

ENVIRONMENTAL SCIENCES A DIVISION OF HAZLETON LABORATORIES AMERICA, INC. 1500 FRONTAGE ROAD, NORTHBROOK, ILLINOIS BODEZ U.S.A.

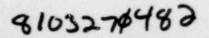
NORTHERN STATES POWER COMPANY MINNEAPOLIS, MINNESOTA

PRAIRIE ISLAND NUCLEAR GENERATING PLANT DOCKET NO. 50-282 LICENSE NO. DPR-42 50-306 DPR-60

ANNUAL REPORT to the UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiation Environmental Monitoring Program January 1, 1980 to December 31, 1980

> Prepared Under Contract by HAZLETON ENVIRONMENTAL SCIENCES Project No. 9079


Approved by:

un

L. G. Huebner, M.S.. Director, Nuclear Sciences

26 February 1981

PHONE (312) 564-0700 . TELEX 28-9483 (HAZES NBRK)

PREFACE

The staff members of the Nuclear Sciences Department of Hazleton Environmental Sciences, a Division of Hazleton Laboratories America, Inc. (HES), were responsible for the acquisition of data presented in this report. The staff includes L. Kuckla, N. Lamich, D. Rieter, J. Woods, and S. Yamagata. Environmental samples were collected by personnel of Northern States Power Company.

The report was prepared by L. G. Huebner, Director, Nuclear Sciences. He was assisted in the report preparation by C. A. Galioto, Group Leader, and C. R. Marucut, Section Supervisor, Nuclear Sciences.

TABLE OF CONTENTS

No		Page				
	PREFACE	ii				
	List of Tables	iv				
1.0	INTRODUCTION	1				
2.0	D SUMMARY					
3.0	RADIATION ENVIRONMENTAL MONITORING PROGRAM (REMP)					
	3.1 Program Design and Data Interpretation	3				
	3.2 Program Description	4				
	3.3 Program Execution	6				
	3.4 Laboratory Procedures	6				
	3.5 Program Modifications	7				
	3.6 Census of Milch Animaïs	7				
4.0	RESULTS AND DISCUSSION	9				
	4.1 Effect of Chinese Atmospheric Nuclear Detonation	9				
	4.2 Program Findings	9				
5.0	TABLES	15				
6.0	REFERENCES CITED	33				
	APPENDIX					
	A. Crosscheck Program Results	A-1				
	B. Data Reporting Conventions	B-1				
	C. Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted					
	Areas	C-1				

LIST OF TABLES

No.	Title	Page
5.1	Sample collection and analysis program, 1980	16
5.2	Sampling locations	18
5.3	Missed collections and analyses, 1980	23
5.4	Environmental radiological monitoring program summary	24
In a	addition, the following tables are in the Appendix:	
Appe	endix A	
A-1	Crosscheck program results, milk and water samples, 1975-1980	A-4
A-2	Crosscheck program results, thermoluminescent dosimeters (TLD's)	A-9
Appe	endix C	
C-1	Maximum permissible concentrations of radioactivity in air and water above natural background in unrestricted areas	C-2

1.0 INTRODUCTION

This report summarizes and inteprets results of the Radiation Environmental Monitoring Program (REMP) conducted by Hazleton Environmental Sciences at the Prairie Island Nuclear Generating Plant, Red Wing, Minnesota, during the period January - December, 1980. This program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the plant on its surroundings.

Tabluation of the individual analyses made during the year are not included in this report. These data are included in a reference document (Hazleton Environmental Sciences 1981) available at Northern States Power Company, Nuclear Support Services Department.

Prairie Island Nuclear Generating Plant is located on the Mississippi River in Goodhue County, Minnesota, and operated by Northern States Power Company. The plant has two 550 MWe pressurized water reactors. Unit 1 achieved initial criticality on 1 December 1973. Commercial operation at full power began on 16 December 1973. Unit 2 achieved initial criticality on 17 December 1974. Commercial operation at full power began on 21 December 1974.

2.0 SUMMARY

The Radiation Environmental Monitoring Program (REMP) required by the U.S. Nuclear Regulatory Commission (NRC) Technical Specifications for the Prairie Island Nuclear Generating Plant is described. Results for 1980 are summarized and discussed.

No effect on the environment due to the operation of the Prairie Island Plant is indicated. There was, however, a slight effect of the fallout from the atmospheric nuclear detonation on 16 October 1980 of a device in the 200 kiloton to 1 megaton range which resulted in an elevated gross beta activity in airborne particulates during the last quarter of 1980 and the presence of a small amount of iodine-131 in two milk samples collected 19 November 1980. The presence of the long-lived fission products, strontium-90 and cesium-137, in several sampling media indicated a long range fallout effect from previous atmospheric nuclear detonations.

3.0 RADIATION ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.1 Program Design and Data Interpretation

The purpose of the Radiation Environmental Monitoring Program (REMP) at the Prairie Island Nuclear Generating Plant is to assess the impact of the plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLD's).

Sources of environmental adiation include the following:

- natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) fallout from atmospheric nuclear detonations;
- releases from nuclear power plants.

In interpreting the data, effects due to the Plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Prairie Island Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in raidation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in the environmental samples collected from the Plant site. The Plant's monitoring program includes analyses for tritium, strontium-89, strontium-90, and iodine-131. Most samples are also analyzed for gamma-emitting isotopes with results for the following groups quantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:1:0.03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered radiological impact indicators.

The other group quantified consists of niobium-95, ruthenium-103, and -106, cesium-134, barium-lanthanum-140, and cerium-141. These isotopes are released in small quantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, cobalt-58, and -60, and zinc-65, are activation products and arise from activation of corrosion products. They are typical components of nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

Other means of distinguishing sources of environmental radiation can be employed in interpreting the data. Current radiation levels can be compared with previous levels, including those measured before the Plant became operational. Results of the Plant's Monitoring Program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.2 Program Description

The sampling and analysis schedule for the environmental radiation monitoring program at Prairie Island is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the reactor site. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Hazleton Environmental Sciences Corporation, 1978c).

To monitor the air environment, airborne particulates are collected on membrane filters by continuous pumping at four locations. Also, airborne iodine is collected by continuous pumping through charcoal filters at three of these locations. Filters are changed and counted weekly. Particulate filters are analyzed for gross beta activity and charcoal filters for iodine-131. A monthly composite of all particulate filters is gamma-scanned on a Ge(Li) detector. Two of the four locations are indicators, and two are controls (P-1 and P-2). One of the indicators (P-3) is located near the residence expected to be most susceptible to any atmospheric emissions from the Plant (highest X/Q residence).

Ambient gamma radiation is monitored at the same four air sampling locations using CaF_2 :Mn thermoluminescent dosimeters (TLD's). The sensors are placed in pairs at each location and are collected and measured guarterly.

In addition, as a "Lessons Learned" commitment, ambient gamma radiation is monitored at thirty-two (32) special locations, using three (3) LiF₂ chips mounted in the card: ten (10) in an inner ring in the general area of the site boundary, fifteen (15) in the outer ring within 4-5 mi radius, six (6) at special interest locations and one control location, 11.1 mi distant from the plant. They are replaced and measured quarterly. Also, a complete emergency set of TLD's for all locations, including four air sampling locations, is kept in the shield at the Plant. The emergency set is returned to the HES laboratory quarterly for annealing and repackaging.

Milk samples are collected monthly from five farms (four indicator and one control). All samples are analyzed for iodine-131. In addition, samples from the control location (P-25, Kinneman Farm) and the highest X/Q location (P-14, Gustafson Farm) are analyzed for strontium-89, strontium-90, and for gamma-emitting isotopes.

For additional monitoring of the terrest al environment, natural vegetation (such as grass) is collected semi innually from three locations (including the highest X/Q milk locat P-14 and the milk control location P-25). Samples are analyzed for ima-emitting isotopes including iodine-131. Cabbage is collected annu. y from a garden nearest the Plant and a control location (P-25) and analest for iodine-131. Corn is collected annually from the highest X/Q farm (14) and a control location (P-25) and analyzed for gamma-emitting isotops. Also, well water is collected quarterly and analyzed for tritium and gamma-emitting isotopes. Finally, topsoil is collected every three years a d analyzed for strontium -90 and gamma-emitting isotops. The latest collection of soil was made in 1979.

River water is collected weekly at two locations, one upstream of the Plant (P-5) and one downstream (P-6, Lock and Dam #3). Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium, strontium-89, and strontium-90.

Drinking water is collected weekly from the City of Red Wing well. Monthly composites are analyzed for gross beta activity and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, periphyton or macroinvertebrates, aquatic vegetation, and bottom sediments. Shoreline sedment is collected semiannually.

3.3 Program Execution

The Program was executed as described in the preceding section with the following exceptions:

- TLD data was not available for the third quarter of 1980 for location P-1 because of theft of the dosimeters.
- (2) Airborne particulate gross beta data from location P-2 for the period 1-21 to 1-29-80 was not available due to pump malfunction.

These deviations from the Program are summarized in Table 5.3.

3.4 Laboratory Procedures

All strontium-89, strontium-90, and iodine-131 analyses in milk were made by using a sensitive radiochemical procedure which involves separation of the element by use of an ion-exchange resin and subsequent beta counting.

All gamma-spectroscopic analyses were performed with a Ge(Li) detector. Levels of iodine-131 in cabbage and natural vegetation were determined by Ge(Li) spectrometry. Levels of airborne iodine-131 in charcoal samples were measured by Ge(Li) spectrometry.

Tritium levels were determined by liquid scintillation technique.

