SOIL-STRUCTURE INTERACTION METHODS SLAM CODE

C.J. Costantino

C.A. Miller

THE CITY UNIVERSITY OF NEW YORK
Under Contract to the STRUCTURAL ANALYSIS GROUP
of
BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

September 1979

Prepared for the U.S. NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR REGULATORY RESEARCH CONTRACT NO. DE-ACO2-76CH00016 NRC FIN NO. A-3216-9

NOTICE

This report was prepated as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third p.rty's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately ow ned rights. The views expressed in this report are not necessarily those of the U S. Nuclear Regulatory Commission.

Available from
 GPO Sales Program

Division of Technical Information and Document Control
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
and
National Technical Information Service
Springfield, Virginia 22161

CONTENTS

Page
SECTION
1.0 INTRODUCTION 1
1.1 GENERAL CAPABILITIES OF THE CODE 1
1.2 FREE FIELD ANALYSIS 4
1.3 MATERIAL CONSTITUTIVE LAWS 6
1.4 SOIL STRUCTURE INTERACTION 7
1.5 SEPARATION AND SLIDING BETWEEN SOIL 8AND STRUCTURE
1.6 QUIET OR NON-REFLECTING BOUNDARY 9
2.0 GENERAL FORMATION OF SLAM CODE 12
3.0 DESCRIPTION OF LINK 1 14
SEGMENT LIA 15
ORDER 16
SEGMENT LIB 16
SEGMENT LIC 17
PATH 18
MINI 19
SORT 1 20
SIZE 2
SEGMENT LID 0
GSORT 21
SORT 2 AND TSORT 22
SEGMENT LIE 22
SEGMENT LIF 22
SEGMENT LIG 23
SEGMENT LII 24
SEGMENT LIJ 24
4.0 DESCRIPTION OF LINK 2 24
TAPE USAGE 25
INTEGRATION STEP SIZE 27
RELATION BETWEEN MESH AND INTEGRATIOV STEP 28
SIZE 29
ACCEL 30
PLASTF 34
MISES 37
COULMR 42
COMPCT 45
HYDROSTATIC PROPERTIES 47
SHEAR P OOPERTIES 48
NCOUL 50

```
Contents--Cont'd
```

Page
5.0 SPECIAL ROUTINE FOR LINK 2 52
SUBROUTINE PRESS 52
SUBROUTINE QUIET 55
SUBROUTINE BOUND 55
SUBROUTINE QGENER 56
6.0 DESCRIPTION OF LINK 3 58
SUBROUTINE SPECTRA 5859
7.0 OUTPUT FROM CODE 62
8.0 SUMMARY
REFERENCES 63
APPENDIX A CONTROL CARDS 73
APPENDIX B DATA DECK INPUT 93
APPENDIX C CRACK MODEL 99
APPENDIX D SLAM DATA GENERATION 101
APPENDIX E SAMPLE PROBLEM 109

2.0 INTRODUCTION

This report presents a detailed description of SLAM Code, a large finite element computer program to treat the two-dimensional (axisymetric or planar) wave propagation problem through arbitrary nonlinear materials and the interaction of these mot, uns with a flexible structure embedded within or on the soil. The acronym SLAM stands for Stresses in Layered Arbitrary Media; the Code, originally developed for the Air Force, has been in a constant state of development and imrovement. Prior to presenting the details of the code operation and usage, a brief summary of the method of analysis and capabilities of the Code will be presented.

1.1 General Capabilities of the Code

The basic configuration of interest is shown in Figure 1 and consists of a general flexible structure embedded within a soil/rock foundation composed of an arbitrary number of material layers or zones, each layer possessing its own, generally nonlinear, constitutive law. To this system, loadings can be applied in any or all of the following ways:

1. Specified pressure histories can be applied to either boundary or interior surfaces in an arbitrary fashion, including the effects of moving loads.
2. Specified input motions (displacement or velocity pulses) can be applied to either boundary or interior surfaces or nodes, and
3. Specified force histories can be applied to the structure in terms of its generalized forces.

The general characteristics of the Code can be summarized as follows. More details on the specific methods of anaiysis will be presented later. The wave propagation from the input locations into the free-field is treated by finite element methods of analysis, including the effects of nonlinear
properties of the soil. The finite element anproach has been taken in this development to allow the user a general flexibility in treating problems of rather complex geometry (material layering, structural inclusions, etc.).

To treat the interaction of the free-field soil/rock with the embedded structure, two methods of analyses can be used, both available in SLAM Code. First, the finite element mesh can be continued throughout the structure as well as through the free-field. Shus, no special considerations need be made in the developud Code (save for possible separation and sliding effects which will be discusse I later). Such an approach would be desirable when either nonlinear j_{j} amic response of the structure or wave propagation through the structural wall is of concern.

When such is not the case, the use of finite elements through the struc ture can lead to serious drawbacks. Many more elements would be required to treat the stucture in this manr.er, increasing computer running time. Of more imporiance, however, is the following consideration. The stiffest material encountered in a typical problem is usually the structural material. In addition, the smallest sized elements in the problem occul through the relatively thin wall of the structure. This combination leads to extremely high frequencies in the mesh which, in turn, lead to extremely small time steps in the required numerical integration procedure. This occurs because the mesh in the structural wall is ab? 2 to transmit tlie high frequency through-the-thickness waves which will aevelop.

Whenever this refinement in the solution is unwarranted, a second method of structura: analysis is available in the code. In this case, the structure is represented by its rigid body modes together with its lower free-free elastic modes of vibration. In this case, the critical frequencies of the system are those associated with the free-field as well a. those lower
frequencies of interest of the structure, and computer running times again become similar to those reeded to solve the free-field problem alone.

By either method of structural representation (finite elements or flexible modes), potential separation and sliding between the strucutre and the soil is accounted for by making use of a special (zero thickness line) element which is placed between the structural and scil nodes in the mesh. This element can be used with a simple Coulomb shear raterial model to limit both tensions and shears transferred between the soil and the structure.

An additional characteristic of the SLAM Code which has been incorporated concerns the use of non-reflecting or "quiet" boundaries. These boundaries are used to limit the size of the required mesh while at the same time minimizing the effects of reflections caused by artificial boundaries of the mesh. Such characteristics are desirable when long duration responses of the structure are desired.

To summarize then, the following general characteristics of the SLAM Code are available to investigate various two-dimensional (axisymmetric or plane) wave problems.

1. The free-field is represented by finite eler nt methods including nonlinear material property effects.
2. The structure can be arbitrarily embedded within the free-field and can be represented by either finite elements or by its rigid body and elastic free-free mode shapes.
3. Pote tial separation and sliding between the structure and the so 1 can be tre- ted by means of a special zero thickness element.
4. Non-reflecting boundaries can be used to minimize the size of required meshes for a given problem.

1.2 Free-Field Analysis

To treat the free-field wave propagation probiem, the soil/rock material is divided into small elements, these elements being connected to each other at their vertices. The types of elements used in SLAM Code are rectangular elements, triangular elements and a zero thickness element which is used to simulate crack and soil-s+ructure interface conditions. This latter element will be described more fully in a following section. The data that is developed is the motion history (displacements, velocities, accelerations, stresses, etc.) at these node points or vertices as a function of time. This method of mesh formulation is a physical one, as opposed to the more abstract approach of finite difference methods.

In the analysis, any material constitutive laws can be used, provided of course, that it can be suitably described for inclusion in the program. The specific soil/rock models used in the current code will be described in a later paragraph. The computational procedure starts from some time at which the complete solution is known; that is, displacement, velocities, and accelerations of all the nodes are specified, as well as the entire stress and strain history up to and including this time. Typically, this time is the zero or initial time, although it need not be. The problem then is to determine these same variables at the following instant of time, scitably taking into account the nonlinearities introduced by the material properties.

A typical interior node point of a two-dimensional mesh is shown in Figure 2, this node being connected to its surrounding nodes through the interconnecting elements. The equations of motion for this node can be written symbolically as:

$$
\begin{align*}
& M_{N} \ddot{U}_{N}=F_{U N}^{A}-F_{U N}^{R} \tag{1}\\
& M_{N} \ddot{W}_{N}=F_{W N}^{A}-F_{W N}^{R}
\end{align*}
$$

where M_{N} is the total nodal mass composed of the mass contributions from each adjacent element, $\left(F_{U N}^{A}, F_{U N}^{A}\right)$ are the horizontal and vertical forces applied to the nodes (if any) and ($F_{U N}^{R}, F_{W N}^{R}$) are the node-resisting forces developed by the distortions of the surrounding elements, the summation being taken over all of the surrounding elements. Clearly, a displacement field causing only rigid body motions of the elements will develop no resisting forces at the nodes. The details for computing the node resisting forces from the element distrotion are presented in references $1,3,5$, and 6 .

Combining the equations for all the nodes, a set of second order equations are developed for the entire mesh which can : written symbolically as:

$$
\begin{equation*}
M \ddot{x}+K x=F^{A}+F^{N}, \tag{2}
\end{equation*}
$$

where M is a diagonal mass matrix, x is a displacement vector consisting of the horizontal and vertical displacements of the nodes, K is the usual banded system elastic stiffness matrix and F^{A} is the vector of applied nodal forces. F^{N} is a vector of correcti: a forces which account for the nonlinearities in the material stress-strain properties or deviaitions from the elastic case. These nonlinear correction forces are computed at each time step for each element surrounding a given node.

The numerical integration scheme used to treat the wave propagation phenomena follows directiy from Eq. (2). At a given time, t, when the nodal displacements and velocities are known (together with the previous histories), the nodal accelerations are computed by determining the applied loads (determined from any applied surface pressures), and the nonlinear correction forces (by knowing the current displacements and the previous element displacement and stress histories). Knowing the accelerations at this time, the dispiacements of the nodes can be determined at the following time, $t+\Delta t$, by a suitable numerical integration scheme. Knowing the new displacements,
the cycle can be started again by determining the accelerations from Eq al time $t+\Delta t$, etc. In this manner, the solutinn is marched out in time to obtain the complete history of the motion of all the nodes. Examples of various solutions obtained in this manner are presented in reference 6 .

1.3 Material Constitutive Laws

The computer program developed to treat this problem contains a catalogue of material stress-strain laws which can be added to with little difficulty without changing the operation of the Code. Each material occurring in a particular problem can then be allowed to have any of the material properties available in the catalogue. The current catalogue allows the specification of the following stress-strain relations:

1. Elastic material, either isotropic or anisotropic.
2. Linear compressible fluid.
3. Elastic plastic material satisfying the Mises yield criterion with arbitrary strain hardening effects.
4. Elastic plastic material satisfying the Coulomb-Mohr yield criterion.
5. A nonlinear material law which contains a stiffening effect under hydrostatic pressure as well as a plastic dissipation under deviatoric strains to account for compaction effects in soils.
6. A special crack model which allows shear and tension transfer in a specified direction to be 1 imited by a simple Coulomb shear law.
The last four of this list are the only nonlinear laws currently avai" able in the Code, and have been included in an attempt to at least crudely approximate some known responses of soil/rock materials. Quite apparently, none of these models are completely adequate but until further advances in the state-of-the-art occur, only such approximations are available for applications to earth media.

1.4 Soil-Structure Interaction

The treatment of the interaction between the structure and soil begins with the assumption of continuity, that is, the nodes at the soil-structure interface are assumed to be attached to the structure and move with it. Separation and sliding between the soil and the structure is accounted for separately and will be discussed in a following paragraph. Let the displacements of the nodes attached to the structure be defined by the vector x_{f} a subset of the free-field displacement vector, x, defined in Eq. (2). If there are p such nodes and if two-dimensional motion is considered, the components of x_{f} are then

$$
\begin{equation*}
\left\{x_{f}\right\}=\left\{u_{1}, w_{1}, u_{2}, w_{2} \ldots u_{p}, w_{p}\right\} \tag{3}
\end{equation*}
$$

where (u, w) are the horizontal and vertical displacements of the nodes.
The equations of motion of the structure are defined by its modal equations

$$
\begin{equation*}
M_{s} \ddot{y}_{s}+K_{s} y_{s}=Q_{s} \tag{4}
\end{equation*}
$$

where y_{s} is the mode vector of the structural degrees of freedom and consists of the rigid body coordinates. M_{S} is a diagonal mass matrix consisting of the modal masses, K_{s} is a diagonal stiffness matrix, and Q_{s} is the vector of applied structural modal loadings. The displacements of the structure at the locations of the attached nodes are obtained by superimposing the modal vectors, or

$$
\begin{equation*}
x_{f}=F y_{s} \tag{5}
\end{equation*}
$$

where F is a matrix composed of the structural mode shapes.
From Eq. (2), the equations of motion of the nodes attached to the structure are

$$
\begin{equation*}
M_{f} X_{f}+F_{f}^{R}=-P \tag{6}
\end{equation*}
$$

where P is the vector of interaction forces developed between the nodes and the structure. With these interaction forces, the corresponding modal loads applied to the structure are then

$$
\begin{equation*}
Q_{S}=F^{\top} P \tag{7}
\end{equation*}
$$

where the superscript indicates the transpose of the matrix. Substituting Eqs. (6) and (7) into Eq. (4), the equations of motion for the structure become

$$
\begin{equation*}
\bar{M}_{s} \ddot{y}_{s}+k_{s} v_{s}=-F^{T} F_{f}^{R} \tag{8}
\end{equation*}
$$

where \bar{M}_{S} is a nondiagonal mass matrix including the inertial coupling between the structure and the free-field, and is defined by

$$
\begin{equation*}
\bar{M}_{s}=M_{s}+F^{T} M_{f} F . \tag{9}
\end{equation*}
$$

From this point on, the solution to the interaction problom procedes in a similar manner to the free-field problem. At a particular instant of time, the displacements of all the free-field nodes and structural mode displacements are known. The accelerations of all the nodes (except the attached nodes) are computed as before from Eq. (2). The resisting force vector, F_{f}^{R}, of Eq. (6) is determined during this computation. The modal accelerations of the structure are then computed from Eq. (8). The displacements of the free-field nodes and the modal displacements are then determined at the following instant of time by the integration algorithm. The displacements of the attached nodes are then computed from Eq. (5) and the solution then marched out in time as before.

1.5 Separation and Sliding Between Soil and Structure

In treating this separation and sliding problem, it is desirable to use a technique which does not deviate from the method of analysis outlined above. To accomplish this objective, a new finite element model was developed. For
two-dimensional problems (axisymmetric or planar motion), a rectangular element is used which has a finite dimension in one direction and a zero dimension in the normal direction (see Figure 3). The properties of this element are determined by applying the limit process to the properties of the finite size rectangular element normally used. Of the four nodes comprising this element, two at one end have the same coordi rates and two at the other end have the same coordinates. This element is situated between the soil and the structure so that the side of finite length lies on the interface. Two nodes are then located on and attached to the structure while two nodes are attached to the free-field nodes. Shear and tension transfer across this element can be governed by any of the nonlinear material properties available in the catalogue. The details of his element formulation are presented in Appendix C.

1.6 Quiet or Non-Reflecting Boundary

In order to obtain motion histories of adequate duration, mesh boundaries must be flaced far enough from the area of interest so that no unwanted reflections from the mesh boundaries will arrive within the time period of interest. This requirement can lead to large meshes which, in turn, lead to long computer running times. In an attempt to overcome this situation, the "quiet" or non-reflecting bcundary has been introduced to eliminate or at least reduce any unwanted reflections. Thest boundaries are placed away from the zones of interest but not as far as ordinary boundaries of the mesh would need to be located. Of course, the use of quie+ joundaries implies that no effects of changes in materials past the boundary can be accounted for; that is, the use of the quiet boundary implies that the materials outside of the mesh are the same as those inside the mesh.

Various methods are available with which to achieve the quiet boundary. If only plane one-dimensional elastic wave problems are of interest (clearly not of interest herein), a simple and, what is more important, stable scheme can be devised. Since it is known that for such problems the stresses at any location are proportional to the particle velocities, or

$$
\begin{equation*}
\sigma=\rho c v \tag{10}
\end{equation*}
$$

where ρ is the material mass and c is the materiai wave speed, a simple dashpot can be placed at the end of the rod with a damping constant equal to $p c$.

If the rod material has nonlirzar material properties, this can be used but with a time-varying damping constant depending upon the current wave speed at the end of the rod (a more difficult task from a programming point of view). For two-dimensional problems, this approach cannot be used since, even for elastic materials, there are two wave speeds and the simple relation of Eq. (10) no longer applies. All other methods of analysis are based upon predicting the velocities of the nodes on the quiet boundary from the velocities of the nodes immediately adjacent to the boundary at previous time steps.

Assuming continuity of velocities between nodes, the velocity of the quiet boundary node can be determined by the Taylor expatısion:

$$
\begin{equation*}
v_{j}^{i}=v_{j-1}^{i-1}+a(\partial v / \partial x)_{j-1}^{i-1}+\Delta t(\partial v / \partial t)_{j-1}^{i-1}+\ldots \tag{11}
\end{equation*}
$$

where the subscript j refers to the boundary node, the subscript $j-1$ refers to the node adjacent to the boundary node, the superscript i refers to the current time and the superscript i-1 refers to the previous time steps. In Eq. (11), the parameter, a, is the distance between the nndes $j-1$ and j, and the coordinate, x, refers to the direction from $j-1$ to j.

The time derivative in Eq. (11) is merely the acceleration of node j-1 at the previous time step. To approximate the space dorivation, various forms can be used such as:

$$
(\partial v / \partial x)_{j-1}^{i-1}= \begin{cases}\left(v_{j}^{i-1}-v_{j-1}^{i-1}\right) / a & \text { (forward differencing) } \tag{12}\\ \left(v_{j-1}^{i-1}-v_{j-2}^{i-1}\right) / a & \text { (backward differencing) } \\ \left(v_{j}^{i-1}-v_{j-2}^{i-1}\right) / 2 a & \text { (central differencing) }\end{cases}
$$

For the problems run to date with known solutions (one-dimensional rod problems), the central differencing scheme yielded the best results.

It should be pointed out that other techniques can and have been used. For example, if steady motion is assumed, the time derivative can be related to the space derivative by

$$
\begin{equation*}
\partial v / \partial t=-c(\partial v / \partial x) . \tag{13}
\end{equation*}
$$

Such an approach has been used in reference 7 for similar problems. However in that report, the dilatational wave speed was used for horizontal motion while the shear wave speed was used for the vertical motion. It is felt that such an approach is not necessary and, although adequate for one-dimensional elastic problems, is questionable for the general problem of interest.

All of these methods, however, are fundamentally unstable in their approach. That is, if the predicted velocity at the boundary is in error at a given time, this error will oropagate back into the mesh at the following tine steps. In turn, the arrors so propagated will influence the predicted velocities of the boundary nodes at later times so that after significant times, it can be anticipated that major errors in the computation may develop. The actual estimate of the errors involved must await further expe imentation with larger problems run for longer times.

2.0 General Formation of SLAM Code

The remainder of this report emphasizes the usage and operation of SLAM Code, while at the same time presenting some more detailed information on the analysis not contained in the references.

The program is divided into three primary segments which can be labeled as LINK1, LINK2, and LINK3. The function of these segments or links are:

- LINKi - generates data and tables required for the nunerical integration phase,
- LINK2 - computes the motion history of the finite element mesh and the embedded structure by a numerical integration technique, and outputs the history data generated, and
- LINK3 - computes shock spectra at desired locations.

Several pre- and post-processor pregrams have been previously developed to assist the user in preparing input data and analyzing output results. A program has been written to generate the mesh data (node and element data) required for a limited though important class of problems. This "mesh generator" program eliminates the need to manually key-punch this extensive data. A mesh plotting program is also available to plot the mesh, generated by hand or by the mesh generator program, to assist the user checking the accuracy and adequacy of the developed data. This program is discussed in Appendix 0.

The subroutines comprising SLAM Code are shown in Table 1. The control of the program is maintained by the MAIN program which initiates calls to the proper segments. Each segment, in turn, initiates calls to its various subprograms to generate the required data. The program makes extensive use of tape storage which helps satisfy two requirements, namely, to provide as
large a flexibility as possible in the problem, and to maximize core storage available (increasing the problem size that may be treated). The program was initially written for a machine witı: 32 K -word high speed memory and 12 physical tapes. The program, as currently developed, makes use of 8 tapes (or files) as well as the usual input and output files, together with about 45 K word memory.

The need for auxiliary tape storage has also been caused by an additional capability introduced into the code. Much data generated (motion history, required tables, etc.) are permanently saved on tape for either a restart of the problem solution or for later analysis of the data. This additional capability increases the versatility of the code from a user's viewpoint. However, this increased capability is achieved (as always) at a price, this price being increased running time. The continued use of auxiliary (tape or disk) storage increases running time şignificantly since these peripheral processes interrupt the central processing or operation of the code. Significant time savings can easily be achieved by eliminating the tape handling aspects of the program. At the same time, however, the versatility of the code is significantly decreased.

In the following sections of this report, the details of the code operation are presented, together with the analysis used where required. The data setup and format are presented in a final segment of this report.

3.0 Descrintion of LINKI

The first section of the program consists of a series of nine segments, LIA to L1J, which are used for table generation. A11 the data needed to describe the mesh and its properties is read (off cards) and used to generate three tables (stiffress tables, stress tables and nonlinear element tables) which are required for operation in the second link. In the following paragraphs, these sections of the Code are discussed.

The first four segments of the progran (LIA to L1D) are used to set up and process the data required in the following parts of the program. The primary function performed in this section is to take the mesh data (node numbering scheme) read from input data cards and reorder (or renumber) the nodes into a form more suitable for the comsutations to follow. Basically, the objective is to minimize the bandvidth of the stiffness matrix which is to be formed in the folloiving sections of the Code.

The stiffness matrix is to be maintained on tape for the integration or solution phase of the problem (in LK2B) since, in general, there is not enough core storage available to maintain the matrix in high speed memory continuously. Thus the stiffness data at each step of the computations are read into core in a series of "clusters" into a buffer storage arca. Each cluster is compnsed of the data of N consecutive rows of the stiffness matrix. The value of N has been arbitrarily set to 100 in this version of the Liode which allows sufficient storane to be treated in a 45 K word machine. Obviously, the larger this cluster size, the more efficient the integration (less tape reads per time step). For most problems of interest, this cluster size cannot be too significantly reduced.

In forming the system stiffness matrix (in LIE), each elenent is treated one at a time, an element stiffness matrix comnuted and then distributed in usual fashion to the system matrix. Therefore (since data for only 100 nodes are maintained in core at one time), each element last have node numbers which differ from each other by less than 101. If this is not satisfied, the element matrix cannot be distributed to the system stiffness matrix. In addition, the smaller the maximum difference between element nodes (bandwidth), the more efficient the stiffness matrix formation (less tape wage).

Since the element and node data are entered in an arbitrary fashion by the user, the node numbers must be reordered to ensure satisfaction of the above criteria. In addition, the stifiness matrix storage requirements can be further reduced if the bandridth is suitably small. However, this option has not been used in this version of the Code. This additional saving of core storage is achieved by taking advantage of the symetry property of the stiffness matrix. The details will be described in Section IV of the report when describing subroutine ACCEL.

Segment LIA

This subroutine is used to read all the data associated with the mesh from data cards. This data includes:
a. Node point data
b. Element data
c. Output element data
d. Material property data
e. Loaded node point data

The details of this data are deferred to a later sectic. For each material (or zone) in the oroblem, the material elastic stress-strain matrix is
determined from subroutine ELAST and stored for use later in the program. The element node data is ordered into the proper sequence in subroutine ORDEP. and all the element data placed on Tape 1 for future use. In addition, those elements comnosed of matorials with nonlinear material pronerties are stored (together with requisite information) on Tane 14.

ORDEP
Subroutine GRDER is used to reorder the element node data so that the Nodes I, J, K and L are nlaced in clockise order. In addition, the variable KASE is determined to add to the element data list placed onto logical Tane 1 in subroutine L.1A. The variable indicates the following:

```
KASE = 1 qeneral {rianoular element
    =2 triannle with one norle on axis of symetry
    (for axisymmetric problem oniv)
    =3 trianale with two nodes on axis
    = 4 general rectancular element
    = 5 rectangle with one node on axis
    =6 rectanale with tvo nodes on axis.
```


Seqment LIB

The purnose of this routine is to form the "adiacency" table which is made un of the followina arravs:
(a) NADJNP (I) = the number of nodes connect or adjacent to the Node I
(b) NADJEL (I) $=$ the number of elements surrounding the Node I, and
(c) $\operatorname{NPADI}(I, J)=$ the numbers of the nodes adjacent to the Node I $(J=1, \operatorname{NAD}, \operatorname{IIP}(I))$.

Each element data list is read off Tane 1, one element at a time. A call is made to subroutine ADIIP to distribute the element node numbers to the proner location in the Table IIPADJ. At the end of this operation, each roz of the matrix IIPADJ is scanned to detemine the array MADJMP (in subroutine VADJIIP).

