2}{2}(x \ldots \ldots \ldots \ldots 1)^{2 / 324} \cdot(x, \ldots \ldots \ldots \ldots)^{2 / 648}$		

SS ERROR $=$ SSTOTAL - All other $S S$

Table 7-20. Analysis of Variance Results for Air Patn Sensitivity Study.

Variable	d.f.	55	MS	FTEST	$F_{3 *}$. 1	F'TEST	$F^{\prime}{ }^{\prime}=1$
A	2	$2.810 \varepsilon+12$	$1.405 E+12$	1.02	5.15		
3	2	$6.010 E+13$	$3.005 E+13$	18.46**	2.30		
6	2	$5.060 E+09$	$2.530 E+09$	966.00^{*}	5.13	0.0016	2.30
0	2	$1.154 \mathrm{E}+10$	\%.770E +09	$6.13{ }^{+*}$	4.32	0.0037	2.30
ε	2	1.214E+12	$6.070 \mathrm{E}+11$	0.84	3.78		
F	2	$3.403 E+13$	$1.702 \mathrm{E}+13$	0.69	5.34		
G	1	3.912E+13	$3.912 £+13$	0.52	49.50		
H	1	3. $352 \mathrm{E}+13$	3. $352 \mathrm{E}+13$	22600.0*	8.53	21.65*	2.71
1/3	1	3. $468 \mathrm{E}+13$	$3.468 E+13$	21.30*	2.71		
K	1	$3.883 \mathrm{E}+13$	$3.383 E+13$	0.79	8.53		
6	1	3.501E+13	$3.5018+13$	1.09	39.36		
$A C$	4	$2.304 \mathrm{E}+09$	$5.760 E+08$	0.00035	1.94		
AD	4	$3.764 \mathrm{E}+09$	9.410E+08	0.00058	1.34		
$A E$	4	$2.517 \mathrm{E}+13$	$6.542 \varepsilon+12$	4.02*	1.94		
$A F$	4	$2.510 \mathrm{E}+12$	$6.2758+11$	0.39	1.94		
AG	2	$2.573 \mathrm{E}+12$	$1.286 \mathrm{E}+12$	0.75	2.30		
AK	2	$2.406 \mathrm{E}+12$	1.203E+12	0.74	2.30		
AL	2	$2.611 \mathrm{E}+12$	1.306E+12	0.80	2.30		
CE	4	$5.076 E+09$	$1.2695+09$	0.000078	1.94		
CF	4	$4.500 \mathrm{E}+09$	1.125E+09	0.000069	1.94		
CG	2	$4.036 E+09$	$2.018 \mathrm{E}+09$	0.00012	2.30		
CH	2	2.972E+09	$1.486 \mathrm{E}+09$	0.000091	2.30		
CL	2	$3.906 \mathrm{E}+09$	$1.953 \mathrm{E}+09$	0.00012	2.30		
EF	4	$3.464 \mathrm{E}+12$	8.560E+11	0.53	1.94		
EG	2	1.107E+12	$5.535 E+11$	0.34	2.30		
EK	2	9. $544 \mathrm{E}+11$	4.772E+11	0.29	2.30		
FG	2	$3.291 \mathrm{E}+13$	$1.646 \mathrm{E}+13$	10.11*	2.30		
FX	2	$3.240 E+13$	1.620E+13	9.95*	2.30		
GK	1	$3.7615+13$	$3.751 \mathrm{E}+13$	23.10*	2.71		
GL	1	3.479E+13	$3.4795+13$	21.37*	2.71		
ERROR	580	9.441E+14	1. 623×12				
TOTAL	647	1.404E-15					

* Significant at $3 * .1$ lavel and at $3=.05$ level
** Significant at $x^{*} .1$ level but not at $a=.05$ level

The information in Table $7-18$ is used to generate the FTEST $^{\text {column }}$ in Tabie 7-20. Ratios of mean squares are determined by the variance effects shown in the $E(M S)$ or expected mean square crilumn of Table 7-18. In all cases where the variance of the effect is summed with the error variance, the ratio is simply the 115 of the efect divided by the MS for error. This is true for the following effects: 3, $1 / 3$, and all interactions. Other ratios all found by finding an $E(M S)$ which has all the variance terms equal with the $E(M S)$ of the variable of interest except for the variance of the effect of interest. If no candidates exist for this ratio, then combinations of the E(MS)'s are found which can produce this result. The degrees or freedom for these composite ratios is found using an approximation developed by Satterthwaite. For example, the FTEST for variable L is found by

$$
\left(M S_{\text {error }}+M S_{\text {error }}+M S_{L}\right) /\left(M S_{A L}+M S_{C L}+M S_{G L}\right)
$$

Based on the above derivations, variables $B, C, D, H, I / J, A E, F G$, $F K, G K$, and GL were found to have significant effects at an $F=.1$ level. Retesting C, D, and H based on a pooled error variance estimate resulted in different conclusions for variables C and D. Thus, it is concluded that the C and O effects are not really significant in this model.

7.5.3 Water Path Results

Table 7-21 presents the water path sensitivity study model assumptions for an analysis of variance. Eighteen variables and interactions were chosen for evaluation as indicated in the table. The error term was composed of the terms listed in tie table, all of which were assumed to rave no impact on the systems Mode?. The E(MS)'s for the variables are shown. Variables are defined in Table 7-14.

Table 7-22 presents the computational formulas for the variable sum of squares. The results of the analysis are shown in Table 7-23. The effects of significance were $D, C E, E H, E I$, and $H I$ with $C E$ being less significant than the others. Interpretations of these results are provided in the following section.

Table 7-21. Analysis of Variance for water Path Sensitivity Study.

Error tern is comosed of folloming interactions wnitc are assumed to be zero. Efror - $A 8^{2}, 40, A E, A G, A H, A 1,30,3 E, 36,34,31$, CD. CG. Cf, $O F, O G, F I, A B^{2} D, A 8^{2} \varepsilon, A B^{2} F, A B^{2} G$, $A B^{2} \mathrm{H}, A \mathrm{~B}^{2} \mathrm{I}, A 0 \mathrm{~F}, A 06, A E \mathrm{EH}, A E 1, A \mathrm{FH}, A F 1, A \mathrm{HI}$, BOF, BOG. BEH, 3E:, BFH, 3F1, $3 \mathrm{HI}, \mathrm{COF}, \mathrm{COG}, \mathrm{CEH}$, CE1, CFH, CFI, CHI, OFH, OFI, $A 8^{2} 9 \mathrm{VF}, 48^{2} 5 \mathrm{Ja}, 48^{2} \mathrm{EH}$, $A 8^{2} \mathrm{EL}, 48^{2} \mathrm{FH}, 48^{2} \mathrm{FI}, A 8^{2} \mathrm{HI}, 40 \mathrm{FH}, 20 \mathrm{FI}, 30 \mathrm{FH}, 30 \mathrm{FT}$, COFH, COFI, $A 8^{2}{ }^{2} \mathrm{FH}, ~ 28^{2}{ }^{2} \mathrm{FF}$

Table 7-22. Computational Formulas for water lath ANOVA.

$$
\begin{aligned}
& s S_{A}=\sum_{a}^{3}\left(x_{a} \ldots \ldots \ldots\right)^{2 / 48}-(x \ldots \ldots \ldots)^{2 / 144} \\
& s s_{3}=\sum_{0}^{3}(x, 0 \ldots \ldots \ldots)^{2 / 48}-(x \ldots \ldots \ldots)^{2 / 144} \\
& s s_{C}=\sum_{C}^{3}(x \ldots c \ldots \ldots)^{2 / 45}-(x \ldots \ldots \ldots)^{2 / 144} \\
& S s_{0}=\sum_{0}^{2}(x \ldots d \ldots)^{2} / 72-(x \ldots \ldots \ldots)^{2} / 144 \\
& S S_{E}=\sum_{e}^{2}(x \ldots . \ldots \ldots)^{2} / 72 \cdot(x \ldots \ldots \ldots)^{2} / 144 \\
& s s_{F}=\sum_{f}^{2}(x \ldots \ldots f \ldots)^{2} / 72-(x \ldots \ldots \ldots)^{2} / 144 \\
& S S_{G}=\sum_{9}^{2}\left(x \ldots \ldots . g_{\ldots}\right)^{2 / 72}-(x \ldots \ldots \ldots)^{2} / 144 \\
& s S_{H}=\sum_{n}^{2}\left(x \ldots \ldots . h_{.}\right)^{2} / 72-(x \ldots \ldots \ldots)^{2} / 144 \\
& s_{T}=\sum_{i}^{2}(x \ldots \ldots .1)^{2} / 22-(x \ldots \ldots \ldots)^{2} / 144 \\
& S S_{A F}=\sum_{a}^{3} \sum_{f}^{2}\left(x_{a} \ldots \ldots f \ldots\right)^{2} / 24-\sum_{a}^{3}\left(x_{a} \ldots \ldots \ldots\right)^{2} / 48-\sum_{f}^{2}(f \ldots \ldots f \ldots)^{2} / 72 \\
& \text { + }(x, \ldots \ldots \ldots)^{2} / 144 \\
& S S_{3 F}=\sum_{b}^{3} \sum_{f}^{2}(x, b \ldots f \ldots)^{2} / 24-\sum_{b}^{3}(x, b \ldots \ldots \ldots)^{2 / 48} \cdot \sum_{f}^{2}(x \ldots \ldots f \ldots)^{2 / 72} \\
& \text { - }(x \ldots \ldots \ldots)^{2} / 144 \\
& S_{C E}=\sum_{6}^{3} \sum_{e}^{2}(x, \ldots . e \ldots .)^{2 / 24}-\sum_{\varepsilon}^{3}(x \ldots c \ldots \ldots)^{2} / 48-\sum_{e}^{2}(x \ldots \ldots e \ldots)^{2 / 72} \\
& +\quad(x \ldots \ldots \ldots)^{2} / \cdot 4
\end{aligned}
$$

Table 7-22 Computational Formulas for water Path ANOVA. (Continued)
$S_{C F}=\sum_{c}^{3} \sum_{f}^{2}(x \ldots c \ldots f \ldots)^{2} / 24-\sum_{c}^{3}(x, . c \ldots \ldots)^{2} / 48-\sum_{f}^{2}(x \ldots \ldots f \ldots)^{2} / 72$
$+(x \ldots \ldots \ldots)^{2} / 144$
$\left.S_{C H}=\sum_{c}^{3} \sum_{n}^{2}\left(x \ldots c \ldots . h_{.}\right)^{2} / 24-\sum_{c}^{3}(x \ldots c \ldots \ldots)^{2} / 48-\sum_{n}^{2}(x \ldots \ldots \ldots)^{2}\right)^{2 / 72}$
$+\left(x_{\ldots} \ldots \ldots\right)^{2} / 144$
$\left.S S_{E H}=\sum_{e}^{2} \sum_{n}^{2}\left(x \ldots \ldots e . h_{1}\right)^{2} / 36-\sum_{e}^{2}(x \ldots \ldots e \ldots)^{2} / 72-\sum_{n}^{2}(x \ldots \ldots .)^{2}\right)^{2} / 72$
$+(x \ldots \ldots \ldots)^{2} / 144$
$S S_{E I}=\sum_{e}^{2} \sum_{i}^{2}(x \ldots \ldots e . \ldots i)^{2} / 36-\sum_{e}^{2}(x \ldots \ldots \ldots)^{2} / 72-\sum_{i}^{2}(x \ldots \ldots \ldots i)^{2} / 72$
$+(x \ldots \ldots \ldots)^{2} / 144$
$S S_{F H}=\sum_{f}^{2} \sum_{n}^{2}\left(x \ldots \ldots f, n_{.}\right)^{2} / 36-\sum_{f}^{2}(x \ldots \ldots f \ldots)^{2} / 72-\sum_{n}^{2}\left(x \ldots \ldots \ldots h_{.}\right)^{2} / 72$
$S S_{H!}=\sum_{n}^{2} \sum_{i}^{2}(x \ldots \ldots . n i)^{2} / 2 s-\sum_{n}^{2}(x \ldots \ldots \ldots n \cdot)^{2} / 72-\sum_{i}^{2}(x \ldots \ldots \ldots i)^{2} / 72$
$+(x \ldots \ldots \ldots)^{2} 144$
$S_{\text {Total }}=\sum_{d 11}$ Xabcdefght $^{2}-(x \ldots \ldots \ldots)^{2} / 144$
$S S_{\text {Error }}=\quad S S_{\text {Total }}$ - All other $S S$

Table 7-23. Analysis of Variance Results for Water Path Sensitivity Study.

Variable	d.f.	SS	MS	$F_{\text {TEST }}$	$F_{\alpha=.1}$	$F_{\text {TEST }}$	$F_{\alpha}^{\prime}=.1$
A	2	$2.854 E+07$	$1.427 \mathrm{E}+07$	3.34	9.00	1.89	2.35
8	2	1.399E+07	6.995E+06	5.20	9.00	0.93	2.35
c	2	$1.139 E+08$	$5.695 E+07$	1.81	3.62		
D	1	$3.596 \mathrm{E}+08$	$3.596 E+08$	46.84*	2.75		
E	1	$9.001 \mathrm{E}+07$	$9.001 E+07$	0.23	8.53		
F	1	$5.044 E+06$	$5.044 E+06$	2.33	3.16	0.67	2.75
G	1	$4.530 \mathrm{E}+04$	$4.530 E+04$	0.0059	2.75		
H	1	$8.498 \mathrm{E}+07$	$8.498 \mathrm{E}+07$	0.24	9.00		
I	1	$3.520 E+08$	$3.520 E+08$	2.06	8.53		
AF	2	$8.544 \mathrm{E}+06$	$4.272 E+06$	0.56	2.35		
BF	2	$2.690 E+06$	1. $345 \mathrm{E}+06$	0.18	2.35		
CE	2	$3.6775+07$	$1.838 \mathrm{E}+07$	2.39**	2.35		
CF	2	$8.540 E+06$	4.270E+06	0.56	2.35		
CH	2	$3.453 E+07$	1.726E+ij7	2.25	2.35		
EH	1	$3.455 \mathrm{E}+08$	$3.455 \mathrm{E}+08$	45.00*	2.75		
EI	1	$8.648 \mathrm{E}+07$	$8.648 E+07$	11.26*	2.75		
FH	1	4.351E+04	$4.351 E+04$	0.0057	2.75		
HI	1	$8.845 \mathrm{E}+07$	$8.845 E+07$	11.52*	2.75		
ERROR	117	$8.983 E+08$	$7.678 E+06$				
TOTAL	143	$2.558 \mathrm{E}+09$					

[^1]
7.6

CONCLUSIONS
Valuable information dealing with the Systems Model was obtained as a result of performing the sensitivity studies. Pre-study test runs and the study results provided insight into the operation of the code and the importance of the input variables. Code run time was decreased without significantly changing the calculated doses. No major changes were found to be necessary in the Systems Mode? in order to yield an effective analytical tool. The significance of the input variables was determined with some surprises and is discussed in detail in the following text.

A key finding in the pre-study test run was that input variables must have exaggerated values in many cases in order for the model to compute a non-zero dose. An initial water path study had many zero results. Inputs were modified in order to force non-zero answers. When analytical results were compared for the two studies, no significant changes were made in the conclusions. Thus, the large number of zeros in the air path study shown in the Appendix is felt to have little impact on the conclusions.

Certain variables were found to act almost like switches in the Systems Model. Many of these variables were not significant in the sensitivity studies but had to be carefully controlled in order to get non-zero results. Specifically, weather, aquifer sorption equilibrium constant, water travel time, retardation factor, and nuclide solubility (variables A, C, E, F, and H in water path study) acted as switches in the wate: path sensitivity study. Weather, nuclide solubility, site wind resistance, and retardation factor (variables A, H, K, and L in air path study) also acted as switches in the air path sensitivity runs. Thus, while these variable appear to have little significance, they, in fact, have large significance since they are able to "switch-off" dose. When changed enough to "switch-on" dose their effect as a variable is weak.

