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AN OVERVIEW ON
ROD-BUNDLE THERMAL-HYDRAULIC ANALYSIS

by

Adilliam T. Sha

ABSTRACT

Three methods used in rod-bundle thermal-hydraulic analy-
sis are summarized. These methods are: (1) subchannel
analysis, and 1its {inherent assumptions are «clearly
stated; f?2) porous medium formulation with volume
porosity, surface rermeability, distributed resistance
and distributed heat source (sink) =~ the concept of
surface permeability is new in porous medium formulation,
and greatly facilitates modeling anisotropic effects;
and, (3) benchmark rod-bundle thermal-hydraulic anal; sis
using a boundary-fitted coordinate system, and it repre-
sents the most rigorous method to date. For laminar
flow, this method gives soluticons without any assumptions
and it requires information on rod bundle geometry and
thermal physical properites of the fluid. Basic limita-
tionz and merits of each method are discussed in detail.
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EXECUTIVE SUMMARY

Three pertinent methods used in rod-bundle thermal-hydraulic analysis are
presented. These methods are (1) subchannel analysis, (2) porous medium for-
mulation, and, (3) benchmark rod-bundle thermal-hydraulic analysis using a
boundary fitted coordinate system. Basic limitations and merits of each
method are delineated.

The subchannel method is the most widely used in rod-bundle thermal-
hydraulic analysis to date. Histovically, and as originally {intended,
subchannel analvsis has been used primarily for design calculations. It
explicitly assumes that one of the velocity components (axial velocity) 1is
dominant, compared to components in the other directions (crossflow veloci-
ties). Until recently, the subchannel method has been extended to reactor
safety analysis, such as the resolution of flow blockage in a fuel assembly.
In this case, the usus 1 assumptions for small crossflows in transverse
directions are no longer valid. It is important to recognize that the basic
limitations of a method and a computer code can only pe as good as its formu-
lation. The basic limitations of subchannel analysis are:

(1) The fine structure of both wvelocity and temperature within a
subchannel is ignored (lumped parameter approach).

(2) The transverse momentum equations cannot be treated with the same
rigor as the axial momentum equation because of non-orthogonal
characteristics of subchannel arrangment. Specifically, the finite
difference representation of the second derivatives cannot be
rigorously evaluated.

(3) To facilita*e calculations, approximations are necessary for simpli~-
fying the geometric configuration of the control volumes used in the
transverse momentum equations and interfacing the required informa-
tion at the various locations between control volumes for the axial
and transverse momentum equations.

The above limitations are inherent; therefore, the validity of subchannel
analysis to situations with large flow disturbance, such as blockage, poses
concern.

The porous medium formulation with volume porosity, surface permeability,
distributed resistance and distributed heat source was iirst proposed for rod-
bundle thermal hydraulic analysis, and it eliminates some of the limitations
emploved in subchannel analysis. The detailed derivation via local volume
averaging is presented. The concept of surface permeability is new in porous
medium formulation, and it greatly facilitates characterization of an aniso-
tropic medium. Also, it generally improves the accuracy of results since
surface permeability is well defined and distributed resistance 1is not
precisely known in most engineering applications. Furthermore, the porous
medium formulation provides a greater range of applicability; it is capable of
treating both continuum (reactor plenum mixing, piping analysis, etc.), and
quasi-continuum (fuel assembly, heat exchanger, etc.) problems. This capa-
bility represents a very cost effective way of developing a computer code. It
should be noted that since local volume averaging is used in the porous medium



formulation, high resclution of the local velocity and temperature i{s somewhat
lost. Furthermore, just as the friction factor must be calibrated in sub-
channel analysis, so must the distributed resistance be calibrated with expe-
rimental data in the porous medium formulation.

The most rigorous rod-bundle thermal-hydraulic analysis {s to use bound-
ary fitted coordinate transformation. FEach rod is explicitly represented as
an Internal boundary; thus, appropriate boundary conditions can be specified.
After the coordinate transformation, the complex rod-bundle geometry reduces
to a multiply connected continuum in a rectangular region with all boundaries
coincident with the grid lines. However, the system of equations to be solved
in the transformed plane {s more complicated than the original one. Most
important of all, the empirical mixing coefficients and cross flow resistances
normally associated with a rod-bundle thermal-hydraulic analysis are elimi-
nated, thereby enhancing computational stability and accuracy. As a matter of
fact, for laminar flow, this method gives solutions without any assumptions,
and {t requires information only on rod bundle geometry and thermal physical
properties of the fluid; for turbulent flow, empiricism is needed due to the
enclosure problem encountered in turbulence modeling. One drawback of bench-
mark rud-bandle thermal-hydraulic analysis using a boundary fitted coordinate
system {s that it requires large computer storage and long running time, and
thus,is limited to relatively small rod-bundle sizes or a local region of
interest in a large rod bundle.

I INTRODUCTION

Most heat exchangers and reactor fuel assemblies employed in the power
industry are in the form of rod-bundle geometry. Fluid flow and heat transfer
in a rod bundle are complex phenomena, and the basic understanding of these
phenomena 1is essential to achieving optimum design performance during normal
operating conditions and maintaining structural! integrity during off-normal
operations.

The traditional way of obtaining detalled performance information is to
build a scaled model of the heat exchanger or the reactor fuel assembly under
consideration. Both heat-giving and heat-receiving fluids are then circulated
through the shell and tube sides (or tube and shell sides), respectively, of
the heat exchanger, or heat-receiving fluid 1{s force-convected through the
reactor fuel assembly so that both velocity and temperature measurements can
be made over the expected range of operating conditions. Based on these
measurements, correlations of heat transfer coefficlients and pressure drops as
functions of Reynolds number, geometry, etc., are developed, and subsequently,
these correlations are used for designing the apparatus. This approach,
however, suffers from several drawbacks: for each new geometry considered, a
new test model must be constructed; scaling from the test model to design size
often poses some concern. Furthermore, considerations of expenses,
instrumentation and measuring technique usually 1limit data to global heat
transfer and flow rates, while detailed temperature and velocity distributions
are needed for an optimum design. Finally, correlations developed based on
these measurements are valid only in the range of parameters tested;
additional experimental measurements are often required when the operating
conditions fall outside the range of these correlations.