Seament LIC

The maxinum difference (temed the handividth) between adjacent nodes is then comnuted based on the original numbering scheme. This value is then printed out (value of MAXBD). A call is then made to subroutine PATH to detemine an initial renumberino scheme. This subroutine is used to generate trial vectors NPTI(I) and NPTP(I) based upon the input path or start data stored in vector MSTART(I). These arrays are:

$$
\text { NPTP }(1)=\text { nev node numbers in the orininal order, }
$$ ($1=1$, NUPMP)

NPTH(I) $=$ oriqinal node number in the new or revised order, ($1=1$, NUM4P)

NSTART $(\mathrm{I})=$ start nodes . $\left(I=1, N I^{\prime} 4 S T\right)$

Another array (ICP(I), I = I, NUMIP) is also formed in subroutine PATH for additional infomation onlv. The details of the connutation will be deferred until subroutine PATH is describer.

Again, the banduidth (rAXBD) is comnuted for this new or trial numbering scheme. This trial data is then entered into subroutine MINI which continues the minimization nrocess to obtain (honefully) a minimum bandividth (or optirum numbering scheme). A hanhazard set of start nodes should not
be used as this may not lead to an increase in the bandwidth. The algorithm used is deferred to the descrintion of subroutine MIMI. With this new numbering scheme, the adjacency table is altered to reflect the new node numbering schene. The node numbers of the loaded node points are then revised.

A call is then made to subroutine SIZE in which clustering information is detemined. This, basically, is to determine how the stiffness (as well as nonlinear element) data are to be "clustered" on their respective files. PATH

This routine obtains the first trial for a revised node numbering sclieme. The routine, together with subroutine MIII, forms the algorithm to minimize the bandvidth and represents a compromise anong various optimizing algorithns avaflable. Ideally, the user vould like to have an algorithm which is independent of any input, save for the input mosh data for original numbering scheme). Various minimizing schemes are available and have been tested to oitain reerdered numbering schenes. In general, these use more machine time than the algorithm used herein. For most of the problems of interest, however, a reasonable starting point for a renumbered system can be chosen by the user. For other reasons (primarily data input infomation), another "nonoptimum" scheme is more convenient for the or:ginal numbering system.

In any case, the routine uses as input a series of start nodes (NSTART(I), $I=1$, NU:IST) which are read in from data cards. These start nodes are usually a series of nodes lying on a surface at one side of the mesh. These nodes form the nodes in the first "partition" of the node data and are numbered from 1 to NUMST in the reordered system. All the nodes connected tc these nodes are placed in the second "Lartition" and are
numbered consecutively in the reordered system. Continuing, the nodes connected to this second "partition" are placed into a third "partition" and numbered consecutively, etc. Thus, the PATH rostine forms the shortest path between any two norles in the system.

Alternatively, the routine uses as a first trial a renumbering scheme wherein the nodes adjacent to each other are numbered close to each other. in this process, the two vectors NPTII(I) and IPPTP(I) are formed which keep track of the relation between the new and orioinal numbering scliemes. The vector IPTH(I) indicates the original node numbers placed in their reordered system. Conversely, the vector IIPTP(I) contains the new node numbers placed in their original order.

MIMI

The trial numbering scheme is refined in this subroutine by forming a vector $S(1)$. This vector is obtained by the relation

$$
\begin{equation*}
S(I)=\frac{1}{(I+K)}\left\{I+\sum_{j=1}^{K} N_{j}\right\} \tag{14}
\end{equation*}
$$

where I is the node number, N_{j} is the number of the adjacent node and the sum is taken over the K adjacent node points. The number $S(I)$ therefore represents an average node number. If there are significant differences between adjacent nodes, the value of $\mathrm{S}(\mathrm{I})$ will usually be different than the Node Number I. Ideally, if the nodes are numbered or perly with all adjacent nodes numbered close to each othar, the value of $S(I)$ will be close to I for all the nodes.

The nodes are reordered again by sorting the vector $\mathrm{S}(\mathrm{I})$ into ascending onder (performed in suhroutine SORTI). The new bandvidth is then computed.

If this is less than the previous, the operation is perfomed again. If the bandridth increases, the previous numbering scheme is used as the final revised numbering system.

The algorithr used can be shoun by examnle to be highly sensitive to the original start nodes used as innut, and does not lead, in general, to an $0_{\text {, tinum }}$ set (or mininum bandwidth). However, for most problems of interest, it las ied to an adequate scheme, using relativeiy little machine time. Other algorithms are being tested with the view of obtaining systems which are more user independent while at the seme time being simple.

SORTI

See description of SORT2.

SI2E

This routine detemines the node cluster infomation stored in the following arrays:

$$
\begin{aligned}
\text { NPLOH: }(1)= & \text { first node number of the cluster } \\
\text { NPHICH }(1)= & \text { last node number of the cluster } \\
\text { NPOUT }(1)= & \text { one less than the smailest node number attached } \\
& \text { to any node within the cluster } \\
\text { NUMCP }(1)= & \text { laroest node number attached to any node } \\
& \text { in the cluster }
\end{aligned}
$$

The clustering used herein is in multiples of 100 . Thus, NPLOW(I) $=1$, 101, 201, etc., while NPHIGH(I) $=100,200,300$, etc. The total number of clusters is detemined and stored in NUMCLS.

Segment L10
The final operation on the input data is nerformed in this section of the code. The original element data records are taken from Tane 1,
the node numbers are changed to the revised scheme, and a number (KEY) added to indicate the smallest node number of the element.

This revised data is placed onto logical Tape 3. A call is then made to subroutine GSODT which reorders or sorts the element data according to the lovest node number of the element (KEY) and places this revised data onto logical Tane 1. Thus, when forming the stiffness data, all nodes numbered less than the current value of KEY associated with the particular element being treated will be unaffected by this element and all of the following elements.

Similarly, the node data which were maintained on Tape 14 are posted in GSORT according to the new numbering scheme and placed in ascending order onto Tane 4. The nonlinear element data are then taken off Tane 14, cluster number detemined $(J J)$, and reordered by ascending cluster number.

GSORT

This routine is a control routine to sort a series of data maintained on an input file (IITAPE). The data are stored in a buffer array (IARRAY) which can store up to MXPCDS data records, each record containing NURDS words. The data is to be reordered in increasing orier of the word specified by NKEY which indicates which word of the data record is the key for sorting. The resorted data are placed in an output file (INUTAP). Two intermediate files (IMT1 and IMT2) may the used as intermediate storage in the sorting operations.

If all the data records to be sorted can be stored in the buffer area, a core sorting routine (SORT2) is used. If more records are available than can fit in core, a tane sorting routine (TSOPT) is used. For this case, the two intermediate files will be used.

These two routines are used for sorting data records of various lengths according to ascending order of one word of each record specified by NKEY. The routines are based upon a simple "bubble sort" method in which two adjacent records are compared (according to the NKEY word of the record) and interchanged, if desired. In SORT2, all the data to be sorted are maintained in machine core and the sort; done continuously. In TSORT, the data are taken from tapes in clusters, merged together and written onto output files. The same "bubble sort" is used for each cluster with an additional sort superimposed between each tape cluster.

Segment LIE
This segment of the program generates the elastic stiffness matrix of each element aid assembles the system stiffness matrix. The specific formulas used in the development are contained in reference 3 for both the triangular and rectangular elements and need not be repeated herein. The development of the stiffness matrix for the zero thickness or cracked element is presented in Appendix C. The node point data are maintained (in the revised order) on logical Tape 4, the adjacency data on logical Tape 8 and the element data on logical Tape 1. The buffer stiffness matrix is first zeroed out and the node and adjacency data for up to 100 nodes taken into core.

The element data are taken off the tape one at a time. For each element, the data read from logical Tape 1 consists of

$$
\begin{aligned}
\text { KEY } & =\text { lowest } \text { node nunwer } \\
\text { NUME } & =\text { element number } \\
\text { IZONE } & =\text { material zone number } \\
\text { KASE } & =\text { element type (as described previous ly) }
\end{aligned}
$$

NTI, etc. $=$ new node numbers

$$
\text { NCRACK }=0 \text { - requiar element, }=1 \text { - urack element }
$$

The element stiffness matrix ($[C K]$) is then computed in STIFF. (A call from STIFF to INTER is made to comoute the required element integrals.) The element stiffness matrix is then adjusted in ADJUSK if any of the elenent nodes are roller supported $(1 T Y P E=1)$. The matrix is adjusted to the directions parallel and pernendicular to the roller support. The element matrix is then distributed to the system matrix in DI'TK. The mass matrix is computed and distributed in subroutine MASS. This element data are then placed on loaical tape 12 temporarily for later use in determining the stress matrix.

This procedure is continued until the first element is reached whose largest node number exceeds the node numbers in core. At this time, the completed stiffness matrix. ($\mathrm{I}=1, \mathrm{KEY}-1$) is printed, if desired, in subroutine PRMK and the completed stiffness data written off or o logical Tape 10. The remaining data are moved un in core, more node and adjacency di.a taken into core, and the coniputations continued until all the elements have been treated. In addition, the highest main diagonal "frequency" is computed as the stiffness data are completed. This data are required for choosing integration time steps and are discussed further in a later section.

Segment LIF

This routine is used to detemine the elastic stress displacement matrix required for stress computation for those outnut elements which are composed of linear elastic material. Basically, the stresses are computed at the centroid of each element by the relation (see Ref. 3)

$$
\begin{equation*}
(0)=[S](x) \tag{15}
\end{equation*}
$$

where (x) is t h, aent displacement vector. For those output elements which are composed of nonlinear material, the element stresses are required in the inteqration computation. Thus, this step is omitted for these elements. The development of the [S] matrix for the crack element is also presented in Appendix C.

Seoment LIG

Subroutine L.1G is used to form the pressure coefficients CPRESS. These coefficients are used in LINK2 to convert anplied pressure data to equivalent nodal forces. The coefficients are computed in subroutine COEF and are based upon the relations presented in Pef. 3.

Seament LII

This subroutine is used to cluster the stiffness dita developed in LIE into nodal clusters of 100 each and store these on logical Tape 10 for use in the integration step. In addition, the nonlinear elements are clustered, with all those elements affecting any node in a cluster filed together.

Segnent LIJ

This routine is used to generate the initial nomlinear element tape required in LINK2 to comnute the nonlinear nodal forces. This data is generated for all the elements composed of potentially nonlinear materials. The specific computations are presented in P.ef. 1 and also in the description of subroutine PLASTF.

4.0 Description of LIMK2

The foliowing paragraphs resent a description of the operation of the integration (or solution) s.ction of the SLAM Code. The motion history of all the nodes as well as whit of the embedried structure (if any), are stored on tan for possible use in Lllik3 or with any plotting programs, if desired. Output is also printed out at sele ced time intervals during the integration.

The equations of motion for both the nories and the ensedded structure are presented in Section I in Equations (1) and (8), respectively. To correspond to the notation used in the computer program, the resisting forces at Node i can be written as

$$
\left\{\begin{array}{c}
R \tag{16}\\
F u i \\
R \\
F i v i
\end{array}\right\}=\sum_{j=1}^{s}\left[\begin{array}{cc}
u u & u n \\
K i j & K i j \\
w u & w v \\
K i j & K i j
\end{array}\right]\left\{\begin{array}{c}
u_{j} \\
w_{j}
\end{array}\right\}-\left\{\begin{array}{c}
n u \\
F i \\
m v \\
F i
\end{array}\right\}
$$

where (Fi, Fi) are the horizontal and vertical force components of the correction formes to account for the difference in material behavior from the linear elastic case. Ine \ddot{n} matrix of Eqliation (16) represents the usual stiffness matrix for linear elestic systems. The K terms multiplied by the corresponding node displacuments (u_{j}, w_{j}) represent the elastic resisting forces developed by the distortion of the elemants surrounding a particular node 1. The summation in Equation (16) is taken over all of the nodes adjacent to the particular node \underline{i}, plus the node \underline{i} itself.

The numerical integration procedure is a simple one and is based on the wellkno:sn Newnark Beta method (Ref. 2) with the parameter B chosen to be zero.

Thus the procedure is basically a predictor method of numerical integration. To simplify the description further, the equations of motion can be writien simply as
(a) $N \mathrm{~F}=\mathrm{F}^{k}-F^{R}$
(b) $\pi_{s} x_{s}+K_{s} x_{s}=-F^{\top} F^{R}+\eta_{s}^{A}$
where Q_{s}^{A} are the anplied (if any) structural modal loads. At some time t, let it be assumed that the complete solution is known, that is, $x(t)$ and $x(t)$ are specified together with all of the previous history required. Knowing this data, the applied and rosisting forces developed at this time, t, can be computed (the details of which will be discussed in a later description). From Equation (17), the node and structural mode accelerations, $x(t)$ and $x_{s}(t)$, can then be calculated. The objective is no: to detemine the displacements and velocities at the following instant of time, or $x(t+\Delta t)$ and $x(t+\Delta t)$, as well as the corresponding structural terms. This is done by the extradolation formulae

$$
\begin{align*}
& x(t+\Delta t)=x(t)+x(t) \Delta t+x(t) \frac{(\Delta t)^{2}}{2} \tag{18}\\
& x(t+\Delta t)=x(t)+(x(t)+x(t+\Delta t))\left(\frac{\Delta t}{2}\right)
\end{align*}
$$

Note that in determining the velocities at $(t+\Delta t)$, the accelerations at this time, $x(t+\Delta t)$, are required. For forces $\left[F^{A}, F^{F}\right.$ of Equetion (17)] that are dependent only on time and displacements (no velocity denendence), the procedure is to compute the predicted displacements, $x(t+\Delta t)$ and $x_{s}(t+\Delta t)$, and to use these to obiain the predicted accelerations $x(t+\Delta t)$,
which can then be used to compute the predicted velocities, $x(t+\Delta t)$. A simplified flow diagram for this procedure is shom in Figure 4. Prior to discussing the details of the integration phase of the solution, a description of the tape usage is presented.

Tape Usaue:

There are four primary files used in the integration step of the solution, these tanes being labeled as follows:
(a) The Pestart Tape (Logical 8) which contains all the data necessary for restarting the problem.
(b) The Stiffness Tane (Logical 10 and/or 1) which contains the K matrix of Equation (1).
(c) The Nonlinear Element Tapes (Logicals 12 and 3) which contain all data required to combute the nonlinear forces, and
(d) The History Tape (Logical 14) which contains the motion history records for a selected set of elenent. node and structure data.

The restart tape contains all the problem parameters associated with both the frec-field and the structure wgether with the motion (displacement, velocity and acceleration) for all nodes and structural modes at a particular time. This tape is written at a specified (by input dita) number of time intervals during the integration. To restart the probiem at a later date, these data are read into the code and the integration continued.

The history data tape contains a restricted set oi data for all time steps through the integration, thus providing a "contiruous" record of the motion history. This tane can then be used later as iryut to a plotting program to automatically plot the results generated.

As mentioned previously, the element tanes contaif. all the data required to conpute the nonlinear correction forces for those clements composed of
(potentially) nonlinear materials. During the acceleration computation Initfated by the call to ACCEL, the nonlinear data from the previous time step is read off one logical tane, nonlinear forces computed, the new stress-strain state for each nonlinear element updated, and written off onto a second logical tape. For the following time step, this second tape is used as input, the data again undated anci written off back onto the first tape. This procedure is continued through the integration prociss alternately reading and writing the elenent tapes to continually update the element data. The two tanes used to store the element data are Logicals 3 and 12.

Integration Step Size

In the generation of the elastic stiffness tables performed in Link1, a pseudo-period is detemined by the following method. The equations of motion for each node (Equation (1)) can be written as

$$
\begin{equation*}
[M]\{\ddot{x}\}+[K]\{x\}=\left\{F^{A}\right\}+\left\{F^{N}\right\} \tag{19}
\end{equation*}
$$

if typical matrix notation is used. A dynamic matrix can be found from

$$
\begin{equation*}
(\ddot{x}\}+[M]^{-1}[K](x)=[M]^{-1}\left(\left\{F^{A}\right)+\left(F^{R}\right)\right) \tag{20}
\end{equation*}
$$

where $[M]^{-1}[K]$ is the dynamic matrix, and $[M]$ is a d'agonal mass matrix (lumped mass configuration). If the dynamic matrix is diagonalized, the diagonal terms will, of course, correspond to the elastic frequencies of the system. A reasonable approximation to the highest frequency of the system can be chosen as the largest value of the main diagonal of the dynam! - matrix, avoiding the necessity of diagonalizing the system. A simflar operation is perfomed on the coupled structural equations [fquation (17b)] to chtain the highest frequency for the soil-structure system.

This highest frequency apnroximation is used to deter:ine the shortest period in the system or

$$
\begin{equation*}
T_{\max }=\frac{2 \pi}{\omega_{\max }} \tag{21}
\end{equation*}
$$

where $\omega_{\max }$ is the largest frequencv. The integration interval must be some fraction of this neriod; this fraction being determined by the stability of the integration routine used. For the system used in SLAM Code, it has been found that the time increment should be less than $1 / 18$ of the smallest pseudo-period. The period is printed out in LIIKI, after the stiffness and mass tables are comoleted.

The data read in LK2B (variables ET, KDT and KINT) are used to determine the time increment used. If KDT is set to zem, the time increment used (DT) is taken as the variable read in ET. This is then checked against the minimum time given by

$$
\begin{equation*}
\overline{D T}=T_{\min } / K I U T \tag{22}
\end{equation*}
$$

If $\overline{D T}$ is less than DT as read, the program is halted; otherwise, the integration procedure begins with the time increment as read. If KDT is set to one, the time increment is chosen as the value $\overline{\text { DT }}$ obtained from Equation (22).

Relation Betreen "esh and Intemration Sten Size
As mentioned ahove, the time step required for stable integration is determined by the highest frequency in the system (or highest wave speed). In most problens of interest, the computed response is desired so as to provide reasonable results over a particular frequency range of interest. The low frequency range, in fact, defines the overall size of the mesh since
a suitably long record length is required to adequately defin? the low frequency content. For example, if data are desired around the 1 cps frequancy range, the record lenath should be at least several seconds long. Boundaries (including transmitting or nonreflecting boundaries) must then be placed suitably far from the zone of interest so as not to obtain spurious signals during the time of interest from the mesh boundaries. At the high frequency end of the snectrum, the required mesh or element size can be estimated from the approxinate relation

$$
f=\frac{c}{4 a}
$$

where c is the dilatational wave seeed and a is the dimension of the smallest element in the mesh. If the high frequency response is specified, the size of the elements required can be determined from the above relation.

ACCEL
This subroutine combutes the accelerations at each node in the freefield and for each structural mode at a given instant of time. From Equation (1), the node accelerations are composed of

- applied nodal forces
- nonlinear correction forces
- elastic stiffness forces.

The stiffness forces are detemined by multiplying the stiffness matrix coefficients by the appropriate node displacenent; the stiffness matrix being obtained from tape in blocks or "clusters" of 100 .

The data read off the tape is stored in a buffer area in core (as specified by the COmON/B/ storage allocation). As will be noted in a later description of subroutine PLASTF, this same storage area is used When computing the nonlinear corr-cion forces.

The parameters associated with the stiffness tables have the follcwing significance:

$$
\begin{aligned}
\operatorname{MADJIRP}(I)= & \text { number of nodes adjacent to or connected to a } \\
& \text { particular node (1ess than or equal to } 3)
\end{aligned} \quad \begin{aligned}
& \operatorname{ITYPE}(I)= \text { the type of node (0 is frae in both directions, } \\
& 1 \text { means free in one direction, } 2 \text { means fixed in } \\
& \text { both directions. See description of data input). } \\
& \operatorname{THETA}(I)= \begin{array}{l}
\text { angle of roller sunport, if ITYPE }=1 . \\
\\
\\
\text { description of data innut). }
\end{array} \\
& \text { (See }
\end{aligned}
$$

Reforring to Equation (16), the stiffness foree terns can be uritten for Node i as:

w-equation: $k_{i j}^{N / u_{i}}+k_{i j}^{1 / W} W_{i}+\sum_{j=1}^{N}\left(k_{i j}^{1 / u_{j}} u_{j}+k_{i j}^{N / 1 /}{ }_{j}\right)$
Thus, the stiffness variables in the prooram can be related to [quation (23) by the following table:

The adjacent stiffness values (SADIU to SADWW) are stored in compact form. To deternine the node number associated with these values (the j of Equation (11)), the Table $\operatorname{APADJ}(I, J)$ is used. That is, to determine the force contribution from the first term of, say, SADUU (SADUU(I, 1)), this temm must be multiolied by the u-displacenent of $\operatorname{Node} \operatorname{NPND}(1,1)$. The term IXXADJP refers to the maximum number of nodes that are allowed to be adjacent to any node which is previcusly set to 8 .

In the node force computation, the first step is to determine the pressures annlied to the nodes that are loaded (the node numbers specified by the Vector $\operatorname{IPLOAD}(1, J))$. Up to 1 no nodes can be specified as potentially loaded nodes along a single surface with two such surfaces allowed. The R
and Z coordinates of these nodes are contained in the arrays $P A D$ and $Z A D$ which are maintained in COMON. With minor corrections, an arbitrary number of loade: surfaces may be allowed. This procedure will be described in the discussion of subroutine PRFSS. The pressures aoplied to these nodes are determined by the call to subroutine PRESS. Both the horizontal (PRESSU) and the vertical (PRESS:I) pressures are returned to ACCEL. The PRESS routine is independent of the rest of the program and any routine required for a particular program can be substituted.

The pressures are converted to node point forces by using the coefficients CPRESS which are detemined in LIG and transferred through C0'"10N. For example, if the horizontal applied force to Node j is to be computed, the following relation is used:

$$
\begin{equation*}
F_{j}^{A u}=p_{j-1}^{u} c_{j}^{1}+p_{j}^{u} c_{j}^{2}+p_{j+1}^{u} c_{j}^{3} \tag{24}
\end{equation*}
$$

where p_{j}^{u} is the horizontal prersure at Node j, and the c_{j}^{i} 's are coefficients converting pressures at Nodes $j-1, j$ and $j+1$ to the horizontal force at Node j. The vertical force comoutation is similar, except that the vertical pressures are substituted for the horizontal pressures. The developinent of the coefficients $C_{j}^{i}(i=1,2,3)$ is presented in Ref. 3.

After the pressures are comnuted at all the loaded node points, the nonlinear forces are determined by the call to PLASTF. If the number of nonlinear elements (NUMPEL) are zero, this step is, of course, omitted. In PLASTF, the nonlinear forces are stored in the proper acceleration locations. The node stiffness data is then read and stored into the buffer
storage region (this region was already used in PLASTF to compute the nonlinear correction forces). For this cluster of data, the applied forces developed at all loaded nodes within this cluster are computed. If the node type (ITYPE) is 1 (roller support), the applied force is converted to force components parailel and perpendicular to the roller. The applied node forces are then added to the previously determined nonlinear force components .

The remaining force computation is the elastic stiffness forces which are computed for the cluster in core. This computation is accomplished by multiplying the stiffness data by the appropriate node displacement. Again, this is added to the acce?eration data already generated. The final accelerations for all the nodes within the cluster are fetermined by dividing the azcumulated force data hy the anpropriate node mass. The procedure is repeated for all the node clusters until the accelerations of all the nodes are comn ted.

Prior to reading into core the data for the next cluster, the resisting forces at the nodes attached to the structure (the $k X$ terns minus the nonlinear correction terms) are stored in a separate array for later use in computing the structural accelerations. At the completion of the freefield calculations, the structural accelerations are then determined.

PLASTF

This subroutine is used to comnute the nonlinear correction forces developed by any materia: which exhibits nonlinear or nonelastic behavior. These correction forces are computed on an element-by-element basis with the nonlinearities for each element detemined at each time step. If the
mesh is composed of materials（zones），all of which possess potential nonlinearities，data for all the elements must be stored on the element tapes．If，however，only sone materials in the problem have nonlinear properties，only those elements which are within these zones of materials must be maintained on the element tave．

For each element of interest in this computation，a block of data （ 61 words）is used for transmission and updating of data．The buffer area （Conto $⿴ 囗 十 / B /$ ）contains space to accept 78 elements at one time into core． Thus，the element tapes are blocked in clusters of 78 elements．In each pass（integration step）through PLASTF，the required data is read in from the input tape，a cluster at a time，undated，and written onto the output element tape．The next time step uses this output tape as input，updates and generates a new output tape which was the previous input tape，etc．

The computation of the nonlinear correction forces is based on the following analysis（Ref．1）．The stress－strain relation for the nonlinear materials considered is

$$
\begin{equation*}
(\sigma)=[c]\left(\left\{\varepsilon \varepsilon^{\top}\right)-\left\{\varepsilon^{N_{j}}\right)\right. \tag{25}
\end{equation*}
$$

where $\left\{\varepsilon^{\top}\right\}$ is the total strain vector $\left\{\varepsilon_{r}, \varepsilon_{\theta}, \varepsilon_{z}, \gamma\right\},\left\{\varepsilon^{N}\right\}$ is the non－ linear strain vector，［ C ］is the elastic stress－strain relation，and $\{\sigma\}$ is the stress vector $\left.\sigma_{r}, \sigma_{\theta}, \sigma_{z}, \tau\right\}$ ．The total strains are related to the node displacements by

$$
\begin{equation*}
\left\{\varepsilon^{\top}\right\}=[B]\{x\} \tag{26}
\end{equation*}
$$

where $\{x\}$ is the node displacement vector $\left\{u_{i}, w_{i}, u_{j}, w_{j}, u_{k}, w_{k}, u_{1}, w_{1}\right\}$ ， u and w are the node displacements as before，and B is a matrix defined by the element ge smetry．If the element is a triangle，the ode displacement
vector is a (1×6) array with the last two elements (Node 1) missing. Thus, the B matrix is either a (4×6) or (4×8) array depending upon whether the element is triangular or rectangular.