Some variables were found to have no significant impact on the System Model results over their considered ranges. Layers in soil column (variable C in air path study and variable B in water path study) fell into this category. Apparently, the retardation factors of the geology are the drivers for the nodel and the number of soil layers makes little or no difference in dose output. It is felt that the number of layers acts only as a delay factor which would be important for short-lived or intermediate range half life isotopes. For most cases, this variable will have no impact. Thus, a "smeared out" approach to soil column geology would probably introduce very little error in the results.

Aquifer dispersion (variable G in water path study) is another variable which seems only to delay dose output but does not significantly impact cumulative population dof?. The variable demography (variable D in air path study) represents the population distance distribution and was found to be insignificant. This is prcbably due to a large percentage of the population dose coming from the food chain rather than cloud shine or ground shine or inhalation. Trucks transporting foods acted as a distance nullifier and resulted in population distance not being a significant variable. Note that total population was held constant since it is obvious that population dose will be proportional to the tocal population. It was also necessary to hold the age distribution constant to reduce the number of independent variables. It is well-known thai moving the age scale down toward younger people increases the dose commitment.

Weather was important to the models primarily from a switch standpoint. Rainy weather was necessary for the water path sensitivity study to have results and dry, windy weather was necessary for the air path to accumulate a dose. Agriculture (variable B in the air path study) was found to be a significant contributor to the model. Also, nuclide quantity (variable I in air path and' in water path study) was found to be significant in the water path results. This variable was set constant in the air path study in order to obtain information about stack height (variable J in air path study). Stack height was found to be significant in the air path results along with nuclide solubility.

Many interactions were identified as being significant in the sensitivity studies. Significant interactions indicate that the effect that a variable has on the results is dependent on the value of another interacting variable. Thus a combined effect of two interacting variables is not just additive but more like being multiplicative. Significant interaction can dominate the individual effects of the interacting variables. Thus, many of the variables in the studies are not individually significant due to the significance or their interactions with other variables.

For the air path sensitivity study, the significant interactions are discussed below. Weather X cap characteristics (variable A and E) interaction indicetas an important relationship between wind and rain with the geometry and sracing of the caps on the trenches. Soil size X burial depth and soil size X site wind resistance and burial depth X site wind resistance (variables F, G, and K) interactions reflect the relationships involved in the erosion
portion of the air path study. Burial depth X retardation factor (variables G and L) interaction is another significant relationship.

The water path sensitivity study also had significant interactions. Water travel time X nuclide solubility and water travel time X water body turnover flowrate and nuclide solubility X water turnover body flowrate (variables E, H, and I) interactions show the importance of the combined effects. For example, if the nuclide is very soluble and the aquifer is very slow, no effect will be seen. If the nuclide is insoluble and the aquifer is fast following, still no effect is seen. A dose results when the aquifer is traveling fast and the nuclide is soluble. Therefore, where reasonable soil or aquifer retention (delay) exists, there would be little difference between dissolved nuclides and insoluble nuclides in the trench. This is a significant result especially considering that it is found at very low Kds.

In summary, the sensitivity studies have indicated that the Systems Model is driven by several key variables. Other variables of little importance can be assigned constant values or do not need very accurate input. It should be noted that the analysis in these studies did not look at site exposures. This means that high soil surface (or near surface) concentrations at the site show no $5^{.}$Ficance since direct exposure was not included in the study. however, it can be wicluded that direct effects will be essentially proportional to surface/near surface concentrations. Also, as discussed above, nany variables had to be assigned exaggerated values in order to obtain model results. Thus, it appears that burial systems even with weak retention parameters display very resistance to transport. Movement results generally from gross washout or flooding (as in Maxey Flats or West Valley) and not when a good soil path is provided and trenches are properly covered.

8. REFERENCE FACILITY DOSE ASSESSMENT

8.1
 INTRODUCTION

8.1.1 Background

The purpose of this project was to develop a means to analyze the radiological effects of proposed low-level-waste burial sites, burial procedures and associated activities. The objective of this effort is to develop a computer program and data base to calculate podulation dose for a broad spectrum of radionuclide release events and conditions, ranging from a short-tem event suc/1 as a fire in the burial pit or transport vehicle to a long-term event involving the transport of dissolved radionuclides in ground water flows over periods of tens of thousands of years.

The Task 4 activities reported in this section represent work to define and describe tes: cases to (1) demonstrate the use of the model and (2) to give users a check on versions of the code converted to run on their machine. Two reference shallow-land burial sites were defined and 10 test cases associated with those sites were developed to demcnstrate and test different parts of the code.

8.1.2 Relationship to Other Tasks

In Task 1, several existing shallow land burial (SLB) sites were visited and literature reviewed to assess the problems of shallow land burial. Potential release pathways from SLB sites and potential radionuclide inventories subject to release were defined.

In Task 2, the shallow land burial analysis model was develnped. This effort consisted largely of assembling and evaluating existing models for the various pathways and adapting them for use in a systems model. In some cases, entire computer codes were used with some modification, while in other cases only
the core theory of existing models were retained and a new subprogram was constructed. The Task 2 report describes the model in detail.

In Task 3, the sensitivity of calculated results to the various parameters was tested by running the code with statistically-sampled variations 0^{\prime} code input parameters. In this manner, those parameters which most strongly impacted the first result (population dose) were identified.

8.1.3 Approach

The intent in selection of demonstration test cases was to use realistic data and thereby derive answers which are indicative of potential population doses from low-level waste burial activites. It was necessary, however, to take into account two constraining factors, code run time and magnitude of the answer. Some SL3 problems are very quick running, but some problems involving the chronic release and transport of multiple radionuclides over a period of many (e.g., tens of thousands) years can be long running. Test cases which will be used by persori to check the operation of the code on their machine should run, at most, a few minutes CPU.

For low-level wastes, population doses from chronic or accidental release are usually low, but for some pathways and conditions, the dose is so low that the omputer derives only zeros, even with the result printed on "E" format. In the case of chronic releases to air and water, intemediate results are given for soll concentrations since no "real" inputs could be made to produce non-zero dose results.

Ten cases were derived to denonstrate different types of code application. The test case for calculating the dose to a person at the edge of the SLB pit is very quick running and exercises the DIRECT dose subroutine. For this case, a detailed description of site characteristics (meteorology, demography, crops, soil and aquifer) was not needed. The analysis of the radiological effects of a fire in a waste transport venicle is also fast running and invoives the use of the ATMOS air tranport routine and the DOSET population dose routine. The analysis of long-term releases via ground water, is slower running and invoives the repeated applicatiun of the UNSAT unsaturated zone transport subprogram, the AQUIFER aquifer transport subprogram and the ATMOS and DOSET subprograms. Stack releases from the incinerator are obtained by using ATMOS and DOSET.

Detailed description of the reference sites used can be found in Section 8.2 and des s nf the results obtained are in Section 8.3.

8.2 REFERENCE SITES

Two reference sites were described for the demonstration cases; a semiarid site and a wet climate site. It was felt that two sites were necessary in order to fully illustrate operation of the model. Some scenarios used would not actually occur at the burial ground (such as an on-the-road truck accident or release from packaging plant). In these cases, the meteorology and demography of one of the sites was used for the purposes of the demonstration.

An effort was made to make the sites realistic. Therefore, much of the data is taken from real locations with some necessary adjustments and simplifications. The sources of data along with the relationship of the data to real features of sites are identified in the site descriptions. Where data could not be found, estimates were made and identified as such.
8.2.1 Semi Arid Site (Site No. 1)

Typical existing DOE or commarcial semi-arid or arid sites are located at Hanford, Idaho Falls, and Beatty. Most of the semi-arid site characteristics are borrowed from these with emphasis on Hanford and Idaho Falls. (In some ways, Beatty is in a class by itself). Most of the data needed could be readily obtained from information published on these sites.

8.2.1.1 Meteorology

The rainfall pattern used for this site is based on a typical year at Idaho Falls. Monthily rain of 0.72 inches is assumed to occur over a five-day period followed in $_{2} 25$-day dry period (i.e., 8.6 inches of rain per year). Soil evaporation of about 7.2 inches occurs over a 25 -day dry period. The cycle reports each month.

Wind velocity/stability frequency data are taken from the Hanford High Performance Fuel Laboratory (HPFL) ElS. Wind data for the site are given in Table 8-1. The mean annual temperature used was $11^{\circ} \mathrm{C}$ which is for Hanford in 1972.

Table 8-1. Wind Frequency Data for Semi-Arid Site (No. 1).

Velocity $\mathrm{m} / \mathrm{sec}$	C. 67	2.46	4.47	6.93	9.61	12
Stability class						
A	0.17	0.0361	0.021	0.0135	0.0071	0.0052
3	0.17	0.0361	0.021	0.0136	0.0071	0.0052
C	0.171	0.0362	0.0211	0.0136	0.0071	0.0053
0	0.0487	0.0294	0.0226	0.0194	0.0117	0.0095
E	0.0277	0.0304	0.0429	0.0602	0.0327	0.0167
F	0.0393	0.0503	0.0597	0.0506	0.0182	0.0085
G	0.0254	0.0351	0.0382	0.0205	0.0019	0.0002

8.2.1.2 Demography

A one-dimensional population distribution was assumed which is typical of the semi-rural region with nearby small population centers. The distribution used is actually the same as for the wet site which was a year 2000 projection for a 22.5° sector due east of the Savannah River Plant. Table 8-2 gives the demography.

8.2.1.3 Hydrology

A nearby river, 41 km away, has a flowrate of $9 \times 10^{13} 1 / \mathrm{yr}\left(10^{5} \mathrm{cfs}\right)$. These are numbers corresponding to the Columbia river and Hanford reservation 20C area burial grounds. The principal aquifer lies 350 feet bal whe surface and flows an average of $1.8 \times 10^{-4} \mathrm{~m} / \mathrm{sec}(50 \mathrm{ft} /$ day $)$. The depth corresponds to Hanford. The flowrate is large compared to most arid region aquifers but would give conserva:ive results. The aquifer dispersion coefficient is assumed to be $1 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{sec}$ which is a typical value for western desert soils. The aquifer bulk density is $1.7 \mathrm{gm} / \mathrm{cc}$ and void fraction is 0.5 . Table 8-3 gives sorption equilibrium coefficients for nuclides in the aquifer.

8.2.1.4 Agronomy and Topography

Surface till is assumed to be sandy fulviatile and glaciofluvatile sediments composed of 95 percent aggregates smaller than 0.84 mm diameter. Surface roughness features are assumed to be 0.1 m high. The knollslope of trench caps is assumed to be 8 feet high with a 60 -foot half width or, therefore, 14 percent. The percentage of soil remaining suspended when $1 i$ fted is assumed to be 70 percent.

No wind barrier is present at the site. The prevailing wind is assumed to be from 50° and the field angle to the wind is 50°. A field area typical of Beatty is assumed (1200 ft wide by 1600 ft long). Vegetation cover on the site is assumed to se $10^{-3} \mathrm{~kg} / \mathrm{m}^{2}$.

Table 8-2. Distribution of Population Along Prevailing Wind Path for Site Nos. 1 and 2.

Distance (Km)	Population
16	0
32	3000
48	9000
64	5000
80	8000
100	6000
120	10000

Table 8-3. Nuclide Equilibrium Coefficients* in the Aquifer (Note: All isotopes of the same element have the same coefficient)

Element	Equilibrium Constant
H	1
C	340
S	340
Cr	35
Mn	35
Fe	510
Co	340
Ni	340
Zn	340
Sr	8
Zr	340
Nb	340
Tc	1.3
Ru	1021
Sb	10
I	1.3
Cs	70
Ce	340
Eu	4100
Ra	170
Th	4100
U	8
Np	240
Pu	680
Am	240
Cm	240

$* K=1+\frac{K d P}{\varepsilon} \quad$ Where $K=$ equiv. coeff., $\begin{aligned} K d & =\text { retardation factor } \\ P & =\text { bulk density }(1.7 \mathrm{gm} / \mathrm{ml}) \\ \varepsilon & =\text { void fraction }(0.5)\end{aligned}$

8.2.1.5 Vadose Zone

The unsaturated zone between the trenches and the aquifer (vadose zone)
is 350 feet deep (Hanford) with the first 200 feet being fulviatile and glaciofluvatile sediments. The next 60 feet is made up of so-called Palouse soil which is a fine sand and silt. The bottom 90 feet of the zone is coarse silt, sand, gravel, and clay (the Ringold Formation at Hanford). Properties for these layers are summarized in Table 8-4. Nuclide retardation factors (K_{d} 's) for the layers are given in Table 8-5.

8.2.1.6 Agriculture

The fraction of land under agriculture in the vicinity of Site Number 1 is 0.1 with two crops per year. The harvest is $100 \mathrm{~kg} / \mathrm{Km}^{2}$ of leafy green vegetables in one year. There are 50 beef cattle per km^{2} on the average and 10 dairy cows per km^{2}.

8.2.2 We't Site (site No. 2)
 The reference wet site is modeled after the Savannah River Plant. Most

 of the characteristics used were taken from the SRP EIS for high-level waste. Weather (wind and rainfall) and much of the hydrological and agricultural data are taken from the EIS.
8.2.2.1 Meteorology

An annual rainfall of 47 inches (at SRP) is distributed as a monthly rain of 3.9 inches. Each month the rain occurs over a 20 -day period with a 10 -day dry period. An evaporation of .29 inches occurs during the dry period. The 20-10 day cycle is assumed to repeat each month. Wind data for the site are given in Table 8-6. The mean annual temperature is $18^{\circ} \mathrm{C}$.

Table 8-4. Composition of the Unsaturated Zone (vadose)
Above the Water Table.
Semi-Arid site (Site No. 1)

No.	Layer Description	Depth (ft)	Relative Water Conductivity	Bulk Density (gm/cc)
1	Sandy sediments fulviatile and glaciofluviat:	200	1.0	1.77
3	Palouse Soil (Fine sand and silt)	60	0.3	1.73

Table 8-5. Nuclide Retardation Fzctors In Semi-Arid Site (No. 1) Unsaturated Zone.
(Note: all isotopes of same element have the same value)

Element	$\begin{gathered} \text { Zone \#1 } \\ \text { (top) } \end{gathered}$	Zone \#2	$\begin{gathered} \text { Zone } \# 3 \\ \text { (bottom) } \end{gathered}$
H	0	0	0
C	100	100	300
S	100	100	300
Cr	10	10	100
Mn	10	10	100
Fe	150	150	1500
Co	100	100	1000
Ni	100	100	1000
2 n	100	100	1000
Sr	2	2	20
Zr	100	100	1000
Nb	100	100	1000
Tc	0.1	0.1	1
Ru	300	300	300
Sb	3	3	3
I	0.1	0.1	1
Cs	20	20	200
Ce	100	100	300
Eu	1200	1200	10000
Ra	50	50	500
Th	1200	1200	10000
U	2	2	4
Np	70	70	700
Pu	200	200	2000
Am	70	70	700
Cm	70	70	700

Table 8-6. Wind Frequency Data for wet Site (No. 2).

Velocity m/sec	0.35	1.11	2.0	2.89	4.25	6.72
Stability class						
A	0.	0.00128	0.00432	0.00397	0.00304	0.
B	0.	0.00794	0.02744	0.01214	0.00385	0.00012
C	0.	0.00899	0.00230	0.00864	0.00260	0.
D	0.01693	0.13031	0.09633	0.05126	0.04075	0.00339
E	0.10426	0.09727	0.02300	0.0308	0.00420	0.00035
F	0.12085	0.01857	0.00175	0.00012	0.00012	0.
G	0.16371	0.00724	0.00023	0.	0.0	0.

