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'

ABSTRACT
s .

Three methods used in rod-bundle thermal-hydraulic analy-
sis are summarized. Thes e methods are: (1) subchannel
analysis, and its inherent assumptions are clearly
stated; (2) porous medium formulation with volume
porosity, surface termeability, distributed resistance
and dis tribu ted heat source (sink) - the concept of
surface permeability is new in porous medium formulation,

,

and greatly facilitates modeling anisotropic effects;
and, (3) benchmark rod-bundle thermal-hydraulic anal aisf
using a boundary-fitted coordinate system, and it repre-
sents the most rigorous method to date. For laminar

,

flow, this method gives soluticas without any assumptions
and it requires information on rod bundle geomet ry and
thermal physical properites of the fluid. Basic limita-
tions and merits of each method are discussed in detail.
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) EXECUTIVE SUMMARY

.

Three pertinent methods used in rod-bundle thermal-hydraulic analysis are
presented. These methods are (1) subchannel analysis, (2) porous medium for-
mulation, and, (3) benchmark rod-bundle thermal-hydraulic analysis using a*

! boundary fitted coordinate system. Basic limitations and merits of each
method are delineated.

|
The subchannel method is the most widely used in rod-bundle thermal-

hydraulic analysis to date. Historically, and as originally intended,
subchannel analysis has been used primarily for design calculations. It

explicitly assumes that one of the velocity components (axial velocity) is
i

dominant, compared to components in the other directions (crossflow veloci-
1 ties). Until recently, the subchannel method has been extended to reactor
j safety analysis, such as the resolution of flow blockage in a fuel assembly.

In this case, the usus 1 assumptions for small crossflows in transverse
directions are no longer valid. It is important to recognize that the basic
limitations of a method and a computer code can only ne as good as its formu-

lation. The basic limitations of subchannel analysis are:

'
(1) The fine structure of both velocity and temperature within a

subchannel is ignored (lumped parameter approach).
.

(2) The transverse momentum equations cannot be treated with the same
1 rigor as the axial momentum equation because of nonvorthogonal

e characteristics of subchannel arrangment. Specifically, the finitej
difference representation of the second derivatives cannot be
rigorously evaluated.

(3) To facilitate calculations, approximations are necessary for simpli-
,

fying the geometric configuration of the control volumes used in the
transverse momentum equations and interfacing the required informa-
tion at the various locations between control volumes for the axial
and transverse momentum equations.

The above limitations are inherent; therefore, the validity of subchannel

analysis to situations with large flow disturbance, such as blockage, poses
concern.

1

The porous medium fornulation with volume porosity, surface permeability,
distributed resistance and distributed heat source was first proposed for rod-
bundle thermal hydraulic analysis, and it eliminates some of the limitations
employed in subchannel analysis. The detailed derivation via local volume
averaging is presented. The concept of surface permeability is new in porous
medium formulation, and it greatly facilitates characterization of an aniso-

* tropic medium. Also, it generally improves the accuracy of results since
surface permeability is well defined and distributed resistance is not
precisely known in most engineering applications. Furthermore, ' the porous
medium formulation provides a greater range of applicability; it is capable of.

treating both continuum (reactor plenum mixing, piping analysis, etc.), and
quasi-continuum (fuel assembly, heat exchanger, etc.) problems. This capa-,

bility represents a very cost effective way of developing a computer code. It

; should be noted that since. local volume averaging is used in the porous medium
! 1

1
.. - - --

1

'~ O
, , , , _ _ . _ , , _ . _ _ _ , . , _ ,
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formulation, high resolution of the local velocity and temperature is somewhat
lost. Furthermore, ju s t as the friction f actor cust be calibrated in sub- .

channel analysis, so must the distributed resistance be calibrated with expe-
rimental data in the porous medium f ornulation.

.

The most rigorous rod-bundle thermal-hydraulic analysis is to use bound-
a ry fitted coordinate transformation. Each rod is explicitly represented as
an internal boundary; thus, appropriate boundary conditions can be specified.
After the coordinate transformation, the complex rod-bundle geometry reduces
to a multiply connected continuum in a rectangular region with all boundaries
coincident with the grid lines. However, the system of equations to be solved
in the transformed plane is more complicated than the original one. Most
important of all, the empirical mixing coef ficients and cross flow resistances
normally associated with a rod-bundle the rmal-hyd raulic analysis a re climi-
nated, thereby enhancing computational stability and accuracy. As a matter of
fact, for laminar flow, this method gives solutions without any assumptions,
and it requires information only on rod bundle geometry and thermal physical
properties of the fluid; for turbulent flow, empiricism is needed due to the
enclosure problem encountered in turbulence modeling. One drawback of bench-
mark rod-bandle thermal-hydraulic analysis using a boundary fitted coordinate
system is that it requires large computer storage and long running time, and
thus,is limited to relatively small rod-bundle sizes or a local region of
interest in a large rod bundle. -

I INTRODUCTION ,

fio s t heat exchangers and reactor fuel assemblies employed in the power
industry are in the form of rod-bundle geometry. Fluid flow and heat transfer
in a rod bundle are complex phenomena, and the basic understanding of these
phenomena is essential to achieving optimum design performance during normal
ope ra t ing conditions and maintaining structural integrity during off-normal
operations.

|
|

The traditional way of obtaining detailed performance information is to i
build a scaled model of the heat exchanger or the reactor fuel assembly under ;

consideration. Both heat giving and heat-receiving fluids are then circulated i

through the shell and tube sides (or tube and shell sides), respectively, of i

the heat exchanger, or heat-receiving fluid is force-convected through the I

reactor fuel assembly so that both velocity and temperature measurements can
be made over the expected range of operating conditions. Based on these
measu rement s , correlations of heat transfer coef ficients and pressure drops as
functions of Reynolds number, geometry, etc., are developed, and subsequently,
these correlations are used for designing the apparatus. This approach,
however, suffers f rom several drawbacks: for each new geometry considered, a
new test model must be constructed; scaling from the test model to design size .,,

often poses some concern. Fu r the rmore, considerations of expenses,
instrumentation and measuring technique usually limit data to global heat
transfer and flow rates, while detailed temperature and velocity distributions ,I
a re needed for an optimum design. Finally, correlations developed based on j
these measurements are valid only in the range of parameters tested; '

additional experimental measurements are often required when the operating |

conditions fall outside the range of these correlations. !

|
|
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An alternative approach is to develop direct numerical solutions of the
~

conservation equations of mass, mome ntin , and energy, using appropriate
initial and boundary conditions of the physical system under consideration.
However, a major obstacle to the use of numerical methods in rod-bundle
thermal-hydraulic analysis has been the complex geometry. Recently, this'

obstacle has been overcome by using the boundary fitted coordinate t ra n s-
formation. Moreover, with the anticipated improved performance of the next
generation of computers and further advances in numerical solution technique,
the detailed numerical sinulation of rod-bundle the rmal-hyd raulic behavior
appears practical and attractive. Accordingly, the objectives of the paper
are: (1) to summarize pertinent methods employed in rod-bundle thermal-
hydraulic analysis; and, (2) to delineate basic limitations and merits of each
method.

II. METil0DS USED IN ROD-BUNDLE THERMAL-ilYDRAULIC ANALYSIS

Re rod-bundle thermal-hydraulic analysis discussed in this report is
limited to solution methods for conservation of mass, momentun, and energy
equations considered as an initial-value problem in time, and a boundary-value
problem in space; and also is limited to descriptions and performance 4
pertinent computer codes available in the open literature. In general, these
methods can be classified into three broad categories: (1) subchannel

*
analysis; (2) porous medium fornulation; and, (3) benchma rk rod-bundle
thermal-hyd raulic analysis.