The element nonlinear correction force can be detemined by the relation (Ref. 1)

$$
\begin{equation*}
\left(R^{N}\right)=[P]\left(\varepsilon \varepsilon^{N}\right) \tag{27}
\end{equation*}
$$

where $\left\{R^{N}\right\}$ is the vector $\left\{R_{i}^{n u}, R_{i}^{n v 1}, \ldots.\right)$ and is either a (1×6) or (1×8) array depending on the element shape. Once the element nonlinear correction force is detemined, it is merely distributed to the nodes of the element. The total nonlinear correction force $\left\{\mathrm{F}^{N}\right\}$ of Equation (2) is determined as the sum of all the element nonlinear forces surrounding the nodes.

The procedure followed in PLASTF is then fairly straight fonvard. At any time, t, the current node displacements as well as the past history of the elements are known (or at least all the data that are required is maintained). The object is to detemine the nonlinear strain vector $\left\{\varepsilon{ }^{N}\right\}$ for each element, which depends unon the particular constitutive law of the element material. The element cluster data fron the previous time increment is read into the buffer region in core.

The data on this tave is the following:

$$
\begin{aligned}
\text { NUMCEL }= & \text { number of elements already investigated plus the } \\
& \text { number of clements being read in this cluster } \\
\text { NELBUF }= & \text { number of elements being read in this cluster } \\
\text { NOOFEL }= & \text { original element number read in from cards } \\
\text { IZONE }= & \text { counter describing which material zore the element } \\
& \text { lies in }
\end{aligned}
$$

$$
\begin{aligned}
\text { NP }= & \text { node numbers of the element nodes } \\
B= & B \text { matrix of Equation }(26) \\
\text { EPSTI }= & \text { total strain vector at centroid of element from } \\
& \text { previous time increment } \\
\text { EPSPI }= & \text { nonlinear strain vector from previous time step } \\
\text { SIGI }= & \text { previous stress vector } \\
\text { SUM }= & \text { general data anplicable to each material which must } \\
& \text { be used for that naterial analysis. }
\end{aligned}
$$

The next step is to determine the $\{x\}$ vector of Equation (26) from the knom node displacements (u, w). If a node is on a roller support (ITYPE=1), the value of u is taken in the direction of the roller while w is maintained as zero. The total strains at the current time, EPSTI, are computed from Equation (26). With this data, entry is made into the material subroutines (MISES, COUL'IR, COMPCT or IICOUL) depending on the value of the parameter IPLAST. The current values of the various parameters are returned from the subroutine and the necessary data updated.

The element nonlinear forces are then computed (FPLAST) from Equation (27). These forces are then stored in the proper node acceleration locations (UDDN, MDDH). The new data are then written off onto the element update tape.

MISES

This routine is used to determine the current stress and strain state for a material satisfying the Mises yield condition (Prandtl-Reuss flow equations) with arbitrary strain-hardening properties. The yield surface Is defined by the mannitude of effective stress

$$
\begin{equation*}
S=\frac{1}{\sqrt{2}}\left(\left(\sigma_{r}-\sigma_{\theta}\right)^{2}+\left(\sigma_{\theta}-\sigma_{>}\right)^{2}+\left(\sigma_{z}-\sigma_{r}\right)^{2}+6 \tau^{2}\right)^{1 / 2} \tag{28}
\end{equation*}
$$

The strain hardening is defined by linear segments as shown in Fig. 5. Up to 10 segments are provided for and these segnents are defined by the parameters $\operatorname{SSTAR}(J)$ indicating the effective stress at the beginning of the segnent and HSTAR (J) indicating the slone of the seament.

If the previous stress-state lay on the yield surface, the plastic strain-rate vector is defined from the usual nomality condition. If the plastic flow occurring over the increnent is assumed to follow the initial strain-rate vector, the plastic strain increments can be written as

$$
\begin{equation*}
\left\{\Delta \varepsilon^{P}\right\}=\Delta e^{P}\left\{\dot{\varepsilon}^{P}\right\}=\frac{\Delta e^{P}[G]\{\sigma\}_{i-1}}{2 s_{i-1}} \tag{29}
\end{equation*}
$$

where $\left\{\Delta \varepsilon^{P}\right\}$ is the Dlastic strain increment vector, $\left\{\dot{\varepsilon}^{P}\right\}$ a vector proportional to the plastic strain-rate vector, s_{i-1} is the effective stress at the beginning of the increment, $\{0\}_{i-1}$ the corresponding stress-state, Δe^{P} the increment in effective nlastic strain and G a matrix defined by

$$
[G]=\left[\begin{array}{rrrr}
2 & -1 & -1 & 0 \tag{30}\\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
0 & 0 & 0 & 6
\end{array}\right]
$$

The total effective plastic strain is then given by

$$
\begin{equation*}
e^{P}=\Sigma \Delta e^{P} \tag{31}
\end{equation*}
$$

where the sum is obtained by adding the effective strain increments developed during each time increment.

The procedure to determine the current stress state from the previous known state is as follows: A fictitious stress state is first comnuted
by assuming that no new plastic strairis will occur ovir the time increment. If this were the case, the new stress state would be

$$
\begin{equation*}
\{\bar{\sigma})_{i}=[c]\left(\left\{\varepsilon \varepsilon_{i}^{\top}-\left(\varepsilon^{p}\right\}_{i-1}\right)\right. \tag{32}
\end{equation*}
$$

where the subscript \mathbf{i} refers to the current time step. The effective stress associated with this state, \bar{s}_{i}, is obtained from Equation (28). If $\bar{s}_{i} \leq s_{i-1}$, then roo yielding took nlace and the barrod state is the actual state. In this case, $\left\{\varepsilon^{N}\right\}_{i}=\left\{c^{p}\right\}_{i}=\left\{\varepsilon^{P}\right\}_{i-\}}$. (Note that for this material, the nonlinear strains correspond to the plastic strains and the sunerscripts N and P are interchangeable.) If $\bar{s}_{i}>s_{i-1}$, then the fictitious stress state is inadmissable and a current state mast be fomid, together with the amount of increased yielding. The new stress state is given by

$$
\begin{equation*}
\left\{\sigma_{i}\right\}=[c]\left(\left\{\varepsilon^{T}\right\}_{i}-\left\{\varepsilon^{r}\right\}_{i-1}-\Delta e^{p}\left\{\dot{\varepsilon}^{p}\right\}_{i-1}\right) \tag{3}
\end{equation*}
$$

where it is assumed that yielding follows the initial strain rate vector. From Equations (32) and (33), the correct stress state is

$$
\begin{equation*}
\{\sigma\}_{i}=\left\{()_{i}-\Delta e^{p}[c]\left\{\varepsilon^{P}\right\}_{i-1}\right. \tag{34}
\end{equation*}
$$

This new stress state mist also lie on the yield surface, that is, the new effective stress must satisfy

$$
\begin{equation*}
s_{i}=s_{i-1}+H \Delta e^{p} \tag{35}
\end{equation*}
$$

Substituting Equation (34) into Equation (28) and equating the result to Equation (35), the following relationship can be obtained to determine the plastic strain increment,

ORNENAR

$$
\begin{equation*}
a \delta^{2}-B \delta+\gamma=0 \tag{36}
\end{equation*}
$$

For the plane strain or axisymuntric problen, the parameters of Equation (36) are given by

$$
\begin{align*}
& \delta=\left(E / s_{i-1}\right) \Delta e^{P} \\
& \alpha=A-(H / E)^{2} \\
& B=B+2(H / E) \\
& Y=\left(s_{i} / s_{i-1}\right)^{2}-1 \\
& A=[3 / 2(1+v)]^{2} \tag{37}\\
& B=[3 /(1+v)]\left(1 / s_{i-1}\right)\left(\bar{\sigma}_{r} \varepsilon_{r}+\bar{\sigma}_{6} \varepsilon_{0}+\bar{\sigma}_{z} \varepsilon_{z}+\bar{\tau}_{Y}\right)
\end{align*}
$$

where H is the slope of the effective stress-plastic strain curve (Fig. 5) and E is Young's Modulus. For the nlane stress problem

$$
\begin{align*}
A= & 9 / 4(1+v)^{2}-\left[(2-v)(1-2 v) / 4\left(1-v^{2}\right)^{2}\right]\left[\left(\sigma_{r}+\sigma_{z}\right) / s\right]^{2} \\
B= & {\left[1 /\left(1-v^{2}\right)\right]\left[[(5-4 v) / 2]\left[\left(\bar{\sigma}_{r} \sigma_{r}+\vec{\sigma}_{z^{2}} \sigma_{z}\right) / s^{2}\right]+\right.} \tag{38}\\
& {[(5 v-4) / 2]\left[\left(\sigma_{r} \sigma_{z}+\vec{\sigma}_{z} \sigma_{r}\right) / s^{2}\right]+\left[9(1-v)\left(\vec{\tau}_{\tau} / s^{2}\right)\right] }
\end{align*}
$$

where the barred stresses refer to those computed from Equation (32) and the unbarred stresses to the actual stresses at the beginning of the increment.

In the subroutine, this procedure is followed directly with some minor additions. The variahles SSTA?, ESTAR, HSTAR refer to the effective stress and plastic strain at the beginning of the segment of

Fig. 5 and HSTAR is the forward slope of the segment. The variable NOYILD indicates the number of segments in the yield curve of Fig. 5. Other variables of interest are

$$
\begin{aligned}
\text { SYII } & =\text { yield stress } \\
\text { SMAXII } & =\text { maximum effective stress previously obtained, } \leq \text { SYI } \\
\text { SII } & =\text { the effective stress at the previous time step, } \leq \text { SYI } \\
\text { EEFFII } & =\text { effective plastic strain at the previous time } \\
\text { EPSDII } & =\text { plastic strain rate vector at the previous time step. }
\end{aligned}
$$

The first step in the procedure is to compute the barred stresses of Equation (32). If yielding is to occur (SBAR > SYI1), the remaining procedure is started. If the previous stress state was below the yield surface, the stresses and strains are adjusted to obtain a new previous state lying on the yield surface. The value of δ of Equation (36) is then computed, which, by definition, must be positive. If not, an error flag is detected, data printed out and the probram halted (Cards 1740 to 1950). This usually occurs when the total strain increment $\left(\left\{\varepsilon_{i}{ }_{i}\right\}=\left\{\varepsilon^{{ }^{\top}}\right\}_{i-1}\right)$ is relatively large, so that a solution based on the initial strain-rate vector is obtainable. It can easily be shown that if this increment is small, a solution always exists.

As a further check on the solution obtained, an iteration cycle is then begun to determine an improved value of Δc^{P} (variable DEEFF). If the initial solution is good, obviously only a few cycles need be performed. The iteration cycle is set to continue until the error is computed stress is within 1 percent of the yield surface. This iteration cycle is also needed if, during the increment, the slope of the plas:ic yield curve changes so that adifferent slope H must be used.

This subroutine is used for materials which obey the Coulorib-Mohr yield condition with its associated flow rule (nomality condition). The yield surface is defined by

$$
\begin{equation*}
f=a I_{1}+\sqrt{I_{2}}=k \tag{39}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{1}=\sigma_{r}+\sigma_{0}+\sigma_{z} \\
& I_{2}^{\prime}=\frac{1}{6}\left[\left(\sigma_{r}-\sigma_{0}\right)^{2}+\left(\sigma_{0}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{r}\right)^{2}\right]+\tau^{2} \tag{10}
\end{align*}
$$

and a and k are material properties related to the usual soil properties, the angle of internal friction, ϕ, and cohesion, c. If these pronerties are detemined from a triaxial test series, the parameters of the vield surface may be found by

$$
\begin{align*}
& a=(2 c / \sqrt{3})[\sin \phi /(3-\sin \phi)] \\
& k=(6 c / \sqrt{3})[\cos \phi /(3-\sin \phi)] \tag{41}
\end{align*}
$$

As for the Mises maicrial, the plastic strain rate vectors are obtained from the normality condition, or

$$
\begin{equation*}
\left\{\dot{\varepsilon}^{P}\right\}=a\{I\}+\left(1 / 6 \sqrt{I}{ }_{2}^{\prime}\right)\left[G_{i}\right]\{\sigma\} \tag{42}
\end{equation*}
$$

where $\{I$ is a unit vector $\{1,1,1,0\}$ and G is the matrix. defined by Equation. (30).

In princinal stress space, the yield surface is a cone (Fig. 6) whose axis makes equal angles with the stress axes. If we call this axis the Λ line, the angle between une 1 line and the nomal to the yield surface can be found from

$$
\begin{equation*}
\cos \theta=\left[a^{2} /\left(a^{2}+1 / 6\right)\right]^{1 / 2} \tag{43}
\end{equation*}
$$

As before, we proceed by first assuming that no plastic strain occurs over the increment; a fictitious stress state can be comnuted from

$$
\begin{equation*}
\left.\{\bar{\sigma})_{i}=[c]\left(\{\varepsilon\}_{i}\right\}_{i}-\left\{\varepsilon^{p}\right\}_{i-1}\right) \tag{44}
\end{equation*}
$$

If this new stress state lies below or on the yield surface, it is acceptable and is the true state. If it lies above the yield surface, it is inadmissible and the correct stress vector nust be deternined. This new stress state lies on the yield surface also, and once aqain, it is assumed that the plastic strain increment is proportional to the initial strain rate vector. As in Equation (34), the new stress vector is given by

$$
\begin{equation*}
\{\sigma\}_{i}=\{\bar{\sigma}\}_{i}-\lambda[c]\left\{\varepsilon^{P}\right\}_{i-1} \tag{45}
\end{equation*}
$$

where λ is a factor of proportionality to be found. To conform to the notation of the program, a vector (A) is defined by

$$
(A)=\left\{\begin{array}{l}
A_{x} \tag{46}\\
A_{y} \\
A_{z} \\
A_{w}
\end{array}\right\}=[C]\left(\dot{\varepsilon}^{P}\right)_{i-1}
$$

so that

$$
\begin{equation*}
\{\sigma\}_{i}=\{\bar{\sigma}\}_{i}-\lambda\{\Lambda\} \tag{47}
\end{equation*}
$$

The stress invariants of the new stress state are

$$
\begin{align*}
& I_{1}=\bar{I}_{1}-\lambda B_{1} \\
& I_{2}^{\prime}=\bar{I}_{2}^{\prime}-2 \lambda B_{2}+\lambda^{2} B_{3} \tag{48}
\end{align*}
$$

where

$$
\begin{aligned}
B_{1}= & A_{x}+A_{y}+A_{z} \\
B_{2}= & \frac{1}{6}\left\{\left(\vec{\sigma}_{r}-\vec{\sigma}_{\theta}\right)\left(A_{x}-A_{y}\right)+\left(\vec{\sigma}_{\theta}-\vec{\sigma}_{z}\right)\left(A_{y}-A_{z}\right)+\right. \\
& \left.\left(\vec{\sigma}_{z}-\vec{\sigma}_{r}\right)\left(A_{z}-A_{x}\right)\right\}+\vec{\tau}_{w} \\
B_{3}= & \frac{1}{6}\left\{\left(A_{x}-A_{y}\right)^{2}+\left(A_{y}-A_{z}\right)^{2}+\left(A_{z}-A_{x}\right)^{2}\right\}+A_{w}^{2}
\end{aligned}
$$

Substituting Equations (48) into the yield condition, the parameter λ can be found from

$$
\begin{equation*}
D_{1} \lambda^{2}+D \lambda+D_{3}=0 \tag{49}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{1}=\left(B_{3}-a^{2} B_{1}^{2}\right) \\
& D_{2}=\left(2 a^{2} \bar{I}_{1} B_{1}-2 B_{2}-2 a \neq B_{1}\right) \\
& D_{3}=\left(\bar{I}_{2}^{1}-k^{2}+2 a k \bar{I}_{1}-a^{2} \bar{I}_{1}^{2}\right)
\end{aligned}
$$

As for the Mises material, if the strain increment is too large, a solution for λ (which must be positive) cannot always be found.

The previous analysis, of course, is based on the assumption that the initial stress state is not at the apex of the cone. If it is, the strainrate vector is undefined since the stress invariant I_{2}^{\prime} is zero. The procedure used in the subroutine is as follows: It is first assumed that the stress state, $\{\sigma\}_{i}$, remains in the corner. Since the stress is then the same as the previous stress, $\{\sigma\}_{i-1}$, the elastic strain is the same as previously. Therefore, the entire strain increnent had to be plastic, that is,

$$
\begin{align*}
\left\{\Delta \varepsilon^{p}\right\} & =\{\varepsilon\}_{i}^{T}-\left\{\varepsilon_{i}^{T}\right\}_{i-1} \\
& =\{\varepsilon\}_{i}-\left\{\varepsilon^{E}\right\}_{i-1}-\left\{\varepsilon^{P}\right\}_{i-1} \tag{50}\\
& =\{\varepsilon\}_{i}^{T}-\left\{\varepsilon^{p}\right\}_{i-1}-[k(1-2 v) / 3 \alpha E]\{1\}
\end{align*}
$$

If the angle between this strain increment vector and the Λ line is less than θ (defined by Equation (43)), this assumotion is correct.

If the angle is greater than θ, the stress vector $\{\bar{\sigma}\}_{i}$ is used to define the current stresses. The deviatoric component of $\{\bar{\sigma})_{i}$ is reduced until the stress point lies on the yield surface. This new stress point is taken as the current stress point.

In the subroutine, the variable KORNER is used to determine if the initial stress state lies at the cone anex ur not. If KORNER=0, the stress state at the begirning of the incremen \hat{L} is not at the anex; while if KORUER=1, the initial state lies at the apex. The routine follows the analysis outlined above. The only variation is an iteration routine which refines the solution for λ after it is computed from the above procidure.

COMPCT
This subroutine is used to determine the nonlinear strains developed in a material which exhibits irreversible comacting properties under
hydrostatic stress. The analysis used is based upon the constitutive relations developed in Pef. 4. Basically, the approach is more empirical than the previous two constitutive relations but at the same time attempts to reproduce known proderties of actual soils.

The yield surface description of this material has the following form

$$
\begin{equation*}
f=\sqrt{I_{2}^{\prime}}-k_{e}\left(I_{1}\right)=0 \tag{51}
\end{equation*}
$$

where

$$
k_{e}\left(I_{1}\right)= \begin{cases}k-a I_{1}\left[1+\left(I_{1} / 2 c\right)\right], & \text { for }\left(I_{1}+c\right) \geq 0 \tag{52}\\ k+(a c / 2) & , \text { for }\left(I_{1}+c\right)<0\end{cases}
$$

where (a, k) are the Coulomb-Mohr parameters defined in Equation (41) and c is another material parameter which must be snecificd as input. By comparison with the previous analyses, it can be noted that at low values of hydrostatic pressures, the yield condition is similar to a Coulomb-Mohr description, while at high pressures, it approaches the Mises yield criterion (Fig. 7). The parameter controls the shape of the yield surface.
n the subroutine COMPCT, two options are allo:red the user which, in effest, allow him to sinulate four (4) different material constitutive laws. It remains to be seen, however, whether these laws are in fact general enough to simulate real soil properties. In any case, it is up to the analyst to decide which options to use to best suit his purpose. The first option concerns the choice of relation betveen the hydrostatic stress and the hydrostatic strain. Both options allow for the inclusion of hysteretic effects In the hydrostatic comnonent, which is not available in either the Mises or the Coulomb-!'toh: representations.

The second option allows for a choice of flow rule to use with the yield surface. If an associated flow rule is chosen, the usual normality criterion is entu, ed stating that the plastic strain-rate vector is normal to the yield surface if L : material is being loaded. An alternate option can be used, this allowing a monas sociated flow rule to define the strain-rate vector. This nonassociated flow rule uses the Mise flow criterion throughout the yield surface. By noting Fig. 7, this implies that the Mise flow rule applies even for values of the first invariant of stress I_{1} greater than the parameter c. This option plays a significant role in specifying the material behavior and has as much validity as the associated flow rule for real soil materials.
(a) Hydrostatic Properties

As mentioned, two different hydrostatic stress-strain relations are incorporated in the subroutine which we will denote as Case A and Case B. The first relation (Case A) is written as a relation between the bulk modulus and the first stress invariant (I) or

$$
K_{L}=\left\{\begin{array}{l}
k_{0}-k_{1}\left(I_{1}+\gamma c\right)+k_{2}\left(I_{1}+\gamma c\right)^{2}, \text { for }\left|I_{1}\right|>\gamma c \tag{53}\\
\left(K_{0}-\gamma c K_{1} / 4\right)+\left[\left(k_{1} / \gamma c\right)\left(I_{1}+\gamma c / 2\right)^{2}\right], \text { for }\left|I_{1}\right| \leq \gamma c
\end{array}\right.
$$

where K_{L} is the bulk modulus for the loading case (that is $\mathrm{I}_{1}>0$), and K_{0}, K_{1}, K_{2} and γ are material parameters. For an unloading situation ($\dot{I}_{1}<0$), the bulk modulus is defined as

$$
K_{u}=\left\{\begin{array}{l}
K_{0}-K_{1} I_{1}+K_{2}\left(I_{1}\right)^{2}, \text { for }\left(I_{1}+I_{1}^{L}\right)<0 \tag{54}\\
K_{4}\left(1-a I_{1} / k\right)^{1 / 2}, \text { for }\left(I_{1}+I_{1}^{L}\right)>0
\end{array}\right.
$$

where

$$
K_{4}=\left[K_{0}+K_{1} I_{1}^{L}+K_{2}\left(I_{1}^{L}\right)^{2}\right] /\left(1+\alpha I_{1}^{L} / k\right)^{1 / 2}
$$

and I_{1}^{L} is another material property. The relationship between K and I is shown in Fig. 8 and was developed to represent data for a particular soil type (Ref 4). The value of I_{1}^{L} is chosen to represent fluid or linear behavior at hioh hydrostatic stresses. Below this value, the material is much stiffer on unloading than on loading.

The second representation of the hydrostatic properties is hased upon a trilinear model as shown in Fig. 9. The unloading modulus (K_{u}) must be greater than the loading moduli $\left(K_{0}, K_{1}, K_{2}\right)$. The parameters I_{1}, I_{1}, K_{0}, K_{1}, K_{2} and K_{u} must be supplied as input data to the code.

In both cases, no information on the tension side is required since no hydrostatic tensile stresses are allowed in the subroutine.
(b) Shear Proverties

As mentioned previously, two different flow rules are specified in the subroutine. The nonassociated flow rule, being simpler, is discusseci first. The first step in the analysis is to divide the stress and strain vectors into their hydrostatic ard deviator components, or

$$
\begin{align*}
& \{\sigma\}=\{s\}+H\{I\} \tag{55}\\
& \{\varepsilon\}=\{e\}+E\{I\}
\end{align*}
$$

where $\{I\}$ is the unit vector $\{1,1,1,0\}$, as before. The stress-strain relation is simply:

$$
\begin{align*}
\dot{E} & =(1 / 3 K) \dot{H} \\
\{\dot{e}\} & =(1 / 2 G)\{\dot{s}\}+\lambda\{s\} \tag{56}
\end{align*}
$$

where K is the bulk modulus, G is the shear modulus and λ is a factor of proportionality (greater than or equal to zero) to account for plastic strain increments.

The invariant relationships are

$$
\begin{align*}
& \mathrm{I}_{1}=3 \mathrm{H} \tag{57}\\
& \dot{\mathrm{I}}_{1}=3 \mathrm{H}
\end{align*}
$$

and

$$
\begin{align*}
& I_{2}^{\prime}=-(1 / 2)\{s)^{\prime}[\mathrm{H}]\{(s) \\
& \dot{I}_{2}^{\prime}=-\{s)^{\prime}[\mathrm{F}](\dot{s}\} \tag{53}
\end{align*}
$$

wiere F is the matrix

$$
[F]=\left[\begin{array}{lllr}
0 & 1 & 1 & 0 \tag{59}\\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

The yield condition can be written as

$$
\text { or } \quad \begin{align*}
& I_{2}^{\prime}=k_{e}^{2} \tag{60}\\
& \dot{I}_{2}^{\prime}=B \dot{I}_{1}
\end{align*}
$$

where k_{e} is a function of I_{1} only and is defined in Equations (51) and (52). The term β is

$$
\begin{equation*}
\beta=2 k_{e} k_{e}^{\prime} \tag{61}
\end{equation*}
$$

where

$$
k_{e}^{\prime}=d k_{e} / d I_{1}
$$

Substituting Equation (56) into (67) and using the relations of Equation (58), the parameter λ may be found from

$$
\begin{equation*}
\lambda=\left(1 / 4 G I_{2}^{\prime}\right)\left\{-B \dot{I}_{1}-(s)^{\prime}[F](\dot{\bar{s}})\right\} \tag{62}
\end{equation*}
$$

where the vector $(\dot{\dot{s}}\}$ is defined as

$$
\begin{equation*}
\{\dot{\bar{s}}\}=2 G\{\dot{e}\} \tag{63}
\end{equation*}
$$

From Equation (56), \dot{I}_{1} can be found from

$$
\begin{equation*}
\dot{\mathrm{I}}_{1}=9 \dot{\mathrm{~K}} . \tag{64}
\end{equation*}
$$

In the subroutine, Relation (62) is used to obtain the value of λ by using the values of the variables at the beginning of the increment together with the known increments in strain.