Analytical procedures used by the Nuclear Sciences Department of Hazleton Environmental Sciences are specified in detail elsewhere (NALCO Environmental sciences, 1977a). Procedures are based on those prescribed by the National Center for Radiological Health of the U. S. Public Health Service (U. S. Public Health Service, 1967; and by the Health and Safety Laboratory of the U. S. Atomic Energy Commission (U. S. Atomic Energy Commission, 1972).

Hazleton Environmental Sciences has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of Hazleton's QA Program are presented elsewhere (NALCO Environmental Sciences 1971a, 1971b, 1975, and Hazleton Environmental Sciences, 1980). The HES QA Program includes participation in laboratory intercomparison (crosscheck) programs. Results obtained in crosscheck programs are presented in Appendix A.

3.5 Program Modifications

Beginning 1 January 1980, thirty-two (32) new TLD locations were added to the program as a "Lessons Learned" commitment. Ten (10) of these locations were selected in an inner ring in the general area of the site boundary. fifteen (15) in the outer ring within 4-5 mi radius of the plant, six (6) at special areas of interest, and one (1) at a control location, 11.1 mi distant from the plant. Three LIF₂ chips mounted in the card were placed at each location and were exchanged and read quarterly.

In addition, a complete set of TLD cards for all locations, including four air sampling locations are kept in the shield at the p'ant for emergency purposes. The cards are returned to the HES laborator quarterly for annealing and repackaging.

Several additional sample collections which are not a part of the program were performed in 1980. Nine goat's milk samples were collected from mid June through the second part of November 1980 from three farms and analyzed for iodine-131. Also, one collection of clams was performed in September in the vicinity of the site.

3.6 Census of Milch Animals

In accordance with Technical Specification 4.10, paragraph B, several surveys of milch animals were conducted in the area of the Plant during 1980. On 6 June 1980 an extensive survey was conducted within a one mile radius of the Plant (or 15 mrem/year distance). Most cattle observed were used for beef rather than milk production. No new milk producing herds were found.

On 18 June 1980 a census for milk cows within a five mile radius was completed. With the assistance of the Agricultural Agent of Goodhue and Pierce Counties, it was determined that several milk herds in Wisconsin had discontinued operations. Current raw milk sampling locations were not affected. No new herds were identified.

On 18 June and 25 June 1980 a census of goat herds within a 15 mile radius of the Plant was completed. After visits with three county agricultural agents, a county 4-H Agent, and several members of the Wisconsin Dairy Goat Association, it was determined that there were no reliable suppliers of goat milk in the area. Most herds in the area are kept as hobbies or as part of youth education programs conducted by 4-H organizations. Although goat milk sampling is not a part of the routine program, certain goat milk samples, when available, were collected and analyzed.

On 27 August and 2 September 1980, the mid-season census of milch producing animals was completed. No new herds were identified. None of the surveys resulted in changes of milk sampling locations.

4.0 RESULTS AND DISCUSSION

All of the scheduled collections and analyses were made except those listed in Table 5.3.

All results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.1 The Effect of Chinese Atmospheric Nuclear Detonation

One atmospheric nuclear detonation was reported during 1980. The test was conducted by the People's Republic of China on 16 October 1980. The reported yield was in the 200 kiloton to 1 megaton range. Gross beta results for air particulates indicate that the effect of the fallout in the central United States was not noticeable until two weeks after the test. During the previous Chinese tests in 1977 and 1978, the effect was noticed about one week after the test. This delay is probably attributable to dry weather following the test postponing the rainout of radioactive particles until second or subsequent passes of the radioactive cloud over the United States. Presence of low level of iodine-131 in only two milk samples and only moderate increase of beta activity in airborne particulates supports this assumption.

The usual spring peak, a phenomenon that is observed worldwide almost annually (Wilson et al., 1969) was not evident in 1980 (1976 and 1979 were also an exception). These spring peaks have been attributed to fallout of nuclides from the stratosphere (Gold et al., 1964).

4.2 Program Findings

A number of program findings reflect effects of the latest Chinese and previous worldwide atmospheric nuclear tests. The chief environmental indicators of test effects were airborne particulates and, to a lesser degree, milk.

Ambient Radiation (TLD's)

At four regular air sampling locations, indicator TLD's averaged 13.3 mrem/91 days and control TLD's averaged 15.9 mrem/91 days. The doses measured by control TLD's were about 20% higher than indicator TLD's. Higher readings at control locations are due to higher readings at location P-2, which historically yielded about 40% higher readings than the second control

location, P-1. The means at special locations were similar to those measured at regular air sampling locations and ranged from 11.2 mrem/91 days at inner ring locations to 13.5 mrem/91 days at outer ring locations. The differences are not statistically significant. The dose rates measured were similar to those observed in 1978 (12.1 and 15.1 mrem/91 days, respectively and in 1979 (12.6 and 15.3 mrem/91 days, respectively). No Plant effect on ambient gamma radiation was indicated.

Air Particulates

The average annual gross beta activity in airborne particulates was 0.032 pCi/m³ at indicator locations and 0.033 pCi/m³ at control locations and was 60% lower than in 1978 (0.093 pCi/m³) and about 15% lower than in 1979 (0.038 pCi/m³). In the first quarter of 1980 weekly gross beta activity averaged 0.032 pCi/m³, then leveled off at about 0. 23 pCi/m³ during the second and third quarters and rose to about 0.053 pCi/m³ during the fourth quarter.

Increase of the gross beta activity during the fourth quarter is attributable to the fallout form the nuclear test conducted 16 October 1980.

Two pieces of evidence indicate conclusively that the elevated activity observed during the fourth quarter was not attributable to the Plant. In the first place, elevated activity of similar size occurred simultaneously at both the indicator and control locations. Secondly, an identical pattern was observed at the Monticello Generating Plant, some 100 miles distant from the Prairie Island Generating Plant (Northern States Power Company, 1981).

Trace amounts of niobium-95, ruthenium-103, and cerium-141 were detected in November and December composite samples. Presence of these isotopes in airborne particulates is also attributable to the fallout from the recent nuclear test. Except for beryllium-7, all other gamma-emitting isotopes were below their respectiv LLD levels. None of the activities detected were attributable to the Plant operation.

Airborne Iodine

Airborne iodine-131 results were below the detection limit of 0.07 pCi/m^3 in all samples. Thus, there was no indication of a Plant effect.

Milk

All results for iodine-131, except two cow's milk samples, were below the LLD of 0.25 pCi/l, including five goat's milk samples. The mea-

sured activity, 0.4 pCi/l and 5.4 pCi/l was detected in samples collected 19 November 1980, approximately four weeks after the nuclear test. Since detected activity was observed at both control (0.4 pCi/l) and indicator (5.4 pCi/l) locations, and since a similar pattern was observed a week earlier at the Monticello Nuclear Generating Plant 100 miles distant from Prairie Island , it is clearly attributable to the latest Chinese nuclear test.

Strontium-90 results averaged slightly higher at the control location (P-25, Kinneman Farm), and all detectable results were in the range 1.9-4.9 pCi/l, a range consistent with 1976, 1977, 1978, and 1979 observations at Prairie Island. Strontium-90 levels in this range are attributable to worldwide fallout from previous atmospheric nuclear tests and reflect the long half-life (28.6 yrs) of this isotope.

Cesium-137 results were below the LLD level of 15 pCi/l in all samples. Cesium-137 is also a long-lived component (with a half-life of 30.24 years) of worldwide fallout and is found in the environment in trace quantities. Finally, all strontium-89 results in 1980 were <3.8 pCi/l, in agreement with 1976, 1977, 1978, and 1979 measurements.

No significant changes were seen in strontium-90 levels in milk and were similar to those observed in 1979. This absence of an effect is consistent with the low initial production of these isotopes in nuclear explosions (Eisenbud, 1963). Also no other gamma-emitting isotopes, except potassium -40, were detected in any of the milk samples. This is consistent with the finding of the National Center for Radiological Health that most radiocontaminants in feed do not find their way into milk due to the selective metabolism of the cow. The common exceptions are radioisotopes of potassium, cesium, strontium, barium, and iodine (National Center for Radiological Health, 1968).

In summary, the milk data for 1980 show no radiological effects of the Plant operation, but the presence of strontium-90 in milk samples does exhibit a long range residual effect of previous atmospheric nuclear tests. Also, presence of iodine-131 in two milk samples exhibits short range effect of the recent nuclear test conducted 16 October 1980.

Drinking Water

In drinking water from the City of Red Wing well, no tritium was detected. Results ranged from <160 to <390 pCi/l. As with the other well water samples, all analyses for gamma-emitting isotopes yielded results below detection limits. Gross beta averaged 11.8 pCi/l and was similar to the level observed in 1979 (10.5 pCi/l).

River Water

At the upstream collection site, quarterly composite tritium levels ranged from <130 to <390 pCi/l and were similar to the range observed in 1979 (<150 to 340 pCi/l).

At the downstream site (Lock and Dam #3), quarterly composite tritium levels ranged from 130 to 300 $p\Omega1/1$. The differences in levels between upstream and downstream samples were not significant.

Analyses of river water were also made for gamma-cmitting isotopes, strontium-89, and strontium-90. All gamma-emitting isotopes and strontium -89 were below detection limits. Strontium-90 was detected in one downstream sample (1.3 pCi/l) and was barely above the LLD level of 1.1 pCi/l. There was no indication of a Plant effect.