' A. Subchannel Analysis

The subchannel method is the most widely naed in rod-bundle the rma l-
hydraulic analysis to date. llisto rically, and as originally intended, sub-
channel analysis has been used primarily for design calculations; it expli-
citly assumes that one of the velocity components (axial velocity in z-direc-
tion) is dominant, compared to components in the other directions (crossflows
in x and y directions). Ru s , it is advantageous from both physical and
computational points of view to treat axial and transverse momentun equations
separately so that some simplifications can be applied to the transverse
momentum equations.

Until recently, the subchannel method also has been employed in reactor
safety analysis; e.g., to resolve flow-blockage problems in a fuel assembly.
In this case, the usual assumptions for small cross-flows in transverse
directions a re no longer valid, and numerical solution techniques for the
initial value problem cannot be applied. A typical subchannel arrangement of
a 19 pin rod bundle, control volume for axial momentum equation and control
volumes for axial and transverse momentum equations are shown in Figs. 1(a),
1(b), and 1(c) respectively. The transverse momentum equations used in the
TilI3D [1], COBRA-IIIC [2], SABRE-1 [3] codes are listed in Table I.*

1. Basic Limitations
a

(1) he fine structure of both velocity and temperature within a
subchannel is ignored (lumped parameter approach).

(2) he transverse momentin equations cannot be treated with the
same rigor as the axial momentum equation because of the nonorthogonal char-
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a, Typical Subshannel Arrangement
.

.
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b. Control Voltune for Axial \\ ( { ,,

Homentuci Equation MS%v
c. Cont rol Volumes for Antal

anal Transverse !!oment um f.quations *

Fig. 1. Subchannel Arrangement and Control Volumes
for Axial and Transverse 11omentum Equations

|



_

-5-

TABLE I. COMPARISON OF TRANSVERSE MOMENTUM EQUATIONS USED IN
VARIOUS COMPUTER PROGRAMS*

THI3D
z,w= ,

Bw mg + au mq~ gp a

+"~
3z 3x 3x ij

i i

C 0 BRA-I IIC* * x2,u2
*

at
~ " "i j + T ~ j 1j xg,ui

ij " S -F
Bz i

SABRE-l***

22 3u3pu w apu
0=- -A - gp +p +Rgg gg gx f

i i az

* COMMIX-1

3pu 3Y pu w 3Y pu u au Bu
g g+Rfj-Y gp +3 g + 3x Y u

V at az 3x y gx az- Y, p 33Y* "~
j gx 1

j i j j

@ @ @ @ @ @ @

Computer Program 1 2 3 4 5 6 7

COMMIX-1 yes yer yes fes yes yes yes

THI3D-1 no yes yes Jes no no yes

COBRA-IIIC yes yes no yes no no yes

SABRE-1 no yes yes yes yes no yes

Note:

Ffj = force per unit area
A = geometrical factor to account for the difference between the exact

control volume and the approximated control volume for the*

transverse momentum equation [see Fig. 1(c)).

.

** COBRA-IV neglects the cross product of transverse velocity components and
fluid to fluid shear forces.

***
The latest version of the SABRE code has transient capability.
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acteristics of subchannel arrangement. Specifically, the finite-difference
,

representation of the second derivatives cannot be rigorously evailuated.

(3) To facilitate -alculations, approximations are necessary for
*

simplifying the geometric confip ration of the control volume used in the
transverse momentum equation an/ interfacing the required information at
va riou s locations between control volumes for the axial and transverse
momentum equations.

2. Mathematical Model

The following governing equations, boundary conditions, and solution
technique a re reproduced from Ref. 1; e:itension to transient f o rmulations is
s t ra ight f o rwa rd.

a. Conservation of Mass

3m N

('
3 "ij'

~~

g

where
,

m = owA = axial flow rate,z 7

*
p = coolant density,

w - axial velocity,

A = axial flow area,g

diversion crossflow rate per unit height= putj t q/AzA =mij between subchannels i and j (wire wrap sweeping crossflow
can be included),

utj = transverse velocity in xj direction,

A j = crossflow area between subchannel i and j,i

Az = axial incremer.;,

and

N = number of neighboring subchannels.

*b. Conservation of Momentum

i As mentioned before, the momentum equation is subdivided into
the axial momentum equation and the transverse momentum equations so that the -

latter can be treated with simplified assumptions:

|
t

!
,
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b.1 Axial Momentum
*

.

3P A N (m 32g

[m)w -w)))- pg+1[ + (m ) + m )hw
' =

33 g g g g y (Az,i/j=1.

A ,1 3 1 1 3,g {BAI f k z (2), 2p az ,7 az z,1 1 *2Dp az p
g pyg

z,1 i z,1 /,

where

g = gravitational constant,

f = friction factor,

k = form loss coefficient, '

D = equivalent hydraulic diameter,

P = pressure,
.

m = turbulent crossflows between subchannels i and j per unit
height, including natural turbulence and turbulence
promoted by the presence of wire wrap,.

As

I=[ A (z)dz/Aa ,g
O

"i + "j*
w = '

2

and the asterisk denotes the quantity associated with the donor subchannel.

b.2 Transverse Momentum

If the interactions between the transverse momentum in
the direction under consideration and the other transverse direction (or
directions) are neglected,* the transverse momentum equation may be written as

[ gpamg g + am xw u
f + 3""

az 3x - 3x V ' ' **** ' ~

j'
j k j /

where.

e

* An attempt to include both the transverse momentum flux gradients and
their interactions in principal directions has.been formulated and pre-

sented in THI3D-1[1] .
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I
_g_

x3 = transverse direction along the centroids of subchannels i ,

and j,

V = elementary volume,
. .

and

Sj = crossflow width between subchannels i and J.

The general surface force term F may be approximated by
x3

!"ijf"ij
VF =-

,*j 2p r,2 gx
g j j

i
where'

1

!| =

k = crossflow resistance,'

and

Axj = centroid distance between subchannels i and j in the xj
direction.,

,

c. Conservation of Energy

! ah' N 'S
~

''

, g, =, [ x(T - Tj) + 6(m ) + t{ - c{))(h -h))3 g g
z,1 j=1 . j4

!

6 q',i) Az,1( 1d+j q_ 4).i

(i d,i / " *'iA

|
i where

h = coolant enthalpy,

T = coolant temperature,

c = thermal conductivity of coolant,

c') = turbulent-exchange coefficient per unit height,g

I

j q'" = heat generation per unit volume per unit time. ~

.

qj= heat loss per unit height per. unit time through the duct
.,

j wall,

!-

| Ad = heat-transfer arcs through the duct wall,
I

| 6 = 0 for crossflows leaving channel i to j,

l.
,

1
'

1

1

- - , - --, - w .
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= 1 for crossflows entering channel i from j,
.

and

61 = 0 for channels located away from the duct wall,-

i

= 1 for channels located next to the duct wall.

Both m[j and c[j can , be co,mbined into a single turbulent ex-'

(i.e. , amij =hed througmtj - ci , where
a is a constant) , sincechange coefficient

cannot be disting s experimental measurements.m and c

d. Boundary Conditions

ne pressure drop boundary condition is used. Inlet pressure,
! coolant densities, and temperatures (or enthalpies) of all subchannels are

assumed to be known. Inlet pressures can be specified as either uniform or
nonuniform for all subchannels, but outlet pressures must be uniform. To
satisfy the uniform outlet pressures, inlet velocities of all subchannels must
be adjusted, using the following iterative solution technique.