The develonment for the asseciated flou rule is similar to the above except for the influence of plastic flow on the hydrostatic stresses. The stress-strain rate relations are

$$
\left.\begin{array}{rl}
\dot{E} & =(1 / 3 K) \dot{H}-\lambda k_{e}^{\prime} \tag{65}\\
\{\dot{e}\} & =(1 / 2 G)(\dot{s})+(\lambda / 2 \sqrt{I} \\
2
\end{array}\right)(s) .
$$

Substituting these into Equation (60), the paraneter λ can be found as

$$
\begin{equation*}
\lambda=\frac{\left(-9 K B \dot{E}-(s)^{\prime}[F](\dot{s})\right)}{\left(2 G \sqrt{I_{2}^{\prime}}+9 K_{B} K_{e}^{\prime}\right)} \tag{66}
\end{equation*}
$$

NCOUL
This routine is used for materials whose shear strength transfer is defined by a sinole two-dimensional Mohr envelone, rather than the complex
relations for the general Coulomb-Mohr material defined previously. A Mohr envelope is defined again by the cohesion and friction angle. The element (the zero thickness crack model) has a given orientation defined by the angle of the element to the horizontal. All stresses and strains are rotated to this orientation.

A fictitious stress state is first computed assuming that no shear slip occurs during the increment and that both normal and shear stresses are computed. If the shear stress exceeds the allomable, defined by the relation

$$
\begin{equation*}
\tau_{a l l}=c-\sigma_{n} \tan \phi, \tag{67}
\end{equation*}
$$

the shear stress is then reduced to the allowable. This new stress state is rotated back to the (R, Z) directions and nonlinear "strains" computed from

$$
\begin{equation*}
\left\{\varepsilon^{N}\right\}=\left\{\varepsilon^{\top}\right\}-[c]^{-1}\{\sigma\} \tag{68}
\end{equation*}
$$

These plastic strains although not related to any "flow rule" for the material will yield the correct stress state in the usual calculaions performed in the remainder of the code.

5.0 Special Routines for LINK?

In the integration phase of the program, several subroutines are primarily problem dependent; these routines specifying essentially the loading and boundary inputs to the problem. These routines, therefore, can be added and changed at will to suit the particular problem of interest, and the only concern need be the transfer of the proper data between these routịnes and the calling programs. The specific routines of concern are:

> PRESS - compute any anplied surface pressures
> QUIET - compute quiet boundary motions
> BOUND - innut specific boundary motions
> QGEMER - compute applied qeneralized loadings to the embecided structure.

Subroutine PPESS

Subroutine PRESS must be specified for each problen to be solved. Obviously, some subroutines may be vritton to anply to a wide class of prodlems, but this decision is left to the uar. Basically, the data input to PRESS transferred through the list is the following:

```
MXLIME \(=\) maxinum number of loaded surfaces (limited to 2)
MXLOAD \(=\underset{\text { maximum number of loaded node points on a given }}{ } \begin{aligned} \text { surface }(100)\end{aligned}\)
LONDHP \(=\) the actual number of loaded node points on a surface
LIMES \(=\) number of :urfaces (1 or 2 )
RAD = radial coordinates of the loaded nodes (inches)
```

The output from the subroutine is PPFSSU and PRESSN, the horizontal and vertical pressure components applied to the nodes.

As mentioned previously, the current formulation accepts pressure applied along two loaded surfaces of connected notes. To include several more such loaded surfaces in the problem, only minor changes must be made. In this description, it will be assumed that 11 -loaded surfaces will be allowed and that $N(\leq M)$ surfaces will be used in a particular problem.
(a) The Comton region variables should be changed to $\operatorname{LOADMP}(14), \operatorname{NPLDAD}(1,100), \operatorname{RAD}(M, 100), \operatorname{ZAD}(M, 100)$, $\operatorname{CPRESS}(M, 100,3)$.
(b) The common/A/ region variables should be changed to $\operatorname{PRESSU}(M, 100)$, PRESSW $(M, 100)$. The changes in (a) and (b) will allow up to 100 rodes on each of the M-loaded surfaces. These can be decreased by changing the dimension of these variables as desired.
(c) In the MAIN routine, set MXLINE=M.
(d) In LIG, make sure the proper data for N-loaded surfaces are read from cards (LIMES=N).

The specific pressure routine included in this version of SLAR Code is designed to generate the overpressure history for ground ranges in the 10 to 50 psi region. The pressure pulse is assumed to be a steady one (constant shane) which travels from left to right at a constant shock
velocity (U). The computer time (t) is assumed to start when a ground disturbance reaches the left hand boundary of the mesh. The airblast pulse is then assumed to be delayed by an amount $\left(t_{D}\right)$, such that at a specific time, t, in the computations, the air pressure shock front has reached a range

$$
\begin{equation*}
R=U\left(t-t_{D}\right) . \tag{69}
\end{equation*}
$$

Conversely, at a given range, R, the arrival time, t_{A}, of the shock front is

$$
\begin{equation*}
t_{A}=t_{D}+R / U \tag{70}
\end{equation*}
$$

The parameters of the pressure pulse form are taken from Ref. 9. The input to the problem is specified as the peak overpressure $\left(P_{0}\right)$, the weapon yield (V) and the delay time, t_{D}. At a given ground range $(?)$, the pressure profile is given by

$$
P(t)= \begin{cases}0 & , \text { for } t<t_{A} \tag{71}\\ P_{0} e^{-\alpha \tau}(1-\tau) & , \text { for } t_{A} \leq t \leq\left(t_{A}+t_{P}\right) \\ 0 & , \text { for }\left(t_{A}+t_{P}\right)<t\end{cases}
$$

where

$$
\begin{aligned}
\tau & =\left(t-t_{A}\right) / t_{P} \\
t_{A} & =\text { arrival time (Equation (70)) } \\
t_{P} & =\text { positive phase duration. }
\end{aligned}
$$

The parameters of Equation (71) are defined by

$$
\begin{align*}
& U=1100\left[1+(6 / 7)\left(P_{0} / 14.7\right)\right]^{1 / 2} \\
& a=\left(\log P_{0}\right) / 1.53 \tag{72}
\end{align*}
$$

$$
t_{p}=(M)^{1 / 3}\left[\left(6.25-\log P_{0}\right) / 18\right]
$$

where the units are P_{0} in psi, U in $f p s$, and W in $K T$.

Subroutine OUIET

As discussed in Section I of this report, the quiet boundary condition makes use of the central difference scheme. The data transfered to the subroutine and contained in the list are:

DT	= integration time step
UD,WD	$=$ velocity vectors of all the node points
UDD, YDD	= corresponding acceleration vectors
NUTMP	$=$ number of node points in problem
MAXNP	= maxinum number of node noints
NPTN	$=$ vector converting original numbering scheme to new numbering scheme.

The QUIET subroutine is entered at each time sten in the integretion after all the node accelerations have been computed in ACCEL. The objective is to modify the accelerations of the quiet boundary nodes such that these nodes behave as though other node points exist outside the mesh. Any algorithm desired can be used in place of the one included in this version of SLAM Code.

Subroutine Bounin

This subroutine is used to input any motion time history (either displacements or velocities) to a particular set of node points or a boundary surface. The variables transferred through the subroutine list are:

T	= machine time
MAXNP	$=$ naximum number of node points
NUMMP	$=$ number of node points
UN, WN	$=$ either hule displacement or velocity vectors
NPTN	$=$ vector converting original numbering scirme to new numbering schen?
ISINTCH	$=$ counter to indicate if either displacerents or velocities are specified.

As may be noted from Subroutine LK2B, calls to Subroutine BoUND are initiated both before and after the accelerations are computed in ACCEL. If displacements are to be specified (ISITTCH=1), these should be specified before the node accelerations are combuted. If velocities are to be specified (ISWTCH=2), these should be specified after the node accelerations are computed.

The specific routine included herein is one in wich displacenents are to be specified from data cards. This routine allows specification of the displacement history along a vertical line of nodes in the mesh. Horizontal and vertical displacement records are entered at several depths (up to 4) and displacements computed at the nodes between these depths by linear interpolation. Nodes above the first depth receive the same motion as the first record while nodes belon the last depth receive the sane motion as the last record.

Subroutine OGENER
This subroutine is used to generate the modal forces applied to the embedded structure. Again, any subroutine can be used to satisfy a given problem. The particular one included herein takes specific data read from
cards at given times. These input times are converted to machine time by the parameter TSTART or

$$
\begin{equation*}
\mathrm{t}=\mathrm{t}_{\text {input }}+\mathrm{t}_{\text {start }} \tag{73}
\end{equation*}
$$

For the data spezified, space has been allowed for up to twenty generalized forces (associated with 3 rigid body + the free-field modes) for twenty time periods. For times between these input times, linear interpolation is used, while for times greater than that associated with the last force record, the generalized forces are set to zero. More space can be easily supplied if more digitized force data are to be used as input.

The data transferred to the calling program (ACCEL) through the subroutine list are:

```
MXSEQS = maximum number of modal equations of motion for
    structure
NUMEQS = number of ctructural modal equations
            T = machine time
        QSA = generalized force vector associated with this machine
        time
NUMSTR = embedded structural type.
```


6.0 Description of LiNl 3

As dircussed previously, the output for a selected set of node points and elements as well as the structural rodal coora... ; are stored on Logical 14 for potential use in LINN 3 or for plotting purposes. If the parameter KSPEC in the MANM progran is Set equal to 1 , LINK3 is performed. In LIfk 3 , the shock spectra for a selectad set of free-field node points or structural boundary node points can be conputed. The nodes specified for shock spectra calculations must be from among the nodes whose history has been stored on Logical 14 (originally snecified as the output nodes in LINK2). Not all of the output nosiss need have spectra computed for its generated motion.

Either or both of the ', izontal and veritical shock spectra can be computed for the free-ficiu nodes as well as the structural nodes. For each node point in the free-ficld, the acceleration history is taken from Logical 14, stored in core, and a call to subro: ine SPECTA initiated to. compute the shock spectra. For the strictural boundery node points (if any), the motion history is conputed from modal component histories. The shock spectra is computed as before.

Subroutine SPECTA

The subroutine computes the shock spectra for a given acceleration-time history supplied as input through the subroutine list. The frequency band for spectra computation has been set in the DATA statement from 1 cps to $1,000 \mathrm{cps}$. The shock spectra is comouted fron the solution of the simple linear oscillator with a specified damping subjected to the acceleration input.

7.0 nutput From Code

As discussed previously, two types of output are generated, tape storage and printed storage. In subroutine F0p1, three output parameters are read from cands, namely, IOTAPE, IOPAPE and IOSAVE.

IOTAPE indicates the number of integration steps between tape writes for the motion history onto Logical Tane 14. A selected amount of data generated at each time step, concerned with output elements, output nodes and structural motion is stored pemmently onto this tape for later use (plot and/or analysis).

IOPAPE indicates the number of integration sieps between paper printout of the same data. Usually, printout is not desired as often as the data is written onto the save tape.

The parameter IOSAVE is used to indicate when the entire problem parameters and motions are stored onto the restart tane (Logical Tape 8). This is usually done at the beginning of the problem and at the end of the run. However, if physical tanes are used in the run, breakdoans usually occur due to excessive tane wear during the run. In this case, the save tape should be written more often so that restart can begin at a later time in the run.

The output data that is stored on the tape is data associated with elements, nodes and the embedded structure. The elements for which output is desired are soecified from cards in LIA by the paraneters [HELOUT(I), $1=1$, MELOUT]. The data associated with this are the following:

NELOUT $=$	elenent number
STRESS (4) $=$	stresses at the centroid of the ciement
	$\left(\sigma_{r}, \sigma_{\theta}, \sigma_{z}, \tau\right)$
STRAAX $=$	maximum principal strinss
STRMIN $=$	minimum principal stress
ANGLE $\quad=$	angle of principal stresses from horizontal

The nodes for which output is desired are specified from cards in FORS1 by the parameters [HPNUT(I), $I=1$, MMOUT]. The data associated with this are the following:

$$
\begin{aligned}
\text { MONLD } & =\text { original node number } \\
\text { MONEN } & =\text { new node number } \\
\text { UDISPL, WDISPL } & =\text { horizontal and vertical displacements (inches) } \\
\text { UVEL, WVEL } & =\text { horizontal and vertical velocities (ips) } \\
\text { UACCEL, WACCEL } & =\text { horizontal and vertical accelerations (} q^{\prime} s \text {) } \\
\text { PU,PW } & =\text { horizontal and vertical pressures (psi) }
\end{aligned}
$$

The structural data stored (and printed) are the following:

$$
\begin{array}{ll}
\text { XS(I) } & =\text { modal displacenents } \\
\text { XSD(I) } & =\text { modal velocities } \\
\text { XSOD(I) } & =\text { modal accelerations } \\
\text { QSA(I) } & =\text { modal loads aDplied to the structure } \\
\text { FRSTRC(J) }= & \text { resisting forces develoned at the attached } \\
& \text { nodes to the structure. }
\end{array}
$$

Each time the restart tape or the history tape is written, a message is printed out so that the user can monitor the latest state of the data storage.

The nodes for which output is desire! ere speciried from cards in FORM by the parameters [NPNuT(I), I=1, :apout]. Ti:e data associated with this are the following:

MOOLD	$=$ original nocie number
MONEM	$=$ new node numier
UDISPL, NDISPL	$=$ horizontal and vertical displacements (inches)
UVEL, WVEL	$=$ horizontal and vertical velocities (ips)
UACCEL, WACCEL	$=$ horizontal and vertical accelerations (g 's)
PU,PH	$=$ horizontal and vertical pressures (psi)

The structural data stored (and printed) are the following:

$\mathrm{XS}(\mathrm{I})$	$=$ modal displacements
$\mathrm{XSD}(\mathrm{I})$	$=$ modal velocities
$\mathrm{XSDD(I)}=$	modal accelerations
$\mathrm{QSA}(\mathrm{I})$	$=$ modal loads apmlied to the structure
FRSTRC(J) $=$	resisting forces develoned at the attachere
	nodes to the structure.

Each time the restart tane or the history tape is written, a message is printed out so that the user can monitor the latest state of the data storage.

8.0 Summarv

This renort has attemnted to describe in detail the analysis and program oneration of SLAM Code. The program has been writter to provide maxinum flexibility to the user, making heavy usage of tape files for auxiliary storaqe. This additional flexibility has been obtained at a price of slower operation (additional $1 / 0$ procedures). The code can be easily modified, of course, to soeed up the operation by eliminating much of the tane handling procedures. The user must decide, therefore, which is more inportant to solve his problems.

REFERENCES

1. C.J. Costantino, "Stress Waves in Layered Arbitrary Media", ReDort No. SA15O TP. 68-181, Space and Missile Systens Organization, Norton AFB, California, July 1968.
2. S.P. Chan et al, "Transient Analysis of Forced Vibrations of Complex Structural-Mechanical Systems", Journal Royal Acronautical Society, Vol. 66, pp. 457-460, July $i 952$.
3. C.J. Costantino, "Automated Design of Advanced Hardened Facilities", Peport Ho. BSD-TR-66-256, SDace and Missile Systems Organizations, Norton AFB, California, September 1966.
4. I. Nelson, M.L. Baron, "Investigation of Ground Shock Effects in Nonlinear Hysteretic Media", Paul Neidlinger, Consulting Engineer for Natenways Exneriment Station, Contract Peport S-68-1, March 1968.
5. C.J. Costantino, "Finite Element Adproach to Stress Wave Problems", Journal, Engineerina "echanics Division, ASCE, Vol. 93, p. 153, April 1967.
6. C.J. Costantino, "Two-Dimensional Nave Pronagation Through Nonlinear "edia", Journal of Computational Physics, Vol. 4, p 147, August 1969.
7. J. Isenbera, "Interaction Betveen Soil and Nuclear Reactor Foundations During Earthquakes", Agbabian-Jacobsen Associates, Report No. ORO-3822-5, June 1970.
8. C.A. Miller, C.J. Costantino, "Structure-Foundation Interaction of a Nuclear Power Plant with a Seismic Disturbance", Nuclear Engineering and Design, Vol. 14, December 1970.
9. S. Glasstone, "The Effects of Nuclear Neapons", U.S. Department of Defense, April 1962.

Figure 1. General Configuration

Figure 2. Typical Int rior Node, N, and Surrounding Nodes, S

Figure 3. Example of Crack Elements

Figure 4. Basic Flow Diagram of LK2B Subroutine

Figure 5. Mises Hardening Relationship

Figure 6. Coulomb-Mohr Yield Criteria

Figure 7. Yield Criteria for Compct Material

Figure 8. Bulk Modulus Relation - Case: A

Figure 9. Bulk Modulus Relation - Case: B

APPENDIX A

CONTROL CARDS

APPLINDIX A

CONTROL CARDS

The following sets of control cards are used for a SLAM run:

1. Job Card:
t, STMFZ, Ta, Pb.
$\mathrm{t}=$ title
$\mathrm{a}=$ running tine in octal seconds
$\mathrm{b}=$ job priority 1 to 3 with 1 lowest
2. Account Card: Account (a, b)
$a=I D$
$b=$ Account Number
3. Tape Request for Restart (only needed if tapes are to be saved):

> REQUFST, TAPE $8,{ }^{\star} \mathrm{PF}$. REQUEST, TAPE 14 , ${ }^{*} \mathrm{PF}$. RFQUFST, TAPE 20,
4. SLAM Program:

FILE, TAPE, RT $=W, B T=J, M B L=5120$
STAGE, TAPE, NT, PE, E, VJN $=$ K 2690
OR

$$
\text { AITACH (OLDPL, SLAMI, ID }=\text { ZZGCAM) }
$$

5. Calcomp Tapes

ATTACH (L.IB1, FR801. IB)
ATTACH, LIB2, CAI COMPLIB.
LIBRARY (LIBI, LIB2)
6. ID cards for Miwofiche output (only if microfiche requested)

$$
\begin{aligned}
& \text { ID CARD (TAPE } 99, a, \text { T129, } \$ \text { b } \$, \text { PLFI) } \\
& \text { ID CARD (MIKE, } \$ 8 \$, a, \text { T129, PRFI) }
\end{aligned}
$$

$$
a=\text { Name }
$$

$$
b=\text { Title }
$$

7. UPDATE (F)
8. FTN ($\mathrm{I}=\operatorname{COMPILE}, \mathrm{L}=0$)
9. LDSET (PRESET $=$ ZERO)
10. $\operatorname{LGO}(P L=a)$

$$
\mathrm{a}=\text { number of } 1 \text { ines of output }
$$

11. Save Tapes for Restart (only if required):

> EXIT (U)
> CATALOG (TAPE 8 , SAVE $8, I D=a, R P=10)$ CATALOG (TAPE 14, SAVE 14, ID $=a, R P=10$) CATALOG (TAPE 20, SAVE 20, ID $=a, R P=10$

Note: If the problem is a Restart, then the following cards are required istead of the 3 cards above.

ATTACH (TAPE 8, SAVE 8, $10=$ a)
ATTACH (TAPE 14, SAVE 14, ID = a)
ATTACH (TAPE 20, SAVE 20, $\mathrm{ID}=\mathrm{a}$)
12. Copy output onto microfiche (only if microfiche requested)

REWIND (OUTPUT) COPY (PUTPUT, MIKE)
13.

EOR
14.

EOR
15.

SLAM Dáta
16.

EOF

APPENDIX B
 Data Deck Input

$$
\frac{\text { APPF:IDIX B }}{\text { Data Deck. Innut }}
$$

1. Deck Setuo

The Data Deck is reat from carts in specific subroutines. Generally, five card columns are used for integer nuwbers and ten card columns are used for floating point numbers. The restart condition is determined from the first card by the Parameter KRUN. If KRUN $=0$, an initial run is performed and all data cards are required. If KRUP! $=2$, only the second and third links (integration and spectra calculations) are perfomed. For this condition, hovever, previously calculated data from an initial run must be available from tape, namely, the Restart fane (Logical Tape 8), and the Stiffness Save Tape (Logical Tape 20) which are required as input to the program. The calculations are then continued from the last time on the restart tape (?ast time from previous run) to a nes final time ThaX. The generated history tape (Logical Tape 14) which contains the motion data for the output nodes, the stress data for the output elements and the structural mode historics, can either be placed on a new save tape or the new generated history data can be added to the previous history tape generated from the initial problem run. A data generator is available to generate much of the following data. This is described in Appendix D.

For an initial run (KRUN $=0$), the data deck input format is composed of the following clusters of data:

Data Tape
Subroutine
Restart Condition MAIN Program
Mesh Data
L1A
Pressure Surface Data L1G

Data Type	Subroutine
Run T1me Data	LNK2
Output Node Data	FORM
Pressure Data	PRESS
Output Tape Data	OUTPUT
Boundary Input Motion Data	BOUND
Quiet Boundary Data	QUIET
Shock Spectra Data	LNK3

For a restart condition (KRUN $=2)$, the data deck format is composed of the following clusters of data:

Data Type Subroutine

Restart Condition	MAIN Pro:sram
Run T1me Data	LNK2
Output Node Data	FORM
Boundary Input Motion Data	BOUND
Pressure Data	PRESS
Quiet Boundary Data	QUIET
Output Tape Data	OUTPUT
Shock Spectra Data	LNK3

2. Restart Condition Data

This data is read in the MAIN Program. It consists of the parameters (the card format for this and all other cards is shown in parentheses): KRUN, KSPEC, ANAME $(215,11 \mathrm{~A} 6)$ If KRUN $=0$, initial run; if KRUN $=2$, restart condition and Logicals 8,20 (and possibly 14) are required with card data. If $K S P E C=0$, the shock spectra calculations of LK3 are omitted,

While if $\mathrm{KSPEC}=1$, shock spectra are computed. If $\mathrm{KPLOT}=0$, no CALCOMP plots are generated; if KPLOT $=1$, CALCOMP plots augmented.

ANAME is a program title name.

3. Mesh Data

The Mesh Data is read in Subroutine LIA. It consists of node data, element data, material property data and outhut clement data.

Card Groun	Variabies Fomat
1.0	ANNE (1esh Title) (12A6)
	All these variahle desionations allow the use of alphanmeric ebaracters to aid in data cutnut intorpatation.
1.1	MUTH, NUMEL, ISTMES, IPNI:T (415)
	MHPMP - Number of Niode Poinis (≤ 1000)
	NUP'EL - Number of Elements
	ISTETS - Stress Condition,
	$\begin{aligned} & =0 \text { axisymuctric nroblem } \\ & =1 \text { plane strain oroblem } \\ & =2 \text { plane stress problem } \end{aligned}$
	IPRIIT - Intempdiate orintout of tables in LIA; if $=0$, no orintout
2.0	AlIAT: (Norle Point Data) (12A6)
2.1	$N, P(N), Z(11)$, ITYPE (ii), THITA(N) (I5, 2E10.0, I10, E10.0) (Card 2.1 is reneated Mill times)
	N - Node Point Number
	R - Radial coorifinate (ft), nositive to right
	z - Depth coordinate (ft), positive downard

Card Giroun	Variables	Format
	$\begin{aligned} & \text { ITYPE - Pestraint Condition of Mede, } \\ &=0 \text { unrestrained } \\ &=1 \text { roller support } \\ &=2 \text { fixed node } \end{aligned}$	
	THETA - If ITYPE=1, THEI in the angle (in degrees) of the roller support measured from the horizontal, dositive cloclavise	
3.0	ANMME (Zone or Material Property Data)	(12A6)
3.1	NZONES	(15)
	NZONES $=$ Number of Materials (or Zones) in Problen (<5) (Pemainder of Card Giroup 3 is concerned with data for each zone and is therefore repeated NZONES tires)	
3.2	12, AMAME	(15, 12A6)
	$\mathrm{IZ}=$ Zene Mumber of Material for which Naterial Property Data is to follow	
	AMAME $=$ Material Zone Name	
3.3	IELAST, IPLAST, HGT, E1,, E5	(215, 6E10.0)
	IELAST - Specifies type of elastic stress-strain relation of material. If IELAST $=1$ isotropic $=2$ anisotropic $=3$ linear compressible fluid	
	IPLAC f - Specifies type of nonlinoarity in material stress-strain law, $=0$ linear màterial $=1$ von llises material $=2$ Coulomb-"ohr material $=3$ comnacting material $=4$ crack material.	
	If IPLASTf0, IELAST must equal 1 since only isotronic olestic behavior has been included.	