Well Water

At the control well P-25, Kinneman Farm, tritium levels averaged 270 pCi/l, almost identical to the level observed in 1979 (260 pCi/l). For two of the indicator wells (P-8, Kinney Store, and P-10, Lock and Dam #3) no tritium was detected above LLD level of 280 pCi/l in any of the analyses. The results ranged from <120 to <280 pCi/l and were consistent with the results obtained in 1979. At the remaining indicator well (P-9, Plant Well #2), tritium was detected in three quarterly samples and ranged from <180 to 520 pCi/l, averaging 420 pCi/l, exactly the same as in 1979. This is about 150 pCi/l above the control level of 270 pCi/l.

The difference between the Plant well and the control well was not statistically significant since uncertainty in the measurement is about at the same magnitude as the difference. The highest tritium activity detected in the well (520 pCi/1) was about forty times lower than the annual average concentration allowed by the EPA National Interim Primary Drinking Water Regulation. (40 CFR 141) and was 0.005% of maximum permissible concentration for tritium above background level in unrestricted areas (3,000,000 pCi/1). Gamma-emitting isotopes were in all cases below detection limits.

An investigation was begun in May 1978 to determine ground water flow patterns in the affected area. This investigation showed a general slope from the Mississippi River to the Vermillion River past the immediate area of Plant Well #2. This would indicate that surface water recharge from the Mississippi River may be intercepted by Well #2. Several plant water system sampling locations have been established in order to monitor possible migration of activity to Well #2. So far this investigative effort is inconclusive. Tritium is released by the Plant to the river; however, tritium is also produced by nuclear weapon tests and by cosmic radiation and brought to the ground by precipitation. At this point in time, it is not at all evident which source or sources may be contributing to the negligible elevated tritium levels in Well #2.

Crops

Cabbage samples were collected on 2 September 1980, and analyzed for iodine-131. Corn samples were also collected on 2 September 1980, and analyzed for gamma-emitting isotopes. All results, except for potassium -40, were below detection limits. There was no indication of a Plant effect.

Natural Vegetation

Natural vegetation was collected on 6 May and 2 September 1980. No iodine-131 was observed in either collection. Trace amount of cesium-137 was detected in one sample collected in September at the control location P-25. Also, one sample contained trace amounts of zirconium-95, reflecting the long range deposition effect from previous atmospheric nuclear tests. All other gamma-emitting isotopes, except beryllium-7, which is constantly produced in the upper atmosphere by cosmic rays, and naturally-occurring potassium-40 were below detection limits. Thus, no Plant effect is indicated.

Topsoil

Topsoil was not collected in 1980. In accordance with Technical Specifications, soil is collected every three years. The last collection was made in 1979.

Fish

Fish samples were collected in May, June, and September 1980. There was no significant difference between upstream and downstream results. There was no indication of a Plant effect.

Aquatic Insects and Periphyton

Aquatic insects (macroinvertebrates) and periphyton were collected on 3 June and 9 September 1980. The samples were analyzed for strontium-89, strontium-90 and gamma-emitting isotopes. Strontium-89 and all gamma -emitting isotopes were below limits of detection. Mean strontium-90 level was at the LLD level in upstream samples (0.03 pCi/g wet weight) and 0.06 pCi/g wet weight in downstream sample. The difference between

the downstream and upstream samples was not statistically significant since uncertainty in the measurement is about at the same magnitude as the difference. No Plant effect was indicated.

Aquatic Vegetation

Aquatic vegetation was collected on 30 June and 9 September 1980 and analyzed for gamma-emitting isotopes. All results, except for potassium -40, were below detection limits. No Plant effect was indicated.

Bottom and Shoreline Sediments

Sediment collections were made on 3 June and 9 September 1980. The samples were analyzed for strontium-90 and gamma-emitting isotopes. Strontium-90 was detected in one control sample (0.034 pCi/g dry weight) and in two indicator samples (0.013 pCi/g dry weight). Cesium-137 was detected in one control sample and one indicator sample. Distribution and ratios for cesium-137 were similar to those for strontium -90. The only other gamma-emitting isotope detected was naturally-occuring potassium -40. No Plant effect was indicated.

Clams

A Special collection of clams was made 15 September 1980 in the vicinity of the site. The sample was analyzed for gross beta and gamma-emitting isotopes. Gross beta measured 1.45 pCi/g wet weight. All gamma-emitting isotopes were below detection limits. No Plant effect was indicated.

5.0 TABLES

	Locations No. Codes (and Type) ^a		Collection Type and	Analysis Type (and
Medium			Frequencyb	Frequency) ^C
Ambient Radiation (TLD's)	7	P-1(C), P-2(C), P-3, P-4	C/Q	Ambient gamma
	37	P-01A - P10A P-01B - P-15B P-01S - P-06S P-01(C)	C/Q	Ambient gamma
Airborre particulates	7	P-1(C), P-2(C), P-3, P-4	C/W	GB, GS (MC of all locations)
Airborne iodine	3	P-1(C), P-3, P-4	C/W	1-131
Milk	3	P-16 to P-18	G/M	I-131
	2	P-25(C), P-14	G/M	I-131, Sr-89, Sr-90, GS
River water	2	P-5(C), P-6	G/W	GS(MC), H-3(QC) Sr-89 (QC) Sr-90 (QC)
Drinking Water	1	P-11	G/W	GB, GS(MC), H-3 (QC)
Well water	4	P-25(C), P-8 to P-10	G/Q	H-3, GS
Edible cultivated crops - green leafy vegetables	2	P-25(C), P-24	G/A	I-131

Table 5.1 Sample collection and analysis program, 1980.

Prairie Island

0

1.

de,

ALC: NO

16

die.

.

Table 5.1 (continued)

17

Prairie Island

	Locations		Collection Type and	Analysis Type (and
Medium	No.	Codes (and Type) ^a	Frequencyb	Frequency)C
Edible cultivated crops - corn	2	P-25(C), P-14	G/A	GS
Natural Vegetation	3	P-25(C), P-14, P-15	G/SA	I-131, GS
Fish (two species, edible portion)	2	P-5(C), P-6	G/SA	GS
Periphyton or Macroinvertebrates	2	P-5(C), P-6	G/SA	Sr-89, Sr-90 GS
Aquatic Vegetation	2	P-5(C), P-6	G/SA	GS
Bottom Sediment	2	P-5(C), P-6	G/SA	65, Sr-90
Shoreline Sediment	1	P-12	G/SA	GS, Sr-90
Topsoil ^d	9	P-1(C), P-2(C) P-3, P-4, P-19 to P-23	G/ETY	GS, Sr-90

^a Location codes are defined in Table D-2. Control stations are indicated by (C). All other stations are indicators.

- ^b Collection type is coded as follows: C/ = continuous G/ =grab. Collection frequency is coded as follows: W = weekly, M = month /, Q = quarterly, SA = semiannually, A = annually, ETY = every three years.
- C Analysis type is coded as follows: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, Sr-89 = strontium-89, Sr-90 = strontium-90, I-131 = iodine-131. Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

dCollected in 1979. Next scheduled collecction is in 1982.

Code	Typea	Name	Location
P-1	С	Station P-1 (Control-Air)	16.5 mi @ 348°/NNW
P-2	C	Station P-2 (Control-Air)	10.9 mi @ 47°/NE
P-3	, v	Station P-3 (X/Q res, Comm-Air	
P-4		Station P-4 (X/Q-Air)	1.6 mi @ 129°/SE
P-5		Upstream of Plant (1000')	0.6 mi @ 60°/ENE
P-6		Lock & Dam #3	1.6 mi @ 129°/SE
P-70	С	Most Farm Well	11.4 mi @ 320°/NW
P-8	C		
		Kinney Store	2.0 mi @ 280°/W
P-9		Plant Well #2 (on-site)	0.3 mi @ 306°/NW
P-10		Lock & Dam #3 Well	1.6 mi @ 129°/SE
P-11		City of Red Wing (Drinking Wat	er) 7.1 mi @ 135°/SE
P-12	1000	Recreational Area	3.4 mi @ 116°/ESE
P-13D	С	Most Farm (Prescott)	11.4 mi @ 320°/NW
P-14		Gustafson Farm (X/Q-milk)	2.2 mi @ 168°/SSE
P-15		Downwind Field	0.6 mi @ 162°/SSE
P-16		A. Dosdahl Farm	2.5 mi @ 39°/NE
P-17		Place Farm	3.5 mi @ 25°/NNE
P-18		Birk Farm	3.5 mi @ 181°/S
P-19		Commissary Point Park	1.0 mi @ 156°/SSE
P-20		Meteorology Station	0.4 mi @ 296°/WNW
P-21		Sturgeon Lake Access	0.4 mi @ 344°/NNW
P-22		Former TLD #14 Location	0.5 mi @ 230°/SW
P-23		Former TLD #15 Location	0.5 mi @ 184°/S
P-24		H. Larson Residence (Nearest	1.6 mi @ 287°/WNW
2.4		Garden)	1.0 11 0 207 / 104
P-25C	С	Kinneman Farm (Control-Milk, e	tc) 11.1 mi @ 331°/NNW
P-26C		Augustine Farm	5.7 mi @ 24°/NNE
P-27C		Murphy Farm	2.8 mi @ 42°/NE
P-01A		Property / ine	North Sector. Sampler is
			on the side of the fence
			adjacent to corp of
			Engineers public access
			parking area and facing
			the plant.
P-02A			
P-UZA		Property Line	NNE Sector. Sampler at a
			corner of the property
			line fence near the
			biology station.
P-03A		Property Line	South Sector. Sampler is
			adjacent the SE end of a
			guard rail along the road
			near a river pole.

Table 5.2 Sampling locations.

