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Section 1: Introduction

Homestake Mining Company of California (HMC) has developed a combined Groundwater Flow and
Transport Model of the San Mateo Creek (SMC) Basin in west-central New Mexico, which includes HMC’s
Grants Reclamation Project (GRP) at the HMC Mill site (Site), located near Grants, New Mexico. The model is
based on the Hydrogeologic Site Conceptual Model (BC, 2018) and was developed as generally described in
the Groundwater Flow and Transport Modeling Work Plan and associated updates (HMC 2018a, HMC
2018b).The model will continue to be used to evaluate GRP groundwater restoration activities and as a tool
to predict the effectiveness of future remediation efforts, including fate and transport of site constituents of
concern (COCs). This includes supporting completion of a revised Groundwater Corrective Action Plan (CAP)
for the GRP and, thus, the model includes simulation of the following key hydrogeologic components of the
site conceptual model:

« Groundwater flow and hydraulic heads within the alluvial and bedrock (upper, middle and lower
Chinle and San Andres-Glorieta [SAG]) aquifers beneath the GRP.

« Fate and transport of site COCs associated with the GRP.

In March 2019, HMC submitted a Preliminary Groundwater Flow and Transport Model Status Report (Model
Status Report) to the U.S. Nuciear Regulatory Commission (NRC) (HMC, 2019). The Model Status Report dis-
cussed in detail model construction, development, and preliminary calibration results for both groundwater
flow and transport simulations within the general vicinity of the HMC Mill Site.

This addendum discusses updates to the model performed since March 2019, including simulation of allu-
vial saturation in the Upper SMC Basin, preliminary results of uranium transport southward from Upper SMC
Basin toward the HMC Mill Site, and adjustment of model parameterizations that have contributed to im-
proved flow and transport calibration results at the HMC Mill Site. In this addendum, only updates to the
model and recent groundwater flow and transport results are discussed. Therefore, the reader is referred to
the March 2019 Model Status Report for a full discussion of model construction and development. In addi-
tion, because of the inclusion of regional-scale flow calibration, the combined MODFLOW-NWT groundwater
flow and MT3D-USGS transport models are now collectively referred to as the SMC Basin model. Itis im-
portant to recognize that calibration for the SMC Basin model was achieved despite the limitation that only
estimates of injection and extraction are available within the GRP area over time and exact historical flow
records for individual wells are unavailable.
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Section 2: SMC Basin Model Updates

This section describes the six model updates performed since March 2019. It should be noted that the
model calibration period remains unchanged from the previous model construct and covers the years 2013
through 2017.

2.1 Revisions to Hydraulic Conductivity

Initial parameter values for the SMC basin hydrostratigraphic units were based on the results from previous
calibration efforts (HMC, 2019). Once the revised layer geometry was established in the SMC Basin model
in this update (see Section 2.2, below), hydraulic conductivity values were then adjusted to typically ob-
served or expected ranges to better match observed groundwater-level data and interpreted flow directions
in accordance with standard manual calibration practices. Tabie 2-1, provided below, shows the hydraulic
conductivity values for each hydrostratigraphic unit in the current SMC Basin model.

Table 2-1 - SMC Basin Model Hydraulic Parameterization Summary

M‘Lduerlnt?r’er Hydrostratigraphic Unit Horizontal Hydraulic Conductivity Values (feet/day)
1 Alluvium 2.0-215
2 Bedrock above the Chinle Group 0.04
3 Upper Chinle Shale 0.25-0.0005
4 Upper Chinle Aquifer 1.0-10
5 Upper Middle Chinle Shale 0.25-0.0002
6 Middie Chinle Aquifer 1.0-10
7 Lower Middle Chinle Shale 0.0009
8 Lower Chinle Aquifer 0.5-10
9 Lower Chinle Shale 0.004
10 SAG 10-500

Figures 2-1 through 2-10 provide the hydraulic conductivity values associated with each respective hy-
drostratigraphic model layer and pixelated coloration is used to show areas of nominal layer thickness, as
described previously in HMC (2019). Zonation of parameter values within a given [ayer was used to improve
the match between simulated groundwater elevations, flow directions, and constituent transport with ob-
served data and is a standard calibration technique used in numerical modeling (Anderson et al. 2015).

