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ABSTRACT

A three dimensional numerical model has been constructed for study of

the multiple vortex phenomena. It is found that highly asymmetric vortices

form at the core boundary of the-larger parent vortex for certain values of-

the swirl ratio, S and radial Reynolds number. The asymmetric vortices

arise as an instability of the initially axisymmetric parent vortex. The

peak velocity associated with the mature asymmetric vortices can be 20%-30%

larger than that of the parent vortex. The asymmetric vortices assume the form

of intertwining helicies of negative pitch angle (the streamlines of the

parent vortex are helical with positive pitch angle). This and other features

are in agreement with a relevant laboratory experiment.
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LIST OF SYMBOLS

- non-dimensional radius of a fictitious inner cylindera

c - imaginary phase speed1

L - number of grid volumes in azimuthal direction

'

M - number of grid volumes in radial direction

N - number of grid volumes in vertical direction

P - pressure (dimensional, if primed)

r - radial coordinate

0 - azimuthal coordinate

z - vertical coordinate

u - radial velocity (dimensional, if primed)

- azimuthal velocity (dimensional, if primediv

- vertical velocity (dimensional, if primed)w

E - radial vorticity

n - azimuthal vorticity

c - vertical vorticity

r - circulation = rxv

m - azimuthal wavenumber

k - vertical wavenumber

'v '- eddy viscosity

t - time

T - time step number (t =ntat)

At - time step

Ar - radial grid size

Az - vertical grid size

rAO.- azimuthal grid size

ix

l.



I
'' - - - - _ _ _ _ _ _ , _ _

t - spin-up time of rotating screen
g

p - fluid density

Re - radial Reynolds number

S - swirl ratio

R - domain radius

Q - volume flow rate through chamber [L /T]

K - parameter in partial slip formula
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, 1.0 Introduction
!

lt often occurs that tornadoes contain smaller subsidiary vortices

which revolve about the tornado, which in turn, rotate in the same sense

(see Fujita,1970; Forbes, 1978). This phenomenon goes by various names

(" suction vortices", " satellite vortices", and " secondary vorticca"),

however, for this work we follow Church et al. (1979) and refer to the

multiple vortex phenomenon (MVP). So when we speak of the MVP we refer to

that type of " suction vortex" which Fujita (1976) has termed the " orbiting
i

vortex". That the MVP may be more than a minor detail of the tornadic flow

is suggested by damage surveys which indicate the most intense destruction

of life and property is associated with efeloidal paths which Fujita has

termed " suction swaths". As with the tornado, very little is known about

the internal circulation of the MVP. Photogrametric and ground survey data

are inconclusive on such important questions as to 1) what maximum wind

speed is achieved by tha tornado and 11) the relation between this and the

MVP. MVs are clearly visible in photographs but it is extremely difficult

to infer actual flow patterns.

Ward (1972) built a laboratory device intended to simulate tornadic

flow. Among the facts which argue for the validity of Ward's model is the

result that for certain values of the swirl ration (defined below) the single

central vortex divides into two or more vortices. Until recently, the data

from the Ward vortex chamber was, for the most part, from flew visualization

techniqces and surface pressure measurements. Church et al. (1979) have reported

on the internal flow, however, as of this writing have not measured the three

velocity components separately as a function of space and time.

- _ _ _ _ _ _ _ _ - - - - - - -- - -
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All analytical and/or numerical models of tornadoes to date are axisymmetric

i.e., with respect to a system of cylindrical coordinates, azimuthal variations

are not allowed. Clearly, the physical system under discussion is essentially f
1

asymmetric. Simple analytical axisymmetric vortex models are of great utility
:

for understanding some basic physical processes (see e.g., Lewellen, 1976) |

and provide a basic reference point for more complex numerical models which

add certain refinements. However, for three-dimensional asymmetric vortices ,

of the type discussed here even simple models are lacking. It is Unportant

to know how theoretical (based on axisymmetric models) estimates of the

magnitude, location and duration of the maximum tornadic wind depend on the

flow asymmetry. Further, one would like to know the flow field of an
_

asymmetric vortex so as to ascertain the type and magnitude of stresses to

be expected on structures.

The aim of this work is to ascertain the general effect these flow

asymmetries may have on the tornadic flow field. The principal research

tool used is a fully three-dimensional numerical model in cylindrical

coordinates; the model is based on Ward's physical model of a mesocyclone

upon which Ward based his laboratory device. This.model and its relation to

nature is detailed in the following section. Axisymmetric calculations and

theory of axisymmetric swirling flows are discussed in Section 4. Section 5

contains a description of the numerical model. Section 6 contains
1

the results of the model integrations, while interpretations are saved for

Section 7.

|
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| Principal findings are:

I

i) NVs arise as an instability of an axisymmetric flow as hypothesized

by Ward (1972). Unstable waves grow to finite amplitude and become

the MV. As an unstable wave grdws, angular momentum is transported

inward by the wave and the inner core is spun-up. The flow is thus

stabilized and the large amplitude structures persist.

ii) The present model exhibits good agreement with certain features of the

laboratory model, viz. the MV pattern progresses at approximately

the local rotation rate of the flow at low levels. The local tangen-

tial velocity of the MV can be 20-30% larger than the azimuthal

average at the radius of v,,x, thus suggesting that MVs should indeed'

cause more local damage as has been observed. (Further, the 3-D

model with MVs again has local tangential velocities between 20-30%

higher than an equivalent axisymmetric model which uses the same

external parameters.)

iii) The actual distribution of flow velocity within a MV is quite

asymmetric with large positive vertical and tangential velocities

on one side with reduced (or in some cases negative) vertical and

tangential velocities on the other. This distribution is reasonable
,

and can be explained as a natural consequence of the distribution of
~

vorticity in the initially (unstable) axisymmetric flow. Other

details of the flow ~are discussed.