Table 5.2 (continued)

Code	Typea	Name	Location
P-04A		Property Line	SSW Sector. Sampler is adjacent ot the NW end of a guard rail along the roadway next to a small
P-05A		Property Line	access road. SW Sector. Sampler is inside the fence area adjacent to a transmission tower.
P-06A		Property Line	WSW Sector. Sampler is inside the fenced area adjacent to a telephone junction box and south of an underground cable warning sign.
P-07A		Property Line	West Sector. Sampler is inside the fenced area about 75 feet North of the railroad entrance gate adjacent to a fence sign.
P-08A		Property Line	WNW Sector. Sampler is adjacent to the last power polw that serves the Meteorological station alon
P-09A			the property line. NW Sector. Sampler is in north west corner of the property fenced area, just inside the fence and facing the plant.
P-10A		Property Line	NNW Sector. Sampler is inside the fence west of the north entrance gate facing the plant adjacent to a transmission tower.
P-01B		Thomas Killian Residence	North Sector. Sampler is adjacent to a power pole north of the driveway.
P-02B		Ray Kinneman Farm	NNE Sector. Sampler is south of the driveway adjacent to a telephone junction box.

Table 5.2 (continued)

Code	Typea	Name	Location
P-03B		Wayne Anderson Farm	NE Sector. Sampler is in the front yard adjacent to a power pole facing toward the plant.
P-04B		Nelson Drive (Road)	ENE Sector. Sampler is adjacent to a power pole and a telephone junction box, about 15 feet south of the road.
P-05B		Country Road E near Goodwin Coulee Road	East Sector. Sampler is north of Country Road E and about 300 ft. NW of the Goodwin Coulee Road (near a power pole that has a "Danger High Voltage" sign on it and about 25 ft. NW of the Richard Enberg mail box).
P-06B		William Hauschildt Residence	ESE Sector. Sampler is between a power pole and telephone junction box on the east side of the driveway.
P-07B		Red Wing Service Center	SE Sector. (North Highway 61 on Tyler Road) Sampler is adjacent to a corner transmission pole and the Railroad right-of-way close to a chain link fence.
P-08B		David Wnuk Residence	SSE Sector. Sampler is o the west edge of property adjacent to a telephone box. Pole is opposite a new bridge on the east side of Highway 19.
P-09B		Highway 19, South of 61	South Sector. Sampler is adjacent to a pole support- ing a telephone junction box and opposite a new bridge on the east side of highway 19.

Table 5.2 (continued)

Code	Туреа	Name	Location
P-108	(annodale Farm .	SSW Sector. Sampler is
		Lane-James Byron)	adjacent to a corner fence
	,		post and near a "Speed
			Limit 30" road sign.
P-118		allace Weberg Farm	SW Sector. (Farm is on
	10.00	arrace neberg raim	top of the bluff). Sample
			is adjacent to a power
			pole and the telephone
			junction box facing the
			plant (ease of driveway).
P-12B		lay Gergen, Jr. Farm	WSW Sector. Sampler is
			north of driveway in the
			farmyard on the east end
			of a storage shed facing
			the plant.
P-13B	1	homas O'Rourke Farm	West Sector. Sampler is
			adjacent to a power pole
			and a telephone junction
			box outside a stock fence
			area.
P-14B	r	avid J. Anderson Farm	NW Sector. Sampler is
-140	12000	avia o. Anderson rann	near the front year south
			of a red cedar tree (not
			located in the main
			road for protection).
P-15B		lolst Farm	NNW Sector. Sampler is
		Station	east of residence near a
			corner post of a fenced
2.2.			area.
P-015	F	ederal Lock & Dam #3	SE Sector. Sampler is
			north of the fenced air
			sampling station (#4) and
			facing the plant.
P-025	0	harles Suter Residence	SSE Sector. Sampler on
			the north side of a power
			pole in the farm yard and
			facing the plant.
P-035	0	arl Gustafson Farm	SSE Sector. Sampler is
	201 C		near the north side of the
			road in the last curve
			before the farmyard.
			(Close to the corner power
			pole and a fence post).

Table 5.2 (con	ti	nued)	
----------------	----	-------	--

Prairie Island

Code	Туреа	Name	Location
P-04S		Near Richard Burt Residence	SW Sector Sampler is to a tree about 15 feet away from the curve in the road.
P-05S		Kenney Store - Trailer Park	West Sector. Sampler is at the north end of a redwood fence and adjacent to a telephone junction box.
P-06S		Earl Flynn Farm	WNW Sector. Sampler is on the east side of the house adjacent to a hyge stump and facing the plant.
P-01C		Robert Kinneman Farm	NNW Sector. Sampler is about 250 ft. east of the residence adjacent to a corner fence post and facing the plant.

a"C" denotes control location. All other locations are indicators. bp-13 discontinued after March 1978. CP-25 added in April 1978. dp-26 and P-27 added in July 1978 (Goat's Milk).

Sample	Analysis	Location	Coll. Date or Period	Comments
Thermoluminescent Dosimeters (TLD's)	Ambient gamma	P-1	3rd quarter 1980	TLD bulbs and cards were lost to thieves in the field.
Airborne particulate	Gross Beta	P-2	1-21 to 1-29-80	No sample due to pump malfunction

.

.

Table 5.3 Missed collections and analyses, 1980; Prairie Island NGP All required samples collected and analyzed except the following:

5.4 Environmental Radiological Monitoring Pro	ogram Summary	
---	---------------	--

Name of facility Prairie Island Nuclear Generating Plant Docket No. 50-282, 50-306 Location of facility Goodhue, Minnesota Reporting period January-December 1980 (County, state)

.

. .

Sampi	Type and			Indicator Locations	Location with H Annual Mea		Control Locations	Number of
Type (Units)	Number of Analyses		LLDD	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routine Results ^e
TLD (mrem/91 days)	Gamma	15	1.0	13.3 (8/8) (11.3-15.3)	P-2 Station P-2 10.9 mi @ 47° NE	18.4 (4/4) (14.7-20.4)	15.9 (7/7) (11.9-20.4)	0
TLD (mrem/91 days) (Inner Ring, General Area at Site Boundary)	Gamma	40	3.0	11.2 (40/40) (5.8-14.0)	P-05A, Property Line, SW Sector	12.4 (4/4) (9.6-13.7)	(See control below)	0
ILD (mrem/91 days) (Outer ring, 4 -5 miles distant)	Gamma	60	3.0	13.5 (60/60) (8.0-18.5)	P-04B Nelson Drive Road, ENE Sector	14.9 (4/4) (10.4-18.4)	(See control below)	0
TLD (mrem/91 days) (Special Interest Areas)	Gamma	24	3.0	11.4 (24/24) (7.1-15.6)	P-03S, Carl Gustafson Farm, SSE Sector	13.0 (4/4) (8.6-15.6)	(See control below)	0
TLD (mrem/91 days) (control)	Gamma	4	3.0	None	P-OIC-R. Kinneman Farm, NNW Sector	13.2 (4/4) (10.7-14.7)	13.2 (4/4) (10.7-14.7)	0
Airborne Particulates (pCi/m ³)	GB	155	0.001	0.032 (104/104) (0.009-0.158)	P-1, Station P-1 16.5 mi @ 348° NNW P-4, Station P-4	0.034 (52/52) (0.012-0.113) 0.034 (52/52)	0.033 (103/103) (0.010-0.113)	0
	GS	12			1.6 m1 @ 129° SE	(0.011-0.158)	None	0
	Be-7		0.008	0.091 (12/12) (0.068-0.165)	NAF	-	None	0
	Mn-54		0.0026	<lld< td=""><td></td><td></td><td>None</td><td>0</td></lld<>			None	0
	Co-58		0.0028	<lld< td=""><td></td><td></td><td>None</td><td>0</td></lld<>			None	0
	Co-60		0.0023	<lld< td=""><td>-</td><td></td><td>None</td><td>0</td></lld<>	-		None	0
	Zn-65		0.0060	4.LD	-		None	0
	Nb-95		0.0019	0.0075 (2/12) (0.004-0.011)	NA	-	None	0

Table 5.

.

24

HAZLETON ENVIRONMENTAL SCIENCES

Sample	Type and			Indicator Locations	Location with H Annual Mea	n	Control Locations	Number of
Type (Units)	Number of Analyses	f	LLDD	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routine Results ^e
Airborne	295		0.0100	<1LD			None	0
Particulates (pC1/m ³) (cont'd)	Ru-103		0.057	0.006 (1/12)	NA	-	None	0
	Ru-106		0.0248	410		-	None	0
	Cs-134		0.0023	410	-	•	None	0
	Cs-137		0.9020	410			None	0
	Ba-140		0.0264	410	1	-	None	0
	La-140		0.0056	410	•	1000	None	0
	Ce-141		0.0028	0.009 (2/12) (0.007-0.011)	NA		None	0
	Ce-144		0.0110	410			None	0
Airborne Iodine (pCi/m ³)	1-131	156	0.07	4LD	*	-	410	0
Milk (pC1/1)	1-131	69	0.25	5.4 (1/57)	P-16 Dosdahl Farm, 2.5 mi 0 39° NE	5.4 (1/57)	0.4 (1/12)	0
	Sr-89	24	3.8	410	•		<lld< td=""><td>0</td></lld<>	0
	Sr-90	24	1.0	2.8 (12/12)	P-14 Gustafson Farm 2.2 ml 0 168° SSE	2.8 (12/12) (1.9-3.8)	3.6 (12/12) (2.2-4.9)	0
	65	24	100					
	K-40		100	1310 (12/12) (1160-1470)	P-14 Gustafson Farm 2.2 ml 0 168°SSE	1310 (12/12) (1160-1470)	1260 (12/12) (1150-1430)	0
	Cs-134		15	410	-	-	<lld< td=""><td>0</td></lld<>	0
	Cs-137		15	ALD			<lld< td=""><td>0</td></lld<>	0
	P 1 40		15	410		-	<lld< td=""><td>0</td></lld<>	0
	La-140		15	410			<lld< td=""><td>0</td></lld<>	0
Drinking Water (pCi/l)	GB	12	1	11.8 (12/12) (8.6-16.6)	P-11 City of Red Wing 7.1 mi @ 135° SE	11.8 (12/12) (7.6-16.6)	None	0
	H-3	4	390	<lld< td=""><td>-</td><td>4.4</td><td>None</td><td>0</td></lld<>	-	4.4	None	0
	GS	12	20.10			2.27 6.22		

Table 5.4

(Continued)

1

25

Ş.