3. Solution Technique
.

Coolant parameters are calculated simultaneously for all sub-
channels, by starting at the bottom of the core and moving upward, step-
wise. Coolant enthalpies (temperatures) , pressures, densities at the inlet,-*

and heat-flux distributions in all subchannels are known. : -Inlet velocities
are first assumed to be known, and then solved iteratively. Crossflows~are-
computti based on coolant properties at the bottom. of the , step length.'

Knowi:.g the crossflows within the step and tne heat addi*. ion into the step,
the change in coolant enthalpy (temperatures),' pressure, density, and velocity
can be determined successively for each step length.. . To > account for: the
effect of local pressure drop on coolant properties, an iteration _within each
step length _ nust be performed. Ru s , a consistent set of local thermodynamic

,

properties'of the coolant can be maintainM.
e

ne resulting enthalpy, pressure, density, and velocity'at the top
,

of the step length are used as input to the next- step length. %is procedure
is continued until the top of the core is reached. 'Accordingly, the pressure
at the top of the core may be expressed-as a' function of inlet pressures, den-
sities, and velocities of all subchannels:

o o i i i i i i i i i
I # , P , ..., PP =P I#'#2' **** PM 1 2w , v ' ***' "M 1g 2

.

j = 1, 2, ...,'M', (5)-,

, -where superscripts i and o correspond to -inlet and outlet values; P, .w, and p
~

are pressure, axial coolant velocity, and. density,-.respectively; and-M is the;

: number of ~subchannels under consideration.

;. The total derivative of-Eq. .(5) can-be written

.

-- r s , , ,
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I

1

l

dpf+DP dPf).

~

M [3P BP
3[ .

3# OP{

(6)dw +-dP =

k=1(3wk k ,

Fot- practical purposes in reactor design, both the inlet pressure
and the coolant-density distribution are assumed to be known. A set of inlet
velocities must be determined to satisfy the uniform pressure at the exit of
all subchannels. Basic equations for conservation of mass, energy, and
momentum are used to compute the outlet pressure distribution for a given set
of inlet coolant velocity conditions. Interaction between subchannels is
taken into account by allowing for crossflow through adjacent subchannels.
The amouet of crossflow is expressed as a function of pressure, and tempera-
ture or enthalpy gradient of the adjacent subchannels at the same elevation.
Equation (6) can now be expressed in the matrix form

i(dP)=(B)(dw), (7)

where

(dP ) = column matrix with elements dP ,O
,

(B}=MxMJacobiasmatrixwithelementsOP/3wf,
*

and

i(dw ) = column matrix with elements dw .

If(B)isanonsingularmatrix,Eq. (7) can be written
i O(Aw)=(B}-I(AP).

Equation (7) couples with the following boundary conditions:

At the top of the core:

P = constant, j = 1, 2, ..., M.

At the bottom of the core:

| (1) P = constant, or a known distribution, j = 1, 2, ..., M.

T) = inlet tempeature or h)I (inlet enthalpy) are known at
I(2)

j = 1, 2, ..., M,
.

and

i i(3) -p)A, w) = constant,-

where A ,j is the axial coolant flow area of subchannel j.z

- - , -



__ _ ~ . _- _. -- _ _ _ - - - ___

- 11 - -

Boundary cotidition (3) can be considered a constraint of Eq. (8),
*

which can 5e written:

i[Aw ) = [B)-l[AP ) + A [B]-I[I), (9)
.

where [I) is a unit column matrix, and A is a scalar er ':graagion multiplier_

to be determined.

Multiplying Eq. (9) by [ A] and [p] gives
4

x , _ [ Al[pl[Bl-I[AP l g*( A)[p)[B]-I[I)

where[A]isarowmatrixoftheaxialcoolantflowareaattheinletand[A)fp(j[Aw)p)isi !
I a square diagonal matrix of the coolant density at the inlet,

= 0.

In practice, the inlet velocity of the first subchannel is changed
small magnitude, and resulting changes in outlet pressure

[ AP ) preassigned
by a

O for all subchannels are then determined. Elements of the first column

of the Jacobian matrix [B] are determined from this calculation. The original
*

velocity distribution is restored and the procedure is repeated for each sub-

[ Aw )] in Eq.
channel. The inverse of matrix B is then determiined, and A is calculated

1 (9) is then determined. he newusing Eq . (10). Knowing A,
inlet velocity distribution can now be obtained from-

I

[w EW)=[w]+(Aw) (11),

where[w and [w are column matdces of th new and original inlet axial
NEW

velocities, respectively.

A simplified computational logic diagram of subchannel analysis is
presented in Fig. 2.

!.
B. Porous Medium Formulation

A set of quasi-continuum governing equations for conservation of mass,
momentum and energy for a finite control volume is derived from both integral
and differential approach. He derivation of both the integral and differ .
ential aproach can be found in ref. 4. He system-consists of a single-phase

"

fluid with discrete stationary solid structures. . Volume porosity,: surface

permeabilities, distributed resistance and distributed heat swrce (or sink)
are systematically included in the derivation.

The. concept of volume porosity and distributed-resistance and heat-source-

arises naturally in the local volume averaging process [5,6]. He size of
control volume used in the local volume average must be small, compared to the
large-scale phenomena of interest. Distributed resistance alone is normally.

used to characterize anisotropy of .a . porous medium. However,'when local flow
area (or path) changes abruptly, and high resolution of local temperature and
velocity distribution is needed, additional delineation of the anisotropic
characteristics of the medium is necessary. Thus, a new cpproach with volume
porosity, surface permeability, and distributed resistance and heat source is

'
__ _ ,
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; !
.

developed. The concept of surface permeability is new in porous medium
*

1 forn21ation [4,7], and it greatly facilitates the modeling of anisotropic
effect of a medium. '' nt , the anisotropic characteristics of rod bundles can.

j be modelled by using appropriate local surface permeability and distributed j

resistance. It is iejortant to note that the concept of surface permeability, ;
*

; when properly applied, will reduce the inaccuracy in the calculated volume ,

j averaged velocity and t empe ratu re due to replacing the discrete fluid
'

I resistance and heat source (or sink) of the physical system by an idealized ,

distributed system. The surface permeability is usually known, while the
j distributed resistance is, in general, not well defined. This is particularly

.

'

i true for the analysis of reactor components where geometrically complicated ,

j structures are of ten encountered. |

l
f Recently, the COMMIX-1 code [7], which employs the porous medium approach *

; with volume porosity, surface permeability, distributed resistance and
| distributed heat source was developed. The typical mesh structure for a rod-
,

bundle used in the COMMIX-1 code is shown in Fig. 3. The transverse momentum .

] equations used in the COMMIX-1 code are presented in Table I along with those !

; of the other codes for comparison.
,

j 1. Basic Limitations

:
*

The unique advantages of the volume porosity, surface permeability, .

| and distributed resistance and distributed heat source approach presented in !

j this section are the use of orthogonal coordinates and geometrically similar
j* control volumes. Thus, limitations (2) and (3) employed in the subchannel
'

analysis are eliminated; however, limitation (1) is still retained. It is to
be noted that just as the friction factor must be calibrated in subchannel.

a na ly s is , so nist the distributed resistance be calibrated with experimental

; data in the porous medium formulation.
'

2. Derivation of Quasi-Continuum Coverning Equations
i

In a recent publication [4], a set of quasi-continuum equations was,

'
presented for the conservation of mass, momentum and energy for a system con-

| sisting of a single phase fluid and dispersed, stationary solid ' structures.
The results were derived from a local integral formulation. In this investi-;

! gation, the macroscopic transport equations are obtained by averaging the
microscopic transport equations over a local volume and use is made of the
averaging theorems developed almost si.miltaneously by Slattery [5,8,9] and by
Whitaker [10,11]. The - concept of volume porosity, surface permeability, dis- ,

tributed resistance and distributed heat source arises naturally.