An alternative approach 1s to develop direct numerical solutions of the
conservation equations of mass, momentum, and energy, using appropriate
initial and boundary conditions of the physical system under consideration.
However, a major obstacle to the use of numerical methods in rod-bundle
thermal-hydraulic analysis has been the complex geometry. Recently, this
obs*tacle has been overcome by using the boundary fitted coordinate trans-
formation. Moreover, with the anticipated improved performance of the next
generation of computers and further advances in numerical solution technique,
the detailed numerical simulation of rod-bundle thermal-hydraulic behavior
appears practical and attractive. Accordingly, the objectives of the paper
are: (1) to summarize pertinent methods emploved in rod-bundle thermal-
hydraulic analysis; and, (2) to delineate basic limitations and merits of each
method.

IT. METHODS USED IN ROD-BUNDLE THERMAL-HYDRAULIC ANALYSIS

The rod-bundle thermal-hydraulic analysis discussed in this report {is
limited to solution methods for conservation of mass, momentum, and energy
equations considered as an initial-value problem in time, and a boundary-value
problem in space; and also is limited to descriptions and performance ¢
pertinent computer codes available in the open literature. In general, these
methods can be classified into three broad categories: (1) subchannel
analysis; (2) porous medium formulation; and, (3) benchmark rod-bundle
thermal-hydraulic analysis.

A. Subchannel Analysis

The subchannel method is the most widely used in rod-bundle thermal-
hydraulic analysis to date. Historically, and as originally intended, sub-
channel analysis has been used primarily for design calculations; it expli-
citly assumes that one of the velocity components (axial velocity in z-direc-
tion) is dominant, compared to components in the other directions (crossflows
in x and y directions). Thus, it 1is advantageous from both physical and
computational points of view to treat axial and transverse momentum equations
separately so that some simplifications can be applied to the transverse
momentum equations.

Until recently, the subchannel method also has been employed in reactor
safety analysis; e.g., to resolve flow-blockage problems in a fuel assembly.
In this case, the usual assumptions for small cross-flows in transverse
directions are no longer valid, and numerical solution techniques for the
initial value problem cannot be applieds A typical subchannel arrangement of
a 19-pin rod bundle, control volume for axial momentum equation and control
volumes for axial and transverse momentum equations are shown in Figs. 1l(a),
1(b), and 1(c) respectively., The transverse momentum equations used in the
THI3D [1], COBRA-ITIC [2], SABRE-1 [3] codes are listed in Table I.

1. Basic Limitations

(1) The fine structure of both velocity and temperature within a
subchannel is ignored (lumped parameter approach).

{(2) The transverse momentum equations cannot be treated with the
same rigor as the axial momentum equation because of the nonorthogonal char-



a. Typical Sube hanne ! Arrangement

CONTROL VOLLME FOR
AXTAL MOMENTUM EQUAT ION

§ e —

EXACT CONTROL VOLIME
FOR TRANSVERSE ——
MOMENTILM EQUAT TONS

APPROXIMATED CONTROL
VOLUME FOR TRANSVERSE
MOMENTUM EQUAT ION 0

b. Control Volume for Axial

Momentum Equaiion -‘ s h—

CoControl Volumes for Axial
and Transverse Homentum Equat lons

Fig. 1. Subchannel Arrangement and Control Volumes
for Axial and Transverse Momentum Equations



TABLE 1. COMPARISON OF TRANSVERSE MOMENTUM EQUATIONS USED IN
VARIOUS COMPUTER PROGRAMS

THI 3D
* Z,W
3w m du,m
1§ 1714 ap
() = - - § —
3z | ax S ' Ty
i i
cosrA-111C** X1 417
3 3 y
m w m
‘j-- 1J 5. - - F
it g rginy - v~ %, Rpaby
saBRE-1"*"
2 -
: 3pulw aoui 3P 3 a1
S PR T b
i g 322
COMMIX~-1
apui o ayzpuiw 3Yjpuig17_ P +.i_ . Bu1 ) 4 ) au1 g
Ty T3t az Ix Yy 3x 3z 'z 9z Ix Yj ax i
h| i 3 b
© 6 0 ® O, @
Computer Program 1 2 3 4 5 6 7
COMMIX-1 yes yes yes Jjes yes yes yes
THI3D-1 no yes yes Jes no no yes
COBRA-IIIC yes ves no yes no no yes
SABRE-1 no yes yves yes yes no yes
Note:
F1J = force per unit area
A = geometrical factor to account for the difference between the exact
control volume and the approximated control volume fer the
transverse momentum equation [see Fig. 1(¢)].
ok

COBRA-1V neglects the cross product of transverse velocity components and
fluid to fluid shear forces.

- The latest version of the SABRE code has transient capability.



acteristics of subchannel arrangement. Specifically, the finite-difference
representation of the second derivatives cannot be rigorously evaluated.

(3) To facilitate -~alculations, approximations are necessary for
simplifying the geometric config:ration of the control volume used in the
transverse momentum equation and interfacing the required {information at
various locations between control volumes for the axial and transverse
momentum equations.

2, Mathematical Model

The following governing equations, boundary conditions, and solution
technique are reproduced from Ref. 1; e:tension to transient formulations is
straightforward.

a. Conservation of Mass

wiigar ’f,,,

32 (1)

where
m, = pwA, = axial flow rate,
p = coonlant density,
w = axial velocity,
A, = axial flow area,
e Sy pb:éi’r:éa /3:bc:m:::1e: sllo:ndc ;o?:fit:twrr:pt eswzzgi :gmctro::ggz

can be included),

ugy - transverse veloci'y in X direction,

Alj crossflow area between subchannel { and j,
Az = axial increme-_,
and

N

number of neighboring subchannels,

b. Conservation of Momentum

As mentioned before, the momentum equation is subdivided into
the axial momentum equation and the transverse momentum equations so that the
latter can be treated with simplified assumptions:



bh.1 Axifal Momentum

8PiAz i . * : m o4 2
il @ ' - - —
52 X [mljw 2 4 (n‘j \ mij](u1 wj)j Py o (A )
j=1 z,1
£, kRt 0 y M.y = r
35 W o e (2)
poi 2p, Az i 0z Py - az g,1
2,1 Pi%2,1
where

g = gravitational constant,
f = friction factor,
k = form loss coefficient,
D = equivalent hydraulic diameter,
P = pressure,
m! . = turbulent crossflows between subchannels i and j per unit

1 height, 1{including natural turbulence and turbulence
promoted by the presence of wire wrap,

A.
A = [
A J Az(z)dz/Aa .
0
*w+w
o & _1_7__1 -

and the asterisk denotes the quantity associated with the donor subchannel.