2.2 Adjustments to San Mateo Fault Representation

The Model Status Report identified that placement of the San Mateo Fault representations north of the GRP
in the groundwater model were positioned further east than depicted by Weston (2018). Therefore, the geo-
logic model developed using Leapfrog was revised by combining fault depictions at the local scale inter-
preted by HydroEngineering (HE, 2016) with Weston’s (2018) interpretation in the Upper SMC Basin. Modi-
fications to the Leapfrog model resulted in an updated interpolation of hydrostratigraphic unit geometry and,
consequently, revised top and bottom layer elevations were imported into the SMC Basin model for all lay-
ers.
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The model construction approach of defining layers by hydrostratigraphy remains unchanged from previous
efforts. Thus, where geologic units are absent at a location due to erosion, the corresponding model layers
retain both nominal thicknesses of 1 foot each and the hydraulic properties of the uppermost existing geo-
logic unit as described in the Model Status Report (HMC, 2019).

To represent the San Mateo Fault as a continuous barrier to flow in the groundwater flow and transport
model, the MODFLOW Hydraulic Flow Barrier (HFB) Package was placed vertically along cell faces following
the lateral centerline of the fault splays with their interpreted dips inherited from the previous site-scale geo-
logic model (HMC, 201.9). A vertical representation of the fault is necessary to avoid simulating vertical by-
pass of groundwater flow between model layers where using flow barriers located based on the dips of the
faults would be offset lateraily. To limit simulated horizontal hydraulic flow across the faults, HFB conduct-
ance values were assigned in all HFB package locations in Layers 2 through 10 using the hydraulic conduc-
tivity originally assigned to the adjacent model cells and scaling that conductivity by the relative overlap of
the model layers on either side of the fault. Where faults completely offset a model layer, the HFB hydraulic
conductivity was assigned a minimum value of 1e-10 feet/day (ft/d). HFB conductance values were adjusted
in specific locations during the calibration process. The HFB Package is also applied only in Layers 2
through © where layer thicknesses are greater than 1 ft.

Representation of the San Mateo Fault structure using the HFB package is represented in Figures 2-11
through 2-19.

2.3 Revisions to Recharge and Large Tailings Pile Seepage Estimates

Groundwater recharge is primarily simulated in the model based on spatial precipitation data obtained from
the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (PRISM Group 2004). The
PRISM method interpolates a database of climate records onto a spatial grid covering the coterminous
United States (Daly et al., 2008). PRISM calculates a climate-elevation regression for each gridded spatial
location based on data from nearby climate stations where long-term records are available and on a digital
elevation model (DEM). Factors considered in the regression used for interpolation of precipitation include
location, elevation, coastal proximity, topographic facet orientation, vertical atmospheric layer, topographic
position, and orographic effectiveness of the terrain. Previously, PRISM precipitation data for 2016 were ob-
tained for the PRISM 4-kilometer stable data grid and further spatially interpolated using GIS-based meth-
ods. The 2016 recharge rates were then applied for all model stress periods. For this update the same
PRISM precipitation product was obtained for each month of the calibration period (2013 through 2017),
averaged over each model stress period, and then scaled to develop groundwater recharge rates as de-
scribed in HMC (2019). Thus, recharge in the model now varies both spatially and temporally within the cali-
bration period.

Seepage from the Large Tailings Pile (LTP) represents an important source of both recharge and chemical
mass loading to the local groundwater system. A separate seepage model (the reformulated mixing model
[RMM]) was previously developed to assess long-term changes in both seepage flow rates and constituent
mass loading (HDR, 2016, Appendix G). Assessments of past LTP seepage rates, along with predictions of
future seepage rates, were developed based on vadose modeling using the VADOSE/W code. The RMM was
recently replaced by a Drain Down Model (DDM) that incorporates the Brooks and Corey method to estimate
seepage and toe drain rates (Brooks and Corey 1964; HE, 2019). The revised seepage estimates developed
from the DDM model were incorporated into this SMC Basin model update to simulate seepage from the LTP
into the underlying local groundwater system.

2.4 Addition of New Groundwater Level Target Locations

In the March 2019 Model Status Report, a database query error led to the omission of additional well loca-
tions that could be used for groundwater elevation calibration targets. For the current model update, the
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query was restructured and run, which has resulted in additional target locations and their associated da-
tasets in the SMC Basin model as shown in Figures 2-20 through 2-24.