.

-



- _ _ - _ _ _ - _ _ _ _ _ _ _ ____ ____ __--_-______ _________________ _______-____ -__ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _-_ _-_-

-4-

' 2.0 Physical Model

Brooks (1949) discovered the er.istence of a " wind and pressure system
A

intermediate in size between the general parent low and the tornado funnel
;

itself." The existence of a rotating. updraf t within severe storms was

inferred by Browning (1964) from the hooh-echo observed by radar. The scale

of the uporaft diameter is typically 0(5-12 km) (Browning, 1978) which is an

order of magnitude larger than a typical tornado funnel (0(100 m)). The

inflow layer which feeds the updratt is 0(1-2 km) in depth. The updraft

radius, R, divided by the inflow layer depth h is termed the aspect ratio,

h/R. Ward (1972) realized that all-laboratory experiments purporting to

model tornadoes used aspect ratios which were much too small, while the

present discussion indicates h/R should be 0(1).

Ward's device is shown in Fig. la. This configuration is compared
!

with dual-doppler radar data (Fig. Ib, Brandes, 1978) which indicate that

Ward's original design is relevant. Referring to Fig. la we see there is a
i
' cylindrical chamber bounded above by a honey comb grid over which suction

is created by an exhaust fan. The rotating screen at the bottom imparts a

specific amount of angular momentum to the in-rushing air. The honeycomb

grid divorces the far vortex from the flow in the chamber.
.

That cyclonically curved echoes correspond to tornadoes was known~from the

mid-40's and documented by Stout and Huff (1953). Browning and Ludlam

(1962) first correctly identified the weak echo region as updraf t; Brownirg

(1965) later explained the hook as a consequence of updraft rotation.
i

!
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The basic physical mechanism is simply that given enough time, low-level

convergence beneath a storm updraf t can cause air parcels with non-zero angular
|

momentum (radius times tangential velocity) to decrease their radius with

respect to the updraf t center and, if they conserve their angular momentum,

increase their tangential velocity. A recent synopsis (Lemon and Doswell,

1979) of the available observations note that the rotating wind field is

colocated with the storm updraft at early stages in a storm's history and at

later stages a downdraft develops in the storm's rear flank; the rotation of

the wind field then is nearly centered on the boundary between updraf t and '

downdraf t with the tornado forming on the updraf t side. This observation

has lead to speculation as to the role of the thunderstorm downdraft in

tornadogenesis. Lemon and Doswell (1979) suggest that since rather sharp

temperature and pressure variations occur horizontally across the updraft /
l

downdraf t boundary that the vertical component of the baroclinicity vector ]

(7p x vp) could enhance the vertical component of vorticity. However, this

effect is non-Boussinesq and according to Lemon and Doswell the maximum

value of (Vp x VP) is still smaller than the minimum values of the vortex

tilting and stretching terms in the vertical vorticity equation (see their

Table 1). We favor the following explanation: The downdraf t being cold and

heavy tends to spread horizontally upon reaching the ground and, further,

originates at a level where the horizontal momentum is different from the
!

momentum (wind speed) near the ground, hence the downdraft acts to produce |

l

large convergence. Examination of the eq,uation for the vertical vorticity

(see e.g. , Rotunno,1981) indicates that the convergence term leads to

exponential growth of the vertical component of the vorticity vector |

(for Ow/3z > 0). Hence, the basic mechanism of updraft convergence acting

.

J
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f n conjunction with a source of rotation is still viable vis-a-vis recent

observations which indicate an important role for the storm downdraft. One

further point, which is sometimes overlooked is that the axisymmetric vortet

model does include the ef fect of vortex tilting (see, Rotunno,1980). Hence,

% theories which give prominent role to tilting of horizontal vortex lines

into the vertical one are not excluded from consideration by such models.

3.0 Review of Laboratory Model and Axisymmetric Solutions

Although no internal flow measurements were reported by Ward, a number

of physical flow features could be ascertained from flow visualization

techniques. Perhaps the most important piece of information obtained

by Ward was that the core size of the small-scale vortex could be controlled

by certain combinations of power-setting on the exhaust fan and rotation

rate of the inflow screen. This combination is quantified by consideration of

the swirl ratio, which is proportional to the ratio of the angular momentum

supplied to the in-rushing air at the screen (2rr ) to volume rate of flow
R

(dividedbytheradius)throughthe_ chamber 2wf.Thus,theswirlratiois
defined

RP
R-SE (3*l)