Be2 Transverse Momentum

If the interactions between the transverse momentum 1in
the direction under consideration and the other transverse direction (or
directions) are neglected,* the transverse momentum equation may be written as

3z ax

ot T P L0 | ap x
+ j = | - sxj +-—v-1 sj' j. l, 2, ey N, (3)

where

An attempt to include both the transverse momentum flux gradients and
their interactions in principal directions has been formulated and pre-
sented in THI3D-1[1].



= transverse direction along the centroids of subchannels {
and }§,

xj

V = elementary volume,

and
Sj = crossflow width between subchannels {1 and j.

The general surface force term ij may be approximated by
kim m
L Mgl

al
j Zoi.t ijJ

where
k = crossflow resistance,
and

Ax; = ceatroid distance between subchannels 1 and j in the Xy
direction.

Ce Conservation of Enerpgy

ah N |S
o o H [id“ «(Ty = 1)+ blmyy + gy = cfy)lny - hj)]

8§.q' A
g o 14, 4% 8.1
" (?l A mz,1 f (4)

where

h = coolant enthalpy,

T = coolant temperature,

¥ = thermal conductivity of coolant,

¢!, = turbulent-exchange coefficient per unit height,
= heat generation per unit volume per unit time,
" = heat loss per unit height per unit time through the duct
wall,

Ay = heat-transfer ares through the duct wall,

§ = 0 for crossflows leaving channel { to j,



= | for crossflows entering channel { from i,
and
61 = 0 for channels located away from the duct wall,
= 1 for channels located next to the duct wall.
Both ni and CLJ can be coublned into a single turbulent ex-

change coefficient (f.e., amyy = n - c , where a 1s a constant), since
m! and ¢!, cannot be distingutshed throug experimental measurements.

i} i3
d. Boundary Conditions

The pressure drop boundary condition is used. Inlet pressure,
coolant densities, and temperatures (or enthalpies) of all subchannels are
assumed to be known. Inlet pressures can be specified as eitber uniform or
nonuniform for all subchannels, but outlet pressures must be uniform. To
satisfy the uniform outlet pressures, inlet velocities of all subchannels must
be ad justed, using the following iterative solution technique.

3. Solution Technique

Coolant parameters are calculated simultaneously for all sub~
channels, by starting at the bottom of the core and moving upward, step-
wise. Coolant enthalpies (temperatures), pressures, densities at the inlet,
and heat-flux distributions in all subchannels are known. Inlet velocities
are first assumed to be known, and then solved iteratively. Crossflows are
computr 1 based on coolant properties at the bottom of the step length.
Knowi 2 the crossflows within the step and the heat addi“ion into the step,
the change In coolant enthalpy (temperatures), pressure, density, and velocity
can be determined successively for each step length. To account for the
effect of local pressure drop on coolant properties, an iteration within each
step length must be performed. Thus, a consistent set of local thermodynamic
properties of the coolant can be mainta!f .

The resulting enthalpy, pressure, density, and velocity at the top
of the step length are used as input to the next step length. This procedure
is continued until the top of the core is reached. Accordingly, the pressure
at the top of the core may be expressed as a function of inlet pressures, den-
sities, and velocities of all subchannels:

i i i i
j( l, ' y ooy, HH, pl, 92. “eey DH, P‘. Pz, ey P"

j - l. 2, .y H, (5)

where superscripts i and o correspond to inlet and outlet values; P, w, and p
are pressure, axial coolant velocity, and density, respectively; and M is the
number of subchannels under coasideration.

The total derivative of Eq. (5) can be written
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m f[ar? ap° ap°
a° = § ._%.dwi +—1 4o, + -_{-dpt ; (6)
k=1 auk 3Dk apk

For practical purposes in reactor design, both the inlet pressure
and the coolant-density distribution are assumed to be known. A set of inlet
velocities must be determined to satisfy the uniform pressure at the exit of
all subchannels. Basic equations for conservation of mass, energy, and
momentum are used to compute the outlet pressure distribution for a given set
of 1inlet coolant velocity conditions. Interaction between subchannels is
taken into account by allowing for crossflow through adjacent subchannels.
The amount of crossflow is expressed as a function of pressure, and tempera-
ture or enthalpy gradient of the adjacent subchannels at the same elevation.
Equation (6) can now be expressed in the matrix form

[ap°] = [B][aw'], (7
where
[dP9] = column matrix with elements dP°,
[B] = M x M Jacobia matrix with elements 3P§/3wi,
and

[dwil = column matrix . th elements dwi .
1f [B] 1s a nonsingular matrix, Eq. (7) can be written
[awl] = [B]72[ar°].
Equation (7) couples with the following boundary conditions:
At the top of the core:
Pi = constant, {1 = !, 2, ..., M.
At the bottom of the core:
(1) P; = constant, or a known distribution, § = 1, 2, ..., M,

(2) 'l‘i = {nlet tempeature or h1

j j (inlet enthalpy) are known at
j - l. 2, ey ",

and
N
.3 i
(3) jzl ij:,j"j = constant,
where A is the axial coolant flow area of subchannel i.

z,]
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Boundary coundition (3) can be considered a constraint of Eq. (8),
which can bSe written:

[aw'] = [B]-}[ar®] +x [8]-}[1], 9

where {I] is a unit column matrix, and A is a scalar ~r "Zgiangian multiplier
to be determined.

Multiplying Eq. (9) by [A] and [p] gives

-] (o]
_[alle][B]=1[aP%] (10)

(alle](®]"'[1] °

where [A] is a row matrix of the axial coolant flow area at the inlet o] is
a square diagonal matrix of the coolant density at the inlet, and [A]tp [Avi]
= 0,

In practice, the inlet velocity of the first subchannel is changed
by a preassigned small magnitude, and resulting changes in outlet pressure
[AP°] for all subchannels are then determined. Elements of the first column
of the Jacobian matrix [B] are determined from this calculation. The original
velocity distribution is restored, and the procedure is repeated for each sub-
channel. The inverse of matrix LB] is then determiined, and A is calculated
using Egqe. (10). Knowing A, [Aw ] in Eq. (9) is then determineds The new
inlet velocity distribution can now be obtained from

(wh) = (1] + [a6!] an

where [wl | and [wi} are column matrices of the new and original inlet axial

L

velocities, respectively.

A simplified computational logic diagram of subchannel analysis is
presented in Fig. 2.

B. Porous Medium Formulation

A set of quasi-continuum governing equations for conservation of mass,
momentum and energy for a finite control volume is derived from both integral
and differential approach. The derivation of both the invegral and differ-
ential aproach can be found in ref. 4. The system consists of a single-phase
fluid with discrete stationary solid structures. Volume porosity, surface
permeabilities, distributed resistance and distributed heat suvurce (or sink)
are systematically included in the derivation.