8.2.2.2 Demography

The population distribution for the wet site is the same as for the semi-arid site which was given in Table 8-2. This is actual data for a 22.5° sector centered on due east from SRP as projected for year 2000.

8.2.2.3 Hydrology

The nearest large river is $1.6 \times 10^{4} \mathrm{~m}$ away (distance from SRP burial grounds to the Savannah River) with a flowrate of $9 \times 10^{12} \mathrm{l} / \mathrm{yr}(10,000 \mathrm{cfs})$. The principal aquifer closest to the surface is 50 feet beiow the surface with an average flow velocity of $4 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$. The dispersion coefficient is assumed to be $1 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{sec}$. The aquifer bulk density is $1.7 \mathrm{gm} / \mathrm{cc}$ with a void fraction of 0.5 .

Sorption єquilibrium coefficients for the aquifer are the same as those for the site No. 1 aquifer. These were given in Table 8-3.

8.2.2.4 Agronomy and Topography

The surface soil is s clay, sand, gravel mixture with fine organic particle content. Particles of less than 0.84 imm diameter comprise 15 percent of the surface soil. Surface roughness is assumed to be 0.01 m on the average. The knollslope of trench caps is 14 percent. The amount of soil remaining suspended when $1 i f t e d$ by wind is 20 percent.

No wind barrier is present at the site. The prevailing wind is from 25° and the angle of the trench caps to the wind 0°. As with site No. 1, the trench cap area is represented by a 1200 foot wide by 1600 foot long site area. Vegetation on the site is $0.2 \mathrm{~kg} / \mathrm{m}^{2}$.

8.2.2.5 The Vadose Zone

The 50 foot deep unsaturated zone is composed of uniform material composed of a clay-sand mixture. The bulk den ity if $1.7 \mathrm{gm} / \mathrm{cc}$. Nuclide retardation factors for the unsaturated zone are given in Table 8-7.

Table 8-7. Nuclide Retardation Factors In Net Site (No. 2) Unsaturated Zone.
(Note: all isotopes of the same element have the same value)

Element	$\mathrm{Kd}(\mathrm{ml} / \mathrm{gm})$
H	0
C	100
S	100
Cr	10
Mn	10
Fe	150
Co	100
Ni	100
Zn	100
Sr	2
Zr	100
Nb	100
Tc	0.1
Ru	300
Sb	3
I	0.1
Cs	20
Ce	100
Eu	1200
Ra	50
Th	1200
U	2
Np	70
Pu	200
Am	70
Cm	70

8.2.2.6 Agricul ture

The fraction of land under agriculture in the vicinity of the wet site is 0.30 (taken from the SRP-HLW EIS). A two crops/year harvest yields $5 \times 10^{-5} \mathrm{~kg}$ per kin^{2} of leafy green vegetacles. There are 10 beef cattle per $k \mathrm{~m}^{2}$ and 20 dairy cows per km^{2} on the average.
8.3 RESULTS

8.3.1 Description of Cases

Eight basic scenarios giving ten cases (two sites for two of the scenarios) were chosen for the demonstration runs. These covered packaging, transportation, burial operations, and post- burial. Where applicable, the two separate sites were examined. The eight basic scenarios were:

- 0-4 Accident stack release from incinerators large volume - filtered
- 0-5 Accident stark release from incinerators small volume - unfiltered
- A-11 Chronic escape to the atmosphere during pre-entry inspection of loads
- B-2 Exposure of personnel to an improperly shielded package (High Intensity)
- C-6 Exposure of personnel to uncovered trench area
- E-1 Chronic release to atmosphere from burial ground due to wind erosion of the soil
- E-2 Chronic release to water sources from the burial ground
- T-2 Truck accident accident on the road with major fire, explosion involving the entire truck including all waste and vehicle fuel supply.

Table 8-8 summarizes inputs and results for the cases studied. The detailed results are given in the computer output at the end of this section.

8.3.2 Releases From Incinerator Stack

This scenario is related to a packaging operation where the waste is burned and then fixed in some matrix (such as bitumen). Case 1 represents release of a fraction of material due to some incident but with proper stack filtering involving packaging plant waste ($* * W S-4$). This scenario number 133 yields a total integrated population dose of 2.44×10^{4} man-rem for a 14,000 population. The principal nuclides responsible are CS $137\left(8 \times 10^{2}\right.$ man-rem), CS 154 (10^{3} man-rem), Np 237 (10^{2} man-rem) and $P_{u} 242$ (2×10^{4} man-rem). The main biological paths are dires' inhalation (10^{2} man-rem) leafy vegetable ingestion $\left(1.4 \times 10^{3}\right.$ man-rem) resuspensi inhalation (2×10^{4} man-rem) milk ingestion (2.4 $\times 10^{2}$ man-rem) and ground shine (4×10^{2} man-rem).

Case 2 is similar but much more severe since the stack is not filtered. All of the same biological paths and nuclides are important out the effect is about 3.5 times larger.

3.3 .3

On-Site Activities
Cases 3, 4, and 5 all relate to direct exposure of personnel to waste material. Case 3 is a problem of atmospheric transport due to waste disturbed by inspectors while Cases 4 and 5 are shine exposures.

Case 3 is scenario 40 involving exposure due to loose material escaping during inspection from a large box containing reactor decomissioning, decontamination waste. Most of the contribution is from Co-60 (6×10^{-6} man-rem) and the major path is ground shine. Some minor exposure from ingestion paths is also present.

Case 4 is scenario 44 involving accidental exposure from inadvertent shielding removal from a high intensity load ($\mathrm{CO}-60,3000 \mathrm{Ci}$). The exposure is large: 7 rem to any workers within 3 m for 2 min .

[^2]Table 8-8. Summary of Cases Studied Population: 41,000

Case No.	Scenario No.	Title No.	Inventory**	Input Data	$P_{\text {a }}$ th*	$\begin{aligned} & \text { Cumulative } \\ & \text { Dose } \\ & \text { (man-rem) } \end{aligned}$	Oirect shine (rem)
1	133	0-4	WS-4	$\begin{aligned} & \text { Volume }=14,00 \mathrm{om}^{3} \\ & 560 \mathrm{hrs} \text { exposure } \\ & 100 \mathrm{ft} \text { stack } \\ & \text { Site } \$ 1 \text { wind } \end{aligned}$	2	2.4 E + 4	
2	134	0.5	WS-4	$\begin{aligned} & \text { Volume }=25 \mathrm{~m}^{3} \\ & 1 \mathrm{hr} \text { exposure } \\ & 100 \mathrm{ft} \text { stack } \\ & \text { Site } 11 \text { wind } \end{aligned}$	2	$7.3 \varepsilon+4$	
3	40	A-11	WS-3	$\begin{aligned} & \text { Volume }=1 \mathrm{~m}^{3} \\ & 2 \mathrm{~min} \text { exposure } \\ & \text { Site } \ddagger 1 \end{aligned}$	2	6.6 E- 6	
4	44	3-2	WS-1	Line source 10 m Distance $=3 \mathrm{~m}$ 2 min exposure ケ' steel container	3		$7.0 \varepsilon+0$
5	98	C-6	WS-6	Volume $=2100 \mathrm{~m}^{3}$ Distance $=50 \mathrm{~m}$ 2 min exposure $1 / 16^{\prime \prime}$ Aluminum	3		7.3 E-3
6	111	E-1	WS-6	Stite 11 10 yr exposure	951	0.0 E 0	
7	111	E-1	WS-6	Site 42 10 yr exposure	951	$0.0 \mathrm{E}+0$	
8	112	E-2	WS-5	Site *1 10 yr exposure	31	0.0E +0	
9	112	E-2	*S-6	site $\# 2$ to yr exposure	91	$0.05+0$	
10	139	T-2	WS-2	30 min exposure ${ }_{6}$ Heat Release $=5 \times 10^{6}$ BTU Volume $=90 \mathrm{~m}^{3}$ site $\neq 1$ wind	3		1.42 E-4
					2	$1.2 \mathrm{E}+2$	

*Path Codes: $2=$ a mospheric, $3=$ shine, $91=$ seepage to aquifer, $951=$ seenage, wind erosion
**ote: Inventories have been renumbered since Task 2 Report. See Tables 4-2 through 4-6

Case 4 is also a shine case but less severe than Case 3 . The source is a section of exposed trench ($2100 \mathrm{~m}^{3}$ volume of waste) or inventory WS-6. This is of the nature of routine exposure and is 7.3×10^{-8} rem at a 10 m distance assuming equivalent average shielding similar to $1 / 16^{\prime \prime}$ of aluminum.

8.3.4 Routine Transport From Wind and Rain

Cases 6 through 9 involve routine influence of weather or buried waste at Site No. 1 (semi-arid) and Site No. 2 (wet). In all of these cases, the quantity of nuclides entering the biosphere was too small to calculate a dose. In Case 7, a detailed output of soil and water concentrations from UNSAT (called "HYCRO OUTPUT") is provided to show what happens to nuclides.

Cases 6 and 7 are calculations involving seepage of water to trenches, dissoiving waste, carrying nuclides to surface by evapotranspiration and carrying them to the atmosphere by wind erosion. The second page of Case 6 shows the atmospheric concentration. The largest ar? from $\mathrm{Fe}-55, \mathrm{Co}-60, \mathrm{Co}-58, \mathrm{Cr}-51$, and Cs 134 . These very low concontrations are not sufficient to give measurable dose. Case 7 is similar. Examination of detailed output, especially soil concentration**, shows how nuclides are tightly bound to the solid or are carried to the aquifer.

Cases 8 and 9 also give no population dose since the inputs to the water paths are again very small and the half lives of most nuclides escaping are such that they decay before reaching the biological path.

8.3.5 Vehicle Accident

Case 10 is scenario 139, a major truck accident with a truck carrying LWR operational waste (WS-2). It is assumed that the truck is totally consumed by fire and two percent of the waste is released to the atmosphere. Dose from direct shine is found to be negligible while a population dose of about 120 man-rem results from atmospheric transport. Host of this dose is due to $\mathrm{Cm}-244$, $\mathrm{Co}-58, \mathrm{Cs}-137, \mathrm{Cs}-134, \mathrm{Sr}-90, \mathrm{~Np}-237$, and $\mathrm{Mn}-54$ and 80 percent is due to the inhalation of resuspended material.

[^3]
DETAILED RESULTS

Note: "MREM" in these outputs means man-rem not millirem.

CASE 1

path witrast

MiSE ：IIT．＇I（ int＊）

F．in Pet．it

¢ $\quad 51$		－	5．37＋111
Fe＇is		2／n5	
2405	1．Pef＋00	Hリ160	1．34r＝01
\＄1124	3．10E＊0n	S＋1＞5	4．$+35+00$
Futhe	ア． $511=94$	FH154	2．\％－－ 1
＋6：5s	1．51f－ac	5×40	6． H ＋－$=1$
C315］		1．53	4．41F＋111
Csisa	9．976＋92	＋	5． $245=15$
Cl 14	2．1ut－n？	1.159	1．4．4t－6？
1099	7．8UF＝0．4	1129	1．03F－01
f．SIS	？． 2F $^{\text {－} 22}$	（1）＞37	$1.43 \mathrm{H} \cdot \mathrm{l}$
Dutia		P． $\mathrm{P}^{\text {P4 }}$	5．7hF＋180
F1＞4．	？N0F＋W01	P1441	m．45F6 60
Dij）a？	2． $324+04$	AN 241	1，11＋＋01
4 4？a？	5.35706	4 ＋ 3 a 7	1．331．0．13
C4？4？	4． 5 cE + Ou	C＊243	1．17t＋01
（4）4．4	5．cuf＋il		
FIPTAFCE（H）			
106.	？．94F＋0？	$3 c^{\circ} \mathrm{s}$ ．	$4 .+1 E+113$
4403 ．		cano．	3．17t＋U3
aina．	$5.74 \mathrm{~F}+0 \mathrm{C}$	16400．	$2.16 F+63$
12000 。	2． 7 ， $7+015$		

Patil

9．20E－02 GRTHHO SUINE 1．，N1F＊ 0 C H．THAAL ：TINA

 7．ムのE＋П 1 $1.3 \mathrm{nt}+115$
？． $321+01$
C α, A *

motil wity	2．44F＊：14	41.1	A． $\mathrm{Nat}+0$ ¢
t1vt．	1． c $^{4} r+103$	＊ 11 it	－ 4 －it and
6．0．a）	3． $6.9 t+0$ ）	1 wl	
6．1．THALT	1． $542+01$ ）		）． $\mathrm{H} 7 \mathrm{t}+$ ）？

SnI：4．49t＋az

A．it Cormp
C•11
5． 4 i4F＋ 13
1． $5 \mathrm{ut}+04$

c＋4］	7．5nF＝31	（1）${ }^{\circ}$	$5.37 t+41$
FES	？． $645+311$	P64	$4 . \times$ ¢F +0 a
1＋35	1．22F＋A5	kN10n	1．3AF $=31$
	3．1UF＋ 10	$5 * 1>5$	4.54 ＋00
Euls？	9．51E－34	f\＃154	？．72E＝01
Futs5	1．51F－72	S＊－40	
CSISt	A． $77 t+3$ ？	$\cdots>4$	a，41F＋61
f＞154	9．97F－1？	い下	Y． $24 t=4$ ？
ris	？，1 $1+5=3$	N150	1． 4 IE＝11？
［Cit	． $\mathrm{AYF}=44$	1124	
C3135	2．93F－18	，PCF？	1．42E +62
vil？sa	1．6．4F＋19	19234	3． $74 \mathrm{~F}+110$
$P u^{2}+1$	2．nut＋tur	Pいされ1	¢．45E＋60
PW？${ }^{\text {a }}$ ？	2．321．04	A1． Pal	1．11F＋11
$4 \rightarrow 74$ ？	5． 35 － 3 （	4， 245	1．321＋na
C． 24 ？	4．525＋14	［ 4,24	1．17t＋11
Cr744	5．60E＋61		
TISIATE（m）			
1063．	？．94F＋n2	3200	4．41f＋63
4ヵッ．	7．9，${ }^{\text {F }}$＋ 3	hurs．	3.17103
49013．	3．74E＊ 3	10000 。	2．16F＊63
129\％．	2．185，${ }^{\text {a }}$		

$3.60 t+02$
$2.25 t+04$
$1.56 t+113$
$3.42 t+0 ?$
r．enat +05
9． 4 य 4004
f． 4 ？+ ＋0？

＊ASTES ARE ROI FTLTENEN AT HIF＊SITE． MFLF ASE
$1 n+11^{*} \%$
IHENTORY ImS＊4
HatM
くの母

0. $100 \mathrm{vt}+0140 \mathrm{H}$. HS

Qatr

7.1>1, en

$2 . n^{3}+\operatorname{con}$
$5+11+65$
2. $11+\mathrm{t}+35$

1. $2 \mathrm{nt}+64$

2. $235=01$ GFithon 5-11AF
1.17E 03

$0 \tilde{n}$
0
$\vdots \approx$
\approx

Cloun Sutne	2. $235-01$	
D. 1tnalatiun	4.) IF + a	*. Jthak at 16a
Wattw I CoESTIUN	4. 以巨* ${ }^{\text {a }}$	L. V. TVFSTInm
mont imbrstion,	? , 54E $=12$	
AEEt I*GESTIK.	? 195, 0 C	