2Q

We've yet to define what we nean by ' core size'. In many studies ' core'

denotes the radius at which the maximum azimuthal (or, synomously, tangential)

velocity occurs. In the case of the familiar Rankine vortex (see e.g. , Lamb,

1932) this is the radius at which the inner part, which exhibits solid body

f rotation, is separated from an outer irrotational flow. We haveLin the past

differed with this definition. In comparing our results with the flow

|

, -

.
_ - _ _ - - - _ - _ _ _ - - _ _ - _- __ - -



_ _ - _ _ _ _ _

-8-

visualization experiments, we found (Rotunno, 1977) that the streamline

which bounds the flow below separated f rom the surface at a certain radius

and thereafter continues almost vertically out the top of the domain, thus,

producing a pattern of flow where all of the swirling, inrushing air is

deflected upwards at r and thereafter exits through the ' top' of the device.
c

So as not to leave a vacuum in the region within r , air flows vertically

downward through the top. Thus we may imagine a cylindrical boundary within

the fluid where the radial velocity, u is approximately zero. If, now,

smoke (or any other tracer) is released within r and near the ground the smoke

will fill this cylindrical region thus making visible a ' core' . This core

size was found by Davies-Jones to depend on S. Rotunno (1977) who identified

the radius of the separated boundary streamline with the size of the smoke-

filled core of Ward's experiment found very good agreement between the lab-

measured core-size as a function of swirl ratio, r (S) and that whichc

resulted from the numerical integrations. Fig. 3.1 is an example of the

type of solutions obtained.

Note the zero streamline separate,. at radius r ; the strong variations

in the circulation implies that all three components of vorticity are non-zero

within the core zone.

Theoretical analysis of this type of flow are along the following lines:

A non-rotating updraft may be thought of as being ' driven' by a pressure drop

across the device, i.e., there is a conversion from potential to kinetic energy.

Now, if angular momentum is imparted to fluid parcels as they enter, and if

that angular momentum is conserved, the tangential velocity will increase

with decreasing radius. This velocity cannot increase indefinitely since

the kinetic energy will become much larger than the pressure drop available

- - - - - -
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to drive the flow. Thus, it is hypothesized that the flow will not reach

the center axis and separates at some finite redius r . This radius cannot

R, a too large pressure drop would be required tobe too large for if r :
c

pass a specified volume flow tl. rough the thin annular ring. For a fu'.1

discussion see Lewellen (1971) and Davies-Jones (1973).

The preceding discussion pertains to model solutions employing a free-

slip (or zero stress) lower boundary condition. When no-slip conditions are

employed the numerical solutions indicate an increased inward penetration

of the flow near the bottom boundary ( see Fig. 3.2) .

There are a number of ways to interpret this; perhaps the most popular

is as follows: the flow near and directly influenced by the surface is

termed the inner or boundary layer flow. Above the boundary layer and near

the core wall the flow is in approximate cyclostrophic balance (radial pressure

gradient balances centrifugal acceleration). In the boundary layer the

centrifugal acceleration goes to zero, but the pressure gradient remains

nearly the same. So, there is an unbalanced inward pressure gradient which

produces a radially inward velocity. Once out of the influence of the

boundary the ficw returns to the situation described above. An interesting

feature obtained by Lewellen and Teske (1977) and Rotunno (1979) is that
.

the radially inwards boundary layer flow having angular momentum (albeit

weaker than the free-streamvalues) can converge to such a small radius as

to produce a higher azimuthal velocity than would be obtained in the free-

slip experiments. Both in the laboratory (Church et al., 1979) and in

photogrametric analysis (e.g., Golden and Purcell, 1975) the maximum

velocities are observed very close to the lower surface.

- _ _ _ _ __ _

,
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What we will be concerned with for the major por._'. of this work

is the three-dimensional version of the flow of Fig. 3.1. For small values

of S, the vortex is axisymmetric, and so the axisymmetric models are

sufficient. Ilowever, for larger S, the laboratory vortex becomes highly

asymmetric forming multiple vortices. Fig. 3.3 is taken f rom a flow

visualization experiment which shows the highly unfmmetric nature of the

As described in the introduction, this frequently occurs in nature.vortex.

| It has been hypothesized by Ward (1972), Davies-Jones and Kessler (1974),

Rotunno (1978), and Snow (1978) that these multiple vortices originate as an

instability of the basic axisymmetric vortex. In the next section we examine

the extant stability theory concerning the type of flow encountered in our

model.

4.0 Some Stability Theory

A feature of immense importance in Fig. 3.1 is the sharp radial gradient

of r and W at r=r. The flow is obviously stable to axisymmetric disturb-
c

ances by Rayleigh's (1916) criterion, viz.

2
dr (4.1)>0
dr

and is (in this case) stable to axisymmetric disturbances by lloward and

Gupta's (1962; hereafter referred to as llG) generalization of Rayleigh's

criterion,viz.

, 4 [(dr /dW feverywhere for1__1_ d r
stability (efs)3 dr

r

1

- - - - - - - ___.________ -
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(Rayleigh's criterion is recovered with W = constant). However, it is

possible (and, in fact likely as we shall demonstrate) that the flow shown

in Fig. 3.1 is unstable to asymmetric disturbances. General results, analogous

(4.1) or (4.2) for three-dimensional disturbances for arbitrary (r) andto

W(r) are lacking (see, HG). HG derive the criterion

2 2 2

dr ~
~ +" > O efs (4.3)

-

r r r

where (m,k) are the azimuthal and vertical wavenumbers, respectively. For

m = 0, the axisymmetric criterion is recovered. However, for m / 0, HG note

that as k + 0, criterion (4.3) can never be satisfied. This does not imply

instability, caly that one cannot be certain the flow is stable. To appreciate

this, consider the stability of the Rankine vortex to a three dimensional

disturbance (Lord Kelvin,1880) . The Rankine vortex has W = 0 and

r = wr r<a

2
= en r>a

So, criterion (4.3) is that

224k a >0 r<a

24
**

-m <0 r>a
r

Clearly, we cannot be assured that the flow is stable. However, Kelvin's

analysis proves that the Rankine vortex is stable to three-dimensional

disturbances. HG also derive a relation analogous to that used in the

!