The concept of volume-porosity and distributed-resistance and heat-source
arises naturally in the local volume averaging process [5,6]. The size of
control volume used in the local volume average must be small, compared to the
large-scale phenomena of interest. Distributed resistance alone is normally
used to characterize anisotropy of a porous medium. However, when local flow
area (or path) changes abruptly, and high resolution of local temperature and
velocity distribution is needed, additional delineatior of the anisotropic
characteristics of the medium i{s necessary. Thus, a new approach with volume
porosity, surface permeability, and distributed resistance and heat source is
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Fig. 2. Simplified Computational Logic Diagram of Subchannel Analysi
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developed. The concept of surface permeability is new in porous medium
formulation [4,7), and it greatly facilitates the modeling of anisotropic
effect of a medium. “,w, the anisotropic characteristics of rod bundles can
be modelled by using appropriate local surface permeability and distributed
resistance. It i{s ir:ortant to note that the concept of surface permeahility,
when properly applied, will reduce the 1inaccuracy in the calculated wvolume
averaged velocity and temperature due to replacing the discrete fluid
resistance and heat source (or sink) of the physical system by an idealized
distributed system. The surface permeability 1is usually known, while the
distributed resistance is, in general, not well defined. This is particularly
true for the analysis of reactor components where geometrically complicated
structures are often encountered.

Recently, the COMMIX-1 code[7], which employs the porous medium approach
with volume porosity, surface permeability, distributed resistance and
distributed heat source was developed. The typical mesh structure for a rod-
bundle used in the COMMIX-1 code is shown in Fig. 3. The transverse momentum
equations used in the COMMIX~1 code are presented in Table I along with those
of the other codes for comparison.

| [ Basic Limitations

The unique advantages of the volume-porosity, surface-permeability,
and distributed resistance and distributed heat source approach presented in
this section are the use of orthogonal coordinates and geometrically similar
control volumes. Thus, limitations (2) and (3) employed in the subchannel
analysis are eliminated; however, limitation (1) is still retained. It is to
be noted that just as the friction factor must be calibrated in subchannel
analysis, so must the distributed resistance be calibrated with experimental
data in the porous medium formulation.

24 Derivation of Quasi-Continuum Governing Equations

In a recent publication [4], a set of quasi-cortinuum equations was
presented for the conservation of mass, momentum and energy for a system con-
sisting of 2 single-phase fluid and dispersed, stationary solid structures.
The results were derived from a local integral formulation. In this investi-
gation, the macroscopic transport equations are obtained by averaging the
microscopic transport equations over a local volume and use is made of the
averaging theorems developed almost simultaneously by Slattery [5,8,9] and by
Whitaker [10,11]. The concept of volume porosity, surface permeability, dis-
tributed resistance and distributed heat source arises naturally.

Consideration is hereby given to a region consisting of a single-
phase fluid with stationary structures. Heat may be generated or absorbed by
the structures. For an arbitrary point in the region, we associate a closed
surface A whose Volume {s V. A portion of V that contains the fluid is Ve and
the total fluid-solid interface is Agge A portion of A through which the
fluid may flow is A,+ A schematic of tge system just described is illustrated
in Fis. 3



Fig.

3.

Local

Volume Average

L

i}

Physi¢

vl

System



- 15 =

a. Local Volume Average, Intrinsic Average and Area Average

Let ¢ be any intensive property associated with the fluid. It
may be a scalar, vector or second-order tensor. The local volume average of ¢
is defined by:

> 82 [, 1(P) wav a2)*

where 3 is the positicn vector and the indicator functicn, IFB) is defined by:

I(a] . 1, if the end point of p is in fluid (13)
P 0, if the end point of p is in solid

An equivalent form of Eq. (12) is

Iy = L fv vdv . (12a)
R

The intrinsic local volume average of ¢ is

Al
gy> = V; [vf Vav . (14)y*™

Likewise, the local area average of ¢ is

2 Ql = -l
<> %2 fA 1(3) vaA = £ fAf vdA (1%
where A; denotes the portion of A that is occupied by the fluid. The asso-
clated fntrinsic area average is
2> 8L 1 yan . (16)
§

It is important to note that in Eq. (15) the area A under consideration may
not be tha total enclosing surface. (If A is the enclosing surface in 1its
entirety, then A¢ in FEqs. (15) and (16) should be replaced by A ; see Fig.
3). In fact, one often concerns with a designated portion of it. For
instance, in Cartesian coordinate system, the averaging volume may be selected
to be a parallelepiped AxAyAz. The average mass flux through the surface AA

s The superscript 3 designates that the average is associated with vol-
ume. We shall use superscripts 2 and ! for area and line (segment)
averages.

'Y

The superscript { denotes intrinsic average.
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(area AyAz) whose normal points in the dirvection of positive x-axis is

2(x) 1

<pu> = KA-; IAAx 1 6)Oudk "

1 (15a)

AAx,f AAx,f
where AAr ¢ denotes the fluid portion of AA,. The corresponding intrinsic
average i¢

pudA .

21(x) 1
-A-K—— IAA D\ldA . (lﬁl)
%x, L x,f

<pu> =

b. Volume Porosity and Surface Permeability

The rates of fluid volume Vf to the total volume V is defined
to be the volume porosity, y,. Thus,

4
Yo . (17)

<|"‘<

Since V¢ = !V 1(P)dv, Y, can also be written as
1
Y, =y Jy 1By . (17a)

Furthermore,
o =y, > . (18)

Analogously, we define the surface permeability v, associated with any surface
(not necessarily closed) as,

e S TSN (9)
AR "RAA"P '

where Ag; is the portion of A that is occupied by the fluid. Consider, for
example, the surface AA, described in Section a. The surface permeability {is

£ % -3 |
AA AA_ “AA
X X X

L 1(P)dA . (20)
®

Clearly,

2¢y> = Y, ey . 21
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Co Local Volume-Averaged Transport Equations

cel Equation of Mass Conservation

The differential equation governing mass conservation for

the fluid is
p
. = 0
3¢ + Vv ov ’ (22)
where p = fluid density,
t = time,
and

¥ = fluid velocity vector.

