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THE INCOMPLETE LOWER-UPPER CONJUGATE GRADIENT (ILUCG)

METHOD FOR SOLVING LARGE, SPARSE LINEAR SYSTEMS
'

'' by

Charles H. Neil

ABSTRACT

The method of Conjugate Gradients is combined
with an incomplete factorization of the coefficient
matrix to produce an iterative method for approximate
solution of systems of linear equations. The method
is| suited for systems where the coefficient matrix is
large, sparse, and nonsymmetric. A comparison is
presented in this document of the performance of the
method vs the Gauss-Seidel method for test problems
arising in the TRAC Code for reactor hydrodynamics.

I. INTRODUCTION

The discretization of partial differential equations in mathematical physics
often results in the problem of solving systems of linear equations, the coeffi-
cients of which form a large, sparse matrix. The method of Conjugate Gradients
(Refs. 1, 2, and 3) was originally proposed as a general iterative technique for

-solving linear systems but is not competitive with other iterative methods when
applied to the full matrix. More recent work (Refs. 4, 5, and 6) has been con-
cerned with applying the Conjugate Gradient method to a system modified by an

incomplete decomposition of the coefficient matrix. An accurate approximate
solution can thereby be obtained in relatively few iterations.

Muchsof the work to date deals with symmetric coefficient matrices. In the
. solution of hydrodynamic equations in the Transient Reactor Analysis Code- , -

(TRAC) developed at the.Los Alamos National Laboratory, however, the resulting
i seven-stripe pressure matrix is nonsymmetric. This paper presents a generalized

Conjugate Gradient (CG) method applied to:an incomplete factorization for such
nonsymmetric matrices, and'gives results of numerical tests of the method.
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II. 'THE METHOD 0F CONJUGATE GRADIENTS
~

We will be concerned in what follows with solving the system

,

Mx k (1) ..

Here, M is an N-dimensional nonsingular matrix, not necessarily symmetric; let
us denote the exact solution by h. Suppose we have available a linearly inde-
pendent set of vectors

w0' 'l,... We will be interested in studying an.

iterative method of the form

j j + a wj, i = 0, 1, . . .; x arbitrary, (2)x1 -x j 0

which produces the exact solution after a finite number of steps.

One way to accomplish this is to replace each vector, wg, by a vector

i

i*3h0~P
3

'

.

such that

<p ,p > = 0, i 4 j .g j

(thatiis,orthogonalizethesetfwjf),andthenselect-theconstantsaj .so
that the error in the i + 1 b iterate, h - xj ) , is minimized.2

"

This will . occur when h - x ) is orthogonal to the set ' f p0' P ' * * * *E
'

j l i -

and u . a is given'.by.j,

s

1 2'

e
~
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<h - x * P > (3)0 iaj- .

<p , p >j j
,

0 = h - x , lies in the sub-If it ever occurs that the initial error, e"
0

k-span {p0'***'Pkf,thenwehavespace S

k

.{ ap cSh - x +1 h - x0 J=0
jg k

*

k -

As b - x +1 also was chosen orthogonal to S , it must be the zero vector,k k

and therefore the method terminates.
Wearethusmotivatedtotrytoselectthenctorshjfandfpfinsuchj

f r k is as small as possible. Furthermore, the exact-a way that e0*bk
solution, h, is~~ unavailable a_ priori and so we must choose the vectors without
explicit knowledge of e . The following allows us to find a way of doing

0
this.

Lemma: Suppose T is a symmetric, positive definite matrix and u is some

Thenu'cspanfTu,Tu,...,Ttu f , dere
~ 2 k

chosen vector.
k - number of distinct eigenvalues of T and
2 = number of vanishing components corresponding to distinct eigenvalues in

- the eigenvector decomposit on of u.-

Proof- Sinc.e T is symmetric and positive definite, there exists a matrix R
(of-eigenvectors of-T) such that R ITR - A_, where A = diag (1), 12'

'nd each 1) is distinct.'k-l' Ak' ****k), i...,

Let d,be the vector of coefficients in the eigenvector decomposition of u;
thus'u Rd. -We then have

.

d , for.j - 0, 1, ...d dTu .RA .
#

We wish to be ableLto write for some constants'c),

3
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u = c Tu+. . . + c _gT-E u .j g

.or
-

k- E .U- ER d .

Rd = c) rad + ... + c .