_
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,

f

derivation of Rayleigh's theorem on the necessity of an inflection point for

instability of parallel inviscid flow (Rayleigh, 1880). Rayleigh's result

is that a swirling flow with mean vorticity a monotonic function of r is stable

to two-dimensional perturbations. The flow shown in Fig. 3.1 is one where the

swirling flow is approximately ze:o within an inner core, thus the vorticity

is zero. The adjoining annular region where r sharply increases with radius

is one of high vorticity. Finally, the flow for larger radius has T = const.,

i.e., there is zero vorticity. Hence Rayleigh's necessary condition for

instability to two-dimensional disturbances is satisfied.

Consider now the stability of non-swirling (T = 0) axial flow W(r).

Again, criterion (4.3) is not of much use. Rayleigh (1892) found that a
.

sufficient condition for stability is that

_d_ j dW | Not change signr

dr 1 ,2 2 2 dr) for any r (ncs)

For axisymmetric perturbations (m=0), the criterion is that for stability

.

f (ncs) (4.4)

For two-dimensional perturbations (k=0), the criterion is that for stability

r (ncs) (4.5)

This point merits some discussion. ~ Bergman (1969) notes that this relation

is irrelevant since by setting k=0, the perturbation equations are ' unaware'
1'

of W and therefore the disturbances are stable in this limit. This contrasts

______ - - - -
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with the statement made by Batchelor and Gill (1962) for the ' top-hat' profile,

viz. "The flow is unstable to a small disturbance for a11 values of n(or m)

and a(or k)." For m,k + 0, Batchelor and 0111 (1962) find that cf (the

imaginary phase speed) is zero, thus the flow is stable to this trivial
+ constant; this is true, howeverdisturbance. For m/0, k + 0 they find that et

the actual growth rate (=ke ) tends to zero. Hence purely two-dimensional
g

disturbances are stable.

The criteria cited above are the only general criteria extant and are in

fact too weak to be of great utility. Hence, the approach has been to examine

the stability characteristics of special profiles P(r), W(r) as the need to

know those characteristics arose. For an exhaustive review of work in this

area the reader is advised to see Bergman (1969). Also in that work is a

stability analysis of some "two-celled' vortex solutions (Sullivan,1959;

Kuo, 1967) similar to those of Fig. 3.1 We shall not repeat such calculations

because this amounts to a numerical solution of the linearized equations of

motion which is somewhat superfluous since we are computing the solution to

the full non-linear, viscous equi.tions of motion. However, we shall always

check that the axisymmecric flaw may be unstable according to the above

criteria. Further, f.n view of the above-cited analytical p oblems, we must

proceed on somewhat heuristic arguments. One heuristic argument which we

shall appeal to is that the radial shear of W is primarily responsible for

the instability of axisymmetric (m/0, k=0) disturbances (as long as

3 r /3 r > 0) while the radial shear of V is responsible for the instability

of angular disturbances (m/0, k=0); flows with non-zero V and W miR t have ah

most unstabic mode (m,k) where m is determined mainly by V(r) and k by W(r).

We shall return to this discussion in the chapter " Interpretations".

.

_
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5.0 The Numerical Model

The model developed here follows that of Williams (1969) closely.

Williams developed a numerical model to study the flow in a rotating,

differentially heated annulus; the Boussinesq equations are solved in

cylindrical coordinates. Hence, much of Williams' work can be carried over

directly. So, unless otherwise stated the model description in this section

is identical, to William's. Our system is simpler, in one respect, because

we have no thermal ef fects and need not solve a temperature equation, however,

in another respect it is more probletatic (i.e., fluid may pass into or out of

the domain).

5.1 Governing Equations

The governing equations for a constant density, constant viscosity fluid

in cylindrical coordinates (r, 0, z) are

" #
- F(u) (5.1)P + ReDt r r

P
EE + "" - I(v) (5.2)+ ReDt r r

fff =-P + Re" H(w) (5.3)z

1 (ru)r + 1 0+w =0v
r r z

where

(u , v ,w) = -1- (u' ,v' ,w') ; P= ;
P' (z,r) = 1 (z',r')-u

R u
R

g_
.-_
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where u' , v' , w' , are the dimensional components of the velocity vectnr in

the r', 0, z' directions, respectively; P' is the dimensional pressare divided

""" " '" " "I ' " "R'by density and Re is the Reynolds number uR

chamber radius R and eddy viscosity v. Subscripts denote partial differentiation,

+f (ruq) + f vq + wq (5.5)qE

Also,

F(u) = u + u ~ "rz ~ "O r *

GO
r r

I(v) = (") r +v - -w (5.7)
gr zz (r Oz

w ~ # -
( "*>r (5.8)ll(w)=f("rr+ 00 r0

In vector notation the system of equations (5.1) is

+ V 9V = - VP - Re~ 7xw (5.9)

y V=0 (5.10)

( where w = 9 x\V is the vorticity vector. Equation (5.9) is prognostic for }r;

to obtain P given V, we take V - (5.9) using (5.10) to obtain

2v p ,_y ,(y ,99)

i - _

.