Taking the volume average of Eq. (22) as defined by Eqs. (12) or (12a) yilelds
’(g%) +3@ .o =0 . (23)

Application of the general transport theorem [13] to the first term in Eg.
(23) yields

3
3/3 37> | - - *
5% - ._3%_ o IA PVe  » NdA (24)
fs
where Ve_ 1s the velocity of Aggs and n is the unit outdragg normal vector on
and away from the fluid. For the case under study, ve. = 0 since the
sohds are fixed. It is interesting to note that the integral in Eq. (24) may

vanish even {f ¥ ¢ * 0 everywhere on +« This would occur if the solids that
are completely inside A are nondeformable in motion relative to the fluid,
since for any interior solid of surface AA f d3f . NdA = 0 if the

variation of fluid density over AA“ is negliglfﬁe.
In elither case,
31
G- K2 .y L 24a)

Applving the theorem of local volume averaging to a divergence due to Slattery
[5,8] and Whitaker [11,14] gives

In general, the velocity of the fluid-solid interface ;'. may not be
identical to the fluid velocity v at the interface. This would occur when

mass transfer takes place.
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Iy oW =V, 3T 4+ % oV « ndA . (25)

!Afs

Again, the second te-m on the right hand side of FEq. (25) vanighes because,
for the problem under consideration, v = 0 everywhere on Ag . Consequently,

3(V.9V>-V.3<p‘3>-% V. [, evav .

f

Since, as has been shown, by Slattery [5], for any quantity B which may be a
scalar, vector, or tensor,

v /[, Bav = [4 BndA (26)
f o
it follows then

v . oD =g [, o na (27)
e

Substituting Egqs. (24a) and (27) into Eq. (23) ylelds,

i i
33'¢p> . 1 -
YV T + v IAe PV . ndA - 0 » (28)

which 18 the required volume averaged mass conservation equation. The need of
introducing the concept of surface permeability is suggested by the second
term of Eq. (28) and others in the momentum and energy equations.

Co2 Linear Momentum Equation

We bepin with the dynamic equation of fluid motion;

-
3%%32-+ V.GW) =pg - +V.T , (29)

where § = body force per unit fluid mass; in the gravitational field,
it is simply the gravitational acceleration vector,

p = static pressure,
and
T = stress tensor.
Performing the local volume averaging of Eq. (29) gives
3(3.%1?) +369 ., (oW = 3p -3+ v . D, (30)
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with the aid of the general transpor} theoren, the theorem of volume aver-
aging, Eq. (26) and recognizing that Vee and V vanish on Afgr Eq. (30) can be
rewritten

3 31 1 P .
Yo 3t GV + v fAe pv (v . n) dA

[\ (»pr. + T « n) dA - Y, e |, 3D

e

b o 1
o <p>g v

|
! 3

in which R is the resistance force exerted on the fluid by the dispersed solid
per unit volume of the fluid. In writing Eq. (31), use has been made of the

following relationship

[, (-pn+T.n)era-[ Rav , (32)
fs f

which may be regarded as the defining equation for R, The negative sign is
introduced to convey the notion that such force retards the motion. Equation
(31) is the volume averaged linear momentum equation for the system under

consideration,

The surface permeability concept is introduced in the
second term of the right hand side (RHS), and the second term of the left hand
side (LHS) Of Eq' (31)0

c+3  Equaticns of Energy Conservation

c+3.1 Energy Equation in Terms of Internal Energy

The differential transport equation for internal
energy is

3-§-§-°—’-+v.(pe$)--pv.v-v.‘3+6 0, (Y

where e = internal energy per unit fluid mass,
a = heat flux vector,

) = rate of internal heat generation per unit fluid volume due
to extraneous heat source,

and
¢ = dissipation rate of mechanical energy into heat.

The local volume average of Eq. (33) is
3 -
(a a!:')> + 30 L (pev)> = = 37 . D = 3T LD+ M) + o> - (34)



Again, with the aid of the general transport theorem, the theorem of volume
averagl g, etc., we obtain the local volume averaged internal energy equation:

3 31 l - = 31 -t l )
> o ® - oV . & o n » YT
Y rt (pe) v I. pev ndA Y P [ v II LS n dA

sy, (M<Qrb> + N 4 “<o>) +(39)

in which the heat flux vector @ is taken to be = xVT, x being the fluid con-
ductivity. denotes the rate of heat liberation fron the dispersed solids
per unit volu&e of the fluid. Thus

Iy dev A Q. ndA . (36)
£ sf

ce3.2 Energy Equation in Terms of Enthalpy

The differential equation for the transport of
static enthalpy h [ = e + g) is

2%%31 +97 . (pnv) = %% ~V.q+Q+0 . (an

and the volume averaged enthalpy equation is
1

3 M 1 - = 313,3) ¢
Y, 5 <ph>+VfAephv.ndA <d +VfAexn.VTdA

iy, (“<th> + e+ 31<0>) . (38)

Since,

SE -32 - d .
dt at'.'v.(p:) PV-V

3
3‘6’{!) e LA I

Again, the surface permeability appears in the
second term of RHS and the second term of LHS of Eq. (38).

3. Initial and Boundary Conditions

Initial conditions are obtained either by specifying the fluid velo~
city, temperature and pressure distribution throughout the interior points of
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the space under consideration, or by continuing a previous computer run via a
restart capability. Once the fluid temperature and pressure are specified, as
in the former case, the corresponding density and enthalpy are calculated from
equations of state. Boundary conditions are specified with appropriate tem-
perature, velocity, and heat flux distributions at all external boundaries.

4. Numerical Technique

The quasi-continuum governing equations, Eqs. (28), (31), and (38)
are finite differenced in a staggered mesh system[12]. The pressure (P),
temperature (T), enthalpy (h), density (p), and volume porosity (yy) are
defined at cell centers. The velocity V and surface permeability (v, v,, and
Y, in x, ¥y, and z directions, respectively) are defined at the center o¥ each
cell surface. The finite difference equations are solved by using ICE
(Implicit Continuous-fluid Eulerian) procedure with rebalance. The rebalance
techaique has been developed by us and is an integral mass balance of a local
region related to the local pressurc corrections A simplified computational
logic diagram of COMMIX~-1 1s shown in Fig. 4. Some pertinent numerical
results obtained from the COMMIX~1 code are presented in the paper by Domanus,
Shah, and Sha in a special issue on Liquid Metal Fast Breeder Reactor (LMFBR)
Single-Phase Rod-Bundle Thermal-Hydraulics of Nuclear Engineering and Design
[15], which will be published soon.