Consideration is hereby given to a region consisting of a single-
,

phase fluid with stationary structures. Heat may be generated or absorbed by
the structures. For an arbitrary point in the region, we associate a closed-

surface A whose Volume is V. A portion of V that contains the fluid is Vg and
the total fluid-solid interface is Afs. A portion of A through which the
fluid may flow is A,. A schematic of the system just described is illustrated.

in Fig. 3.

!

4

i
1

.a---,e-, _ , - - -- . - -. - , - . - - - , . ,w- - , , -----*a-~-- -- v -- - - - -
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a. Local Volume Average, Intrinsic Average and Area Average
.

|.

Let $ be any intensive property associated with the fluid. It .

may be a scalar, vector or second-order tensor. He local volume average of $
is defined by:-

i

3<$>bffy I(p)$dv (12)*.

where p is the position vector and the indicator function, I(p)isdefinedby:

if the end point of p is in fluid (13)I(p)= ,

0, if the end point of p is in solid
.

An equivalent form of Eq. (12) is

3<$> = 7 fy $dv . (12a)

i ne intrinsic local volume average of $ is

31<,) a f $dV . (14)**
f f

,

Likewise, the local area average of $ is

| 2<,3ajfg 1(9),ai.gf dA (15).

A
f

where A denotes the portion of A that is occupied by the fluid. ne asso-g
ciated intrinsic area average is

21<,>affi ,aA (16).

3
f f

It is important to note that in Eq. (15) the area A under consideration may
not be tha total enclosing surface. (If A is the enclosing surface in its

f in Eqs. (15) and (16) should be replaced by A ; see Fig.f entirety, then A
3). In fact, one often concerns with . a designated portion o it. For
instance, in Cartesian coordinate system, the averaging volume may be selected
to be a parallelepiped AxAyAz. The average mass flux - through the surface AA., x

* 3~

he superscript designates that the average is associated with vol-
2 and I for area and line (segment)ume. We shall use superscripts

averages.

**
The superscript i denotes intrinsic average.

.

I

. - - - . . - , - , - , , - , ,- , ,----
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i
i

I

(area Ayaz) whose normal points in the direction of positive x-axis is
.

1

(* <pu> = [AA I (P)pudA. ,

x x ,

4

(15a)I f pudA.
,

AAAA
x,f x,f

where AA ,g denotes the fluid portion of AA . The corresponding intrinsic
x x

average fif

!
'(* <pu>

AA ! pudA (16a).
AA ;

x,f x,f

b. Volume Porosity and Surface Permeability

The rates of fluid volume Vg to the total volume V is defined
to be the volume porosity, Ty. Thus,|

(li) *

Y .
y

Since Vg=fy Ifp)dV,Yy can also be written as .-'

=f[y I(p)dV (17a)Y .
y

: Furthermore,

3<$> = y 31<$> (18).
y

I
' Analogously, we define the surface permeability Yg associated with any surface

(not necessarily closed) as,
|

! Ifp)dA (19)Y "
,AA

where A is the portion of A that is occupied by the fluid. Consider, for
f

i example, the surface AA described in Section a. The surface permeability isx
(

AA
(20)I P)dA ._

' --Y "
A AA AA - AAx x x x

'

Clearly, ,

2 <9) . T i< > (21)..A

!
,

I

.-, , , -. . .. - -
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I

c. Local Volume-Averaged Transport Equations
.

! c.1 Equation of Mass Conservation !

The differential equation governing mass conservation for] *

I
the fluid is

+ V . p1 = 0 (22) [,

,

where p = fluid density,

; t = time,

i i
; and !

1

Y = fluid velocity vector.

Taking the volume average of Eq. (22) as defined by Eqs. (12) or (12a) yields
|

+ <V . pT> = 0 (23)''
.

Application of the general transport theorem [13] to the first term in Eq.-

(23) yields,

i i

= ~ ! E ^ ( }
t A fs * '

fs
;

1 .

where Y , is the velocity of A ,Forg , and n is the unit outdrawn normal vector on
'

g

A, and away from the fluid. the' case under study, vg O since the-
g

! solids are fixed. It is interesting to note that the integral,in.Eq. (24) may
.

vanish even if T * O everywhere on A ,. 'Ihis would occur if the solids thatg
are completely side A are nondeformable in motion relative to the . fluid,

[ E

solid . of - surf ace AA[b"le. AAfs . ndA = 0 if thesince for any interior
,

fsL is neglig fsvariation of fluid density over AA,

In either case,.

(24a)
]

=y= .
y

.

Applying the theorem of local volume averaging to a divergence due to Slattery,

j ..[5,8] and Whitaker [11,14] - gives *

.

i

In general, the velocity of the fluid-solid interface Y , may-not be*
g,

identical to the fluid velocity v at the-interface. This-would occur when
mass transfer takes place.,

'

!

|

.- , -..:._,._-, ,- -. - , ., a_--
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3<V . pY) =V.3<pT)+h[ pY . bdA (25).
,

Again, the second te m on the right , hand side of Eq. (25) vanishes because,
Co nsequently ,for the problem under consideration, v = 0 everywhere on Afs. .

3<V . pT) = V . 3 <pY> = h V . f y pYdV .

Since, as has been shown, by Slattery [5], for any quantity B which may be a
scalar, vector, or tensor,

Vfy BdV=[A B dA (26),

f e

it follows then

3<v.pt>=yf pY . 6. m.

3
g

.

Substituting Eqs. (24a) and (27) into Eq. (23) yicids,

+ f [A pY . ndA = 0 (28)#y ,
y

e

which is the required volume averaged mass conservation equation. The need of
introducing the concept of surface permeability is suggested by the second
term of Eq. (28) and others in the momentum and energy equations.

c.2 Linear flomentum Equation

We begin with the dynamic equation of fluid motion;

O +V. (pvv) = pg - Vp + V . I (29),

where g = body force per unit fluid mass; in the gravitational field,
it is simply the gravitational acceleration vector,

p = static pressure,
.

and

I - stress tensor. .

Performing the local volume averaging of Eq. (29) gives

3 + 3<V . (pl9)> = 3 <p>T 3 <Vp> + 3<V . I) (30),
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i

j with the aid of the general transport theorem, the theorem of volume aver-
; aging, Eq . (26) and recognizing that vf, and T vanish on A ,, Eq. (30) can be*

f
rewritten4

j Y - <di> + f [ A 6 ( ) dA
*

.
y

e
4

,

31 g) (31) [=Y <p>g + [A (~P.+5'.n)dA-Y 4y y
e

1

i in which R is the resistance force exerted on the fluid by the dispersed solid ,

per unit volume of the fluid. In writing Eq. (31), use has been made of the
following relationship

[A , ( Pn + 5' . n) /,*. = - [y RAV (32),

f

which may be regarded as the defining equation for R. The negative sign is
introduced to convey the notion that such force retards the motion. Equation
(31) is the volume averaged linear momentum equation for the system under*

. consideration.
!

4 . The surface permeability concept is introduced _ in the
j second term of the right hand side (RRS), and the second term of the lef t hand

side (LIIS) of Eq. (31).!