.
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which is an elliptic equation for P. The boundary conditions on P are obtained

from (5.9) and are discussed below.

5.2 Governing Equations in Discrete Form, Domain and Grid System

The domain is a right circular cylinder which covers the central part of

the vortex chamber shown in Fig. (5.1). Fluid enters through the sidewall

for 0'< z < h/R (=.5) and may leave or enter through the top (z = H/R = 2)

for a < r < 1. A small center annulus (which does not exist in the laboratory_

or nature) is put into our model so as to avoid the severe time-step limitations

imposed by the very small (0(rae)) azimuthal grid lengths. We will argue below

that for the cases under present study the existence of the annulus does not

seriously alter the main conclusions. The model domain is as depicted in
<

Fig. 5.1. Boundary conditions are also indicated and will be explained

subsequently.

Fig. 5.2 contains the grid system. The coordinates of the P points P g

are at

r = (1 .5)Ar + a. i = 1,M
1

e = (k-1)Ae k.= 1,Lk

|

z) = (j . 5) Az - j = 1,N

where

Ar = l-*
Ae

2={, 33 , g,

_ - _ - - - - _ _ _ - _ _ _ - _ - _ _ _ _
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u=0

11 = 0
dr r 3 z

0*
=0

dr u=O
P from eq.(1) y=0

r
ba w, = 0

g P from eq:(11)

%

it;

-. | '

|
'

i

| |
. .

' u=O!
| | 8
| | ( a; rv = 0

A
N ' , -|i ,e,'s dw dun! =o-

- i i
s _=

| | 8 s
V r' dr dz'

,

P f rom eq. (1)
,

r

,

b[
-

u=un
- v=vn'/ du

u=K dz dw du
a=O-=

dr dzv=K
OZ Pr from eq. (1)

w=0
P, f rom eq. (3)

Fig. 5.1. Schematic of computational domain, boundary conditions
are indicated.

----- - -_-_-____-
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Fig. 5.2. Schematic of grid arrangement. (After Williams,1969)
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where M, L, N are number of gridpoints la the r, 0, and z directions,

respectively. For this study we use M=30, L-32, and N=30.

The other variables are defined similarly

r - (1-1)Ar + a i = 1,M&1

u 0 = (k-1)As k = 1,L
i ,k k

j = 1,N+2z) = (j-1.5) Az

r = (1-1.5)Ar + a i = 1.M+2
,

v 0 = (k .5) A0 k = 1,L

j = 1,N+2z) = (j-1.5) Az

r = (1-1.5) Ar + a i = 1.M+2
g

w 0 = (k-1)A0 k = 1,L
y

3 = (j-1) Az j = 1,N+1|\

The time variable t is discretized by setting t = tat where At is the time-

step. With the shorthand notation

6q=[q(x+ fax)-q(x- Ax)]/Ax

=[q(x+ fax)+q(x- Ax)]/2*
q

l

- -
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the governing equations are written

p0

6 u ' + f 6,(tu7) + f 6 (N) + 6,(U*Ei ) -
- I * "

(5.12)
t g

t

.

= - 6 P + vF*(u)

6[ + f 6 ( ) + 6,(@v") + u - (5.13)")+ 3(r 0

= - 6 P + vI*(v)0

S2+f6( w)+ 6 (7 w ) + 6,(U*w-*) (5.14)gt r

= - 6 P + vH*(w)

.

f 6,(ru) + f 6 v + 6,w = o (5.15). 0

where

F*(u) E [4zz" + 000" ~ 5n" - 5 (r6 ")] W (5.16),

r 0
r r

I*(v) E [6 6,(rv)I + 6,,v - 6re(y)- e"]1ag. (5.17)6
r

H*(w) E [ S (#0 ") + 0 w- 6 n(#")]1ag (5.18)r r 00 ze* ~ 5
r ,

. .. .

.

_ _ - _ . _ _ _ _ - - _ _ - _ - - _ - - _ _ _ _ _ -
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Instead of rewording Williams' description of this system, we take the liberty

of direct quotation:

"The explassions and operator notation must be interpreted with respect

to the grid-point of the variable under consideration. The centered time

differencing is for the level i so that the predictions yield the variables at

level (T + 1). The non-linear rotational and pressure terma are evaluated

at the central level t whereas the diffusive terms use the non-central

(t - 1) level, denosed by the subscript ' lag'. The continuity equation

(5.15) applies at a point and is valid for the fluid unit surrounding that

point. The averaging in the equations is necessary to provide variables values

grid points where the variables are not explicitly defined. Through usingat

an interlacing grid system the amount of averaging of this type is reduced

to a minimum thus improving accuracy. Furtheruore, the continuity equation

has a unique exact form which can only be achieved by such a grid; this

uniqueness is essential for deriving the Poisson equation. The only

disadvantage occurs in the rotational terms, where products such as uv

must be averaged as u and v occur at different locations."

The following is also nearly a quotation of Williams.

The variables u, v, and w may be obtained by marching equations (5.12)-

(5.14). To obtain P and satisfy continuity, a Poisson equation must be

derived. To achieve this, suppose for convenience that the prediction ,

equations can be written as
,

6 u* = - 6 P + GU
r

P + GV (5.19)6 ~~

t O

<

6 Y = ~ 6 P + GW l
i

t Z

-- ._ -
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where G = (GV,GU,GW) represents the non-linear, viscous and rotational terms.