Alluvial groundwater elevation target locations for the Upper SMC Basin model were alsc added and are
shown in Figure 2-25 (Rio Algom [RAML], 2013; RAML, 2014a; RAML, 2014b; RAML, 2015a; RAML, 2015b;
RAML, 2016a; RAML 2016b; RAML, 2017a; RAML, 201.7b). A recognized limitation for groundwater flow
calibration in the Alluvial aquifer north of the GRP but south of Ambrosia Lake is the general lack of available
water table elevation measurements.

2.5 Adjustments and Addition of General Head Boundaries

2.5.1 Upper San Mateo Basin General Head Boundaries

Historical groundwater levels in the alluvial aquifer have been artificially raised due to surface discharge as-
sociated with legacy mining activities in portions of the SMC Basin north of the GRP (Weston, 2018). There-
fore, alluvial groundwater elevations in this general area of the basin cannot be accurately simulated
through only parameterization of naturally occurring recharge to groundwater.

To simulate initial alluvial groundwater elevations in the Upper SMC Basin at the beginning of the simulation
period (2013), general head boundaries (GHBs) were parameterized using average groundwater elevations
in the Ambrosia Lake area spanning 2008 through first quarter 2012 (RAML, 2008; RALM 2009a; RALM,
2009b; RALM 2010a; RALM 2010b; RALM 2011a; RALM, 2011b; RALM, 2012a; RALM 2012b). This aver-
aging approach over multiple years is suggested by Anderson et al. (2015) when a true steady state initial
condition is not present. South of the Ambrosia Lake area closer to Sand Curve, prescribed water elevations
in the GHBs were assigned using 2015 data reported in Weston (2018). The GHBs were only implemented
in the first stress period (steady state) to establish an initial condition for the transient simulation period and
placement is provided in Figure 2-26. For the remaining stress periods, these GHBs are turned off. Other
consultant Alluvial aquifer contour maps used to parameterize GHBs for the purpose of establishing initial
conditions are provided in Appendix A. Any alluvial groundwater levels used to parameterize the GHBs were
omitted from the target calibration datasets.

2.5.2 Regional Aquifer Systems Inflow and Outflow

In the current model update, GHBs remain in use to simulate regional groundwater flows for major aquifer
units in the SMC Basin. GHBs for the Mesozoic bedrock above the Chinle Group in model layer 2 were devel-
oped using published groundwater-level contour maps for the Entrada Complex (also known as the San Ra-
fael Group) and Morrison Formation (Brod and Stone, 1981, Frenzel and Lyford, 1982; Stone et al. 1983),
as presented and discussed in the Work Plan (HMC 2018a). These GHBs allow simulated groundwater in
model layer 2 (bedrock above the Chinle group) to flow to the northeast in the northern portion of the SMC
Basin and to the east in the southeastern portion of the SMC Basin, as depicted on previously published
groundwater level maps (Figure 2-11).

Little regional flow information exists for the Chinle Group because it represents a regional aquitard even if
the water-bearing units observed in the vicinity of the GRP site are important to local-scale groundwater flow
at the site. As such, the GHBs developed for the model layers representing the Chinle Group (Figures 2-12
through 2-18) are based on the overlying and underlying units and primarily provide model solution stability
rather than simulation of the uncertain regional groundwater flow in the Chinle Group. The upper Chinle
shale {(model layer 3; Figure 2-12) GHBs were developed using GHBs of the bedrock above the Chinle Group
(model layer 2; Figure 2-11). The lower Chinle shale (model layer 9; Figure 2-18) GHBs were developed using
the GHBs of the SAG (model layer 10; Figure 2-19). The GHBs in model layers 3 and 9 provide a mechanism
for the model to simulate observed downward vertical gradients across the Chinle Group regional aquitard.
The remaining general head boundaries in the Chinle Group are only placed in the water-bearing units
(model layers 4, 6, and 8) on the eastern side of the SMC Basin and are intended to provide model solution
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stability (Figures 2-13, 2-15, and 2-17). The upper and lower Middle Chinle shale have no GHBs, as shown
on Figures 2-14 and 2-16.

Similarly, GHBs for the San Andres/Glorieta (SAG) aquifer in model layer 10 were developed using a pub-
fished groundwater-level contour map for the SAG aquifer (Baldwin and Anderholm, 1992; HMC, 2018a) and
boundary condition locations are provided in Figure 2-19.