I

c.3 Equaticns of Energy Conservation

c.3.1 Energy Equation in Terms of Internal Energy

The differential transport equation for internal- 1.

i energy is

+ 9 . (p ev) = pV . T - V . q + - Q + e ' (33),

where e = internal energy per> unit fluid mass,

q = heat flux vector,
.

Q = rate of internal-heat generation per unit fluid volume due>

to extraneous heat source,.

and
.

4 = dissipation rate of mechanical energy into heat.

The local volume average of Eq. ,(33) Lis
' ( *

+ 3<V . (peY)> = 3<pv . YJ 3<p , q) + 3< ) + 3<e> (34)-

1 -

1

= , - e - r w
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j

| Again, with the aid of the general transport theorem, the theorem of volume
*

]
averagir.g, etc. , we obtain the local volume averaged internal energy equation:

h <pe> + f [A pev . ndA = - y <p? . v> + [A * "* ^#y 'y
e- e

,;

'( }
]

+y (Q >+ <Q) + G)
!

4

' in which the, heat flux vector q is taken to be - KVT, e being the fluid con-,

ductivity. Q denotes the rate of heat liberation from the dispersed solids
rb

| per unit volume of the fluid. Thus

| fy 6,3dv=-fg q . ndA (36).

f sf

c.3.2 Energy Equation in Terms of Enthalpy

The differential equation for the transport of
staticenthalpyh(=e+E)is: p

;
.

I +7.(phv)= (37)V.q+Q+4- ,

1

i and the volume averaged enthalpy equation is
4

<ph>+f[A E *"^~T + ! #"y *

v Ay
e e

!
!

+y ,31 g ,3131 (38)g .

y
,

| Since,

1

+ V . (pY) pV . Y . |
=

3131 ,B p> + 9 , 31 g4p ) _ 4py , g) ,

Again, the surface permeability appears in the
second term of RHS and the second term of LHS of. Eq. (38). .

!

3. . Initial and Boundary conditions i

Initial conditions are obtained either by specifying'the fluid velo-
city, . temperature and pressure distribution throughout the -interior points of

- . --
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the space under consideration, or by continuing a previous computer run via a
restart capability. Once the fluid temperature and pressure are specified, as-

in the former case, the corresponding density and enthalpy are calculated from
equations of state. Boundary conditions are specified with appropriate tem-
perature, velocity, and heat flux distributions at all external boundaries..

4. Numerical Technique

The quasi-continuum governing equations, Eq s. (28), (31), and (38)
are finite differenced in a staggered mesh system [12]. The pressure (P),

temperature (T), enthalpy (h), density (p), and volume porosity (Yy are
defined at cell centers. The velocity T and surface permeability (yx, Y , and

in x, y, and z directions, respectively) are defined at thecentero!eachy,llce surface. The finite difference equations are solved by using ICE
(Implicit Continuous-fluid Eulerian) procedure with rebalance. The rebalance
_

technique has been developed by us and is an integral mass balance of a local
region related to the local presaurc correction. A simplified computational
logic diagram of COMMIX-1 is shown in Fig. 4. Some pertinent numerical
results obtained f rom the COMMIX-1 code are presented in the paper by Domanus,
Shah, and Sha in a special issue on Liquid Metal Fast Breeder Reactor (LMFBR)
Single-Phase Rod-Bundle he rmal-Hyd raulic s of Nuclear Engineering and Design
[15], which will be published soon.

.

5. Unique Features

The COMMIX-1 computer program has three unique features: one is
.

that the model is capabic of treating both continuum (e.g., reactor plenum,
piping mixing) and quasi-continuum (e.g. , rod bundle or fuel assembly)- systems
by introducing porous medium formulation with volume porosity and surface per-
meability, as well as distributed resistance and heat source. h is capability
represents the most cost-ef fective way of handling two classes of problems by.
a single computer program. Second is the concept of surface permeability
which is new in porous medium formulation, and it greatly facilitates
accounting for the anisotropic effects in a medium. Third, it can properly
model the diffusion term in momentum equations which is lacking in the present
subchannel analysis. We other is the inclusion of the local mass residue
effect [5] in the energy and momentum equations and the development of
rebalance technique in the solution procedure. As a result of this inclusion,
both the convergence rate and accuracy are greatly improved.

C. Benchmark Rod-Bundle hermal-Hydraulic Analysis

The fine structure of both velocity and temperature within a subchannel
or a computational cell is ignored in the subchannel analysis and the porous
medium approach. However, this fine structure can be accounted for through
the specification of rods as internal boundary conditions. Recently,o

BODYFIT- 1, a three-dimensional, transient, single phase component computer
program [16,17,18), has been developed. It utilizes boundary-fitted coor-
dinates to transform a complicated rod-bundle geometry into a rectangular

,

coordinate mesh system as shown in Fig. 5. Note that all the governing equa-
tions are transformed accordingly into new variables (transformed space)
before being approximated by finite difference equations which are solved in

| the usual manner [7].
!
,
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| Fig. 4. Simplified Computational Logic Diagram of COMM1X-1
i
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:

i
! Accurate representation of boundary conditions is best accomplished when .

the boundary is coincident with a coordinate line, so that the boundary can be IA .

Imade to pass through the points of a finite difference grid constructed on the
coordinate lines. Finite difference expressions at or adjacent to the boun- i

'

,

dary may then be applied, using only grid points on the intersections of ,

! coordinate lines. Interpolation between grid points is not required, and this
i is particularly important . for boundaries with strong curvature, such as fuel

rods.
I

I in the Navier-Stokes equations, the boundary conditions are the dominant
influence on the character,of the solution; therefore, the use of grid points

| that are not coincident with the boundaries places the most inaccurate differ-
ence representation in precisely the region of greatest sensitivity. The
generation of a curvilinear coordinate system with coordinate lines coincidenta

; with all boundaries is thus an important aspect of a general numerical solu-
tion of the Navier-Stokes equations.

l
As mentioned before, ap;,11ca t ions a the rod bundle or reactor fuel

!assembly, as shown in Fig. 6, is the primary interest of coordinate transfor-
| mation. Thus, the transformation is basically two-dimensional. Iloweve r, the
! transformation outlined below is vary general; it can apply to any boundary

j shape and can be readily extended to three dimensions (a general treatment of
' the time-dependent movable boundary problem and the control of coordinate .!

system is discussed in Ref.19).4

I

1. ttathematical Preliminaries ,

1

f

; Two-dimensional elliptic boundary value problems are considered.
The general transformation from the physical plane (x, y) to the transformed
plane (C, n) is

I
.

| C = C(x,.y) ,

t

i ,nd

n = n(x, y) ; (39) i

,

'and the inverse transformation is
i

i x = x(C, n) ,

4 and
,

'

y = y(C, n) (40).

i

The Jacobian of the transformation is .
t

.

1 F ,

J = J Q' Y)= x y -xy *0 (41)
'

,q q,

*

where

C = y /J, C = - x'/J, n = y /J, n = - x /J (4 2) .,

x n y n x C y C

|

] j
9

,

.. -_%,.w..._ . _ . . ~ _ . , . - ~ , , ,, _ . . - . , . . _ , _ . . _ . . + .-,<-.,.--.._.u-._-.-m ,.v. , *
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'
,.