Equivalently, we want
i

d = cpA d+ . +c A d (4).

k- L..

Among the first k components of d, there are only k - t nonzero entries, say

, are nonzero. After dividing both sides of thesed ,dj , ..., dj
equr.tions by the components of d, we can re-write the nonzero equations of (4) as

. -

Lc --1, where L = 1 A
~ 1)

...

. .

. . .

. .

2 k-1
A A .A. .

d dk-1 k-t k-1
-

-

As thek-1) , and 1 is a k-1 dimensional vector of l's.c = (c), .... c
A's are all distinct, L is non-singular: c exists and the proof is complete.

Returning now to- the problem of choosing the spanning set of vectors

f'O''l....f.cnsiderthe-set

'

{ %, (n s>27 e,...}.o

4
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is selected, all these
We. note that Me0 = M(h - x ) "

- "*0, so that once x00
Tvectors are available. Furthermore, in view of the lenina, if M M has many repeated

'

eigenvalues (or in the fortunate event that x is chosen so that e is defective
0 0

Tin many eigendirections of M M), then the method (1) terminates in relatively
.

few steps.

In creating the set fpjf,orthogonalizationofeach(MM)d
T e with respect

0
to (M g)ie , i = 0, 1, . . . , j-1, is too expens ive. We produce an equivalentT

0
spanningsetfp0'P,... as oH ws.l

Denote by r the i$ residual:j

(5)j = k - Mx , i = 0, 1, . . .r j .

T
i 2 0, obtain pp) by orthogonalizing M Mepj=Having produced p0' P '***' Pil ,

j (instead of orthogonalizing (M g)i+1eg(M g)i TT TT grMr with respect to p 0pj

(M M)dTheresultingsetfpfhasthesamespanasdoes
T

with respect to p ). e
0

*

jj
T +bpis chosen so that pp)=Mr jThe advantage of this procedure is that if bj jg

is orthogonal to p , then automatically ppj is orthogonal to p0' P ' **** Pil*j l

For, we have

T
= <M r ,j+b p , pj_j><ppj, pj _j > g jg

T
g) , P _j > + b; <p , pj_j>= <M r j j

T
= <M M(h_xpj),pj_j>

T
= <h - xp), M gpj_j, ,

TwaschosenorthogonaltothespanfMr'(""I""0'***'("") "#and h-x 0 0 'pj,

Twhich contains (M g) p fgp j 2 ),j_j

5
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Thus, <p ), pj _) > - 0, j > l .g _

Therefore, to carry out the iterations we need only save the vectors x . j
r . and p .

9 j
Thus we write the Conjugate Gradient Algorithm as follows. Choose x0

arbitrarily; set r0 = k - Mx , and p0 " M "0' '

0

For i = 0, 1, ..., set

<"i' #i>'

a. =
1

<p , p )j j

+apXi+1 = Xi j j

- a Mor)=rj j jg

<r ),r ,j>g jb =
g

- <rj, rj>

Tpi+1 = M rj+1 + b pj.i

j and r .j are equivalent to Eqs. (3)It should be noted that these formulae for a
3

and (5), respectively (see Refs. 2 and 3).

,

As previously observed, the CG method terminates in relatively few steps if the
!

| Catrix M has large clustering of eigenvalues. Furthermore, at each step of the
2. iteration the vector x minimizes h-x within a certain subspace. With '

p f , each one being a linear combination ofour choice of vectors j

f(MM)d
*

e much of the change in x occurs in eigendirections
0 j,

|
corresponding to the largest eigenvalues of M. Accordingly, a large reduction in

'

6'

_-

-- y %-



_

error can be anticipated within the first few iterations. It is therefore possible

that x may be an accurate approximation to h for i a N, and it is this situationj,

we will try to produce.

*

III. The I_NCOMPLETE L_-U_ FACTORIZATION CONJUGATE GRADIENT METHOD
Let us now turn to the problem of solving the system

Ax = b, (6)

where A is a large, sparse, nonsymmetric matrix. Suppose we can carry out
the usual L-U decomposition of A (that is, where L is unit lower triangular
and U is upper triangular), with the exception that elements in L or U cor-
responding to zero elements in A are considered zero and are neither computed
nor stored. The resulting incomplete L-U decomposition of A will require no
more storage than does A (and will not be as costly as the complete L-U de-
composition wherein L and U are generally no longer sparse).