VJLUVE UF PACKALE!S C. 10 OOt * I CLAIC METERS

- n
NuCLTUE
$x \in=0$
$u=\frac{5}{2}=\frac{5}{2}$
$4=5$
taposithe TINF IS

TEST CASES FUR NIFINT NIHMBH 4 11／6／AO

$2.54 \mathrm{E}=\mathrm{us}^{2}$
$4.51 \mathrm{~F}=0 \mathrm{n}$
20
1
$=1$
0
0
$5.01 t=06$
9． $55 t=07$

$1+16 n$
1
159
$5.93 \mathrm{~F}=11 \mathrm{~h}$
$1.45 \mathrm{~F}=194$
$0.110 \mathrm{~F}+40$
$\begin{array}{cc}3806, & 1.455=11 \mathrm{~h} \\ 2400 . & 7.935=07 \\ 10060 . & 4.498=07\end{array}$
\rightarrow

Maton．
Man．

> Paly

Tとトい
lut！

1． $934=0 n$
$3.10 F=10 n$
－．$i n E=0 n$
$0.01 t=0 n$

A6F GK17．JP

4．41
4． 141

HIHELT I XNUSIHE VUSE（KEM／PEASIN）U．VOC 100

HATI

Fiss	a， AFF－AM $^{\text {a }}$	fいち口	$5.915-06$
9105	A．54F－al	－1宁	1．4it－19
C．1．	$4.64 t=11$	ruvs	
CiSIA．CE（4）			
Inon。	\therefore A $3 \mathrm{~F}=07$	Sous．	1．45t 510 n
4才0＂	2．114－4\％	н400．	7．95\％－11
4.450	4． $7 c^{6}=037$	15000．	4．पYE $=07$
12^{000}	¢． $61 t=97$		

Cleun silf if
6．I＊NAL ATIUv
watte InGostlon
WH：1：GFST1：1＊
BEFF L＇H，FSTIO．

 －16E－12 MILK IthGGSIILN 1，$\angle F=O B$
$5.6^{3}+=0 h$
1．131－6m
 $\mathrm{n} .65 \mathrm{t}=07$
$\mathrm{~B} .53 \mathrm{t}=0 \mathrm{M}$
3ulia：

b． 6 fit $=1$ in

borat rasct
s．i：
4． $54 \mathrm{~F}=110$
1．1月R $=00$
B．Altoth
AGF GrNup

CASE 4

SCt AKIU $\quad \mathrm{aH}=\mathrm{ntH}: \mathrm{au}$

PATM HELFASF
soug $0.1++01$
3 WASIE CHFACT (SHILE)
VULUWE UF PACAAGE IS C.DODDF: C CUBIC METENS

```
8-37
CLOIMNSHTNE
CLOUNSHINE
CLOUM SHINE 
CLOIMNSHTNE
BEEF IFGOFSTIHM
**OEP20 G.RULINN SHINF
0.OUE $00 N. [NHALATIMA
0.7vE&00 L. V. IN+.FSTION
O.OUE*OO 'ILN INGESTION
0.10E*00
                        MuSE HHIFHIT (TQE4)
                        EvN NATif !
                            TESI CASFS FON KENONT NIMI,FG & 1T/B/AO
                    CHMHLATIVE POPIHLTIU, USSE O.VOE*NO
                UIHFCT EXPUSN,NE COSF (NT=ハNENSI-4) T.USt*00
```



```
        Ra'子INAHICLINE
    Cvou G.0.f%00
    OISTAHICE(N)
    4. 0.0日E*00
PATH
    ONGAN
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{OnGan} \\
\hline manly aunt & 3．06t 000 & Hunic & \(0.00 \mathrm{t}+0 \mathrm{O}\) \\
\hline し1ver & ＂000r＊＊u & ＊II－ve y & U．00）+10 \\
\hline G．1\％Al） & \(0,000_{t}+00\) & Lfors． & d． 00 ¢ \(+0 n\) \\
\hline G．1．TRaCt & 4．00t＊00 & r1val｜In & 1．03F +00 \\
\hline sriv & ＂）．VJE＋0］ & & \\
\hline \multicolumn{4}{|l|}{－GE chave} \\
\hline CHILO & 0．06F + no & TEFH & \(0.00 c_{t+0 n}\) \\
\hline \(4^{\text {¹4，}}\) ， & の．n日F＊ 10 & & \\
\hline
\end{tabular}
```


CASE 5

$$
\text { SCEMANII nfivent ; } 9 \mathrm{~A}
$$

 faventiat ins-b NATH WFIGASF 3000 nasif Cuntact $\begin{aligned} & 0,1 t+01 \\ & (2 H I N E)\end{aligned}$

-. $41 \cdot \mathrm{c} t+1 n$
$010 \mathrm{Cl}=9 ?$
$40 \mathrm{Cl}=03$
1.4いいt=04

4. A1 OF $=01$
3. PuCt $=02$

?.0c0t=02

- A1...t $=1.14$
1.1 Ct $=04$
3.1 . $\mathrm{CE}=05$
. 4 い. $\mathrm{Ct}=0 \mathrm{O}$

S． $2101=015$
1．fot－ith
？． 51 th - －is

픈

E104
1.86
$\times 169$
$\times 165$
2.05
54.00
40
$10 n$
124
125
125
1125
$C 5154$
$\begin{array}{lll}\operatorname{cst} 14 \\ \operatorname{csi} & 55\end{array}$
C＋144

1,035
veら1
$+3 .+34$
Z
－$-2+1$

HISE WHIVIT (NHE 4)
FHN PATH ।

4anIOMCLIDE

9. $0177+00$
$0.319++40$

 HiN
nitopr T. Yuril. . $40 \mathrm{ft}+00$ $=3$
\vdots
\vdots
\vdots
\vdots
 ".vit +un

[^4]

? $0,00+100$

CASE 6

 c
$\frac{c}{4}$
4
2
3
3
$>$
0．visf＋un

11． $5.75+110$

0
0
0
\vdots
$=$
0
0
\vdots
$e=$
$v=$
$\dot{v}=$
\vdots
$\dot{v}=$
z
$6=$
\vdots
\vdots
\div
\div
\vdots
$=3$
$=c$
0
0
\vdots
\vdots
0
3
0．$+14++1) 0$

$0,5 \cdot 14+60$
$0, n \cdot 1+19$
n． 6 いt +60
0．OのF＋э ！
$\begin{array}{rl}3200 & 9 . j .32+00 \\ 6400 . & 0.095+40 \\ 10000 . & 0.09 E+40\end{array}$

0.00 OH
$0.0 \mathrm{Ht}, 0 \mathrm{y}$
${ }^{0} \cdot{ }^{610}+40 n$

$\frac{2}{2}$
$=\frac{2}{3}$
3
$=2$
QATH

1144
1.154
$+5 \gg 6$
1H？
1.100
1.125
2120
$11<4$
1251
$1+55$
1.160
1105
51.70
s． 7 （1） $0 u k+30$
$-0 u F+30$
$0.005+06$
の．2v：+10
0．N0F＊Nい
＂．cut＋111
0．Dut＋00
3
e
0
\vdots
3
2
2

2
0
0

3
$\stackrel{3}{2}$
另

$\pi u+7 \pi 0^{\circ}$
$n v+3 u 0^{\circ}$
00

BL + snl 0°
$0 u+\tan 0^{\circ} 0$
$6 u+500^{\circ} 0$
OATH
CI OHI SHIHF
D．I＇NAL＊II

 3 －0ックt＋0．
"•0"E +00

> (") ${ }^{\prime \prime}$)
> $\begin{aligned} & \text { w s? } \\ & 13,39\end{aligned}$
> v.? 31
$\begin{aligned} & 611 \% 5 \\ & 1.156\end{aligned}$

1. 25
P. 1949
$\begin{aligned} & 1649 \\ & 511 \leq 1 \\ & 11 ? 3\end{aligned}$
$\begin{aligned} & \text { cib; } \\ & \text { cil }\end{aligned}$
ci. is?

$00+400^{\circ} 0$

CASE 7

$$
\begin{aligned}
& \begin{array}{l}
9 \text { UNSATHRATEU ZUTE NATFH TRANSPIGRT } \\
\text { i AGHIFLR THANSH TIRT }
\end{array} \\
& \text { INVEMTHKY :wseb } \\
& \text { NATH RELFASE } \\
& \text { FRATIN } \\
& \text { i UNSATHRATEU ZULE }
\end{aligned}
$$

$$
\begin{aligned}
& 4,5 u+t=0 ? \\
& ?, 5++t=0 ? \\
& 4,316 t=0 ?
\end{aligned}
$$

$$
\begin{aligned}
& 4.36 \omega t=0 ? \\
& 4.56+t=0 ? \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& 1.56 n t=01 \\
& 1.5+n t=05 \\
& \text { ?. } 46+6 t=01
\end{aligned}
$$

$$
\begin{aligned}
& ? .46+1+=111 \\
& ? .01+t=113
\end{aligned}
$$

$$
\begin{aligned}
& E x \\
& 1 \\
& 1 \\
& i
\end{aligned}
$$

$$
\text { 3. } 21+a+2 t=03
$$

$$
\begin{aligned}
& -1+1 t=n h \\
& . n 61, t=63 \\
& -1+16 t=n a
\end{aligned}
$$

$$
5=306-t=04
$$

$$
\begin{aligned}
& a \cdot n 1-n t=6 ? \\
& 3:>t=0 h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } 110+2 t=03 \\
& 4 . n 6 t t=1,1 h
\end{aligned}
$$

$$
\begin{aligned}
& 4,+6,0+=05 \\
& 4.48+1=115
\end{aligned}
$$

$$
\begin{aligned}
& 46+1=1+h \\
& , N 6,0 t=05
\end{aligned}
$$

$$
\begin{aligned}
& 16,125 \\
& 7
\end{aligned}
$$

$$
\begin{aligned}
& 7,10 n E=06 \\
& A, 40-t=07
\end{aligned}
$$

$$
\begin{aligned}
& 40=7.01 e^{\circ} \\
& 20=7.00^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& 7,16 n t=05 \\
& 4,26+1=04 \\
& 3,26 i t=05
\end{aligned}
$$

$$
1,107=05
$$

$$
\text { 3.zert }=05
$$

$$
\begin{aligned}
& 4,5 u c t=06 \\
& 0.100 t=06
\end{aligned}
$$

$$
\begin{aligned}
& 6.71+1 t=06 \\
& 1 . n 5+1=05
\end{aligned}
$$

$$
46+1=0 n
$$

$$
5,56+1+06
$$

$$
\begin{aligned}
& 1-6 v \quad t=07 \\
& 10 t=07
\end{aligned}
$$

$$
\begin{aligned}
& v 0=7,6 n^{*} 1 \\
& \times 1,1,60^{*} 4
\end{aligned}
$$

$0.60^{n} t+40$ $9.0 n t+60$

$0.00 F+00$
0. $90 F+00$ GF GUNO S.1TAF

$$
\text { SITE } 1
$$

```
    T+F:******
    1.015+3n
1, [ ¢, <, , ,u
& +1!,
```

HA．IIHH－ICLITE \qquad
14
.51

＋ 5	9．00¢ +00	C14	
535	$0, ~$ OHF + no	（1） 51	＊．335＊＊年
－1．54	0.03 F －07	F． 35	$0, \mathrm{UnE*}+00$
（1）5M	$0.005+10$	C100	
＊ 150	$0.00 t+10$	1.163	U．U0E＊0s
	n．0ut＋iv	S．un	3．0．0F +100
$\mathrm{NH}^{2} \mathrm{~A} 4$	$0.005+30$	7．95	（0．） 3 \％＊－a
Tixy	5．062＋90	1100	$0.30 \mathrm{~F}+100$
31124	－．006＋10	8．173	$0.00 \mathrm{O}+00$
1125	0．00t 0 － 00	112°	$0.008+10^{0}$
CSIs ${ }^{\text {c }}$	9．90E＊96	C3135	$0.00 \mathrm{E}+$ Un
c313）	n．00e＋90	（1） 144	0.100% na
Fils？	0 －n ¢ F＋ 00	t1154	－． $30 \mathrm{E}+00$
5055	a．0．t＋an	1.85	
142］3	O．0uE＊0u	1以5\％	$0.0 .15+00$
1－23	？．nuF＊？	$\cdots 3 \mathrm{~A}$	－V．UnE＊un
N－237	？．e0E +100	1－630	U．00E＊00
－1139	0.00 coll	1． $\mathrm{P}^{\text {a }} 0$	$0.00 \mathrm{E}+00$
9.941	9．006＋90	vicus	
$4+3+1$	0．06t＊90	いいついく	
$4+5+3$	0 －nuFtaio	（1）4c	$0.00 \mathrm{E}+$ U0
（ $42+3$	9＊＊UE＊ 0	C＊24	
aistanctic）			
$1 \mathrm{mlos}^{10}$	9．00F＊ 10	1250．	6．0nt＊00
4403.	$0.00 \mathrm{~F}+00$	6400．	＊＊00E＊＊）
41／7？	$0 \cdot 06 F+70$	10000．	0. Jof aua
12900．	0．00t＋ 70		

[^5]$4.4 u t+4 n$
$0 . v a E+00$

1250.
6400.
10006.

＋2	
C14	$1.10^{\text {coten }}$－ 05
315	2．51．01＝．．．s
Ces）	
＊＊．54	
FESS	
Cish	
C（in）	3.9 －rt
$\cdots 149$	
$\sim 1+3$	1． $21-9 \mathrm{cox}$
4：05	A．06－．\％$=04$
3600	1． 40 CE $=95$
tis． 41	
i－45	わ． 0 6．1t $=05$
1640	
WH100	
3H124	
Sul？	1． $56.06=05$
1125	4． 5 wect $=0 n$
1129	
Csita	1．46－H203
Csiss	9． 6 （0） $\mathrm{c}=0 \mathrm{M}$
CSI37	？． 5 \％htes
CF144	b． $00 \mathrm{Ct}=\mathrm{s}^{2}$
E115	1．441ten
t1．154	1． 4 4． C t－6t
E115 5	1．3acteram
＊a2？	3．$a^{5, n} \mathrm{~A}=0$ ？
1 mosu	
1 Hezs	2．SでFF＝10M
11255	－＊inctoln
1.234	$2.15 n^{2}=000$
P．P -37	3．Jent $=10$
Pv 258	9． ¢ $^{\text {n }} \mathrm{E}=\mathrm{n}$ ）
F1．254	1．>4 㫙 $=07$
サリく40	2．01 $n_{t=07}$
स1241	4． $95.5 \mathrm{k}=05$
P1． 342	7．200＊＊10
$4-241$	
Ample	
Ardas	h． 50 －
$\mathrm{Cm}<4{ }^{\text {c }}$	7． $50+\mathrm{tan}$
C．243	1．ACut－n9
（＊くい4	