, ,y

- (4f yf,)/Jf ,

c gx, ,

1;

f -(xf -xf)/J (43)-
, ,y gy yg

f -(yf -2yyf,+yjf,,)/J2 + [(y y -2yy,y,+yjy,,)2 2
xx gg gng gg g g

,

(x f - x f ) + (y x - 2y y xg y g + yjx )(yf yf]]/J32
,yg gy gy yg

and'

..

s

f - (x f -2Axfgy+xjfyy)/J2 + [(x y - 2x x ygyg+xjyy)1 22
ggyy gg g,

-y
gggq+xjxqq)(yf yf)]/J'3(x f - x f ) + (x x - 2x x x2'

,g gyg gq . gg
'

(44). ,

Higher derivatives can be obtained by repeating the above operations.-*

^
i .. ,.

_

Two tasks are involved in the transformation: one is to find the
interior physical points af ter specifying the physical boundary at a number of
discrete points. The other is to transform the partial-dif ferential equations
of interest into the new variables before being approximated by the; finite-
difference equations.n

2. Mapping of' Physical Domain [19]-'

The choice of this mapping is largely dependent on its simplicity
and effort required for- a desired . accuracy. Without loss of generality, a -
simply connected region ' will be considered first, and a doubly connected
region will be' discussed in subsequent sections,

a. Simply Connected Region:

The boundary of the physical domain (x ,y) is specified at dis-
crete points corresponding to boundary points in the transformed plane (C, n).,

-s

It .is desirable . to have a prescribed, convenient mesh in ' the ((, L n) plane;
.; therefore,1((, n) must '. be used as independent ' variables. Their.: values are

' .
governed by any suitable elliptic partial differential equations as a boundary -*

.

value problem. ' The simplest choice appears to be ~ that C, n must satisfy the
_

' Laplace. equation in the physical plane:
.

2VC-0 (45)'

,

9 n - 0: '. g 1(46).2. . , , , ,

. g.
.

.
.

% ;| . . ''
~

''

g

, - . , . . - ,
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where
.

2 2
2.3 j+3V j ,

3x 3y
.

The dependent and independent variables can be interchanged by
applying Eqs. (42) - (44). The transformed equations are:

=0 (47)- 2SxCn + yxax(C
,

nn

and

ay - 2Sy + yy =0 (48),

where

a = x{ + y{ , S = x x +yy y=x2+y2 (49)
~

.,

Equations (47) and (48) are clearly. coupled quasi-linear ellip- .

tic equations, and only in special cases (xg=yn and x =yg)can they bey
reduced to Laplace equations for which mapping is conformal.

.

Equations (47) and (48) can be conveniently solved by the
finite-difference method, using second-order central differences with suc-
cessive over-relaxation (SOR) of the dependent variables. Discrete values of
(x, y) at the corresponding point (C, n) are thus determined.

In general, the numerically calculated boundary may not coin-
cide completely with the given boundary at intermediate points. This is not
an essential limitation since only discrete points are needed in the basic
principle of the finite dif ference method. The finer the mesh, the smaller
the numerical error.

b. Doubly Connected Region
|

Consider 'the transformation of a two-dimensional, doubly
connected region D bpunded by two simple, closed, arbitrary contours onto. a
rectangular region D as shown in Fig. 6. The basic transformation is dis-

,

j cussed here, assuming that the body contour and outer boundary are trans-

| formed, respectively, to the constant n-lines forming the bottom and top sides -
( of the transformed region. The more general . case of segmentc ' body contours

transforming go any side of tge transformgd region followg analogously. Let .

T , and r onto Tg. For ideptifica-! i map onto P , T Fmp onto T2s T ntP 1 2 3 3 g
tion purposes, region D will be referred to as the physical- plane, D as the

| apd r gpd r as the body contours. Note that the trans-
transformed plane,(rg and T )|are made constant coordinate lines (n-lines) in2

,

formed boundaries 2
the transformed plane. The contours T and T , which connect the contours P

3 g g

! and T , are coincident in the physical plane and. thus constitute re-entrant-
| boundaries in the transformed plane.

|
|

|
.



___

- 27 -

|

(I2'

8 -\ L -
|
i

-

1

\ \_ |

[Ul T3-

g ___

oy Region r4
,D

/ l \ \=x
'

Physical Plane
.

;
t

%
T

7 " T2 !
'
I

:I* Region ! Is*4

D*-|
' '

' ;

$ *7 1 r*, t.

Transformed Plane-

Fig. 6. Field Transformation: Single Body

-_ = _



. _.

.

- 28 -
.

3

|

Let ((x, y) and n(x, y) be continuous function in D, then
,

,

VC=0 (50)2
,

i
'

'
J v2n.o (51)

,

with the Dirichlet boundary conditions

'C' 'Ci(x, y[
(52)[x, y] c Ti= ,

U 41
..

.

'C' 'C2(x, y)^

(53)[x, y] c T2=
,

.U. .'Ut .

2>U),andC x y and (2(*' Y) ~

where n and n aredifferentconstants(nand T , r spectivek(y,, va)rying over the- lg 2are specified monotonic functions on T 2,

same range. The arbitrary . curve joi ing T and T in the physical plane,
which transforms to the . right and lef t sides of the kransformed plane, speci-g

-

fies a branch ' cut for the multiple-valued function ((x. y).. Thus, the values

of the physical coordinate functions x(C, n) and y((, n) are the same on T3 as
to T .on T , and these functions and their derivatives are continuous f rom 'T3 gg and T .Therefore, boundary ' conditions are neither required nor allowed on T3 g

Since it is desired to perform all numerical computations in
the . uniform rectangular transformed plane, the dependent and independent
variables must be interchanged in Eqs.. (50) and (51), similar to Eqs. (47) and
(48):

ax - 28x =0 .(54)
| gg gq + yx ,

,

and

~ =0 (55)
f

oy - 26ygy + Ty ,yq

are ' defined as before, mth the transformed boundarywhere a, 8, and y -

conditions

.

f (C, nif~
-

x 1

..
[C,ni)cri (56) .-

,

.

, 2(C, ni).
~

fy
__

.

I
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~ ~

'E(E.D2)x
g,

- .
[C, 92)C T2 (57)" e

,

!- y - 2(C, n2)g
-- -

functions f (C,'t), f (C, n1), 8 (E n2), and g (C, n2) are specified byThe 1 n 2
.

the known shape of the contours T anh T and the skcified distribution of'(
As noted, boundary condikions are neither required nor allowed along2

l thereon.
the re-entrant boundaries T3 and T .4

The system given by Eqs. (54) and (55) is a quasi-linear ellip- ,

tic system for the physical coordinate functions x(E, n) and y((, n) in the i

transformed plane. As pointed out before) although this system is consider-
ably more complex than that given by Eqs. (50) and (51), the boundary condi-
tions, Eq s . (56) and (57), are specified on straight boundaries, and the
coordinate spacing in the transformed. plane is uniform. The boundary fitted
coordinate system generated by the solution of Eqs. (54) - (57) has a constant

,

n-line coincident with each boundary in the physical plane. The E-constant
, lines may be spaced as desired around the boundaries since the assignment of
'

the C-values to the [x, y] boundary points via the functions # f , f ' E , andg 2 l

g2 in Eq s. (56) and (57) is arbitrary. Nume rically , the discrete boundary

values [x, y] a re transformed to equally spaced discrete (k points on both*

boundaries. As illustrated in Fig. 6, the left and right boundaries of the
' ~ transformed plane are re-entrant boundaries, which ' imply that both solutions,

x((, n) and y(C, n), are required to be periodic in the region--

.{(C,n)|-=<C<a, ni<n<n2}*.