Locations of regional GHBs remained unchanged from earlier versions of the model; however, slight adjust-
ments to prescribed heads in the GHBs were made to improve calibration for both the Chinle Group and the
SAG aquifer.

2.6 Removal of Rio San Jose Representation

Historical daily average streamflow records for the Rio San Jose at Grants, New Mexico, gauge (08343000)

were obtained from the United States Geological Survey (USGS) National Water Information System (USGS,

2019). Although the period of record for the gauge does not correspond with the SMC Basin model calibra-
tion period, very little baseflow is observed in the historical record with surface flow occurring primarily in re-
sponse to large storm precipitation events.

Since Rio San Jose surface water/groundwater interactions are expected to be minimal over the long-term,
the stream package that previously represented downstream reaches of the Rio San Jose has been removed
from the SMC Basin model.
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Section 3: SMC Basin Model Results

3.1 Groundwater Flow Model Results

Model! calibration objectives for the 2013-2017 simulation period focused on four primary areas:

. Reasonable simulation of wetting and drying of alluvium associated with GRP remediation activities.

. Simulation of observed groundwater elevations and flow directions, especially for the alluvial aquifer
in the vicinity of the GRP area.

. Simulation of generally observed groundwater elevations and flow directions within the alluvial aqui-
fer north of the GRP and for the Upper SMC Basin.

. Development of a groundwater flow solution that allowed calibration to observed uranium and mo-

lybdenum concentrations within the GRP area.

For this model update, only the adjustments discussed in Section 2 were implemented to obtain agreement
with observed conditions. The final calibration represents a balance between the calibration objectives, as
certain parameter modifications may have improved the model’s ability to simulate one condition (such as
improved simulation of groundwater elevations) while degrading the model’s match in other areas (such as
degraded matches to observed constituent concentrations). The current set of model parameters achieves a
good balance between all model calibration objectives but will likely change as additional future updates are
made to the model.

The SMC Basin model was manually calibrated such that simulated heads generally match observed ground-
water elevations. The head target dataset consists of 142 locations in the alluvium (Layer 1; 1,009 observa-
tions), 20 locations in the Upper Chinle aquifer (Layer 4; 234 observations), 34 locations in the Middle
Chinle aquifer (Layer 6; 277 observations), 18 Lower Chinle aquifer locations (Layer 8; 113 observations),
and 11 San Andres/Glorieta locations (Layer 10, 48 observations). Figures 2-20 through 2-25 provide
groundwater flow targets used for calibration. The additional alluvial groundwater targets for the Ambrosia
Lake area that are included in this model update (Figure 2-25) were obtained from Rio Algom semi-annual
reporting (RALM, 2013; RALM, 2014a; RALM, 2014b; RALM, 2015a; RALM, 2015b; RALM, 2016a; RALM,
2016b; RALM, 2017a; RALM 2017b).

Analysis of how well the model simulates observed conditions is based on statistics related to model residu-
als (the difference between simulated and observed groundwater levels). Standard calibration statistics in-
clude the average residual, absolute average residual, root mean squared error (RMSE, which gives greater
weight to larger residuals), and the scaled RMSE (RMSE divided by the total change in measured head, a
measure of how well the model simulates groundwater flow gradients). Table 3-1 provides a summary of
these statistics for the overall model and for only the alluvial aquifer, since the calibration for the alluvium is
especially critical for estimation of remediation timeframes at the GRP.

tt is important to note that an industry-defined statistical range that quantifies a well-calibrated model does
not exist, since modeling by necessity requires subjectivity and the acceptability of a calibration is directly
dependent on the modeling objective (Anderson et al., 2015). In general terms, however, regional models
typically strive for percentage error metrics (e.g., scaled RMSE) of less than 10% whereas local scale models
attempt for scaled statistics less than 5%. In the case of the GRP model, when all layers are included, the
model has regional characteristics and thus a scaled RMSE of 3.17% is well below generally accepted values
for a well calibrated simulation. The residual mean also indicates that on average, there is some low bias to
the solution and the absolute residual mean suggests that the groundwater flow solution is typically within
10.5 feet of the observed value.
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For the alluvial aquifer alone, most of the targets are in the vicinity of the GRP so the calibration process
aimed for minimizing both the residual mean and the absolute residual mean with scaled statistic values of
less than 5%. In the current model version, the residual mean indicates that simulated alluvial heads are,
on average, slightly low (positive values indicate over-estimation) while the absolute residual mean shows
that the solution is typically within 5.96 feet of observed alluvial groundwater elevations. Scaled statistics
range from 1.27% to 1.65% for Layer 1, which are well below 5% and thus indicate a well calibrated model.