HAZLETON ENVIRONMENTAL SCIENCES

*

Sample	Type and		Indicator Locations	Location with Hig Annual Mean	hest	Control Locations	Number of
Type (Units)	Number of Analyses ^a	LLDb	Locations Mean(F) Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routin Results ^e
Drinking Water (pCi/1)	Mn-54	15	<lld< td=""><td>-</td><td></td><td>None</td><td>0</td></lld<>	-		None	0
(cont'd)	Co-58	15	<lld< td=""><td></td><td>-</td><td>None</td><td>0</td></lld<>		-	None	0
	Co0	15	<lld< td=""><td>-</td><td></td><td>None</td><td>0</td></lld<>	-		None	0
	Zn-65	30	<lld< td=""><td>-</td><td>1.11</td><td>None</td><td>0</td></lld<>	-	1.11	None	0
	ND-95	15	<lld< td=""><td></td><td>-</td><td>None</td><td>0</td></lld<>		-	None	0
	Zr-95	15	<lld< td=""><td></td><td></td><td>None</td><td>0</td></lld<>			None	0
	Cs-134	15	<lld< td=""><td></td><td>-</td><td>None</td><td>0</td></lld<>		-	None	0
	Cs-137	18	<lld< td=""><td></td><td></td><td>None</td><td>0</td></lld<>			None	0
	Ba-140	15	<lld< td=""><td></td><td>-</td><td>None</td><td>0</td></lld<>		-	None	0
	La-140	15	<lld< td=""><td></td><td>-</td><td>None</td><td>0</td></lld<>		-	None	0
	Ce-144	50	<lld< td=""><td></td><td>-</td><td>None</td><td>0</td></lld<>		-	None	0
River Water (pC1/1)	H-3 8	390	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
(pc1/1)	Sr-89 8	1.8	<lld< td=""><td></td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>		-	<lld< td=""><td>0</td></lld<>	0
	Sr-90 8	1.1	1.3 (1/4)	P-6 Lock & Dam #3 1.6 m1 @ 129° SE	1.3 (1/4)	<lld< td=""><td>0</td></lld<>	0
	GS 24		1			[19] 김 우리	10.00
	Mn-54	15	<lld< td=""><td></td><td></td><td>410</td><td>0</td></lld<>			410	0
	Co-58	15	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Co-60	15	<lld< td=""><td></td><td>한 동습이 걸</td><td>4LD</td><td>0</td></lld<>		한 동습이 걸	4LD	0
	Zn-65	30	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Nb-95	25	<lld< td=""><td>-</td><td>8. P. S.</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	8. P. S.	<lld< td=""><td>0</td></lld<>	0
	Zr-95	19	<lld< td=""><td>-</td><td>Sec.</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	Sec.	<lld< td=""><td>0</td></lld<>	0
	Cs-134	15	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Cs-137	18	<lld< td=""><td>-</td><td>1. 14.8</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	1. 14.8	<lld< td=""><td>0</td></lld<>	0
	Ba-140	15	<lld< td=""><td></td><td>1991</td><td><lld< td=""><td>0</td></lld<></td></lld<>		1991	<lld< td=""><td>0</td></lld<>	0
	La-140	15	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Ce-144	90	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0

Table 5.4 (Continue

.

(Continued) Name of facility _____ Prairie Island Nuclear Generating Plant

26

HAZLETON ENVIRONMENTAL SCIENCES

Sample	Type and		Indicator Locations	Location with Hi Annual Mean	ghest	Control Locations	Number of
Type (Units)	Number of Analyses ^a	LLDb	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routin Results ^e
Well Water (pCi/l)	H-3 16	280	420 (3/12) (350-520)	P-9 Flant Well #2 0.3 mi @ 306° NW	420 (4/12) (350-520)	370 (1/4)	0
	GS				Sec. 1		
	Mn-54	15	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	Co-58	15	410	-		<lld< td=""><td>0</td></lld<>	0
	Co-60	15	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Zn-65	30	<lld< td=""><td>The second of</td><td>1 - C</td><td><lld< td=""><td>0</td></lld<></td></lld<>	The second of	1 - C	<lld< td=""><td>0</td></lld<>	0
	Nb-95	15	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Zr-95	26	<1.LD			<lld< td=""><td>0</td></lld<>	0
	Cs-134	15	<110			<lld< td=""><td>0</td></lld<>	0
	Cs-137	18	<lld< td=""><td></td><td>1.2.1.1.1</td><td><lld< td=""><td>0</td></lld<></td></lld<>		1.2.1.1.1	<lld< td=""><td>0</td></lld<>	0
	Ba-140	15	<110	· · ·		<lld< td=""><td>0</td></lld<>	0
	La-140	15	<lld< td=""><td></td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>		-	<lld< td=""><td>0</td></lld<>	0
	Ce-144	90	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
Crops-Cabbage (pCi/g wet)	1-131 3	0.016	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
Crops-Corn	1-131 2	0.028	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
(pCi/g wet)	6S 2	10.00					
	Be-7	0.16	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	K-40	0.5	2.11 (1/1)	P-25 Kinneman Farm 11.1 mi @ 331° NNW	2.2 (1/1)	2.17 (1/1)	0
	Mn-54	0.022	4LD	-		<lld< td=""><td>0</td></lld<>	0
	Co-58	0.019	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	Zn-65	0.036	<1LD	-		<lld< td=""><td>0</td></lld<>	0
	Nb-95	0.019	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Zr-95	0.043	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Ru-103	0.023	<110	-	-	<1.L0	0
	Ru-106	0.15	<lld< td=""><td>-</td><td>· · · · ·</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	· · · · ·	<lld< td=""><td>0</td></lld<>	0

Table 5.4 (Continued) Name of facility _____ Prairie Island Nuclear Generating Plant

.

27

HAZLETON ENVIRONMENTAL SCIENCES

х

Sample	Type and		Indicator Locations	Location with Hi Annual Mean		Control Locations	Number of
Type (Units)	Number of Analyses ^a	LLDP	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routine Results ^e
Crops-Corn (pCi/g wet)	Cs-134	0.019	410	•		ALD	0
(cont'd)	Cs-137	0.017	<lld< td=""><td></td><td></td><td>aio</td><td>0</td></lld<>			aio	0
	Ba-140	0.068	4LD			<lld< td=""><td>0</td></lld<>	0
	La-140	0.019	41.0		1.1	-LLD	0
	Ce-141	0.031	410			<lld< td=""><td>0</td></lld<>	0
	Ce-144	0.16	410			4LD	0
Natural Vegetation (pCi/g wet)		6 0.031 6	410		w	4110	0
	Be-7	0.19	4LD	P-25 Kinneman Farm 11.1 mi 0 331° NNW	4.6 (1/2)	4.6 (1/2)	0
	K-40	0.3	5.3 (4/4) (3.9-6.8)	P-25 Kinneman Farm 11.1 mi 0 331° NNW	6.3 (2/2) (5.6-7.0)	6.3 (2/2) (5.6-7.0)	0
	Mn-54	0.029	410			4LLD	
	Co-58	0.019	41.	•		<lld< td=""><td>0</td></lld<>	0
	Co-60	0.031	41.0			-LLD	0
	Zn-65	0.050	410			<1.D	0
	Nb-95	0.025	41.0			41.0	0
	Zr-95	0.040	0.103 (1/4)	P-15 Downwind Field 0.6 mi 0 162" SSE	0.103 (1/4)	410	0
	Ru-103	0.026	41LD			41.0	0
	Ru-106	0.19	<11D			4110	0
	Cs-134	6.023	410			410	0
	Cs-137	0.033	410	P-25 Kinneman Farm 11.1 mf 0 33?" NNW	0.053 (1/2)	0.053 (1/2)	0
	Ba-140	0.099	<lld< td=""><td></td><td></td><td>410</td><td>0</td></lld<>			410	0
	La-140	0.023	410			ALD	0
	Ce-141	0.043	<lld< td=""><td>1.</td><td></td><td><11.0</td><td>0</td></lld<>	1.		<11.0	0
	Ce-144	0.22	4.1.D		6 e . 1	SLLD	0

(Continued) Name of facility Table 5.4

.