Substituting these equations into the continuity equation (5.15) gives

i VP=V G (5.20)

,

where

VPEf6(# r)+ 6 P+6 PP
00r

r
;

and

V G=1 6 (r GU) + 1 6 GV + 6 GW (5.21)r r r 0 z.

.

Solving (5.20) during each time-step provides the values of P needed to

complete the marching process.

In executing the calculation the components of G, can be evaluated from

the variables of the previous time step. Forming the divergence of G, the

Poisson equation (5.20) on solution gives values of P. Using these values

of G and P, the variables u, v, and w at the next time step can then be

directly evaluated.

The time step is chosen so as to satisfy the CFL condition and the|

diffusive stability criteria, viz.

r A0 Az -Ar
At < min _, (5.22),

fmax max /
" "

max

fRe 2 2 2 2
-At < min 7 r A0 , Az , or - (5.23)

-

,

'

e - - - -
- - - . . .

'
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_ _ _ _ _ _ _

-26-

In this study, at = .01 and integrations carried out every several thousand

time steps.

5. 3 Boundary Conditions

The preceding section describes how u, v, and w are predicted within the

Now we describe the condition of the fluid at the boundary of thedomain.

domain. At r = 1, fluid enters the domain for 0 < z < .5 with velocity u = 1

O ~ "R '''"" IR"#R ""and with a specified azimuthal component v = v 'R

then f rom Eq. (3.1)

Rs = j(
2h u

R

For this study h/R = .5. Thus v !"R s syn n m us with the swirl ratio. For
R

.5 < z < 2, u = 0 at a fictitious wall. At thim wall, we require the vertical

vorticity to be zero, i.e., (rv) r = 0.
Along the entire boundary (0 < z < 2)

-w = 0.we require the azimuthal component of the vorticity vector n = ug r

Since u is prescribed as a
r " "z, which is prescribed because u is.Thus w

time independent function of z at r = 1, we can use equation (5.1) to obtain

2
= E u + Y- + Re~ F(u)P

r Dt r

r=1

At r=a, we set u=0 on the impermeable inner annulus, require zero stress

((v/r)r = 0 and w = 0) and P is known at time r from Eq. (5.1). At the
r r

lower boundary we require w = 0 at the impermeable surface and set (u,v) =

K(u,v) , where K is a constant (in dimensional form, K has dimensions of

length). When K = 0 the condition u = v = 0 (no-slip), while when K + =

|

l

1
.

-- -
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.

the condition becomes u =v = 0 (free-slip). G. I. Taylor (1965) first usedg

this condition for a Ekman layer flow; later Kuo (1971) also employed this

condition. P, is known at from Eq. (5.3). At the upper boundary, z = 2,

we require the flow exit without radial or tangential velocity; u = v = 0.

(As is done in the laboratcry with a honey comb grid.) This is somewhat

different than the conditions used by Rotunno (1977, 1979). In those studies

u = Dv/3z = Bn/3z = 0 (n is azimuthal component of the vorticity vector). The

reason for this is as follows. The axisymmetric flow could not have azimuthally

travelling waves whereas the present three-dimensional calculation can and

does; we found that, in addition to being more faithful to the laboratory
,

apparatus, the present boundary conditions vastly simplify the 'open' boundary

condition problem. With u = v = 0. Equation (5.1) gives for P
r

t=T

*~P = - (wu ) + vu (5.24)

z=2

since the absolute value of P is irrelevant we choose P(r=a) = 0 and
integrate (5.24) to obtain

r

P(r, 0, z=2, t=T) = ( (-wu,) * + (vu ,) ~ }dr ' (5.25)
a

So, we have pressure at the upper boundary.

5.4 The Poisson Equation (5.20)

This equation is solved exactly as described in Swarztrauber and Sweet

(1975), p. 52-56. We describe it here briefly.

_ .. . . __
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Taking advantage of the peciodic nature of the problem in the azimuthal

direction, the equation (5.20) and the boundary conditions on it are decomposed

(using fast Fourier transforms) into L discrete Fourier components, Eq. (5.20)

then is reduced to the solution of L two-dimensional elliptic equations (in

the r-z plane). The algorithms used to solve the two dimensional solutions

are also described in the report cited. With the solutions for the Fourier

components in hand, we synthesize them via an inverse FFT to obtain the pressure.

The FFT algorithms are part of the standard NCAR sof tware library. A complete

copy of the code will he sent to the NRC.

6.0 Results

We shall discuss one particular example (S = 1, Re - 150, free-slip

lower boundary condition) in detail. For this particular set of parameters,

the numerical solutions exhibit two intertwining helical vorticcs. Other

combinations of the parameters (S, Re) Icad to solutions exhibiting more or

less multiple vortices, however, the basic physical structure of each

individual vortex does not vary as a function of the number of vortices present.

Hence, we shall concentrate on an example where only two multiple vortices

form and analyze in some detail th, associated three-dimensional flow pattern.

Initially, the flow has zero vorticity and v is set to zero everywhere.

To obtain the initial u, w fields, we solve the following elliptic equation

for u under the boundary conditions discussed in Section 5.3.
.