Table 3-1 - Bulk Simulated Groundwater Elevation Calibration Statistics

Statistic All Layers ) Model Layer 1 (Alluvial Aquifer)
Residual Mean (feet) 4,90 3.05
Absolute Residual Mean (feet) 10.51 5.96
Sum of Square Residuals (feet?) 416,571 60,858
Root Mean Squared RMS Error (feet) 15.74 1.77
Minimum Residual (feet) ) -78.86 -42.63
Maximum Residual (feet) 84.70 33.84
Number of Observations 1,681 1,009
Range in Observations (feet) 496.00 470.61
Scaled RMS error (%) 3.17 1.65
Scaled Absolute Mean (%) 212 1.27
Scaled Residual Standard Deviation (%) 3.02 1.52

Figure 3-1 presents a scatter plot comparing simulated and observed groundwater elevations. For all layers,
simulated groundwater elevations relative to target values generally fall near the 1:1 line especially for tar-
gets within the general GRP area, which is indicative of good calibration. However, there is a cluster of obser-
vations in the Alluvial aquifer around the observed elevation of 6,880 feet amsl that are associated with tar-
get wells in the Ambrosia Lake area of the Upper SMC basin (shown on Figure 2-25) where additional scatter
is present around the 1:1 line. Model calibration in this area of the SMC Basin model is less critical for the
current modeling objectives, which include estimating GRP remediation timeframes associated with alterna-
tives to be determined as part of the CAP.

Simulated contours for the alluvial aquifer near the GRP and at the regional scale are provided in Figures 3-2
through 3-5. The simulated contours for the GRP in both 2015 and 2017 approximate both observed
groundwater elevations and key groundwater flow directions reflected in the observed data. This includes:

«  Southerly groundwater flow from the upgradient portions of the SMC Basin toward the GRP
«  Westerly groundwater flow directions west of the NRC License Boundary

-  Southerly groundwater flow south of the Small Tailings Pile

. Divergent groundwater flow around the bedrock high located southwest of the GRP

Hydrographs for all simulated targets are provided in Appendix B and all groundwater elevation target values
are provided in table format as Appendix C.

Given the overall objectives of the current version to simulate remediation timeframes for the GRP, the SMC
Basin model is considered weli calibrated to observed water levels and the general hydraulic gradients.
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3.2 Transport Model Results

Geochemical modeling and MT3D-USGS parameterization remain unchanged in the current version from the
March 2019 model construct. The transport model was rerun using the new groundwater flow model solu-
tion described above in Section 3.1. The transport model results for uranium and molybdenum were evalu-
ated based upon visual comparison of simulated contours and well chemographs to observed data. Results
for uranium transport, followed by molybdenum, are described below. Transport calibration target locations
for both uranium and molybdenum are provided in Figures 3-6 through 3-10.

3.2.1 Grants Reclamation Project Area Uranium Transport Calibration Results

Simulated uranium concentrations by the transport model generally reflect both observed plume footprints
and plume concentration changes through time in the GRP vicinity when compared to uranium concentration
contours and well chemographs derived from GRP analytical data.

Figures 3-11 through 3-18 provide comparisons of observed versus simulated uranium contours for the dif-
ferent aquifer units in years 2015 and 2017. For year 2015, the transport model simulates uranium con-
tours greater than 0.1 mg/L extending westward from the GRP that are consistent with observed values (Fig-
ure 3-11). Simulated uranium contours within the LTP and STP footprint and southeast of the STP are also
reflective of contours derived from analytical data. On the east side of the bedrock high, the transport model
simulates the plume extending south and southwestward through a narrow zone of alluvium saturation, alt-
hough simulated concentrations of uranium are generally slightly lower than observed values (Figure 3-11).
The model simulates a lobe of elevated uranium concentrations northwest of the LTP, which is a result of
deriving the initial condition from analytical data that captures naturally occurring elevated uranium concen-
trations in the area of the DD and DD2 wells (HMC, 2018c)

Simulated 2015 uranium contours for the Upper Chinle (Figure 3-12), Middle Chinle (Figure 3-13), and
Lower Chinle (Figure 3-14) aquifers are generally consistent with observed contours included in GRP annual
reports (HE, 20186).