5 Unique Features

The COMMIX-1 computer program has three unique features: one {s
that the model is capable of treating both continuum (e.g., reactor plenum,
piping mixing) and quasi-continuum (e.g., rod bundle or fuel assembly) systems
by introducing porous medium foraulation with volume porosity and surface per-
meability, as well as distributed resistance and heat source. This capability
represents the most cost-effective way of handling two classes of problems by
a single computer program. Second 1s the concept of surface permeability
which 1is new 1in porous medium formulation, and it greatly facilitates
accounting for the anisotropic effects in a medium. Third, it can properly
model the diffusion term in momentum equations which is lacking in the present
subchannel analysis. The other is the inclusion of the local mass residue
effect [5] in the energy and momentum equations and the development of
rebalance technique in the solution procedure. As a result of this inclusion,
both the convergence rate and accuracy are greatly improved.

C. Benchmark Rod-Bundle Thermal-Hydraulic Analysis

The fine structure of both velocity and temperature within a subchannel
or a computational cell is ignored in the subchannel analysis and the porous
medium approach. However, this fine structure can be accounted for through
the specification of rods as internal boundary conditions. Recently,
BODYFIT-1, a three-dimensional, transient, single-phase component computer
program[16,17,18], has been developed. It utilizes boundary-fitted coor-
dinates to transform a complicated rod-bundle geometry into a rectangular
coordinate mesh system as shown in Fig. 5. Note that all the governing equa-
tions are transformed accordingly into new variables (transformed space)
before being approximated by finite difference equations which are solved in
the usual manner [7].
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Accurate representation of boundary conditions is best accomplished when
the boundary is coincident with a coordinate line, so that the boundary can be
made to pass through the points of a finite difference grid constructed on the
coordinate lines, Finite difference expressions at or adjacent to the boun=
dary may then be applied, using ovnly grid points on the intersecticns of
coordinate lines. Interpolation between grid points is not required, and this
is particularly important for boundaries with strong curvature, such as fuel
rods.

In the Navier-Stokes equations, the boundary conditions are the dominant
{nfluence on the character of the solution; therefore, the use of grid points
that are not coincident with the boundaries places the most inaccurate differ-
ence representation in precisely the reglon of greatest sensitivity. The
generation of a curvilinear coordinate system with coordinate lines coincident
with all boundaries is thus an important aspect of a general numerical solu-
tion of the Navier-Stokes equations.

As mentioned before, applications .» the rod bundle or reactor fuel
assembly, as shown in Fig. 6, is the primary interest of coordinate transior-
mation. Thus, the transformatioa is basically two-dimensional. However, the
transformation outlined below is vary general; it car apply to any boundary
gshape and can be readily extended to three dimensions (a general treatment of
the time-dependent movable boundary problem and the control of coordinate
gystem is discussed in Ref. 19).

1 Mathematical Preliminaries

Two-dimensional elliptic boundary value problems are considered.
The general transformation from the physical plane (x, y) to the transformed
plane (£, n) is

£ =E(x, ¥v) ,
and

n=nlx, yJ ; (39)
and the inverse transformation is

x = x(£, n) ,
and

y = y(€, n) . (40)
The Jacoblan of the transformation is

J =] (H)- S 0 (41)

where

€ = ¥/ ty - - 'n/J’ e y‘/J. n, === 3, (42)



. 3
i)
yefn,/J .
S = (43)
- 2 - 2 2 2 - 2
fex = Unfeg = De¥nfen * Yetan) /3" + [y = Dgypygn *+ Ynn)

(x £, - x.f ) + (y§x€€ - ZyEyann - yéxnn)(ygfn - ynfc)]/J3 s

né& En
and
. (w2 - 2 2 2
£y = (R3fgg = 2xgx £+ xg6 0732 + [(xdy,r - 2xexye, + xfy,)
- 2 s 2 - 3
(xnfa ngn) + (xﬂxEE 2xe X, Xe - xgxnn](ycfn ynfE)]/J "

(44)
Higher derivatives can be obtained by repeating the above operations.

Two tasks are involved in the transformation: one is to find the
interior physical points afier specifying the physical boundary at a number of
discrete points. The other is to transform the partial differential equations
of interest into the new varifables before being approximated by the finite-
difference equations.

2. Mapping of Physical Domain [19]

The choice of this mapping is largely dependent on its simplicity
and effort required for a desired accuracy. Without loss of generality, a
simply connected region will be considered first, and a doubly connected
region will be discussed in subsequent sections.

a. Simply Connected Region

The boundary of the physical domain (x ,y) is specified at dis-
crete points corresponding to boundary points in the transformed plane (£, n).
It is desirable to have a prescribed, convenient mesh in the (£, n) plane;
therefore, (£, n) must be used as independent variables. Their values are
governed by any suitable elliptic partial differential equations as a boundary
value problem. The simplest choice appears to be that £, n must satisfy the
Laplace equation in the physical plane:

V2 = 0 (45)

92 = 0 (46)
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where
2 2
2 3 3
v =2 + 3;7 .

The dependent and independent variables can be interchanged by
applying Egqs. (42) - (44). The transformed equations are:

axp, - 28x£n 4 > o= IR (47)
and

eg ~ 2By£n * Yon © ¢ ' (A%
where

a= xg - yé , B = XX + Ye¥p » Y xi + yi . (49)

Equations (47) and (48) are clearly coupled quasi-linear ellip-
tic equations, and only 1in special cases (XC = ¥n and x, = yg) can they be
reduced to Laplace equations for which mapping is conformal.

Equations (47) and (48) can be conveniently solved by the
finite-difference method, using second-order central differences with suc-
cessive over-relaxation (SOR) of the dependent variables. Discrete values of
(x, y) at the corresponding point (£, n) are thus determined.