3 ' tained by combining the zero vorticity condition0>

u -w =0
z r

with the continuity equation

(ru) r , y ,g
r z

_ - - - _ - - - --
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f(ru) )
* "zz = 0 (6.1)r

r

This procedure produces the flow patterns displayed in Fig. 6.1. The flow is

initially axisymmetric, and so the r-z cross section in Fig. 6.1 is identical

; for each of the L(=32) such sections in the domain j

Rotation is added for t > 0 at r = 1 by letting

<

v(r,0,z,t) = v (1 - e ) 0 1z15R

which is analogous to slowly (over a time period t, = 2, in all cases) spinning

up the rotating screen at the rim of the cylinder of the laboratory model.
|

The swirling flow is then transported inward and upward by the initial u,w

field. As explained in Rotunno (1977) and in Section 2, the swirliag flow

cannot reach a too small radius. IIence, the flow in the r-z plane develops

a 'two-celled' structure. By the time t = 10, the flow reaches an axisymmetric

steady-state configuration similar to that described by Rotunno (1977). Since

the initial conditions are axisymmetric to within round-off error, the flow

will remain axisymmetric unless it is unstable in which case small
,

asymmetries could grow at an exponential rate. However, even at an exponen-

tial growth rate, it may take a long time for the instabilities to develop.

Hence to conserve computer time, we add a small amount of random noise at a

stage (t = 6) of flow development.

4
except for the maximum observed in v near the top; this is due to the condition

v = 0 and will be discussed in the section entitled ' Interpretations' .

_ _ _ - -
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,

| The first evidence of flow asymmetry in the horizontal contour plots is
I
1 at approximately t = 22. Fig. 6.2 a-d contain the azimuthally averaged u, v.
J

w, P ficids at t = 20. The flow is still essentially axisymmetric at this

time; Fig. 6.3 a-d display horizontal contour plots of u, v, w, P at z = Az.,

Figure 6.3 a-d are included at this point for future reference; the r-.

J,

contour plots will change drastically as the wave grows to finite amplitude.
i

) Figure 6.4 a-d displays the same cross sections as shown in Fig.s 6.2 a-d
:

! at t = 60. The horizontal cross sections at z = Az are displayed in Fig.

6.5 a-d. Considering the radial velocity together with the tangential

velocity, clearly indicates smaller scale rotating wind field within a larger-

scale rotating wind ficid. We identify this smaller scale vortex as the

multiple vortex phenomenon. Figure 6.6 is a composite of u, y, w, and P for i

one of the multiple vortices. Notice the horizontal circulation center

nearly coincides with the pressure minimum and 14cs somewhere near the

maximum gradient of w but in the updraft. Just above this low level the pattern

is essentially unchanged but shif ts clockwise; Fig. 6.7 contains the horizontal,

; contour plot of P which illustrates this behavior. The distance of the MV

center from the central axis increases with height and the circulation
l

pattern becomes more diffuse.
4

The basic pattern shifts counterclockwise in time at a rate

|

|

!

pcttern % 1, .g

{
,

| which is approximately one half the maximum mean rotation' rate of the fluid

(v/r) , (which occurs at r = 10Ar + a, z = 2Az).

l

i

|

._ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ .
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is still essentially axisymmetric at this time.
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r-6 CONTOUR PLOTS AT J = 2, t = 60
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Table 1
Total Energy vs. Time

t E

0.0 2.250
10.0 6.912
20.0 6.897
30.0 7.184
40.0 8.159
50.0 8.183
60.0 8.175

The aximuthally averaged fields are changed in some respects by t = 60.

The inner core region ' spun-up', the vertical velocity central minimum has

lowered in position and the central pressure has reduced.

The total kinetic energy, viz

"
E(t) = r dr de dz

Volume

is tabulated (Table 1). After an initial increase, E levels oft and remains

fairly constant until approximately t = 20: then increases rapidly until

t = 40 and then holds constant as long as we continued the integration (t = 60).

The increase in E corresponds to the time when the unstable waves are growing

to finite amplitude. E becomes constant again when the finite amplitude

waves have reached some sort of equilibrium and persist as long as the

integration continues.

7.0 Interpretations

The first order of business is to demonstrate that the asymmetric wave

structure may arise because the basic axisymmetric flow of the model is

unstable. Recall the material derived in Section 4; first the Howard and

Cupta criterion that the flow is necessarily stable to axisymmetric dis-

turbances if

-f( ) >0AE
r

- - - -- - --- - _ - -_____ __
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and second that (for w = ct) the flow is stable to two-dimensional disturbances

if the vorticity [(r) is a monotonic function of r. Fig. 7.1 contains a

graph of A and i vs. r at z = 15Az. (Recall that all stability analyses

are, to our knowledge, for mean flows [(r), w(r), which are independent of

z, this is only approximately true in this case and probably most true near

the midsection of our domain.)
|

What form does the instability take? Consider for a moment the classical |

Kelvin-Helmholtz instability of a parallel shear flow U(z). The basic

vorticity vector is U into the page and thus perpendicular to the mean flow.
3

As an unstable wave grows ' billows' tend to form along the vortex lines.

Now consider an idealization of the flow in Fig. 6.2 a-d; the flow (Fig. 7.2)
)

inside the inner ring is downward and has very little tangential component.