*

Prairie Island Nuclear Generating Plant

AZLETON ENVIRONMENTAL SCIENCES

				i
			1	
	n	×.		ń
				ł
1	s			
2		τ.		۲
s	-	a	1	1
2		Ξ.		
۲	s		a	
		221		

Table 5.4

111ty Prairie Island Nuclear Generating Plant

Sample	Type and		Indicator	Location with Highest Annual Mean	l ghest n	Control	Number of
Type (Unit - 1	Number of Analyses ^a	110p	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routine Resultse
Fish-Fle	65	8					
	K-40	0.1	2.69 (8/8) (1.94-3.35)	P-6 Lock & Dam #3 1.6 mi # 129° SE	2.69 (8/8) (1.94-3.35)	2.30 (8/8) (1.94-2.92)	•
	Mn-54	0.050	0 410	•	•	4110	0
	Co-58	0.062	410	•	•	410	0
	Co-60	-0.045	410	ı		4110	0
	20-65	0.13	411D	•	•	4110	0
	86-dN	0.12	4110	,	•	41.0	0
	Zr-95	61.13	410		•	qttb	0
	Cs-134	0.14	4110	,	•	4110	0
	(s-137	0.036	0.048 (1/8)	P-6 Lock & Dam #3 1.6 ml @ 129° SE	0.048 (1/8)	410	0
	8a-140	0.12	41.0		•	4110	0
	La-140	0.025	410			41.0	0
Periphyton	Sr-89	4 0.079	410	•		41.0	0
inam 6/mds	Sr-90	• 0.03	0.06 (2/2) (0.06-0.06)	7-6 Lock & Dam #3 1.6 ml @ 129° SE	0.06 (2/2) (0.06-0.06)	0.03 (2/2) (0.01-0.04)	0
	8						
	Be-7	2.2	410	•		4110	0
	K-40	2.9	411D			41.0	0
	Mn-54	0.081	410			4110	0
	Co-58	0.14	410		1	4110	0
	Co-60	0.10	410	•	,	4110	0
	Zn-65	0.30	4110	•	,	41.0	0
	26-dN	0.47	4110	•	•	41.0	0
	Zr-95	0.22	4110		1	41.0	0
	Ru-103	0.23	410			410	0
	D. 106	1 14	410	,		410	0

HATLETON ENVIRONMENTAL SCIENCES

Sample	Type and		Indicator	Location with Highest Annual Mean	ghest	Control	Number of
Type (Units)	Number of Analyses ^a	LLDb	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routine Resultse
Periphyton	Cs-134	0.11	4LD	•		dlb	0
(cont d)	Cs-137	0.15	41.0	•	1	۲۲D	0
	Ba-140	0.33	4110	•	•	4110	0
	La-140	0.59	4110	•		011> .	0
	Ce-141	0.45	410	•	•	410	0
	Ce-144	0.81	4LD	•	•	4LLD	0
Aquatic	GS 4						
(pCi/g wet)	Be-7	0.39	41.0	•	•	4110	0
	K-40	0.64	1.88 (1/1)	P-5 Upstream 1000' 0.6 mi 0 60° ENE	2.79 (2/2) (1.70-3.88)	2.79 (2/2) (1.70-3.88)	0
	Mn-54	0.042	4110	,		4LLD	0
	Co-58	0.034	4110	,	•	4110	0
	Co-60	0.045	41.0		1	4110	0
	Zn-65	0.045	4110	•	•	4110	0
	Nb-95	0.053	410	,	•	410	0
	Zr-95	0.073	4110	•	•	4110	0
	Ru-103	0.039	4110	,	,	4110	0
	Ru-106	0.36	4110		,	4110	0
	Cs-134	0.045	410	,		4110	0
	Cs-137	0.039	410		•	4110	0
	Ba-140	0.11	410	•		4110	0
	La-140	0.042	41.0	•	•	4110	0
	Ce-141	0.056	410			4119	0
	Co. 144	0 22	ALL.			411	

HAZLETON ENVIRONMENTAL SCIENCES

Sample	Type and		Indicator Locations	Location with Hi Annual Mean	ghest	Control Locations	Number of
Type (Units)	Number of Analyses ^a	LLDD	Locations Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routin Results ^e
Bottom and Shoreline Sediments	Sr-90	6 0.012	0.013 (2/4)	P-5, Upstream 1000' 0.6 m1 @ 60° ENE	0.034 (1/2)	0.034 (1/2)	o
(pC1/g dry)	65	6					14. See 4
	Be-7	0.45	<lld< td=""><td></td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>		-	<lld< td=""><td>0</td></lld<>	0
	K-40	1.0	11.3 (4/4) (10.3-12.1)	P-5 Upstream 1000' 0.6 mi @ 60° ENE	13.3 (2/2) (11.3-15.3)	13.3 (2/2) (11.3-15.3)	0
	Mn~54	0.034	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Co-58	0.074	<lld< td=""><td></td><td>5.00</td><td><lld< td=""><td>0</td></lld<></td></lld<>		5.00	<lld< td=""><td>0</td></lld<>	0
	Co-60	0.042	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Zn-65	0.067	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Nb-65	0.084	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Zr-95	0.15	<lld< td=""><td></td><td> I</td><td><lld< td=""><td>0</td></lld<></td></lld<>		I	<lld< td=""><td>0</td></lld<>	0
	Ru-103	0.11	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Ru-106	0.39	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
- 6.	Cs-134	0.051	<lld< td=""><td>전화 영화 등 문제 가지</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	전화 영화 등 문제 가지	-	<lld< td=""><td>0</td></lld<>	0
	Cs-137	0.036	0.062 (1/6)	P-5 Upstream 1000' 0.6 ml @ 60°ENE	0.27 (1/6).	0.27 (1/6)	0
	Ba-140	0.098	<lld< td=""><td>성업 위험 도망이 있는 것</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	성업 위험 도망이 있는 것		<lld< td=""><td>0</td></lld<>	0
	La-140	0.031	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Ce-141	0.16	<lld< td=""><td>-</td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<>	-	-	<lld< td=""><td>0</td></lld<>	0
	Ce-144	0.22	<lld< td=""><td></td><td>-</td><td><lld< td=""><td>9</td></lld<></td></lld<>		-	<lld< td=""><td>9</td></lld<>	9
Clams (pCi/g wet) (Special Collection)	GB	1 0.5	1.45 (1/1)	Site Area	1.45 (1/1)	None	0
	K-40	0.43	<lld< td=""><td></td><td>1.1</td><td>None</td><td>0</td></lld<>		1.1	None	0
	Mn-54	0.020	<lld< td=""><td>-</td><td></td><td>None</td><td>0</td></lld<>	-		None	0
	Co-58	0.074	<lld< td=""><td>1</td><td></td><td>None</td><td>0</td></lld<>	1		None	0
	Co-60	0.015	<lld< td=""><td></td><td></td><td>None</td><td>0</td></lld<>			None	0

(Continued) Name of facility Prairie Island Nuclear Generating Plant

31

HAZLETON ENVIRONMENTAL SCIENCES

Table 5.4

Table 5.4 (Continued)

Sample	Type and	1	Indicator Locations	Location with Annual Me		Control Locations	Number of
Type (Units)	Number of Analyses ^a	LLDD	Mean(F) ^C Range ^C	Locationd	Mean(F) Range	Mean(F) Range	Non-routine Results ^e
Clams (pCi/g wet)	Zn-65	0.088	<lld< td=""><td>•</td><td></td><td>41.</td><td>0</td></lld<>	•		41.	0
(Special Collection)	Nb-95	0.070	<lld< td=""><td>•</td><td>1</td><td><lld< td=""><td>0</td></lld<></td></lld<>	•	1	<lld< td=""><td>0</td></lld<>	0
(cont'd)	Zr-95	0.11	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	Cs-134	0.025	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	Cs-137	0.017	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0
	Ba-140	0.045	<lld< td=""><td>-</td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>	-		<lld< td=""><td>0</td></lld<>	0
	La-140	0.028	<lld< td=""><td></td><td></td><td><lld< td=""><td>0</td></lld<></td></lld<>			<lld< td=""><td>0</td></lld<>	0

Name of facility Prairie Island Nuclear Generating Plant

aGB = gross beta; BS = gamma scan.

bLLD = nominal lower limit of detection based on 3 sigma error for background sample. CMean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

dLocations are specified (1) by name and code (Table 2) and (2) distance, direction, and sector relative to reactor site. eNonroutine results are those which exceed ten times the control station value. If no control station value is available, the result is considered nonroutine if it exceeds ten times the preoperational value for the location.

fMonthly composites from all locations were gamma scanned together. Thus the location with the highest annual mean cannot be identified.

HAZI, ETON ENVIRONMENTAL SCIENCES

6.0 REFERENCES CITED

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275 and 276.

Hazleton Environmental Sciences Corporation. 1978. Sampling Procedures, Prairie Island Nuclear Generating Plant, Revision 9, 20 October 1978.

. 1979a. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December 1978.

. 1979b. Radiation Environmental Monitoring for Monticello Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December 1978.

. 1980a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January -December 1979.

. 1980b. Padiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, Janauary - December 1979.

. 1981a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December 1980.

. 1981b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December 1980.

NALCO Environmental Sciences, 1971a. Quality Control Program, Nuclear Sciences Section, Revision 3, 15 May 1978.

. 1971b. Quality Control Procedures Manual, Nuclear Sciences Section, Revision 3, 15 May 1978.

. 1975. Quality Assurance Manual, Revision 6, 18 April 1978.

. 1977. Analytical Procedures Manual, Nuclear Sciences Section, Revision 1, 23 May 1978.

National Center for Radiological Health, 1968. Radiological Health and Data Reports, Vol. 9, Number 12, 730-746.

Northern States Power Company. 1977. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, 1976 through December 31, 1976 (prepared by NALCO Environmental Sciences) Minneapolis, Minnesota.

. 1978. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, 1977 through December 31, 1977 (prepared by NALCO Environmental Sciences) Minneapolis, Minnesota.

. 1979. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, 1978 to December 31, 1978 (prepared by Hazleton Environmental Sciences). Minneapolis, Minnesota.

. 1980. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, 1979 to December 31, 1979 (prepared by Hazleton Environmental Sciences). Minneapolis, Minnesota.

- U. S. Atomic Energy Commission. 1972. HASL Procedures Manual, Health and Safety Laboratory, New York, NY., 10014.
- U. S. Department of Energy. 1978. Environmental Quarterly, January 1, 1979. Environmental Measurements Laboratory, New York, NY 10014.