The analogous cylindrical coordinates used in - the work [16]
fall into the category of this section. In this ' case, i the fuel assembly

center line plays the role of the curve T3.in Fig. 6. 'Ihi_s curve is thus
multiply connected region :iscollapsed to a point. Extension to a

straightforward. .

'

3. Preservation of Equation Type

! When coordinate transformations are utilized as an aid in_ solving a
I given partial dif ferential equation, it is imperative that the equation not

change type under the transformation. Such an invariance will now be demon-
strated for the transformation of the system equations of interest. Consider
the general, second order quasi-linear partial dif ferential equation

A(x,y,f)f +3(x,y,-f)f +C(x,y,f)f +E(x,;y,f)f

.

+F(x,y,f)f +C(x,y,f)=0:
y_ >

-(58).,

:where F = f(x, y) L is a, twice continuously' differentiable scalar function, and,

A, B, C, E, F, and G are continuous' functions. Recall that'the equation type'

-is determined by the coefficient f. unctions A, B, and C as follows:-

Elliptic if B2 4AC < 0,

f.x

i
'

.
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4

Parabolic if B2 -4AC = 0, .

and
,

f flyperbolic if B2 - 4AC > 0.

It can readily be shown that Eq. (58) transforms to
* * * *

Af +Bf +Cf + E f .+ F f +G =0 .(59),
. g

t where
* 2A ~E AE2 + BC C + C(y ,x xy

,' ,

B E'2AC n + B(( n + C n ) + 2C(y.
n ,

* 2C 5 An2 + Bn n + Cn ,

,

*
I E E 2AC + BC + CE + EE + FC .

_

,

*
F E An + Bn + Cn + En + Fn ,,

and
,

F* E F .

Now, consider (B*)2 - 4A*C*:4

* *

(B )2 - 4A C =(2AEn'+B(Cn +n()+2CCn}2.

4

2
-4(A(2+B(gy+C(2)(An2 + Bn n + Cn )-C

!
1

= (B2+4AC)((n -(n]2-

,

='(B2 .4AC)/J2 , ,

2 - 4AC and (B*)2 -4A*C* a're either both positive, both nega-Since J2 > 0, B -

tive, or both zero. -This implies that Eqs. (58) and (59) are of the same
,

, <

; type.

'
,

4

.-

, - . . _ _ _ _ _ _ _ - .
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4

4. Coverning Equations in Non-Dimensional Form
. -

g + *(
.

,

3 (60).o ,

J.

.3(pu) 3(puu)) ij - 08 (61)
BTg t+

at 3x " 3x 3
,

J J

and

H+ "3
- 3x) + Q

=D (62),
at Bx 3x

3 3

The variables in the conservation equations are non-dimensionalized -

to the reference velocit L- density (p),
resp (ecth ), gravitational constant - (y )(V ), . length (p(of,), thermal conduc--

with >

o o
enthalpy o go , viscosity

; tivity(c),andspecificheat(cpo),asfollows:o
I

.
. u

- ("i "
'

! ND o
i

.

(E ~
'ND (L Vj

9 o

(p)ND'
' "

'

O

*i
(x ) "f' *

i
ND o

(E)ND."ph *
.

O O
i

(8)ND "- '
.

O

e

(e)ND" '

O.

;

-(P)ND"ph.~

' '

O O'

-

..

!
. _ _ _ . , . ,
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1
|
i

7
(r)ND (g,/C ,)

= -
'

.

(U)ND
~

'

o

(<)ND
~

'

o

I
T

(Tij)ND "p *
,

oo
.

91(9) "phV; *
1
ND ooo

and
.

( ND " (h p,V /L,) '

9 9
,

where subscript ND denotes non-dimensional and is deleted in Eqs. (60) - (62) ..:s

for simplicity, and !

E=pe+D =ph+D .p ,

,

,

1

(Bu Sup . ;g t
p6)+g9 + 3x )

T "- ,

i 3xij D
i

i

and.
i

1 3T '

91 " ~ RP 3x '

1

;

with the non-dimensional numbers
i

VLp
R= "- Reynolds number -

...,'

p,
i

,

1

P= P ''= Prandtl number
.

.,y
,

I

and |
. . ,

e

_ _ _ . - . . - . . _ . . _ .
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D=[ .

o
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5. Transformed Coverning Equations

The bounda ry fitted curvilinear coordinates are taken such that (
and n lie in the plane normal to the fuel assembly axis, with c parallel to
this axis. The planes are assumed equally spaced along the axis so that, with -
Z along the axis,

E h - Constant (63)Z .

The Cartesian coordinates x and y lie in the plane normal to the fuel assembly
axis.

After transformation to the (, n, C system, the governing equations
in non-dimensional form become:

^

B o_ + J1 3(pu) ,J1 3(pv) ,dJc,3(pw) = 0 (64)at BC an dZ ac '

A A

3(pu) ,J1 3(puu) ,J1 3(puv) ,dc 3(puw)at BC an dZ ac

31)T13 13 dc
" 3 E Y 'll ~ * '21) * 7 E (*(T C11)*TZ (65)n n 21 -YT .

ac

3(ov) ,J1 3(ovu) g 1 3(ovv) ,dZdc 3(ovw)
at 3C J 30 ac

(Y*12 n 22 * (*(*22 C12)+ (65a)~*T" ~YT >

n

3(pw) ,J1 3(pwu),-1 3(pwv) ,di 3(pww)
at BC , J an dZ ac

13 - (*33
'

-13
~ * *23) * J E (*(T23''Y*13)*dc

-

" 7 g (Y T ~ P8 'y 13 n C dZ ac (65b)

and

!

!

I

i
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~

Be
Ji a(su) Ji 3(ev)

ac 3(tu)
8t 3C an dZ ac

i
,

A A

-| J 3C . J an dZ 3G
._

+$bly(T u + 'i2" + '13") - *n('21" + '22v+'23")ln ii

+$hlx('21"+'22v + '23") 7(C'ii" + '12' + '13")lt

+ n $ k (131u + '32v+'33")

+3p (Y cT
' '~*"y JRP *(* y ~ I(* xy x n

~

+b$k(<r,)+b- (66)

The stress terms in the momentum equations are |-

|

P+h Cu -C -C
9 13"n 16*C + 18"n 8 "CI *11 ~ * '21 " ~ 8

~
'n n

,

I

*(*21 ~ 7(*11 Cp+{(C-- u -C u
--C17"& + CIS"n ~ 7 "c -

'7 13 g 3g n

1
1

- i _$ u, + 2 C (C .g - C,w )'31 1 3 ,, ,

|

-f_CyT -xT
' Cp+ C u u -C10*( + Cg46 gg - C}7 6 "C

v-. *
,;

l

!

*('22 Y('12 --jC ~ -C v
'

P+ C
18"( . 15"n g4C+C12*n .C5 "C

-

~I'S

'32 -i $v +2C(C.,-C.g) ,
1 3 3. 2

- -- .
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. . .

- C "n + 8"c ~ 6*c}Y * 13 ~ * *23 " , 2"E '3n n
,

e .

(C"C ~ 7"c ,C "n - C "E +*(t23 - Y(*13
=

'4 3 5

and

33 " - P+f 7n+C"n-C"C}.W - (2C)(C"E - CuT *
5 6g g 8

The stress terms in the energy equation are:

Y(T u+T 12" + *13" ~*(*21"~*22"+'23"n it n

=f (C u - C16")"E + (C17" ~ 13" "n + 8" "C
-

9

16""C+(18+(C v-C -C"u-C 14" *n 6 "c10

'

+ C *C -C"n~ "C, '32

~Y(*11"-*12"+*13"x(T21" + T22" + *23*1

C

=f (C v-C 13")"C + (Cyg 15" "n ~ b" "cu-C4

18

g4)vg+(C+(C u-C v v-CI5" *n + C " "c12 5g7

0

- C ""E "J+Cw "~
'4 3

.

and
,

C C "C 1 7"n + " "c.-T u+T32" + T33w= -

g831

t

i
t

___ . . .
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+ h C C "C 1 7"n * " #c
-

g6

-
.
.