The flow on the outer ring is strongly swirling and rising. If the flow

is nearly cylindrical (i.e., 3/3z = 0), the mean vorticity at the dashed

ring is

[=f >0i = 0, 5=- < 0,

Thus, the vorticity vector points upward and in the negative azimuthal direc-

tion. If and when the flow depicted in Fig. 7.3 becomes unstable, we expect

the vorticity to accumulate along the helical vortex lines of the basic flow

in much the same way as it occurs in the Kelvin-Helmholtz problem. Fig. 7.3

displays an r-0 plot of the vertical vorticity for t = 60. The accumulation

of vorticity at particular azimuths is evident. Further, the reason for the

clockwise shif t with height observed of the multiple vortex is now obvious.
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Fig. 7.2. Idealization of the vorticity vector of Fig. 6.2 a-d; the
flow inside the ring is downward with very little tangential component.
The flow outside the rina is strongly swirling and risino. Thus-the
vorticity vector points upward and in the: negative-azimuthally-direction.
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Near the top of the domain the vortex lines'are bent to the horizontal

because u = v = 0, thus c = (rv) /r - u /r = 0.
e

Since we require v = 0 at z = 2, a ' boundary layer' forms because the
"Binterior flow has v / 0. Recall that ( = 7 - V , thus, the large vertical

graident of v (v < 0, & > 0) dominates the radial component of the vorticity.z

Hence, the large value of v near the top of the domain in Fig. 6.4c may be

thought of as a consequence of the multiple vortex (near the lower surface) extending

upward and over to the horizontal at z = 2. This pehnomenon is observed in

the laboratory experiment described above (J.T. Snow, private co=munication).

That v(r, z, t) is increasing with time for small r, as the unstable

wave grows suggests that the waves transport angular momentum inwards. This

should be so according to a trivial extension of theorem by Held (1975).
|

| Consider a two-dimensional flow (r,0) with mean vorticity c(r); the

j equation governing the perturbations is
!

v -

c, + - C' " - "' 'r- (7 1)t

where
(rt,}

# + t'
-t'r

c' = ; u'= v' = t'r r r, r

and t' is the perturbation streanfunction. Multiplying 7.1 by c' then

averaging over 9 obtains

_.2._ c '

u'c' . _ Bt~ (7.2)
2

G r

It is easy to show that

1 2
u'c' = 7 (r u'v')r (7.3)

r

.
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!

|
Considering the mean azimuthal momentum equation (again fr. two-dimensions) j

iobtains

v=- (r u'v')r (7.4)
r

'

Combining (7.2)-(7.4) gives then

_3_ C '

2
v=

_
(7.5)

Er

The numerator of the RHS of (7.5) is positive for a growing wave. As we see

fromFig.7.1,(>0overtheentireinnerpartandaccordinglyVincreases
Of course, this analysis is restricted to two-dimensional flow but, nonetheless

appears to give a reasonably accurate picture of the wave-mean flow interaction.

Finally, we must mention the increase in total energy which accompanies

the transition to multiplc vortices. Such an increase is, of course, not

impossible since we have open system where energy may pass in and out. .The

energy equation is

!

(" ) + f (ruH) + f (vH) + ~ V .VV * (7.6)wH = Re

2

where H = P + u +v +w , the total head. Integrating 7.6 over the domain gives
2

E=- uH dedz - wHrd0dz

inflow outflow (7.7)
boundary- boundary

. Dissipation

Volume
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H involves u, v, w and P and we specify conditions on the derivatives

of w and P at inflow and outflow (so w and P may change). Our calculations

indicate that the presence of the multiple vortex does not allow the

energy to pass out as quickly as it enters thus accumulation occurs until

a balance between energy flux divergence and dissipation is reached.

Due to limita : ions of computer time only a restricted combination of

parameters could be studies; the cases studies are summarized in Appendix I.

Inicuded also are some statistics such as the amplification factor

(- v,,x/v ) and the radius of maximum winds from the domain center (r , )R

and the azimuthal average amplification factor v,,x/v *R
8.0 Conclusions

We believe we've achieved the first successful simulation of the multiple

vortex phenomenon. The highly asymmetric nature of the multiple vortex has

precluded analytical descriptions heretofore; however, now a model based on

exact solutions of the Navier-Stokes equatio' s exists.

The model indicates that in a horizontal cross-section the circulation

is centered on a strong gradient of the vertical velocity with the maximum

tangential velocity on the side of maximum vertical velocity. The core

of this asymmetric vortex shifts clockwise with height (the mean streamlines

of the parent vortex are counter-clockwise). The peak tangential velocity

r.ssociated with the multiple vortice was found to be 20%-30% greater than

either the azimothally averaged larger scale flow cg; that obtained in an

. equivalent axi.ymmetric model.
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%

APPENDIX I

Other Cases

Case S e K max /VR max /VR max max Remarks
R V r z

1.7 2.05 .44 0 This case. studied in1 1 150 =

detail in 9 6.7

1.6 2.06 .62 0 Initially, 4 MVs appear,2 1.5 150 =

later only 2 dominate

1.4 1.95 .78 0 Initially, 4 MVs appear,3 2 150 =

later 2 dominate with 2
other weaker MVs present.

4 1 150 1. 1.6 2.0 .55 3 Vertical velocity some.

stronger at low levels.

5 1 300 1. 1.76 2.4 Variable, Variable 2 MVs present with 1 much-
stronger than the other

6 4 150 1. 1.14 1.5 Variable, Variable 4 MVs 5

7 4 100 1. 1.11 1.5 Variable, Variable 4 MVs

.
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