U. S. Environmental Protection Agency, 1978. Environmental Radiation Data, Report 12 (April 1978) and Report 14 (October 1978). Eastern Environme cal Radiation Facility, Montgomery, Alabama.

U. S. Public Health Service. 1967. Radioassay Procedures for Environmental Samples National Center for Radiological Health, Rockvile, Maryland (Public Health Service Publication No. 999-RH-27).

Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p. 125. Appendix A

Crosscheck Program Results

Appendix A

Crosscheck Program Results

The Nuclear Sciences Department of Hazleton Environmental Sciences has participated in interlaboratory comparison (crosscheck) programs since the formulation of its quality control program in December 1971. These programs are operated by agencies which supply environmental-type samples (e.g., milk or water) containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to privide an independent check on the laboratory's analytical procedures and to alert it to any possible problems.

Participant laoratories measure the concentrations of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

The results in Table A-1 were obtained through participation in the environmental sample crosscheck program for milk and water samples during the period 1975 through 1980. This program has been conducted by the U. S. Environmental Protection Agency Intercomparison and Calibration Section, Quality Assurance Branch, Environmental Monitoring and Support Laboratory, Las Vegas, Nevada.

The results in Table A-2 were obtained for thermoluminescent dosimeters (TLD's) during the period 1976, 1977, and 1979 through participation in the Second, Third, and Fourth International Intercomparison of Environmental Dosimeters under the sponsorships listed in Table A-2.

Lab Code	Sample Type	Date Coll.	Analysis	Concentra HES Resul ±2 σ ^C	tion in pCi/lb t EPA Result ±3 σ, n=1
STM-40	Milk	Jan. 1975	Sr-89 Sr-90 I-131 Cs-137 Ba-140 K(mg/1)	<2 73±2.5 99±4.2 76±0.0 <3.7 1470±5.6	0±15 75±11.4 101±15.3 75±15 0±15.0 1510±228
STW-45	Water	Apr. 1975	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	<14 421±6 487±6 505±16 385±3 468±3	0 425±63.9 497±74.7 497±74.7 400±60.0 450±67.5
STW-47	Water	Jun. 1975	н-3	1459±144	1499±1002
STW-48	Water	Jun. 1975	H-3	2404±34	2204±1044
STW-49	Water	Jun. 1975	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	<14 344±1 330±5 315±7 291±1 387±2	0 350±53 327±49 325±49 304±46 378±57
STW-53	Water	Aug. 1975	H-3	3317±64	3200±1083
STW-54	Water	Aut. 1975	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	223±11 305±1 289±3 346±5 238±1 292±2	225±38 307±46 281±42 279±57 256±38 307±46
STW-58	Water	Oct. 1975	н-3	1283±80	1203±988
STM-61	Milk	Nov. 1975	Sr-90 I-131 Cs-137 Ba-140 K(Mg/1)	68.9±2.1 64.6±3.8 75.6±20 <3.7 1435±57	74.6±11.2 75±15 75±15 0 1549±233

Table A-1. U.S. Environmental Protection Agency's crosscheck program, comparison of EPA and Hazleton ES results for milk and water samples, 1975 through 1980^a.

Table A-1. (continued)

Lab Code	Sample Type	Date Coll.	Analysis	$\begin{array}{c} \frac{\text{Concentration in}}{\text{HES Result}} \text{EPA} \\ \pm 2\sigma c \pm 3\sigma \end{array},$	Result
STW-63	Water	Dec. 1975	н-3	1034±39 1002	2±972
STW-64	Water	Dec. 1975	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	215±6 201 171±9 181 198±2 202	0 3±30.5 1±30.2 1±27.2 2±30.3 1±22.7
STW-68	Water	Feb. 1976	н-3	1124±31 1080	0±978
STW-78	Water	Jun. 1976	H-3	2500±44 2502	2±1056
STW-84	Water	Aug. 1976	H-3	3097±21 3100)±1080
STM-86	Milk	Spe. 1975	Sr-89 Sr-90 I-131 Ba-140 Cs-137 K(mg/1)	30±1.0 30 100±8.6 120 50±10.1 85 17±1.5 20	5±15 0±4.5 0±18 5±15 0±15 0±231
STM-91	Milk	Nov. 1976	I-131 Ba-140 Cs-137 K(mg/1)	<4 12±1.7 11	0 ±15 ±228
STW-93	Water	Dec. 1976	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	<4 97±4 102 87±3 99 85±4 93	1±15 0 2±15 2±15 2±15 3±15 ±15
STW-94	Water	Dec. 1976	н-3	2537±15 2300	±1049
STM-97	Milk	Mar. 1977	I-131 Ba-140 Cs-137 K(mg/1)	<6 34±1 29	±15 0 ±15 ±233
STW-101	Water	Apr. 1977	H-3	1690±62 1760	±1023

Table A-1 (continued)

Lab Code	Sample Type	Date Coll.	Analysis	Concentra HES Resul ±2 g C	tion in pCi/lb t EPA Result ±3 σ, n=1 ^d
STM-130	Milk	May 1977	Sr-89 Sr-90 I-131 Ba-140 Cs-137 K(mg/1)	38±2.6 12±2.1 59±2.1 53±4.4 14±1.2 1533±21	44±15 10±4.5 50±15 72±15 10±15 1560±234
STW-105	Water	Jun. 1977	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	<14 29±1 74±7 64±8 41±1 35±3	0 29±15 74±15 52±15 44±15 35±15
STW-107	Water	Jun. 1977	Ra-226	4.7±0.3	5.1±2.42
STW-113	Water	Aug. 1977	Sr-89 Sr-90	13±0e 10±2e	14±15 10±4.5
STW-116	Water	Sep.1977	Gross Alpha Gross Beta	12±6 32±6	10±15 30±15
STW-118	Water	Oct. 1977	H-3	1475±29	1650±1017
STW-119	Water	Oct. 1977	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137 -	132±14 39±2 51±5 63±6 30±3 26±1	153±24 38±15 53±15 74±15 30±15 25±15
STW-136	Water	Feb. 1978	H-3	1690±270	1680±1020
STW-137	Water	Feb. 1978	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	<27 36±2 32±4 41±2 47±2 <2	0 34±15 29±15 36±15 52±15 0

A-5

Table A-1. (continued)

Lab Code	Sample Type	Date Coll.	Analysis	Concentrat HES Result ±2 σ ^C	ion in pCi/l ^b EPA Result ±3 σ, n=l ^d
STW-138g	Water	Mar. 1978	Ra-226 Ra-228	5.4±0.1 NAf	5.5±0.6 16.7±2.5
STW-150	Water	Apr. 1978	Н-3	1250±220	2220±1047
STW-151	Water	Apr. 1978	Gross Alpha Gross Beta Sr-89 Sr-90 Ra-226 Ra-228 H-3 Co-60 Cs-134 Cs-137	20±1 56±4 19±2 8±1 NAf NAf 112±12 19±3 16±1 <2	20±15 59±15 21±15 10±4.5 - 0 20±15 15±15 0
STM-152	Milk	Apr.1978	Sr-89 Sr-90 I-131 Cs-137 Ba-140 K(mg/1)	85±4 8±1 78±1 29±3 <11 1503±90	101±15 9±4.5 82±15 23±15 0 1500±225
STW-154g	Water	May 1978	Gross Alpha Gross Beta	12±1 21±4	13±15 18±15
STW-157g	Water	Jun. 1978	Ra-226 Ra-228	4.0±1.0 NA ^f	3.7±0.6 5.6±0.8
STW-159g	Water	Jul. 1978	Gross Alpha Gross Beta	19±3 28±3	22±6 30±5
STW-162	Water	Aug. 1978	Н-3	1167±38	1230±990
STW-165g	Water	Sep. 1978	Gross Alpha Gross Beta	4±1 13±1	5±5 10±5

Table A-1 (continued)

Lab Code	Sample Type	Date Coll.	Analysis	Concentrat HES Result ±2 σ ^C	ion in pCi/lb EPA Result ±3 σ, n=ld
STW-167	Water	Oct. 1978	Gross Alpha Gross Beta Sr-89 Sr-90 Ra-226 Ra-228 Cs-134 Cs-137	19±2 36±2 9±1 4±0 5.5±0.3 NA ^f 10±1 15±1	19±15 34±15 10±15 5±2.4 5.0±2.4 5.4±2.4 10±15 13±15
STW-170	Eater	Dec. 1978	Ra-225 Ra-228	11.5±0.6 NAlefld	9.2±1.4 8.9±4.5
STW-172	Water	Jan. 1979	Sr-89 Sr-90	11±2 5±2	14±15 6±4.5
STW-175	Water	Feb. 1979	н-3	1344±115	1280±993
STW-176	Water	Feb. 1979	Cr-51 Co-60 Zn-65 Rn-106 Cs-134 Cs-137	<22 10±2 26±5 <16 8±2 15±2	0 9±15 21±15 0 6±15 12±15
STW-178	Water	Mar. 1979	Gross Alpha Gross Beta	6.3±3 15±4	10±15 16±15
STW-195g	Water	Aug. 1979	Gross Alpha Gross Beta	6.3±1.2 42.7±7.0	5±5 40±4
STW-193	Water	Sep. 1979	Sr-89 Sr-90	5.0±1.2 25.0±2.7	3.0±1.5 28.0±4.5
STW-196	Water	Oct. 1979	Cr-51 Co-60 Cs-134 Cs-137	135±5.0 7.0±1.0 7.3±0.6 12.7±1.2	113±18 6±5 7±15 11±15
STW-198	Water	Oct. 1979	н-3	1710±140	1560±1111