+ 2C ""C + 2C b + "C
" '

1 i n

The conduction terms are:
,

3n)c(yT T-* ""
yx ny 2( -' ,

.

3C)| c(xT -yT)=c(C - T ,

g g 4n
,

and

KT =c T .

i The coefficients in these relations are defined .

E. h , C *+*C '10; g

f

Eh(3y+y{}C s C'
,, gg2

a

i2"h(3Y+*l)sj CC -,3

36+yy[Ef , -C EC .-13 gy4,

Eb(38+xx,)-

C ax C , .,
3 g 3 g,

xy.gg ,.

| C i* CIS ' 3J, '6 n

x y'
C IC Y '

7 C 16 3J,

_. . . . .
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*Ynn
C 5y C

7 C 16 3J, '
.

(*nC+ }C Y ' 17 Y '8 n,

Ih(3a+y) (*nC ~ '
2 CC Y9 n 18

,

with

J=xy -xy , u = uy - vx ,gq qg

2+y2 v = vx - uy ,a=x ,

B=xx +yy y=x{+y{, .
g g

6. Initial and Boundary Conditions and Numerical Technique
_

.

The initial and boundary conditions and numerical technique employed
in the benchmark rod-bundle thermal-hydraulic analysis are similar to those
used in the porous medium formulation with volume porosity, surface perme-
ability, distributed resistance, and distrJNted heat source outlined 'in the
previous section, except that the modified staggered mesh system is used in
which pressure, density, temperature or enthalpy are specified at cell center,
and all velocities are specified at .the intersections of grid lines. Some
recent numerical results obtained from BODYFIT-1 are presented in the paper by
Chen, Vanka, and Sha {18].

III. CONCLUSION

Three pertinent methods used in rod-bundle thermal-hydraulic analysis are
presented. These methods are (1) subchannel analysis, (2) porous medium for-
mulation, and (3) benchmark rod-bundle thermal-hydraulic analysis using a
boundary fitted coordinate system. Basic limitations of methods (1) ' and (2)
are clearly delineated. In subchannel analysis, the transverse momentum-
equation cannot be treated with the same . rigor as the axial ' momentum equa-
tions, due to subchannel arrangement. The usual justification of neglecting,

the diffusion term in momentum equations -is .that drag due to the presence of
rods is such larger than viscous diffusion. This assumption is no longer
valid when recirculatory flow is encountered, such as in the analysis of_ flow-

blockage. Furthermore, approximations must be employed for simplification of
geometrical configuration of the control ' volume for the ' transverse momentum
equation and interfacing information between' two dif ferent control volumes,
e.g., one for the transverse momentum equation, and another for the axial
momentum equation. These basic' limitations are inherent; therefore, validity

!
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of subchannel analysis to situations with large flow disturbance poses serious
*

concern. The porous medium formlation with volume porosity, surface perme-
4

ability, distributed resistance, and distributed heat source is used in the4

COMMIX code, and it eliminates some of the limitations employed in subchannel
analysis. The concept of surface permeability is new in porous medium formu- *

lation, and it greatly facilitates characterization of an anisotropic medium.
In general, it improves accuracy of results since surface permeability is well
defined and distributed resistance is not precisely known in most engineering

i applications. Furthermore, the porous medium formulation provides a greater
i range of applicability. As an example, the COMMIX code is capable of treating

both continuum (reactor plenum mixing, piping analysis, etc.) and quasi-
continuun (fuel a ssembly , heat exchangers, etc.) problems. his capability
represents a very cost-effective way of developing a computer code.

However, accu rate determination of distributed resistance in a complex
,

rod-bundle geometry requires fine structure of both temperature and velocity.
The most rigorous rod-bundle thermal-hydraulic analysis uses a boundary fitted

; coordinate transformation. Each rod is explicitly represented as an internal
! boundary; thus, appropriate boundary conditions can be specified. After the

coordinate transformation, the complex rod-bundle geometry reduces to a

| multiply connected continuum in a rectangular region with all boundaries
; coincident with the grid lines. However, the system of equations to be solved
j in the transformed plane is more complicated than the original one. Most ''

important of all, the empirical mixing coefficients and cross flow resistances - )

normally associated with a rod-bundle thermal-hyd raulic analysis are elimi--

nated, thereby enhancing computational stability and accuracy. As a matter of -

fact, for laminar flow, this method gives solutions without any assumptions,
and it requires information only on rod bundle geometry and thermal physical
properties of the fluid; for turbulent flow, etrpiricism is needed due to the

,

enclosure problem encountered in turbulence modeling. However, one drawback
of benchmark rod-bundle thermal-hyd raulic analysis using a boundary fitted
coordinate system is that it requires large computer storage'and long running
time, and thus, is limited to relatively small rod-bundle sizes or a local
region of interest in a large rod bundle.

Recently, the effect of distorted geometry on thermal-hydraulic perfor-
mance in a fuel assembly has received a great deal of attention. Once the
fuel cleraents are distorted (in an arbitrary way), the geometrical flow paths
become very complex, making their accurate representation in conventional
simulation very difficult. The dif ficulties encountered in subchannel ana-
lyses are the following:

a. 'Ih e subchannel representations with an arbitrarily distorted con--
figuration in a rod bundle are very difficult, especially in the
axial direction.

:

b. Because of the distortion, the mixing coef ficients, hydraulic resis-
tances, and conduction lengths used in the flow and heat transfer
calculations need to be recalibrated. This is a .dif ficult task for -

various distorted configurations. 'Ihis' dif ficulty is further com-

pounded by the- inherent approximations used in the transverse
momentum equations.

i
_ . _ _ , _ . _ , _ , , , _ . , _ . . . - _ _ . _
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c. The fuel rod boundaries are inclined with the normals ta the sub-
channel, and the velocities are at an angle with the fuel rods.'

Because the finite-difference grid does not align "ith the boun-
daries, representation of the boundary conditions will.be difficult

- and inaccurate.

Therefore, subchannel analysis for distorted rod bundle geometries can be
subject to significant difficulties and error. The porous medium approach has
the advantage over subchannel analysis in that the distorted geometry can be-
represented more conveniently and accurately by varying the volume porosity
and surface permeability. It also removes the inherent assumptions used in
the transverse momentum equations associated with subchannel analysis. The

1

| advantage of using correct transverse momentum equations is significant when
'

the flow is not dominant in the axial direction. It should be noted that
empirical calibration of the distributed resistance with experimental data
corresponding to the distorted geometry is necessary. The distributed resis- '

tance of a given distorted configuration may be estimated by using the bench-
mark rod-bundle thermal-hydraulic analysis with the three-dimensional boundary.
fitted coordinate transformation. The combined use of the ' porous medium
formulation (COMM1X code) and benchmark rod-bundle thermal-hydraulic analysis
usin- boundary fitted coordinate system (BODYFIT code) represents one of the
most sound and cost effective approaches to the distorted geometry problem.:
In summary, the proposed approach using the COMMIX and BODYFIT codes can*

greatly reduce the required experimental data base for representing unlimited
possibilities of distorted geometry.

.

!
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