$-3.15 \mathrm{~m}+\mathrm{t}+03 \quad$ y． $11 \mathrm{aOE}=03$
$\begin{aligned} & 30 \\ & 0 \\ & \vdots \\ & i \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\begin{aligned} & \text {－} \\ & \text { e } \\ & \vdots \\ & 5 \\ & \text { e } \\ & \text { on }\end{aligned}$
$1.161^{\prime \prime}++0$ ？
$\begin{aligned} & \text { 1．} 9042 t+02 \\ & \text { 1．} 7057+02 \\ & 1.429+0 t+0 ?\end{aligned}$
$\begin{gathered}2 \\ 0 \\ i \\ i\end{gathered}$
N
草
2
．
$\begin{gathered}n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ i \\ i\end{gathered}$
$\begin{aligned} & \text { 4．Thyoeton } \\ & 0.01 \mathrm{OnE}+00\end{aligned}$
$\begin{array}{r}0.5110 t+00 \\ 0.501\end{array}$
$\begin{aligned} & .5010 \mathrm{E}+00 \\ & ., 6140 \mathrm{O}+00\end{aligned}$
$\begin{aligned} & e \\ & 0 \\ & 0 \\ & c \\ & u \\ & 0 \\ & 0 \\ & 0 \\ & c\end{aligned}$
$\begin{aligned} & c \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$
2．
$-1.43+v t+03$
$\begin{aligned} & -n .31 \\ & -0.5 s \text { uut }+02\end{aligned}$
$\begin{aligned} & -3 . n 40.0 t+0 \text { ？} \\ & - \text { S．Dnunt } 0 \text { ？}\end{aligned}$
$\begin{aligned} & -1.76 \cdots+t^{6} 7 \\ & -1.0 \times 00 \mathrm{t}+0 \text { ？}\end{aligned}$
$-6.06014 \mathrm{~L}+01$
$\begin{aligned} & 50 \\ & 0 \\ & \text { e } \\ & 0 \\ & \text { co } \\ & \text { in } \\ & \text { in } \\ & 10\end{aligned}$
$\begin{aligned} & -7.20+n t+0 n \\ & -4.2^{64 a n c}+00\end{aligned}$
$\begin{aligned} & e \\ & 0 \\ & \stackrel{e}{c} \\ & \text { e } \\ & \text { e } \\ & e \\ & \vdots \\ & -\end{aligned}$
$\begin{gathered}\text { Niven }\end{gathered}$
$\begin{aligned} & 3 . \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & n\end{aligned}$
$\begin{gathered}3 \\ \vdots \\ c \\ c \\ c \\ i\end{gathered}$
b． $4906 \mathrm{t}=\mathrm{u}$ ？
o． 400 Ht－v？
7．2001ヶーも？
8．000 0 ค $=0$ 2
A． $200 n t=0$ ？
n，上，00ット $=$ U？
$\begin{aligned} & ? \\ & 1 \\ & 3 \\ & 7 \\ & 7 \\ & 0\end{aligned}$
$\begin{aligned} & n \\ & 3 \\ & 1 \\ & 2 \\ & 0 \\ & \vdots\end{aligned}$

1
0
0
-
-

Abstract

\qquad 6 3 3 \vdots \vdots \vdots \vdots \vdots Cr 1 \vdots 3 | ह |
| :--- |
| 1 |
| $:$ | ？ \qquad品 \rightarrow ，，，$, 1,1,0 \%$ ジロコーー 0 \vdots c c c． 2 0 0 0 0 η \vdots \vdots \vdots 7 2 2 2 $?$ $?$ \vdots 0 \vdots

 30
i
2
0
0
0 n
3
3
3
3

 5
1
\vdots
7
7
7

， 1	wisut	Velwat	NaClin	＋Ax	445
（ET）	$6{ }^{*}$	${ }^{+1}$	CI	［ I	CI
6．0nout＊uo	1． $2035 t+04$	$3.5306 \hat{2}>02$	$0.00002+60$	U． 6 ann	＊．0000t＋40
＞．60 Jut＝－1	2．4in9t．0．04	7，46．40t 60 ？	3．0．40 $2+68$	3． 6100 ）$=04$	$2.1445 t=69$
1．1760＂t＋ 6.3	1．1．031t 005	S．1A1ttous	4．496，${ }^{\text {c }}$－109	C．1445t－1）	
5． 960 ult oub	？．16s3t +105	t． $\sin 29 t+05$	$4.1 n 7 \mathrm{nt}$－ 11 m	$4.40+4 t=119$	
	C．4rcortin		＜． 3 ？ $7 \mathrm{t}=$－ 7	4．1． $75 t=0$ A	1．0＾94＊－\％
1．S0．7．it +31		7．672Ct 063	7．5．15，水 $=$ 6n	二． 4 くから $=0$ ？	7． 532 t L－U6
2．0000t＋J1	3．0104t＊us	Isthlotan	4．4911t－05	7．565yt－106	4．$+83 n+$－$u^{\text {F }}$
5．4040\％－Ј	－价 $59+4$＋15			＂．05 acat＋90	
－0．（2）intoul	4．A130t＋05		6．004日\％＋60	「．60p4Ft00	$4.4005_{4}+60$
S．00402．01	C．4．0．09t＋115	5．41596＋0．4		f． $00 \mathrm{OCOt}+00$	0．30』ロF＊ 0 a

54） $495=8$	－4． $11^{4} \mathrm{nt}+03$	3． 4 ค jnt $\cos ^{3}$
	$\left.{ }^{4}+114\right\rangle+05$	$-2^{2}, 41 e^{4 t}=u ?$
n． $3^{\circ} 4^{2} 2 t=05$	－4，11m7r＋9x	$=<*^{+1} 1 z^{-1} \mathrm{k}=0$ ？
52ら日E－0才	$-4,115 ?+03$	－2， $61245-02$
505Ut－0x	－4，1itute 05	－ $2+81>4 \mathrm{c}=02$
5ばらリf＝05		$=2,41<4 t-02$
－ 5^{n} ， $11-68$	$\left.-4.1^{23}\right)^{41}+45$	$\cdots ?+n 1<5 t-0$ ？
45－11－07	$\left.=4.4{ }^{64}\right)^{4}+4^{3}$	
S6uil－0？	－4．0n37r＋ 45	＊2＊27＞nE－91
＊．S4int＊0？	$=4.074+05$	$3.5474 \mathrm{c}=65$

$\rightarrow 3 \rightarrow-$

117，		

ceecegeceesetecenectecececececece
 2
2
0
0
\vdots c
c
c

ップラッ：
 10 E＊$=0$
$1 \rightarrow 0$ rf

5F91E－0 ． 5 म 2 m $1.23^{n 1 t}=07$
$1,26555=07$
$1.2755+07$ 1．2735t－i15 $\overbrace{2}^{c}$ ：
\vdots
\vdots
\vdots $34 y ट t=04$ 1n04t－14

 ． 11717 t－us － 4 วa4t $=0$ ？ | e |
| :--- |
| 0 |
| 0 |

 ＊ 150 L

2u3st＊ 0
 Mi No．R 7E 3． $1^{n} 1^{n t}+0$ ， 3
2
2
2
0

0.
\vdots
\vdots

（FI）

FHIFKEL e
c
它 1． 1 a J NE $=$ U5 2．SA aOE－U 1． $20.5 \mathrm{FE}=0$ ： －zaのnを＝03
 3．9nont＝u5
$7.2000 \mathrm{~F}=\mathrm{U}$ w
2
3
3

2 | C． |
| :--- |
| + |
| $\vdots 8$ |
| \vdots | 80

4
\div
5
0
0
 0
0
4
0 － 0.606 AE +90 0.000 nt +000

 $6.903 n t=05$ 4 ．buCuntous 1．S00nt＝u5
1．Sneptous 4．Saunt－uh
 $9.6049 \mathrm{t}=08$
$2.5409 \mathrm{t}=63$品 3
1
4
7
7

-7 | c |
| :--- |
| 1 |
| 7 |
| |

 $1.1425+-1$ ？

$4.01577=11$ | $\frac{\pi}{1}$ |
| :--- |
| 0 | e

e
e
t
e
e
e
e
e
e
e
e $c k$
s
\vdots
c
$=$
$=$
$=$
$=$ x
1
$\frac{2}{2}$
m
m
5
2
2 0
i
\vdots
\vdots
2
2
2 20
$z=$
\vdots
\vdots
$=$
$=$
$=$
$=$
0
0 0
0
4
0
0
0
0
 0
0
\vdots
\vdots
e
c
0
$=$ 0
0
0
$\stackrel{1}{0}$
e
5
5
3
 6．u ef $40++00$ $2 c$
03
+1
\vdots
\vdots
\vdots
\vdots
$=$
2 a
3
\vdots
\vdots
\vdots
0
0
\vdots 1
3
2
2
2
2 $20=70600^{\circ} 6$
$1-30^{\circ} 1+5^{*} \mid$

$$
\begin{aligned}
& 60094+00 \\
& .00004+00
\end{aligned}
$$

$$
\begin{aligned}
& 516141
\end{aligned}
$$

FACly
$\begin{gathered}- \\ { }^{\circ} \\ \end{gathered}$
$\begin{gathered}\text { a } \\ 0 .\end{gathered}$
$\begin{aligned} & 33 \\ & 1 \\ & 6 \\ & 5 \\ & 3\end{aligned}$
0. ． 6 ． 0 C +00
$\begin{aligned} & 50 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\begin{aligned} & 30 \\ & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0\end{aligned}$
$\begin{gathered}50 \\ 2 . \\ 3 \\ \text { z } \\ 0 \\ 0\end{gathered}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\begin{aligned} & 30 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 0\end{aligned}$
$\begin{aligned} & \text { Ec } \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$
$\begin{aligned} & 5 \\ & 0 \\ & 0\end{aligned}$

Ci^{-}		AILin．on	1． innine $^{\text {atas }}$	1．0．ay－－ا	1．2ent1－4；	3，475rt－10	5．931－10		2.2760 .4		
－	M．as	勺，1－1nr＊ 17	$0 \cdot+20002001$	$\therefore 104-6$		，5151＋a？	36151－0？		5．5465，－${ }^{\text {a }}$		
	P1：21	1，14031．03	4，910，$=11$				$4,18+1$	＇：${ }^{\text {chenton }}$	4，1314 4.15	Csany＋tas	
	Pi．zas	4.7 muteda	1．0600 $0^{\circ}+100$		1．1－43t－10	1， 2 为 $7+-1$ ？		0＊＊かu？＊＊0		Cownguta？	
，	arcal	3．794＞taun	9．verit－n！	4．190\％－C＊	ध＊noet 417	4．009nt－uA				7．0600t 01	
－	arcac	1．001＋t＊01	0．uncbe＊＊）		－－nowaf＊．${ }^{\text {a }}$	4． 0 diant－va		\％．0ッ3t＊0n	1．2006\％－04	$7.09645+01$	
－	4 cos	$6.984 \mathrm{mk} * 07$	1．0nune＊un		－，bnat＊an	$0,56 a t=08$	－ $5120 \times 1+60$	＂，movt＊un	7，1006－67	7．60wnt 01	
，	crese	3．ylentow	Q．1037E－U1	？Si6）t6in		t，Snactan	$0 \cdot 485 \cdot 4=0 n$		$4.0084+6$	7．0704t＊01	
，	C－7\％）	\therefore oser $\mathrm{C}+15$	9．9A75t－01	1． 510 ＋$=09$	Cbaner +10	1． ya 3 mt － 0 ？	1．181 1209	？ 13 203t．00	$0.29646=04$	7.0964 tal	
＊	Crata	1，Snubtens	9．9740E－01	5．79012－97		S．Tarteu？	$5.087 \%-97$		$9.7000 r=04$	7．60994＊01	
a	\cdots	43	C14	515	C＋51	mun行	FF4	cusa	crios	t．154	N163
＂	（21）	－ $\mathrm{Cl} 1 / 6$	r1／6＊	＊C1／6＂	¢16＂	$181 / 64$	ir $1 / 6.4$	［1／6）	${ }^{+110.4}$	rr1／6．m	－1／6＂
a	$0.00 \times 1 \%+190$	2．89120－62	0．0ngefoos	－vact＋09	1．4517t－15	1， 571 CF－15		9.0049 tan	C．unabt＊u．	＂06at 4 ＋6n	\％．090nt＋00
＊	S． $003 \mathrm{~s}=01$	$0.0060 t+0.5$	0.00 － 0 E＊07	＂＊13年7t09	1．t．4第F－13	1． $5421 \mathrm{E}=13$	0．00anctan		$0 \cdot n 6+A \%+0$－	c．unont＋0n	O．OAOBE 0 O
0	1．050．2 +00	9.06006 ＋00	$0.0 n 00 t+0.0$	0.890 ＂と＊00	n．4057t－12	7．0A17t－1？		$1.1549 t-15$	1．526at -15	6，0000t，09	2，0633E－15
\cdots	S．nayat＊00		1．35096－11	2.0959 t－15	4．a11at－10	Anazat－10	S．J7otels	1 1． $975 \mathrm{st}-1$ ？	＜．0154t－12	S．2114t－15	S．3673t－12
\cdots	1．0．jur＋\＃1		2．511721－11	a－731t－1？	1．1 PnF＝07		4．04ant－14	2．5785t－69	4．5031t－av	1．＞no Ht－11	6．1901E－09
a		$0.0000 \mathrm{t}+09$	St 152nt－119	－0．054．7 234	C．n330F－95			3．07～1t－6．	$9.07 \mathrm{Yht}=0 \mathrm{n}$	5．0409t－0n	1．7a9bE－05
\％	2．0903t＋31	－．anunetoo	3．UR4AE－C．S	$5.432 \cdot 1+=06$	$4.9465 t-93$	$1.7103 t-03$	5．421 $41-13$	2．nnist－03	1．0417＋－6）	1．0040\％－04	1．9353t $=0$ ？
＊	24	2NOS	Sr90	＊994	24.95	1499		51124	SH123）	1125	1129
n	（F）	－ $1 / 6$	m「1／6m	＂C1／1，＊	${ }^{4} 1 / 6 \times$	4C．1／6．4	$1 \mathrm{CH}_{1 / 64}$	－C1／64	nC11．4	me $1^{\prime} 64$	${ }^{4} \mathrm{Cl}^{1 / 6 *}$
0	9．vachet00	U．vauet＊00	1，oncet－13	$9.9304 t+00$	9．9600tton	2．6．36r－0．	0.900 itcun	3． $317 \mathrm{At}=14$	0 0，0notas	1．0usst－0n	2，407nt 009
3		$0^{\text {counvik }}$＋00	3．9934t－12			2．2737－0＊	＊．090．le 0 an	1．174at－12	$0.00030 \cdot 00$	6．4716－0，	$1.0545 t-09$
	1．uductaua	$5.003 u k-17$	3．0nu3E－11	U－0nout＊oa	4．96aut－17	1．029at－u ${ }^{\text {a }}$	u＊39useton	\％ 3 ¢， $3 t-11$	acuounrtas	－．atsteal	$1.43092=09$
1	$5.172 \cdots+9.9$		9．9n57t－17	＊＊＊日0－ted	$3.12 \cdot 4 \mathrm{E}=14$	2．4．397－uA		2．7140E－10	$0.096+0.0$	＊．030人t $=07$	$2.5544 \mathrm{E}=09$
on	1．0）a＂E＊01	$1.25 c^{3} c^{2}+10$	4．3755t－6． 4	＂0．6468t 608		$5.71001+69$	1．4147＋－11	$2.1023+=68$	$0.0060+$＋0，	2．1）7nt－06	7．5235E－09
∞		？．Wh7t－0才		（－190at＊en		f．21＇af－ 1 ¢	7．0396\％ 0 －${ }^{\text {a }}$	1．3959t man	1．7029－15	4． 53474 －06	2，125 ${ }^{\circ} \mathrm{F}=0 \mathrm{~A}$
	2．00＊4＊＊	1． $3745 \mathrm{~F}=04$	3．7ucze＝05	v．0．100\％t +60	1.50585	1.17235007	$1.555 \%=0{ }_{4}$	3.1140%－05	3．9Ki7，－05		$3.0330 E-04$
${ }^{\sim}$	0 n	CS134	Cs， 35	CSI37	CEIA4	Eい152	E11：4	1．15s	Hazen	THesto	TH232
＊	（F1）	$411 / 64$	Mr1／GM	＂C1／6．N	प1／6＂	${ }^{4} 164$		${ }^{3} \mathrm{Cl} 164$	MC！$/$ ．${ }^{\text {d }}$	mr 1／6m	${ }^{4} \mathrm{Cl} 1 / 6 \times$
v	5．unulk－al	0.060 CE ＊ 0 O	0. enont +0 ？	$5.19 n 7 t=15$	0．unacemon	0.0900 ¢＋un	J．0006t＊00	$9.93096 * 0 a$	0.0008 m ＊ 04	二日大日听 +00	0．0000t 000
－	1．0ヶ0nt＊＊？		0.00 cok ＋10	$5.81 n^{\prime \prime}+13$	4．00501＋－17	0，woveteno					0.0 00ction
＊	S．an0nt＊un	W＊口00ctac	1．572at -15	1． $5+77^{\text {cta }}$－ 10	$5.953 \mathrm{AF}=14$	0．40n日5＋9n			3．352at -15	H．0ncut tan	0，enoptan
．	1．＊＊ッフา 001	U．0nent +00	9．3590E－13	7．217：C0A	1．．． $0^{5}+10$	二an：125t－16	S．＋1ast－15	3．45n5t－15	3．04201－1）	7，1）47t－1A	－．0300F＊09
－	1．クフコロを01	$0 . n n 0 y t+9$ ？	6．104tE－10	$3.15{ }^{\text {3 }}$ ，－45	2．0nア4t－a7		1，hanitelo		2，51031－04	c．3＞5＂L－11	0．5505E－14
\because	2．60．40\％＊01	3．Neactev3	2．5740E＝07	－${ }^{4122 t-63}$	$1.540 .9 \mathrm{E}-114$	3．4n37t $=07$	3．457atoma	3．n93et－06	9.2659 .067	$5.7813 t=07$	3．1011E－1？
\because											
－											
＊											
＂											
＊											
${ }^{3}$											
＂											