In general, the numerically calculated boundary may not coin~
cide completely with the given boundary at intermediate points. This is not
an essential limitation since only discrete points are needed in the basic

principle of the finite difference method. The finer the mesh, the smallier
the numerical error.

be. Doubly Connected Region

Consider the transformation of a two-dimensional, doubly
connected region D bgunded by two simple, closed, arbitrary contours onto a
rectangular region D as shown in Fig. 6. The basic transformation is dis-
cussed here, assuming that the body contour and outer boundary are trans-
formed, respectively, to the constant n-lines forming the bottom and top sides
of the transformed region. The more gencral case of segmentc ' body contours
transforming 4o any side of the transformgd region followg analogously. Let
map onto I'y, ', map onto I3, I', onto I'3, and T, onto I'y. For ideptifica-
tion purposes, region D will be referred to as the physical plane, D as the
transformed plane, a‘pd ud l‘ as the body contours. Note that the trans-
formed boundaries (T, and rs) ate made constant coordinate lines (n-lines) in
the transformed plane. The contours ', and T 4» Which connect the contours P

and rz. are coincident in the physicai plane and thus constitute re—entrant
boundaries in the transformed plane.
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Let £(x, y) and n(x, y) be continuous function in D, then

V2n=0 |, (51)

with the Dirichlet boundary conditions

€] £ (x, ¥))

. » [x, y] e T} (52)
"] e
e [£2(x, )]

. y» Iz, ylel (53)
"] 2

where n, and n, are different constants (n, > n;), and £ (x, y) and &,(x, ¥)
are specified monotonic functions on Pl and 20 respectiveﬁy, varying over the
same range. The arbitrary curve joining rl and I, in the physical plane,
which transforms to the right and left sides of the iransformed plane, speci-
fies a branch cut for the multiple-valued function &(x, y). Thus, the values
of the physical coordinate functions x(£, n) and y(£, n) are the same on I, as
on P“, and these functions and their derivatives are continuous from I', to F“.
Therefore, boundary conditions are neither required nor allowed on ra and Ph.

Since it 1is desired to perform all numerical computations in
the uniform rectangular transformed plane, the dependent and independent

variables must be interchanged in Eqs. (50) and (51), similar to Eqs. (47) and
(48):

ax,, - 28x ¥ Wy ® 0 (54)

EE £ nn '

and

g = WYy t Wpp =0 s

where a, B, and y are defined as before, w.ith the transformed boundary
conditions
x £1(&, ny)
*
i » [E. nl] € rl (56)

y £2(8, n1)
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X gl(g. nz)

- , (&, np]l e 13 (57)
v gz(gv nz)

The functions f£,(&, ny), £2(€, ny), & (&, nz), and g (&, ny) are specified by
the known shape of the contours ', anH Fz and the sﬂ%ctfied distribution of £
thereon. As noted, boundarx condi;ions are neither required nor allowed along
the re-entrant boundaries I'; and Iy.

The system given by Eqs. (54) and (55) is a quasi-linear ellip-
tic system for the physical coordinate functions x(£, n) and y(£, n) in the
transformed plane. As pointed out before, although this system is consider-
ably more complex than rhat given by Eqs. (50) and (51), the boundary condi-
tions, Eqs. (56) and (57), are specified on straight boundaries, and the
coordinate spacing in the transformed plane is uniform. The boundary fitted
coordinate system generated by the solution of Eqs. (54) - (57) has a constant
n-line coincident with each boundary in the physical plane. The f£-constant
lines may be spaced as desired around the boundaries since the assignment of
the E-values to the [x, y] boundary points via the functions £ fou Bp» and
g, in Eqs. (56) and (57) is arbitrary. MNumerically, the discrete boundary
values [x, y] are transformed to equally spaced discrete £,-points on both
boundaries. As {illustrated in Fig. 6, the left and right boundaries of the
transformed plane are re-entrant boundaries, which imply that both solutions,
x(E, n) and y(£, n), are required to be periocdic in the region
{[¢, n]l ~=<E <=, n <n <yl

The analogous cylindrical coordinates used in the work [16]
fall into the category of this section. In this case, the fuel assembly
center line plays the role of the curve ' in Fig. 6. This curve is thus
collapsed to a point. Extension to a multiply connected region 1is
straigh:forward.

3. Preservation of Equation Type

When coordinate transformations are utilized as an aid in solving a
given partial differential equation, it is imperative that the equation not
change type under the transformation. Such an invariance will now be demon-
strated for the transformation of the system equations of interest. Consider
the general, second order quasi-linear partial differential equation

A(x, y, f)f +‘h.mfkv+C(MY.ﬂgy+ﬂmy.ﬂ§

XX

+ F(x, vy, f)fy +6(x, y, f)=0 , (58)
where F = f(x, y) 1s a twice continuouslv differentiable scalar function, and
A, B, C, B, F, and G are continuous functions. Recall that the equation type
i{s determined by the coefticlent functions A, B, and C as follows:

Elliptic if BZ - 4AC < O,
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Parabolic if B? -4AC = O,
and
Hyperbolic 1f BZ - 4AC > O.

It can readily be shown that Eq. (58) transforms to

. * * - * *
+ + +F - +G =0 59
A fEE ) fcn C fnn E fE F fn . (59)
where
*
= ap2 2
A -Aﬁx*ﬁﬁxﬁy*’cﬁy ’
B = 24 n_ + B(E.n +E.n )+ 2E
< &xnx Exﬂy €ynx yny N
¢z An2 + B + Cn?
= Ang n Ny
E* z 2 + + + FE +
= Aﬁxx Bﬁxy ceyy £x Fty ’
F* £ + +Cn + En + Pn
= Anxx any vy Ny y ¥
and
e .

Now, consider (B")2 - 4a*c*:

(n')2 - a'c" - [2Asxnx . s(cxny . "x‘y) . 2ccyny]2
- 4(ag2 + BEE + C£§)(Ani +Bnn 4 Cng)
= (B2 + bAC)(Exny - Eynx)2
= (B2 - 4AC)/32 .
Since J2 > 0, B2 - 4AC and (B*)2 -4a"c* are either both positive, both nega-

tive, or both zero. This implies that Eqs. (58) and (59) are of the same
type.
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4, Governing Equations in Non-Dimensional Form

ale
3, 200, (60)
t axj
3(pu,) 3pu,u,) Bt
i il A 0O
3t T ax ax pgj . (61)
b J
and
3(u ,E) Mu,t,.) 3q .
9E j =5 G i
3t T axj axj axj =, B (62)

The variables in the conservation equations are non-dimensionalized

with respect to the reference velocity (Vo), length (L ), density (po).
enthalpy (ho), gravitational constant (go), viscosity (uof. thermal conduc-

tivity (xo), and specific heat (c , as follows:

po

- u

ﬁ
e
[
St
W
<|’_
-

—~
lad
N
=
L=
"
r—
]
-
(=]
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LY
13 ND poho :
q
i
(q,) =
i ND I hOV0 ’
and
(A = p V /L ’
ooo o

where subscript ND denotes non-dimensional and is deleted in Eqs. (60) - (62)
for simplicity, and

2 2
u u
eeolerng)-o(nen)-p .

du du
. welaiak (__1.+_1) ,
. |

1] p PP TR %, " 3
and
9y RP * ax ’

with the non-dimensional numbers

vOLOpO
R = ————— = Reynolds number 5
o
uoc 0
P = ——;2— = Prandtl number s
o

and
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Se Transformed Governing Equations

The boundary fitted curvilinear coordinates are taken such that £
and n lie in the plane normal to the fuel assembly axis, with { parallel to
this axis.