In 2017, transport model results approximate uranium concentrations from annual reporting (HMC and HE,
2018) for locations extending west from the LTP, within the general footprints of the LTP and STP and south-
east of the STP (Figure 3-15). Adjacent to the bedrock high, the model simulates uranium concentrations in
the southern portion of the plume that are slightly less than observed data. Figure 3-16 provides Upper
Chinle aquifer simulated uranium contours for 201.7 that are consistent with those derived based on analyti-
cal data. Figure 3-17 shows that the model replicates Middle Chinle concentrations consistent with data col-
lected from areas west of the LTP and south of the NRC License boundary. Approximately 0.5 mi northwest
of the LTP, the model continues to simulate an area of slightly elevated uranium concentrations that, while
present in 2015, is no longer observed in 2017 (Figure 3-17). For the Lower Chinle aquifer, the model simu-
lates uranium concentrations that are generally consistent with analytical data values for this hydrostrati-
graphic unit (Figure 3-18).

Figures 3-19 through 3-34 provide select time series uranium chemographs for well target locations, which
are shown on the previous uranium concentration contour maps (chemographs for all target locations are
provided in Appendix D and all transport target data is provided as a table in Appendix E). For alluvial well
MQ-Al located in plume area west of the LTP, the model simulates uranium concentrations and trends gener-
ally consistent with analytical data collected from this well (Figure 3-19). Moving downgradient along the
centerline of the plume in the North Restoration Area (i.e., plume footprint west of the LTP), simulated
transport results are consistent with both general uranium concentration magnitudes and trends as ob-
served in analytical data collected from these wells (Figures 3-20 through 3-23). Simulated results at allu-
vial aquifer wells 0491-Al, 0497-Al, 0862-Al, and 0864-Al are provided as representative of the South Off
Site area (Figures 3-24 through 3-27). Simulated concentrations during the calibration period at these tar-
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get locations are also generally consistent with analytical data from each respective location. Simulated ura-
nium concentrations at 0497-Al are slightly lower than observed data, however, the model replicates a de-
creasing trend that is consistent with observed data. Additional Alluvial aquifer chemographs are provided
for well C7-Al (western edge of the STP) and well 0802-Al (southwest of the LTP) (Figures 3-28 and 3-29).
The uranium transport model simulates concentrations that generally match those from samples collected
at C7-Al. At Well 0802-Al, the model replicates the general observed trend in uranium concentrations over
time and magnitudes are just slightly lower than concentrations from water quality samples collected at this
location.

Select chemographs for target locations in the Upper, Middle, and Lower Chinle aquifers are provided in Fig-
ures 3-30 through 3-34, respectively. In the Upper Chinle aquifer, the transport model simulates both ura-
nium concentrations and trends that are consistent with observed data (Figures 3-30 and 3-31). At target
location CW61-MC in the Middle Chinle aquifer, the model simulates concentrations that are consistent ob-
served magnitude and trends in uranium (Figure 3-32). A Well 0493-MC has an unusually high variability in
uranium concentrations, but the transport model does simulate the overall declining trend in concentrations
(Figure 3-33). In the Lower Chinle aquifer, the model simulates concentrations at Well CW29-LC that are
consistent with the analytical data (Figure 3-34).

All concentrations simulated for the SAG aquifer are equal to model initialization values for the entire simula-
tion period.

Overall, the SMC Basin transport model simulates distribution and changes in uranium concentrations at the
GRP for all four aquifer units (alluvium, Upper Chinle, Middle Chinle, and Lower Chinle) that are consistent
with observed conditions.

3.2.2 Molybdenum Transport Calibration Results

Simulated molybdenum transport results are generally reflective of both observed plume footprints and
plume concentration changes through time as illustrated by molybdenum concentration contours and well
chemographs derived from analytical data included in GRP annual reporting.