OwY WFhims										
$5 \cdot 11 \mathrm{~L}$	cum kali	WATFW IN	$\mathrm{Cl}+\mathrm{EVABN}=$							
FLix	$\text { and } 11: 1613$	CriLtINB	1HA is		$2 \text { iF } r^{i}=4 \$$					
－2．aunateun	5．V10nE＊U0	$2.2355 t+00$	－0．724nt－as	$3.915 \times E+00$	－3．0n5af－03					
191	－15Gl？	VOLWAT	N＊CLid	Na＊	Qus	4	b	H	4	
（＋t）	${ }^{\text {tr }}$ \％	－1	C 1	11	CI					
	$\frac{1}{2} .2035 t+0.4$	$\text { 3. } 5 \times 5 \times 5+6 \text { ? }$	$3.4-4 \mathrm{~A}+1=04$	3．4．－60E－0a		4． 791 it $=3$ ？	n． 50515003	－4．12485＋08	$-5.0000 \mathrm{E}=06$	
5．0．3＋16－31	2．9069E－09	7．0ん71F＋02	－3121t－0A	\％－tic31E－09			－3 3 47k $=01$	－4，175ste85	$-1.57 \text { ह1E }=0 ?$	
	1．0．31t＋05	3．1A0くt＋0x	3．5h14t＝0？	$4.376 .75=09$	3．5190\％	4.9914500 ？	t． $5^{4} 49 \mathrm{c}=0$ 7	－4．1230＋04	－1．57hnt－0？	
S．0日s．at，an	2．16n3E＋u5	6． $3 \mathrm{H} 19 \mathrm{t}+163$	？． c 50 ？	1．7929F－98	2．0．012－06	4． 99 ent $=$－${ }^{\text {a }}$	n．STSOE＝05	－4． 11 victat	－1．5707t－0？	
ts 0日uat 601		7．0849t＋03	$2.4757 t=45$	B． $3^{\text {R }} 3 \mathrm{JE}=4 \mathrm{~A}$	C．4natt－u5	$4.99345=11$ ？		$-4.114^{0+}+05$	－1．57e7t－0）	
	2．4月土）${ }^{\text {ctas }}$	7．0711E＋01	$5.197 \mathrm{hL}=04$	5，6，7ア1E＝07	5.5317 flos	4． $994.4=9$ ？	n．30ヶCE，－ 05	－4， $104 \mathrm{HL}+03$	－1．57onf m，	
$\begin{aligned} & 2=1+3014-01 \\ & 3.601+4++61 \end{aligned}$	$5.61646+45$ $6.4140 \%+45$				1－315¢	4．2951t－1？			－1．576ak $=$ ？	
4．6．0．0）－01		1．4140t ${ }^{\text {c }}$			$0.1080 \mathrm{ck}+0$ ？	4． 29 \％ 717 ＝0？		－4． $104404+05$	－1．576at＝0？	
5．value＋uI	2．4009 $2+05$	1．4150\％＋ 4	6，U003t－00		勺．3960¢ +00			－4．04amt＊05	-1.2741 $-2.4174 E=01$	
WHCLITE	malf	ofcay	In．16，Itial	पFल＊INING	EntFHEO	Amytimi Iv		Snlumility	kil Hasalit	
$\mathrm{As*t}$	LIFE	Factor	A Wbiknt	HA SURFACE	COL－人n utc	Cin $1 / 4 \mathrm{Na}$	※ぃTだ	sntuektip	＊inasal	
H	1．0ncitoos	$9.401 \mathrm{Mt}-08$	3， $5407+=114$	$9.0000 \mathrm{~F}+90$		3．406－2t－14	$1.0200 \%+00$	2，0000t 004	11．006nt +00	
Cla 535	$5.0171 E * 07$	9．90nRt－61	$1.140 \%-05$	0．06006＋00	1．140MF－U5	1.15995 － 55	0 －voasaFton	2．20605＊69	1．3nunt +0 ？	
535	2．1079F＋03	5．ca0bt－0？		0．60吅 0 CO	2．343nE－U6	1．5089t $=07$	0 － 0 の日00\％+00	4,1000190 ？	$1.000 n t+0 ?$	
CK＞1	b． $0492 \mathrm{c}+02$		1． $2900+=03$	$0.0000 \mathrm{E}+00$	$1.2900 t=03$	1．SAS $35-07$	$0.9000 \mathrm{E}+00$	5．3000\％ 009	1．0000E＋01	
FtSs	7． $1337 t+63$ L． $3+216+09$		$1.3009 t-64$ $1.290 .3 t-03$		？＞0anE－04		0．04ant．0n	B＊＊0vut +07	$1.000 n t+01$	
cisem	1．71u1t＋W		1．294 4 －05	\％．0unaf \ddagger \％	1．八4ant $=05$			$4.8060+404$	1．vのnクt + v？	
Cing	4．5990E＊04	8，7194F－01	$3.9703+05$	9．0600F 0 0n		3．4＞124－65	0 － 00 いつE＊00	1．7000＋033	1．0日anctoz	
4159		$9.9090 r-01$	3． 4 9nat $=05$		5．90）0¢－05	3． 20 －at -05	6． 59000 \％+0	1．100ct－e？	$\text { 1. } 0009 \mathrm{n}+32$	
${ }^{4} 163$	B，0n20t 005	9．9200F＝01	$7.2904 \mathrm{t}=03$	$0.0039 \mathrm{ta0}$	1．200n $2=03$	7．1407t－03	$9.0400 \mathrm{E}+00$	A． $2000+0$－	1．0900E＋02	
17.05		3．5世55E＝al	h． 200 It $=05$	O，एenat +00	－ $0.0600 \mathrm{cos5}$	$2.15145=05$	6．0．30at +00	7，0000t＊07	1．600nt．0？	
Strn	＜．49M2E＊05	$9.7632 t=61$	1．470 4 － 0115	＂00baF 000	1，4．30nt $=05$	$1.4059 t=05$	$0.43 \mathrm{Bot}+00$	2．1000t 002	2．000）	
51044 164	$1.0355 t-11$ $3.5727 t+03$		4． $2404 t=017$ $6.0409 t=05$			3．vawuF＊日年	为，wanetan	$1.0 \text { 旬 } 19+65$	$\text { 1. } 3=0.10 \mathrm{f}+0 \text { ? }$	
If 70	1．0505t＋09		6.06097 9.600 .15 0.005				$0.0000 t+0 n$ $0.0000 t+10$	$\begin{aligned} & 1.8000 t+0 n \\ & 1.4000 r+02 \end{aligned}$	$\text { 1.0nont }+0 \text { ? }$	
＊1．1＂0	＊＊＊＊」を＊03	5．0．037F－01	$6.00 \mathrm{uWk}=105$	＂0コ0月E＋00	－．000nf－u5		6．0000F＋0n	$1.9000+80 \mathrm{~A}$	3．0000t＋0？	
$5 \mathrm{SHO}_{17}$	と．4ヶら4F．015	1． $54 \mathrm{Hat}=11$ ？	1． $5.3 \mathrm{da-3t}=05$	＂＊＊い日旲＋30	1．． anat $^{\text {a }}$－ 5		0 －，neotton	5.1000 ＋04	5．0awat＋09	
SW1？	2．4．3n3H604	7． H149F－01 $^{\text {c }}$	1． $59003+065$		1． $\operatorname{Sng} 0+005$	$1.172>+0.5$	＂， $0000 \mathrm{~F}+\mathrm{Cn}$	3．0000t＋05	S．0w0at 000	
$\begin{aligned} & 11>4 \\ & 11<0 \end{aligned}$	1．4 $405 t+63$	1．557rt－n？	4 － $30034=15$	－MHOAF＋On	4 ＊Snanfoun		－vanar＋0n	7，600．4＋ 0 0n	1．00ヶhat－a！	
$\begin{aligned} & 11<0 \\ & c: 134 \end{aligned}$	$\begin{aligned} & \text { 1. } .4910 t+11 \\ & 1.7 *+1 E=04 \end{aligned}$						0 －دan ${ }^{0}$	7． 20 bat 0 0？	1．0300 $=011$	
Csis）	$2.6544 \mathrm{t}+10$	7．1632t $=01$ 1．000nE＊0？		ascenof $+0 n$ $0 . u s .00 F+00$	$1.240 日 t-05$ $4.0000 F=0 N$	1．0才18t－03		1.9069 F 04	C．unver +19	
Fill	2．02n樶＋15	9．774 t－11		－ －$^{\text {abat }+ \text { ab }}$	2． $4 \times 1 \mathrm{cot}-33$	2．3214t $=05$		1．7000t $1.3003+0$ ？	2，0000t＊01	
C． 144		4，1531F－01	－0000\％t－015	T．0300F400	－．06act 005	$2.4914+605$		1．000日tan	1．0moat＋0？	
tvise	1．174．	9．5日29t－～1		＂．01－4日F＊60	1． 4800%－67	1.364 ＋$=07$	6．009日F\％0n			
	7，4ar7t．04	9． $2277 \mathrm{~F}=11$	1.4 .48 if－lih	C．0600F＋60				1， 0060 cose －0		
thl Har	4 －36，${ }^{1}$	م， $1194 E=-11$	\％．440．7 2006		1． 44.15 couh	1． $254 \mathrm{xt}=3 \mathrm{~h}$	6． 20 ank +00		1．Pauntom	
1＋，to		9．4957F－61 $4.4949 \mathrm{~L}-11$		O．0C0日t＋00	S．450at 007	3． $4345 \mathrm{~F}=07$	－ $0000 \mathrm{c}+00$	S．0060t＋0？	S．0000t +01	
Incil	$1.7464 t+1+$	1．unnet＋0a							1． $2 \cos 0$ t +03 $1.24150 t+05$	
ve74		1，＂eseft 1.0		リ．4アの日t +10	－ntant－1／	$\Delta A_{0} A_{6}+=\\| A$		$\text { ?, } 4 a n+1+0 n$	$\text { C. } 18=1+04$	
		1．90unt +16 n	$2.1560+=0$ ¢	－． 51005000	2．85：154 $=106$	2．154ctan			2．06．3n＋ 009	
Pu－14			1． 540 l	－ $64606+0 n$	1． $5 \times .40 \%-10$	1．50．6af -10		＊，wn0．6－04	7．050nt＋01	
	－3．12s＊05			＂＊日0002	$4.009 n_{i}-27$		の＊ッ3．anどen	6． 3000 （ -2 t	L．0990 $L+82$	

u
*

n. $3 w a+2=5=-4,12 a n t+03-5,000 n t-06$

e
5
0
0
\vdots
0
0
3
3
0
3 N
en
0
ω
0
0
0
0
0
0
0
 -
0
\vdots
\vdots
3
3
 N
0
+
\vdots
\vdots
0
5
0
0

 n
$?$
\vdots
0
0
$?$
$?$
 $n=$
0
0
0
0
0
0
3
0 e
0
0
\vdots
$=$
5
0
 $=0$
i
1
1
\vdots
$=$
2
0
0
0
0 $0=$
2
0
3
3
0
0
3
0 -3
3
0
2
0
0
0
3
0

 -5
3
0
3
3
0
0
2
0

WNCLU
CI
$227 \mathrm{ht}=04$

 $4154 t+04$
$4154 c+0 a$

(FT)

n
2
0
\vdots
\vdots
m
mis
inn

2
2
$=$
$=$

VOLWAT

 3
3
3
$=$
3 c
c
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots $G c$
5
+
+
0
$=$ 3
3
\vdots
\vdots
2
2
2
 2
\vdots
\vdots
\vdots
2
 0
0
ह
4
2
2
2

NULI Ity

áwtret kitpul

n．04t 0018
$0.00 \mathrm{~L}+0 \mathrm{w}$ $0.09 t+010$
$00+300^{\circ}$ $c=$
0
0 e
0
0
0． $30 \mathrm{at}+00$

$0.6^{-1} t+40$
$0.0^{0} F+u a$
$0.6 .35+49$

0.11 小 +30
$0=411 E+40$
$0.07 F+40$
a．． $105+60$
$0.4 a t+50$ U． $048+00$ $0.34 F+40$
$0,0 n E+4 n$ $0,0 \cap E+4 n$
$0, u^{0} t+i 0 n$
$0, n+5+00$ $0 . n+5+00$
$0.04++00$ 0.0 ． $5++00$
$0.0 日 E+00$ $0.04 E+00$
$5.09 t+0 n$ O．OOE＋UO
 ＂）NE＊W日 ：THNALんFIM，
 ＂． $11+1+6$ 1200.
10000. いつ40

11142？
avent
CNて4？
Cni244
16135
f614．
Fifa
4．4．26
$1 \cdot \mathrm{Cl} 2$
HIC3
1505
41.100
41.106
8.125

1129
15135
CEST
fiss
culd
$t i v e$
Cito
SNOA
shen

 10000.