 WGT - Unit Neight of Naterial (pcf)
 E1, E2, E3, E4, E5 -
 (a) If IELAST = 1,
 El is Young's Modulus (osi)
 E2 is Poisson's Ratio, and
 E3 to E5 are omitted.
 (b) If IELAST=2, these are coef-
 ficients of anisotroaic naterial
 described in Ref. 1, Vol. 1, p. 6.
 (E1=a, E2=\vec{a},E3=b, E.4=y,E5=\vec{u}).
 (c) If IELAST=3, E1 is the fluid
 bulk modulus and E2 to i5 are
 omitted.
 (If IPLAST=0, materia? is elastic
 and remainder of zone daca is
 omitted).
 3.4.1 HNYILD

```
3.4.2
3.4 .3
3.5.1
(SSTAR ( 3 ), \(J=1\), NOYILD)
(HSTAR (J) , J \(=1\), NOYILLI)

> NOYILD - llumber of lineir segments in the material stressstrain combression d; ta ( \(<10\) ) not courting the initial linear segment.

SSTAR - Stress at the beginninn of the linear segnent (psi)

HSTAR - Slope of the linear segment (psi)
(If IPLASTf1, Card Grou: 3.4 is omitted).

COHESN, FRCTA:
(2E10.0)


\begin{tabular}{|c|c|c|}
\hline Card Groun & Variablos & Format \\
\hline & NUME - Element Masher & \\
\hline & IZONE - Zone of Material in Which Element Docurs & \\
\hline & HPI, RPJ. NPK, : PP - Mode Point Numbers of th;o "mies of the Element. If triangular clerent, \(\mathrm{NPL}=0\). & \\
\hline & NCRACK - If 0 recular element if 1 crack tiodel. & \\
\hline & Node ntabers must be in clocirise order for crack modicl. & \\
\hline 6.0 & ANAME (Starting \%ode nata) & (12A6) \\
\hline 6.1 & NU:AST & (15) \\
\hline & NUMST - Number of Storting Nodes for Renuribering Algorithm & \\
\hline 6.2 &  & (1415) \\
\hline & NSTART - liode Niumbers for Start liodes & \\
\hline
\end{tabular}
4. Pressure Surface Data

These data are read in Subroutine LIG. They describe the node points to which pressures will be anplicd (if any).
\begin{tabular}{|c|c|c|}
\hline Card Groun & Variables & Fornat \\
\hline 1.0 & ANAME (loaded Fode Point Data) & (12A6) \\
\hline 1.1 & LIMES & (I5) \\
\hline 1.2 & LOADIP & (15) \\
\hline 1.3 & (NPLOAD(I), I=1, LOAD: \({ }^{\text {P }}\) ) & (1415) \\
\hline & LIMES - Number of Loaded Surfaces (up to two allowed) & \\
\hline & LOAD:IP - Number of Nodes on the Loaded Surface (< 100) & \\
\hline
\end{tabular}

> NPLOAD - Node Point Numbers of the Loaded Surface. Entered in consecutive order starting with the first loaded node point and moving in the direction on the surface such that the outer normal is on the left.
> (Cards 1.2 and 1.3 repeated LINES times)
> (Cards 1.2 and 1.3 omitted if LINES=0)

\section*{5. Initial Stress Data}

The Initial Stress Data is made in LKIJ. Initial stresses are read for NSTRSS elements in the following forms.
\begin{tabular}{|c|c|c|}
\hline Card Group & Variables & Format \\
\hline 1.0 & ANAME (Initial Stress) & (12A) \\
\hline 2.0 & NSTRSS & (I5) \\
\hline \multirow[t]{7}{*}{3.0} & These cards are repeated NSTRSS times & \\
\hline & \begin{tabular}{l}
NEL, (SIGINLJ), J=1,4) \\
(EPSTINLJ), \(\mathrm{J}=1,4\) ) \\
(EPSPINLJ), \(\mathrm{J}=1,4\) ), EFFIN
\end{tabular} & \[
\begin{aligned}
& (15,6 \mathrm{E} 10.0) \\
& (5 \mathrm{X}, 6 \mathrm{E} 10.0) \\
& (5 \mathrm{X}, 6 \mathrm{E} 10.0)
\end{aligned}
\] \\
\hline & NEL \(=\) Element number & \\
\hline & SIGIN \(=\) INITIM STRESS VECTOR & \\
\hline & EPSTIN = Initial total strain vector & \\
\hline & EPSPIN = Initial plastic strain vector & \\
\hline & EFFIN = Initial effective plastic stra & \\
\hline
\end{tabular}

\section*{6. Structural Data}

The Structural Data is read in LK2A. Special structural types have been included and are specified by the counter NUMSTR. If NUMSTR \(=0\), no embedded structure occurs in the problem and only a free-field wave problem is investigated. If NUMSTR \(=1\), the embedded structure is consideret to be a rigid body with three degrees of freedom (two translation
and a rotation). If NUMSTR \(=2\), the structure is a general flexible circular tunnel lining including shell bending according to the inextensional bending theory. If NUMSTR \(=3\), the same circular tunnel model is treated but only horizontal, e.g., motion is included. If NUMSTR \(=4\), a general structural model is treated, with general modal data used as infut.
\begin{tabular}{|c|c|c|}
\hline Card Group & Variables & Format \\
\hline 1.0 & ANAME (Structural Data) & (12A6) \\
\hline \multirow[t]{2}{*}{1.1} & NUMSTR & (15) \\
\hline & (If NUMSTR=0, remainder of structural data is omitted.) & \\
\hline \multirow[t]{2}{*}{1.2} & NMSTNP & (15) \\
\hline & NMSTNP - Number of Nodes Attached to Structure ( 50 ). & \\
\hline 1.3 & ( \(\operatorname{NPSTRC}(\mathrm{I}), \mathrm{I}=1\), NMSTNP) & (1415) \\
\hline \multirow[t]{2}{*}{1.4} & RCG, ZCG & (2E10.0) \\
\hline & RCG, ZCG - Coordinates of c.g. of Structure ( ft ) & \\
\hline 1.5 & ANAME (Structural Type Name) & (12A6) \\
\hline \multirow[t]{4}{*}{2.0} & WEIGHT, ROTARY & (2E10.0) \\
\hline & WEIGHT - Weight of Rigid Structure (1bs) & \\
\hline & ROTARY - Rotary Weight ( \(1 \mathrm{~b}-\mathrm{ft}^{2}\) ) & \\
\hline & (Card 2.0 omitted if NUMSTR +1 ) & \\
\hline \multirow[t]{6}{*}{3.0} & RADIUS, THICK, PCF, EMOD, XNU NBMODE. & (5E10.0,15) \\
\hline & RADIUS - Radius of Cylinder (ft) & \\
\hline & THICK - Thickness of Liner (in) & \\
\hline & PCF - Unit Weight of Liner Material (pcf) & \\
\hline & EMOD - Elastic Modulus of Liner Material & \\
\hline & XNU - Poisson's Ratio & \\
\hline
\end{tabular}

Card Group Variables
KINT - Interval for choosing DT, (usually 20)
KTAPE \(=0\), uses two tapes for stiffnessmatrix\(=1\), use one tape
8. Output Mode Data
1.0 ANMME (output Node Data)(12A6)
1.1WUMOUT, IOTAPE, IOPAPE(315)
NUF:OUT - Nuber of Node Points forWhich output history isdesired (<100)IOTAPE - Number of Intervals betweenOutput Writes onto Logical 14,the Output History Tape (Note thatthe time increment at which recordsare written on 14 determines themaximum frequency attainable inresponse spectra)
IOPAPE - Nu:iber of Intervals between Oulput printing
1.2 [HOOLD(I), \(I=1\), HUMOUT](1415)
NOOLD - Output Node Nuibers (Note that spectra may only be determined for these nodes)
(Card 1.2 omitted if NUMOUT \(=0\).)
1.3 ANAME (Save Tape Data Title)(12A6)
1.4 IOSAVE(15)
IOSAVE - Number of Intervals between Save Tape (Logical 8) Writes.
9. Quiet Node Data
1.0 ANAME (Quiet Boundary Data)(18A4)
1.1 NRIGHT, NBOT, NLEFT, ICORNER(14F5)
HRIGHT - Number of Quiet Nodes in Right Boundary
NBOT - Nulmber of Quiet :iodes in Bottom Boundary
NLEFT - Number of Quict Nodes in Left Boundary
\begin{tabular}{|c|c|c|}
\hline Card Group & Variables & Format \\
\hline & \begin{tabular}{l}
ICORNER - Left Corner Condition \\
\(=0\), Regular Bottom Boundary \\
\(=1\), Quiet Vertically only
\end{tabular} & \\
\hline 1.2 & NNODE ( 1 ), \(\mathrm{I}=1\), NRIGHT & (1415) \\
\hline & NNODE (I) - Fode Number in Bottom & \\
\hline 1.3 & NNONE ( I ) , \(\mathrm{I}=1\), NLEFT & (1415) \\
\hline & NNODE (I) - Node Numbers in Left Boundary & \\
\hline 2.0 & NUMB, IZONE, NPI, NPJ, NPK, NPL, NL, DR, \(D Z\), repeat NUMEL times & (715,2E10.0) \\
\hline & NUMEL - Number of Rectangular Elements on Boundary & \\
\hline & NUMB - Element Number & \\
\hline & IZONE - Material Zone & \\
\hline & IPI, NPI, NPK, NDL - Corner Nodes of Element & \\
\hline & \[
\begin{aligned}
\text { NL } & =0 \text {, Regular Element } \\
& =1 \text {, Cracked Element }
\end{aligned}
\] & \\
\hline & DR - Width of Element ( ft ) & \\
\hline & DZ - Depth of Element ( ft ) & \\
\hline 10. Bounda & & \\
\hline 1.0 & ANAME (Boundary Data) & (12A6) \\
\hline 1.1 & NNODES, IOISPL, ITAPE, ICOMP, IDIM & (1415) \\
\hline & NNODES - Number of Boundary Nodes & \\
\hline & \begin{tabular}{l}
IOISPL \(=0\), both Horizontal and Vertical Record \\
\(=1\), Horizontal Record only \\
\(=2\), Vertical Record only
\end{tabular} & \\
\hline & \[
\begin{aligned}
\text { ITAPE } & =0, \text { Input off Cards } \\
& =1, \text { Input off Tape } 18
\end{aligned}
\] & \\
\hline
\end{tabular}
\[
\begin{align*}
\text { ICOMP } & =1, \text { Displacements } \\
& =2 \text {, Accelerations } \\
\text { IDIM } & =1, \text { Units (in) } \\
& =2, \text { Units (ft) } \\
& =3 \text {, Units } \tag{14I5}
\end{align*}
\]
1.
(NODES(I), \(\mathrm{I}=1\), NNODES)
NODES(I) - Node Numbers
(Orbit Set 2.0, 2.1, and 2.2 if ITAPE \(=1\)
2.0 NRCDS, TSTART, DT

NRCDS - Number of records
TSTART - Starting Time of Problem with Respect to Record (sec)

DT - Time Increment of Record (sec)
2.1 (UDISPL(I), \(I=1\), NRCDS)

Omit if IOISPL=2
= Horizontal Record
2.2 (WDISPLLJ), \(\mathrm{I}=1\), NRCDS)
omit if IDIJPL=1
WDISPL(I) \(=\) Vertical Record
11. Pressure Data

The Pressure Data are read in Subroutine PpESS which computes the pressure applied to the loaded surfaces snecified in subroutine LIf. If the number of LIMES is zero, these data are omitted. Any routine can be used as desired. The specific routine used is described in Section \(V\) of this report.

12. Generalized Force Data

The routine is used to specify the anolied generalized forces to the enbedded structure (if any). As discussed in Section v, the snecific routine is included berein as an examine of its construction.

13. Nutnut Tane nata

These data are read in subroutine 0ififut and concern the record formation on the nutput History Tane (Lonical if).
\begin{tabular}{|c|c|c|}
\hline Card froun & Variables & Format \\
\hline 1.0 & ANAME (nutnut Tane nata) & (12A6) \\
\hline 1.1 & JPCDS & ( 15) \\
\hline & JRCDS - Number of Tirie Histories Already on the nutnut !listory Tane from a Previous rim. Now Procords will be nlaced afoer the last record. & \\
\hline
\end{tabular}
14. Shock Spectra Data

These data are read in Subroutine LK3. All of these data are omitted if KSPEC (MAIN Program) is set to zero.
\begin{tabular}{|c|c|c|}
\hline Card Group & Variables & Format \\
\hline 1.0 & ANAME (Shock Spectra Data) & (12A6) \\
\hline \multirow[t]{8}{*}{1.1} & NNODES, MNODES, LDOFS, NIBETA & (415) \\
\hline & NODES - Number of Free-field Nodes ( \(\leq 100\) ) for which Spectra is desired. & \\
\hline & MNODES - Number of Interaction Nodes ( \(<50\) ) for which Spectra is desired. & \\
\hline & LDOFS - Number of Structural DOFs for Spectra ( \(\leq 50\) ) & \\
\hline & NBETA - Nunber of Damping Values for Spectra ( \(\leq 10\) ) & \\
\hline & ```
ISPEC - =0; Both Horizontal and Vertical
    Spectra Computed
    =1; Only Horizontal Spectra Computed
    =2; Only Vertical Spectra Computed
``` & \\
\hline & \[
\begin{aligned}
\text { IPLTOL - } & =0 ; \text { No On-Line Spectra Plots } \\
& =1 ; \text { Spectra to be Plotted on Line }
\end{aligned}
\] & \\
\hline & IF:TCC - = 1, Calcomp Spectra Plots & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{2.0} & [NODES(I), \(\mathrm{r}=1\), NNODES] \\
\hline & NODES - Free-field Node Numbers \\
\hline & (Card 2.0 omitted if NNODES \(=0\)). \\
\hline \multirow[t]{3}{*}{3.0} & [\(\operatorname{NSTRC}(\mathrm{I}), \mathrm{I}=1, \mathrm{MNODES}\)] \\
\hline & NSTRC - Interaction Node Numbers \\
\hline & (Card 3.0 omitted if MNODES \(=0\)). \\
\hline \multirow[t]{2}{*}{4.0} & [\(\operatorname{NDOF}(\mathrm{I}), \mathrm{I}=1\), LDOFS \(]\) \\
\hline & NDOF - Structural Node Numbers \\
\hline \multirow[t]{2}{*}{5.0} & \([\mathrm{XBETA}(\mathrm{I}), \mathrm{I}=1\), NBETA] \\
\hline & XBETA - Damping Values, \%. \\
\hline
\end{tabular}

\section*{14. Integration Interval}

As mentioned in paragraph 6.0, the integration interval should be chosen such that DT is abnut \(1 / 20\) of the shortest period of the system, which is printed in LINKI. The shortest period is, of course, a function of the elastic modulus of the material as well as the sizes of the elements connecting the nodes. The smaller the elcment size (distance between nodes), the higher the stiffness, and the higher the elastic modulus, the higher the stiffness. The shortest period then corresponds to those nodes which have the highest stiffness.

For yielding materials (Mises or Coulomb-Mohr), the elastic stiffness is the controlling factor on the integration interval. For the compacting media, however, the unloading modulus may be significantly higher than the initial modulus. In this case, then, the time interval must be suitably decreased.

APPENDIX C
CRACK MODFL
\[
\frac{\text { App:tinix } C}{\text { Cract: : idel }}
\]

The model used to treat the crack discontinuity problem is developed from that of the peneral rectamoular elowent. A typical rectanqular elenient is sho:m in Fig. C-1 wich has site dimensions a and b. The analysis for this typical clement begins with the defiaition of the stress-strain relation or:
\[
\begin{equation*}
\{0\}=[c]\left(\left\{\varepsilon^{T}\right)-\left(\varepsilon^{[1 /}\right)\right) \tag{1}
\end{equation*}
\]
where \((\sigma)\) is the elerant stress vector, \(\left\{\varepsilon^{\top}\right\}\) is the total strain vector and \(\left(\mathrm{c}^{\mathrm{H}}\right\}\) is the nonlinear or correction strein vector. The matrix [C] is the usual elastic stress-strain relation fefined in Aeferences 1 and 6 .

The iotal strains in the slement ame releted to the node noint displacements by the relation
\[
\begin{equation*}
\left\{\varepsilon^{\top}\right\}=[B](x) \tag{2}
\end{equation*}
\]

Included in the matrix [8] is the assumstion for the displacement variation over the element. Again, the details of this fomulation are presented in References 1 and 6 .

Applying a virtual dispiacerant to the element mode points, the virtual work can be determined from:
\[
\begin{equation*}
\delta W_{i}=\int_{v}\{\delta \varepsilon)^{\top}(\sigma) d V \tag{3}
\end{equation*}
\]
where the superscrint \(T\) indicatas the transpose of the vector. Substituting Equations (1) and (2) into (3), the virtual internal work is:
\[
\begin{equation*}
\delta W_{i}=(\delta x)^{\top}[k](x)-(\delta x)^{\top}\left(F^{\prime \prime}\right) \tag{4}
\end{equation*}
\]
where the matrix [k] is defined by:
\[
\begin{equation*}
[k]=\int_{v}[B]^{\top}[C][B] d x \tag{5}
\end{equation*}
\]
and the correction vector \(\left\{F^{N /}\right\}\) by:
\[
\begin{equation*}
\left(F^{\prime \prime}\right)=\int_{V}[B]^{\top}[C]\left(\varepsilon^{H}\right) d V \tag{G}
\end{equation*}
\]

Both integrals in Equations (5) and (6) are taken aver the volume of the element.

The external work done by a set of equivalcnit morie point forces during this virtual displacement is simply:
\[
\begin{equation*}
\delta W_{e}=\{\delta x\}^{T}\{F\} \tag{7}
\end{equation*}
\]

Equating the internal to the external viriual work, the equilibrium equations Cor the clement are then:
\[
\begin{equation*}
\{F\}=[k]\{x\}-\left\{F^{\prime \prime}\right\} \tag{8}
\end{equation*}
\]

The procedure for the zero thiclness element begins by first defining an equivalent element strain vector defined by:
\[
\begin{align*}
& \left(\varepsilon_{\varepsilon}^{-T}\right)=b\left\{\varepsilon^{\top}\right\} \\
& \left(\varepsilon^{-N}\right)=b\left(\varepsilon^{N}\right\} \tag{9}
\end{align*}
\]
where \(b\) is the thickness of the rectangular element. The strain-displacement relation becomes (from Equation 2)
\[
\begin{equation*}
\left\{\varepsilon^{\top}\right\}=[B](x) \tag{10}
\end{equation*}
\]
where:
\[
\begin{equation*}
[B]=b[B] \tag{11}
\end{equation*}
\]

Similarly, the stress-strain relation beconas [from [quation (1)]
\[
\begin{equation*}
\{\sigma\}=[C]\left(\left\{\varepsilon^{-\top}\right\}-\left\{\varepsilon^{-12}\right\}\right) \tag{12}
\end{equation*}
\]
where:
\[
\begin{equation*}
[c]=(1 / b)[c] \tag{13}
\end{equation*}
\]
is the equivalent stress-strain matrix. It may be noted that the stressstrain relation [Equation (13)] is now a function of the elemant thickness.

If this modified stress-strain relation is anplied to the stiffness and correction force terms of Equations (5) and (6) and the limit of these terms tal:en as the clement thickness, \(b\), ones to zero (excent that the stress-strain matrix of [Equation (13)] remains finite), both the sti "ness matrix and correction force vector for this zero thiclness elenent can be obtained. The coefficients of the stress-strain matrix, however, must still be chosen, although these tenns are anparently arbitrary.

If the material of the "crack" is considered to be the same as that in the zones about the crack, the only iten that rast be detemined is the magnitude of the coefficients since their magniture relative to each other is detemined. In a particular problen, this, in qeneral, is unimnortant since it only affects the relative displacements of the nodes on both sides of the crack.

If compressive stresses are tranferred through the element, actual computations indicate that Riodes \(i\) and 1 , and Nodes \(j\) and \(k\), move normal
to each other, (nodes may overlan), althouoh the ectual differences are small and unimportant. The actual size of these differences are controlled by the magnitude of the coefficients of the [C] natrix. For example, in a typical problen, if the coafficients of the [i] riatrix are taken to be the same as those of the original [C] matrix for the surrounding materials, the differences during conoression of the element occur in the chird significant figure, clearly an insignificant asount.

During tension and/or slicar of the elenent, the "material" of the crack can be made to follot any of the nomlinear laws of the material catalogue Which limit the amount of tension ant/or slicar that may be transferred. In addition, another simple model that linits these values (Subroutine NCOH) assumas that a simole functional notiol controls the stress transfer.

Figure C-1. Typical Rectangular Element

APPENDIX D
SLAM DATA GENERATOR

\section*{APPENDIX D}

\section*{SLAM DATA GENERATOR}

\subsection*{1.0 Introduction}

The major portion of the input required for SLAM Code concerns the mesh (node and element data) description. These data follow very similar pattern however for most seismic analysis problems. A preprocessor program was written to generate this data.

\subsection*{2.0 Description of Problem}

The SLAM data generator is written to generate the data for the configuration shown in Figure D-1. Only one-half of the problem needs to be considered since a vertical axis through the facility is an axis of as ymmetry.

The user specifies the overall geometry of the problem with the parameters: \(H, W, H_{c}, W_{S}\), the number of soil layers, and the depth to the top of each layer. The details of the mesh are specified in terms of the total number of elements wanted horizontally and the number of element vertically within each of the soil layers.

A mesh is then generated satisfying these requirements. The left boundary is taken as horizontal rollers to satisfy the asymmetric boundary conditions; quiet boundaries are placed along the right boundary; and the bottom boundary is restrained vertically and set to receive the horizontal accelerogram. The node and element numbers start at the upper left and are numbered down one column, to the top of the next column, then down that column, etc. The following card groups required for SLAM Code are generated:

Figure D-1. Configuration for Data Generation
- Control Card
- Mesh Data Groups \(1.0,2.0,5.0,6.0\)
- Pressure Surface Data
- Initial Stress Data
- Quiet Node Data
- Output Tape Data

In addition to the cards Calcomp plots of the mesh are generated.
The structure is defined using the same material as used in SIM Code (Volume 3). The user must also specify: the foundation nodes on the structure (these are use to attach the structure to the free field); and the datum for the elevations used in the structural description (so that its correct elevation relative to the free field may be calculated). All of the required structural data for SLAM Code are generated.