Figures 3-35, 3-36 and 3-37 provide comparisons of observed versus simulated 2015 molybdenum con-
tours for the alluvial, Upper Chinle and Middle Chinle aquifers, respectively. All other aquifer units are unaf-
fected by molybdenum concentrations that exceed GRP cleanup standards. For year 2015, the transport
model simulates alluvial molybdenum concentrations of greater than 0.1 mg/L extending slightly westward
from the GRP, which is consistent with observed values (Figure 3-35). Simulated alluvium molybdenum con-
tours within the LTP and STP footprint and southeast of the STP are also reflective of contours derived from
analytical data that were previously included in annual reporting (HE 2016). Simulated 2015 molybdenum
contours for the Upper Chinle (Figure 3-36) are also consistent with observed contours developed for GRP
annual reports (HE 2016). Figure 3-37 provides simulated molybdenum contours for the Middle Chinle
where model derived concentrations are consistent with analytical data collected from GRP observation
wells.

In year 2017, transport model results approximate observed alluvium aquifer molybdenum contours for loca-
tions extending west from the LTP, within the general footprints of the LTP and STP, and southeast of the
STP (Figure 3-38; HMC and HE, 2018). Similarly, the transport model generates concentrations resulting in
Upper Chinle aquifer molybdenum contours that are consistent with observed data (Figure 3-39). In the Mid-
dle Chinle aquifer, simulated 2017 concentrations west of the LTP are similar to those calculated by the
model in 2015 (Figure 3-40).

Figures 3-41 through 3-47 provide select timeseries chemographs for well target locations, which are shown
on the previous the molybdenum concentration contour maps (chemographs for all target locations are pro-
vided in Appendix C and molybdenum target data as Appendix F). For alluvial aquifer well MQ-Al, the model
simulates concentrations over time that are consistent with analytical data from groundwater samples. At
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well D1-Al, the model underestimates molybdenum concentrations but does simulate a decreasing trend
consistent with analytical data collected from these wells. For S2-Al (west of the LTP) the model slightly un-
derestimates observed concentrations but does simulate a gradual decline in concentrations that is similar
to the analytical data timeseries. At C8-Al (northwest edge of the small tailings pile [STP]), simulated results
capture concentrations and trends that are consistent with analytical data at this location within the Alluvial
aquifer. At wells CE6-UC and CE15-UC, which are both screened in the Upper Chinle aquifer, simulated mo-
lybdenum concentrations through time are consistent with observed data (Figures 3-45 and 3-46). For the
Middle Chinle aquifer well CW82-MC, the model simulates concentrations consistent with observed data in
early time but the model maintains higher concentrations through 2017 while analytical data show a de-
creasing trend (Figure 3-47).

All molybdenum concentrations simulated for the Lower Chinle and SAG aquifers are equal to background
values for the entire simulation period.

Overall, the SMC Basin model simulates distribution and changes in molybdenum concentrations at the GRP
for all three aquifer units (alluvium, Upper Chinle, and Middle Chinle) that are consistent with observed con-
ditions.

3.2.3 Preliminary Regional Alluvial Aquifer Uranium Transport Results

A single preliminary uranium transport simulation was performed for the alluvial aquifer in the portion of the

SMC Basin upgradient of the GRP. Initial conditions were established north of the GRP using data from Wes-
ton (2018) and from the Ambrosia Lake area (Rio Algom 2012a; Rio Algom 2012b), and these data are pro-

vided as Appendix G.

In addition, initial uranium concentrations were not applied within the GRP area of the model, which allows
for the evaluation of only down-valley transport from upper areas of SMC Basin. Transport model parameter-
ization (e.g., effective porosity, dispersivity, and Freundlich sorption parameters) for regional uranium
transport followed the same methodology as for the GRP vicinity as described in HMC (2019). As minimal
uranium concentration data are available at distances greater than a couple miles north of the GRP, once
initial conditions were set, additional observations were unavailable for use as calibration targets. There-
fore, the transport model for the upper SMC Basin is currently uncalibrated.

Preliminary regional uranium transport results are provided in Figure 3-48. As additional data become avail-
able, calibration and refined transport parameterization for areas in the SMC Basin upgradient of the GRP
may be performed as part of future modeling efforts.
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Section 4: Summary and Future Work

The SMC Basin groundwater flow and transport model has been updated and calibrated to available and ob-
served GRP groundwater conditions between years 2013 and 2017. The model updates since March 2019
included:

« Revisions to hydraulic conductivity to better match observed groundwater-level data and interpreted flow
directions

- Adjustments to the model representation of the San Mateo Fault north of the GRP to position it further
east as per recent data from Weston (2018) and then scaling the HFB conductance values to limit simu-
lated horizontal hydraulic flow across the fauits

» Revisions to PRISM-derived recharge rates such that they now vary both spatially and temporally within
the 2013-2017 calibration period. In addition, the revised LTP seepage estimates developed from the
DDM by HE (2019) were incorporated into the model update since LTP seepage is an important source
of both recharge and chemical mass loading to the local groundwater system.