We have LU = A+E, where the matrix E contains errors because of the in-

complete decomposition. Hence,

L-I AU-I - I - L-IEU l .

If the matrix E is in some sense small, then the matrix L AU I is an

approximate identity - in particular, L-IAU-I should tend to have many
eigenvalues close to onity, and by previous remarks, the conjugate gradient
method, applied to a system with L IAU I as the coefficient matrix,

should converge rapidly.
We therefore re-write Eq. (6) as*

LIAU-lux-Llb'
.

7
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Letting M = L'IAU-I , and writing the algorithm in terms of x (instead of
Ux), we can write the ILUCG algorithm as follows.

Choose x arbitrhrily; set r0 = b - Ax0
-and

0

.

p0 = (U U)-I T(LL )-lro .T A T

For i = 0,1, ..., until satisfied, set

T
<r , (LL ) p,j iaj=

T<p U gg ,j j

*i+1 * *i + a ojj

Apr)=rj-aj jg

T-l
b = <r ), (LL ) r j>jj

; j
T-1

<r ,(LL ) r>g j

T T Tp ) --(U U) A (LL ) r j+bpjg .
gg

It should be noted that the inversion and vector multiplication are carried
,

out quickly because of the triangular and sparse nature of L and U.
.

IV. NUMERICAL RESULTS

This algorithm was applied to several test cases designed to simulate

'8

?
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numerical problems in the TRAC code for reactor hydrodynamics. In this

application, the matrix A was a ronsymmetric 440 x 440 real matrix with unit main
diagonal and with negative off-diagonal entries occurring in a pattern f ollowing a*

seven-point discretization in cylindrical coordinates of the Laplace operator.
The matrix was loaded uniformly across rows such that [ g=1-o4, where [4'

denotes the sum of the absolute values of the off-diagonal eatries in the

i$ row, and oj is a pseudo-random number in the interval [0, 6], with 6 an
input parameter. By allowing 6 + 0*, the degree of diagonal dominance of the

matrix A is reduced (and its condition is worsened).
Table I contains results of a comparison of the performance or the ILUCG

method and the Gauss-Seidel method on the same linear system for values of 6

ranging from 0.500 to 0.001. As shown in the table, below a certain level of
diagonal dominance, the Gauss-Seidel method failed to converge to the desired
residual norm within 1000 iterations, whereas in all cases the ILUCC method con-

verged. Because of the relative expense of the ILUCG method per iteration (it is
roughly 8.2 times as costly per iteration as Gauss-Seidel for matrices of this
type) it is important to observe the column labeled " Ratio," which is the ratio of
the number of iterations of Gauss-Seidel (GS) to ILUCG; only when this figure is

greater than 8.2 will ILUCG be the preferred method.
Figure 1 illustrates the norm of the residual of the two methods, plotted vs

number of multiplications, for the case 6 = 0.060. As this figure shows, the
error decreases faster for ILUCG than for GS, although it is initially greater for
ILUCG than for GS. The plot is typical of all cases, with the divergence of the
curves more pronounced for smaller values of 6.

Finally, Fig. 2 is a plot of the 440 eigen.alues of the original matrix A and
of the matrix used in the ILUCG algorithm, L- AU-I , for 6 = 0.060. The

eigenvalues of A are uniformly spread from 1.97 to 0.029; but those of L-I
AU-I are, for the most part, quite close' to 1.0, indicating a reason for the
effectiveness of the ILUCG method.

'

V.. CONCLUSION

The reported results indicate that the ILUCG method warrants consideration in
,

situations requiring high accuracy or when the coefficient matrix is poorly

9
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,

conditioned (or t')th). However, the cost per iteration of ILUCG in its present
form makes it rot a preferred method in less severe instances. ,

.

TABLE I -

ILUCG METHOD vs GAUSS-SEIDEL METHOD FOR VALUES OF 6

Number of iterations
a GS ILUCG Ratio (Break-even - 8.2)

.

0.500 49 16 3.1

0.400 61 19 3.2

0.300 81 22 3.7

0.200 122 26 4.7

0.100 241 34 7.1

0.080 301 36 8.4

0.060 401 39 10.3

0.040- 601 42 14.3

0.020 a 47 -

;

0.010 a 49 -

0.008 a 50 -

0.004. a 52 -

0.001- a 55 -

.

aFailed to converge within 1000. iterations. .
g

1-
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