\subsection*{3.0 Interface with SLAM}

The SLAM data generated are printed and may be punched on cards or written on an output tape (Tape 14). The data is written in the required order for SLAM Code with special flags inserted where additional SLAM input is required. These flags are of the form:
******Name of Data Set to be Added******
The following data sets must be added:
- Mesh Data Groups 3.0 and 4.0 (Material Property Data,

Output Element Data)
- Run Time Data
- Output Node Data
- Boundary Data
- Shock Spectra Data

Note that it is possible to run the data generator a second time (with KRUN \(=2\)) and add these SLAM data cards to the end of the first run data set. In this case a complete set of SLAM input data is generated.
4.0 Use of Generator

\subsection*{4.1 Required Control Cards}

The following control cards are required:
1) Job Card:
\(\mathrm{t}, \mathrm{STMFZ}, \mathrm{Ta}, \mathrm{Pb}\)
\(t=\) title
\(\mathrm{a}=\) running time in octal seconds
\(b=j o b\) priority
2) Account Card: \(\operatorname{ACCOUNT}(a, b)\)
\(a=I D\)
\(b=\) Account Number
3) Call in Program: ATTACH(OLDPL, GENI, ID=ZZG CAM)
4) Calcomp Tapes: ATTACH(LIBI, FR80LIB)

ATTACH LIB2, CALCOMPLIB.
LIBRARY (LIB1, LIB2)
ID CARD (TAPE99, a, T129, \$b\$, PLFI)
\(\mathrm{a}=\) Name
\(b=\) Title for Plots
5) Request PF for SLAM Data
(Only if Data is on Tape) REQUEST, TAPE14, *PF.
6)

UPDATE (F)
7)
\(\operatorname{FTN}(\mathrm{I}=\operatorname{COMPILE}, \mathrm{L}=0)\)
8)

LGO
9) Save SLAM Data Tape
(Only if Data is on Tape) CATALOG (Tape14, 9, ID=b)
\[
\begin{aligned}
& a=\text { Tape Name } \\
& b=I D
\end{aligned}
\]
10) EOR
11) EOR
12) Data
13) EOR
\begin{tabular}{|c|c|c|c|}
\hline \# of Cards & Format & Variables & Comments \\
\hline \multirow[t]{4}{*}{1} & 215 & KRUN & \begin{tabular}{l}
\(=0\) Do not write SLAM \\
Data on Punch on Tape 14
\end{tabular} \\
\hline & & & \(=1\) Write SLAM Data on Punch on Tape 14. Omit sets \(2,3,9,10,12\) \\
\hline & & & \(=2\) Write SLAM Data on Punch or Tape 14. Data for sets \(2,3,9,10,12,14\) required \\
\hline & & ITAPE & ```
= 1 Punch SLAM Data if
 KRUN = 1 or 2
= 2 Write SLAM Data on Tape 14
 if KRUN = 1 or 2
``` \\
\hline 1 & 8A10 & ANAME & Problem title \\
\hline \multirow[t]{5}{*}{1} & 1415 & NOD & \# of Nodes in Structure \\
\hline & & MD & \# of Modes \\
\hline & & NBM & \# of Shear Beam \\
\hline & & NEL & \# of Element \\
\hline & & NROT & \# of Rotary inertia \\
\hline \multirow[t]{3}{*}{NOD} & 15,2F10.0 & J & Node number \\
\hline & & \(Y(J)\) & Elevation of node ( \(J\) ) in feet \\
\hline & & W & Weight attached to node J in Kips \\
\hline \multirow[t]{2}{*}{NROT} & 15, F10.0 & J & Node Number \\
\hline & & WR & Rotary inertia attached to node \\
\hline \multirow[t]{4}{*}{NBM} & 15,5E10.0 & K & Beam Nun:ber \\
\hline & & KR & \(=0\) no moment release \\
\hline & & & \(=1\) release at KS \\
\hline & & & \(=2\) release at KE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \# of Cards & Format & Variables & Comments \\
\hline & & KS & Start node \\
\hline & & KE & End node \\
\hline & & A & Cross sectional area \\
\hline & & As & Shear area \\
\hline & & XI & Moment of inertia \\
\hline & & E & Young's Modulus \\
\hline & & G & Shear Modulus \\
\hline NEL-NBM & 315,3E10.0 & K & Spring number \\
\hline & & KS & Start node \\
\hline & & KE & End node \\
\hline & & SL & Lateral stiffness \\
\hline & & SR & Rotational stiffness \\
\hline & & SLR & Coupled stiffness \\
\hline 1 & 15,2F10.0 & IFOUND & \# of free field nodes in structure \\
\hline & & Depth & Depth of burial (feet) \\
\hline & & Datum & Datum for structural elevation in free field coordinate system \\
\hline IFOUND & 14F5 & INODE (I) & Structural node numbers attached to free field \\
\hline 1 & 20AX & ANAME & Mesh Name \\
\hline 1 & 2F5,4F10.0 & NL. & \# of Layers \\
\hline & & NH & \# of elements horizontal \\
\hline & & H & Depth of Mesh (feet) \\
\hline & & W & Width of Mesh (feet) \\
\hline
\end{tabular}

\author{
\# of Cards \\ Format \\ Omit the following if KRUN N.E. 2 \\ Material Properties Data for SLAM \\ Output Element Data \\ Time Data \\ Output Node Data \\ Boundary Data \\ Shock Spectra Data
}

Variables
HS
WS
NV (1)

IZONE (I)

ZL(I)

Comments
Depth of structure (feet)
Width of structure (feet)
\# of element vertically in layer (I)

Material numbers for layer (I)

Depth of layer(I)

\section*{APPENDIX E}

\section*{SAMPLE PROBLEM}

Sample output for the problem discussed in Volume 1 follows.

\footnotetext{
SAMPLC PKOOSLEM 1
COMPLETE PRUGNAH TO AL FUN
RESPONSE SPECTRA TO JE CUTPUT
CALCOMP FLOTS TO EE SENERATED
}

SAMFLC PROBLEM 1
```

NO. OF NOLE POIHTS= 215
NO. OF ELEMONTS = 184
IFRIN:

```
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\frac{\text { NOCE } P T}{i . U .}
\] & TYPE & \[
\frac{\text { THETA }}{\text { TOEGEEZST }}
\] & \[
\frac{24010 S}{(E T)}
\] & \[
\frac{\text { DEPTH }}{(E+1)}
\] \\
\hline 1 & 2 & \(c\). & \(\cdots\) & \(8.0900000 E+01\) \\
\hline 2 & 1 & \(\cdots\). & 3. & 1.0000000E +02 \\
\hline 3 & 1 & \(c\). & c. & \(1.20000 C J E+02\) \\
\hline 4 & 1 & T. & 4. & \(1.40000005+02\) \\
\hline 5 & 1 & 0. & 0. & \(1.600: C C O E+02\) \\
\hline 6 & 1 & ¢. & 6. & 1.8*OCOUOE + C2 \\
\hline 7 & 1 & 0. & -. & 2.00000COE +02 \\
\hline 8 & 1 & C. & ]. & 2.2000000E+02 \\
\hline 9 & 1 & 6. & 0. & \(2.4000050 E+02\) \\
\hline 10 & ! & 0. & 5. & 2.5000050E+TZ \\
\hline 11 & 1 & 5. & 0. & 2.8500000E +02 \\
\hline 12 & 1 & ¢. & 3. & \(3.0000000 E+02\) \\
\hline 13 & 1 & 1. & 0. & \(3.2000000 E+02\) \\
\hline 14 & 1 & C. & 3. & \(3.4000000 \mathrm{E}+02\) \\
\hline 15 & 1 & \(\therefore\). & 0. & \(3.65000 C O E+02\) \\
\hline 16 & 1 & \%. & J. & 3.8 OCCOOE + IV \\
\hline 17 & 1 & 5. & 6. & 4.00COCCOE + C2 \\
\hline 18 & \% & c. & \(4.25000005+01\) & 8.0500000 COT \\
\hline 19 & 0 & \(c\). & \(4.25000600+C 1\) & 1. \(\operatorname{COCOCCOE}+02\) \\
\hline 25 & - & 0. & 4.2500000 CFI & 1.2C00COOE O O \\
\hline 21 & 0 & 0. & \(4.25000 C C E+01\) & 1.4~00000E +02 \\
\hline 22 & \(\checkmark\) & S. & 4.2500 C0E + C1 & 1.60000JUETJZ \\
\hline 23 & = & 6. & \(4.2530000 \mathrm{E}+01\) & \(1.8000000 \mathrm{E}+32\) \\
\hline 24 & t & i. & 4.255000CE + J1 & 2. OCCCLOCEFOZ \\
\hline 25 & 6 & c. & \(4.2500000 \mathrm{E}+61\) & 2.200C000E+12 \\
\hline 26 & \% & 0. & 4.25000tOEFCI & 2.4ECLCOUETJZ \\
\hline 27 & \(\checkmark\) & 6. & \(4.2500000 E+C 1\) & 2. 60 C0000E +32 \\
\hline टह & \(\stackrel{5}{2}\) & U. & 4.25J00t0E+C1 & 2.80tJ000E+J2 \\
\hline 29 & & \(\checkmark\). & 4.25000 CCE+01 & 3. CCOCOCJE 02 \\
\hline 36 & c & \%. & 4.25J0TIUEETI & 3. \(200000 J E+\pi / 2\) \\
\hline 31 & c & \(\therefore\). & \(4.250 C O C C E+01\) & \(3.4000000 E+02\) \\
\hline 32 & 2 & c. & \(4.25 J 0050 E+01\) & 3.65 COUTJE+02 \\
\hline 33 & ( & \(c\). & \(4.25000 C C E+C 1\) & 3.8 CCOODOE +02 \\
\hline 34 & I & T. & 4.25 UपCLE+U1 & 4.UCUCUOJETOZ \\
\hline 35 & , & 6. & 8.506こUCOE+ 21 & 8. \(C C O C O O O E+C 1\) \\
\hline 36 & - & \(\cdots\) & -. 5TJUCUTE+01 & 1. 2 U00000E+J2 \\
\hline 37 & , & 6. & \(3.5 J 00600 E+61\) & \(1.2000000 E+02\) \\
\hline उह & & C. & 9.50J0CUTEFJI & 1.4T00000E*UZ \\
\hline 39 & 0 & i. & 3.50060CCEF01 & 1.6000CCOE 02 \\
\hline 45 & - & \%. & 3.50UCUTUEPCI & 1.8UUUTTJEFUZ \\
\hline 41 & & \(c\). & 3.5.966LCE 1 & 2.0000060E+02 \\
\hline 42 & - & T. & 8.51JCUCOE+C1 & 2. 20CTUOJE+UZ \\
\hline 43 & 6 & \(c\). & 3.5000000E+C1 & 2.40000GOE +02 \\
\hline 44 & T & i. & 7.5.00JLCE 01 & 2.6000000E+02 \\
\hline 45 & 0 & \(\cdots\) & 0.51000CCE 01 & \(2.8200000 E+32\) \\
\hline 46 & c & . & 8.500JCTOETOI & 3.पTणUTUTETEZ \\
\hline 47 & 4 & \(\cdots\) & 6.5306000E +01 & \(3.2000000 \mathrm{E}+02\) \\
\hline 46 & 6 & - & 8.5.0TOCTE401 & 3.40006 OJE+CZ \\
\hline 49 & \(\checkmark\) & 6. & 3.5:0COOOE+C1 & 3.6nOCVCOE+62 \\
\hline 50 & C & 0. & 8.5JJCDCOE+C1 & 3.8ट0 \\
\hline 51 & 1 & \(\bigcirc\). & \(8.500 C O C O E+01\) & 4. CCCOCCOE 02 \\
\hline 52 & t & t. & 1.2T50000ETJ2 & \(8.00060005+71\) \\
\hline 53 & 6 & 0. & \(1.27500 C O E+62\) & 1.0CLCOCOE+C2 \\
\hline 54 & 6 & L. & 1.2TSTOLCE+02 & 1.2t 000tJeaje \\
\hline 55 & 4 & 0. & 1.2750000E+62 & \(1.4000000 E+C 2\) \\
\hline 56 & 5 & 5. & 1.2750000802 & 1.5000000EFOZ \\
\hline 57 & - & 0. & 1.275000CE+C2 & \(1.8000000 \mathrm{E}+62\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 36 & 1. & 1.2C50u00t+U2 & 2.0000000ut+ 2
2. 2 C000COF +02 \\
\hline 55 & 3. & \(1.275000 C E+02\) & 2. 2 CCOOCOE +2 \\
\hline ot & - & 1.275 UCOE + C2 & 2.4*00000E + C2 \\
\hline 61 & c. & 1.27500 0 O 02 & 2.650COOOE + C2 \\
\hline 62 & c 6 . & 1.275COUCE+C2 & 2.80000CJE + C2 \\
\hline 63 & 4. & 1.2750000E+02 & \(3.000 C D C O E+02\) \\
\hline 64 & 6. & \(1.2750000+\) C2 & \(3.20 \mathrm{CJOOUE+C2}\) \\
\hline 65 & 6. & 1. \(2750006 E+02\) & \(3.4000000 E+C 2\) \\
\hline 66 & 0. & 1. \(375 \mathrm{~J} 00 \mathrm{OE}+\) O2 & \(3.6000000 E+02\) \\
\hline 67 & c. & 1.2750000E+02 & \(3.80 C C C O O E+02\) \\
\hline 68 & l. & 1.275C0टUE + ¢2 & 4. तROULTOE+J2 \\
\hline 69 & 5. & \(1.703006 C E+C 2\) & \\
\hline 75 & . & 1.7-J0JCOE + ¢ & \(2.90000005+01\) \\
\hline 11 & C. & 1.703COLOE +02 & \(4.0000003 E+71\) \\
\hline 12 & C. & 1.7.00000E+22 & \(6.0000050 E+C 1\) \\
\hline 73 & S. & 1.7:OCUCOE + C2 & 8.0^COCCOE + 1 \\
\hline 74 & - 5 : & 1.75JC000E+02 & 1.JTCUCCOE + ड \\
\hline 75 & 6 c. & \(1.7500000 E+C 2\) & \(1.2006003 E+02\) \\
\hline 16 & - & \(1.7 \pi \pi \square 0 t+52\) & 1.4TCJOCDE + O2 \\
\hline 17 & c. & 1.7.0UC0CE+62 & 1.6CCOOCOE + 32 \\
\hline 78 & - &  & \(1.8005000 E+02\) \\
\hline 19 & ¢ i. & 1.7300000E+C2 & \(2.0060000 \mathrm{E}+02\) \\
\hline S & \(\cdots\) & 1.7JणCCUJE+C2 & 2.2tC00 0e + प2 \\
\hline c 1 & \(\cdots\) & 1.72030CCE+02 & \(2.40 C O O C O E+C 2\) \\
\hline 32 & - & 1.7500000etic & 2.6.00060E+त2 \\
\hline 03 & J. & 1.73JCCCOE +2 & \(2.80600005+02\) \\
\hline 34 & . & 1.7C0CECOE + 52 & \(3.0000000 E+52^{-}\) \\
\hline 35 & . & 1.70006CE+C2 & \(3.2 C 0 C O C O E+C 2\) \\
\hline 86 & 3. & 1.70JJE50E+02 & 3.40EOUTOE+02 \\
\hline 07 & 6. & 1.7036020E+02 & 3.6 COOCOOE +52 \\
\hline हुट & . & I.70UJTTUE+T2 & 3.800 COUJE+TE \\
\hline ty & \(c\). & 1.7:O)CCOE +2 & 4.0060050E +22 \\
\hline 7 & C. & \(2.0333390 E+02\) & \(\overline{0}\) \\
\hline 31 & 0. & \(2.0+333 C O E+02\) & 2.0000060E+C1 \\
\hline 32 & \(\checkmark\). & 2.0833360E+02 & 4.000COEOE + O1 \\
\hline 33 & \(\cdots\) & \(2.08333: 0 E+C 2\) & 6.00200COE 01 \\
\hline 94 & - & \(2.0533300 E+02\) & 8. COTSOTJE+U1 \\
\hline 95 & C u, & 2.03333COE +02 & 1.00000COE 02 \\
\hline 16 & - . & 2. CJ333: \(02+112\) & 1.2000000E +02 \\
\hline 97 & 0. & 2.C:333COE 02 & 1. \(4000000 E+02\) \\
\hline 38 & 3. & こ. 53333C0E+02 & 1.6टएTएT0E + 2 \\
\hline 99 & \(\cdots\) & 2.0833300Et62 & \(1.80000005+02\) \\
\hline \(1{ }^{\text {c }}\) & \(\square\). & 2.L?3S3CTE+ प2 & 2.0000t00E+[2 \\
\hline 1.1 & c. & 2.63333CEE+02 & \(2.20006 C O E+02\) \\
\hline 162 & ¢ c. & 2.6333300E+02 & 2.400t000E+02 \\
\hline 103 & ! & \(2.063336 C E+02\) & 2. \(60 \mathrm{COCCOE}+32\) \\
\hline 16. & 5. & 2.0.33500t+02 & 2.8गT00JE+02 \\
\hline 105 & \(\bigcirc\) ¢. & 2.03333 :CE + C2 & 3. \(\operatorname{CCCCOOOE}+02\) \\
\hline 1.6 & T. & 2.0333300E+C2 & \(3.2000005 E+C 2\) \\
\hline 1.7 & ¢ 1. & 2. \(0+33350 t+\) C2 & \(3.4200 C O O E+02\) \\
\hline 1. 6 & โ & \(2.0533360 E+02\) & 3.600tUE0EFJ2 \\
\hline 1.9 & 5 ¢ & \(2.04333 C O E+C 2\) & \(3.8000000 \mathrm{E}+\mathrm{C2}\) \\
\hline 116 & \(1-\) & 2.05333C0E+C2 & \(4.00000005+C 2\) \\
\hline 111 & \(\checkmark\) c. & \(2.4666700 E+02\) & 0. \\
\hline 1.2 & - & 2.46567 CEE+CL & 2.000tL00E+TI \\
\hline 113 & 6. & \(2.4665700 \mathrm{E}+02\) & \(4.00 C O O C O E+C 1\) \\
\hline 114 & L & \(2.45657 J C E+02\) & 6.0J000CUE+U1 \\
\hline 115 & \(\checkmark\) ¢. & \(2.4566700 E+02\) & \(8.0000000 \hat{e}+1\) \\
\hline 126 & , .. & 2.45657t[E+CZ & 1.00COCTOEFCZ \\
\hline 1.7 & 1 . & \(2.4656760 E+02\) & \(1.2000603 \mathrm{ta}+2\) \\
\hline 118 & \(\cdots\). & C.4556TCLEFLC & 1.400UTUEFTC \\
\hline 1.9 & - \({ }^{\text {a }}\) & \(2.45667 C 0 E+C 2\) & 1. \(60006000+02\) \\
\hline 120 & (. & 2.45567T0E+CZ & 1.850 COUEFTO \\
\hline 121 & - .. & \(2.40567 C 0 E+C 2\) & 2.0000000E + 2 \\
\hline 122 & \% & 2.45657 COE +02 & 2. 20 TOLUUEFI? \\
\hline 123 & 6. & 2.45667 CEE 02 & \(2.4200 C O O E+02\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 124 & \(\bigcirc \quad 0\). & 2．4666／lCt＋02 & 2．6U0L0UULT02 \\
\hline 125 & 0 6． & 2．4666700E＋C2 & 2．8CTOOCOE＋02 \\
\hline 126 & ． & 2．4066706E＋C2 & 3．CJ0C000E＋02 \\
\hline 127 & ．． & \(2.46667 C C E+C 2\) & \(3.20000005+02\) \\
\hline 126 & C． & \(2.46667 C 0 E+D 2\) & 3．40tCU00E＋J2 \\
\hline 129 & 6 i． & 2.46667 COE＋し 2 & 3． \(60 \operatorname{COCCOE}+12\) \\
\hline 130 & ． & 2.45667 OEF＋C2 & 3．8tणtण00t＋Jट \\
\hline 131 & \(c\). & \(2.4666700 E+C 2\) & \(4 . \operatorname{COCOCLOE}+02\) \\
\hline 132 & ［． & 2．85000C0E＋［2 & 0. \\
\hline 133 & 1. & 2.850 CCCCE＋C2 & 2．0000000E＋01 \\
\hline 134 & L． & 2．85000C0E＋C2 & 4．0tCOOJ0E＋01 \\
\hline 135 & ． & \(2.8500660 E+C 2\) & \(6.00000 C C E+C 1\) \\
\hline 136 & \％． & 2．855CUJEE＋ 52 & 8．0．CTJCJE＋U1 \\
\hline 137 & \(i\) 6． & 2.8500 CCOE +02 & 1．0COCOOCE＋ 22 \\
\hline 138 & \(t\)［． & \(2.5550500 \mathrm{E}+02\) & 1.200000 EE4T2 \\
\hline 139 & 0 L． & \(2.850 \mathrm{COCOE}+\mathrm{C2}\) & 1．4COOOLOE＋02 \\
\hline 146 & ． & 2．855J0CLE＋J2 & 1．5UTOUTOE＋72 \\
\hline 141 & 0. & \(2.850000 C E+C 2\) & \(1.8000000 E+02\) \\
\hline 142 & \％ & 2．850 2000 E＋02 & 2．estectueter \\
\hline 143 & C ．． & \(2.85000 C O E+C 2\) & 2．21000：0E＋72 \\
\hline 144 & 0 － & \(2.85] 0060 E+C 2\) & 2．4CTOCUDE＋C2 \\
\hline 145 & ¢ & \(2.85004 C O E+C 2\) & \(2.6003000 E+02\) \\
\hline 146 & \(\checkmark\) ， & \(2.8590000 E+C 2\) & \(2.8000000+72\) \\
\hline 147 & ． & \(2.8500000 \mathrm{E}+62\) & 3．0nCOCCOE 02 \\
\hline 148 & ¢ C． & 2．8500JTEE＋L5 & 3．2CTCTEDEFE2 \\
\hline 149 & \(i\) ． & 2．8500．30E＋C2 & \(3.4000000 E+22\) \\
\hline 150 & ¢ C ． & 2.850 CCCOE +02 & \(3.600000 \mathrm{JE+J2}\) \\
\hline 151 & 0 －． & \(2.8500000 \mathrm{E}+\mathrm{C} 2\) & 3． \(20000000+02\) \\