« Addition of new target groundwater level locations and their associated datasets, including Alluvial aqui-
fer target locations in the Upper SMC Basin in the general vicinity of Ambrosia Lake

« Adjustments and addition of GHBs to simulate elevated historical groundwater levels in the alluvial aqui-
fer of the Upper SMC Basin that have been artificially raised due to surface discharge associated with
legacy mining activities.

» Removal of representation of the Rio San Jose, since very little baseflow is observed in the historical rec-
ord--

Comparisons of the updated model’s simulated groundwater elevations to observed target groundwater ele-
vations and general hydraulic gradients indicates good correlation in the general GRP area. The current
model is therefore well-suited to the model objectives of simulating the fate and transport of CoCs and esti-
mating remediation timeframes for the GRP, as well as supporting completion of a revised CAP. It is im-
portant to recognize that the current calibration was achieved despite the limitation that only estimates of
injection and extraction are available within the GRP area over time and exact historical flow records for indi-
vidual wells are unavailable. .

Without changing the March 2019 geochemical modeling or MT3D-USGS parameterization, the transport
model was then rerun using the new groundwater flow model solution described above. The transport model
results for uranium and molybdenum were evaluated based upon visual comparison of simulated contours
and well chemographs to observed data.

in the GRP area, simulated uranium concentrations generally reflect both observed plume footprints and
concentration changes in the annual reports (HE 2016; HMC and HE 2018) through the 2015-2017
timeframe in all four of the aquifer units of interest (Alluvial and Upper, Middle, and Lower Chinle), including
replicating declining trends in some wells in the vicinity of restoration activities. Simulated molybdenum con-
centrations also generally reflect observed water quality data in the three aquifer units with concentrations
above the GRP cleanup standards (Alluvial and Upper and Middle Chinle).

Since only minimal uranium concentration data are available at distances greater than a few miles north of
the GRP, once initial conditions were set, additional observations were unavailable for use as calibration tar-
gets. Therefore, the transport model for the upper SMC Basin is currently uncalibrated. A single preliminary
uranium transport simulation was performed for the alluvial aquifer in the portion of the SMC Basin upgradi-
ent of the GRP.

Future improvements to the model may include, but may not be limited to:
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* Subdivision of bedrock units above the Chinle Group into representative hydrostratigraphic units. ‘

* Increase in the overall calibration period to include previous years if pumping and injection can be relia-
bly estimated.

* Advancing understanding of potential attenuation mechanisms for the Chinle Formation through supple-
mental geochemical characterization.

* Inclusion of the historical pumping records for the SAG Aquifer if they can be obtained from the New Mex-
ico State Engineer’s Office or other data sources.

* Incorporation of any revisions associated with seepage or mass loading from the Drain Down Model for
the LTP.

* Model calibration refinement (and initial calibration at the regional scale) if data availability allows addi-
tional updates to either the flow or fransport modeling.

Future groundwater modeling efforts will include the following tasks:

* Predictive flow and transport simulations to evaluate GRP remedial timeframes for both the existing col-
lection/injection system and alternatives associated with the 2019 Corrective Action Plan (CAP).

» Calibration of the regional groundwater flow model and performing regional transport calibration and sim-

ulations of southward plume migration from the upgradient portions of the SMC Basin to the vicinity of
GRP.
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Simulated versus Observed Uranium
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Simulated versus Observed Uranium
Concentrations - Well CW61-MC
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Simulated versus Observed Molybdenum
Concentrations - Well MQ-Al
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Simulated versus Observed Molybdenum
Concentrations - Well D1-Al
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Figure 3-43

Simulated versus Observed Molybdenum
Concentrations - Well S2-Al
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Figure 3-44

Simulated versus Observed Molybdenum
Concentrations - Well C8-Al
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Figure 3-46

Simulated versus Observed Molybdenum
Concentrations - Well CE15-UC
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Simulated versus Observed Molybdenum
Concentrations - Well CW62-MC
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Groundwater Flow and Transport Model Status Addendum - June 2019

Appendix A: Groundwater Elevation Data for General Head
Boundary Initial Conditions
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