The planes are assumed equally spaced along the axis so that, with
Z along the axis,
. dZ

ZC X Constant (63)

The Cartesian coordinates x and y lie in the plane normal to the fuel assembly
axis.

After transformation to the £, n, { system, the governing equations
in non-dimensional form become:

1 o1 3ev) |, de 3w _ o
t  J 3 J o dz 3t ’

(64)

3(pu) . 1 a(pu;) 1 3(pu;) dg 3(puw)
® T1I R 3 *

an az ez
3(tq,)
£ 3 12 . ag Ty
35 9aTin = %) * 7 3w (g = veryy)

+ o5 (65)

alpv) » i 3(pv;lr+ 1 3(pv;J

+ d¢ 3(pvw)
at J 3 J " an dz oz
r,,)
.13 o 13 Sl,_c_ 12-.
J 3 (ynTIZ xntZZ) *Ioam (xgtzz ygtlz) Ll B (65a)

alpw) , 1 3pwu]) . 1 3(pwv) . dg 3(pww
Al J dz

3(1,.)
12 - 13 o dag 337 _
J % (’n‘na ‘n'zs) *Im (‘5'23 ’;‘13) Yaz Tag T PR

(65b)
and



3E , 1 a!nﬁl ok a(s;] 4+ ¢ 3(Ew)
at  J 3t J an dz =~ 3z
.- 13(pu) _123(pv) , dc 3(pw)
J 3k 3 an dz 3
+23—[ (t,u+t . v+1,.w) -x(1,u+1,,v+1,.w]
J 3 e\t 12 13 n'T21 22 23
+-D§—[x'r ut v+ raw) -y (t,utr v+ v
J an Xl 22 23 YelThy 12 13
dc 3
* D 57 g7 (T30 * TV + T4q9)
1 2 B
+m§—£(ynKTx‘anTy)+-ﬁ—§ﬁ(X€KTy'y€KTx)

?_ .

1 _d¢
& ¥ % (x'l'z) +Q - (66)

The stress terms in the momentum equations are

—ed g . - 2. & )
xr\TZl b CBP + R (C9u£ Cnun vaE + Cmvn 3 C8 i 'C 5
; A | u L 2. % )
YeT1 p S * R (E13“g S T e Y s TS B %)
. Y
T3 TR [dz u, +2 ¢ (Cou °7'nj] ’

nt22 p S * R (Cle“a C1% " “t TS Y EBEY)

- e | L - - -
Wit asrty (Cna“; b T iy T e & b P o ¥ % L
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and

1

. w4 dg
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g
- (201)(Ca“g -G

u + C.v
n

The stress terms in the energy equation are:

-l o = = dc
R [(cla" Cyqulug + (Cpqu = Cgv)u, = Cu 7 v

i 7 R T

¥R ® Tagw ) = yE(tllu -t ¥ tle)

) - x (1,8 = 1v + 1

n

-G

- g
+ (Cl7v C”u)un * ng az °

dg

23"]

9

n ¥ az ¢

5n

- C6vE

)] -
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4 4 dc
- 4w 2
+3CCewe 35 YV 12
-~ - 4 d(
+ 2Cluw€ + 2Clvwn + j w a—i WC

The conduction terms are:

(ynrx - any) = ‘(CzTg - c3rn) ]

(ngy - yETx) = x(C,T, - CBTE) :

.
xTz K a7 TC »

The coefficients in these relations are defined

1 g 2
23 7 Cio * 33 (3a + xn) ’
a e
3 ¢ 3z Br+vg)
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. Initial and Boundary Conditions and Numerical Technique

The initial and boundary conditions and numericsl technique employed
in the benchmark rod-bundle thermal-hydraulic analysis are similar to those
used in the porous medium formulation with volume porosity, surface perme-
ability, distributed resistance, and distri“:ited heat source outlined in the
previous section, except that the modified staggered mesh system is used in
which pressure, density, temperature or enthalpy are specified at cell center,
and all velocities are specified at the intersections of grid lines. Some
recent numerical results obtained from BODYFIT-1 are presented in the paper by
Chen, Vanka, and Sha [18].

I1I. CONCLUSION

Three pertinent methods used in rod-bundle thermal-hydraulic analysis are
presented. These methods are (1) subchannel analysis, (2) porous medium for-
mulation, and (3) benchmark rod-bundle thermal-hydraulic analysis using a
boundary fitted coordinate system. Basic limitations of methods (1) and (2)
are clearly delineated. In subchannel analysis, the transverse momentum
equation cannot be treated with the same rigor as the axial momentum equa-
tions, due to subchannel arrangement. The usual justification of neglecting
the diffusion term in momentum equations is that drag due to the presence of
rods is much larger than viscous diffusion. This assumption is no longer
valid when recirculatory flow is encountered, such as in the analysis of flow
blockage. Furthermore, approximations must be employed for simplification of
geometrical configuration of the control volume for the transverse momentum
equation and interfacing information between two different control volumes,
e.g., one for the transverse momentum equation, and another for the axial
momentum equation. These basic limitations are inherent; therefore, validity
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of subchannel analysis to situations with large flow disturbance poses serious
concern. The porous medium formulation with volume porosity, surface perme-
ability, distributed resistance and distributed heat source is used in the
COMMIX code, and it eliminates some of the limitations employed in subchannel
analysis. The concept of surface permeability is new in porous medium formu=-
lation, and it greatly facilitates characterization of an anisotropic medium.
In general, it improves accuracy of results since surface permeability is well
defined and distributed resistance is not precisely known in most engineering
applications. Furthermore, the porous medium formulation provides a greater
range of applicability. As an example, the COMMIX code is capable of treating
both continuum (reactor plenum mixing, piping analysis, etc.) and quasi-
continuum (fuel assembly, heat exchangers, etc.) problems. This capability
represents a very cost-effective way of developing a computer code.

However, accurate determination of distributed resistance in a complex
rod-bundle geometry requires fine structure of both temperature and velocity.
The most rigorous rod-bundle thermal-hvdraulic analysis uses a boundary fitted
coordinate transformation. Each rod is explicitly represented as an internal
boundary; thus, appropriate boundary conditions can be specified. After the
coordinate transformation, the complex rod-bundle geometry reduces to a
multiply connected continuum in a rectangular region with all boundaries
coincident with the grid lines. However, the system of equations to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>