 FISIAMCL $(\mathrm{cm}$

$(+5,4)$
WHite＋110

5
\vdots
$=2$
-2

303
$0: 3$
$\therefore=0$
\＆．I．II．ACT

4） $49 \mathrm{~F}+00$
0 －eaf +00
$0.09 E+00$
$0.005 * 00$

$4.4 \pi+n a$
$0.475+0 a$
$4.03++0 n$
$0.6+15+4 n$
$0.4 ⿻ 上 丨 匕+4 n$
$0.419 F+23$
$4, ~=0-7 F+6 \Omega$
$0,1+9 t+a n$
a， 3 at＋ $3 n$
$5 e$
30
0
ω
e
$=0$
0
$=0$
U．0リE＋いn
a）$. \cup n E+a n$
9）．nnf＋nn
$0.9105+00$
$0.995+00$
C：244
1200.
$\times 400$
14000
$n, ~ v a E+6 n$
$0, ~+19 E+60$
$0=60 E+3 a$
$4.00 E+00$

$=$
$=$
$=$
$=$
ilitis uneinys $00+30 \mathrm{e}^{\circ}$＂）
$19.00 F+00$
${ }^{\prime} .006+60$
0
0
4
0
0
（1） $04 t+0 n$

$\quad z$
$=\bar{z}$
$=$
z
$-=$
$8, E+10$
．$n c E+a 0$
$C 14$
$c=51$
t＂o
$5 \cdot 90$
$+1106$
34125
1139
CSI
C．
1 44
E1154
$+427 n$
$1+232$
H123n
Fileso

C•242
（w）3）Hivisla

invo．	3．018＋－ 0	1200．	ก．00e＋30
4000 －	の， $01 \mathrm{E}+\mathrm{no}$	＊400．	－．unE＊09
doens．	0．0－F＊00	17000.	$0 . \operatorname{cof+0a}$
120	3．0．0 + の 0		

natinriscliof	
＋3	
	535
	$\mu \mathrm{is} 4$
	［1）5 8
	R．159
	7．．ns
	A HO 4
	$1 \mathrm{CO4}$
	Su124
	1125
	C3134
	C 3137
	1．1才？
	FJ1¢¢
	1＊237
	125
	N0237
	P．1？50
	Wり241
	$a+?+1$
	$a+2+\pi$
	$\mathrm{r}=34 \mathrm{t}$

[^6]

CASE 9

TEST CASES FOR REPORT WUMEER $411 / 6 / 80$ SITE 2 SCEMARIO WUMBEF $\mathbf{1 1 1 2}$

INTRUSION OF SURFACE WATER, WATER SEEPAGE TO MATER

 TABLE THROUG GURIED MASTES.1HyENTORY : MS-6

PA%

RELEASE

$1 \begin{array}{ll}9100 & \text { O. IE + } 00\end{array}$
 9 UNSATURATED ZOAE WATER TRAESPORT
 1 AGUIFER TRANSPORT

$\begin{aligned} & \text { PATH } \\ & \text { nact.iDE } \end{aligned}$	MHMBFR: AMOUNT C1/4**3
H3	1. $200 \mathrm{E}-02$
C14	$3.8005-04$
535	8.600E-05
CR51	4.300E-02
MW54	$2.500 \mathrm{E}-02$
PE5S	4. $300 \%-02$
cusa	4.300E-02
C060	1. $300 \mathrm{E}-01$
W159	$1.300 \mathrm{E}-03$
N163	2.400E-C1
2N65	$2.0008-03$
\$890	4.800E-04
Nu94	1.400E-05
2 R 95	$2.000 \varepsilon-03$
TC99	3. 200 E -06
WU106	$2.0008-03$
\$8124	$5.000 \mathrm{e}-04$
S3125	$5.000 \mathrm{E}-04$
1125	1. $500 \mathrm{E}-04$
1129	$6.400 \mathrm{E}-07$
csil3	4.800 -02
csil3	3.200t-06
cs137	$8.600 \mathrm{E}-02$
CE144	$2.000 \mathrm{E}-03$
84152	4.800E-06
Eu154	4. R00ee-05
EU155	$4.800 \mathrm{t}-05$
P4.226	$1.150 \mathrm{E}-05$
TH230	7.100z-06
T11232	8. 400\%-07
0235	3. $200 \mathrm{E}-06$
1238	$7.100 \mathrm{E}-05$
WP237	4.600E-09
P4238	3. $200 \mathrm{E}-05$
P4239	4. $300 \mathrm{E}-06$
Pu240	$5.700 \leq-06$
P3/41	$1.650 z^{-03}$
Pu242	$2.400 \mathrm{E}-0 \mathrm{~d}$
AH241	3. $000 \mathrm{E}-06$
14242	$1.600 ¢-07$
AM24?	$2.100 \mathrm{E}-07$
C.H242	$2.500 \mathrm{E}-04$
CN243	$6.000 \mathrm{E}-0 \mathrm{OH}$
CM244	$1.900 \mathrm{E}-0 \mathrm{~s}$

WILL RUW PROBLEM TH ROUGH UNSAT FOR
DOSE OUTPUT (NAEM)
FOR FATH
TET CASES FOR REPURT NUMBER $411 / 6 / 80$ SITE 2

TOTAL POPULATION DOSE BREAKDOWN BY RADIOUUCLIDE, NISTAMCE CELL, DOS: PATBNAY, HODY ORGAN AND PGPULATION AGE GRDUP.

IStam			
1600.	$0.00 \mathrm{E}+00$	3200.	$0.00 \mathrm{E}+00$
4800.	0.0JE+00	6400.	$0.00 \mathrm{E}+00$
8000.	0.00E* 00	10000.	0.00E* 00
12000.	0.00E*00		

m
w
0
u
n
in
in
$C 060$
N163
SR90
R95
211106
58125
1129
cSi35
E144
$\stackrel{5}{\square}$
르춫
Bein
$\begin{array}{r}420 \\ \hline 0240\end{array}$
永
$\underset{\sim}{2}$

CM244
cumulative populatiun dusg
$0.00 \mathrm{E}+00$
$0.00 \mathrm{E} \rightarrow 00$
 $\begin{array}{llr}\text { DISTANCE (N) } & \\ 1600 . & 0.00 \mathrm{E}+00 & \\ 4800 . & 0.0 \text { EE }+00 & 6400 . \\ 8000 . & 0.00 \mathrm{E}+00 & 10000 . \\ 12000 . & 0.00 \mathrm{E}+00 & \end{array}$
$00+300^{\circ} 0$ SNIHS OWNOES $00+300^{\circ} 0$ $0.00 \mathrm{E}+00$
$0.00 \mathrm{E}+00$
$0.00 \mathrm{E}+00$ $0.00 \mathrm{~F} \cdot 00$ $0.00 E+0$ L. V. INGESPION $0.00 \mathrm{E}+00$ HILK INGESTION $0.00 \mathrm{E}+00$

BUNE

Ling 010 OAlid

[^7]LUUD SHINE

ROOT INGESTION
beef ingestion

$$
\text { TEEY } \quad 0.00 \mathrm{~F} .00
$$

[^8]
$0.00 \mathrm{E}+00$

 $0.008+00$$0.00 \mathrm{~F}+00$
$0.00 \mathrm{~F}+00$
$.00 \mathrm{~F}+00$
$0.00 \mathrm{O}+00$


```
    SLT,4-2IO mamitith it5
```



```
        Inventmi* :HS-?
```


(1/~*)
$0.540 \mathrm{HE}+00 \mathrm{HAL}, \mathrm{HS}$

Pust whlfil (the a)

$$
\begin{aligned}
& 00+300^{\circ} 0 \\
& 00+300^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& 00+3 v 0^{*} \\
& 0 v+300 *
\end{aligned}
$$

ristanct(m)
(anCL(M) $0.00 E+\cdots 0$
PATH

A1sF Grin, ip

C+11
n, onE to0 c.Nincian sittr

$$
\begin{aligned}
& 0.0 .9 \mathrm{t} 00
\end{aligned}
$$

$$
\begin{aligned}
& \text { 0.0 E O W0 } \\
& \begin{array}{l}
n=1^{4} t+0 n \\
0.1^{-1} t+60
\end{array} \\
& 4,+11) F+4 n \\
& 4, c \text { IF }+0 i \\
& \begin{array}{l}
0.6) E+00 \\
0.00 E+00
\end{array} \\
& \begin{array}{l}
4,11,4+6, n \\
6,10 k+110
\end{array} \\
& 4, ~+\cdots+\cdots n \\
& \text { 4. } 0 \text { " } v E+0 n \\
& \begin{array}{l}
\text { 6. Wht +10) } \\
0.00 E+00
\end{array} \\
& \text { waingniclithe } \\
& \begin{array}{l}
\mathrm{tH} 154 \\
\text { Shyo } \\
\text { Sis }
\end{array} \\
& \because 34 \\
& \text { い150 } \\
& 0 \cdot 57
\end{aligned}
$$

$\begin{aligned} & A M>H 1 \\ & A>C S\end{aligned}$
(M24)

$$
0,006+00
$$

$$
\begin{aligned}
& 0,006+00 \\
& 0,006+00
\end{aligned}
$$

Fi＇st MINII（HNEM）

FH．Natil？

 1．20t＋0

19． $3^{n} k+63$


```
\begin{tabular}{|c|c|c|c|}
\hline C－4 & 5． 5 n5 \(=45\) & （1）S & 2．6ak -111 \\
\hline Fess & 1． 4 AFF \(=0\) ？ & \(2 \mathrm{~F} \mathrm{O}^{5}\) & \(3.53 \mathrm{E}-19\) ？ \\
\hline 78.5 & 5． \(755=03\) & Nilfo & 7．00E \(=04\) \\
\hline Sd129 & 1．51f＝12 & \(\mathrm{SH}^{\text {H }} 25\) & \(2.11 E-42\) \\
\hline EJJ？ & 4． \(\mathrm{BCH}-10 \mathrm{c}\) & F1154 & 1．32E－63 \\
\hline Eulss & 7． \(345=05\) & St 96 & 1． \(50 \mathrm{~F}=41\) \\
\hline C3137 & 4 － H 16＋14 & ＋154 & 2．15E－131 \\
\hline rol3 &  & 43 & c．EAE＝04 \\
\hline C14 & 1． \(18.5=24\) & 1．159 & 7．d7F＝05 \\
\hline TC49 & 4．31E＝36 & 1129 & 5． \(02 t=04\) \\
\hline r3154 &  & （1）\({ }^{\text {127 }}\) & －． \(\mathrm{CQE}=01\) \\
\hline P） 23 A & 5．325－13） & ［11239 & 1．82ع－u？ \\
\hline PJコ4 & 1，3n，+ －a？ & ¢1 201 & \(4.10 f=4\) ？ \\
\hline PJフ42 & 1． \(015+11\) ？ & ＊＊241 & 5．44E－3？ \\
\hline Av24？ & 2． \(5 \mathrm{ht}=9 \mathrm{nc}\) & A） 205 & －．34E－ 3 3 \\
\hline \(c * 242\) & 2．5uF \(=32\) & C＋243 & 6．45E－02 \\
\hline
\end{tabular}
DISTANCE (*)
\begin{tabular}{|c|c|c|c|}
\hline 1ヶu？． & 2． 40 P +00 & s290． & 2．08F＊U1 \\
\hline 4400. & \(4.005+0_{1}\) & Cant． & 1．45E＊01 \\
\hline y309． & 1. but +01 & taneu． & 6．est＊0n \\
\hline & 1．0ヶt＋01 & & \\
\hline
\end{tabular}
```


PATM

```
ClOut Sal
0. INHALATJIN
*ite4 Ivreg\I|u
Wm! | |f:5TIn=
```



```
9.1.4.4
```



```
SnTy
P.1+t+0
```



```
EEtF IlGFST|n= 4.?bF=0
```

3．1nt＋6＞ 1．Ant．0

```
A*; S.u.t.p
\begin{tabular}{|c|c|c|}
\hline ¢ 41 ？ & 2．71＋\({ }^{\text {a }}\)－ 11 & TEFV \\
\hline 4 hit \({ }^{\text {ct }}\) & 7． 516.01 & \\
\hline
\end{tabular}
```

82DIの＊）				
ENく！	3． 5 nr $=03$	C1．5A	2．04E＝61	
ress	1．40ton？	2，05	2．535－9？	
7m9s	5．92F $=03$	सН106	7．0nt－04	
Sサ129	1．4．1500？	SH175	2．11f－u？	
Fulsz	$4.0 .25=00$	E1154	1． $322=63$	
F．1155	7． $345=05$	suan		
（5137	4． $\mathrm{CH} 1+$＋ 0		2．15t－211	
rSisi	5． $32 t+0{ }^{\text {a }}$	1.4	2． $\mathrm{NA+}+\mathrm{Ha}$	
	$1.1 \mathrm{nf}=9 \mathrm{c}$	1．159	7．${ }^{4} 75=115$	
1cas	4．315－16	112°	$5.02 t=00$	
CSI35	1．34t $=34$	1．4237	t．49t－u1	
F．125＊	5． $324=13$	P\％，${ }^{19}$	1．ex－02	
Pules）	1． $30^{5}=0<$	F以くい	＂－Mr－－${ }^{\text {a }}$	
Pu？a？	1．675＋1，	A～＞a｜	$5.413+$－ 2	
AH24？	？SMF＝ 51	A＂c4s	c． $19 \mathrm{~F}=13$	
CH24？	？．59t－ 0 ，	$\left(\mathrm{CM}_{2} 43\right.$	6． $45 \mathrm{f}-11$ ？	
［ $\mathrm{Cl} \mathrm{C}_{4}$	3．0nt－31			
9） 5 STA．CLE（M）				
1200 ．	P．A0E＋7	1200．	2．A＋ 5 － 11	
$4 \\|^{4} 0$	4．0Ut＋${ }^{\text {a }}$ 1	6400．	1．45t＊${ }^{\text {a }}$	
560\％．	1．t．0t－n 1	1000n．	＊．83E＊60	
12400	1．04t＋71			

Cloun ShluE	$4 . \tan E=04$	GW（H＇mi）SUTAE	1．776．00
D．HaraL ATIG\％		Q．In Hal atith	$1.0 \mathrm{Ht}+0$ ？
watt（ Fifit STtum	－ $5+00$	L．V． 1 H．FStion	7． $54 \mathrm{ar}+0 \mathrm{n}$
A6．6）［16FST10．	4．14F－115		1． $342+60$
日tFF 1／6tうT！日号	a，2，＋＝－ 1		

	1．P0t 4 ar	40，	4． 34403
117 F	6． $114 \mathrm{~A}+1{ }^{\text {a }}$	－［1．A \％	$4.5 \mathrm{~Hz}+1$ ？
G10．4．）	1．${ }^{4}+1+10.4$	（1）＇，	$1.151+9$ ？
G．I，thact	5．0nt＋ 14		18.4 at＋34
Sx 1，	2．1－t＋il		
A or $5+1.10$			
c． 11 ．	2．715＋11	1＋F\％	1．92t＋01
1.641	7．31＋．11		

9. REFERENCES

Adam, J. A., et al., "A Classification System for Radioactive Waste Uisposal What Waste Goes Where?," USNRC, NUREG-0456, June 1978.*

Amirijafari, B. and B. Cheney, "Simulation of Radionuclide Transport in the Unsaturated Zone Beneath the Radioactive Waste Management Complex," submittec to EG\&G by Science Applications, Inc., June 1979.

Anderson, R. L. et al, "Institutional Radioactive Waste," NUREG/CR-0028, March 1978.*

Atomic Industrial Forum, "An Engineering Evaluation of Nuclear Power Decommissioning Alternatives," AIF/NESP-009-0095, November 1976.

Berry, W. E., Corrosion in Nuclear Applications, Electrochemical Soc. Inc., John Wiley and Son Publisher, 1971.

Bird, R. B. et al., Transport Phenomena, John Wiley and Sons, Inc., 1965.

Blazer, R. V. and J. J. Owens, "Special Corrosion Study of Carbon and Low Alloy Steels," ASTM Symposium on High Purity Water Corrosion, 1956.

Braithwaite, J. W. and M. A. Molecke, Scientific Basis for Nuclear Waste Management and Technology, Vol. 1, 1979, Editor G. J. Mccarthy, plenum press.

Bulischeck, T. S. and D. Van Rooyen, "Stress Corrosion Cracking of Alloy Goo Using Constant Strain Rate Test," NACE Corrosion/80, Preprint Paper No. 183, March 1980.

Butier, G. and H. C. K. Ison, Corrosion and Its Prevention in Water, Reinhold Publishing Co., New York, 1966.

Byerlee, J. O., "Frictional Characteristics of Granite Under High Confining Pressure," J. Geophys. Res., Vol. 72, No. 14, July 15, 1967.

Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 1967.

Cataldi, H. A. and C. F. Cheng, "Investigation of Erosion and Corrosion of Turbine Materials in Wet Oxygenated Steam," Trans. ASME, Vol. 80, 1958.