A-7

Table A-1. (continued)

Lab Code	Sample Type	Date Coll.	Analysis	Concentrat HES Result ±2 σ ^C	$\frac{\text{ion in pCi/l^b}}{\text{EPA Result}}$ ±3 σ , n=1 ^d
STW-199	Water	Oct. 1979	Gross Alpha Gross Beta Sr-89 Sr-90 Ra-226 Ra-228 Co-60 Cs-134 Cs-137	16.0±3.6 36.3±1.2 10.7±0.6 5.7±0.6 11.1±0.3 1.6±0.7 35.0±1.0 50.7±2.3 <3	21±15 49±15 12±15 7±15 11±5 0 33±15 56±15 0
STW-206	Water	Jan. 1980	Gross Alpha Gross Beta	19.0±2.0 48.0±2.0	30.0±8.0 45.0±5.0
STW-208	Water	Jan. 1980	Sr-89 Sr-90	6.1±1.2 23.9±1.1	10.0±0.5 25.5±1.5
STW-209	Water	Feb. 1980	Cr-51 Co-60 Zn-65 Ru-106 Cs-134 Cs-137	112±14 12.7±2.3 29.7±2.3 71.7±1.5 12.0±2.0 30.0±2.7	101±5.0 11±5.0 25±5.0 51±5 10±5.0 30±5.0
STW-210	Water	Feb. 1980	H-3	1800±120	1750±340
STw-211	Water	Marc 1 1980	Ra-226 Ra-228	15.7±0.2 3.5±0.3	16.0±2.4 2.6±0.4
STW-215	Water	April 1980	Gross Alpha Gross Beta Sr-89 Sr-90 Ra-226 Ra-228 Co-60 Cs-134 Cs-137	NAf NAf 3.7±0.6 <1.0 NAf NAf 10.0±1.0 14.0±1.0 21.7±1.5	$\begin{array}{r} 98.0\pm24.5\\ 100.0\pm5.0\\ 4\pm5.0\\ 0.001\pm0.1\\ 16.0\pm2.4\\ 21.3\pm3.2\\ 6\pm5\\ 8\pm5\\ 18\pm5\end{array}$
STM-217	Milk	May 1980	Sr-89 Sr-90	4.4±2.69 10.0±1.0	5±5 12±1.5
STW-221	Water	June 1980	Ra-226 Ra-228	2.0±0.0 1.6±0.1	1.7±0.8 1.7±0.8

Table A-1. (continued)

Sample Type	Date Coll.	Analysis	HES Result	$\frac{10n \text{ in pC1/lb}}{\text{EPA Result}}$ ±3 σ , n=1 ^d
Water	July 1980	Gross Alpha Gross Beta	31±3.0 44±4	38±5.0 35±5.0
Water	July1980	Cs-137 Ba-140 K-40 I-131	33.9±0.4 <12 1350±60 <5.0	35±5.0 0 1550±78 0
Water	Aug. 1980	H-3	1280±50	1210±329
Water	Sept. 1980	Sr-89 Sr-90	22±1.2 12±0.6	24±8.6 15±2.6
Water	Sept. 1980	Gross Alpha Gross Beta	NAf 22.5±0.0	32.0±8.0 21.0±5.0
	Type Water Water Water Water	Type Coll. Water July 1980 Water July1980 Water Aug. 1980 Water Sept. 1980	TypeColl.AnalysisWaterJuly 1980Gross Alpha Gross BetaWaterJuly1980Cs-137 Ba-140 K-40 I-131WaterAug. 1980H-3WaterSept. 1980Sr-89 Sr-90WaterSept. 1980Gross Alpha	Sample Type Date Coll. HES Result Analysis HES Result ±2 σ C Water July 1980 Gross Alpha Gross Beta 31±3.0 44±4 Water July 1980 Cs-137 8a-140 33.9±0.4 612 Water July 1980 Cs-137 8a-140 33.9±0.4 612 Water July 1980 Cs-137 8a-140 31.9±0.4 612 Water July 1980 Sr-137 8a-140 31.9±0.4 612 Water Aug. 1980 H-3 1280±50 Water Sept. 1980 Sr-89 8r-90 22±1.2 12±0.6 Water Sept. 1980 Gross Alpha NAf

^aResults obtained by the Nuclear Sciences Department of Hazleton Environmental Sciences as a participant in the environmental sample crosscheck program operated by the Intercomparison and Calibration Section, Quality Assurance Branch, Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, (EPA), Las Vegas, Nevada.

bAll results are in pCi/l, except for elemental potassium (K) data which are in mg/l.

CUnless otherwise indicated, the HES results given as the mean ±2 standard deviations for three determinations.

dUSEPA results are presented as the known values ± control limits of 3 for n=1.

eMean ± 2 standard deviations of two determinations.

fNA = Not analyzed.

9Analyzed but not reported to the EPA.

				mR	
Lab Code	TLD Type	Measurement	Hazleton Result ±2ª	Known Value	Average ± 200 (all participants)
2nd Inte	rnational Inte	ercomparison ^b			
115-2 ^b	CaF2:Mn Bulb	Gamma-Field	17.0±1.9	17.1c	16.4±7.7
burb	burb	Gamma-Lab	20.8±4.1	21.3 ^c	18.8±7.6
3rd Inte	rnational Inte	ercomparison ^e			
115-3e CaF2 Bult	CaF2:Mn	Gamma-Field	30.7±3.2	34.9±4.8f	31.5±3.0
	BUID	Gamma - Lab	89.6±6.4	91.7±14.6 ^f	86.2±24.0
4th Inter	national Inte	ercomparison9			
115-49	CaF2:Mn	Gamma-Field	14.1±1.1	14.1±1.4f	16.09.0
	Bulb	Gamma-Lab (Low)	9.3±1.3	12.2±2.4f	12.0±7.6
		Gamma-Lab (High)	40.4±1.4	45.8±9.2f	43.9±13.2

Table A-2. Crosscheck program results, thermoluminescent dosimeters (TLD's).

aLab result given is the mean ± 2 standard deviations of three determinations.

^bSecond International Intercomparison of Environmental Dosimeters conducted in April of 1976 by the Health and Safety Laboratory (GASL), New York, New York, and the School of Public Health of the University of Texas, Houston, Texas.

CValue determined by sponsor of the intercomprison.

dMean ± 2 standard deviations of results obtained by all laboratories participating in program.

^eThird International Intercomparison of Environmental Dosimeters conducted in summer of 1977 by Oak Ridge National Laboratory and the School of Public Health of the University of Texas, Houston, Texas.

fvalue ± 2 standard deviations as determined by sponsor of the intercomparison.

9Fourth International Intercomparison of Environmental Dosimeters conducted in summer of 1979 by the School of Public Health of the University of Texas, Houston, Texas. HAZLETON ENVIRONMENTAL SCIENCES

Appendix B

Data Reporting Conventions

Data Reporting Conventions

1. All activities are corrected to collection time.

2. Single Measuements

Each single measurement is reported as follows:

X ± S

where x = value of the measurement;

 $s = 2\sigma$ counting uncertainty (corresponding to the 95%) confidence level).

In cases where the activity is found to be below the lower limit of detection L it is reported as

<⊥ .

Detection limits are based on 4.66 background counting uncertainties. 3. Duplicate measurements, the average result is reported as follows:

a. <u>Individual results:</u> $x_1 \pm s_1$ $x_2 \pm s_2$ Reported result: x ± s where $x = (1/2) (x_1 + x_2)$ $s = (1/2) \sqrt{s_1^2 + s_2^2}$ b. Individual Results: <L1

<L2

Reported result: <L

where L = lower of L1 and L2

c. Individual results: x + s

<L

Reported result: x + s if $x \leq L$;

<L otherwise

- 4. Unless otherwide indicated, the "cumulative average" for a location is the average of all measurements from the beginning of the current year through the date of the last entered result. "Less-than" values are ignored in the computation of the average. If all results are less-than values, the highest value is reported.
- Unless otherwise indicated, the "previous average" for a location is the average obtained during the previous year.
- 6. In rounding off, the following rules are followed:
 - a. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - b. If the figure following those to be retained is greater than 5, the figure is dropped, and the last retained figure is raised by 1. As an example, 11.446 is rounded off to 11.45.
 - c. If the figure following those to be retained is 5, and if there are no figures other than zeros beyond the five, the figure 5 is dropped, and the last-place figure retained is increased by one of it is an odd number or it is kept unchanged if an even number. As an example, 11.435 is rounded off to 11.44, while 11.425 is rounded off to 11.42.

Appendix C

Maximum Permissible Concentrations of Radioactivity in Air and Water Above Background in Unrestricted Areas

	Air		Water		
Gross alpha	3	pCi/m ³	Strontium-89	3,000	pCi/
Gross beta	100	pCi/m ³	Strontium-90	300	pCi/1
Iodine-131b	0.14	pCi/m ³	Cesium-137	20,000	pCi/T
			Barium-140	20,000	pCi/T
			Iodine-131	300	pCi/1
			Potassium-40C	3,000	pCi/1
			Gross alpha	30	pCi/1
			Gross beta	100	pCi/1
			Tritium	3 x 106	pCi/1

Table C-1.	Maximum permissible concentrations of radioactivity in air	
	and water above natural background in unrestricted areas.a	

aTaken from Code of Federal Regulations Title 10, Part 20, Table II and appropriate footnotes. Concentrations may be averaged over a priod not greater than one year.
bFrom 10 CFR 20 but adjusted by a factor of 700 to reduce the dose

resulting from the air-grass-cow-milk-child pathway. CA natural radionuclide.