\hline 152 & ． & 2．85J0Lし0E＋12 &  \\
\hline 153 & 0. & \(3.2333300 E+02\) & 0. \\
\hline 154 & ． & \(3.23333005+\) C2 & 2．पCTUOCUE＋U1 \\
\hline 155 & \(c\). & \(3.23333008+62\) & 4． \(\operatorname{C2COCOOE}+01\) \\
\hline 156 & \％． & \(3.23333 C \mathrm{CE}+\mathbb{C 2}\) & 3．गCOCOUCE＋E1 \\
\hline 157 & ¢ 6 & \(3.233330 C E+C 2\) & 8． \(\operatorname{COCOCCDE+1}\) \\
\hline 158 & \％． & \(3.2333300 E+\) E2 &  \\
\hline 159 & c． & \(3.2333300 E+\cup 2\) & 1．206CCCOE＋02 \\
\hline 15 L & T & \(3.23333 C 0 E+C 2\) &  \\
\hline 161 & 0. & \(3.2333360 E+C 2\) & 1． 6 CCCCCOE +2 \\
\hline 162 & 3. & 3．2333300E＋C2 & 1．8TCCOCOE＋ 2 \\
\hline 163 & ． & 3． \(2333300 \mathrm{E}+\mathrm{C} 2\) & 2．CSOCOCOE＊O2 \\
\hline 164 & 0. & 3．2333300E＋C2 & 2．200：000E＋Cて \\
\hline 165 & \(c\). & 3． \(2333360 E+C 2\) & \(2.40000005+02\) \\
\hline 166 & \(\checkmark\) & 3． \(33533505+C 2\) & 2．500tせTUE＋CL \\
\hline 167 & ， & \(3.2333360 \mathrm{E}+62\) & \(2.8600000 \mathrm{E}+\)－ 2 \\
\hline 160 & C & \(3.23353 C 0 E+\) C2 & 3．000CUCTE＋\％ \\
\hline 169 & \(c\). & \(3.23333 C 0 E+C 2\) & \(3.2000000 \mathrm{E}+02\) \\
\hline 170 & \(\checkmark\) ． & \(3.2733300 E+\) C2 & \(3.450 \times 000+52\) \\
\hline 171 & 0. & \(3.2333363 E+62\) & \(3.60 \sim 0000 \mathrm{E}+\mathrm{C} 2\) \\
\hline 172 & \(\checkmark\)－ & \(3.23333006+L^{\text {c }}\) & S．8CCCCUJE＋पट \\
\hline 173 & 0. & \(3.2333300 \mathrm{E}+\mathrm{C} 2\) & \(4.00 C O O C O E+C 2\) \\
\hline 174 & 5. & 3． 51567 T0E＋ 22 & 0. \\
\hline 175 & ． & \(3.6166700 \mathrm{E}+02\) & 2．03CJOOOE＋01 \\
\hline 176 & \％c． & 3．61557ごE＋C2 & पCOCOOJE＋ 1 \\
\hline 177 & \(c\). & \(3.6166700 \mathrm{E}+\mathrm{C} 2\) & \(10 C 0000 E+51\) \\
\hline 178 & C． & 3．61567 CTE＋O2 & －．JT0000EFTI \\
\hline 179 & \(\checkmark\) & 3．6．667CCE +22 & 1．00000c0ctn2 \\
\hline 180 & T． & 3.61657 CEETC & 1．200200Jentz \\
\hline 181 & ． & 3．61667CCE＋02 & 1．4000060E +02 \\
\hline 102 & C． & \(3.61567 C 0 E+02\) & 1．6010000E＋02 \\
\hline 183 & 0. & \(3.61667 C D E+02\) & 1．80600COE＋22 \\
\hline 104 & 0. & 3.6155700 FHC &  \\
\hline 185 & 6. & \(3.6166700 \mathrm{E}+\mathrm{C2}\) & 2．2000000E＋02 \\
\hline 156 & 0. & \(3.6165700 \mathrm{E}+2\) & 2．40ttctoetç \\
\hline 107 & 0. & \(3.6166700 \mathrm{E}+02\) & 2．5000003E＋02 \\
\hline 158 & \(\checkmark\) ） & 3.6155700 T प2 & 2．8C00000E＋0ट \\
\hline 189 & C． & \(3.6166700 \mathrm{E}+02\) & \(3.0000002 \mathrm{E}+32\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 190 & C & i. & S.6166TCOE +0C & 3.200UU00E +02 \\
\hline 191 & 6 & \(\cdots\) & \(3.6160700 \mathrm{E}+02\) & \(3.4000000 E+02\) \\
\hline 192 & 8 & T. & \(3.616670 \mathrm{CE}+\mathrm{CL}\) & \(3.6000000 E+J 2\) \\
\hline 193 & 0 & 0. & \(3.6166700 \mathrm{E}+02\) & \(3.800 C O[J E+02\) \\
\hline 194 & 1 & - & \(3.6166700 E+02\) & \(4.00000005+02\) \\
\hline 195 & \(\frac{6}{2}\) & 0. & \(4.0300000 E+02\) & 0. \\
\hline 196 & \(\tau\) & \% & \(4.0001000 E+C 2\) & \(2.0000003 E+01\) \\
\hline \(1 \rightarrow 7\) & 6 & 6. & \(4.6300000 E+02\) & \(4.000 C O 00 E+01\) \\
\hline 148 & \(\checkmark\) & 0. & \(4.03 J 0000 E+02\) & \(5.00000005+01\) \\
\hline 199 & 6 & \(\cdots\) & \(4.0300000 E+02\) & 8. COCOOOOE +01 \\
\hline 200 & C & 0. & \(4.0000600 E+[2\) & 1.0000000E+02 \\
\hline 201 & 6 & 6 & \(4 . \operatorname{CSJOCCOE+02}\) & 1. \(2000000 E+02\) \\
\hline 2uc & 6 & 5. & 4.0500 ULOE+C2 & \(1.4000000+02\) \\
\hline 2, 3 & 0 & 0. & 4. C30 J000E+62 & \(1.6000009 E+C 2\) \\
\hline 264 & 5 & \(\sigma\). & 4.00J0000E+02 & 1.8500000E+02 \\
\hline 265 & 0 & 0. & 4.0J006COE + [2 & \(2.00 C O O C O E+0\) ? \\
\hline 2.6 & 6 & 0. & 4.0000000E+ प2 & 2. 20000UJE+02 \\
\hline 2.37 & c & 5 & \(4.0200000 E+22\) & \(2.4200030 E+02\) \\
\hline 258 & - & d & \(4.05000 C O E+C 2\) & 2.500JUUE+0さ \\
\hline 209 & 6 & \(\checkmark\) & 4.0.000COE +02 & \(2.8006000 E+02\) \\
\hline 216 & 6 & . & \(4.0500000 E+02\) & 3.00000CJE +02 \\
\hline 211 & 4 & C. & 4.0 OOCOCOE C2 & \(3.2000000 E+02\) \\
\hline 2.2 & - & C. & \(4.0 J 0 \pm J 00 E+62\) & 3.4*TTOUTE + O2 \\
\hline 213 & 6 & 6 & \(4.02000 C D E+02\) & \(3.60000 C O E+02\) \\
\hline 214 & L & * & \(4.0505000+52\) & \%.810COUOE+ +2 \\
\hline 215 & 1 & 6. & \(4.0 J O U C O O E+O 2\) & \(4.0000000 E+02\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLEMENT & ZONE & MPI & NFJ & NPK & \(N P L\) & NCRACK \\
\hline NO. & TVO. & & & & & \\
\hline 1 & 1 & 1 & 18 & 19 & 2 & -0 \\
\hline 2 & 1 & 2 & 19 & 20 & 3 & - 5 \\
\hline 3 & 1 & 3 & 2 C & 21 & 4 & -0 \\
\hline 4 & 1 & 4 & 21 & 22 & 5 & - 8 \\
\hline 5 & 1 & 5 & 22 & 23 & 6 & -3 \\
\hline 6 & 1 & 5 & 23 & 24 & 7 & -0 \\
\hline 7 & 1 & 7 & 24 & 25 & 8 & -0 \\
\hline 0 & 1 & ह & 25 & 26 & 9 & - 0 \\
\hline 9 & 1 & 9 & 26 & 27 & 10 & -0 \\
\hline 16 & 1 & 15 & 27 & 28 & 11 & - 1 \\
\hline 11 & 1 & 11 & 28 & 29 & 12 & -0 \\
\hline 12 & 1 & 12 & 29 & 30 & 13 & - 5 \\
\hline 13 & 1 & 13 & \(3:\) & 31 & 14 & -0 \\
\hline 14 & 1 & 14 & 31 & 32 & 15 & - 5 \\
\hline 15 & 1 & 15 & 32 & 33 & 16 & -0 \\
\hline 16 & \(\pm\) & 16 & 33 & 34 & 17 & - 0 \\
\hline 17 & 1 & 13 & 35 & 36 & 19 & - 0 \\
\hline 16 & & 15 & 36 & 37 & 20 & - 0 \\
\hline 19 & 1 & 2 & 37 & 38 & 21 & -0 \\
\hline 26 & 1 & 2 & 36 & 39 & 22 & - 0 \\
\hline 21 & 1 & 2. & 39 & 40 & 23 & -0 \\
\hline 22 & 1 & 23 & 4 & 41 & 24 & - 0 \\
\hline 23 & 1 & 24 & +1 & 4.2 & 25 & -0 \\
\hline 24 & 1 & 25 & 42 & 43 & 26 & - 0 \\
\hline 25 & 1 & 26 & 43 & 44 & 27 & -0 \\
\hline 7.6 & 1 & 27 & 4.4 & 45 & 28 & -6 \\
\hline \(\therefore 7\) & 1 & 28 & 45 & 46 & 29 & -9 \\
\hline co & 1 & 29 & 45 & 47 & 30 & - 1 \\
\hline 29 & 1 & 30 & 47 & 48 & 31 & -0 \\
\hline 3. & 1 & 31 & 48 & 49 & 32 & -0 \\
\hline 31 & 1 & 32 & 49 & \(5 i\) & 33 & -0 \\
\hline 32 & 1 & 33 & 50 & 51 & 34 & -0 \\
\hline 33 & 1 & 35 & 52 & 53 & 36 & -0 \\
\hline 34 & 1 & 36 & 53 & 54 & 37 & - 0 \\
\hline 35 & 1 & 37 & 54 & 55 & 38 & - 0 \\
\hline 36 & 1 & 38 & 55 & 56 & 39 & - 0 \\
\hline 37 & 2 & 39 & 万E & 57 & 47 & -0 \\
\hline उE & 1 & 4 C & 57 & 58 & 41 & -0 \\
\hline 39 & 1 & 41 & 58 & 59 & 42 & -0 \\
\hline 4 & 1 & 42 & 59 & 50 & 43 & -0 \\
\hline 41 & 1 & 43 & \(\bigcirc\) & 61 & 44 & -0 \\
\hline 42 & 1 & 4. & 51 & 62 & 45 & - 0 \\
\hline 43 & 1 & 45 & 62 & 63 & 46 & -0 \\
\hline 44 & 1 & 46 & 53 & 64 & 47 & - \\
\hline 45 & 1 & 47 & 64 & 65 & 48 & - 3 \\
\hline 46 & 1 & 48 & 65 & 56 & 49 & - \({ }^{-1}\) \\
\hline 47 & 1 & 49 & 66 & 67 & 50 & -0 \\
\hline 46 & 1 & 50 & 67 & 63 & 51 & -1 \\
\hline 49 & 1 & 52 & 72 & 74 & 53 & -0 \\
\hline 5 L & 1 & 53 & 7. & 75 & 54 & -0 \\
\hline 51 & 1 & 54 & 75 & 76 & 55 & -0 \\
\hline 52 & 1 & 55 & 75 & 77 & 56 & - 0 \\
\hline 53 & 1 & 56 & 77 & 78 & 57 & \(-0\) \\
\hline 54 & 1 & 57 & 70 & 79 & 58 & - 0 \\
\hline 55 & 1 & 50 & 73 & 3 C & 59 & -0 \\
\hline 56 & 1 & 59 & उ5 & 31 & 50 & - 0 \\
\hline 57 & 1 & 60 & 21 & 82 & 61 & - C \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 124 & 1 & 134 & \(1>1\) & 152 & 151 & -0 \\
\hline 125 & 1 & 132 & 153 & 154 & 133 & -0 \\
\hline 126 & 1 & 133 & 154 & 155 & 134 & - 0 \\
\hline 127 & 1 & 134 & - 25 & 156 & 135 & -1 \\
\hline 128 & 1 & 135 & 156 & 157 & 136 & - 0 \\
\hline 129 & 1 & 136 & 157 & 150 & 137 & -0 \\
\hline 136 & 1 & 137 & 150 & 159 & \(13 ह\) & -0 \\
\hline 131 & 1 & 120 & 15\% & 160 & 139 & -0 \\
\hline 132 & 1 & 139 & \(16 \%\) & 161 & \(14^{*}\) & - 0 \\
\hline 133 & 1 & 14. & 141 & 162 & 141 & - 0 \\
\hline 134 & 1 & 14. & 162 & 163 & 142 & - 0 \\
\hline 135 & 1 & 142 & 153 & 164 & 143 & -0 \\
\hline 136 & 1 & 143 & 164 & 165 & 144 & -0 \\
\hline 137 & 1 & 144 & 165 & 166 & 145 & -0 \\
\hline 138 & 1 & 145 & 166 & 167 & 146 & -0 \\
\hline 139 & 1 & 146 & 167 & 168 & 147 & - 0 \\
\hline 14 C & 1 & 147 & 163 & 169 & 145 & -0 \\
\hline 14. & 1 & 146 & 2.69 & 170 & 149 & -0 \\
\hline 142 & 1 & 145 & 17\% & 171 & 150 & -9 \\
\hline 143 & 1 & 156 & 171 & 172 & 151 & - 0 \\
\hline 14.4 & 1 & 151 & 172 & 173 & 152 & - 0 \\
\hline i 45 & 1 & 153 & \(1 / 4\) & 175 & 154 & -8 \\
\hline 146 & 1 & 154 & 175 & 176 & 155 & -0 \\
\hline 147 & 1 & 155 & 176 & 177 & 156 & - 0 \\
\hline 148 & 1 & 155 & 177 & 17\% & 157 & - 0 \\
\hline 149 & 1 & 157 & 178 & 179 & 158 & -0 \\
\hline 15. & \(\stackrel{ }{ }\) & 159 & 173 & 185 & 159 & -0 \\
\hline 151 & 1 & 159 & 185 & 181 & 160 & -0 \\
\hline 152 & 1 & \(1 E C\) & 181 & 182 & 161 & - 0 \\
\hline 153 & 1 & \(1 \in 1\) & 182 & 183 & 162 & - 0 \\
\hline 154 & 1 & 162 & 133 & 184 & 163 & - \\
\hline 155 & 1 & \(1 \in 3\) & 154 & 185 & 154 & -0 \\
\hline 156 & 1 & 164 & 155 & 186 & 165 & - 0 \\
\hline 1.77 & 1 & 165 & 186 & 187 & 166 & -0 \\
\hline 15 c & 1 & 1 1ह6 & 137 & 185 & 157 & -0 \\
\hline \(15 \%\) & 1 & \(1 \in 7\) & 135 & 189 & 168 & -0 \\
\hline 165 & 1 & 160 & \(13 ¢\) & 195 & 159 & -0 \\
\hline 161 & 1 & : 69 & 130 & 191 & 17 & -n \\
\hline 162 & 1 & 17 & 171 & 192 & 171 & -7 \\
\hline 163 & 1 & 171 & 1,2 & 193 & 172 & - 0 \\
\hline 164 & 2 & 172 & 173 & 194 & 173 & \(-\pi\) \\
\hline 165 & 1 & 174 & 1.15 & 196 & 173 & -0 \\
\hline 166 & 1 & ! 75 & 175 & 197 & 175 & -0 \\
\hline 167 & 1 & 176 & 197 & 198 & 177 & -0 \\
\hline 158 & \(?\) & 177 & 133 & 197 & 178 & - 0 \\
\hline 169 & 1 & 178 & 199 & 200 & 179 & -0 \\
\hline 17. & 1 & 275 & 2こ1 & 211 & 185 & - 1 \\
\hline 171 & 1 & 146 & 2. 1 & 202 & 181 & -0 \\
\hline 172 & 1 & 131 & 2.2 & 203 & IEट & -0 \\
\hline 173 & 1 & 182 & 2:3 & 204 & 163 & -0 \\
\hline 174 & 1 & 183 & \(2: 4\) & 2 C 5 & 184 & - 0 \\
\hline 175 & 1 & 184 & 2.5 & 206 & 185 & - 0 \\
\hline 176 & 1 & 185 & 2:6 & 2 C 7 & 186 & - 9 \\
\hline 177 & 1 & 1-6 & 2:7 & 208 & 187 & -0 \\
\hline \(17 \%\) & 1 & 1 17 & 2.0 & 205 & 188 & - 0 \\
\hline \(17 \%\) & 2 & 108 & 2.9 & 21. & 189 & -0 \\
\hline 102 & 1 & 189 & 212 & 211 & 190 & -0 \\
\hline 101 & 1 & 196 & 211 & 212 & 191 & -0 \\
\hline 102 & 1 & 191 & 212 & 213 & 192 & - 0 \\
\hline 1 c 3 & 1 & 192 & 213 & 214 & 193 & -0 \\
\hline 104 & 1 & 193 & 214 & 215 & 194 & -0 \\
\hline
\end{tabular}

NU. OF E_ASTIC OUTPUT ELEMENTJ = 9
NO. OF FLZSTIU JUTPUT ELEMENTS=

ZONE PROFERTY DATA
NO. OF ? ONED= 1

ZONE NUMBLF \(=1 \quad 1 \quad\) ELASTIC \(=1\)
PLAST \(=?\) LN_T WEIGHT \(=1.35000 E+92\) PCF CLASIIC MOOULUS 3.47220E+05 PSI FOISSON, 2 रIT IC \(=3.50000 E-0\)

NO. OF OUTPUT ELEMENTS IS 9

ुUTFUT LLCMCNT NOS. LFE -
\(\begin{array}{lllllllll}1 & 17 & 33 & 49 & 65 & 66 & 67 & 66 & 67\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 58 & 1 & 61 & 32 & 83 & 62 & -0 \\
\hline 59 & 1 & 62 & 33 & 84 & 63 & -9 \\
\hline 60 & 1 & 63 & 94 & 85 & 64 & -9 \\
\hline 61 & 1 & 64 & 85 & 86 & 65 & -0 \\
\hline 62 & 1 & 65 & d6 & 07 & 66 & -0 \\
\hline 63 & 1 & 66 & o 7 & 88 & 67 & -0 \\
\hline 64 & 1 & 67 & 56 & 89 & 68 & - \\
\hline 65 & 1 & 69 & 90 & 91 & 70 & -0 \\
\hline 66 & 1 & 70 & 31 & 92 & 71 & -c \\
\hline 67 & 1 & 11 & 97 & 93 & 72 & -0 \\
\hline 68 & 1 & 72 & 93 & 94 & 73 & -3 \\
\hline 69 & 1 & 73 & 34 & 95 & 74 & -0 \\
\hline 76 & 1 & 74 & 35 & 95 & 75 & - 1 \\
\hline 11 & 1 & 75 & 96 & 97 & 76 & -0 \\
\hline 72 & 1 & 75 & 77 & 98 & 77 & -0 \\
\hline 73 & 1 & 77 & 93 & 99 & 78 & -0 \\
\hline 74 & 1 & 78 & 95 & 107 & 79 & -0 \\
\hline 75 & 1 & 79 & 142 & 101 & 60 & - 0 \\
\hline 76 & 1 & \(8 \%\) & 111 & 102 & ¢1 & -0 \\
\hline 77 & 1 & d 1 & 1.2 & 103 & 82 & -0 \\
\hline 7. & 1 & 82 & 1.3 & 104 & 83 & -0 \\
\hline 79 & 1 & 83 & 134 & 105 & 84 & -0 \\
\hline 30 & 1 & 84 & 1.5 & 106 & 85 & - 0 \\
\hline 01 & 1 & 85 & \(1: 6\) & 107 & 86 & -0 \\
\hline 32 & 1 & 36 & \(1: 7\) & 108 & 87 & - 7 \\
\hline 03 & 1 & 37 & 108 & \(10 y\) & 88 & -0 \\
\hline 04 & 1 & 06 & 1.3 & 11: & 89 & -010 \\
\hline 05 & 1 & 96 & 111 & 112 & 91 & -0 \\
\hline 06 & 1 & द1 & 112 & 113 & 92 & - 0 \\
\hline 07 & 1 & 92 & 113 & 114 & 93 & -0 \\
\hline 08 & 1 & 93 & 114 & 115 & 94 & -0 \\
\hline 09 & 1 & 94 & 115 & 116 & 95 & -0 \\
\hline 96 & 1 & 95 & 115 & 117 & 96 & -0 \\
\hline \(\pm 1\) & 1 & 96 & 117 & 110 & 97 & -c \\
\hline 32 & 1 & 97 & 115 & 119 & 98 & - 0 \\
\hline 93 & 1 & 98 & 119 & 120 & 99 & -0 \\
\hline 94 & 1 & 99 & \(12!\) & 121 & 100 & - 0 \\
\hline 95 & 1 & \(1 \times 2\) & 122 & 122 & 101 & -0 \\
\hline 76 & 1 & 101 & 122 & 123 & 102 & - 0 \\
\hline 37 & 1 & 102 & 123 & 124 & 103 & -0 \\
\hline 98 & 1 & \(1: 3\) & 124 & 125 & 104 & - 0 \\
\hline Y9 & 1 & 164 & 125 & 126 & 105 & -0 \\
\hline 130 & 1 & 105 & 126 & 127 & 105 & - \\
\hline 101 & 1 & 136 & 127 & 128 & 107 & -0 \\
\hline 102 & 1 & 107 & 128 & 129 & 108 & - 0 \\
\hline 1.3 & 1 & 108 & 129 & 130 & 109 & -0 \\
\hline 104 & 1 & \(10 ¢\) & 135 & 131 & 110 & -0 \\
\hline 105 & \(\stackrel{+}{+}\) & 111 & 132 & 133 & 112 & -0 \\
\hline 1.6 & 1 & 112 & 133 & 134 & 113 & - 0 \\
\hline 107 & 1 & 113 & 134 & 135 & 114 & -0 \\
\hline 108 & 1 & 114 & 135 & 135 & 115 & - 3 \\
\hline 1.9 & 1 & 115 & 136 & 137 & 116 & -9 \\
\hline 116 & 1 & 116 & 137 & 138 & 117 & -0 \\
\hline 111 & 1 & 117 & 138 & 139 & 118 & -0 \\
\hline 112 & 1 & 118 & 139 & 145 & 119 & -110 \\
\hline 113 & 1 & 119 & 140 & 141 & 120 & -0 \\
\hline 114 & 1 & 120 & 14. & 142 & 121 & -0 \\
\hline 115 & 1 & 121 & 142 & 143 & 122 & -0 \\
\hline 116 & 1 & 122 & 143 & 144 & 123 & - \\
\hline 117 & 1 & 123 & 144 & 145 & 124 & -0 \\
\hline 118 & 1 & 124 & 145 & 146 & 125 & - \\
\hline 119 & 1 & 125 & 146 & 147 & 126 & -0 \\
\hline 120 & 1 & 126 & 147 & 148 & 127 & - 0 \\
\hline 121 & 1 & 127 & 148 & 149 & 128 & -9 \\
\hline 122 & 1 & 128 & 149 & 150 & 120 & -9 \\
\hline 123 & 1 & 129 & 156 & 151 & 13 ? & -0 \\
\hline
\end{tabular}

\section*{STARTING NOCE CATA}

NO. OF STLRT NCDEs \(=3\)

STARTING NULE NUMOEES


NO. OF GRANU PARTITICNS \(=16\)


ORIGIML EANDWIDTM= 22 \(\begin{array}{ll}\text { NEW ONOWIOTM }= & 27 \\ \text { NEN } & 27 \\ \text { ENNOWIOTM }= & 36\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline AFLON & NPHIGH & NPOUT & NUMCP & NELCLS & NMPCLS \\
\hline 1 & 100 & 4 & 123 & \(\checkmark\) & c \\
\hline 101 & 200 & 75 & 212 & 0 & 0 \\
\hline EL1 & 215 & 135 & 215 & \(\tau\) & T \\
\hline
\end{tabular}

NO. OF NONLINEGR ELEMENTS GNTAPE= 0

SMALLEST MAIN OIAGONAL FFEQUENCY (SEC/CYCLE)
```