Chens, c. F., "Canister Corrosion of a System Study on Enyineered Barriers," Internal Letter, Science applications, Inc., 1980.

Chepil W. S., 1959a, "Dynamics of Wind Erosion III 'Transport Capacity of Wind," Soil Sci., Vol. 60, pp475-480.

Chepil, W. S., 1959b, "Dynamics of Wind Erosion III 'Transport Capacity of Wind," Soil Sci., Vol. 60 pp 415,480.

Cooley, C. R. and D. E. Clark, "Treatment Technologies for Non High Level Wastes," CONF 76-0701, pp. 250-287,1976.

Cooper, A. R. and L. E. Eaton, "Compaction Behavior of Several Ceramic Powers," 3. of American Ceramic Society, Vo1. 45, No. 3, March 1962.

Copson, H. R. and W. E. Berry, "Qualifications of Inconel for Nuclear Power Plant Applications," Corrosion, Vol. 16, 'lo. 1, 1960.

Danckwerts, P. V., Transactions of Faraday Society, Vol. 47, 1951, P. 1014.

Datsko, J., Material Properties and Manufacturing Processes, J. Wiley and Sons, Inc., New York, 1966.

DeMier, W. V., M. O. Cloninger, H. C. Burkholder, and P. J. Liddell, GETOUT $=$ A Computer Program for Predicting Radionuclide Decay Chain Transport Through Geologic Media, Pacific Northwest Laboratory, PinL-2970, August 1979.

Dennison, I. A. and M. Romanoff, "Soil Corrosion Studies: Ferrous Metal and Alloys," J. of Research, NBS, Vol. 44, 1946.

DOE, "Draft Environmental Impact Statement - Management of Commercially Generated Radioactive Wastes," Vol. 2 and 2, U. S. Dept of Energy, DOE/EIS-0046-0, April 1979a.

DOE, Draft Environmental Impact Statement, Waste Isolation Pilot Plant. DOE-0026-D.

DOE Environmental and Other Evaluations for Long-Term Management of Buried INEL Transuranic Waste, ID0-10084.

DOE, "Technology for Commercial Radioactive Waste Management," Vol. 1-5, U. S. Dept. of Energy, DOE/ET-0028, May 1979b.

Ebenback, D. G., "Operational Experience at Chem-Nuclear's Barnwell Facility," EPA 520/2-79-002, May 1979.

Endeli, et al , 1938, Uber Zusammenhange Zwischen Wasserhaushalt der tomminerale und Boden physikalischen Eignenschaften bindiger Boden, Veroffentl.deut.Forsch.Bodenmech, 5.

ERDA, "Light Water Breeder Reactor Progran," Final Environmental Statement, Vol. 3, June 1976.

Foderaro A., "The Photon Shielding Manual," Pennsylvania State University, 1976.

Ford, F. and M. J. Povich, "The Effect of oxygen Temperature Combinations of Stress Corrosion Crack Suceptibility of Sensitized Type 304 Stainless Steel in High Temperature Water," Corrosion, Vol. 35, No. 12, 1979.

Geel, J. et al., "Incorporation of Solid High Level Waste into Metal and Non-Metal Matrices," Proc. of the Conf. on High-Level Radioactive Solid Waste Forms, December 1978, NUREG/CP-0005, L. A. Casey, Editor. ${ }^{*}$

Geiger, J. F., et al, Assessment of Hanford Burial Grounds and Interim TRU Storage," Rockwell International, RHO CD-78. August 1978.

Haggblom, H. "Diffusion of Soluble Materials in a Fluid Filling a Porous Medium," KBS Technical Report 9, Stockholni, Sweden, 1977.

Hanmer, N. E., Corrosion Data Survey, Fifth Edition, NACE, Houston, Texas.

Hanks, R.J., A. Klute, and E. Bresler, "A Numeric Method for Estimating Infiltration, Redistribution, Drainage, and Evaporation of Water from Soil," Water Resources Res., Vol 5, pp. 1064-1069, 1969.

Hanks, R.J. and S.B. Bowers, "Numerical Solution of Moisture Flow Equation for Infiltration into Layered Soils," Soil Sci. Soc. Amer. Proc., Vol 26, pp. 530-534, 1962.

Hoenes G. R. and J. K. Soldat "Age Specific Radiation Dose Commitment Factors for a One Year Chronic Intake," NUREG-0172, November 1977.*

Holcomb, W. F., "A Survey of Packaging for Solidified Low Level Radioactive Wastes," Technical Note ORP/TAD-78-1, Oak Ridge National Laboratory, September 1978.

Holcomb, W. F., "A Summary of Shallow Land Burial of Radioactive Wastes at Comercial Sites Between 1962 and 1976 with Projections," Nuclear Safety, Vol. 10, No. 1, 1978.

International Commission on Radiation Protection "Limits For Intakes of Radionuclides by Workers," Publication 30, Pergammon Press, July 1978.

International Nickel Co., Inc., "General Seawater Corrosion," GM3-785719 (2).

Jump, M. J., "Current Practices for Disposal of Solid Low-Level Radioactive Waste," A.I.Ch.E. Symposium Series No. 154, Vol. 72, 1976. Katayama, Y. B., "Leaching of Irradiated LWR Fuel Pellets in Deionized and Typical Ground Water," BNWL-2057, July 1976.

Katayama, Y. B., "Status Report on LWR Spent Fuel IAEA Leach Tests," Battelle Pacific Northwest laboratories, PNL-3173, March 1980.

King, L.G. and R.J. Hanks, "Irrigation Management for Control of Quality of Irrigation Return F1ow," prepared for USEPA, EPA-R2-73-265, June 1973.

Lapides, M. E., et al, "Transuranium Elements in Solid Radioactive Wastes from Commercial Power Reactors," EPRI, June 18, 1978 (Presented at ANS Annual Meeting).

LaQue, F. L. and H. R. Copson, Corrosion Resistance of Metals and Alloys, 2nd Ed., Reinhold Publishing Co.

Lester, D. H., George Jansen, and H. C. Burkholder, "Migration of Radionuclide Chains Through an Adsorbing Medium" AICHE Symp. Series., Vol. 71, No. 152, Pg 202, 1975.

Lester, D. H., et al., "System Study on Engineered Barriers Task 3 - Barrier Performance Analysis (Final Report)," Prepared for Office of Nuclear waste Isolation, Science Applications, Inc., SAI01379-990LJ, September 1979.

Low, P. F. and J. F. Margheim, "The Swelling of Clay. I. Basic Concepts and Emprical Equations," Soil Sci. Soc. Amer. Jour., Vol. 43, Pg. 473-481, 1979.

Marks, L. S., Mechanical Engineers' Handbook, 5th Ed., McGraw-Hill Publishing Co., 1952.

Mattson, E. and E. Fredrickson, "Pitting Corrcs on in Copper Tubes: Causes in Corrosion and Counter Measures," Britich Con. J., Vol. 3, No. 5, September 1968.

McCluggage, W. C., "Emergency Actions During Fires Involving Radioactive laterial in Transit," U. S. ERDA, (Unpublished).

Mishima J., L. C. Schwendiman, "Some Experimental Measurements of Airborne Uranium," BNWL, August 1973.

Mortar, R. J., "Land Eurial of Solid Radioactive Wastes: Study of Commercial Operation and Facilities," USAEC, WASH-1132, 1968. **

Nelson, G. A., Corrosion Data Survey, 1967 Edition, NACE, Heuston, Texas.
Neretnieks, I., "Transport of Oxidants and Radionuclides Through a Clay Barrier," KBS Teknisk Rapport 1978-02-20.

NRC Task Force Report on Review of the Federal/State Program for Regulation of Commercial Low-level Radioactive Waste Burial Grounds, NUREG-0217, March 1977. *

NRC "Techaology, Safety, and Costs of Decommissioning a Reference PWR Power Station," NUREG-0395, November 1977. *

NRC, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with LOCFR Part 50, Appendix I," Regulatory Guide 1.109, Revision 1, October 1977.

Oston, S. G., Finite Medium Green's Function Solutions to Nuclide Tranport in Porous Media, The Analytical Sciences Corporation, Report No. TR-1485-र, USDOE Report No. UCRL 15040, April 1979.

Papadopulos, S. S. and I. J. Winograd, "Storage of Low-Level Radioactive Wastes in the Ground Hydrogeologic and Hydrochemical Factors," EPA-520/3-74-009, 1974.

Posey, F. and A. A. Palko, "Corrosivity of Carbon Steel in Concentrated Chloride Solution," Corrosion, Vol. 35, No. 1, January 1979.

Powell, B. E. and L. V. Lucey, Physical Studies of Water Formed Corrosion Products on Copper, Final Report to the International Copper Research Assoc. (London: British Non-Ferrous Metals Tech. Center), March 1966.

Pusch, Roland, "Highly Compacted Na Bentonite as Buffer Substance," KBS Report 174, Stockholm, Sweden, 1978a.

Pusch, Roland, "Self-Ingestion of Highly Compacted Bentonite into Rock Joints," KBS Report 173, Stockholm, Sweden, 1978b.

Rabald, E., Corrosion Guide, Elseview Publishing Co., 1968.

Richards, L.A., "Capillary Conduction of Liquids in Porous Medium," Physics, Vol 1, pp. 318-333, 1931.

Robertson J. S., "Shallow Land Burial of Low-level Radioactive wastes in the United States -- Geohydrologic and Nuclide Migration Studies," 14EA-SM-243/152, July 1979 (Presented at Internationa? Symposium on the Underground Disposal of Radioactive Wastes).

Rockwell, Reactor Shield Design Manual TID-7004, March 1956.

Sagendorf, J. R. and J. T. Goll, "XOQDOQ Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," U.S. Nuclear Regulatory Cormission Draft Report dated August 1976.

Schlichting, H., Boundary Layer Theory, Trans. by J. Kestin, 4th Ed., McGraw-Hill Publishing co., New York, 1960.

Schumacher, M. (Editor), Sea Water Corrosion Handbook, Noyes Data Corp., Park Ridge, New Jersey, 1979.

Skidmore E. L., 1965, "Assessing Wind Erosion Forces Directions and Relative Magnitudes," Soil Sci., Soc. Amer., Proc. Vol., 29: 589-590.

Slade D. H., Meteorology and Atomic Energy 1968, USAEC, TID-24190, July 1968.**

Sladt D. H., Editor "Meteorology and Atomic Energy - 1968," U.S. Atomic Energy Commission, July 1968.

Smith, J. M., Chemical Engineering Kinetics, McGraw-Hill Publishing Co., 1970.

Gith, R. D., "Low-Level Waste Activity and Volume Estimates for 1979," August 1979.

Smith R. D., Low-Level Waste Licensing Branch to J. B. Martin, Director Division of Waste Management, August 10, 1979. Memo and Enclosures: Low Leve? Waste Activity and Volume Estimates for 1979.

Speidel, M.)., "Stress Corrosion Crack Growth in Austenitic Stainless Steel," Corrosion, Vol. 33, No. 6, 1977. Publishing Co., 1956.

Stula, R. T., et al., "System Study on Engineered Barriers, Task 1 - Interim Report," Science Applications, Inc., Prepared for Off: ©e of Nuclear waste Isolation, SAI01379-1070LJ/F, March 1980a.

Stula, r. T., et al., "System Study on Engineered Barriers, Task 3.3 Interim Report, BARIER Code User Manual," Science Applications, Inc., Prepared for Office of Nuclear Waste Isolation, SA101389-437LJ, July 1980 b.

Syrett, B. C., "Accreated Corrosion of Copper in Flow of Pure Water contaminated with Oxygen and Sul fide," Corrosion, Vol. 33, No. 7, 1977.

Thornthwaite C. W., 1931, "Climate of North Anerica," Gaograph Review, Vol. 21, pp633-655.

Todd, B. and P. A. Lovett, "Selecting Materials for Sea Water Systems," Marine Eng. Practice, Vol. I, Part 18, Inst. of Marine Engineers, England, 1956.

Trubey D. V. and S. V. Kaye, "The EXREM III Computer Code for Estimating External Radiation Doses to Populations from Environmental Releases," ORNL-TM-4322, December 1973.

Tuthill, A. H. and C. M. schillmoller, "Guidelines for Selection of Marine Materials, Ocean Science and Engineering Conference," Marine Technology Society, June 1965, Internatioan! Nickel Co., Inc., Publication = 2M 11-76 (5M 2-76) 5303.

IMAGE EVALUATION TEST TARGET (MT-3)

IMAGE EVALUATION TEST TARGET (MT-3)

U.S.A.E.C., "Shipments of Nuclear Fuel and Waste, WASH-1339, August 1974.**
U.S.A.E.C., "Environmental Survey of Transportation of Radioactive Materials to and frum Nuclear Power Plants, WASH-1238, 1972, Supp. I, NUREG-75/038, 1975; Supp. II NUREG-0069, 1976. *

USDA, 1968a, Agriculture Handbook No. 346, "Wind Erosion Forces in the United Staces and Their Use in Predicting Soil Loss."

USDA, 1968b, Agriculture Handbook NO 346, "Hind Erosion Forces in the United States and Their Use in Predicting Soil Loss."

USDA, 1958c, Agriculture Handbook No. 346, "wind Erosion Forces in the United States and Their Use in Predicting Soil Loss."

Westerman, R. E., et al., "Preliminary Conceptual Designs for Advanced Packages for the Geologic Disposal of Spent Fuel," Pacific Northwest Laboratories, PNL-2990, Apri1 1979.

Woodruff, i. P., and Siddoway, F. H., 1965a, "A Wind Erosion Equation," Soil Sci. Soc. Amer. Proc 29: 602-608.

Noodruff, N. P., and Siddnway, F. H., 1965b, "A Wind Erosion Equation," Soil Sci. Soc. Amer. Proc. 29: 602-608.

* Available for purchase from the NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, and/or the National Technical Information Service, Springfield, VA 22151
**Available from the National Technical Information Service, Springfield, VA 22161 only.

[^0]: 5.1.2 Packaging and Handling

 Packaging and handling operations include gathering, processing, and interim sto age. The gathering operation may be quite simple if the waste is generated and processed at a single source or complex as in the case of a large university with a number of laboratories, a reactor, and a hospital. There are a variety of processing operations ranging from simply packaging of the waste in a form suitable for shiment to involved incineration or solidification processes. Interim storage may occur at the waste-generating site itselfor it may occur in several stages. Interim storage will occur in several stages when waste broker services are used for final disposal, and may result in a rather complex set of transfer and storage operations.

[^1]: *Significant at $\alpha=.1$ level and at $\alpha=.05$ level
 ** Significant at $\alpha=.1$ level but not at $\alpha=.05$ level

[^2]: **Note: See Volune 1 of this report for inventory descriptions

[^3]: **These are the tables of " 00 " versus $\mathrm{mCi} / \mathrm{gm}$ of each nuclide found at the end of each time step output

[^4]: Clatial Whle haly
 Ifyed

 1. 2. TFAL s. I .
[^5]:
 $0.00 t+611$ ．．00t $+0 n$
 $0.00 t+10 \mathrm{C}$ $0.00 t+0 n$

 a． 0 ＂$z+00$
 4． 9 ．．$\ddagger+00$

 1）チャッ10

 － 10 倝 +101

[^6]:
 i 1ve！

[^7]: WHOLE BODY 0.00E•00

[^8]: $\begin{array}{lll}0.00 \mathrm{E}+00 & \text { GROOMD SHINE } & 0.00 \mathrm{E}+00 \\ 0.00 \mathrm{~F}+00 & \text { R- IMHALATION } & 0.00 \mathrm{E} * 00\end{array}$ $0.00 \mathrm{E}+00 \mathrm{~L}$. V. IMGFSTIGN 0.00E +00 0. 00e +00