NOCE FOINT = 63 PEFIOOU= 3.44166E-02
NUUE FOINI = 215 PEFIODN= 2.36178E-02
NODE TYPE = 1

```

LOADEL NODE POINT DATA

NO. UF LOADEU SURFACES = 0

INITAAL STKESS OATA

NO. OF ELEMENTS= 0

```

SPLC STRLGTURE DATA

```

SPECIAL STRUCTUAES DATA
NO. CF STRUC TURAL MODES
NO. OF STRUCTURAL DOF

MODE SHAPE DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODE * & 1 & FREO CPS* & 1.60620E*00 & GEN MASS* & 5.04300E-01 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline -9.95800E-04 & 7.87000E-04 & -5.31100E-04 \\
\hline -2.40ิ320E-03 & -2.04800E-03 & -1.63\%00E-03 \\
\hline -1.91200E-03 & \(-4.38300 ¢-03\) & -5.67400E-03 \\
\hline -1.221006-03 & -1.13200¢-02 & -2.992008-02 \\
\hline -1.21600E-01 & -1.393006-01 & -1.56400E-01 \\
\hline \(-2.3+3008-01\) & -2.50400¢-01 & -2.65000E-01 \\
\hline 0. & -9.95800E-04 & \(4.33300 \mathrm{E}-03\) \\
\hline \(-1.63700 E-03\) & 1.73200E-02 & -2.48300E-03 \\
\hline \(3.449005-02\) & -9.95800E-04 & \(3.46700 \varepsilon-62\) \\
\hline
\end{tabular}
\(-2.90800 \mathrm{C}-03\)
\(-5.62400 E-03\)
9.12600 -03
\(-1.07200 \mathrm{E}-02\)
\(-5.04200 \mathrm{E}-02\)
- C. 1こ000E-c2
2. \(55600 \mathrm{t}-02\)
1.33900E-01
-6. \(15400 \mathrm{E}-03\)
\(-1.090005-02\)
6. \(87500 \mathrm{C}-04\)
\(-2.379005-02\)
\(-5.489008-c 5\)
2.05600E-02
6.67800 -02
1.243005-02

HODE 2 FREQ GPS. \(2.50500 E+00\) CEN MASS: \(1.10250 E * 00\) MODE VECTCR

\(-3.19600 E-03\)
\(-1.40500 \mathrm{E}-03\)
\(-1.05500 \mathrm{E}-01\)
\(-6.65200 \mathrm{E}-02\)
\(-1.89100 \mathrm{E}-01\)
\(-2.90200 \mathrm{E}-01\)
\(8.65700 \mathrm{E}-03\)
\(-3.19600 \mathrm{E}-03\)
\(-3.01300[-03\)
\(-1.50400 \mathrm{E}-03\)
\(3.032005-03\) -0.51500 E-02 \(-2.04200 \mathrm{c}-01\) -3.00100E-01
\(-9.95800 \mathrm{E}-04\)
3.19500E-C2
\(-2.81800 \mathrm{E}=03\)
\(-1.63400 \mathrm{E}=03\)
1.16400E-03
\(-1.05700 \mathrm{E}=01\)
-2.18500E-01
\(-9.958 \mathrm{COE}-04\)
1.30000E-02
5.31100E-04

MOOE - 3 FREO CPS. \(7.87210 E * O C\) GEN MASS. \(3.04060 E \cdot 00\)
MODE VECTOR

\begin{tabular}{|c|c|c|}
\hline cas. -0: & -6.792006-03 & -3.62200ce-02 \\
\hline O4800c-02 & \(5.05800 \mathrm{E}-\mathrm{Cz}\) & 1.14000E-01 \\
\hline 403006-01 & \(5.016005-01\) & 5.59800 -0.1 \\
\hline 8.143006-01 & 8.64100E-01 & 9.08800E-01 \\
\hline 0 & 1.28700E-01 & 1.24c00E-01 \\
\hline -1.54000¢-01 & 5.24000E-01 & -8.18200E-02 \\
\hline -,70000\%-01 & 1.28700E-01 & 9.92200E-01 \\
\hline
\end{tabular}
5. 19200E-01
1.78400E-0
6.15800E-01
9.47200 E-01
1. \(28700 \mathrm{E}-0\) :
6.48700 E-01

\section*{31008-03} ‥44600C-0: \(6.68300 \mathrm{E}-\mathrm{Cl}\) 9.76900E-01 2. \(48100 \mathrm{E}-01\) 1.97400E-02
\(1.66300 \mathrm{E}-02\) 3.113008-01 7. \(15100 \mathrm{E}=0\) 7.15100E-01 1.00000E +00 1.28700E-01 7.41900E-01
\(-3.1600 C E-02\) 3. \(84300 \mathrm{E}=01\) \(3.84300 E-01\)
\(7.59400 E-21\) 1.29700E-01 \(3.72100 \mathrm{E}-01\) 8. 29200E-02

MOOE = 4 FFEQ CPS = \(1.27950 E+C 1\) GEN MASS = \(4.43900 E-01\)
MODE VECTOR
\(-6.2150 C E-03\)
\(-3.18200 E-03\)
\(5.71800 E-04\)
\(1.01700 E-01\)
\(-3.720 \cup 0 E-03\)
\(5.58100 E-03\)
0.
\(-2.68400 E-03\)
\(2.04800 E-02\)
\(-6.46700 E-03\)
\(-1.10800 E-03\)
\(-8.98100 E-03\)
\(-7.88900 E-03\)
\(-2.504 C 0 E-03\)
\(7.12800 E-03\)
\(-6.21600 E-03\)
\(1.93700 E-02\)
\(-6.21600 E-03\)

\(-7.81800 \mathrm{E}-03\) \(-5.32600 E-03\) 5. 47 7400E \(-\mathrm{Cl}_{4}\) \(5.47400 \mathrm{E}-\mathrm{C4}\) \(-7.19100 \mathrm{E}-03\) 8. \(54000 \mathrm{E}-05\) 9.84700E-03 -6.21500E-03 2.11500E-02
-7.92200E-03 -3.08500E-0 \(-2.50100 \mathrm{E}-03\) \(-6.56100 E-03\) \(1.41400 E-03\) 1.09300E-02
5.81100E-03
\(-7.92200 \mathrm{E}-03\)
-6. \(317008-03\) \(-9.775005-04\) 1.00000E +00 \(-5.76700 E-03\) 2.70300E-03 1.16800E-02 \(-6.2160 C E-03\) 1.83500E-02
\(-5.031005-03\)
\(6.52300 \mathrm{E}-64\)
\(6.26420 E-01\)
\(-4.69500 \mathrm{E}=03\)
3.94000E-03
-6.21600E-03
8. \(71600 ¢-03\)
\(-7.11700 \varepsilon-03\)

HODE
FREO CPS
\(1.89620 \mathrm{E}+01\)
GEN MASS: \(\quad 1.57530 E+00\)
MODE VECTOR

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1. \(00000 \mathrm{C}+00\) & 1. 200000 -00 & 1.00000E.00 & 1.00000E*OO & 1.00000E-00 & 1.00000E 000 & 1.00000E +00 \\
\hline \(1.00000 E+00\) & \(1.00000 \mathrm{E}+00\) & 1.00000E +00 & 1. \(1.00000 E+00\) & 1.00000E +00 & \(1.000005+00\) & \(1.00000 \mathrm{E}+20\) \\
\hline \(1.00000 \mathrm{E} \cdot 00\) & 1.00000E*00 & 1.00200E + 00 & 1.00000E.00 & 1.00000E +00 & 1.00000E +00 & 1.00000E.00 \\
\hline 1.000005 -00 & \(1.000005+00\) & 1.00000E*00 & 1.00000E +00 & 1.000002 +00 & 1.00000E.CJ & 1. \(20000 \mathrm{E}+00\) \\
\hline \(1.00000 \mathrm{E} \cdot 00\) & \(1.000002+00\) & 1. \(1.00000 E \cdot 00\) & \(1.00000 E+00\) & \(1.000002+00\) & 1.00000E +00 & 1.00000E +00 \\
\hline 1.00000E*00 & \(1.002002+00\) & \(1.00000 \mathrm{E}+00\) & \(1.00000{ }^{\text {E }}\), 200 & 1.00000E +00 & 1.00000E+00 & 1. i . \(00000 \mathrm{E}+00\) \\
\hline 1.000008*00 & \(1.00000 E+00\) & 0. & 1. \(00000 \mathrm{E}+00\) & 0. & 1.00000E +00 & \\
\hline \(1.000002 * 00\) & 0. & \(1.00000 E \cdot 00\) & 0. & \(1.00000 E+00\) & 0 . & 1. \(2.00000 E+00\) \\
\hline
\end{tabular}

MODE = 7 FREO CPS. 0
MODE VECTOR
\(-4.77600 \mathrm{E}+01\)
1. \(1240 \mathrm{CE}+01\)
1.724000 - 01
\(1.074006+01\)
\(-4.37600 E+01\)
\(1.95700 E+01\)
\(-2.76400 E \cdot 00\)
\(-7.85400 E+00\)
\(-3.20100 E+01\)
\(2.92400 E+01\)
\(7.23600 E+00\)
7.23600E +00
\(5.35700 \mathrm{E}-01\)
\(-1.97600 \mathrm{E}+01\)
\(-1.77600 \mathrm{E}+01\)
6.99900E+01
\(8.63600 E+00\)
\(-1.17600 E+01\)
\(-7.76400 E+00\)
\(1.02100 E+02\)
\(1.68400 E+01\)
\(4.25900 E-03\)
9.01200E-03
-2,00800E-02
\(-6.91100 \mathrm{E}-01\)
\(-4.39102 \mathrm{C}-01\)
1.00000E +00
\(1.00000 E+00\)
\(2.52000 E=02\)
\(7.94100 \mathrm{E}-02\)
\(4.12400 E-03\)
4. 839C= -53
- . . 08900E-02
\(-7.81700 E-01\)
\(-2.84900 E-01\)
\(2.52000 \mathrm{E}-02\)
2. \(52000 \mathrm{E}-02\)
\(4.21800 \mathrm{E}-02\)
1.86200E-02

MOOE * 6 FREQ CPS.
MODE VECTOR
1. \(00000 E+20\) 1. \(1.00000 E+00\) 1.00000E +00 1.000005 -00 \(1.00000 \mathrm{E} \cdot 00\) \(1.00000 E+00\) 1.00000 +00 0.
1.00000E-00 1.00000E*00 1.00000E *00 1.00000E +00 1.00000E•00 \(1.002002+00\) 1.00000E +00
1.00000E•00
. \(000002+00\) 1.00200E+00 1.00000E*00 1.00000E -00 0. 0.
. \(00000 \mathrm{E} \cdot 00\)
. 00000 *00
. 00000 E.00
\(1.00000 \mathrm{E}+00\)
\(1.00000 E+00\)
\(1.00000 E * 00\)
1.00000E +00
1.0
0.
1.00000E•00
1.00000E +00
1.00000E.00
\(1.00000 \mathrm{E}+00\)
1.00000E +00
1.
1.00000E +00
\(1.00000 \mathrm{E}+00\)
. \(00000 \mathrm{E}+00\)
\(1.00000 \mathrm{E}+00\)
1. OOOOOE +CJ
1.00000E +00
1.00000E*O0 0.
1.00000E.00
1.00000E +.00
1.00000E•00
1. \(00000 E \cdot 00\)
1.00000E +00
0.
1. 200000 E 00
\begin{tabular}{rr}
\(-2.76400 E * 00\) & \(3.23600 E+00\) \\
\(2.23600 E * 02\) & \(1.22402 E \cdot 01\) \\
\(-2.57600 E * 01\) & \(-9.76400 E * 00\) \\
\(2.50400 E \cdot 01\) & \(3.41400 E+01\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4.5540 ce -0. & 5.76400E*01 & \(6.504005 \cdot 01\) & \(\rightarrow 04608\). & 6.2140CE.0. & \\
\hline 01 & 1.062006-02 & 1.14200e 025 & 1. \(22500 \mathrm{CE} \cdot 02\) & 1.302006.02 & OCL-02 & -4.775005: \\
\hline 0. & -4,77600e \(0 \cdot 01\) & . \(250000 \cdot 01\) & -4.77600E*01 & 8.50000e *01 & 4,776006 & 1.275000*02 \\
\hline 2.92400e 01 & 1.70000E 02 & 1.12400E*01 & 2.12500E*02 & \(-1.176000 \cdot 01\) & 2.55000t*2 & 3.20100E*01 \\
\hline \(2.975005 \cdot 02\) & -4,77600E +01 & 3.400308*02 & & & & .colvoe.0! \\
\hline
\end{tabular}
- 132 -

POOR ORIMAR
```

MAX. TIME DU.NTION: 7.00000E*00 SEC INCAEMEN
Lint KTAPE
1.57652
$: \quad 15$

```

POOR
ORICRNAR
```

*viru: AND, ATA
OUTPUT NOCE DATA
NLMOUT: I!

```
\(\begin{array}{lllllllllllll}1 & 4 & 7 & 10 & 13 & 17 & 18 & 35 & 52 & 69 & 70 & 71 & 72\end{array}\) ..... 73
SAVE TAPE INTERVAL
```SAVE TAPE DATA
```

10SAVE = 500

```NRCDS ON LOCICAL \(14=3692\)
```


## QUIET UNOART DATA

NO. OF NODES ON RICNT GOLNOARY: No. OF NOCES ON BOTTOM BOUNDARY
NO. OF NCOES ON LEFT BOUNDARY LEFT CORNE CONOITION total no. of boundary nodes BOUNDARY:20
-0
-0
-0
20

RIGHT BOUNDARY NODE NUMBERS $\begin{array}{lllllllllllllllllllllllllllll}195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214\end{array}$ No. OF BCUNDARY RECTANGULAR ELEMENTS* 19

NUME
120NE
NODES

DR(FT)
3. $83300 \mathrm{E} \cdot 0$ 3. $83300 \mathrm{E}+0$ 3.83300E +0 $3.83300 \mathrm{E}+\mathrm{C1}$ $3.83300 \mathrm{E}+01$ $3.83300 \mathrm{E}+01$ 3. $\mathbf{6 3 3 0 0 E + 0 1}$ $3.83300 E+01$ 3.83300E +01 $3.83300 E+0$ 3.83300E+01 3. $83300 \mathrm{C}+01$ $3.83300 E+01$ $3.83300 \mathrm{E}+0$ 3.83300E+01 3.83300E +01 3.03300E +01 $3.633002+01$
3. B3300 : 01

OZ (FT)
2.00000E*01 2. 00000E +01 2.00000E +01 2.00000E +0 I 2. 00000 E +01 $2.00000 E+01$ 2. 000000 e +01 2. $00000 \mathrm{e}+0$ : 2.00000E+01 $2.00000 \mathrm{E}+01$ 2.00000E.0. 2. $000000+01$ C. OOOOOE +01 2.00000E +01 2.00000E +01 $2.00000 t+01$
2. $00000 \mathrm{t}+0$ :
2. 000000 *01
2. $00000 \mathrm{c}+01$
material zone data

$20 n 2$	E(PSI)	xNu	E EQuiv	xrau Ecuiv	CPIIN/SECI	CSIIN/SECI	RHOILE-SEC5/ [N4)
1	$3.472205 * 05$	$3.50000 \mathrm{E}-01$	3.472202*05	$3.50000 E-C 1$	5. $349965+04$	$2.57004 E \cdot 04$	.94E98E-, 14

IELEM - 0 .

IELEM - $\quad 3$

BCUNDARY ELGINT CONNECTIVITY

Boundary noce numaters	ELEMENT	ELEMENT	$\begin{array}{r} \mathrm{RHO} \cdot \mathrm{CP} \\ \quad \text { ILB-SE } \end{array}$	$\underset{\mathrm{N} 3 \text { ) }}{\mathrm{RHO} \cdot \mathrm{CS}}$	CONST
RICHT	ABOVE	BELOW			
195	0				
196	0	2	1.04163E.01	$5.00322 E+60$ $5.00382 E+00$	1.20000E +02
197	$?$	3	1.0416 5 +21	$5.0038 \mathrm{EE}+00$ 5.003 2E +00	5.40000E 5.05
198	3	3	1. $04163^{2}+01$	5.003 $2 \mathrm{CE}+00$ $5.003 \mathrm{LE}+20$	2.40000E 02
199		5	1.041635. ${ }^{\text {1. }}$ !	5.003ECE*20	2.40000E +02
200	5	6	$1.041635+01$	5.003825*00 $5.003825 * 00$	2, 40000E +02
201	6	7	$1.04163 \mathrm{E}+01$	$5.003825+00$ $5.003825+00$	2.40000E +02
208	7	8	1.04163E+01	$5.00382 E+00$ $5.003825+00$	2.40000E +02
203	8	9	1.04153E*01	$5.003825+00$ $5.003825+00$	2. $40000 \mathrm{E}+05$
204	9	10	$1.04163 \mathrm{E}+01$	5.00382E*00 5.00385E	2.40000E 0.02
205	10	11	$1.041635+01$		2,40000e 0 O2
206	11	12	1.04153J +01	5.00392E +00 5.00382 t	2.40000e 2.05
207	12	13	1.04163E+01	5.00362E +00	2.40000E +02
208	13	14	1.04163E*01	$5.003825 * 00$ $5.003825+00$	2,40000E+62
209	14	15	1.04163E*01	5.00382E +00	2.400005 +
210	15	15	1.04153E*01	5.003822 5.00	2. $400005+0$ ?
211	16	17	1.04163E-01	5.003028 +00	2. $400005+05$
212	17	18	1.04163E +01	5.003822 +00	5.40000e +05
217	18	19		5.003822 +00	2.40000E+02
214	19	-	1. $04163 \mathrm{E}+01$	5.00302E +00 5.00382 t	2.40000e +05 $1.200008+05$




ERROR IN NOCY *TA

NPOLD 16
$\begin{array}{cllllllllllll}\text { MOOLD } & 10 & 10 & 13 & 17 & 18 & 35 & 52 & 69 & 70 & 71 & 72 & 73\end{array}$

SHOCK SPECTRA FOR NODE NUMBER I

MORIZONTAL SPECTRA

No. OF INPUT RECCROS - B88 FINAL DISPLACEMENT (IN. I* FINAL VELOCITY (IN/SECI : PEAK ACCELERATION ( 6.5 ) -

NO. OF RECCROS ADDEO FINAL NO. OF RECOROS
F(NAL VELOCITY IIN/SEC) = FINAL DISPLACEMENT, IN. 1: .39972E-05 TMAX. IDURATION. SECSI .
$3715: E+02$
$.81281 E+0$.
$.29773 E+00$
90
978 978
0.
.77111E*01

FREGUENCT (CPS)	ACCELERATION $(0.5)$	VELOCITY (\|PS)	$\begin{aligned} & \text { DISPLACEMENT } \\ & \text { (IN) } \end{aligned}$	$\operatorname{Max}_{(S E C S)}$
. 50000	. 09369	11.52377		
. 51171	. 08933	10.73620	3.66813 3.33925	6.67715
- 52369	. 09927	10.56541	3.36926 3.21097	6.67715
. 53595	. 09701	11.13102	3. 31097	6.68504
. 548149	. 11004	12.33003	$\frac{3}{3.58010}$	5.62293
. 56133	. 12596	13.90939	3.58010	6.69253
. 57448	. 14470	15.48999	4.94313	5.65504
. 5679 ?	. 16962	17.74241	4.80208	6.66925
. 60169	. 19337	19.76445	5.22797	7. 36360
. 61578	. 21262	21.23479	5.22797 5.48840	7. 32434
. 63019	.22495	21.95227	5.54405	7.27698
. 54475	. 22877	21.61427	5.54405 5.38317	7.22963
. 66004	. 22376	20.84822	5.027c8	7.18227
. 67550	. 21689	19.74611	4.027241	7.14251
. 69131	. 22109	19.66770	4.52793	7.71108
. 70750	. 21860	19.00159	4.27451	7.71100
-72406	.22133	18.79873	4.13214	7.71108
-74101	. 23532	19.61252	4.21240	7.71108
. 78936	- 25929	21.02670	4.41283	7.71108
. 79428	. 28077	22.24798	4.55232	$7.86,372$
.8:29日	. 29398	22.60300	4.56917	7.60050
.83191	. 299880	22.16202	4, 35450	7.53744
. 65138	. 31175	22.51807	4. 23988	6. 16413
. 87132	. 30922	21.82450	4.20945	6.09309
. 89172	. 2858	19.71553	3.98543	6.06152
. 91259	. 30307	20.42341	3.51806	5.9904 E
. 93396	. 32261	21.24239	3.56182	4.71109
.95582	. 33762	21.72264	3.61990	4.65453
. 97820	. 34648	21.78232	3.61706	4.61718
1.00110	. 34372	21.11470	3.54403	4.58561
1.02454	. 34175	20.51319	3.35602	4.54514
1.0485?	. 33191	19.46721	3. 18859	4.50024
1.07307	. 33564	19.23548	2. 595492	4.94867
t.09819	. 38040	21.30169	2.85295	6.18780
1.12390	. 41599	22.75665	3.08714	6. 12485
1.15022	. 41760	22. 32757	3.22255	6.07731
\%.17714	. 39539	20.32757 20.65650	3.08946	6.03784
t. 20470	. 37875	19.33422	2. 79285	5.99049
1.23291	. 37239	19.33432 18.57469	2. 55429	7.54533
$1.28: 77$	. 33628	18.57469 16.39015	2. 39779	7.40009
1.29131	. 30184	14.37489	2.06739	$7.4505 ?$
1.32154	. 31943	14.85678	1.77172	7.43484
1.35248 1.38414	.39081	17.76997	1.79043 2.09111	7.43404
1.38414 1.41655	.45292	20.56731	2.09111 2. 36492	7.41905
1.44971	-48961	21.21241	2.38330	7.37959
1.48365	. 43938	18.93548	2.07881	7.28488
1.51239	-48025	18.21252	1.95370	2. 34410
1.55393	-405s	18.64090	1.9539:	2.33621
1.59031	. 49406	16.93883	1.93973	2.32832
1.62754	. 50662	19.10527	1.91201	2. 32043
1.66565	. 51612	19.14283	1.87195	2.3i253
1.70464	. 60375	19.65556	1.82079	2. 30454
1.744.55	. 66467	21.78137 23.43043	2.03363	5.44596
1.76539	. 64178	23.43043 22.10613	2.13755	5.41433
	-6410	22.10613	1.97060	5.36697


1.82719	$50 \cdot$	$19.64 \div$	.7164 .695	
1.86991	. 6	$19.93679$	$. .696$	$2.50156$
1.91375	. $6 i$	20.02105	1.665 ${ }^{\circ}$	2.494 56
1.95205	. 6.6	19.99498	$1.624=2$	2.48617
2.00445	.6507	19.96533	1.58530	2.48617
2.05133	. 74383	22.30091	1.73024	5.33540
2.09935	. 79554	23.30424	1.76073	5.30383
2. 14850	. 79709	22.81531	1.69009	2.90448
2.19880	.64352	$\bigcirc 59201$	1.70765	2.88869
2.25028	. 88245	24. 1624	1.70566	2.88080
2.30296	. 90576	24.16709	1.67154	2.86502
2.35688	. 91332	23.83099	1.60926	2.84923
2.41205	. 90784	23.14615	1.52725	2.83345
2.46852	. 89275	22.24071	1.43394	3.42539
2.5263?	. 89549	21.79874	:. 37330	3.40171
2.53545	. 90461	21.51705	1. 32454	3.38593
2.64559	. 93387	21.70488	1.30554	3.36225
2.70794	. 97927	22.23931	1.30708	3. 34647
2.77133	1.01834	22.59764	1.29776	3.33068
2.83E21	1.06632	23.12087	1.29743	2.77031
2.90261	1.11135	23.54620	1.29108	2.75452
2.97557	1.12600	23.31069	1.24892	2.73873
3.04011	1.12171	22.69272	1.18790	2.73084
3.11129	1.09980	21.71884	1.11101	2.71506
3.16+12	1. 1.06349	20.54009	1.02667	2.70716
3.25867	1. 1.00598	18.98477	. 92722	2.69927
3. 33496	. 91817	16.93131	. 80802	2.69133
3.4130.	. 79914	14.39927	.67146	2.68349
3.49294	. 86677	15.26050	.69534	5.20123
3.57471	. 87261	15.01192	. 68837	5.17755
3.65640	. 78385	13.17659	.57324	5.01181
3.74405	.85572	14.05559	. 59749	2.09138
3.83171	. 97727	15.68483	. 65149	2.68349
3.92141	1.00655	15.78514	.64056	2.65770
4.01322	.92102	14.11339	. 55970	2.65981
4.10717	.80753	12.09209	.46957	3.12547
4.29333	. 83069	12.15353	.45018	4.40400
4.30173	. 83537	$11.94{ }^{4}+5$	.44185	4.32325
4.4224	.87142	12.17294	.4400\%	4.13573
4.50551	. 96400	13.15804	.46400	3.21223
4.61099	1.07127	14.28769	.49316	3.19551
4.71894	1.08680	14.16325	. 47768	2.96762
4.82942	1.08692	13.84079	.45513	2.95973
$4.94+248$	1.06523	13.25427	.42681	2.55184
5.05819	1. 01398	12.32796	. 38790	3.03065
5.17651	. 97560	11.59006	.35534	5.15966
5.29780	. 96258	11.17371	. 33568	2.8:7E5
5.42183	. 99025	11.23198	. 32971	2.80977
5. 54.876	.91838	10.1785	. 29195	2.80189
5.67857	.90243	9.77290	.27390	5.73793
5.81161	. 93140	9.85596	.28591	5.73003
5.94767	.91804	9.49227	.25401	5.13255
6. 68591	. 82557	8.34096	.21809	2.50196
6.22942	. 83140	8.79599	.22483	5.18780
6. 37526	. 95755	9.23777	. 23062	5.02759
6. 52451	1.04244	9.82565	. 23968	5.01970
6.67725	. 37395	8.055:7	. 19295	5.01181
6.83358	. 81647	7. 34763	.17113	2.12311
6.99357	.85282	7.49926	.17066	5.84842
7.15729	. 82537	7.09182	. 15770	5.84053
7. 32486	. 90928	7.63407	. 16587	2.11522
7.49634	. 96847	7.94502	. 16858	2.49405
7.67184	. 98273	7.87753	. 16342	5.0039i
7.85145	1.27893	10.01738	. 20305	5.43011
6.03526	1.53340	11.73582	. 23245	5.83264
8.22338	2.05423	. 1.36226	. 29732	5.82474



8.41290	\% " 311	15310	. 32034	6. 21
8.61293	1. Js: 36	, 4.20434	. 25878	6.51140
8.81457	1.61590	11.27379	. 20356	5.25854
9.02093	1.36660	9.31638	. 16437	5.61164
9.23212	1.11788	7.44544	. 12837	5.26437
9.44826	.99:24	6.45187	. 10868	5.25648
9.66946	. 85705	5.45080	. 08972	3.68585
9.89583	. 84325	5. 24044	. 08428	4.90920
10.1275:	. 84926	5. 15696	.08:04	4.90131
10.36461	. 99768	5.91967	. 09090	4.90131
$10.60{ }^{-26}$	1.10937	6.43179	. 09650	5.25648
10.85559	1.22004	6.91159	. 10133	5.24858
11.10973	1.76290	9.75846	. 13980	5.24858
11.36983	2.17686	11.77427	. 16482	5.58797
11.63601	1.85684	9.86644	. 13495	5.79317
11.90843	1. 34145	6.92753	. 09259	5.13020
12.18722	1.11746	5.63879	. 07364	5.13020
12,47254	. 89105	4.39345	. 05805	5.73793
12.76454	. 80627	3.88448	. 04843	5.73793
13.06338	. 86343	4.06472	. 04952	5. 69057
13.36921	. 78445	3.60843	. 04296	5.59057
13.68220	. 74923	3.36759	.039:7	4.95502
14.00253	. 80105	3.51810	. 03999	5.8828
14.33034	1.05566	4.53029	. 05031	5.68288
14.66583	. 98437	4.12771	. 04479	5. 57478
15.00918	. 79694	3. 26534	. 03463	5.48535
15.36056	. 65880	2.63758	. 02733	5.48536
15.72018	. 59975	2. 34622	. 02375	5.48536
16,08921	. 57611	2.20219	. 02179	5.47747
16.46486	. 58041	2. 16788	. 02096	5.47747
16.85032	. 60562	2.21029	. 02088	4.83217
17.24481	. 64624	2. 30457	. 02127	4.83020
17.64854	. 45997	1.74219	. 01571	4.83020
18.06171	. 45835	1.56266	. 01377	4.83028
18.48456	. 43173	1.43636	. 01237	4.83028
18.91731	.40753	1.32482	. 01115	2.47828
19.36019	.40474	1.29504	. 01057	5.13000
19.81344	. 40089	1. 24428	. 000099	5.1390
20.27730	. 38418	1.16514	. 00915	5.45538
20.75202	. 37429	1.10920		5.48536
21.23786	. 36589	1.05950	. 00794	5.48535
21.73507	. 35913	1.01613	. 00744	5.48536 5.48536
22.24391	. 35278	. 97532	. 00698	5.48575
22.76458 23.29763	. $3477 \%$	. 93548	. 00657	5.48535 5.40535
23.29763 23.84305	. 34344	. 90556	. 00519	5.48536
23.84306 24.40126	. 33976	. 87633	. 00585	5.42536
24.40126	. 33665	. 84844	. 00553	5.40335
24.97253	. 33369	.82174	. 00523	5.48536

```
CALCOMP SF:-"RA P - AOY
IITLE FHCR:ZON:I Z JPONSE SPECTRA
NOCE NO.= I
DAMPING - 2.OOOOCE*OO PERCENT
 PCAK O.S * 2.31B11E.OO
 MAX SCALE = 2.70000E*01 0.S
 DELTAA = 4.90909E-01 G.5/INCH
 FIRSTX = 0.
 DELTAX * 1.00000E*OO
 IPOWER * -1
SOECTRA FOR DOF
NO. OF INPUT RCCORDS
FINAL DISPLACEMENT IIN.I
FINAL VELOCITY IIN/SECI.
 14854E=01
 . 16256E - 0:
 .29773E*00
 90
NO. OF RECORDS ADCED
FINAL NO. OF RECOROS
FINAL VELOCITY IINISEC
FINAL DISPLACEMEN: IIN.)*
TMAX. IDURATION, SECSI.
 978
 0.
 .15969E*01
 .15422E+01
 US. GCVERNMENT PMIN IING OFFICE: 614-090-$33
```

